xref: /openbmc/linux/drivers/tty/serial/imx.c (revision dc6a81c3)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Driver for Motorola/Freescale IMX serial ports
4  *
5  * Based on drivers/char/serial.c, by Linus Torvalds, Theodore Ts'o.
6  *
7  * Author: Sascha Hauer <sascha@saschahauer.de>
8  * Copyright (C) 2004 Pengutronix
9  */
10 
11 #include <linux/module.h>
12 #include <linux/ioport.h>
13 #include <linux/init.h>
14 #include <linux/console.h>
15 #include <linux/sysrq.h>
16 #include <linux/platform_device.h>
17 #include <linux/tty.h>
18 #include <linux/tty_flip.h>
19 #include <linux/serial_core.h>
20 #include <linux/serial.h>
21 #include <linux/clk.h>
22 #include <linux/delay.h>
23 #include <linux/pinctrl/consumer.h>
24 #include <linux/rational.h>
25 #include <linux/slab.h>
26 #include <linux/of.h>
27 #include <linux/of_device.h>
28 #include <linux/io.h>
29 #include <linux/dma-mapping.h>
30 
31 #include <asm/irq.h>
32 #include <linux/platform_data/serial-imx.h>
33 #include <linux/platform_data/dma-imx.h>
34 
35 #include "serial_mctrl_gpio.h"
36 
37 /* Register definitions */
38 #define URXD0 0x0  /* Receiver Register */
39 #define URTX0 0x40 /* Transmitter Register */
40 #define UCR1  0x80 /* Control Register 1 */
41 #define UCR2  0x84 /* Control Register 2 */
42 #define UCR3  0x88 /* Control Register 3 */
43 #define UCR4  0x8c /* Control Register 4 */
44 #define UFCR  0x90 /* FIFO Control Register */
45 #define USR1  0x94 /* Status Register 1 */
46 #define USR2  0x98 /* Status Register 2 */
47 #define UESC  0x9c /* Escape Character Register */
48 #define UTIM  0xa0 /* Escape Timer Register */
49 #define UBIR  0xa4 /* BRM Incremental Register */
50 #define UBMR  0xa8 /* BRM Modulator Register */
51 #define UBRC  0xac /* Baud Rate Count Register */
52 #define IMX21_ONEMS 0xb0 /* One Millisecond register */
53 #define IMX1_UTS 0xd0 /* UART Test Register on i.mx1 */
54 #define IMX21_UTS 0xb4 /* UART Test Register on all other i.mx*/
55 
56 /* UART Control Register Bit Fields.*/
57 #define URXD_DUMMY_READ (1<<16)
58 #define URXD_CHARRDY	(1<<15)
59 #define URXD_ERR	(1<<14)
60 #define URXD_OVRRUN	(1<<13)
61 #define URXD_FRMERR	(1<<12)
62 #define URXD_BRK	(1<<11)
63 #define URXD_PRERR	(1<<10)
64 #define URXD_RX_DATA	(0xFF<<0)
65 #define UCR1_ADEN	(1<<15) /* Auto detect interrupt */
66 #define UCR1_ADBR	(1<<14) /* Auto detect baud rate */
67 #define UCR1_TRDYEN	(1<<13) /* Transmitter ready interrupt enable */
68 #define UCR1_IDEN	(1<<12) /* Idle condition interrupt */
69 #define UCR1_ICD_REG(x) (((x) & 3) << 10) /* idle condition detect */
70 #define UCR1_RRDYEN	(1<<9)	/* Recv ready interrupt enable */
71 #define UCR1_RXDMAEN	(1<<8)	/* Recv ready DMA enable */
72 #define UCR1_IREN	(1<<7)	/* Infrared interface enable */
73 #define UCR1_TXMPTYEN	(1<<6)	/* Transimitter empty interrupt enable */
74 #define UCR1_RTSDEN	(1<<5)	/* RTS delta interrupt enable */
75 #define UCR1_SNDBRK	(1<<4)	/* Send break */
76 #define UCR1_TXDMAEN	(1<<3)	/* Transmitter ready DMA enable */
77 #define IMX1_UCR1_UARTCLKEN (1<<2) /* UART clock enabled, i.mx1 only */
78 #define UCR1_ATDMAEN    (1<<2)  /* Aging DMA Timer Enable */
79 #define UCR1_DOZE	(1<<1)	/* Doze */
80 #define UCR1_UARTEN	(1<<0)	/* UART enabled */
81 #define UCR2_ESCI	(1<<15)	/* Escape seq interrupt enable */
82 #define UCR2_IRTS	(1<<14)	/* Ignore RTS pin */
83 #define UCR2_CTSC	(1<<13)	/* CTS pin control */
84 #define UCR2_CTS	(1<<12)	/* Clear to send */
85 #define UCR2_ESCEN	(1<<11)	/* Escape enable */
86 #define UCR2_PREN	(1<<8)	/* Parity enable */
87 #define UCR2_PROE	(1<<7)	/* Parity odd/even */
88 #define UCR2_STPB	(1<<6)	/* Stop */
89 #define UCR2_WS		(1<<5)	/* Word size */
90 #define UCR2_RTSEN	(1<<4)	/* Request to send interrupt enable */
91 #define UCR2_ATEN	(1<<3)	/* Aging Timer Enable */
92 #define UCR2_TXEN	(1<<2)	/* Transmitter enabled */
93 #define UCR2_RXEN	(1<<1)	/* Receiver enabled */
94 #define UCR2_SRST	(1<<0)	/* SW reset */
95 #define UCR3_DTREN	(1<<13) /* DTR interrupt enable */
96 #define UCR3_PARERREN	(1<<12) /* Parity enable */
97 #define UCR3_FRAERREN	(1<<11) /* Frame error interrupt enable */
98 #define UCR3_DSR	(1<<10) /* Data set ready */
99 #define UCR3_DCD	(1<<9)	/* Data carrier detect */
100 #define UCR3_RI		(1<<8)	/* Ring indicator */
101 #define UCR3_ADNIMP	(1<<7)	/* Autobaud Detection Not Improved */
102 #define UCR3_RXDSEN	(1<<6)	/* Receive status interrupt enable */
103 #define UCR3_AIRINTEN	(1<<5)	/* Async IR wake interrupt enable */
104 #define UCR3_AWAKEN	(1<<4)	/* Async wake interrupt enable */
105 #define UCR3_DTRDEN	(1<<3)	/* Data Terminal Ready Delta Enable. */
106 #define IMX21_UCR3_RXDMUXSEL	(1<<2)	/* RXD Muxed Input Select */
107 #define UCR3_INVT	(1<<1)	/* Inverted Infrared transmission */
108 #define UCR3_BPEN	(1<<0)	/* Preset registers enable */
109 #define UCR4_CTSTL_SHF	10	/* CTS trigger level shift */
110 #define UCR4_CTSTL_MASK	0x3F	/* CTS trigger is 6 bits wide */
111 #define UCR4_INVR	(1<<9)	/* Inverted infrared reception */
112 #define UCR4_ENIRI	(1<<8)	/* Serial infrared interrupt enable */
113 #define UCR4_WKEN	(1<<7)	/* Wake interrupt enable */
114 #define UCR4_REF16	(1<<6)	/* Ref freq 16 MHz */
115 #define UCR4_IDDMAEN    (1<<6)  /* DMA IDLE Condition Detected */
116 #define UCR4_IRSC	(1<<5)	/* IR special case */
117 #define UCR4_TCEN	(1<<3)	/* Transmit complete interrupt enable */
118 #define UCR4_BKEN	(1<<2)	/* Break condition interrupt enable */
119 #define UCR4_OREN	(1<<1)	/* Receiver overrun interrupt enable */
120 #define UCR4_DREN	(1<<0)	/* Recv data ready interrupt enable */
121 #define UFCR_RXTL_SHF	0	/* Receiver trigger level shift */
122 #define UFCR_DCEDTE	(1<<6)	/* DCE/DTE mode select */
123 #define UFCR_RFDIV	(7<<7)	/* Reference freq divider mask */
124 #define UFCR_RFDIV_REG(x)	(((x) < 7 ? 6 - (x) : 6) << 7)
125 #define UFCR_TXTL_SHF	10	/* Transmitter trigger level shift */
126 #define USR1_PARITYERR	(1<<15) /* Parity error interrupt flag */
127 #define USR1_RTSS	(1<<14) /* RTS pin status */
128 #define USR1_TRDY	(1<<13) /* Transmitter ready interrupt/dma flag */
129 #define USR1_RTSD	(1<<12) /* RTS delta */
130 #define USR1_ESCF	(1<<11) /* Escape seq interrupt flag */
131 #define USR1_FRAMERR	(1<<10) /* Frame error interrupt flag */
132 #define USR1_RRDY	(1<<9)	 /* Receiver ready interrupt/dma flag */
133 #define USR1_AGTIM	(1<<8)	 /* Ageing timer interrupt flag */
134 #define USR1_DTRD	(1<<7)	 /* DTR Delta */
135 #define USR1_RXDS	 (1<<6)	 /* Receiver idle interrupt flag */
136 #define USR1_AIRINT	 (1<<5)	 /* Async IR wake interrupt flag */
137 #define USR1_AWAKE	 (1<<4)	 /* Aysnc wake interrupt flag */
138 #define USR2_ADET	 (1<<15) /* Auto baud rate detect complete */
139 #define USR2_TXFE	 (1<<14) /* Transmit buffer FIFO empty */
140 #define USR2_DTRF	 (1<<13) /* DTR edge interrupt flag */
141 #define USR2_IDLE	 (1<<12) /* Idle condition */
142 #define USR2_RIDELT	 (1<<10) /* Ring Interrupt Delta */
143 #define USR2_RIIN	 (1<<9)	 /* Ring Indicator Input */
144 #define USR2_IRINT	 (1<<8)	 /* Serial infrared interrupt flag */
145 #define USR2_WAKE	 (1<<7)	 /* Wake */
146 #define USR2_DCDIN	 (1<<5)	 /* Data Carrier Detect Input */
147 #define USR2_RTSF	 (1<<4)	 /* RTS edge interrupt flag */
148 #define USR2_TXDC	 (1<<3)	 /* Transmitter complete */
149 #define USR2_BRCD	 (1<<2)	 /* Break condition */
150 #define USR2_ORE	(1<<1)	 /* Overrun error */
151 #define USR2_RDR	(1<<0)	 /* Recv data ready */
152 #define UTS_FRCPERR	(1<<13) /* Force parity error */
153 #define UTS_LOOP	(1<<12)	 /* Loop tx and rx */
154 #define UTS_TXEMPTY	 (1<<6)	 /* TxFIFO empty */
155 #define UTS_RXEMPTY	 (1<<5)	 /* RxFIFO empty */
156 #define UTS_TXFULL	 (1<<4)	 /* TxFIFO full */
157 #define UTS_RXFULL	 (1<<3)	 /* RxFIFO full */
158 #define UTS_SOFTRST	 (1<<0)	 /* Software reset */
159 
160 /* We've been assigned a range on the "Low-density serial ports" major */
161 #define SERIAL_IMX_MAJOR	207
162 #define MINOR_START		16
163 #define DEV_NAME		"ttymxc"
164 
165 /*
166  * This determines how often we check the modem status signals
167  * for any change.  They generally aren't connected to an IRQ
168  * so we have to poll them.  We also check immediately before
169  * filling the TX fifo incase CTS has been dropped.
170  */
171 #define MCTRL_TIMEOUT	(250*HZ/1000)
172 
173 #define DRIVER_NAME "IMX-uart"
174 
175 #define UART_NR 8
176 
177 /* i.MX21 type uart runs on all i.mx except i.MX1 and i.MX6q */
178 enum imx_uart_type {
179 	IMX1_UART,
180 	IMX21_UART,
181 	IMX53_UART,
182 	IMX6Q_UART,
183 };
184 
185 /* device type dependent stuff */
186 struct imx_uart_data {
187 	unsigned uts_reg;
188 	enum imx_uart_type devtype;
189 };
190 
191 struct imx_port {
192 	struct uart_port	port;
193 	struct timer_list	timer;
194 	unsigned int		old_status;
195 	unsigned int		have_rtscts:1;
196 	unsigned int		have_rtsgpio:1;
197 	unsigned int		dte_mode:1;
198 	struct clk		*clk_ipg;
199 	struct clk		*clk_per;
200 	const struct imx_uart_data *devdata;
201 
202 	struct mctrl_gpios *gpios;
203 
204 	/* shadow registers */
205 	unsigned int ucr1;
206 	unsigned int ucr2;
207 	unsigned int ucr3;
208 	unsigned int ucr4;
209 	unsigned int ufcr;
210 
211 	/* DMA fields */
212 	unsigned int		dma_is_enabled:1;
213 	unsigned int		dma_is_rxing:1;
214 	unsigned int		dma_is_txing:1;
215 	struct dma_chan		*dma_chan_rx, *dma_chan_tx;
216 	struct scatterlist	rx_sgl, tx_sgl[2];
217 	void			*rx_buf;
218 	struct circ_buf		rx_ring;
219 	unsigned int		rx_periods;
220 	dma_cookie_t		rx_cookie;
221 	unsigned int		tx_bytes;
222 	unsigned int		dma_tx_nents;
223 	unsigned int            saved_reg[10];
224 	bool			context_saved;
225 };
226 
227 struct imx_port_ucrs {
228 	unsigned int	ucr1;
229 	unsigned int	ucr2;
230 	unsigned int	ucr3;
231 };
232 
233 static struct imx_uart_data imx_uart_devdata[] = {
234 	[IMX1_UART] = {
235 		.uts_reg = IMX1_UTS,
236 		.devtype = IMX1_UART,
237 	},
238 	[IMX21_UART] = {
239 		.uts_reg = IMX21_UTS,
240 		.devtype = IMX21_UART,
241 	},
242 	[IMX53_UART] = {
243 		.uts_reg = IMX21_UTS,
244 		.devtype = IMX53_UART,
245 	},
246 	[IMX6Q_UART] = {
247 		.uts_reg = IMX21_UTS,
248 		.devtype = IMX6Q_UART,
249 	},
250 };
251 
252 static const struct platform_device_id imx_uart_devtype[] = {
253 	{
254 		.name = "imx1-uart",
255 		.driver_data = (kernel_ulong_t) &imx_uart_devdata[IMX1_UART],
256 	}, {
257 		.name = "imx21-uart",
258 		.driver_data = (kernel_ulong_t) &imx_uart_devdata[IMX21_UART],
259 	}, {
260 		.name = "imx53-uart",
261 		.driver_data = (kernel_ulong_t) &imx_uart_devdata[IMX53_UART],
262 	}, {
263 		.name = "imx6q-uart",
264 		.driver_data = (kernel_ulong_t) &imx_uart_devdata[IMX6Q_UART],
265 	}, {
266 		/* sentinel */
267 	}
268 };
269 MODULE_DEVICE_TABLE(platform, imx_uart_devtype);
270 
271 static const struct of_device_id imx_uart_dt_ids[] = {
272 	{ .compatible = "fsl,imx6q-uart", .data = &imx_uart_devdata[IMX6Q_UART], },
273 	{ .compatible = "fsl,imx53-uart", .data = &imx_uart_devdata[IMX53_UART], },
274 	{ .compatible = "fsl,imx1-uart", .data = &imx_uart_devdata[IMX1_UART], },
275 	{ .compatible = "fsl,imx21-uart", .data = &imx_uart_devdata[IMX21_UART], },
276 	{ /* sentinel */ }
277 };
278 MODULE_DEVICE_TABLE(of, imx_uart_dt_ids);
279 
280 static void imx_uart_writel(struct imx_port *sport, u32 val, u32 offset)
281 {
282 	switch (offset) {
283 	case UCR1:
284 		sport->ucr1 = val;
285 		break;
286 	case UCR2:
287 		sport->ucr2 = val;
288 		break;
289 	case UCR3:
290 		sport->ucr3 = val;
291 		break;
292 	case UCR4:
293 		sport->ucr4 = val;
294 		break;
295 	case UFCR:
296 		sport->ufcr = val;
297 		break;
298 	default:
299 		break;
300 	}
301 	writel(val, sport->port.membase + offset);
302 }
303 
304 static u32 imx_uart_readl(struct imx_port *sport, u32 offset)
305 {
306 	switch (offset) {
307 	case UCR1:
308 		return sport->ucr1;
309 		break;
310 	case UCR2:
311 		/*
312 		 * UCR2_SRST is the only bit in the cached registers that might
313 		 * differ from the value that was last written. As it only
314 		 * automatically becomes one after being cleared, reread
315 		 * conditionally.
316 		 */
317 		if (!(sport->ucr2 & UCR2_SRST))
318 			sport->ucr2 = readl(sport->port.membase + offset);
319 		return sport->ucr2;
320 		break;
321 	case UCR3:
322 		return sport->ucr3;
323 		break;
324 	case UCR4:
325 		return sport->ucr4;
326 		break;
327 	case UFCR:
328 		return sport->ufcr;
329 		break;
330 	default:
331 		return readl(sport->port.membase + offset);
332 	}
333 }
334 
335 static inline unsigned imx_uart_uts_reg(struct imx_port *sport)
336 {
337 	return sport->devdata->uts_reg;
338 }
339 
340 static inline int imx_uart_is_imx1(struct imx_port *sport)
341 {
342 	return sport->devdata->devtype == IMX1_UART;
343 }
344 
345 static inline int imx_uart_is_imx21(struct imx_port *sport)
346 {
347 	return sport->devdata->devtype == IMX21_UART;
348 }
349 
350 static inline int imx_uart_is_imx53(struct imx_port *sport)
351 {
352 	return sport->devdata->devtype == IMX53_UART;
353 }
354 
355 static inline int imx_uart_is_imx6q(struct imx_port *sport)
356 {
357 	return sport->devdata->devtype == IMX6Q_UART;
358 }
359 /*
360  * Save and restore functions for UCR1, UCR2 and UCR3 registers
361  */
362 #if defined(CONFIG_SERIAL_IMX_CONSOLE)
363 static void imx_uart_ucrs_save(struct imx_port *sport,
364 			       struct imx_port_ucrs *ucr)
365 {
366 	/* save control registers */
367 	ucr->ucr1 = imx_uart_readl(sport, UCR1);
368 	ucr->ucr2 = imx_uart_readl(sport, UCR2);
369 	ucr->ucr3 = imx_uart_readl(sport, UCR3);
370 }
371 
372 static void imx_uart_ucrs_restore(struct imx_port *sport,
373 				  struct imx_port_ucrs *ucr)
374 {
375 	/* restore control registers */
376 	imx_uart_writel(sport, ucr->ucr1, UCR1);
377 	imx_uart_writel(sport, ucr->ucr2, UCR2);
378 	imx_uart_writel(sport, ucr->ucr3, UCR3);
379 }
380 #endif
381 
382 /* called with port.lock taken and irqs caller dependent */
383 static void imx_uart_rts_active(struct imx_port *sport, u32 *ucr2)
384 {
385 	*ucr2 &= ~(UCR2_CTSC | UCR2_CTS);
386 
387 	sport->port.mctrl |= TIOCM_RTS;
388 	mctrl_gpio_set(sport->gpios, sport->port.mctrl);
389 }
390 
391 /* called with port.lock taken and irqs caller dependent */
392 static void imx_uart_rts_inactive(struct imx_port *sport, u32 *ucr2)
393 {
394 	*ucr2 &= ~UCR2_CTSC;
395 	*ucr2 |= UCR2_CTS;
396 
397 	sport->port.mctrl &= ~TIOCM_RTS;
398 	mctrl_gpio_set(sport->gpios, sport->port.mctrl);
399 }
400 
401 /* called with port.lock taken and irqs off */
402 static void imx_uart_start_rx(struct uart_port *port)
403 {
404 	struct imx_port *sport = (struct imx_port *)port;
405 	unsigned int ucr1, ucr2;
406 
407 	ucr1 = imx_uart_readl(sport, UCR1);
408 	ucr2 = imx_uart_readl(sport, UCR2);
409 
410 	ucr2 |= UCR2_RXEN;
411 
412 	if (sport->dma_is_enabled) {
413 		ucr1 |= UCR1_RXDMAEN | UCR1_ATDMAEN;
414 	} else {
415 		ucr1 |= UCR1_RRDYEN;
416 		ucr2 |= UCR2_ATEN;
417 	}
418 
419 	/* Write UCR2 first as it includes RXEN */
420 	imx_uart_writel(sport, ucr2, UCR2);
421 	imx_uart_writel(sport, ucr1, UCR1);
422 }
423 
424 /* called with port.lock taken and irqs off */
425 static void imx_uart_stop_tx(struct uart_port *port)
426 {
427 	struct imx_port *sport = (struct imx_port *)port;
428 	u32 ucr1;
429 
430 	/*
431 	 * We are maybe in the SMP context, so if the DMA TX thread is running
432 	 * on other cpu, we have to wait for it to finish.
433 	 */
434 	if (sport->dma_is_txing)
435 		return;
436 
437 	ucr1 = imx_uart_readl(sport, UCR1);
438 	imx_uart_writel(sport, ucr1 & ~UCR1_TRDYEN, UCR1);
439 
440 	/* in rs485 mode disable transmitter if shifter is empty */
441 	if (port->rs485.flags & SER_RS485_ENABLED &&
442 	    imx_uart_readl(sport, USR2) & USR2_TXDC) {
443 		u32 ucr2 = imx_uart_readl(sport, UCR2), ucr4;
444 		if (port->rs485.flags & SER_RS485_RTS_AFTER_SEND)
445 			imx_uart_rts_active(sport, &ucr2);
446 		else
447 			imx_uart_rts_inactive(sport, &ucr2);
448 		imx_uart_writel(sport, ucr2, UCR2);
449 
450 		imx_uart_start_rx(port);
451 
452 		ucr4 = imx_uart_readl(sport, UCR4);
453 		ucr4 &= ~UCR4_TCEN;
454 		imx_uart_writel(sport, ucr4, UCR4);
455 	}
456 }
457 
458 /* called with port.lock taken and irqs off */
459 static void imx_uart_stop_rx(struct uart_port *port)
460 {
461 	struct imx_port *sport = (struct imx_port *)port;
462 	u32 ucr1, ucr2;
463 
464 	ucr1 = imx_uart_readl(sport, UCR1);
465 	ucr2 = imx_uart_readl(sport, UCR2);
466 
467 	if (sport->dma_is_enabled) {
468 		ucr1 &= ~(UCR1_RXDMAEN | UCR1_ATDMAEN);
469 	} else {
470 		ucr1 &= ~UCR1_RRDYEN;
471 		ucr2 &= ~UCR2_ATEN;
472 	}
473 	imx_uart_writel(sport, ucr1, UCR1);
474 
475 	ucr2 &= ~UCR2_RXEN;
476 	imx_uart_writel(sport, ucr2, UCR2);
477 }
478 
479 /* called with port.lock taken and irqs off */
480 static void imx_uart_enable_ms(struct uart_port *port)
481 {
482 	struct imx_port *sport = (struct imx_port *)port;
483 
484 	mod_timer(&sport->timer, jiffies);
485 
486 	mctrl_gpio_enable_ms(sport->gpios);
487 }
488 
489 static void imx_uart_dma_tx(struct imx_port *sport);
490 
491 /* called with port.lock taken and irqs off */
492 static inline void imx_uart_transmit_buffer(struct imx_port *sport)
493 {
494 	struct circ_buf *xmit = &sport->port.state->xmit;
495 
496 	if (sport->port.x_char) {
497 		/* Send next char */
498 		imx_uart_writel(sport, sport->port.x_char, URTX0);
499 		sport->port.icount.tx++;
500 		sport->port.x_char = 0;
501 		return;
502 	}
503 
504 	if (uart_circ_empty(xmit) || uart_tx_stopped(&sport->port)) {
505 		imx_uart_stop_tx(&sport->port);
506 		return;
507 	}
508 
509 	if (sport->dma_is_enabled) {
510 		u32 ucr1;
511 		/*
512 		 * We've just sent a X-char Ensure the TX DMA is enabled
513 		 * and the TX IRQ is disabled.
514 		 **/
515 		ucr1 = imx_uart_readl(sport, UCR1);
516 		ucr1 &= ~UCR1_TRDYEN;
517 		if (sport->dma_is_txing) {
518 			ucr1 |= UCR1_TXDMAEN;
519 			imx_uart_writel(sport, ucr1, UCR1);
520 		} else {
521 			imx_uart_writel(sport, ucr1, UCR1);
522 			imx_uart_dma_tx(sport);
523 		}
524 
525 		return;
526 	}
527 
528 	while (!uart_circ_empty(xmit) &&
529 	       !(imx_uart_readl(sport, imx_uart_uts_reg(sport)) & UTS_TXFULL)) {
530 		/* send xmit->buf[xmit->tail]
531 		 * out the port here */
532 		imx_uart_writel(sport, xmit->buf[xmit->tail], URTX0);
533 		xmit->tail = (xmit->tail + 1) & (UART_XMIT_SIZE - 1);
534 		sport->port.icount.tx++;
535 	}
536 
537 	if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
538 		uart_write_wakeup(&sport->port);
539 
540 	if (uart_circ_empty(xmit))
541 		imx_uart_stop_tx(&sport->port);
542 }
543 
544 static void imx_uart_dma_tx_callback(void *data)
545 {
546 	struct imx_port *sport = data;
547 	struct scatterlist *sgl = &sport->tx_sgl[0];
548 	struct circ_buf *xmit = &sport->port.state->xmit;
549 	unsigned long flags;
550 	u32 ucr1;
551 
552 	spin_lock_irqsave(&sport->port.lock, flags);
553 
554 	dma_unmap_sg(sport->port.dev, sgl, sport->dma_tx_nents, DMA_TO_DEVICE);
555 
556 	ucr1 = imx_uart_readl(sport, UCR1);
557 	ucr1 &= ~UCR1_TXDMAEN;
558 	imx_uart_writel(sport, ucr1, UCR1);
559 
560 	/* update the stat */
561 	xmit->tail = (xmit->tail + sport->tx_bytes) & (UART_XMIT_SIZE - 1);
562 	sport->port.icount.tx += sport->tx_bytes;
563 
564 	dev_dbg(sport->port.dev, "we finish the TX DMA.\n");
565 
566 	sport->dma_is_txing = 0;
567 
568 	if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
569 		uart_write_wakeup(&sport->port);
570 
571 	if (!uart_circ_empty(xmit) && !uart_tx_stopped(&sport->port))
572 		imx_uart_dma_tx(sport);
573 	else if (sport->port.rs485.flags & SER_RS485_ENABLED) {
574 		u32 ucr4 = imx_uart_readl(sport, UCR4);
575 		ucr4 |= UCR4_TCEN;
576 		imx_uart_writel(sport, ucr4, UCR4);
577 	}
578 
579 	spin_unlock_irqrestore(&sport->port.lock, flags);
580 }
581 
582 /* called with port.lock taken and irqs off */
583 static void imx_uart_dma_tx(struct imx_port *sport)
584 {
585 	struct circ_buf *xmit = &sport->port.state->xmit;
586 	struct scatterlist *sgl = sport->tx_sgl;
587 	struct dma_async_tx_descriptor *desc;
588 	struct dma_chan	*chan = sport->dma_chan_tx;
589 	struct device *dev = sport->port.dev;
590 	u32 ucr1, ucr4;
591 	int ret;
592 
593 	if (sport->dma_is_txing)
594 		return;
595 
596 	ucr4 = imx_uart_readl(sport, UCR4);
597 	ucr4 &= ~UCR4_TCEN;
598 	imx_uart_writel(sport, ucr4, UCR4);
599 
600 	sport->tx_bytes = uart_circ_chars_pending(xmit);
601 
602 	if (xmit->tail < xmit->head) {
603 		sport->dma_tx_nents = 1;
604 		sg_init_one(sgl, xmit->buf + xmit->tail, sport->tx_bytes);
605 	} else {
606 		sport->dma_tx_nents = 2;
607 		sg_init_table(sgl, 2);
608 		sg_set_buf(sgl, xmit->buf + xmit->tail,
609 				UART_XMIT_SIZE - xmit->tail);
610 		sg_set_buf(sgl + 1, xmit->buf, xmit->head);
611 	}
612 
613 	ret = dma_map_sg(dev, sgl, sport->dma_tx_nents, DMA_TO_DEVICE);
614 	if (ret == 0) {
615 		dev_err(dev, "DMA mapping error for TX.\n");
616 		return;
617 	}
618 	desc = dmaengine_prep_slave_sg(chan, sgl, ret,
619 					DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT);
620 	if (!desc) {
621 		dma_unmap_sg(dev, sgl, sport->dma_tx_nents,
622 			     DMA_TO_DEVICE);
623 		dev_err(dev, "We cannot prepare for the TX slave dma!\n");
624 		return;
625 	}
626 	desc->callback = imx_uart_dma_tx_callback;
627 	desc->callback_param = sport;
628 
629 	dev_dbg(dev, "TX: prepare to send %lu bytes by DMA.\n",
630 			uart_circ_chars_pending(xmit));
631 
632 	ucr1 = imx_uart_readl(sport, UCR1);
633 	ucr1 |= UCR1_TXDMAEN;
634 	imx_uart_writel(sport, ucr1, UCR1);
635 
636 	/* fire it */
637 	sport->dma_is_txing = 1;
638 	dmaengine_submit(desc);
639 	dma_async_issue_pending(chan);
640 	return;
641 }
642 
643 /* called with port.lock taken and irqs off */
644 static void imx_uart_start_tx(struct uart_port *port)
645 {
646 	struct imx_port *sport = (struct imx_port *)port;
647 	u32 ucr1;
648 
649 	if (!sport->port.x_char && uart_circ_empty(&port->state->xmit))
650 		return;
651 
652 	if (port->rs485.flags & SER_RS485_ENABLED) {
653 		u32 ucr2;
654 
655 		ucr2 = imx_uart_readl(sport, UCR2);
656 		if (port->rs485.flags & SER_RS485_RTS_ON_SEND)
657 			imx_uart_rts_active(sport, &ucr2);
658 		else
659 			imx_uart_rts_inactive(sport, &ucr2);
660 		imx_uart_writel(sport, ucr2, UCR2);
661 
662 		if (!(port->rs485.flags & SER_RS485_RX_DURING_TX))
663 			imx_uart_stop_rx(port);
664 
665 		/*
666 		 * Enable transmitter and shifter empty irq only if DMA is off.
667 		 * In the DMA case this is done in the tx-callback.
668 		 */
669 		if (!sport->dma_is_enabled) {
670 			u32 ucr4 = imx_uart_readl(sport, UCR4);
671 			ucr4 |= UCR4_TCEN;
672 			imx_uart_writel(sport, ucr4, UCR4);
673 		}
674 	}
675 
676 	if (!sport->dma_is_enabled) {
677 		ucr1 = imx_uart_readl(sport, UCR1);
678 		imx_uart_writel(sport, ucr1 | UCR1_TRDYEN, UCR1);
679 	}
680 
681 	if (sport->dma_is_enabled) {
682 		if (sport->port.x_char) {
683 			/* We have X-char to send, so enable TX IRQ and
684 			 * disable TX DMA to let TX interrupt to send X-char */
685 			ucr1 = imx_uart_readl(sport, UCR1);
686 			ucr1 &= ~UCR1_TXDMAEN;
687 			ucr1 |= UCR1_TRDYEN;
688 			imx_uart_writel(sport, ucr1, UCR1);
689 			return;
690 		}
691 
692 		if (!uart_circ_empty(&port->state->xmit) &&
693 		    !uart_tx_stopped(port))
694 			imx_uart_dma_tx(sport);
695 		return;
696 	}
697 }
698 
699 static irqreturn_t __imx_uart_rtsint(int irq, void *dev_id)
700 {
701 	struct imx_port *sport = dev_id;
702 	u32 usr1;
703 
704 	imx_uart_writel(sport, USR1_RTSD, USR1);
705 	usr1 = imx_uart_readl(sport, USR1) & USR1_RTSS;
706 	uart_handle_cts_change(&sport->port, !!usr1);
707 	wake_up_interruptible(&sport->port.state->port.delta_msr_wait);
708 
709 	return IRQ_HANDLED;
710 }
711 
712 static irqreturn_t imx_uart_rtsint(int irq, void *dev_id)
713 {
714 	struct imx_port *sport = dev_id;
715 	irqreturn_t ret;
716 
717 	spin_lock(&sport->port.lock);
718 
719 	ret = __imx_uart_rtsint(irq, dev_id);
720 
721 	spin_unlock(&sport->port.lock);
722 
723 	return ret;
724 }
725 
726 static irqreturn_t imx_uart_txint(int irq, void *dev_id)
727 {
728 	struct imx_port *sport = dev_id;
729 
730 	spin_lock(&sport->port.lock);
731 	imx_uart_transmit_buffer(sport);
732 	spin_unlock(&sport->port.lock);
733 	return IRQ_HANDLED;
734 }
735 
736 static irqreturn_t __imx_uart_rxint(int irq, void *dev_id)
737 {
738 	struct imx_port *sport = dev_id;
739 	unsigned int rx, flg, ignored = 0;
740 	struct tty_port *port = &sport->port.state->port;
741 
742 	while (imx_uart_readl(sport, USR2) & USR2_RDR) {
743 		u32 usr2;
744 
745 		flg = TTY_NORMAL;
746 		sport->port.icount.rx++;
747 
748 		rx = imx_uart_readl(sport, URXD0);
749 
750 		usr2 = imx_uart_readl(sport, USR2);
751 		if (usr2 & USR2_BRCD) {
752 			imx_uart_writel(sport, USR2_BRCD, USR2);
753 			if (uart_handle_break(&sport->port))
754 				continue;
755 		}
756 
757 		if (uart_handle_sysrq_char(&sport->port, (unsigned char)rx))
758 			continue;
759 
760 		if (unlikely(rx & URXD_ERR)) {
761 			if (rx & URXD_BRK)
762 				sport->port.icount.brk++;
763 			else if (rx & URXD_PRERR)
764 				sport->port.icount.parity++;
765 			else if (rx & URXD_FRMERR)
766 				sport->port.icount.frame++;
767 			if (rx & URXD_OVRRUN)
768 				sport->port.icount.overrun++;
769 
770 			if (rx & sport->port.ignore_status_mask) {
771 				if (++ignored > 100)
772 					goto out;
773 				continue;
774 			}
775 
776 			rx &= (sport->port.read_status_mask | 0xFF);
777 
778 			if (rx & URXD_BRK)
779 				flg = TTY_BREAK;
780 			else if (rx & URXD_PRERR)
781 				flg = TTY_PARITY;
782 			else if (rx & URXD_FRMERR)
783 				flg = TTY_FRAME;
784 			if (rx & URXD_OVRRUN)
785 				flg = TTY_OVERRUN;
786 
787 			sport->port.sysrq = 0;
788 		}
789 
790 		if (sport->port.ignore_status_mask & URXD_DUMMY_READ)
791 			goto out;
792 
793 		if (tty_insert_flip_char(port, rx, flg) == 0)
794 			sport->port.icount.buf_overrun++;
795 	}
796 
797 out:
798 	tty_flip_buffer_push(port);
799 
800 	return IRQ_HANDLED;
801 }
802 
803 static irqreturn_t imx_uart_rxint(int irq, void *dev_id)
804 {
805 	struct imx_port *sport = dev_id;
806 	irqreturn_t ret;
807 
808 	spin_lock(&sport->port.lock);
809 
810 	ret = __imx_uart_rxint(irq, dev_id);
811 
812 	spin_unlock(&sport->port.lock);
813 
814 	return ret;
815 }
816 
817 static void imx_uart_clear_rx_errors(struct imx_port *sport);
818 
819 /*
820  * We have a modem side uart, so the meanings of RTS and CTS are inverted.
821  */
822 static unsigned int imx_uart_get_hwmctrl(struct imx_port *sport)
823 {
824 	unsigned int tmp = TIOCM_DSR;
825 	unsigned usr1 = imx_uart_readl(sport, USR1);
826 	unsigned usr2 = imx_uart_readl(sport, USR2);
827 
828 	if (usr1 & USR1_RTSS)
829 		tmp |= TIOCM_CTS;
830 
831 	/* in DCE mode DCDIN is always 0 */
832 	if (!(usr2 & USR2_DCDIN))
833 		tmp |= TIOCM_CAR;
834 
835 	if (sport->dte_mode)
836 		if (!(imx_uart_readl(sport, USR2) & USR2_RIIN))
837 			tmp |= TIOCM_RI;
838 
839 	return tmp;
840 }
841 
842 /*
843  * Handle any change of modem status signal since we were last called.
844  */
845 static void imx_uart_mctrl_check(struct imx_port *sport)
846 {
847 	unsigned int status, changed;
848 
849 	status = imx_uart_get_hwmctrl(sport);
850 	changed = status ^ sport->old_status;
851 
852 	if (changed == 0)
853 		return;
854 
855 	sport->old_status = status;
856 
857 	if (changed & TIOCM_RI && status & TIOCM_RI)
858 		sport->port.icount.rng++;
859 	if (changed & TIOCM_DSR)
860 		sport->port.icount.dsr++;
861 	if (changed & TIOCM_CAR)
862 		uart_handle_dcd_change(&sport->port, status & TIOCM_CAR);
863 	if (changed & TIOCM_CTS)
864 		uart_handle_cts_change(&sport->port, status & TIOCM_CTS);
865 
866 	wake_up_interruptible(&sport->port.state->port.delta_msr_wait);
867 }
868 
869 static irqreturn_t imx_uart_int(int irq, void *dev_id)
870 {
871 	struct imx_port *sport = dev_id;
872 	unsigned int usr1, usr2, ucr1, ucr2, ucr3, ucr4;
873 	irqreturn_t ret = IRQ_NONE;
874 
875 	spin_lock(&sport->port.lock);
876 
877 	usr1 = imx_uart_readl(sport, USR1);
878 	usr2 = imx_uart_readl(sport, USR2);
879 	ucr1 = imx_uart_readl(sport, UCR1);
880 	ucr2 = imx_uart_readl(sport, UCR2);
881 	ucr3 = imx_uart_readl(sport, UCR3);
882 	ucr4 = imx_uart_readl(sport, UCR4);
883 
884 	/*
885 	 * Even if a condition is true that can trigger an irq only handle it if
886 	 * the respective irq source is enabled. This prevents some undesired
887 	 * actions, for example if a character that sits in the RX FIFO and that
888 	 * should be fetched via DMA is tried to be fetched using PIO. Or the
889 	 * receiver is currently off and so reading from URXD0 results in an
890 	 * exception. So just mask the (raw) status bits for disabled irqs.
891 	 */
892 	if ((ucr1 & UCR1_RRDYEN) == 0)
893 		usr1 &= ~USR1_RRDY;
894 	if ((ucr2 & UCR2_ATEN) == 0)
895 		usr1 &= ~USR1_AGTIM;
896 	if ((ucr1 & UCR1_TRDYEN) == 0)
897 		usr1 &= ~USR1_TRDY;
898 	if ((ucr4 & UCR4_TCEN) == 0)
899 		usr2 &= ~USR2_TXDC;
900 	if ((ucr3 & UCR3_DTRDEN) == 0)
901 		usr1 &= ~USR1_DTRD;
902 	if ((ucr1 & UCR1_RTSDEN) == 0)
903 		usr1 &= ~USR1_RTSD;
904 	if ((ucr3 & UCR3_AWAKEN) == 0)
905 		usr1 &= ~USR1_AWAKE;
906 	if ((ucr4 & UCR4_OREN) == 0)
907 		usr2 &= ~USR2_ORE;
908 
909 	if (usr1 & (USR1_RRDY | USR1_AGTIM)) {
910 		__imx_uart_rxint(irq, dev_id);
911 		ret = IRQ_HANDLED;
912 	}
913 
914 	if ((usr1 & USR1_TRDY) || (usr2 & USR2_TXDC)) {
915 		imx_uart_transmit_buffer(sport);
916 		ret = IRQ_HANDLED;
917 	}
918 
919 	if (usr1 & USR1_DTRD) {
920 		imx_uart_writel(sport, USR1_DTRD, USR1);
921 
922 		imx_uart_mctrl_check(sport);
923 
924 		ret = IRQ_HANDLED;
925 	}
926 
927 	if (usr1 & USR1_RTSD) {
928 		__imx_uart_rtsint(irq, dev_id);
929 		ret = IRQ_HANDLED;
930 	}
931 
932 	if (usr1 & USR1_AWAKE) {
933 		imx_uart_writel(sport, USR1_AWAKE, USR1);
934 		ret = IRQ_HANDLED;
935 	}
936 
937 	if (usr2 & USR2_ORE) {
938 		sport->port.icount.overrun++;
939 		imx_uart_writel(sport, USR2_ORE, USR2);
940 		ret = IRQ_HANDLED;
941 	}
942 
943 	spin_unlock(&sport->port.lock);
944 
945 	return ret;
946 }
947 
948 /*
949  * Return TIOCSER_TEMT when transmitter is not busy.
950  */
951 static unsigned int imx_uart_tx_empty(struct uart_port *port)
952 {
953 	struct imx_port *sport = (struct imx_port *)port;
954 	unsigned int ret;
955 
956 	ret = (imx_uart_readl(sport, USR2) & USR2_TXDC) ?  TIOCSER_TEMT : 0;
957 
958 	/* If the TX DMA is working, return 0. */
959 	if (sport->dma_is_txing)
960 		ret = 0;
961 
962 	return ret;
963 }
964 
965 /* called with port.lock taken and irqs off */
966 static unsigned int imx_uart_get_mctrl(struct uart_port *port)
967 {
968 	struct imx_port *sport = (struct imx_port *)port;
969 	unsigned int ret = imx_uart_get_hwmctrl(sport);
970 
971 	mctrl_gpio_get(sport->gpios, &ret);
972 
973 	return ret;
974 }
975 
976 /* called with port.lock taken and irqs off */
977 static void imx_uart_set_mctrl(struct uart_port *port, unsigned int mctrl)
978 {
979 	struct imx_port *sport = (struct imx_port *)port;
980 	u32 ucr3, uts;
981 
982 	if (!(port->rs485.flags & SER_RS485_ENABLED)) {
983 		u32 ucr2;
984 
985 		/*
986 		 * Turn off autoRTS if RTS is lowered and restore autoRTS
987 		 * setting if RTS is raised.
988 		 */
989 		ucr2 = imx_uart_readl(sport, UCR2);
990 		ucr2 &= ~(UCR2_CTS | UCR2_CTSC);
991 		if (mctrl & TIOCM_RTS) {
992 			ucr2 |= UCR2_CTS;
993 			/*
994 			 * UCR2_IRTS is unset if and only if the port is
995 			 * configured for CRTSCTS, so we use inverted UCR2_IRTS
996 			 * to get the state to restore to.
997 			 */
998 			if (!(ucr2 & UCR2_IRTS))
999 				ucr2 |= UCR2_CTSC;
1000 		}
1001 		imx_uart_writel(sport, ucr2, UCR2);
1002 	}
1003 
1004 	ucr3 = imx_uart_readl(sport, UCR3) & ~UCR3_DSR;
1005 	if (!(mctrl & TIOCM_DTR))
1006 		ucr3 |= UCR3_DSR;
1007 	imx_uart_writel(sport, ucr3, UCR3);
1008 
1009 	uts = imx_uart_readl(sport, imx_uart_uts_reg(sport)) & ~UTS_LOOP;
1010 	if (mctrl & TIOCM_LOOP)
1011 		uts |= UTS_LOOP;
1012 	imx_uart_writel(sport, uts, imx_uart_uts_reg(sport));
1013 
1014 	mctrl_gpio_set(sport->gpios, mctrl);
1015 }
1016 
1017 /*
1018  * Interrupts always disabled.
1019  */
1020 static void imx_uart_break_ctl(struct uart_port *port, int break_state)
1021 {
1022 	struct imx_port *sport = (struct imx_port *)port;
1023 	unsigned long flags;
1024 	u32 ucr1;
1025 
1026 	spin_lock_irqsave(&sport->port.lock, flags);
1027 
1028 	ucr1 = imx_uart_readl(sport, UCR1) & ~UCR1_SNDBRK;
1029 
1030 	if (break_state != 0)
1031 		ucr1 |= UCR1_SNDBRK;
1032 
1033 	imx_uart_writel(sport, ucr1, UCR1);
1034 
1035 	spin_unlock_irqrestore(&sport->port.lock, flags);
1036 }
1037 
1038 /*
1039  * This is our per-port timeout handler, for checking the
1040  * modem status signals.
1041  */
1042 static void imx_uart_timeout(struct timer_list *t)
1043 {
1044 	struct imx_port *sport = from_timer(sport, t, timer);
1045 	unsigned long flags;
1046 
1047 	if (sport->port.state) {
1048 		spin_lock_irqsave(&sport->port.lock, flags);
1049 		imx_uart_mctrl_check(sport);
1050 		spin_unlock_irqrestore(&sport->port.lock, flags);
1051 
1052 		mod_timer(&sport->timer, jiffies + MCTRL_TIMEOUT);
1053 	}
1054 }
1055 
1056 /*
1057  * There are two kinds of RX DMA interrupts(such as in the MX6Q):
1058  *   [1] the RX DMA buffer is full.
1059  *   [2] the aging timer expires
1060  *
1061  * Condition [2] is triggered when a character has been sitting in the FIFO
1062  * for at least 8 byte durations.
1063  */
1064 static void imx_uart_dma_rx_callback(void *data)
1065 {
1066 	struct imx_port *sport = data;
1067 	struct dma_chan	*chan = sport->dma_chan_rx;
1068 	struct scatterlist *sgl = &sport->rx_sgl;
1069 	struct tty_port *port = &sport->port.state->port;
1070 	struct dma_tx_state state;
1071 	struct circ_buf *rx_ring = &sport->rx_ring;
1072 	enum dma_status status;
1073 	unsigned int w_bytes = 0;
1074 	unsigned int r_bytes;
1075 	unsigned int bd_size;
1076 
1077 	status = dmaengine_tx_status(chan, sport->rx_cookie, &state);
1078 
1079 	if (status == DMA_ERROR) {
1080 		imx_uart_clear_rx_errors(sport);
1081 		return;
1082 	}
1083 
1084 	if (!(sport->port.ignore_status_mask & URXD_DUMMY_READ)) {
1085 
1086 		/*
1087 		 * The state-residue variable represents the empty space
1088 		 * relative to the entire buffer. Taking this in consideration
1089 		 * the head is always calculated base on the buffer total
1090 		 * length - DMA transaction residue. The UART script from the
1091 		 * SDMA firmware will jump to the next buffer descriptor,
1092 		 * once a DMA transaction if finalized (IMX53 RM - A.4.1.2.4).
1093 		 * Taking this in consideration the tail is always at the
1094 		 * beginning of the buffer descriptor that contains the head.
1095 		 */
1096 
1097 		/* Calculate the head */
1098 		rx_ring->head = sg_dma_len(sgl) - state.residue;
1099 
1100 		/* Calculate the tail. */
1101 		bd_size = sg_dma_len(sgl) / sport->rx_periods;
1102 		rx_ring->tail = ((rx_ring->head-1) / bd_size) * bd_size;
1103 
1104 		if (rx_ring->head <= sg_dma_len(sgl) &&
1105 		    rx_ring->head > rx_ring->tail) {
1106 
1107 			/* Move data from tail to head */
1108 			r_bytes = rx_ring->head - rx_ring->tail;
1109 
1110 			/* CPU claims ownership of RX DMA buffer */
1111 			dma_sync_sg_for_cpu(sport->port.dev, sgl, 1,
1112 				DMA_FROM_DEVICE);
1113 
1114 			w_bytes = tty_insert_flip_string(port,
1115 				sport->rx_buf + rx_ring->tail, r_bytes);
1116 
1117 			/* UART retrieves ownership of RX DMA buffer */
1118 			dma_sync_sg_for_device(sport->port.dev, sgl, 1,
1119 				DMA_FROM_DEVICE);
1120 
1121 			if (w_bytes != r_bytes)
1122 				sport->port.icount.buf_overrun++;
1123 
1124 			sport->port.icount.rx += w_bytes;
1125 		} else	{
1126 			WARN_ON(rx_ring->head > sg_dma_len(sgl));
1127 			WARN_ON(rx_ring->head <= rx_ring->tail);
1128 		}
1129 	}
1130 
1131 	if (w_bytes) {
1132 		tty_flip_buffer_push(port);
1133 		dev_dbg(sport->port.dev, "We get %d bytes.\n", w_bytes);
1134 	}
1135 }
1136 
1137 /* RX DMA buffer periods */
1138 #define RX_DMA_PERIODS	16
1139 #define RX_BUF_SIZE	(RX_DMA_PERIODS * PAGE_SIZE / 4)
1140 
1141 static int imx_uart_start_rx_dma(struct imx_port *sport)
1142 {
1143 	struct scatterlist *sgl = &sport->rx_sgl;
1144 	struct dma_chan	*chan = sport->dma_chan_rx;
1145 	struct device *dev = sport->port.dev;
1146 	struct dma_async_tx_descriptor *desc;
1147 	int ret;
1148 
1149 	sport->rx_ring.head = 0;
1150 	sport->rx_ring.tail = 0;
1151 	sport->rx_periods = RX_DMA_PERIODS;
1152 
1153 	sg_init_one(sgl, sport->rx_buf, RX_BUF_SIZE);
1154 	ret = dma_map_sg(dev, sgl, 1, DMA_FROM_DEVICE);
1155 	if (ret == 0) {
1156 		dev_err(dev, "DMA mapping error for RX.\n");
1157 		return -EINVAL;
1158 	}
1159 
1160 	desc = dmaengine_prep_dma_cyclic(chan, sg_dma_address(sgl),
1161 		sg_dma_len(sgl), sg_dma_len(sgl) / sport->rx_periods,
1162 		DMA_DEV_TO_MEM, DMA_PREP_INTERRUPT);
1163 
1164 	if (!desc) {
1165 		dma_unmap_sg(dev, sgl, 1, DMA_FROM_DEVICE);
1166 		dev_err(dev, "We cannot prepare for the RX slave dma!\n");
1167 		return -EINVAL;
1168 	}
1169 	desc->callback = imx_uart_dma_rx_callback;
1170 	desc->callback_param = sport;
1171 
1172 	dev_dbg(dev, "RX: prepare for the DMA.\n");
1173 	sport->dma_is_rxing = 1;
1174 	sport->rx_cookie = dmaengine_submit(desc);
1175 	dma_async_issue_pending(chan);
1176 	return 0;
1177 }
1178 
1179 static void imx_uart_clear_rx_errors(struct imx_port *sport)
1180 {
1181 	struct tty_port *port = &sport->port.state->port;
1182 	u32 usr1, usr2;
1183 
1184 	usr1 = imx_uart_readl(sport, USR1);
1185 	usr2 = imx_uart_readl(sport, USR2);
1186 
1187 	if (usr2 & USR2_BRCD) {
1188 		sport->port.icount.brk++;
1189 		imx_uart_writel(sport, USR2_BRCD, USR2);
1190 		uart_handle_break(&sport->port);
1191 		if (tty_insert_flip_char(port, 0, TTY_BREAK) == 0)
1192 			sport->port.icount.buf_overrun++;
1193 		tty_flip_buffer_push(port);
1194 	} else {
1195 		if (usr1 & USR1_FRAMERR) {
1196 			sport->port.icount.frame++;
1197 			imx_uart_writel(sport, USR1_FRAMERR, USR1);
1198 		} else if (usr1 & USR1_PARITYERR) {
1199 			sport->port.icount.parity++;
1200 			imx_uart_writel(sport, USR1_PARITYERR, USR1);
1201 		}
1202 	}
1203 
1204 	if (usr2 & USR2_ORE) {
1205 		sport->port.icount.overrun++;
1206 		imx_uart_writel(sport, USR2_ORE, USR2);
1207 	}
1208 
1209 }
1210 
1211 #define TXTL_DEFAULT 2 /* reset default */
1212 #define RXTL_DEFAULT 1 /* reset default */
1213 #define TXTL_DMA 8 /* DMA burst setting */
1214 #define RXTL_DMA 9 /* DMA burst setting */
1215 
1216 static void imx_uart_setup_ufcr(struct imx_port *sport,
1217 				unsigned char txwl, unsigned char rxwl)
1218 {
1219 	unsigned int val;
1220 
1221 	/* set receiver / transmitter trigger level */
1222 	val = imx_uart_readl(sport, UFCR) & (UFCR_RFDIV | UFCR_DCEDTE);
1223 	val |= txwl << UFCR_TXTL_SHF | rxwl;
1224 	imx_uart_writel(sport, val, UFCR);
1225 }
1226 
1227 static void imx_uart_dma_exit(struct imx_port *sport)
1228 {
1229 	if (sport->dma_chan_rx) {
1230 		dmaengine_terminate_sync(sport->dma_chan_rx);
1231 		dma_release_channel(sport->dma_chan_rx);
1232 		sport->dma_chan_rx = NULL;
1233 		sport->rx_cookie = -EINVAL;
1234 		kfree(sport->rx_buf);
1235 		sport->rx_buf = NULL;
1236 	}
1237 
1238 	if (sport->dma_chan_tx) {
1239 		dmaengine_terminate_sync(sport->dma_chan_tx);
1240 		dma_release_channel(sport->dma_chan_tx);
1241 		sport->dma_chan_tx = NULL;
1242 	}
1243 }
1244 
1245 static int imx_uart_dma_init(struct imx_port *sport)
1246 {
1247 	struct dma_slave_config slave_config = {};
1248 	struct device *dev = sport->port.dev;
1249 	int ret;
1250 
1251 	/* Prepare for RX : */
1252 	sport->dma_chan_rx = dma_request_slave_channel(dev, "rx");
1253 	if (!sport->dma_chan_rx) {
1254 		dev_dbg(dev, "cannot get the DMA channel.\n");
1255 		ret = -EINVAL;
1256 		goto err;
1257 	}
1258 
1259 	slave_config.direction = DMA_DEV_TO_MEM;
1260 	slave_config.src_addr = sport->port.mapbase + URXD0;
1261 	slave_config.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
1262 	/* one byte less than the watermark level to enable the aging timer */
1263 	slave_config.src_maxburst = RXTL_DMA - 1;
1264 	ret = dmaengine_slave_config(sport->dma_chan_rx, &slave_config);
1265 	if (ret) {
1266 		dev_err(dev, "error in RX dma configuration.\n");
1267 		goto err;
1268 	}
1269 
1270 	sport->rx_buf = kzalloc(RX_BUF_SIZE, GFP_KERNEL);
1271 	if (!sport->rx_buf) {
1272 		ret = -ENOMEM;
1273 		goto err;
1274 	}
1275 	sport->rx_ring.buf = sport->rx_buf;
1276 
1277 	/* Prepare for TX : */
1278 	sport->dma_chan_tx = dma_request_slave_channel(dev, "tx");
1279 	if (!sport->dma_chan_tx) {
1280 		dev_err(dev, "cannot get the TX DMA channel!\n");
1281 		ret = -EINVAL;
1282 		goto err;
1283 	}
1284 
1285 	slave_config.direction = DMA_MEM_TO_DEV;
1286 	slave_config.dst_addr = sport->port.mapbase + URTX0;
1287 	slave_config.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
1288 	slave_config.dst_maxburst = TXTL_DMA;
1289 	ret = dmaengine_slave_config(sport->dma_chan_tx, &slave_config);
1290 	if (ret) {
1291 		dev_err(dev, "error in TX dma configuration.");
1292 		goto err;
1293 	}
1294 
1295 	return 0;
1296 err:
1297 	imx_uart_dma_exit(sport);
1298 	return ret;
1299 }
1300 
1301 static void imx_uart_enable_dma(struct imx_port *sport)
1302 {
1303 	u32 ucr1;
1304 
1305 	imx_uart_setup_ufcr(sport, TXTL_DMA, RXTL_DMA);
1306 
1307 	/* set UCR1 */
1308 	ucr1 = imx_uart_readl(sport, UCR1);
1309 	ucr1 |= UCR1_RXDMAEN | UCR1_TXDMAEN | UCR1_ATDMAEN;
1310 	imx_uart_writel(sport, ucr1, UCR1);
1311 
1312 	sport->dma_is_enabled = 1;
1313 }
1314 
1315 static void imx_uart_disable_dma(struct imx_port *sport)
1316 {
1317 	u32 ucr1;
1318 
1319 	/* clear UCR1 */
1320 	ucr1 = imx_uart_readl(sport, UCR1);
1321 	ucr1 &= ~(UCR1_RXDMAEN | UCR1_TXDMAEN | UCR1_ATDMAEN);
1322 	imx_uart_writel(sport, ucr1, UCR1);
1323 
1324 	imx_uart_setup_ufcr(sport, TXTL_DEFAULT, RXTL_DEFAULT);
1325 
1326 	sport->dma_is_enabled = 0;
1327 }
1328 
1329 /* half the RX buffer size */
1330 #define CTSTL 16
1331 
1332 static int imx_uart_startup(struct uart_port *port)
1333 {
1334 	struct imx_port *sport = (struct imx_port *)port;
1335 	int retval, i;
1336 	unsigned long flags;
1337 	int dma_is_inited = 0;
1338 	u32 ucr1, ucr2, ucr4;
1339 
1340 	retval = clk_prepare_enable(sport->clk_per);
1341 	if (retval)
1342 		return retval;
1343 	retval = clk_prepare_enable(sport->clk_ipg);
1344 	if (retval) {
1345 		clk_disable_unprepare(sport->clk_per);
1346 		return retval;
1347 	}
1348 
1349 	imx_uart_setup_ufcr(sport, TXTL_DEFAULT, RXTL_DEFAULT);
1350 
1351 	/* disable the DREN bit (Data Ready interrupt enable) before
1352 	 * requesting IRQs
1353 	 */
1354 	ucr4 = imx_uart_readl(sport, UCR4);
1355 
1356 	/* set the trigger level for CTS */
1357 	ucr4 &= ~(UCR4_CTSTL_MASK << UCR4_CTSTL_SHF);
1358 	ucr4 |= CTSTL << UCR4_CTSTL_SHF;
1359 
1360 	imx_uart_writel(sport, ucr4 & ~UCR4_DREN, UCR4);
1361 
1362 	/* Can we enable the DMA support? */
1363 	if (!uart_console(port) && imx_uart_dma_init(sport) == 0)
1364 		dma_is_inited = 1;
1365 
1366 	spin_lock_irqsave(&sport->port.lock, flags);
1367 	/* Reset fifo's and state machines */
1368 	i = 100;
1369 
1370 	ucr2 = imx_uart_readl(sport, UCR2);
1371 	ucr2 &= ~UCR2_SRST;
1372 	imx_uart_writel(sport, ucr2, UCR2);
1373 
1374 	while (!(imx_uart_readl(sport, UCR2) & UCR2_SRST) && (--i > 0))
1375 		udelay(1);
1376 
1377 	/*
1378 	 * Finally, clear and enable interrupts
1379 	 */
1380 	imx_uart_writel(sport, USR1_RTSD | USR1_DTRD, USR1);
1381 	imx_uart_writel(sport, USR2_ORE, USR2);
1382 
1383 	ucr1 = imx_uart_readl(sport, UCR1) & ~UCR1_RRDYEN;
1384 	ucr1 |= UCR1_UARTEN;
1385 	if (sport->have_rtscts)
1386 		ucr1 |= UCR1_RTSDEN;
1387 
1388 	imx_uart_writel(sport, ucr1, UCR1);
1389 
1390 	ucr4 = imx_uart_readl(sport, UCR4) & ~UCR4_OREN;
1391 	if (!sport->dma_is_enabled)
1392 		ucr4 |= UCR4_OREN;
1393 	imx_uart_writel(sport, ucr4, UCR4);
1394 
1395 	ucr2 = imx_uart_readl(sport, UCR2) & ~UCR2_ATEN;
1396 	ucr2 |= (UCR2_RXEN | UCR2_TXEN);
1397 	if (!sport->have_rtscts)
1398 		ucr2 |= UCR2_IRTS;
1399 	/*
1400 	 * make sure the edge sensitive RTS-irq is disabled,
1401 	 * we're using RTSD instead.
1402 	 */
1403 	if (!imx_uart_is_imx1(sport))
1404 		ucr2 &= ~UCR2_RTSEN;
1405 	imx_uart_writel(sport, ucr2, UCR2);
1406 
1407 	if (!imx_uart_is_imx1(sport)) {
1408 		u32 ucr3;
1409 
1410 		ucr3 = imx_uart_readl(sport, UCR3);
1411 
1412 		ucr3 |= UCR3_DTRDEN | UCR3_RI | UCR3_DCD;
1413 
1414 		if (sport->dte_mode)
1415 			/* disable broken interrupts */
1416 			ucr3 &= ~(UCR3_RI | UCR3_DCD);
1417 
1418 		imx_uart_writel(sport, ucr3, UCR3);
1419 	}
1420 
1421 	/*
1422 	 * Enable modem status interrupts
1423 	 */
1424 	imx_uart_enable_ms(&sport->port);
1425 
1426 	if (dma_is_inited) {
1427 		imx_uart_enable_dma(sport);
1428 		imx_uart_start_rx_dma(sport);
1429 	} else {
1430 		ucr1 = imx_uart_readl(sport, UCR1);
1431 		ucr1 |= UCR1_RRDYEN;
1432 		imx_uart_writel(sport, ucr1, UCR1);
1433 
1434 		ucr2 = imx_uart_readl(sport, UCR2);
1435 		ucr2 |= UCR2_ATEN;
1436 		imx_uart_writel(sport, ucr2, UCR2);
1437 	}
1438 
1439 	spin_unlock_irqrestore(&sport->port.lock, flags);
1440 
1441 	return 0;
1442 }
1443 
1444 static void imx_uart_shutdown(struct uart_port *port)
1445 {
1446 	struct imx_port *sport = (struct imx_port *)port;
1447 	unsigned long flags;
1448 	u32 ucr1, ucr2, ucr4;
1449 
1450 	if (sport->dma_is_enabled) {
1451 		dmaengine_terminate_sync(sport->dma_chan_tx);
1452 		if (sport->dma_is_txing) {
1453 			dma_unmap_sg(sport->port.dev, &sport->tx_sgl[0],
1454 				     sport->dma_tx_nents, DMA_TO_DEVICE);
1455 			sport->dma_is_txing = 0;
1456 		}
1457 		dmaengine_terminate_sync(sport->dma_chan_rx);
1458 		if (sport->dma_is_rxing) {
1459 			dma_unmap_sg(sport->port.dev, &sport->rx_sgl,
1460 				     1, DMA_FROM_DEVICE);
1461 			sport->dma_is_rxing = 0;
1462 		}
1463 
1464 		spin_lock_irqsave(&sport->port.lock, flags);
1465 		imx_uart_stop_tx(port);
1466 		imx_uart_stop_rx(port);
1467 		imx_uart_disable_dma(sport);
1468 		spin_unlock_irqrestore(&sport->port.lock, flags);
1469 		imx_uart_dma_exit(sport);
1470 	}
1471 
1472 	mctrl_gpio_disable_ms(sport->gpios);
1473 
1474 	spin_lock_irqsave(&sport->port.lock, flags);
1475 	ucr2 = imx_uart_readl(sport, UCR2);
1476 	ucr2 &= ~(UCR2_TXEN | UCR2_ATEN);
1477 	imx_uart_writel(sport, ucr2, UCR2);
1478 
1479 	ucr4 = imx_uart_readl(sport, UCR4);
1480 	ucr4 &= ~UCR4_OREN;
1481 	imx_uart_writel(sport, ucr4, UCR4);
1482 	spin_unlock_irqrestore(&sport->port.lock, flags);
1483 
1484 	/*
1485 	 * Stop our timer.
1486 	 */
1487 	del_timer_sync(&sport->timer);
1488 
1489 	/*
1490 	 * Disable all interrupts, port and break condition.
1491 	 */
1492 
1493 	spin_lock_irqsave(&sport->port.lock, flags);
1494 	ucr1 = imx_uart_readl(sport, UCR1);
1495 	ucr1 &= ~(UCR1_TRDYEN | UCR1_RRDYEN | UCR1_RTSDEN | UCR1_UARTEN | UCR1_RXDMAEN | UCR1_ATDMAEN);
1496 
1497 	imx_uart_writel(sport, ucr1, UCR1);
1498 	spin_unlock_irqrestore(&sport->port.lock, flags);
1499 
1500 	clk_disable_unprepare(sport->clk_per);
1501 	clk_disable_unprepare(sport->clk_ipg);
1502 }
1503 
1504 /* called with port.lock taken and irqs off */
1505 static void imx_uart_flush_buffer(struct uart_port *port)
1506 {
1507 	struct imx_port *sport = (struct imx_port *)port;
1508 	struct scatterlist *sgl = &sport->tx_sgl[0];
1509 	u32 ucr2;
1510 	int i = 100, ubir, ubmr, uts;
1511 
1512 	if (!sport->dma_chan_tx)
1513 		return;
1514 
1515 	sport->tx_bytes = 0;
1516 	dmaengine_terminate_all(sport->dma_chan_tx);
1517 	if (sport->dma_is_txing) {
1518 		u32 ucr1;
1519 
1520 		dma_unmap_sg(sport->port.dev, sgl, sport->dma_tx_nents,
1521 			     DMA_TO_DEVICE);
1522 		ucr1 = imx_uart_readl(sport, UCR1);
1523 		ucr1 &= ~UCR1_TXDMAEN;
1524 		imx_uart_writel(sport, ucr1, UCR1);
1525 		sport->dma_is_txing = 0;
1526 	}
1527 
1528 	/*
1529 	 * According to the Reference Manual description of the UART SRST bit:
1530 	 *
1531 	 * "Reset the transmit and receive state machines,
1532 	 * all FIFOs and register USR1, USR2, UBIR, UBMR, UBRC, URXD, UTXD
1533 	 * and UTS[6-3]".
1534 	 *
1535 	 * We don't need to restore the old values from USR1, USR2, URXD and
1536 	 * UTXD. UBRC is read only, so only save/restore the other three
1537 	 * registers.
1538 	 */
1539 	ubir = imx_uart_readl(sport, UBIR);
1540 	ubmr = imx_uart_readl(sport, UBMR);
1541 	uts = imx_uart_readl(sport, IMX21_UTS);
1542 
1543 	ucr2 = imx_uart_readl(sport, UCR2);
1544 	ucr2 &= ~UCR2_SRST;
1545 	imx_uart_writel(sport, ucr2, UCR2);
1546 
1547 	while (!(imx_uart_readl(sport, UCR2) & UCR2_SRST) && (--i > 0))
1548 		udelay(1);
1549 
1550 	/* Restore the registers */
1551 	imx_uart_writel(sport, ubir, UBIR);
1552 	imx_uart_writel(sport, ubmr, UBMR);
1553 	imx_uart_writel(sport, uts, IMX21_UTS);
1554 }
1555 
1556 static void
1557 imx_uart_set_termios(struct uart_port *port, struct ktermios *termios,
1558 		     struct ktermios *old)
1559 {
1560 	struct imx_port *sport = (struct imx_port *)port;
1561 	unsigned long flags;
1562 	u32 ucr2, old_ucr2, ufcr;
1563 	unsigned int baud, quot;
1564 	unsigned int old_csize = old ? old->c_cflag & CSIZE : CS8;
1565 	unsigned long div;
1566 	unsigned long num, denom, old_ubir, old_ubmr;
1567 	uint64_t tdiv64;
1568 
1569 	/*
1570 	 * We only support CS7 and CS8.
1571 	 */
1572 	while ((termios->c_cflag & CSIZE) != CS7 &&
1573 	       (termios->c_cflag & CSIZE) != CS8) {
1574 		termios->c_cflag &= ~CSIZE;
1575 		termios->c_cflag |= old_csize;
1576 		old_csize = CS8;
1577 	}
1578 
1579 	del_timer_sync(&sport->timer);
1580 
1581 	/*
1582 	 * Ask the core to calculate the divisor for us.
1583 	 */
1584 	baud = uart_get_baud_rate(port, termios, old, 50, port->uartclk / 16);
1585 	quot = uart_get_divisor(port, baud);
1586 
1587 	spin_lock_irqsave(&sport->port.lock, flags);
1588 
1589 	/*
1590 	 * Read current UCR2 and save it for future use, then clear all the bits
1591 	 * except those we will or may need to preserve.
1592 	 */
1593 	old_ucr2 = imx_uart_readl(sport, UCR2);
1594 	ucr2 = old_ucr2 & (UCR2_TXEN | UCR2_RXEN | UCR2_ATEN | UCR2_CTS);
1595 
1596 	ucr2 |= UCR2_SRST | UCR2_IRTS;
1597 	if ((termios->c_cflag & CSIZE) == CS8)
1598 		ucr2 |= UCR2_WS;
1599 
1600 	if (!sport->have_rtscts)
1601 		termios->c_cflag &= ~CRTSCTS;
1602 
1603 	if (port->rs485.flags & SER_RS485_ENABLED) {
1604 		/*
1605 		 * RTS is mandatory for rs485 operation, so keep
1606 		 * it under manual control and keep transmitter
1607 		 * disabled.
1608 		 */
1609 		if (port->rs485.flags & SER_RS485_RTS_AFTER_SEND)
1610 			imx_uart_rts_active(sport, &ucr2);
1611 		else
1612 			imx_uart_rts_inactive(sport, &ucr2);
1613 
1614 	} else if (termios->c_cflag & CRTSCTS) {
1615 		/*
1616 		 * Only let receiver control RTS output if we were not requested
1617 		 * to have RTS inactive (which then should take precedence).
1618 		 */
1619 		if (ucr2 & UCR2_CTS)
1620 			ucr2 |= UCR2_CTSC;
1621 	}
1622 
1623 	if (termios->c_cflag & CRTSCTS)
1624 		ucr2 &= ~UCR2_IRTS;
1625 
1626 	if (termios->c_cflag & CSTOPB)
1627 		ucr2 |= UCR2_STPB;
1628 	if (termios->c_cflag & PARENB) {
1629 		ucr2 |= UCR2_PREN;
1630 		if (termios->c_cflag & PARODD)
1631 			ucr2 |= UCR2_PROE;
1632 	}
1633 
1634 	sport->port.read_status_mask = 0;
1635 	if (termios->c_iflag & INPCK)
1636 		sport->port.read_status_mask |= (URXD_FRMERR | URXD_PRERR);
1637 	if (termios->c_iflag & (BRKINT | PARMRK))
1638 		sport->port.read_status_mask |= URXD_BRK;
1639 
1640 	/*
1641 	 * Characters to ignore
1642 	 */
1643 	sport->port.ignore_status_mask = 0;
1644 	if (termios->c_iflag & IGNPAR)
1645 		sport->port.ignore_status_mask |= URXD_PRERR | URXD_FRMERR;
1646 	if (termios->c_iflag & IGNBRK) {
1647 		sport->port.ignore_status_mask |= URXD_BRK;
1648 		/*
1649 		 * If we're ignoring parity and break indicators,
1650 		 * ignore overruns too (for real raw support).
1651 		 */
1652 		if (termios->c_iflag & IGNPAR)
1653 			sport->port.ignore_status_mask |= URXD_OVRRUN;
1654 	}
1655 
1656 	if ((termios->c_cflag & CREAD) == 0)
1657 		sport->port.ignore_status_mask |= URXD_DUMMY_READ;
1658 
1659 	/*
1660 	 * Update the per-port timeout.
1661 	 */
1662 	uart_update_timeout(port, termios->c_cflag, baud);
1663 
1664 	/* custom-baudrate handling */
1665 	div = sport->port.uartclk / (baud * 16);
1666 	if (baud == 38400 && quot != div)
1667 		baud = sport->port.uartclk / (quot * 16);
1668 
1669 	div = sport->port.uartclk / (baud * 16);
1670 	if (div > 7)
1671 		div = 7;
1672 	if (!div)
1673 		div = 1;
1674 
1675 	rational_best_approximation(16 * div * baud, sport->port.uartclk,
1676 		1 << 16, 1 << 16, &num, &denom);
1677 
1678 	tdiv64 = sport->port.uartclk;
1679 	tdiv64 *= num;
1680 	do_div(tdiv64, denom * 16 * div);
1681 	tty_termios_encode_baud_rate(termios,
1682 				(speed_t)tdiv64, (speed_t)tdiv64);
1683 
1684 	num -= 1;
1685 	denom -= 1;
1686 
1687 	ufcr = imx_uart_readl(sport, UFCR);
1688 	ufcr = (ufcr & (~UFCR_RFDIV)) | UFCR_RFDIV_REG(div);
1689 	imx_uart_writel(sport, ufcr, UFCR);
1690 
1691 	/*
1692 	 *  Two registers below should always be written both and in this
1693 	 *  particular order. One consequence is that we need to check if any of
1694 	 *  them changes and then update both. We do need the check for change
1695 	 *  as even writing the same values seem to "restart"
1696 	 *  transmission/receiving logic in the hardware, that leads to data
1697 	 *  breakage even when rate doesn't in fact change. E.g., user switches
1698 	 *  RTS/CTS handshake and suddenly gets broken bytes.
1699 	 */
1700 	old_ubir = imx_uart_readl(sport, UBIR);
1701 	old_ubmr = imx_uart_readl(sport, UBMR);
1702 	if (old_ubir != num || old_ubmr != denom) {
1703 		imx_uart_writel(sport, num, UBIR);
1704 		imx_uart_writel(sport, denom, UBMR);
1705 	}
1706 
1707 	if (!imx_uart_is_imx1(sport))
1708 		imx_uart_writel(sport, sport->port.uartclk / div / 1000,
1709 				IMX21_ONEMS);
1710 
1711 	imx_uart_writel(sport, ucr2, UCR2);
1712 
1713 	if (UART_ENABLE_MS(&sport->port, termios->c_cflag))
1714 		imx_uart_enable_ms(&sport->port);
1715 
1716 	spin_unlock_irqrestore(&sport->port.lock, flags);
1717 }
1718 
1719 static const char *imx_uart_type(struct uart_port *port)
1720 {
1721 	struct imx_port *sport = (struct imx_port *)port;
1722 
1723 	return sport->port.type == PORT_IMX ? "IMX" : NULL;
1724 }
1725 
1726 /*
1727  * Configure/autoconfigure the port.
1728  */
1729 static void imx_uart_config_port(struct uart_port *port, int flags)
1730 {
1731 	struct imx_port *sport = (struct imx_port *)port;
1732 
1733 	if (flags & UART_CONFIG_TYPE)
1734 		sport->port.type = PORT_IMX;
1735 }
1736 
1737 /*
1738  * Verify the new serial_struct (for TIOCSSERIAL).
1739  * The only change we allow are to the flags and type, and
1740  * even then only between PORT_IMX and PORT_UNKNOWN
1741  */
1742 static int
1743 imx_uart_verify_port(struct uart_port *port, struct serial_struct *ser)
1744 {
1745 	struct imx_port *sport = (struct imx_port *)port;
1746 	int ret = 0;
1747 
1748 	if (ser->type != PORT_UNKNOWN && ser->type != PORT_IMX)
1749 		ret = -EINVAL;
1750 	if (sport->port.irq != ser->irq)
1751 		ret = -EINVAL;
1752 	if (ser->io_type != UPIO_MEM)
1753 		ret = -EINVAL;
1754 	if (sport->port.uartclk / 16 != ser->baud_base)
1755 		ret = -EINVAL;
1756 	if (sport->port.mapbase != (unsigned long)ser->iomem_base)
1757 		ret = -EINVAL;
1758 	if (sport->port.iobase != ser->port)
1759 		ret = -EINVAL;
1760 	if (ser->hub6 != 0)
1761 		ret = -EINVAL;
1762 	return ret;
1763 }
1764 
1765 #if defined(CONFIG_CONSOLE_POLL)
1766 
1767 static int imx_uart_poll_init(struct uart_port *port)
1768 {
1769 	struct imx_port *sport = (struct imx_port *)port;
1770 	unsigned long flags;
1771 	u32 ucr1, ucr2;
1772 	int retval;
1773 
1774 	retval = clk_prepare_enable(sport->clk_ipg);
1775 	if (retval)
1776 		return retval;
1777 	retval = clk_prepare_enable(sport->clk_per);
1778 	if (retval)
1779 		clk_disable_unprepare(sport->clk_ipg);
1780 
1781 	imx_uart_setup_ufcr(sport, TXTL_DEFAULT, RXTL_DEFAULT);
1782 
1783 	spin_lock_irqsave(&sport->port.lock, flags);
1784 
1785 	/*
1786 	 * Be careful about the order of enabling bits here. First enable the
1787 	 * receiver (UARTEN + RXEN) and only then the corresponding irqs.
1788 	 * This prevents that a character that already sits in the RX fifo is
1789 	 * triggering an irq but the try to fetch it from there results in an
1790 	 * exception because UARTEN or RXEN is still off.
1791 	 */
1792 	ucr1 = imx_uart_readl(sport, UCR1);
1793 	ucr2 = imx_uart_readl(sport, UCR2);
1794 
1795 	if (imx_uart_is_imx1(sport))
1796 		ucr1 |= IMX1_UCR1_UARTCLKEN;
1797 
1798 	ucr1 |= UCR1_UARTEN;
1799 	ucr1 &= ~(UCR1_TRDYEN | UCR1_RTSDEN | UCR1_RRDYEN);
1800 
1801 	ucr2 |= UCR2_RXEN;
1802 	ucr2 &= ~UCR2_ATEN;
1803 
1804 	imx_uart_writel(sport, ucr1, UCR1);
1805 	imx_uart_writel(sport, ucr2, UCR2);
1806 
1807 	/* now enable irqs */
1808 	imx_uart_writel(sport, ucr1 | UCR1_RRDYEN, UCR1);
1809 	imx_uart_writel(sport, ucr2 | UCR2_ATEN, UCR2);
1810 
1811 	spin_unlock_irqrestore(&sport->port.lock, flags);
1812 
1813 	return 0;
1814 }
1815 
1816 static int imx_uart_poll_get_char(struct uart_port *port)
1817 {
1818 	struct imx_port *sport = (struct imx_port *)port;
1819 	if (!(imx_uart_readl(sport, USR2) & USR2_RDR))
1820 		return NO_POLL_CHAR;
1821 
1822 	return imx_uart_readl(sport, URXD0) & URXD_RX_DATA;
1823 }
1824 
1825 static void imx_uart_poll_put_char(struct uart_port *port, unsigned char c)
1826 {
1827 	struct imx_port *sport = (struct imx_port *)port;
1828 	unsigned int status;
1829 
1830 	/* drain */
1831 	do {
1832 		status = imx_uart_readl(sport, USR1);
1833 	} while (~status & USR1_TRDY);
1834 
1835 	/* write */
1836 	imx_uart_writel(sport, c, URTX0);
1837 
1838 	/* flush */
1839 	do {
1840 		status = imx_uart_readl(sport, USR2);
1841 	} while (~status & USR2_TXDC);
1842 }
1843 #endif
1844 
1845 /* called with port.lock taken and irqs off or from .probe without locking */
1846 static int imx_uart_rs485_config(struct uart_port *port,
1847 				 struct serial_rs485 *rs485conf)
1848 {
1849 	struct imx_port *sport = (struct imx_port *)port;
1850 	u32 ucr2;
1851 
1852 	/* unimplemented */
1853 	rs485conf->delay_rts_before_send = 0;
1854 	rs485conf->delay_rts_after_send = 0;
1855 
1856 	/* RTS is required to control the transmitter */
1857 	if (!sport->have_rtscts && !sport->have_rtsgpio)
1858 		rs485conf->flags &= ~SER_RS485_ENABLED;
1859 
1860 	if (rs485conf->flags & SER_RS485_ENABLED) {
1861 		/* Enable receiver if low-active RTS signal is requested */
1862 		if (sport->have_rtscts &&  !sport->have_rtsgpio &&
1863 		    !(rs485conf->flags & SER_RS485_RTS_ON_SEND))
1864 			rs485conf->flags |= SER_RS485_RX_DURING_TX;
1865 
1866 		/* disable transmitter */
1867 		ucr2 = imx_uart_readl(sport, UCR2);
1868 		if (rs485conf->flags & SER_RS485_RTS_AFTER_SEND)
1869 			imx_uart_rts_active(sport, &ucr2);
1870 		else
1871 			imx_uart_rts_inactive(sport, &ucr2);
1872 		imx_uart_writel(sport, ucr2, UCR2);
1873 	}
1874 
1875 	/* Make sure Rx is enabled in case Tx is active with Rx disabled */
1876 	if (!(rs485conf->flags & SER_RS485_ENABLED) ||
1877 	    rs485conf->flags & SER_RS485_RX_DURING_TX)
1878 		imx_uart_start_rx(port);
1879 
1880 	port->rs485 = *rs485conf;
1881 
1882 	return 0;
1883 }
1884 
1885 static const struct uart_ops imx_uart_pops = {
1886 	.tx_empty	= imx_uart_tx_empty,
1887 	.set_mctrl	= imx_uart_set_mctrl,
1888 	.get_mctrl	= imx_uart_get_mctrl,
1889 	.stop_tx	= imx_uart_stop_tx,
1890 	.start_tx	= imx_uart_start_tx,
1891 	.stop_rx	= imx_uart_stop_rx,
1892 	.enable_ms	= imx_uart_enable_ms,
1893 	.break_ctl	= imx_uart_break_ctl,
1894 	.startup	= imx_uart_startup,
1895 	.shutdown	= imx_uart_shutdown,
1896 	.flush_buffer	= imx_uart_flush_buffer,
1897 	.set_termios	= imx_uart_set_termios,
1898 	.type		= imx_uart_type,
1899 	.config_port	= imx_uart_config_port,
1900 	.verify_port	= imx_uart_verify_port,
1901 #if defined(CONFIG_CONSOLE_POLL)
1902 	.poll_init      = imx_uart_poll_init,
1903 	.poll_get_char  = imx_uart_poll_get_char,
1904 	.poll_put_char  = imx_uart_poll_put_char,
1905 #endif
1906 };
1907 
1908 static struct imx_port *imx_uart_ports[UART_NR];
1909 
1910 #ifdef CONFIG_SERIAL_IMX_CONSOLE
1911 static void imx_uart_console_putchar(struct uart_port *port, int ch)
1912 {
1913 	struct imx_port *sport = (struct imx_port *)port;
1914 
1915 	while (imx_uart_readl(sport, imx_uart_uts_reg(sport)) & UTS_TXFULL)
1916 		barrier();
1917 
1918 	imx_uart_writel(sport, ch, URTX0);
1919 }
1920 
1921 /*
1922  * Interrupts are disabled on entering
1923  */
1924 static void
1925 imx_uart_console_write(struct console *co, const char *s, unsigned int count)
1926 {
1927 	struct imx_port *sport = imx_uart_ports[co->index];
1928 	struct imx_port_ucrs old_ucr;
1929 	unsigned int ucr1;
1930 	unsigned long flags = 0;
1931 	int locked = 1;
1932 	int retval;
1933 
1934 	retval = clk_enable(sport->clk_per);
1935 	if (retval)
1936 		return;
1937 	retval = clk_enable(sport->clk_ipg);
1938 	if (retval) {
1939 		clk_disable(sport->clk_per);
1940 		return;
1941 	}
1942 
1943 	if (sport->port.sysrq)
1944 		locked = 0;
1945 	else if (oops_in_progress)
1946 		locked = spin_trylock_irqsave(&sport->port.lock, flags);
1947 	else
1948 		spin_lock_irqsave(&sport->port.lock, flags);
1949 
1950 	/*
1951 	 *	First, save UCR1/2/3 and then disable interrupts
1952 	 */
1953 	imx_uart_ucrs_save(sport, &old_ucr);
1954 	ucr1 = old_ucr.ucr1;
1955 
1956 	if (imx_uart_is_imx1(sport))
1957 		ucr1 |= IMX1_UCR1_UARTCLKEN;
1958 	ucr1 |= UCR1_UARTEN;
1959 	ucr1 &= ~(UCR1_TRDYEN | UCR1_RRDYEN | UCR1_RTSDEN);
1960 
1961 	imx_uart_writel(sport, ucr1, UCR1);
1962 
1963 	imx_uart_writel(sport, old_ucr.ucr2 | UCR2_TXEN, UCR2);
1964 
1965 	uart_console_write(&sport->port, s, count, imx_uart_console_putchar);
1966 
1967 	/*
1968 	 *	Finally, wait for transmitter to become empty
1969 	 *	and restore UCR1/2/3
1970 	 */
1971 	while (!(imx_uart_readl(sport, USR2) & USR2_TXDC));
1972 
1973 	imx_uart_ucrs_restore(sport, &old_ucr);
1974 
1975 	if (locked)
1976 		spin_unlock_irqrestore(&sport->port.lock, flags);
1977 
1978 	clk_disable(sport->clk_ipg);
1979 	clk_disable(sport->clk_per);
1980 }
1981 
1982 /*
1983  * If the port was already initialised (eg, by a boot loader),
1984  * try to determine the current setup.
1985  */
1986 static void __init
1987 imx_uart_console_get_options(struct imx_port *sport, int *baud,
1988 			     int *parity, int *bits)
1989 {
1990 
1991 	if (imx_uart_readl(sport, UCR1) & UCR1_UARTEN) {
1992 		/* ok, the port was enabled */
1993 		unsigned int ucr2, ubir, ubmr, uartclk;
1994 		unsigned int baud_raw;
1995 		unsigned int ucfr_rfdiv;
1996 
1997 		ucr2 = imx_uart_readl(sport, UCR2);
1998 
1999 		*parity = 'n';
2000 		if (ucr2 & UCR2_PREN) {
2001 			if (ucr2 & UCR2_PROE)
2002 				*parity = 'o';
2003 			else
2004 				*parity = 'e';
2005 		}
2006 
2007 		if (ucr2 & UCR2_WS)
2008 			*bits = 8;
2009 		else
2010 			*bits = 7;
2011 
2012 		ubir = imx_uart_readl(sport, UBIR) & 0xffff;
2013 		ubmr = imx_uart_readl(sport, UBMR) & 0xffff;
2014 
2015 		ucfr_rfdiv = (imx_uart_readl(sport, UFCR) & UFCR_RFDIV) >> 7;
2016 		if (ucfr_rfdiv == 6)
2017 			ucfr_rfdiv = 7;
2018 		else
2019 			ucfr_rfdiv = 6 - ucfr_rfdiv;
2020 
2021 		uartclk = clk_get_rate(sport->clk_per);
2022 		uartclk /= ucfr_rfdiv;
2023 
2024 		{	/*
2025 			 * The next code provides exact computation of
2026 			 *   baud_raw = round(((uartclk/16) * (ubir + 1)) / (ubmr + 1))
2027 			 * without need of float support or long long division,
2028 			 * which would be required to prevent 32bit arithmetic overflow
2029 			 */
2030 			unsigned int mul = ubir + 1;
2031 			unsigned int div = 16 * (ubmr + 1);
2032 			unsigned int rem = uartclk % div;
2033 
2034 			baud_raw = (uartclk / div) * mul;
2035 			baud_raw += (rem * mul + div / 2) / div;
2036 			*baud = (baud_raw + 50) / 100 * 100;
2037 		}
2038 
2039 		if (*baud != baud_raw)
2040 			dev_info(sport->port.dev, "Console IMX rounded baud rate from %d to %d\n",
2041 				baud_raw, *baud);
2042 	}
2043 }
2044 
2045 static int __init
2046 imx_uart_console_setup(struct console *co, char *options)
2047 {
2048 	struct imx_port *sport;
2049 	int baud = 9600;
2050 	int bits = 8;
2051 	int parity = 'n';
2052 	int flow = 'n';
2053 	int retval;
2054 
2055 	/*
2056 	 * Check whether an invalid uart number has been specified, and
2057 	 * if so, search for the first available port that does have
2058 	 * console support.
2059 	 */
2060 	if (co->index == -1 || co->index >= ARRAY_SIZE(imx_uart_ports))
2061 		co->index = 0;
2062 	sport = imx_uart_ports[co->index];
2063 	if (sport == NULL)
2064 		return -ENODEV;
2065 
2066 	/* For setting the registers, we only need to enable the ipg clock. */
2067 	retval = clk_prepare_enable(sport->clk_ipg);
2068 	if (retval)
2069 		goto error_console;
2070 
2071 	if (options)
2072 		uart_parse_options(options, &baud, &parity, &bits, &flow);
2073 	else
2074 		imx_uart_console_get_options(sport, &baud, &parity, &bits);
2075 
2076 	imx_uart_setup_ufcr(sport, TXTL_DEFAULT, RXTL_DEFAULT);
2077 
2078 	retval = uart_set_options(&sport->port, co, baud, parity, bits, flow);
2079 
2080 	clk_disable(sport->clk_ipg);
2081 	if (retval) {
2082 		clk_unprepare(sport->clk_ipg);
2083 		goto error_console;
2084 	}
2085 
2086 	retval = clk_prepare(sport->clk_per);
2087 	if (retval)
2088 		clk_unprepare(sport->clk_ipg);
2089 
2090 error_console:
2091 	return retval;
2092 }
2093 
2094 static struct uart_driver imx_uart_uart_driver;
2095 static struct console imx_uart_console = {
2096 	.name		= DEV_NAME,
2097 	.write		= imx_uart_console_write,
2098 	.device		= uart_console_device,
2099 	.setup		= imx_uart_console_setup,
2100 	.flags		= CON_PRINTBUFFER,
2101 	.index		= -1,
2102 	.data		= &imx_uart_uart_driver,
2103 };
2104 
2105 #define IMX_CONSOLE	&imx_uart_console
2106 
2107 #ifdef CONFIG_OF
2108 static void imx_uart_console_early_putchar(struct uart_port *port, int ch)
2109 {
2110 	struct imx_port *sport = (struct imx_port *)port;
2111 
2112 	while (imx_uart_readl(sport, IMX21_UTS) & UTS_TXFULL)
2113 		cpu_relax();
2114 
2115 	imx_uart_writel(sport, ch, URTX0);
2116 }
2117 
2118 static void imx_uart_console_early_write(struct console *con, const char *s,
2119 					 unsigned count)
2120 {
2121 	struct earlycon_device *dev = con->data;
2122 
2123 	uart_console_write(&dev->port, s, count, imx_uart_console_early_putchar);
2124 }
2125 
2126 static int __init
2127 imx_console_early_setup(struct earlycon_device *dev, const char *opt)
2128 {
2129 	if (!dev->port.membase)
2130 		return -ENODEV;
2131 
2132 	dev->con->write = imx_uart_console_early_write;
2133 
2134 	return 0;
2135 }
2136 OF_EARLYCON_DECLARE(ec_imx6q, "fsl,imx6q-uart", imx_console_early_setup);
2137 OF_EARLYCON_DECLARE(ec_imx21, "fsl,imx21-uart", imx_console_early_setup);
2138 #endif
2139 
2140 #else
2141 #define IMX_CONSOLE	NULL
2142 #endif
2143 
2144 static struct uart_driver imx_uart_uart_driver = {
2145 	.owner          = THIS_MODULE,
2146 	.driver_name    = DRIVER_NAME,
2147 	.dev_name       = DEV_NAME,
2148 	.major          = SERIAL_IMX_MAJOR,
2149 	.minor          = MINOR_START,
2150 	.nr             = ARRAY_SIZE(imx_uart_ports),
2151 	.cons           = IMX_CONSOLE,
2152 };
2153 
2154 #ifdef CONFIG_OF
2155 /*
2156  * This function returns 1 iff pdev isn't a device instatiated by dt, 0 iff it
2157  * could successfully get all information from dt or a negative errno.
2158  */
2159 static int imx_uart_probe_dt(struct imx_port *sport,
2160 			     struct platform_device *pdev)
2161 {
2162 	struct device_node *np = pdev->dev.of_node;
2163 	int ret;
2164 
2165 	sport->devdata = of_device_get_match_data(&pdev->dev);
2166 	if (!sport->devdata)
2167 		/* no device tree device */
2168 		return 1;
2169 
2170 	ret = of_alias_get_id(np, "serial");
2171 	if (ret < 0) {
2172 		dev_err(&pdev->dev, "failed to get alias id, errno %d\n", ret);
2173 		return ret;
2174 	}
2175 	sport->port.line = ret;
2176 
2177 	if (of_get_property(np, "uart-has-rtscts", NULL) ||
2178 	    of_get_property(np, "fsl,uart-has-rtscts", NULL) /* deprecated */)
2179 		sport->have_rtscts = 1;
2180 
2181 	if (of_get_property(np, "fsl,dte-mode", NULL))
2182 		sport->dte_mode = 1;
2183 
2184 	if (of_get_property(np, "rts-gpios", NULL))
2185 		sport->have_rtsgpio = 1;
2186 
2187 	return 0;
2188 }
2189 #else
2190 static inline int imx_uart_probe_dt(struct imx_port *sport,
2191 				    struct platform_device *pdev)
2192 {
2193 	return 1;
2194 }
2195 #endif
2196 
2197 static void imx_uart_probe_pdata(struct imx_port *sport,
2198 				 struct platform_device *pdev)
2199 {
2200 	struct imxuart_platform_data *pdata = dev_get_platdata(&pdev->dev);
2201 
2202 	sport->port.line = pdev->id;
2203 	sport->devdata = (struct imx_uart_data	*) pdev->id_entry->driver_data;
2204 
2205 	if (!pdata)
2206 		return;
2207 
2208 	if (pdata->flags & IMXUART_HAVE_RTSCTS)
2209 		sport->have_rtscts = 1;
2210 }
2211 
2212 static int imx_uart_probe(struct platform_device *pdev)
2213 {
2214 	struct imx_port *sport;
2215 	void __iomem *base;
2216 	int ret = 0;
2217 	u32 ucr1;
2218 	struct resource *res;
2219 	int txirq, rxirq, rtsirq;
2220 
2221 	sport = devm_kzalloc(&pdev->dev, sizeof(*sport), GFP_KERNEL);
2222 	if (!sport)
2223 		return -ENOMEM;
2224 
2225 	ret = imx_uart_probe_dt(sport, pdev);
2226 	if (ret > 0)
2227 		imx_uart_probe_pdata(sport, pdev);
2228 	else if (ret < 0)
2229 		return ret;
2230 
2231 	if (sport->port.line >= ARRAY_SIZE(imx_uart_ports)) {
2232 		dev_err(&pdev->dev, "serial%d out of range\n",
2233 			sport->port.line);
2234 		return -EINVAL;
2235 	}
2236 
2237 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2238 	base = devm_ioremap_resource(&pdev->dev, res);
2239 	if (IS_ERR(base))
2240 		return PTR_ERR(base);
2241 
2242 	rxirq = platform_get_irq(pdev, 0);
2243 	txirq = platform_get_irq_optional(pdev, 1);
2244 	rtsirq = platform_get_irq_optional(pdev, 2);
2245 
2246 	sport->port.dev = &pdev->dev;
2247 	sport->port.mapbase = res->start;
2248 	sport->port.membase = base;
2249 	sport->port.type = PORT_IMX,
2250 	sport->port.iotype = UPIO_MEM;
2251 	sport->port.irq = rxirq;
2252 	sport->port.fifosize = 32;
2253 	sport->port.has_sysrq = IS_ENABLED(CONFIG_SERIAL_IMX_CONSOLE);
2254 	sport->port.ops = &imx_uart_pops;
2255 	sport->port.rs485_config = imx_uart_rs485_config;
2256 	sport->port.flags = UPF_BOOT_AUTOCONF;
2257 	timer_setup(&sport->timer, imx_uart_timeout, 0);
2258 
2259 	sport->gpios = mctrl_gpio_init(&sport->port, 0);
2260 	if (IS_ERR(sport->gpios))
2261 		return PTR_ERR(sport->gpios);
2262 
2263 	sport->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
2264 	if (IS_ERR(sport->clk_ipg)) {
2265 		ret = PTR_ERR(sport->clk_ipg);
2266 		dev_err(&pdev->dev, "failed to get ipg clk: %d\n", ret);
2267 		return ret;
2268 	}
2269 
2270 	sport->clk_per = devm_clk_get(&pdev->dev, "per");
2271 	if (IS_ERR(sport->clk_per)) {
2272 		ret = PTR_ERR(sport->clk_per);
2273 		dev_err(&pdev->dev, "failed to get per clk: %d\n", ret);
2274 		return ret;
2275 	}
2276 
2277 	sport->port.uartclk = clk_get_rate(sport->clk_per);
2278 
2279 	/* For register access, we only need to enable the ipg clock. */
2280 	ret = clk_prepare_enable(sport->clk_ipg);
2281 	if (ret) {
2282 		dev_err(&pdev->dev, "failed to enable per clk: %d\n", ret);
2283 		return ret;
2284 	}
2285 
2286 	/* initialize shadow register values */
2287 	sport->ucr1 = readl(sport->port.membase + UCR1);
2288 	sport->ucr2 = readl(sport->port.membase + UCR2);
2289 	sport->ucr3 = readl(sport->port.membase + UCR3);
2290 	sport->ucr4 = readl(sport->port.membase + UCR4);
2291 	sport->ufcr = readl(sport->port.membase + UFCR);
2292 
2293 	uart_get_rs485_mode(&pdev->dev, &sport->port.rs485);
2294 
2295 	if (sport->port.rs485.flags & SER_RS485_ENABLED &&
2296 	    (!sport->have_rtscts && !sport->have_rtsgpio))
2297 		dev_err(&pdev->dev, "no RTS control, disabling rs485\n");
2298 
2299 	/*
2300 	 * If using the i.MX UART RTS/CTS control then the RTS (CTS_B)
2301 	 * signal cannot be set low during transmission in case the
2302 	 * receiver is off (limitation of the i.MX UART IP).
2303 	 */
2304 	if (sport->port.rs485.flags & SER_RS485_ENABLED &&
2305 	    sport->have_rtscts && !sport->have_rtsgpio &&
2306 	    (!(sport->port.rs485.flags & SER_RS485_RTS_ON_SEND) &&
2307 	     !(sport->port.rs485.flags & SER_RS485_RX_DURING_TX)))
2308 		dev_err(&pdev->dev,
2309 			"low-active RTS not possible when receiver is off, enabling receiver\n");
2310 
2311 	imx_uart_rs485_config(&sport->port, &sport->port.rs485);
2312 
2313 	/* Disable interrupts before requesting them */
2314 	ucr1 = imx_uart_readl(sport, UCR1);
2315 	ucr1 &= ~(UCR1_ADEN | UCR1_TRDYEN | UCR1_IDEN | UCR1_RRDYEN |
2316 		 UCR1_TRDYEN | UCR1_RTSDEN);
2317 	imx_uart_writel(sport, ucr1, UCR1);
2318 
2319 	if (!imx_uart_is_imx1(sport) && sport->dte_mode) {
2320 		/*
2321 		 * The DCEDTE bit changes the direction of DSR, DCD, DTR and RI
2322 		 * and influences if UCR3_RI and UCR3_DCD changes the level of RI
2323 		 * and DCD (when they are outputs) or enables the respective
2324 		 * irqs. So set this bit early, i.e. before requesting irqs.
2325 		 */
2326 		u32 ufcr = imx_uart_readl(sport, UFCR);
2327 		if (!(ufcr & UFCR_DCEDTE))
2328 			imx_uart_writel(sport, ufcr | UFCR_DCEDTE, UFCR);
2329 
2330 		/*
2331 		 * Disable UCR3_RI and UCR3_DCD irqs. They are also not
2332 		 * enabled later because they cannot be cleared
2333 		 * (confirmed on i.MX25) which makes them unusable.
2334 		 */
2335 		imx_uart_writel(sport,
2336 				IMX21_UCR3_RXDMUXSEL | UCR3_ADNIMP | UCR3_DSR,
2337 				UCR3);
2338 
2339 	} else {
2340 		u32 ucr3 = UCR3_DSR;
2341 		u32 ufcr = imx_uart_readl(sport, UFCR);
2342 		if (ufcr & UFCR_DCEDTE)
2343 			imx_uart_writel(sport, ufcr & ~UFCR_DCEDTE, UFCR);
2344 
2345 		if (!imx_uart_is_imx1(sport))
2346 			ucr3 |= IMX21_UCR3_RXDMUXSEL | UCR3_ADNIMP;
2347 		imx_uart_writel(sport, ucr3, UCR3);
2348 	}
2349 
2350 	clk_disable_unprepare(sport->clk_ipg);
2351 
2352 	/*
2353 	 * Allocate the IRQ(s) i.MX1 has three interrupts whereas later
2354 	 * chips only have one interrupt.
2355 	 */
2356 	if (txirq > 0) {
2357 		ret = devm_request_irq(&pdev->dev, rxirq, imx_uart_rxint, 0,
2358 				       dev_name(&pdev->dev), sport);
2359 		if (ret) {
2360 			dev_err(&pdev->dev, "failed to request rx irq: %d\n",
2361 				ret);
2362 			return ret;
2363 		}
2364 
2365 		ret = devm_request_irq(&pdev->dev, txirq, imx_uart_txint, 0,
2366 				       dev_name(&pdev->dev), sport);
2367 		if (ret) {
2368 			dev_err(&pdev->dev, "failed to request tx irq: %d\n",
2369 				ret);
2370 			return ret;
2371 		}
2372 
2373 		ret = devm_request_irq(&pdev->dev, rtsirq, imx_uart_rtsint, 0,
2374 				       dev_name(&pdev->dev), sport);
2375 		if (ret) {
2376 			dev_err(&pdev->dev, "failed to request rts irq: %d\n",
2377 				ret);
2378 			return ret;
2379 		}
2380 	} else {
2381 		ret = devm_request_irq(&pdev->dev, rxirq, imx_uart_int, 0,
2382 				       dev_name(&pdev->dev), sport);
2383 		if (ret) {
2384 			dev_err(&pdev->dev, "failed to request irq: %d\n", ret);
2385 			return ret;
2386 		}
2387 	}
2388 
2389 	imx_uart_ports[sport->port.line] = sport;
2390 
2391 	platform_set_drvdata(pdev, sport);
2392 
2393 	return uart_add_one_port(&imx_uart_uart_driver, &sport->port);
2394 }
2395 
2396 static int imx_uart_remove(struct platform_device *pdev)
2397 {
2398 	struct imx_port *sport = platform_get_drvdata(pdev);
2399 
2400 	return uart_remove_one_port(&imx_uart_uart_driver, &sport->port);
2401 }
2402 
2403 static void imx_uart_restore_context(struct imx_port *sport)
2404 {
2405 	unsigned long flags;
2406 
2407 	spin_lock_irqsave(&sport->port.lock, flags);
2408 	if (!sport->context_saved) {
2409 		spin_unlock_irqrestore(&sport->port.lock, flags);
2410 		return;
2411 	}
2412 
2413 	imx_uart_writel(sport, sport->saved_reg[4], UFCR);
2414 	imx_uart_writel(sport, sport->saved_reg[5], UESC);
2415 	imx_uart_writel(sport, sport->saved_reg[6], UTIM);
2416 	imx_uart_writel(sport, sport->saved_reg[7], UBIR);
2417 	imx_uart_writel(sport, sport->saved_reg[8], UBMR);
2418 	imx_uart_writel(sport, sport->saved_reg[9], IMX21_UTS);
2419 	imx_uart_writel(sport, sport->saved_reg[0], UCR1);
2420 	imx_uart_writel(sport, sport->saved_reg[1] | UCR2_SRST, UCR2);
2421 	imx_uart_writel(sport, sport->saved_reg[2], UCR3);
2422 	imx_uart_writel(sport, sport->saved_reg[3], UCR4);
2423 	sport->context_saved = false;
2424 	spin_unlock_irqrestore(&sport->port.lock, flags);
2425 }
2426 
2427 static void imx_uart_save_context(struct imx_port *sport)
2428 {
2429 	unsigned long flags;
2430 
2431 	/* Save necessary regs */
2432 	spin_lock_irqsave(&sport->port.lock, flags);
2433 	sport->saved_reg[0] = imx_uart_readl(sport, UCR1);
2434 	sport->saved_reg[1] = imx_uart_readl(sport, UCR2);
2435 	sport->saved_reg[2] = imx_uart_readl(sport, UCR3);
2436 	sport->saved_reg[3] = imx_uart_readl(sport, UCR4);
2437 	sport->saved_reg[4] = imx_uart_readl(sport, UFCR);
2438 	sport->saved_reg[5] = imx_uart_readl(sport, UESC);
2439 	sport->saved_reg[6] = imx_uart_readl(sport, UTIM);
2440 	sport->saved_reg[7] = imx_uart_readl(sport, UBIR);
2441 	sport->saved_reg[8] = imx_uart_readl(sport, UBMR);
2442 	sport->saved_reg[9] = imx_uart_readl(sport, IMX21_UTS);
2443 	sport->context_saved = true;
2444 	spin_unlock_irqrestore(&sport->port.lock, flags);
2445 }
2446 
2447 static void imx_uart_enable_wakeup(struct imx_port *sport, bool on)
2448 {
2449 	u32 ucr3;
2450 
2451 	ucr3 = imx_uart_readl(sport, UCR3);
2452 	if (on) {
2453 		imx_uart_writel(sport, USR1_AWAKE, USR1);
2454 		ucr3 |= UCR3_AWAKEN;
2455 	} else {
2456 		ucr3 &= ~UCR3_AWAKEN;
2457 	}
2458 	imx_uart_writel(sport, ucr3, UCR3);
2459 
2460 	if (sport->have_rtscts) {
2461 		u32 ucr1 = imx_uart_readl(sport, UCR1);
2462 		if (on)
2463 			ucr1 |= UCR1_RTSDEN;
2464 		else
2465 			ucr1 &= ~UCR1_RTSDEN;
2466 		imx_uart_writel(sport, ucr1, UCR1);
2467 	}
2468 }
2469 
2470 static int imx_uart_suspend_noirq(struct device *dev)
2471 {
2472 	struct imx_port *sport = dev_get_drvdata(dev);
2473 
2474 	imx_uart_save_context(sport);
2475 
2476 	clk_disable(sport->clk_ipg);
2477 
2478 	pinctrl_pm_select_sleep_state(dev);
2479 
2480 	return 0;
2481 }
2482 
2483 static int imx_uart_resume_noirq(struct device *dev)
2484 {
2485 	struct imx_port *sport = dev_get_drvdata(dev);
2486 	int ret;
2487 
2488 	pinctrl_pm_select_default_state(dev);
2489 
2490 	ret = clk_enable(sport->clk_ipg);
2491 	if (ret)
2492 		return ret;
2493 
2494 	imx_uart_restore_context(sport);
2495 
2496 	return 0;
2497 }
2498 
2499 static int imx_uart_suspend(struct device *dev)
2500 {
2501 	struct imx_port *sport = dev_get_drvdata(dev);
2502 	int ret;
2503 
2504 	uart_suspend_port(&imx_uart_uart_driver, &sport->port);
2505 	disable_irq(sport->port.irq);
2506 
2507 	ret = clk_prepare_enable(sport->clk_ipg);
2508 	if (ret)
2509 		return ret;
2510 
2511 	/* enable wakeup from i.MX UART */
2512 	imx_uart_enable_wakeup(sport, true);
2513 
2514 	return 0;
2515 }
2516 
2517 static int imx_uart_resume(struct device *dev)
2518 {
2519 	struct imx_port *sport = dev_get_drvdata(dev);
2520 
2521 	/* disable wakeup from i.MX UART */
2522 	imx_uart_enable_wakeup(sport, false);
2523 
2524 	uart_resume_port(&imx_uart_uart_driver, &sport->port);
2525 	enable_irq(sport->port.irq);
2526 
2527 	clk_disable_unprepare(sport->clk_ipg);
2528 
2529 	return 0;
2530 }
2531 
2532 static int imx_uart_freeze(struct device *dev)
2533 {
2534 	struct imx_port *sport = dev_get_drvdata(dev);
2535 
2536 	uart_suspend_port(&imx_uart_uart_driver, &sport->port);
2537 
2538 	return clk_prepare_enable(sport->clk_ipg);
2539 }
2540 
2541 static int imx_uart_thaw(struct device *dev)
2542 {
2543 	struct imx_port *sport = dev_get_drvdata(dev);
2544 
2545 	uart_resume_port(&imx_uart_uart_driver, &sport->port);
2546 
2547 	clk_disable_unprepare(sport->clk_ipg);
2548 
2549 	return 0;
2550 }
2551 
2552 static const struct dev_pm_ops imx_uart_pm_ops = {
2553 	.suspend_noirq = imx_uart_suspend_noirq,
2554 	.resume_noirq = imx_uart_resume_noirq,
2555 	.freeze_noirq = imx_uart_suspend_noirq,
2556 	.restore_noirq = imx_uart_resume_noirq,
2557 	.suspend = imx_uart_suspend,
2558 	.resume = imx_uart_resume,
2559 	.freeze = imx_uart_freeze,
2560 	.thaw = imx_uart_thaw,
2561 	.restore = imx_uart_thaw,
2562 };
2563 
2564 static struct platform_driver imx_uart_platform_driver = {
2565 	.probe = imx_uart_probe,
2566 	.remove = imx_uart_remove,
2567 
2568 	.id_table = imx_uart_devtype,
2569 	.driver = {
2570 		.name = "imx-uart",
2571 		.of_match_table = imx_uart_dt_ids,
2572 		.pm = &imx_uart_pm_ops,
2573 	},
2574 };
2575 
2576 static int __init imx_uart_init(void)
2577 {
2578 	int ret = uart_register_driver(&imx_uart_uart_driver);
2579 
2580 	if (ret)
2581 		return ret;
2582 
2583 	ret = platform_driver_register(&imx_uart_platform_driver);
2584 	if (ret != 0)
2585 		uart_unregister_driver(&imx_uart_uart_driver);
2586 
2587 	return ret;
2588 }
2589 
2590 static void __exit imx_uart_exit(void)
2591 {
2592 	platform_driver_unregister(&imx_uart_platform_driver);
2593 	uart_unregister_driver(&imx_uart_uart_driver);
2594 }
2595 
2596 module_init(imx_uart_init);
2597 module_exit(imx_uart_exit);
2598 
2599 MODULE_AUTHOR("Sascha Hauer");
2600 MODULE_DESCRIPTION("IMX generic serial port driver");
2601 MODULE_LICENSE("GPL");
2602 MODULE_ALIAS("platform:imx-uart");
2603