1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Driver for Motorola/Freescale IMX serial ports 4 * 5 * Based on drivers/char/serial.c, by Linus Torvalds, Theodore Ts'o. 6 * 7 * Author: Sascha Hauer <sascha@saschahauer.de> 8 * Copyright (C) 2004 Pengutronix 9 */ 10 11 #include <linux/module.h> 12 #include <linux/ioport.h> 13 #include <linux/init.h> 14 #include <linux/console.h> 15 #include <linux/sysrq.h> 16 #include <linux/platform_device.h> 17 #include <linux/tty.h> 18 #include <linux/tty_flip.h> 19 #include <linux/serial_core.h> 20 #include <linux/serial.h> 21 #include <linux/clk.h> 22 #include <linux/delay.h> 23 #include <linux/ktime.h> 24 #include <linux/pinctrl/consumer.h> 25 #include <linux/rational.h> 26 #include <linux/slab.h> 27 #include <linux/of.h> 28 #include <linux/of_device.h> 29 #include <linux/io.h> 30 #include <linux/dma-mapping.h> 31 32 #include <asm/irq.h> 33 #include <linux/dma/imx-dma.h> 34 35 #include "serial_mctrl_gpio.h" 36 37 /* Register definitions */ 38 #define URXD0 0x0 /* Receiver Register */ 39 #define URTX0 0x40 /* Transmitter Register */ 40 #define UCR1 0x80 /* Control Register 1 */ 41 #define UCR2 0x84 /* Control Register 2 */ 42 #define UCR3 0x88 /* Control Register 3 */ 43 #define UCR4 0x8c /* Control Register 4 */ 44 #define UFCR 0x90 /* FIFO Control Register */ 45 #define USR1 0x94 /* Status Register 1 */ 46 #define USR2 0x98 /* Status Register 2 */ 47 #define UESC 0x9c /* Escape Character Register */ 48 #define UTIM 0xa0 /* Escape Timer Register */ 49 #define UBIR 0xa4 /* BRM Incremental Register */ 50 #define UBMR 0xa8 /* BRM Modulator Register */ 51 #define UBRC 0xac /* Baud Rate Count Register */ 52 #define IMX21_ONEMS 0xb0 /* One Millisecond register */ 53 #define IMX1_UTS 0xd0 /* UART Test Register on i.mx1 */ 54 #define IMX21_UTS 0xb4 /* UART Test Register on all other i.mx*/ 55 56 /* UART Control Register Bit Fields.*/ 57 #define URXD_DUMMY_READ (1<<16) 58 #define URXD_CHARRDY (1<<15) 59 #define URXD_ERR (1<<14) 60 #define URXD_OVRRUN (1<<13) 61 #define URXD_FRMERR (1<<12) 62 #define URXD_BRK (1<<11) 63 #define URXD_PRERR (1<<10) 64 #define URXD_RX_DATA (0xFF<<0) 65 #define UCR1_ADEN (1<<15) /* Auto detect interrupt */ 66 #define UCR1_ADBR (1<<14) /* Auto detect baud rate */ 67 #define UCR1_TRDYEN (1<<13) /* Transmitter ready interrupt enable */ 68 #define UCR1_IDEN (1<<12) /* Idle condition interrupt */ 69 #define UCR1_ICD_REG(x) (((x) & 3) << 10) /* idle condition detect */ 70 #define UCR1_RRDYEN (1<<9) /* Recv ready interrupt enable */ 71 #define UCR1_RXDMAEN (1<<8) /* Recv ready DMA enable */ 72 #define UCR1_IREN (1<<7) /* Infrared interface enable */ 73 #define UCR1_TXMPTYEN (1<<6) /* Transimitter empty interrupt enable */ 74 #define UCR1_RTSDEN (1<<5) /* RTS delta interrupt enable */ 75 #define UCR1_SNDBRK (1<<4) /* Send break */ 76 #define UCR1_TXDMAEN (1<<3) /* Transmitter ready DMA enable */ 77 #define IMX1_UCR1_UARTCLKEN (1<<2) /* UART clock enabled, i.mx1 only */ 78 #define UCR1_ATDMAEN (1<<2) /* Aging DMA Timer Enable */ 79 #define UCR1_DOZE (1<<1) /* Doze */ 80 #define UCR1_UARTEN (1<<0) /* UART enabled */ 81 #define UCR2_ESCI (1<<15) /* Escape seq interrupt enable */ 82 #define UCR2_IRTS (1<<14) /* Ignore RTS pin */ 83 #define UCR2_CTSC (1<<13) /* CTS pin control */ 84 #define UCR2_CTS (1<<12) /* Clear to send */ 85 #define UCR2_ESCEN (1<<11) /* Escape enable */ 86 #define UCR2_PREN (1<<8) /* Parity enable */ 87 #define UCR2_PROE (1<<7) /* Parity odd/even */ 88 #define UCR2_STPB (1<<6) /* Stop */ 89 #define UCR2_WS (1<<5) /* Word size */ 90 #define UCR2_RTSEN (1<<4) /* Request to send interrupt enable */ 91 #define UCR2_ATEN (1<<3) /* Aging Timer Enable */ 92 #define UCR2_TXEN (1<<2) /* Transmitter enabled */ 93 #define UCR2_RXEN (1<<1) /* Receiver enabled */ 94 #define UCR2_SRST (1<<0) /* SW reset */ 95 #define UCR3_DTREN (1<<13) /* DTR interrupt enable */ 96 #define UCR3_PARERREN (1<<12) /* Parity enable */ 97 #define UCR3_FRAERREN (1<<11) /* Frame error interrupt enable */ 98 #define UCR3_DSR (1<<10) /* Data set ready */ 99 #define UCR3_DCD (1<<9) /* Data carrier detect */ 100 #define UCR3_RI (1<<8) /* Ring indicator */ 101 #define UCR3_ADNIMP (1<<7) /* Autobaud Detection Not Improved */ 102 #define UCR3_RXDSEN (1<<6) /* Receive status interrupt enable */ 103 #define UCR3_AIRINTEN (1<<5) /* Async IR wake interrupt enable */ 104 #define UCR3_AWAKEN (1<<4) /* Async wake interrupt enable */ 105 #define UCR3_DTRDEN (1<<3) /* Data Terminal Ready Delta Enable. */ 106 #define IMX21_UCR3_RXDMUXSEL (1<<2) /* RXD Muxed Input Select */ 107 #define UCR3_INVT (1<<1) /* Inverted Infrared transmission */ 108 #define UCR3_BPEN (1<<0) /* Preset registers enable */ 109 #define UCR4_CTSTL_SHF 10 /* CTS trigger level shift */ 110 #define UCR4_CTSTL_MASK 0x3F /* CTS trigger is 6 bits wide */ 111 #define UCR4_INVR (1<<9) /* Inverted infrared reception */ 112 #define UCR4_ENIRI (1<<8) /* Serial infrared interrupt enable */ 113 #define UCR4_WKEN (1<<7) /* Wake interrupt enable */ 114 #define UCR4_REF16 (1<<6) /* Ref freq 16 MHz */ 115 #define UCR4_IDDMAEN (1<<6) /* DMA IDLE Condition Detected */ 116 #define UCR4_IRSC (1<<5) /* IR special case */ 117 #define UCR4_TCEN (1<<3) /* Transmit complete interrupt enable */ 118 #define UCR4_BKEN (1<<2) /* Break condition interrupt enable */ 119 #define UCR4_OREN (1<<1) /* Receiver overrun interrupt enable */ 120 #define UCR4_DREN (1<<0) /* Recv data ready interrupt enable */ 121 #define UFCR_RXTL_SHF 0 /* Receiver trigger level shift */ 122 #define UFCR_DCEDTE (1<<6) /* DCE/DTE mode select */ 123 #define UFCR_RFDIV (7<<7) /* Reference freq divider mask */ 124 #define UFCR_RFDIV_REG(x) (((x) < 7 ? 6 - (x) : 6) << 7) 125 #define UFCR_TXTL_SHF 10 /* Transmitter trigger level shift */ 126 #define USR1_PARITYERR (1<<15) /* Parity error interrupt flag */ 127 #define USR1_RTSS (1<<14) /* RTS pin status */ 128 #define USR1_TRDY (1<<13) /* Transmitter ready interrupt/dma flag */ 129 #define USR1_RTSD (1<<12) /* RTS delta */ 130 #define USR1_ESCF (1<<11) /* Escape seq interrupt flag */ 131 #define USR1_FRAMERR (1<<10) /* Frame error interrupt flag */ 132 #define USR1_RRDY (1<<9) /* Receiver ready interrupt/dma flag */ 133 #define USR1_AGTIM (1<<8) /* Ageing timer interrupt flag */ 134 #define USR1_DTRD (1<<7) /* DTR Delta */ 135 #define USR1_RXDS (1<<6) /* Receiver idle interrupt flag */ 136 #define USR1_AIRINT (1<<5) /* Async IR wake interrupt flag */ 137 #define USR1_AWAKE (1<<4) /* Aysnc wake interrupt flag */ 138 #define USR2_ADET (1<<15) /* Auto baud rate detect complete */ 139 #define USR2_TXFE (1<<14) /* Transmit buffer FIFO empty */ 140 #define USR2_DTRF (1<<13) /* DTR edge interrupt flag */ 141 #define USR2_IDLE (1<<12) /* Idle condition */ 142 #define USR2_RIDELT (1<<10) /* Ring Interrupt Delta */ 143 #define USR2_RIIN (1<<9) /* Ring Indicator Input */ 144 #define USR2_IRINT (1<<8) /* Serial infrared interrupt flag */ 145 #define USR2_WAKE (1<<7) /* Wake */ 146 #define USR2_DCDIN (1<<5) /* Data Carrier Detect Input */ 147 #define USR2_RTSF (1<<4) /* RTS edge interrupt flag */ 148 #define USR2_TXDC (1<<3) /* Transmitter complete */ 149 #define USR2_BRCD (1<<2) /* Break condition */ 150 #define USR2_ORE (1<<1) /* Overrun error */ 151 #define USR2_RDR (1<<0) /* Recv data ready */ 152 #define UTS_FRCPERR (1<<13) /* Force parity error */ 153 #define UTS_LOOP (1<<12) /* Loop tx and rx */ 154 #define UTS_TXEMPTY (1<<6) /* TxFIFO empty */ 155 #define UTS_RXEMPTY (1<<5) /* RxFIFO empty */ 156 #define UTS_TXFULL (1<<4) /* TxFIFO full */ 157 #define UTS_RXFULL (1<<3) /* RxFIFO full */ 158 #define UTS_SOFTRST (1<<0) /* Software reset */ 159 160 /* We've been assigned a range on the "Low-density serial ports" major */ 161 #define SERIAL_IMX_MAJOR 207 162 #define MINOR_START 16 163 #define DEV_NAME "ttymxc" 164 165 /* 166 * This determines how often we check the modem status signals 167 * for any change. They generally aren't connected to an IRQ 168 * so we have to poll them. We also check immediately before 169 * filling the TX fifo incase CTS has been dropped. 170 */ 171 #define MCTRL_TIMEOUT (250*HZ/1000) 172 173 #define DRIVER_NAME "IMX-uart" 174 175 #define UART_NR 8 176 177 /* i.MX21 type uart runs on all i.mx except i.MX1 and i.MX6q */ 178 enum imx_uart_type { 179 IMX1_UART, 180 IMX21_UART, 181 IMX53_UART, 182 IMX6Q_UART, 183 }; 184 185 /* device type dependent stuff */ 186 struct imx_uart_data { 187 unsigned uts_reg; 188 enum imx_uart_type devtype; 189 }; 190 191 enum imx_tx_state { 192 OFF, 193 WAIT_AFTER_RTS, 194 SEND, 195 WAIT_AFTER_SEND, 196 }; 197 198 struct imx_port { 199 struct uart_port port; 200 struct timer_list timer; 201 unsigned int old_status; 202 unsigned int have_rtscts:1; 203 unsigned int have_rtsgpio:1; 204 unsigned int dte_mode:1; 205 unsigned int inverted_tx:1; 206 unsigned int inverted_rx:1; 207 struct clk *clk_ipg; 208 struct clk *clk_per; 209 const struct imx_uart_data *devdata; 210 211 struct mctrl_gpios *gpios; 212 213 /* shadow registers */ 214 unsigned int ucr1; 215 unsigned int ucr2; 216 unsigned int ucr3; 217 unsigned int ucr4; 218 unsigned int ufcr; 219 220 /* DMA fields */ 221 unsigned int dma_is_enabled:1; 222 unsigned int dma_is_rxing:1; 223 unsigned int dma_is_txing:1; 224 struct dma_chan *dma_chan_rx, *dma_chan_tx; 225 struct scatterlist rx_sgl, tx_sgl[2]; 226 void *rx_buf; 227 struct circ_buf rx_ring; 228 unsigned int rx_buf_size; 229 unsigned int rx_period_length; 230 unsigned int rx_periods; 231 dma_cookie_t rx_cookie; 232 unsigned int tx_bytes; 233 unsigned int dma_tx_nents; 234 unsigned int saved_reg[10]; 235 bool context_saved; 236 237 enum imx_tx_state tx_state; 238 struct hrtimer trigger_start_tx; 239 struct hrtimer trigger_stop_tx; 240 }; 241 242 struct imx_port_ucrs { 243 unsigned int ucr1; 244 unsigned int ucr2; 245 unsigned int ucr3; 246 }; 247 248 static struct imx_uart_data imx_uart_devdata[] = { 249 [IMX1_UART] = { 250 .uts_reg = IMX1_UTS, 251 .devtype = IMX1_UART, 252 }, 253 [IMX21_UART] = { 254 .uts_reg = IMX21_UTS, 255 .devtype = IMX21_UART, 256 }, 257 [IMX53_UART] = { 258 .uts_reg = IMX21_UTS, 259 .devtype = IMX53_UART, 260 }, 261 [IMX6Q_UART] = { 262 .uts_reg = IMX21_UTS, 263 .devtype = IMX6Q_UART, 264 }, 265 }; 266 267 static const struct of_device_id imx_uart_dt_ids[] = { 268 { .compatible = "fsl,imx6q-uart", .data = &imx_uart_devdata[IMX6Q_UART], }, 269 { .compatible = "fsl,imx53-uart", .data = &imx_uart_devdata[IMX53_UART], }, 270 { .compatible = "fsl,imx1-uart", .data = &imx_uart_devdata[IMX1_UART], }, 271 { .compatible = "fsl,imx21-uart", .data = &imx_uart_devdata[IMX21_UART], }, 272 { /* sentinel */ } 273 }; 274 MODULE_DEVICE_TABLE(of, imx_uart_dt_ids); 275 276 static void imx_uart_writel(struct imx_port *sport, u32 val, u32 offset) 277 { 278 switch (offset) { 279 case UCR1: 280 sport->ucr1 = val; 281 break; 282 case UCR2: 283 sport->ucr2 = val; 284 break; 285 case UCR3: 286 sport->ucr3 = val; 287 break; 288 case UCR4: 289 sport->ucr4 = val; 290 break; 291 case UFCR: 292 sport->ufcr = val; 293 break; 294 default: 295 break; 296 } 297 writel(val, sport->port.membase + offset); 298 } 299 300 static u32 imx_uart_readl(struct imx_port *sport, u32 offset) 301 { 302 switch (offset) { 303 case UCR1: 304 return sport->ucr1; 305 break; 306 case UCR2: 307 /* 308 * UCR2_SRST is the only bit in the cached registers that might 309 * differ from the value that was last written. As it only 310 * automatically becomes one after being cleared, reread 311 * conditionally. 312 */ 313 if (!(sport->ucr2 & UCR2_SRST)) 314 sport->ucr2 = readl(sport->port.membase + offset); 315 return sport->ucr2; 316 break; 317 case UCR3: 318 return sport->ucr3; 319 break; 320 case UCR4: 321 return sport->ucr4; 322 break; 323 case UFCR: 324 return sport->ufcr; 325 break; 326 default: 327 return readl(sport->port.membase + offset); 328 } 329 } 330 331 static inline unsigned imx_uart_uts_reg(struct imx_port *sport) 332 { 333 return sport->devdata->uts_reg; 334 } 335 336 static inline int imx_uart_is_imx1(struct imx_port *sport) 337 { 338 return sport->devdata->devtype == IMX1_UART; 339 } 340 341 static inline int imx_uart_is_imx21(struct imx_port *sport) 342 { 343 return sport->devdata->devtype == IMX21_UART; 344 } 345 346 static inline int imx_uart_is_imx53(struct imx_port *sport) 347 { 348 return sport->devdata->devtype == IMX53_UART; 349 } 350 351 static inline int imx_uart_is_imx6q(struct imx_port *sport) 352 { 353 return sport->devdata->devtype == IMX6Q_UART; 354 } 355 /* 356 * Save and restore functions for UCR1, UCR2 and UCR3 registers 357 */ 358 #if IS_ENABLED(CONFIG_SERIAL_IMX_CONSOLE) 359 static void imx_uart_ucrs_save(struct imx_port *sport, 360 struct imx_port_ucrs *ucr) 361 { 362 /* save control registers */ 363 ucr->ucr1 = imx_uart_readl(sport, UCR1); 364 ucr->ucr2 = imx_uart_readl(sport, UCR2); 365 ucr->ucr3 = imx_uart_readl(sport, UCR3); 366 } 367 368 static void imx_uart_ucrs_restore(struct imx_port *sport, 369 struct imx_port_ucrs *ucr) 370 { 371 /* restore control registers */ 372 imx_uart_writel(sport, ucr->ucr1, UCR1); 373 imx_uart_writel(sport, ucr->ucr2, UCR2); 374 imx_uart_writel(sport, ucr->ucr3, UCR3); 375 } 376 #endif 377 378 /* called with port.lock taken and irqs caller dependent */ 379 static void imx_uart_rts_active(struct imx_port *sport, u32 *ucr2) 380 { 381 *ucr2 &= ~(UCR2_CTSC | UCR2_CTS); 382 383 mctrl_gpio_set(sport->gpios, sport->port.mctrl | TIOCM_RTS); 384 } 385 386 /* called with port.lock taken and irqs caller dependent */ 387 static void imx_uart_rts_inactive(struct imx_port *sport, u32 *ucr2) 388 { 389 *ucr2 &= ~UCR2_CTSC; 390 *ucr2 |= UCR2_CTS; 391 392 mctrl_gpio_set(sport->gpios, sport->port.mctrl & ~TIOCM_RTS); 393 } 394 395 static void start_hrtimer_ms(struct hrtimer *hrt, unsigned long msec) 396 { 397 hrtimer_start(hrt, ms_to_ktime(msec), HRTIMER_MODE_REL); 398 } 399 400 /* called with port.lock taken and irqs off */ 401 static void imx_uart_start_rx(struct uart_port *port) 402 { 403 struct imx_port *sport = (struct imx_port *)port; 404 unsigned int ucr1, ucr2; 405 406 ucr1 = imx_uart_readl(sport, UCR1); 407 ucr2 = imx_uart_readl(sport, UCR2); 408 409 ucr2 |= UCR2_RXEN; 410 411 if (sport->dma_is_enabled) { 412 ucr1 |= UCR1_RXDMAEN | UCR1_ATDMAEN; 413 } else { 414 ucr1 |= UCR1_RRDYEN; 415 ucr2 |= UCR2_ATEN; 416 } 417 418 /* Write UCR2 first as it includes RXEN */ 419 imx_uart_writel(sport, ucr2, UCR2); 420 imx_uart_writel(sport, ucr1, UCR1); 421 } 422 423 /* called with port.lock taken and irqs off */ 424 static void imx_uart_stop_tx(struct uart_port *port) 425 { 426 struct imx_port *sport = (struct imx_port *)port; 427 u32 ucr1, ucr4, usr2; 428 429 if (sport->tx_state == OFF) 430 return; 431 432 /* 433 * We are maybe in the SMP context, so if the DMA TX thread is running 434 * on other cpu, we have to wait for it to finish. 435 */ 436 if (sport->dma_is_txing) 437 return; 438 439 ucr1 = imx_uart_readl(sport, UCR1); 440 imx_uart_writel(sport, ucr1 & ~UCR1_TRDYEN, UCR1); 441 442 usr2 = imx_uart_readl(sport, USR2); 443 if (!(usr2 & USR2_TXDC)) { 444 /* The shifter is still busy, so retry once TC triggers */ 445 return; 446 } 447 448 ucr4 = imx_uart_readl(sport, UCR4); 449 ucr4 &= ~UCR4_TCEN; 450 imx_uart_writel(sport, ucr4, UCR4); 451 452 /* in rs485 mode disable transmitter */ 453 if (port->rs485.flags & SER_RS485_ENABLED) { 454 if (sport->tx_state == SEND) { 455 sport->tx_state = WAIT_AFTER_SEND; 456 457 if (port->rs485.delay_rts_after_send > 0) { 458 start_hrtimer_ms(&sport->trigger_stop_tx, 459 port->rs485.delay_rts_after_send); 460 return; 461 } 462 463 /* continue without any delay */ 464 } 465 466 if (sport->tx_state == WAIT_AFTER_RTS || 467 sport->tx_state == WAIT_AFTER_SEND) { 468 u32 ucr2; 469 470 hrtimer_try_to_cancel(&sport->trigger_start_tx); 471 472 ucr2 = imx_uart_readl(sport, UCR2); 473 if (port->rs485.flags & SER_RS485_RTS_AFTER_SEND) 474 imx_uart_rts_active(sport, &ucr2); 475 else 476 imx_uart_rts_inactive(sport, &ucr2); 477 imx_uart_writel(sport, ucr2, UCR2); 478 479 imx_uart_start_rx(port); 480 481 sport->tx_state = OFF; 482 } 483 } else { 484 sport->tx_state = OFF; 485 } 486 } 487 488 /* called with port.lock taken and irqs off */ 489 static void imx_uart_stop_rx(struct uart_port *port) 490 { 491 struct imx_port *sport = (struct imx_port *)port; 492 u32 ucr1, ucr2, ucr4; 493 494 ucr1 = imx_uart_readl(sport, UCR1); 495 ucr2 = imx_uart_readl(sport, UCR2); 496 ucr4 = imx_uart_readl(sport, UCR4); 497 498 if (sport->dma_is_enabled) { 499 ucr1 &= ~(UCR1_RXDMAEN | UCR1_ATDMAEN); 500 } else { 501 ucr1 &= ~UCR1_RRDYEN; 502 ucr2 &= ~UCR2_ATEN; 503 ucr4 &= ~UCR4_OREN; 504 } 505 imx_uart_writel(sport, ucr1, UCR1); 506 imx_uart_writel(sport, ucr4, UCR4); 507 508 ucr2 &= ~UCR2_RXEN; 509 imx_uart_writel(sport, ucr2, UCR2); 510 } 511 512 /* called with port.lock taken and irqs off */ 513 static void imx_uart_enable_ms(struct uart_port *port) 514 { 515 struct imx_port *sport = (struct imx_port *)port; 516 517 mod_timer(&sport->timer, jiffies); 518 519 mctrl_gpio_enable_ms(sport->gpios); 520 } 521 522 static void imx_uart_dma_tx(struct imx_port *sport); 523 524 /* called with port.lock taken and irqs off */ 525 static inline void imx_uart_transmit_buffer(struct imx_port *sport) 526 { 527 struct circ_buf *xmit = &sport->port.state->xmit; 528 529 if (sport->port.x_char) { 530 /* Send next char */ 531 imx_uart_writel(sport, sport->port.x_char, URTX0); 532 sport->port.icount.tx++; 533 sport->port.x_char = 0; 534 return; 535 } 536 537 if (uart_circ_empty(xmit) || uart_tx_stopped(&sport->port)) { 538 imx_uart_stop_tx(&sport->port); 539 return; 540 } 541 542 if (sport->dma_is_enabled) { 543 u32 ucr1; 544 /* 545 * We've just sent a X-char Ensure the TX DMA is enabled 546 * and the TX IRQ is disabled. 547 **/ 548 ucr1 = imx_uart_readl(sport, UCR1); 549 ucr1 &= ~UCR1_TRDYEN; 550 if (sport->dma_is_txing) { 551 ucr1 |= UCR1_TXDMAEN; 552 imx_uart_writel(sport, ucr1, UCR1); 553 } else { 554 imx_uart_writel(sport, ucr1, UCR1); 555 imx_uart_dma_tx(sport); 556 } 557 558 return; 559 } 560 561 while (!uart_circ_empty(xmit) && 562 !(imx_uart_readl(sport, imx_uart_uts_reg(sport)) & UTS_TXFULL)) { 563 /* send xmit->buf[xmit->tail] 564 * out the port here */ 565 imx_uart_writel(sport, xmit->buf[xmit->tail], URTX0); 566 xmit->tail = (xmit->tail + 1) & (UART_XMIT_SIZE - 1); 567 sport->port.icount.tx++; 568 } 569 570 if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS) 571 uart_write_wakeup(&sport->port); 572 573 if (uart_circ_empty(xmit)) 574 imx_uart_stop_tx(&sport->port); 575 } 576 577 static void imx_uart_dma_tx_callback(void *data) 578 { 579 struct imx_port *sport = data; 580 struct scatterlist *sgl = &sport->tx_sgl[0]; 581 struct circ_buf *xmit = &sport->port.state->xmit; 582 unsigned long flags; 583 u32 ucr1; 584 585 spin_lock_irqsave(&sport->port.lock, flags); 586 587 dma_unmap_sg(sport->port.dev, sgl, sport->dma_tx_nents, DMA_TO_DEVICE); 588 589 ucr1 = imx_uart_readl(sport, UCR1); 590 ucr1 &= ~UCR1_TXDMAEN; 591 imx_uart_writel(sport, ucr1, UCR1); 592 593 /* update the stat */ 594 xmit->tail = (xmit->tail + sport->tx_bytes) & (UART_XMIT_SIZE - 1); 595 sport->port.icount.tx += sport->tx_bytes; 596 597 dev_dbg(sport->port.dev, "we finish the TX DMA.\n"); 598 599 sport->dma_is_txing = 0; 600 601 if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS) 602 uart_write_wakeup(&sport->port); 603 604 if (!uart_circ_empty(xmit) && !uart_tx_stopped(&sport->port)) 605 imx_uart_dma_tx(sport); 606 else if (sport->port.rs485.flags & SER_RS485_ENABLED) { 607 u32 ucr4 = imx_uart_readl(sport, UCR4); 608 ucr4 |= UCR4_TCEN; 609 imx_uart_writel(sport, ucr4, UCR4); 610 } 611 612 spin_unlock_irqrestore(&sport->port.lock, flags); 613 } 614 615 /* called with port.lock taken and irqs off */ 616 static void imx_uart_dma_tx(struct imx_port *sport) 617 { 618 struct circ_buf *xmit = &sport->port.state->xmit; 619 struct scatterlist *sgl = sport->tx_sgl; 620 struct dma_async_tx_descriptor *desc; 621 struct dma_chan *chan = sport->dma_chan_tx; 622 struct device *dev = sport->port.dev; 623 u32 ucr1, ucr4; 624 int ret; 625 626 if (sport->dma_is_txing) 627 return; 628 629 ucr4 = imx_uart_readl(sport, UCR4); 630 ucr4 &= ~UCR4_TCEN; 631 imx_uart_writel(sport, ucr4, UCR4); 632 633 sport->tx_bytes = uart_circ_chars_pending(xmit); 634 635 if (xmit->tail < xmit->head || xmit->head == 0) { 636 sport->dma_tx_nents = 1; 637 sg_init_one(sgl, xmit->buf + xmit->tail, sport->tx_bytes); 638 } else { 639 sport->dma_tx_nents = 2; 640 sg_init_table(sgl, 2); 641 sg_set_buf(sgl, xmit->buf + xmit->tail, 642 UART_XMIT_SIZE - xmit->tail); 643 sg_set_buf(sgl + 1, xmit->buf, xmit->head); 644 } 645 646 ret = dma_map_sg(dev, sgl, sport->dma_tx_nents, DMA_TO_DEVICE); 647 if (ret == 0) { 648 dev_err(dev, "DMA mapping error for TX.\n"); 649 return; 650 } 651 desc = dmaengine_prep_slave_sg(chan, sgl, ret, 652 DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT); 653 if (!desc) { 654 dma_unmap_sg(dev, sgl, sport->dma_tx_nents, 655 DMA_TO_DEVICE); 656 dev_err(dev, "We cannot prepare for the TX slave dma!\n"); 657 return; 658 } 659 desc->callback = imx_uart_dma_tx_callback; 660 desc->callback_param = sport; 661 662 dev_dbg(dev, "TX: prepare to send %lu bytes by DMA.\n", 663 uart_circ_chars_pending(xmit)); 664 665 ucr1 = imx_uart_readl(sport, UCR1); 666 ucr1 |= UCR1_TXDMAEN; 667 imx_uart_writel(sport, ucr1, UCR1); 668 669 /* fire it */ 670 sport->dma_is_txing = 1; 671 dmaengine_submit(desc); 672 dma_async_issue_pending(chan); 673 return; 674 } 675 676 /* called with port.lock taken and irqs off */ 677 static void imx_uart_start_tx(struct uart_port *port) 678 { 679 struct imx_port *sport = (struct imx_port *)port; 680 u32 ucr1; 681 682 if (!sport->port.x_char && uart_circ_empty(&port->state->xmit)) 683 return; 684 685 /* 686 * We cannot simply do nothing here if sport->tx_state == SEND already 687 * because UCR1_TXMPTYEN might already have been cleared in 688 * imx_uart_stop_tx(), but tx_state is still SEND. 689 */ 690 691 if (port->rs485.flags & SER_RS485_ENABLED) { 692 if (sport->tx_state == OFF) { 693 u32 ucr2 = imx_uart_readl(sport, UCR2); 694 if (port->rs485.flags & SER_RS485_RTS_ON_SEND) 695 imx_uart_rts_active(sport, &ucr2); 696 else 697 imx_uart_rts_inactive(sport, &ucr2); 698 imx_uart_writel(sport, ucr2, UCR2); 699 700 if (!(port->rs485.flags & SER_RS485_RX_DURING_TX)) 701 imx_uart_stop_rx(port); 702 703 sport->tx_state = WAIT_AFTER_RTS; 704 705 if (port->rs485.delay_rts_before_send > 0) { 706 start_hrtimer_ms(&sport->trigger_start_tx, 707 port->rs485.delay_rts_before_send); 708 return; 709 } 710 711 /* continue without any delay */ 712 } 713 714 if (sport->tx_state == WAIT_AFTER_SEND 715 || sport->tx_state == WAIT_AFTER_RTS) { 716 717 hrtimer_try_to_cancel(&sport->trigger_stop_tx); 718 719 /* 720 * Enable transmitter and shifter empty irq only if DMA 721 * is off. In the DMA case this is done in the 722 * tx-callback. 723 */ 724 if (!sport->dma_is_enabled) { 725 u32 ucr4 = imx_uart_readl(sport, UCR4); 726 ucr4 |= UCR4_TCEN; 727 imx_uart_writel(sport, ucr4, UCR4); 728 } 729 730 sport->tx_state = SEND; 731 } 732 } else { 733 sport->tx_state = SEND; 734 } 735 736 if (!sport->dma_is_enabled) { 737 ucr1 = imx_uart_readl(sport, UCR1); 738 imx_uart_writel(sport, ucr1 | UCR1_TRDYEN, UCR1); 739 } 740 741 if (sport->dma_is_enabled) { 742 if (sport->port.x_char) { 743 /* We have X-char to send, so enable TX IRQ and 744 * disable TX DMA to let TX interrupt to send X-char */ 745 ucr1 = imx_uart_readl(sport, UCR1); 746 ucr1 &= ~UCR1_TXDMAEN; 747 ucr1 |= UCR1_TRDYEN; 748 imx_uart_writel(sport, ucr1, UCR1); 749 return; 750 } 751 752 if (!uart_circ_empty(&port->state->xmit) && 753 !uart_tx_stopped(port)) 754 imx_uart_dma_tx(sport); 755 return; 756 } 757 } 758 759 static irqreturn_t __imx_uart_rtsint(int irq, void *dev_id) 760 { 761 struct imx_port *sport = dev_id; 762 u32 usr1; 763 764 imx_uart_writel(sport, USR1_RTSD, USR1); 765 usr1 = imx_uart_readl(sport, USR1) & USR1_RTSS; 766 uart_handle_cts_change(&sport->port, !!usr1); 767 wake_up_interruptible(&sport->port.state->port.delta_msr_wait); 768 769 return IRQ_HANDLED; 770 } 771 772 static irqreturn_t imx_uart_rtsint(int irq, void *dev_id) 773 { 774 struct imx_port *sport = dev_id; 775 irqreturn_t ret; 776 777 spin_lock(&sport->port.lock); 778 779 ret = __imx_uart_rtsint(irq, dev_id); 780 781 spin_unlock(&sport->port.lock); 782 783 return ret; 784 } 785 786 static irqreturn_t imx_uart_txint(int irq, void *dev_id) 787 { 788 struct imx_port *sport = dev_id; 789 790 spin_lock(&sport->port.lock); 791 imx_uart_transmit_buffer(sport); 792 spin_unlock(&sport->port.lock); 793 return IRQ_HANDLED; 794 } 795 796 static irqreturn_t __imx_uart_rxint(int irq, void *dev_id) 797 { 798 struct imx_port *sport = dev_id; 799 unsigned int rx, flg, ignored = 0; 800 struct tty_port *port = &sport->port.state->port; 801 802 while (imx_uart_readl(sport, USR2) & USR2_RDR) { 803 u32 usr2; 804 805 flg = TTY_NORMAL; 806 sport->port.icount.rx++; 807 808 rx = imx_uart_readl(sport, URXD0); 809 810 usr2 = imx_uart_readl(sport, USR2); 811 if (usr2 & USR2_BRCD) { 812 imx_uart_writel(sport, USR2_BRCD, USR2); 813 if (uart_handle_break(&sport->port)) 814 continue; 815 } 816 817 if (uart_handle_sysrq_char(&sport->port, (unsigned char)rx)) 818 continue; 819 820 if (unlikely(rx & URXD_ERR)) { 821 if (rx & URXD_BRK) 822 sport->port.icount.brk++; 823 else if (rx & URXD_PRERR) 824 sport->port.icount.parity++; 825 else if (rx & URXD_FRMERR) 826 sport->port.icount.frame++; 827 if (rx & URXD_OVRRUN) 828 sport->port.icount.overrun++; 829 830 if (rx & sport->port.ignore_status_mask) { 831 if (++ignored > 100) 832 goto out; 833 continue; 834 } 835 836 rx &= (sport->port.read_status_mask | 0xFF); 837 838 if (rx & URXD_BRK) 839 flg = TTY_BREAK; 840 else if (rx & URXD_PRERR) 841 flg = TTY_PARITY; 842 else if (rx & URXD_FRMERR) 843 flg = TTY_FRAME; 844 if (rx & URXD_OVRRUN) 845 flg = TTY_OVERRUN; 846 847 sport->port.sysrq = 0; 848 } 849 850 if (sport->port.ignore_status_mask & URXD_DUMMY_READ) 851 goto out; 852 853 if (tty_insert_flip_char(port, rx, flg) == 0) 854 sport->port.icount.buf_overrun++; 855 } 856 857 out: 858 tty_flip_buffer_push(port); 859 860 return IRQ_HANDLED; 861 } 862 863 static irqreturn_t imx_uart_rxint(int irq, void *dev_id) 864 { 865 struct imx_port *sport = dev_id; 866 irqreturn_t ret; 867 868 spin_lock(&sport->port.lock); 869 870 ret = __imx_uart_rxint(irq, dev_id); 871 872 spin_unlock(&sport->port.lock); 873 874 return ret; 875 } 876 877 static void imx_uart_clear_rx_errors(struct imx_port *sport); 878 879 /* 880 * We have a modem side uart, so the meanings of RTS and CTS are inverted. 881 */ 882 static unsigned int imx_uart_get_hwmctrl(struct imx_port *sport) 883 { 884 unsigned int tmp = TIOCM_DSR; 885 unsigned usr1 = imx_uart_readl(sport, USR1); 886 unsigned usr2 = imx_uart_readl(sport, USR2); 887 888 if (usr1 & USR1_RTSS) 889 tmp |= TIOCM_CTS; 890 891 /* in DCE mode DCDIN is always 0 */ 892 if (!(usr2 & USR2_DCDIN)) 893 tmp |= TIOCM_CAR; 894 895 if (sport->dte_mode) 896 if (!(imx_uart_readl(sport, USR2) & USR2_RIIN)) 897 tmp |= TIOCM_RI; 898 899 return tmp; 900 } 901 902 /* 903 * Handle any change of modem status signal since we were last called. 904 */ 905 static void imx_uart_mctrl_check(struct imx_port *sport) 906 { 907 unsigned int status, changed; 908 909 status = imx_uart_get_hwmctrl(sport); 910 changed = status ^ sport->old_status; 911 912 if (changed == 0) 913 return; 914 915 sport->old_status = status; 916 917 if (changed & TIOCM_RI && status & TIOCM_RI) 918 sport->port.icount.rng++; 919 if (changed & TIOCM_DSR) 920 sport->port.icount.dsr++; 921 if (changed & TIOCM_CAR) 922 uart_handle_dcd_change(&sport->port, status & TIOCM_CAR); 923 if (changed & TIOCM_CTS) 924 uart_handle_cts_change(&sport->port, status & TIOCM_CTS); 925 926 wake_up_interruptible(&sport->port.state->port.delta_msr_wait); 927 } 928 929 static irqreturn_t imx_uart_int(int irq, void *dev_id) 930 { 931 struct imx_port *sport = dev_id; 932 unsigned int usr1, usr2, ucr1, ucr2, ucr3, ucr4; 933 irqreturn_t ret = IRQ_NONE; 934 935 spin_lock(&sport->port.lock); 936 937 usr1 = imx_uart_readl(sport, USR1); 938 usr2 = imx_uart_readl(sport, USR2); 939 ucr1 = imx_uart_readl(sport, UCR1); 940 ucr2 = imx_uart_readl(sport, UCR2); 941 ucr3 = imx_uart_readl(sport, UCR3); 942 ucr4 = imx_uart_readl(sport, UCR4); 943 944 /* 945 * Even if a condition is true that can trigger an irq only handle it if 946 * the respective irq source is enabled. This prevents some undesired 947 * actions, for example if a character that sits in the RX FIFO and that 948 * should be fetched via DMA is tried to be fetched using PIO. Or the 949 * receiver is currently off and so reading from URXD0 results in an 950 * exception. So just mask the (raw) status bits for disabled irqs. 951 */ 952 if ((ucr1 & UCR1_RRDYEN) == 0) 953 usr1 &= ~USR1_RRDY; 954 if ((ucr2 & UCR2_ATEN) == 0) 955 usr1 &= ~USR1_AGTIM; 956 if ((ucr1 & UCR1_TRDYEN) == 0) 957 usr1 &= ~USR1_TRDY; 958 if ((ucr4 & UCR4_TCEN) == 0) 959 usr2 &= ~USR2_TXDC; 960 if ((ucr3 & UCR3_DTRDEN) == 0) 961 usr1 &= ~USR1_DTRD; 962 if ((ucr1 & UCR1_RTSDEN) == 0) 963 usr1 &= ~USR1_RTSD; 964 if ((ucr3 & UCR3_AWAKEN) == 0) 965 usr1 &= ~USR1_AWAKE; 966 if ((ucr4 & UCR4_OREN) == 0) 967 usr2 &= ~USR2_ORE; 968 969 if (usr1 & (USR1_RRDY | USR1_AGTIM)) { 970 imx_uart_writel(sport, USR1_AGTIM, USR1); 971 972 __imx_uart_rxint(irq, dev_id); 973 ret = IRQ_HANDLED; 974 } 975 976 if ((usr1 & USR1_TRDY) || (usr2 & USR2_TXDC)) { 977 imx_uart_transmit_buffer(sport); 978 ret = IRQ_HANDLED; 979 } 980 981 if (usr1 & USR1_DTRD) { 982 imx_uart_writel(sport, USR1_DTRD, USR1); 983 984 imx_uart_mctrl_check(sport); 985 986 ret = IRQ_HANDLED; 987 } 988 989 if (usr1 & USR1_RTSD) { 990 __imx_uart_rtsint(irq, dev_id); 991 ret = IRQ_HANDLED; 992 } 993 994 if (usr1 & USR1_AWAKE) { 995 imx_uart_writel(sport, USR1_AWAKE, USR1); 996 ret = IRQ_HANDLED; 997 } 998 999 if (usr2 & USR2_ORE) { 1000 sport->port.icount.overrun++; 1001 imx_uart_writel(sport, USR2_ORE, USR2); 1002 ret = IRQ_HANDLED; 1003 } 1004 1005 spin_unlock(&sport->port.lock); 1006 1007 return ret; 1008 } 1009 1010 /* 1011 * Return TIOCSER_TEMT when transmitter is not busy. 1012 */ 1013 static unsigned int imx_uart_tx_empty(struct uart_port *port) 1014 { 1015 struct imx_port *sport = (struct imx_port *)port; 1016 unsigned int ret; 1017 1018 ret = (imx_uart_readl(sport, USR2) & USR2_TXDC) ? TIOCSER_TEMT : 0; 1019 1020 /* If the TX DMA is working, return 0. */ 1021 if (sport->dma_is_txing) 1022 ret = 0; 1023 1024 return ret; 1025 } 1026 1027 /* called with port.lock taken and irqs off */ 1028 static unsigned int imx_uart_get_mctrl(struct uart_port *port) 1029 { 1030 struct imx_port *sport = (struct imx_port *)port; 1031 unsigned int ret = imx_uart_get_hwmctrl(sport); 1032 1033 mctrl_gpio_get(sport->gpios, &ret); 1034 1035 return ret; 1036 } 1037 1038 /* called with port.lock taken and irqs off */ 1039 static void imx_uart_set_mctrl(struct uart_port *port, unsigned int mctrl) 1040 { 1041 struct imx_port *sport = (struct imx_port *)port; 1042 u32 ucr3, uts; 1043 1044 if (!(port->rs485.flags & SER_RS485_ENABLED)) { 1045 u32 ucr2; 1046 1047 /* 1048 * Turn off autoRTS if RTS is lowered and restore autoRTS 1049 * setting if RTS is raised. 1050 */ 1051 ucr2 = imx_uart_readl(sport, UCR2); 1052 ucr2 &= ~(UCR2_CTS | UCR2_CTSC); 1053 if (mctrl & TIOCM_RTS) { 1054 ucr2 |= UCR2_CTS; 1055 /* 1056 * UCR2_IRTS is unset if and only if the port is 1057 * configured for CRTSCTS, so we use inverted UCR2_IRTS 1058 * to get the state to restore to. 1059 */ 1060 if (!(ucr2 & UCR2_IRTS)) 1061 ucr2 |= UCR2_CTSC; 1062 } 1063 imx_uart_writel(sport, ucr2, UCR2); 1064 } 1065 1066 ucr3 = imx_uart_readl(sport, UCR3) & ~UCR3_DSR; 1067 if (!(mctrl & TIOCM_DTR)) 1068 ucr3 |= UCR3_DSR; 1069 imx_uart_writel(sport, ucr3, UCR3); 1070 1071 uts = imx_uart_readl(sport, imx_uart_uts_reg(sport)) & ~UTS_LOOP; 1072 if (mctrl & TIOCM_LOOP) 1073 uts |= UTS_LOOP; 1074 imx_uart_writel(sport, uts, imx_uart_uts_reg(sport)); 1075 1076 mctrl_gpio_set(sport->gpios, mctrl); 1077 } 1078 1079 /* 1080 * Interrupts always disabled. 1081 */ 1082 static void imx_uart_break_ctl(struct uart_port *port, int break_state) 1083 { 1084 struct imx_port *sport = (struct imx_port *)port; 1085 unsigned long flags; 1086 u32 ucr1; 1087 1088 spin_lock_irqsave(&sport->port.lock, flags); 1089 1090 ucr1 = imx_uart_readl(sport, UCR1) & ~UCR1_SNDBRK; 1091 1092 if (break_state != 0) 1093 ucr1 |= UCR1_SNDBRK; 1094 1095 imx_uart_writel(sport, ucr1, UCR1); 1096 1097 spin_unlock_irqrestore(&sport->port.lock, flags); 1098 } 1099 1100 /* 1101 * This is our per-port timeout handler, for checking the 1102 * modem status signals. 1103 */ 1104 static void imx_uart_timeout(struct timer_list *t) 1105 { 1106 struct imx_port *sport = from_timer(sport, t, timer); 1107 unsigned long flags; 1108 1109 if (sport->port.state) { 1110 spin_lock_irqsave(&sport->port.lock, flags); 1111 imx_uart_mctrl_check(sport); 1112 spin_unlock_irqrestore(&sport->port.lock, flags); 1113 1114 mod_timer(&sport->timer, jiffies + MCTRL_TIMEOUT); 1115 } 1116 } 1117 1118 /* 1119 * There are two kinds of RX DMA interrupts(such as in the MX6Q): 1120 * [1] the RX DMA buffer is full. 1121 * [2] the aging timer expires 1122 * 1123 * Condition [2] is triggered when a character has been sitting in the FIFO 1124 * for at least 8 byte durations. 1125 */ 1126 static void imx_uart_dma_rx_callback(void *data) 1127 { 1128 struct imx_port *sport = data; 1129 struct dma_chan *chan = sport->dma_chan_rx; 1130 struct scatterlist *sgl = &sport->rx_sgl; 1131 struct tty_port *port = &sport->port.state->port; 1132 struct dma_tx_state state; 1133 struct circ_buf *rx_ring = &sport->rx_ring; 1134 enum dma_status status; 1135 unsigned int w_bytes = 0; 1136 unsigned int r_bytes; 1137 unsigned int bd_size; 1138 1139 status = dmaengine_tx_status(chan, sport->rx_cookie, &state); 1140 1141 if (status == DMA_ERROR) { 1142 imx_uart_clear_rx_errors(sport); 1143 return; 1144 } 1145 1146 if (!(sport->port.ignore_status_mask & URXD_DUMMY_READ)) { 1147 1148 /* 1149 * The state-residue variable represents the empty space 1150 * relative to the entire buffer. Taking this in consideration 1151 * the head is always calculated base on the buffer total 1152 * length - DMA transaction residue. The UART script from the 1153 * SDMA firmware will jump to the next buffer descriptor, 1154 * once a DMA transaction if finalized (IMX53 RM - A.4.1.2.4). 1155 * Taking this in consideration the tail is always at the 1156 * beginning of the buffer descriptor that contains the head. 1157 */ 1158 1159 /* Calculate the head */ 1160 rx_ring->head = sg_dma_len(sgl) - state.residue; 1161 1162 /* Calculate the tail. */ 1163 bd_size = sg_dma_len(sgl) / sport->rx_periods; 1164 rx_ring->tail = ((rx_ring->head-1) / bd_size) * bd_size; 1165 1166 if (rx_ring->head <= sg_dma_len(sgl) && 1167 rx_ring->head > rx_ring->tail) { 1168 1169 /* Move data from tail to head */ 1170 r_bytes = rx_ring->head - rx_ring->tail; 1171 1172 /* CPU claims ownership of RX DMA buffer */ 1173 dma_sync_sg_for_cpu(sport->port.dev, sgl, 1, 1174 DMA_FROM_DEVICE); 1175 1176 w_bytes = tty_insert_flip_string(port, 1177 sport->rx_buf + rx_ring->tail, r_bytes); 1178 1179 /* UART retrieves ownership of RX DMA buffer */ 1180 dma_sync_sg_for_device(sport->port.dev, sgl, 1, 1181 DMA_FROM_DEVICE); 1182 1183 if (w_bytes != r_bytes) 1184 sport->port.icount.buf_overrun++; 1185 1186 sport->port.icount.rx += w_bytes; 1187 } else { 1188 WARN_ON(rx_ring->head > sg_dma_len(sgl)); 1189 WARN_ON(rx_ring->head <= rx_ring->tail); 1190 } 1191 } 1192 1193 if (w_bytes) { 1194 tty_flip_buffer_push(port); 1195 dev_dbg(sport->port.dev, "We get %d bytes.\n", w_bytes); 1196 } 1197 } 1198 1199 static int imx_uart_start_rx_dma(struct imx_port *sport) 1200 { 1201 struct scatterlist *sgl = &sport->rx_sgl; 1202 struct dma_chan *chan = sport->dma_chan_rx; 1203 struct device *dev = sport->port.dev; 1204 struct dma_async_tx_descriptor *desc; 1205 int ret; 1206 1207 sport->rx_ring.head = 0; 1208 sport->rx_ring.tail = 0; 1209 1210 sg_init_one(sgl, sport->rx_buf, sport->rx_buf_size); 1211 ret = dma_map_sg(dev, sgl, 1, DMA_FROM_DEVICE); 1212 if (ret == 0) { 1213 dev_err(dev, "DMA mapping error for RX.\n"); 1214 return -EINVAL; 1215 } 1216 1217 desc = dmaengine_prep_dma_cyclic(chan, sg_dma_address(sgl), 1218 sg_dma_len(sgl), sg_dma_len(sgl) / sport->rx_periods, 1219 DMA_DEV_TO_MEM, DMA_PREP_INTERRUPT); 1220 1221 if (!desc) { 1222 dma_unmap_sg(dev, sgl, 1, DMA_FROM_DEVICE); 1223 dev_err(dev, "We cannot prepare for the RX slave dma!\n"); 1224 return -EINVAL; 1225 } 1226 desc->callback = imx_uart_dma_rx_callback; 1227 desc->callback_param = sport; 1228 1229 dev_dbg(dev, "RX: prepare for the DMA.\n"); 1230 sport->dma_is_rxing = 1; 1231 sport->rx_cookie = dmaengine_submit(desc); 1232 dma_async_issue_pending(chan); 1233 return 0; 1234 } 1235 1236 static void imx_uart_clear_rx_errors(struct imx_port *sport) 1237 { 1238 struct tty_port *port = &sport->port.state->port; 1239 u32 usr1, usr2; 1240 1241 usr1 = imx_uart_readl(sport, USR1); 1242 usr2 = imx_uart_readl(sport, USR2); 1243 1244 if (usr2 & USR2_BRCD) { 1245 sport->port.icount.brk++; 1246 imx_uart_writel(sport, USR2_BRCD, USR2); 1247 uart_handle_break(&sport->port); 1248 if (tty_insert_flip_char(port, 0, TTY_BREAK) == 0) 1249 sport->port.icount.buf_overrun++; 1250 tty_flip_buffer_push(port); 1251 } else { 1252 if (usr1 & USR1_FRAMERR) { 1253 sport->port.icount.frame++; 1254 imx_uart_writel(sport, USR1_FRAMERR, USR1); 1255 } else if (usr1 & USR1_PARITYERR) { 1256 sport->port.icount.parity++; 1257 imx_uart_writel(sport, USR1_PARITYERR, USR1); 1258 } 1259 } 1260 1261 if (usr2 & USR2_ORE) { 1262 sport->port.icount.overrun++; 1263 imx_uart_writel(sport, USR2_ORE, USR2); 1264 } 1265 1266 } 1267 1268 #define TXTL_DEFAULT 2 /* reset default */ 1269 #define RXTL_DEFAULT 8 /* 8 characters or aging timer */ 1270 #define TXTL_DMA 8 /* DMA burst setting */ 1271 #define RXTL_DMA 9 /* DMA burst setting */ 1272 1273 static void imx_uart_setup_ufcr(struct imx_port *sport, 1274 unsigned char txwl, unsigned char rxwl) 1275 { 1276 unsigned int val; 1277 1278 /* set receiver / transmitter trigger level */ 1279 val = imx_uart_readl(sport, UFCR) & (UFCR_RFDIV | UFCR_DCEDTE); 1280 val |= txwl << UFCR_TXTL_SHF | rxwl; 1281 imx_uart_writel(sport, val, UFCR); 1282 } 1283 1284 static void imx_uart_dma_exit(struct imx_port *sport) 1285 { 1286 if (sport->dma_chan_rx) { 1287 dmaengine_terminate_sync(sport->dma_chan_rx); 1288 dma_release_channel(sport->dma_chan_rx); 1289 sport->dma_chan_rx = NULL; 1290 sport->rx_cookie = -EINVAL; 1291 kfree(sport->rx_buf); 1292 sport->rx_buf = NULL; 1293 } 1294 1295 if (sport->dma_chan_tx) { 1296 dmaengine_terminate_sync(sport->dma_chan_tx); 1297 dma_release_channel(sport->dma_chan_tx); 1298 sport->dma_chan_tx = NULL; 1299 } 1300 } 1301 1302 static int imx_uart_dma_init(struct imx_port *sport) 1303 { 1304 struct dma_slave_config slave_config = {}; 1305 struct device *dev = sport->port.dev; 1306 int ret; 1307 1308 /* Prepare for RX : */ 1309 sport->dma_chan_rx = dma_request_slave_channel(dev, "rx"); 1310 if (!sport->dma_chan_rx) { 1311 dev_dbg(dev, "cannot get the DMA channel.\n"); 1312 ret = -EINVAL; 1313 goto err; 1314 } 1315 1316 slave_config.direction = DMA_DEV_TO_MEM; 1317 slave_config.src_addr = sport->port.mapbase + URXD0; 1318 slave_config.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE; 1319 /* one byte less than the watermark level to enable the aging timer */ 1320 slave_config.src_maxburst = RXTL_DMA - 1; 1321 ret = dmaengine_slave_config(sport->dma_chan_rx, &slave_config); 1322 if (ret) { 1323 dev_err(dev, "error in RX dma configuration.\n"); 1324 goto err; 1325 } 1326 1327 sport->rx_buf_size = sport->rx_period_length * sport->rx_periods; 1328 sport->rx_buf = kzalloc(sport->rx_buf_size, GFP_KERNEL); 1329 if (!sport->rx_buf) { 1330 ret = -ENOMEM; 1331 goto err; 1332 } 1333 sport->rx_ring.buf = sport->rx_buf; 1334 1335 /* Prepare for TX : */ 1336 sport->dma_chan_tx = dma_request_slave_channel(dev, "tx"); 1337 if (!sport->dma_chan_tx) { 1338 dev_err(dev, "cannot get the TX DMA channel!\n"); 1339 ret = -EINVAL; 1340 goto err; 1341 } 1342 1343 slave_config.direction = DMA_MEM_TO_DEV; 1344 slave_config.dst_addr = sport->port.mapbase + URTX0; 1345 slave_config.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE; 1346 slave_config.dst_maxburst = TXTL_DMA; 1347 ret = dmaengine_slave_config(sport->dma_chan_tx, &slave_config); 1348 if (ret) { 1349 dev_err(dev, "error in TX dma configuration."); 1350 goto err; 1351 } 1352 1353 return 0; 1354 err: 1355 imx_uart_dma_exit(sport); 1356 return ret; 1357 } 1358 1359 static void imx_uart_enable_dma(struct imx_port *sport) 1360 { 1361 u32 ucr1; 1362 1363 imx_uart_setup_ufcr(sport, TXTL_DMA, RXTL_DMA); 1364 1365 /* set UCR1 */ 1366 ucr1 = imx_uart_readl(sport, UCR1); 1367 ucr1 |= UCR1_RXDMAEN | UCR1_TXDMAEN | UCR1_ATDMAEN; 1368 imx_uart_writel(sport, ucr1, UCR1); 1369 1370 sport->dma_is_enabled = 1; 1371 } 1372 1373 static void imx_uart_disable_dma(struct imx_port *sport) 1374 { 1375 u32 ucr1; 1376 1377 /* clear UCR1 */ 1378 ucr1 = imx_uart_readl(sport, UCR1); 1379 ucr1 &= ~(UCR1_RXDMAEN | UCR1_TXDMAEN | UCR1_ATDMAEN); 1380 imx_uart_writel(sport, ucr1, UCR1); 1381 1382 imx_uart_setup_ufcr(sport, TXTL_DEFAULT, RXTL_DEFAULT); 1383 1384 sport->dma_is_enabled = 0; 1385 } 1386 1387 /* half the RX buffer size */ 1388 #define CTSTL 16 1389 1390 static int imx_uart_startup(struct uart_port *port) 1391 { 1392 struct imx_port *sport = (struct imx_port *)port; 1393 int retval, i; 1394 unsigned long flags; 1395 int dma_is_inited = 0; 1396 u32 ucr1, ucr2, ucr3, ucr4; 1397 1398 retval = clk_prepare_enable(sport->clk_per); 1399 if (retval) 1400 return retval; 1401 retval = clk_prepare_enable(sport->clk_ipg); 1402 if (retval) { 1403 clk_disable_unprepare(sport->clk_per); 1404 return retval; 1405 } 1406 1407 imx_uart_setup_ufcr(sport, TXTL_DEFAULT, RXTL_DEFAULT); 1408 1409 /* disable the DREN bit (Data Ready interrupt enable) before 1410 * requesting IRQs 1411 */ 1412 ucr4 = imx_uart_readl(sport, UCR4); 1413 1414 /* set the trigger level for CTS */ 1415 ucr4 &= ~(UCR4_CTSTL_MASK << UCR4_CTSTL_SHF); 1416 ucr4 |= CTSTL << UCR4_CTSTL_SHF; 1417 1418 imx_uart_writel(sport, ucr4 & ~UCR4_DREN, UCR4); 1419 1420 /* Can we enable the DMA support? */ 1421 if (!uart_console(port) && imx_uart_dma_init(sport) == 0) 1422 dma_is_inited = 1; 1423 1424 spin_lock_irqsave(&sport->port.lock, flags); 1425 /* Reset fifo's and state machines */ 1426 i = 100; 1427 1428 ucr2 = imx_uart_readl(sport, UCR2); 1429 ucr2 &= ~UCR2_SRST; 1430 imx_uart_writel(sport, ucr2, UCR2); 1431 1432 while (!(imx_uart_readl(sport, UCR2) & UCR2_SRST) && (--i > 0)) 1433 udelay(1); 1434 1435 /* 1436 * Finally, clear and enable interrupts 1437 */ 1438 imx_uart_writel(sport, USR1_RTSD | USR1_DTRD, USR1); 1439 imx_uart_writel(sport, USR2_ORE, USR2); 1440 1441 ucr1 = imx_uart_readl(sport, UCR1) & ~UCR1_RRDYEN; 1442 ucr1 |= UCR1_UARTEN; 1443 if (sport->have_rtscts) 1444 ucr1 |= UCR1_RTSDEN; 1445 1446 imx_uart_writel(sport, ucr1, UCR1); 1447 1448 ucr4 = imx_uart_readl(sport, UCR4) & ~(UCR4_OREN | UCR4_INVR); 1449 if (!dma_is_inited) 1450 ucr4 |= UCR4_OREN; 1451 if (sport->inverted_rx) 1452 ucr4 |= UCR4_INVR; 1453 imx_uart_writel(sport, ucr4, UCR4); 1454 1455 ucr3 = imx_uart_readl(sport, UCR3) & ~UCR3_INVT; 1456 /* 1457 * configure tx polarity before enabling tx 1458 */ 1459 if (sport->inverted_tx) 1460 ucr3 |= UCR3_INVT; 1461 1462 if (!imx_uart_is_imx1(sport)) { 1463 ucr3 |= UCR3_DTRDEN | UCR3_RI | UCR3_DCD; 1464 1465 if (sport->dte_mode) 1466 /* disable broken interrupts */ 1467 ucr3 &= ~(UCR3_RI | UCR3_DCD); 1468 } 1469 imx_uart_writel(sport, ucr3, UCR3); 1470 1471 ucr2 = imx_uart_readl(sport, UCR2) & ~UCR2_ATEN; 1472 ucr2 |= (UCR2_RXEN | UCR2_TXEN); 1473 if (!sport->have_rtscts) 1474 ucr2 |= UCR2_IRTS; 1475 /* 1476 * make sure the edge sensitive RTS-irq is disabled, 1477 * we're using RTSD instead. 1478 */ 1479 if (!imx_uart_is_imx1(sport)) 1480 ucr2 &= ~UCR2_RTSEN; 1481 imx_uart_writel(sport, ucr2, UCR2); 1482 1483 /* 1484 * Enable modem status interrupts 1485 */ 1486 imx_uart_enable_ms(&sport->port); 1487 1488 if (dma_is_inited) { 1489 imx_uart_enable_dma(sport); 1490 imx_uart_start_rx_dma(sport); 1491 } else { 1492 ucr1 = imx_uart_readl(sport, UCR1); 1493 ucr1 |= UCR1_RRDYEN; 1494 imx_uart_writel(sport, ucr1, UCR1); 1495 1496 ucr2 = imx_uart_readl(sport, UCR2); 1497 ucr2 |= UCR2_ATEN; 1498 imx_uart_writel(sport, ucr2, UCR2); 1499 } 1500 1501 spin_unlock_irqrestore(&sport->port.lock, flags); 1502 1503 return 0; 1504 } 1505 1506 static void imx_uart_shutdown(struct uart_port *port) 1507 { 1508 struct imx_port *sport = (struct imx_port *)port; 1509 unsigned long flags; 1510 u32 ucr1, ucr2, ucr4; 1511 1512 if (sport->dma_is_enabled) { 1513 dmaengine_terminate_sync(sport->dma_chan_tx); 1514 if (sport->dma_is_txing) { 1515 dma_unmap_sg(sport->port.dev, &sport->tx_sgl[0], 1516 sport->dma_tx_nents, DMA_TO_DEVICE); 1517 sport->dma_is_txing = 0; 1518 } 1519 dmaengine_terminate_sync(sport->dma_chan_rx); 1520 if (sport->dma_is_rxing) { 1521 dma_unmap_sg(sport->port.dev, &sport->rx_sgl, 1522 1, DMA_FROM_DEVICE); 1523 sport->dma_is_rxing = 0; 1524 } 1525 1526 spin_lock_irqsave(&sport->port.lock, flags); 1527 imx_uart_stop_tx(port); 1528 imx_uart_stop_rx(port); 1529 imx_uart_disable_dma(sport); 1530 spin_unlock_irqrestore(&sport->port.lock, flags); 1531 imx_uart_dma_exit(sport); 1532 } 1533 1534 mctrl_gpio_disable_ms(sport->gpios); 1535 1536 spin_lock_irqsave(&sport->port.lock, flags); 1537 ucr2 = imx_uart_readl(sport, UCR2); 1538 ucr2 &= ~(UCR2_TXEN | UCR2_ATEN); 1539 imx_uart_writel(sport, ucr2, UCR2); 1540 spin_unlock_irqrestore(&sport->port.lock, flags); 1541 1542 /* 1543 * Stop our timer. 1544 */ 1545 del_timer_sync(&sport->timer); 1546 1547 /* 1548 * Disable all interrupts, port and break condition. 1549 */ 1550 1551 spin_lock_irqsave(&sport->port.lock, flags); 1552 1553 ucr1 = imx_uart_readl(sport, UCR1); 1554 ucr1 &= ~(UCR1_TRDYEN | UCR1_RRDYEN | UCR1_RTSDEN | UCR1_UARTEN | UCR1_RXDMAEN | UCR1_ATDMAEN); 1555 imx_uart_writel(sport, ucr1, UCR1); 1556 1557 ucr4 = imx_uart_readl(sport, UCR4); 1558 ucr4 &= ~UCR4_TCEN; 1559 imx_uart_writel(sport, ucr4, UCR4); 1560 1561 spin_unlock_irqrestore(&sport->port.lock, flags); 1562 1563 clk_disable_unprepare(sport->clk_per); 1564 clk_disable_unprepare(sport->clk_ipg); 1565 } 1566 1567 /* called with port.lock taken and irqs off */ 1568 static void imx_uart_flush_buffer(struct uart_port *port) 1569 { 1570 struct imx_port *sport = (struct imx_port *)port; 1571 struct scatterlist *sgl = &sport->tx_sgl[0]; 1572 u32 ucr2; 1573 int i = 100, ubir, ubmr, uts; 1574 1575 if (!sport->dma_chan_tx) 1576 return; 1577 1578 sport->tx_bytes = 0; 1579 dmaengine_terminate_all(sport->dma_chan_tx); 1580 if (sport->dma_is_txing) { 1581 u32 ucr1; 1582 1583 dma_unmap_sg(sport->port.dev, sgl, sport->dma_tx_nents, 1584 DMA_TO_DEVICE); 1585 ucr1 = imx_uart_readl(sport, UCR1); 1586 ucr1 &= ~UCR1_TXDMAEN; 1587 imx_uart_writel(sport, ucr1, UCR1); 1588 sport->dma_is_txing = 0; 1589 } 1590 1591 /* 1592 * According to the Reference Manual description of the UART SRST bit: 1593 * 1594 * "Reset the transmit and receive state machines, 1595 * all FIFOs and register USR1, USR2, UBIR, UBMR, UBRC, URXD, UTXD 1596 * and UTS[6-3]". 1597 * 1598 * We don't need to restore the old values from USR1, USR2, URXD and 1599 * UTXD. UBRC is read only, so only save/restore the other three 1600 * registers. 1601 */ 1602 ubir = imx_uart_readl(sport, UBIR); 1603 ubmr = imx_uart_readl(sport, UBMR); 1604 uts = imx_uart_readl(sport, IMX21_UTS); 1605 1606 ucr2 = imx_uart_readl(sport, UCR2); 1607 ucr2 &= ~UCR2_SRST; 1608 imx_uart_writel(sport, ucr2, UCR2); 1609 1610 while (!(imx_uart_readl(sport, UCR2) & UCR2_SRST) && (--i > 0)) 1611 udelay(1); 1612 1613 /* Restore the registers */ 1614 imx_uart_writel(sport, ubir, UBIR); 1615 imx_uart_writel(sport, ubmr, UBMR); 1616 imx_uart_writel(sport, uts, IMX21_UTS); 1617 } 1618 1619 static void 1620 imx_uart_set_termios(struct uart_port *port, struct ktermios *termios, 1621 const struct ktermios *old) 1622 { 1623 struct imx_port *sport = (struct imx_port *)port; 1624 unsigned long flags; 1625 u32 ucr2, old_ucr2, ufcr; 1626 unsigned int baud, quot; 1627 unsigned int old_csize = old ? old->c_cflag & CSIZE : CS8; 1628 unsigned long div; 1629 unsigned long num, denom, old_ubir, old_ubmr; 1630 uint64_t tdiv64; 1631 1632 /* 1633 * We only support CS7 and CS8. 1634 */ 1635 while ((termios->c_cflag & CSIZE) != CS7 && 1636 (termios->c_cflag & CSIZE) != CS8) { 1637 termios->c_cflag &= ~CSIZE; 1638 termios->c_cflag |= old_csize; 1639 old_csize = CS8; 1640 } 1641 1642 del_timer_sync(&sport->timer); 1643 1644 /* 1645 * Ask the core to calculate the divisor for us. 1646 */ 1647 baud = uart_get_baud_rate(port, termios, old, 50, port->uartclk / 16); 1648 quot = uart_get_divisor(port, baud); 1649 1650 spin_lock_irqsave(&sport->port.lock, flags); 1651 1652 /* 1653 * Read current UCR2 and save it for future use, then clear all the bits 1654 * except those we will or may need to preserve. 1655 */ 1656 old_ucr2 = imx_uart_readl(sport, UCR2); 1657 ucr2 = old_ucr2 & (UCR2_TXEN | UCR2_RXEN | UCR2_ATEN | UCR2_CTS); 1658 1659 ucr2 |= UCR2_SRST | UCR2_IRTS; 1660 if ((termios->c_cflag & CSIZE) == CS8) 1661 ucr2 |= UCR2_WS; 1662 1663 if (!sport->have_rtscts) 1664 termios->c_cflag &= ~CRTSCTS; 1665 1666 if (port->rs485.flags & SER_RS485_ENABLED) { 1667 /* 1668 * RTS is mandatory for rs485 operation, so keep 1669 * it under manual control and keep transmitter 1670 * disabled. 1671 */ 1672 if (port->rs485.flags & SER_RS485_RTS_AFTER_SEND) 1673 imx_uart_rts_active(sport, &ucr2); 1674 else 1675 imx_uart_rts_inactive(sport, &ucr2); 1676 1677 } else if (termios->c_cflag & CRTSCTS) { 1678 /* 1679 * Only let receiver control RTS output if we were not requested 1680 * to have RTS inactive (which then should take precedence). 1681 */ 1682 if (ucr2 & UCR2_CTS) 1683 ucr2 |= UCR2_CTSC; 1684 } 1685 1686 if (termios->c_cflag & CRTSCTS) 1687 ucr2 &= ~UCR2_IRTS; 1688 if (termios->c_cflag & CSTOPB) 1689 ucr2 |= UCR2_STPB; 1690 if (termios->c_cflag & PARENB) { 1691 ucr2 |= UCR2_PREN; 1692 if (termios->c_cflag & PARODD) 1693 ucr2 |= UCR2_PROE; 1694 } 1695 1696 sport->port.read_status_mask = 0; 1697 if (termios->c_iflag & INPCK) 1698 sport->port.read_status_mask |= (URXD_FRMERR | URXD_PRERR); 1699 if (termios->c_iflag & (BRKINT | PARMRK)) 1700 sport->port.read_status_mask |= URXD_BRK; 1701 1702 /* 1703 * Characters to ignore 1704 */ 1705 sport->port.ignore_status_mask = 0; 1706 if (termios->c_iflag & IGNPAR) 1707 sport->port.ignore_status_mask |= URXD_PRERR | URXD_FRMERR; 1708 if (termios->c_iflag & IGNBRK) { 1709 sport->port.ignore_status_mask |= URXD_BRK; 1710 /* 1711 * If we're ignoring parity and break indicators, 1712 * ignore overruns too (for real raw support). 1713 */ 1714 if (termios->c_iflag & IGNPAR) 1715 sport->port.ignore_status_mask |= URXD_OVRRUN; 1716 } 1717 1718 if ((termios->c_cflag & CREAD) == 0) 1719 sport->port.ignore_status_mask |= URXD_DUMMY_READ; 1720 1721 /* 1722 * Update the per-port timeout. 1723 */ 1724 uart_update_timeout(port, termios->c_cflag, baud); 1725 1726 /* custom-baudrate handling */ 1727 div = sport->port.uartclk / (baud * 16); 1728 if (baud == 38400 && quot != div) 1729 baud = sport->port.uartclk / (quot * 16); 1730 1731 div = sport->port.uartclk / (baud * 16); 1732 if (div > 7) 1733 div = 7; 1734 if (!div) 1735 div = 1; 1736 1737 rational_best_approximation(16 * div * baud, sport->port.uartclk, 1738 1 << 16, 1 << 16, &num, &denom); 1739 1740 tdiv64 = sport->port.uartclk; 1741 tdiv64 *= num; 1742 do_div(tdiv64, denom * 16 * div); 1743 tty_termios_encode_baud_rate(termios, 1744 (speed_t)tdiv64, (speed_t)tdiv64); 1745 1746 num -= 1; 1747 denom -= 1; 1748 1749 ufcr = imx_uart_readl(sport, UFCR); 1750 ufcr = (ufcr & (~UFCR_RFDIV)) | UFCR_RFDIV_REG(div); 1751 imx_uart_writel(sport, ufcr, UFCR); 1752 1753 /* 1754 * Two registers below should always be written both and in this 1755 * particular order. One consequence is that we need to check if any of 1756 * them changes and then update both. We do need the check for change 1757 * as even writing the same values seem to "restart" 1758 * transmission/receiving logic in the hardware, that leads to data 1759 * breakage even when rate doesn't in fact change. E.g., user switches 1760 * RTS/CTS handshake and suddenly gets broken bytes. 1761 */ 1762 old_ubir = imx_uart_readl(sport, UBIR); 1763 old_ubmr = imx_uart_readl(sport, UBMR); 1764 if (old_ubir != num || old_ubmr != denom) { 1765 imx_uart_writel(sport, num, UBIR); 1766 imx_uart_writel(sport, denom, UBMR); 1767 } 1768 1769 if (!imx_uart_is_imx1(sport)) 1770 imx_uart_writel(sport, sport->port.uartclk / div / 1000, 1771 IMX21_ONEMS); 1772 1773 imx_uart_writel(sport, ucr2, UCR2); 1774 1775 if (UART_ENABLE_MS(&sport->port, termios->c_cflag)) 1776 imx_uart_enable_ms(&sport->port); 1777 1778 spin_unlock_irqrestore(&sport->port.lock, flags); 1779 } 1780 1781 static const char *imx_uart_type(struct uart_port *port) 1782 { 1783 struct imx_port *sport = (struct imx_port *)port; 1784 1785 return sport->port.type == PORT_IMX ? "IMX" : NULL; 1786 } 1787 1788 /* 1789 * Configure/autoconfigure the port. 1790 */ 1791 static void imx_uart_config_port(struct uart_port *port, int flags) 1792 { 1793 struct imx_port *sport = (struct imx_port *)port; 1794 1795 if (flags & UART_CONFIG_TYPE) 1796 sport->port.type = PORT_IMX; 1797 } 1798 1799 /* 1800 * Verify the new serial_struct (for TIOCSSERIAL). 1801 * The only change we allow are to the flags and type, and 1802 * even then only between PORT_IMX and PORT_UNKNOWN 1803 */ 1804 static int 1805 imx_uart_verify_port(struct uart_port *port, struct serial_struct *ser) 1806 { 1807 struct imx_port *sport = (struct imx_port *)port; 1808 int ret = 0; 1809 1810 if (ser->type != PORT_UNKNOWN && ser->type != PORT_IMX) 1811 ret = -EINVAL; 1812 if (sport->port.irq != ser->irq) 1813 ret = -EINVAL; 1814 if (ser->io_type != UPIO_MEM) 1815 ret = -EINVAL; 1816 if (sport->port.uartclk / 16 != ser->baud_base) 1817 ret = -EINVAL; 1818 if (sport->port.mapbase != (unsigned long)ser->iomem_base) 1819 ret = -EINVAL; 1820 if (sport->port.iobase != ser->port) 1821 ret = -EINVAL; 1822 if (ser->hub6 != 0) 1823 ret = -EINVAL; 1824 return ret; 1825 } 1826 1827 #if defined(CONFIG_CONSOLE_POLL) 1828 1829 static int imx_uart_poll_init(struct uart_port *port) 1830 { 1831 struct imx_port *sport = (struct imx_port *)port; 1832 unsigned long flags; 1833 u32 ucr1, ucr2; 1834 int retval; 1835 1836 retval = clk_prepare_enable(sport->clk_ipg); 1837 if (retval) 1838 return retval; 1839 retval = clk_prepare_enable(sport->clk_per); 1840 if (retval) 1841 clk_disable_unprepare(sport->clk_ipg); 1842 1843 imx_uart_setup_ufcr(sport, TXTL_DEFAULT, RXTL_DEFAULT); 1844 1845 spin_lock_irqsave(&sport->port.lock, flags); 1846 1847 /* 1848 * Be careful about the order of enabling bits here. First enable the 1849 * receiver (UARTEN + RXEN) and only then the corresponding irqs. 1850 * This prevents that a character that already sits in the RX fifo is 1851 * triggering an irq but the try to fetch it from there results in an 1852 * exception because UARTEN or RXEN is still off. 1853 */ 1854 ucr1 = imx_uart_readl(sport, UCR1); 1855 ucr2 = imx_uart_readl(sport, UCR2); 1856 1857 if (imx_uart_is_imx1(sport)) 1858 ucr1 |= IMX1_UCR1_UARTCLKEN; 1859 1860 ucr1 |= UCR1_UARTEN; 1861 ucr1 &= ~(UCR1_TRDYEN | UCR1_RTSDEN | UCR1_RRDYEN); 1862 1863 ucr2 |= UCR2_RXEN | UCR2_TXEN; 1864 ucr2 &= ~UCR2_ATEN; 1865 1866 imx_uart_writel(sport, ucr1, UCR1); 1867 imx_uart_writel(sport, ucr2, UCR2); 1868 1869 /* now enable irqs */ 1870 imx_uart_writel(sport, ucr1 | UCR1_RRDYEN, UCR1); 1871 imx_uart_writel(sport, ucr2 | UCR2_ATEN, UCR2); 1872 1873 spin_unlock_irqrestore(&sport->port.lock, flags); 1874 1875 return 0; 1876 } 1877 1878 static int imx_uart_poll_get_char(struct uart_port *port) 1879 { 1880 struct imx_port *sport = (struct imx_port *)port; 1881 if (!(imx_uart_readl(sport, USR2) & USR2_RDR)) 1882 return NO_POLL_CHAR; 1883 1884 return imx_uart_readl(sport, URXD0) & URXD_RX_DATA; 1885 } 1886 1887 static void imx_uart_poll_put_char(struct uart_port *port, unsigned char c) 1888 { 1889 struct imx_port *sport = (struct imx_port *)port; 1890 unsigned int status; 1891 1892 /* drain */ 1893 do { 1894 status = imx_uart_readl(sport, USR1); 1895 } while (~status & USR1_TRDY); 1896 1897 /* write */ 1898 imx_uart_writel(sport, c, URTX0); 1899 1900 /* flush */ 1901 do { 1902 status = imx_uart_readl(sport, USR2); 1903 } while (~status & USR2_TXDC); 1904 } 1905 #endif 1906 1907 /* called with port.lock taken and irqs off or from .probe without locking */ 1908 static int imx_uart_rs485_config(struct uart_port *port, struct ktermios *termios, 1909 struct serial_rs485 *rs485conf) 1910 { 1911 struct imx_port *sport = (struct imx_port *)port; 1912 u32 ucr2; 1913 1914 if (rs485conf->flags & SER_RS485_ENABLED) { 1915 /* Enable receiver if low-active RTS signal is requested */ 1916 if (sport->have_rtscts && !sport->have_rtsgpio && 1917 !(rs485conf->flags & SER_RS485_RTS_ON_SEND)) 1918 rs485conf->flags |= SER_RS485_RX_DURING_TX; 1919 1920 /* disable transmitter */ 1921 ucr2 = imx_uart_readl(sport, UCR2); 1922 if (rs485conf->flags & SER_RS485_RTS_AFTER_SEND) 1923 imx_uart_rts_active(sport, &ucr2); 1924 else 1925 imx_uart_rts_inactive(sport, &ucr2); 1926 imx_uart_writel(sport, ucr2, UCR2); 1927 } 1928 1929 /* Make sure Rx is enabled in case Tx is active with Rx disabled */ 1930 if (!(rs485conf->flags & SER_RS485_ENABLED) || 1931 rs485conf->flags & SER_RS485_RX_DURING_TX) 1932 imx_uart_start_rx(port); 1933 1934 return 0; 1935 } 1936 1937 static const struct uart_ops imx_uart_pops = { 1938 .tx_empty = imx_uart_tx_empty, 1939 .set_mctrl = imx_uart_set_mctrl, 1940 .get_mctrl = imx_uart_get_mctrl, 1941 .stop_tx = imx_uart_stop_tx, 1942 .start_tx = imx_uart_start_tx, 1943 .stop_rx = imx_uart_stop_rx, 1944 .enable_ms = imx_uart_enable_ms, 1945 .break_ctl = imx_uart_break_ctl, 1946 .startup = imx_uart_startup, 1947 .shutdown = imx_uart_shutdown, 1948 .flush_buffer = imx_uart_flush_buffer, 1949 .set_termios = imx_uart_set_termios, 1950 .type = imx_uart_type, 1951 .config_port = imx_uart_config_port, 1952 .verify_port = imx_uart_verify_port, 1953 #if defined(CONFIG_CONSOLE_POLL) 1954 .poll_init = imx_uart_poll_init, 1955 .poll_get_char = imx_uart_poll_get_char, 1956 .poll_put_char = imx_uart_poll_put_char, 1957 #endif 1958 }; 1959 1960 static struct imx_port *imx_uart_ports[UART_NR]; 1961 1962 #if IS_ENABLED(CONFIG_SERIAL_IMX_CONSOLE) 1963 static void imx_uart_console_putchar(struct uart_port *port, unsigned char ch) 1964 { 1965 struct imx_port *sport = (struct imx_port *)port; 1966 1967 while (imx_uart_readl(sport, imx_uart_uts_reg(sport)) & UTS_TXFULL) 1968 barrier(); 1969 1970 imx_uart_writel(sport, ch, URTX0); 1971 } 1972 1973 /* 1974 * Interrupts are disabled on entering 1975 */ 1976 static void 1977 imx_uart_console_write(struct console *co, const char *s, unsigned int count) 1978 { 1979 struct imx_port *sport = imx_uart_ports[co->index]; 1980 struct imx_port_ucrs old_ucr; 1981 unsigned long flags; 1982 unsigned int ucr1; 1983 int locked = 1; 1984 1985 if (sport->port.sysrq) 1986 locked = 0; 1987 else if (oops_in_progress) 1988 locked = spin_trylock_irqsave(&sport->port.lock, flags); 1989 else 1990 spin_lock_irqsave(&sport->port.lock, flags); 1991 1992 /* 1993 * First, save UCR1/2/3 and then disable interrupts 1994 */ 1995 imx_uart_ucrs_save(sport, &old_ucr); 1996 ucr1 = old_ucr.ucr1; 1997 1998 if (imx_uart_is_imx1(sport)) 1999 ucr1 |= IMX1_UCR1_UARTCLKEN; 2000 ucr1 |= UCR1_UARTEN; 2001 ucr1 &= ~(UCR1_TRDYEN | UCR1_RRDYEN | UCR1_RTSDEN); 2002 2003 imx_uart_writel(sport, ucr1, UCR1); 2004 2005 imx_uart_writel(sport, old_ucr.ucr2 | UCR2_TXEN, UCR2); 2006 2007 uart_console_write(&sport->port, s, count, imx_uart_console_putchar); 2008 2009 /* 2010 * Finally, wait for transmitter to become empty 2011 * and restore UCR1/2/3 2012 */ 2013 while (!(imx_uart_readl(sport, USR2) & USR2_TXDC)); 2014 2015 imx_uart_ucrs_restore(sport, &old_ucr); 2016 2017 if (locked) 2018 spin_unlock_irqrestore(&sport->port.lock, flags); 2019 } 2020 2021 /* 2022 * If the port was already initialised (eg, by a boot loader), 2023 * try to determine the current setup. 2024 */ 2025 static void 2026 imx_uart_console_get_options(struct imx_port *sport, int *baud, 2027 int *parity, int *bits) 2028 { 2029 2030 if (imx_uart_readl(sport, UCR1) & UCR1_UARTEN) { 2031 /* ok, the port was enabled */ 2032 unsigned int ucr2, ubir, ubmr, uartclk; 2033 unsigned int baud_raw; 2034 unsigned int ucfr_rfdiv; 2035 2036 ucr2 = imx_uart_readl(sport, UCR2); 2037 2038 *parity = 'n'; 2039 if (ucr2 & UCR2_PREN) { 2040 if (ucr2 & UCR2_PROE) 2041 *parity = 'o'; 2042 else 2043 *parity = 'e'; 2044 } 2045 2046 if (ucr2 & UCR2_WS) 2047 *bits = 8; 2048 else 2049 *bits = 7; 2050 2051 ubir = imx_uart_readl(sport, UBIR) & 0xffff; 2052 ubmr = imx_uart_readl(sport, UBMR) & 0xffff; 2053 2054 ucfr_rfdiv = (imx_uart_readl(sport, UFCR) & UFCR_RFDIV) >> 7; 2055 if (ucfr_rfdiv == 6) 2056 ucfr_rfdiv = 7; 2057 else 2058 ucfr_rfdiv = 6 - ucfr_rfdiv; 2059 2060 uartclk = clk_get_rate(sport->clk_per); 2061 uartclk /= ucfr_rfdiv; 2062 2063 { /* 2064 * The next code provides exact computation of 2065 * baud_raw = round(((uartclk/16) * (ubir + 1)) / (ubmr + 1)) 2066 * without need of float support or long long division, 2067 * which would be required to prevent 32bit arithmetic overflow 2068 */ 2069 unsigned int mul = ubir + 1; 2070 unsigned int div = 16 * (ubmr + 1); 2071 unsigned int rem = uartclk % div; 2072 2073 baud_raw = (uartclk / div) * mul; 2074 baud_raw += (rem * mul + div / 2) / div; 2075 *baud = (baud_raw + 50) / 100 * 100; 2076 } 2077 2078 if (*baud != baud_raw) 2079 dev_info(sport->port.dev, "Console IMX rounded baud rate from %d to %d\n", 2080 baud_raw, *baud); 2081 } 2082 } 2083 2084 static int 2085 imx_uart_console_setup(struct console *co, char *options) 2086 { 2087 struct imx_port *sport; 2088 int baud = 9600; 2089 int bits = 8; 2090 int parity = 'n'; 2091 int flow = 'n'; 2092 int retval; 2093 2094 /* 2095 * Check whether an invalid uart number has been specified, and 2096 * if so, search for the first available port that does have 2097 * console support. 2098 */ 2099 if (co->index == -1 || co->index >= ARRAY_SIZE(imx_uart_ports)) 2100 co->index = 0; 2101 sport = imx_uart_ports[co->index]; 2102 if (sport == NULL) 2103 return -ENODEV; 2104 2105 /* For setting the registers, we only need to enable the ipg clock. */ 2106 retval = clk_prepare_enable(sport->clk_ipg); 2107 if (retval) 2108 goto error_console; 2109 2110 if (options) 2111 uart_parse_options(options, &baud, &parity, &bits, &flow); 2112 else 2113 imx_uart_console_get_options(sport, &baud, &parity, &bits); 2114 2115 imx_uart_setup_ufcr(sport, TXTL_DEFAULT, RXTL_DEFAULT); 2116 2117 retval = uart_set_options(&sport->port, co, baud, parity, bits, flow); 2118 2119 if (retval) { 2120 clk_disable_unprepare(sport->clk_ipg); 2121 goto error_console; 2122 } 2123 2124 retval = clk_prepare_enable(sport->clk_per); 2125 if (retval) 2126 clk_disable_unprepare(sport->clk_ipg); 2127 2128 error_console: 2129 return retval; 2130 } 2131 2132 static int 2133 imx_uart_console_exit(struct console *co) 2134 { 2135 struct imx_port *sport = imx_uart_ports[co->index]; 2136 2137 clk_disable_unprepare(sport->clk_per); 2138 clk_disable_unprepare(sport->clk_ipg); 2139 2140 return 0; 2141 } 2142 2143 static struct uart_driver imx_uart_uart_driver; 2144 static struct console imx_uart_console = { 2145 .name = DEV_NAME, 2146 .write = imx_uart_console_write, 2147 .device = uart_console_device, 2148 .setup = imx_uart_console_setup, 2149 .exit = imx_uart_console_exit, 2150 .flags = CON_PRINTBUFFER, 2151 .index = -1, 2152 .data = &imx_uart_uart_driver, 2153 }; 2154 2155 #define IMX_CONSOLE &imx_uart_console 2156 2157 #else 2158 #define IMX_CONSOLE NULL 2159 #endif 2160 2161 static struct uart_driver imx_uart_uart_driver = { 2162 .owner = THIS_MODULE, 2163 .driver_name = DRIVER_NAME, 2164 .dev_name = DEV_NAME, 2165 .major = SERIAL_IMX_MAJOR, 2166 .minor = MINOR_START, 2167 .nr = ARRAY_SIZE(imx_uart_ports), 2168 .cons = IMX_CONSOLE, 2169 }; 2170 2171 static enum hrtimer_restart imx_trigger_start_tx(struct hrtimer *t) 2172 { 2173 struct imx_port *sport = container_of(t, struct imx_port, trigger_start_tx); 2174 unsigned long flags; 2175 2176 spin_lock_irqsave(&sport->port.lock, flags); 2177 if (sport->tx_state == WAIT_AFTER_RTS) 2178 imx_uart_start_tx(&sport->port); 2179 spin_unlock_irqrestore(&sport->port.lock, flags); 2180 2181 return HRTIMER_NORESTART; 2182 } 2183 2184 static enum hrtimer_restart imx_trigger_stop_tx(struct hrtimer *t) 2185 { 2186 struct imx_port *sport = container_of(t, struct imx_port, trigger_stop_tx); 2187 unsigned long flags; 2188 2189 spin_lock_irqsave(&sport->port.lock, flags); 2190 if (sport->tx_state == WAIT_AFTER_SEND) 2191 imx_uart_stop_tx(&sport->port); 2192 spin_unlock_irqrestore(&sport->port.lock, flags); 2193 2194 return HRTIMER_NORESTART; 2195 } 2196 2197 static const struct serial_rs485 imx_no_rs485 = {}; /* No RS485 if no RTS */ 2198 static const struct serial_rs485 imx_rs485_supported = { 2199 .flags = SER_RS485_ENABLED | SER_RS485_RTS_ON_SEND | SER_RS485_RTS_AFTER_SEND | 2200 SER_RS485_RX_DURING_TX, 2201 .delay_rts_before_send = 1, 2202 .delay_rts_after_send = 1, 2203 }; 2204 2205 /* Default RX DMA buffer configuration */ 2206 #define RX_DMA_PERIODS 16 2207 #define RX_DMA_PERIOD_LEN (PAGE_SIZE / 4) 2208 2209 static int imx_uart_probe(struct platform_device *pdev) 2210 { 2211 struct device_node *np = pdev->dev.of_node; 2212 struct imx_port *sport; 2213 void __iomem *base; 2214 u32 dma_buf_conf[2]; 2215 int ret = 0; 2216 u32 ucr1; 2217 struct resource *res; 2218 int txirq, rxirq, rtsirq; 2219 2220 sport = devm_kzalloc(&pdev->dev, sizeof(*sport), GFP_KERNEL); 2221 if (!sport) 2222 return -ENOMEM; 2223 2224 sport->devdata = of_device_get_match_data(&pdev->dev); 2225 2226 ret = of_alias_get_id(np, "serial"); 2227 if (ret < 0) { 2228 dev_err(&pdev->dev, "failed to get alias id, errno %d\n", ret); 2229 return ret; 2230 } 2231 sport->port.line = ret; 2232 2233 if (of_get_property(np, "uart-has-rtscts", NULL) || 2234 of_get_property(np, "fsl,uart-has-rtscts", NULL) /* deprecated */) 2235 sport->have_rtscts = 1; 2236 2237 if (of_get_property(np, "fsl,dte-mode", NULL)) 2238 sport->dte_mode = 1; 2239 2240 if (of_get_property(np, "rts-gpios", NULL)) 2241 sport->have_rtsgpio = 1; 2242 2243 if (of_get_property(np, "fsl,inverted-tx", NULL)) 2244 sport->inverted_tx = 1; 2245 2246 if (of_get_property(np, "fsl,inverted-rx", NULL)) 2247 sport->inverted_rx = 1; 2248 2249 if (!of_property_read_u32_array(np, "fsl,dma-info", dma_buf_conf, 2)) { 2250 sport->rx_period_length = dma_buf_conf[0]; 2251 sport->rx_periods = dma_buf_conf[1]; 2252 } else { 2253 sport->rx_period_length = RX_DMA_PERIOD_LEN; 2254 sport->rx_periods = RX_DMA_PERIODS; 2255 } 2256 2257 if (sport->port.line >= ARRAY_SIZE(imx_uart_ports)) { 2258 dev_err(&pdev->dev, "serial%d out of range\n", 2259 sport->port.line); 2260 return -EINVAL; 2261 } 2262 2263 res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 2264 base = devm_ioremap_resource(&pdev->dev, res); 2265 if (IS_ERR(base)) 2266 return PTR_ERR(base); 2267 2268 rxirq = platform_get_irq(pdev, 0); 2269 if (rxirq < 0) 2270 return rxirq; 2271 txirq = platform_get_irq_optional(pdev, 1); 2272 rtsirq = platform_get_irq_optional(pdev, 2); 2273 2274 sport->port.dev = &pdev->dev; 2275 sport->port.mapbase = res->start; 2276 sport->port.membase = base; 2277 sport->port.type = PORT_IMX; 2278 sport->port.iotype = UPIO_MEM; 2279 sport->port.irq = rxirq; 2280 sport->port.fifosize = 32; 2281 sport->port.has_sysrq = IS_ENABLED(CONFIG_SERIAL_IMX_CONSOLE); 2282 sport->port.ops = &imx_uart_pops; 2283 sport->port.rs485_config = imx_uart_rs485_config; 2284 /* RTS is required to control the RS485 transmitter */ 2285 if (sport->have_rtscts || sport->have_rtsgpio) 2286 sport->port.rs485_supported = imx_rs485_supported; 2287 else 2288 sport->port.rs485_supported = imx_no_rs485; 2289 sport->port.flags = UPF_BOOT_AUTOCONF; 2290 timer_setup(&sport->timer, imx_uart_timeout, 0); 2291 2292 sport->gpios = mctrl_gpio_init(&sport->port, 0); 2293 if (IS_ERR(sport->gpios)) 2294 return PTR_ERR(sport->gpios); 2295 2296 sport->clk_ipg = devm_clk_get(&pdev->dev, "ipg"); 2297 if (IS_ERR(sport->clk_ipg)) { 2298 ret = PTR_ERR(sport->clk_ipg); 2299 dev_err(&pdev->dev, "failed to get ipg clk: %d\n", ret); 2300 return ret; 2301 } 2302 2303 sport->clk_per = devm_clk_get(&pdev->dev, "per"); 2304 if (IS_ERR(sport->clk_per)) { 2305 ret = PTR_ERR(sport->clk_per); 2306 dev_err(&pdev->dev, "failed to get per clk: %d\n", ret); 2307 return ret; 2308 } 2309 2310 sport->port.uartclk = clk_get_rate(sport->clk_per); 2311 2312 /* For register access, we only need to enable the ipg clock. */ 2313 ret = clk_prepare_enable(sport->clk_ipg); 2314 if (ret) { 2315 dev_err(&pdev->dev, "failed to enable per clk: %d\n", ret); 2316 return ret; 2317 } 2318 2319 /* initialize shadow register values */ 2320 sport->ucr1 = readl(sport->port.membase + UCR1); 2321 sport->ucr2 = readl(sport->port.membase + UCR2); 2322 sport->ucr3 = readl(sport->port.membase + UCR3); 2323 sport->ucr4 = readl(sport->port.membase + UCR4); 2324 sport->ufcr = readl(sport->port.membase + UFCR); 2325 2326 ret = uart_get_rs485_mode(&sport->port); 2327 if (ret) { 2328 clk_disable_unprepare(sport->clk_ipg); 2329 return ret; 2330 } 2331 2332 if (sport->port.rs485.flags & SER_RS485_ENABLED && 2333 (!sport->have_rtscts && !sport->have_rtsgpio)) 2334 dev_err(&pdev->dev, "no RTS control, disabling rs485\n"); 2335 2336 /* 2337 * If using the i.MX UART RTS/CTS control then the RTS (CTS_B) 2338 * signal cannot be set low during transmission in case the 2339 * receiver is off (limitation of the i.MX UART IP). 2340 */ 2341 if (sport->port.rs485.flags & SER_RS485_ENABLED && 2342 sport->have_rtscts && !sport->have_rtsgpio && 2343 (!(sport->port.rs485.flags & SER_RS485_RTS_ON_SEND) && 2344 !(sport->port.rs485.flags & SER_RS485_RX_DURING_TX))) 2345 dev_err(&pdev->dev, 2346 "low-active RTS not possible when receiver is off, enabling receiver\n"); 2347 2348 /* Disable interrupts before requesting them */ 2349 ucr1 = imx_uart_readl(sport, UCR1); 2350 ucr1 &= ~(UCR1_ADEN | UCR1_TRDYEN | UCR1_IDEN | UCR1_RRDYEN | UCR1_RTSDEN); 2351 imx_uart_writel(sport, ucr1, UCR1); 2352 2353 if (!imx_uart_is_imx1(sport) && sport->dte_mode) { 2354 /* 2355 * The DCEDTE bit changes the direction of DSR, DCD, DTR and RI 2356 * and influences if UCR3_RI and UCR3_DCD changes the level of RI 2357 * and DCD (when they are outputs) or enables the respective 2358 * irqs. So set this bit early, i.e. before requesting irqs. 2359 */ 2360 u32 ufcr = imx_uart_readl(sport, UFCR); 2361 if (!(ufcr & UFCR_DCEDTE)) 2362 imx_uart_writel(sport, ufcr | UFCR_DCEDTE, UFCR); 2363 2364 /* 2365 * Disable UCR3_RI and UCR3_DCD irqs. They are also not 2366 * enabled later because they cannot be cleared 2367 * (confirmed on i.MX25) which makes them unusable. 2368 */ 2369 imx_uart_writel(sport, 2370 IMX21_UCR3_RXDMUXSEL | UCR3_ADNIMP | UCR3_DSR, 2371 UCR3); 2372 2373 } else { 2374 u32 ucr3 = UCR3_DSR; 2375 u32 ufcr = imx_uart_readl(sport, UFCR); 2376 if (ufcr & UFCR_DCEDTE) 2377 imx_uart_writel(sport, ufcr & ~UFCR_DCEDTE, UFCR); 2378 2379 if (!imx_uart_is_imx1(sport)) 2380 ucr3 |= IMX21_UCR3_RXDMUXSEL | UCR3_ADNIMP; 2381 imx_uart_writel(sport, ucr3, UCR3); 2382 } 2383 2384 clk_disable_unprepare(sport->clk_ipg); 2385 2386 hrtimer_init(&sport->trigger_start_tx, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 2387 hrtimer_init(&sport->trigger_stop_tx, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 2388 sport->trigger_start_tx.function = imx_trigger_start_tx; 2389 sport->trigger_stop_tx.function = imx_trigger_stop_tx; 2390 2391 /* 2392 * Allocate the IRQ(s) i.MX1 has three interrupts whereas later 2393 * chips only have one interrupt. 2394 */ 2395 if (txirq > 0) { 2396 ret = devm_request_irq(&pdev->dev, rxirq, imx_uart_rxint, 0, 2397 dev_name(&pdev->dev), sport); 2398 if (ret) { 2399 dev_err(&pdev->dev, "failed to request rx irq: %d\n", 2400 ret); 2401 return ret; 2402 } 2403 2404 ret = devm_request_irq(&pdev->dev, txirq, imx_uart_txint, 0, 2405 dev_name(&pdev->dev), sport); 2406 if (ret) { 2407 dev_err(&pdev->dev, "failed to request tx irq: %d\n", 2408 ret); 2409 return ret; 2410 } 2411 2412 ret = devm_request_irq(&pdev->dev, rtsirq, imx_uart_rtsint, 0, 2413 dev_name(&pdev->dev), sport); 2414 if (ret) { 2415 dev_err(&pdev->dev, "failed to request rts irq: %d\n", 2416 ret); 2417 return ret; 2418 } 2419 } else { 2420 ret = devm_request_irq(&pdev->dev, rxirq, imx_uart_int, 0, 2421 dev_name(&pdev->dev), sport); 2422 if (ret) { 2423 dev_err(&pdev->dev, "failed to request irq: %d\n", ret); 2424 return ret; 2425 } 2426 } 2427 2428 imx_uart_ports[sport->port.line] = sport; 2429 2430 platform_set_drvdata(pdev, sport); 2431 2432 return uart_add_one_port(&imx_uart_uart_driver, &sport->port); 2433 } 2434 2435 static int imx_uart_remove(struct platform_device *pdev) 2436 { 2437 struct imx_port *sport = platform_get_drvdata(pdev); 2438 2439 return uart_remove_one_port(&imx_uart_uart_driver, &sport->port); 2440 } 2441 2442 static void imx_uart_restore_context(struct imx_port *sport) 2443 { 2444 unsigned long flags; 2445 2446 spin_lock_irqsave(&sport->port.lock, flags); 2447 if (!sport->context_saved) { 2448 spin_unlock_irqrestore(&sport->port.lock, flags); 2449 return; 2450 } 2451 2452 imx_uart_writel(sport, sport->saved_reg[4], UFCR); 2453 imx_uart_writel(sport, sport->saved_reg[5], UESC); 2454 imx_uart_writel(sport, sport->saved_reg[6], UTIM); 2455 imx_uart_writel(sport, sport->saved_reg[7], UBIR); 2456 imx_uart_writel(sport, sport->saved_reg[8], UBMR); 2457 imx_uart_writel(sport, sport->saved_reg[9], IMX21_UTS); 2458 imx_uart_writel(sport, sport->saved_reg[0], UCR1); 2459 imx_uart_writel(sport, sport->saved_reg[1] | UCR2_SRST, UCR2); 2460 imx_uart_writel(sport, sport->saved_reg[2], UCR3); 2461 imx_uart_writel(sport, sport->saved_reg[3], UCR4); 2462 sport->context_saved = false; 2463 spin_unlock_irqrestore(&sport->port.lock, flags); 2464 } 2465 2466 static void imx_uart_save_context(struct imx_port *sport) 2467 { 2468 unsigned long flags; 2469 2470 /* Save necessary regs */ 2471 spin_lock_irqsave(&sport->port.lock, flags); 2472 sport->saved_reg[0] = imx_uart_readl(sport, UCR1); 2473 sport->saved_reg[1] = imx_uart_readl(sport, UCR2); 2474 sport->saved_reg[2] = imx_uart_readl(sport, UCR3); 2475 sport->saved_reg[3] = imx_uart_readl(sport, UCR4); 2476 sport->saved_reg[4] = imx_uart_readl(sport, UFCR); 2477 sport->saved_reg[5] = imx_uart_readl(sport, UESC); 2478 sport->saved_reg[6] = imx_uart_readl(sport, UTIM); 2479 sport->saved_reg[7] = imx_uart_readl(sport, UBIR); 2480 sport->saved_reg[8] = imx_uart_readl(sport, UBMR); 2481 sport->saved_reg[9] = imx_uart_readl(sport, IMX21_UTS); 2482 sport->context_saved = true; 2483 spin_unlock_irqrestore(&sport->port.lock, flags); 2484 } 2485 2486 static void imx_uart_enable_wakeup(struct imx_port *sport, bool on) 2487 { 2488 u32 ucr3; 2489 2490 ucr3 = imx_uart_readl(sport, UCR3); 2491 if (on) { 2492 imx_uart_writel(sport, USR1_AWAKE, USR1); 2493 ucr3 |= UCR3_AWAKEN; 2494 } else { 2495 ucr3 &= ~UCR3_AWAKEN; 2496 } 2497 imx_uart_writel(sport, ucr3, UCR3); 2498 2499 if (sport->have_rtscts) { 2500 u32 ucr1 = imx_uart_readl(sport, UCR1); 2501 if (on) { 2502 imx_uart_writel(sport, USR1_RTSD, USR1); 2503 ucr1 |= UCR1_RTSDEN; 2504 } else { 2505 ucr1 &= ~UCR1_RTSDEN; 2506 } 2507 imx_uart_writel(sport, ucr1, UCR1); 2508 } 2509 } 2510 2511 static int imx_uart_suspend_noirq(struct device *dev) 2512 { 2513 struct imx_port *sport = dev_get_drvdata(dev); 2514 2515 imx_uart_save_context(sport); 2516 2517 clk_disable(sport->clk_ipg); 2518 2519 pinctrl_pm_select_sleep_state(dev); 2520 2521 return 0; 2522 } 2523 2524 static int imx_uart_resume_noirq(struct device *dev) 2525 { 2526 struct imx_port *sport = dev_get_drvdata(dev); 2527 int ret; 2528 2529 pinctrl_pm_select_default_state(dev); 2530 2531 ret = clk_enable(sport->clk_ipg); 2532 if (ret) 2533 return ret; 2534 2535 imx_uart_restore_context(sport); 2536 2537 return 0; 2538 } 2539 2540 static int imx_uart_suspend(struct device *dev) 2541 { 2542 struct imx_port *sport = dev_get_drvdata(dev); 2543 int ret; 2544 2545 uart_suspend_port(&imx_uart_uart_driver, &sport->port); 2546 disable_irq(sport->port.irq); 2547 2548 ret = clk_prepare_enable(sport->clk_ipg); 2549 if (ret) 2550 return ret; 2551 2552 /* enable wakeup from i.MX UART */ 2553 imx_uart_enable_wakeup(sport, true); 2554 2555 return 0; 2556 } 2557 2558 static int imx_uart_resume(struct device *dev) 2559 { 2560 struct imx_port *sport = dev_get_drvdata(dev); 2561 2562 /* disable wakeup from i.MX UART */ 2563 imx_uart_enable_wakeup(sport, false); 2564 2565 uart_resume_port(&imx_uart_uart_driver, &sport->port); 2566 enable_irq(sport->port.irq); 2567 2568 clk_disable_unprepare(sport->clk_ipg); 2569 2570 return 0; 2571 } 2572 2573 static int imx_uart_freeze(struct device *dev) 2574 { 2575 struct imx_port *sport = dev_get_drvdata(dev); 2576 2577 uart_suspend_port(&imx_uart_uart_driver, &sport->port); 2578 2579 return clk_prepare_enable(sport->clk_ipg); 2580 } 2581 2582 static int imx_uart_thaw(struct device *dev) 2583 { 2584 struct imx_port *sport = dev_get_drvdata(dev); 2585 2586 uart_resume_port(&imx_uart_uart_driver, &sport->port); 2587 2588 clk_disable_unprepare(sport->clk_ipg); 2589 2590 return 0; 2591 } 2592 2593 static const struct dev_pm_ops imx_uart_pm_ops = { 2594 .suspend_noirq = imx_uart_suspend_noirq, 2595 .resume_noirq = imx_uart_resume_noirq, 2596 .freeze_noirq = imx_uart_suspend_noirq, 2597 .thaw_noirq = imx_uart_resume_noirq, 2598 .restore_noirq = imx_uart_resume_noirq, 2599 .suspend = imx_uart_suspend, 2600 .resume = imx_uart_resume, 2601 .freeze = imx_uart_freeze, 2602 .thaw = imx_uart_thaw, 2603 .restore = imx_uart_thaw, 2604 }; 2605 2606 static struct platform_driver imx_uart_platform_driver = { 2607 .probe = imx_uart_probe, 2608 .remove = imx_uart_remove, 2609 2610 .driver = { 2611 .name = "imx-uart", 2612 .of_match_table = imx_uart_dt_ids, 2613 .pm = &imx_uart_pm_ops, 2614 }, 2615 }; 2616 2617 static int __init imx_uart_init(void) 2618 { 2619 int ret = uart_register_driver(&imx_uart_uart_driver); 2620 2621 if (ret) 2622 return ret; 2623 2624 ret = platform_driver_register(&imx_uart_platform_driver); 2625 if (ret != 0) 2626 uart_unregister_driver(&imx_uart_uart_driver); 2627 2628 return ret; 2629 } 2630 2631 static void __exit imx_uart_exit(void) 2632 { 2633 platform_driver_unregister(&imx_uart_platform_driver); 2634 uart_unregister_driver(&imx_uart_uart_driver); 2635 } 2636 2637 module_init(imx_uart_init); 2638 module_exit(imx_uart_exit); 2639 2640 MODULE_AUTHOR("Sascha Hauer"); 2641 MODULE_DESCRIPTION("IMX generic serial port driver"); 2642 MODULE_LICENSE("GPL"); 2643 MODULE_ALIAS("platform:imx-uart"); 2644