1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Driver for Motorola/Freescale IMX serial ports 4 * 5 * Based on drivers/char/serial.c, by Linus Torvalds, Theodore Ts'o. 6 * 7 * Author: Sascha Hauer <sascha@saschahauer.de> 8 * Copyright (C) 2004 Pengutronix 9 */ 10 11 #if defined(CONFIG_SERIAL_IMX_CONSOLE) && defined(CONFIG_MAGIC_SYSRQ) 12 #define SUPPORT_SYSRQ 13 #endif 14 15 #include <linux/module.h> 16 #include <linux/ioport.h> 17 #include <linux/init.h> 18 #include <linux/console.h> 19 #include <linux/sysrq.h> 20 #include <linux/platform_device.h> 21 #include <linux/tty.h> 22 #include <linux/tty_flip.h> 23 #include <linux/serial_core.h> 24 #include <linux/serial.h> 25 #include <linux/clk.h> 26 #include <linux/delay.h> 27 #include <linux/pinctrl/consumer.h> 28 #include <linux/rational.h> 29 #include <linux/slab.h> 30 #include <linux/of.h> 31 #include <linux/of_device.h> 32 #include <linux/io.h> 33 #include <linux/dma-mapping.h> 34 35 #include <asm/irq.h> 36 #include <linux/platform_data/serial-imx.h> 37 #include <linux/platform_data/dma-imx.h> 38 39 #include "serial_mctrl_gpio.h" 40 41 /* Register definitions */ 42 #define URXD0 0x0 /* Receiver Register */ 43 #define URTX0 0x40 /* Transmitter Register */ 44 #define UCR1 0x80 /* Control Register 1 */ 45 #define UCR2 0x84 /* Control Register 2 */ 46 #define UCR3 0x88 /* Control Register 3 */ 47 #define UCR4 0x8c /* Control Register 4 */ 48 #define UFCR 0x90 /* FIFO Control Register */ 49 #define USR1 0x94 /* Status Register 1 */ 50 #define USR2 0x98 /* Status Register 2 */ 51 #define UESC 0x9c /* Escape Character Register */ 52 #define UTIM 0xa0 /* Escape Timer Register */ 53 #define UBIR 0xa4 /* BRM Incremental Register */ 54 #define UBMR 0xa8 /* BRM Modulator Register */ 55 #define UBRC 0xac /* Baud Rate Count Register */ 56 #define IMX21_ONEMS 0xb0 /* One Millisecond register */ 57 #define IMX1_UTS 0xd0 /* UART Test Register on i.mx1 */ 58 #define IMX21_UTS 0xb4 /* UART Test Register on all other i.mx*/ 59 60 /* UART Control Register Bit Fields.*/ 61 #define URXD_DUMMY_READ (1<<16) 62 #define URXD_CHARRDY (1<<15) 63 #define URXD_ERR (1<<14) 64 #define URXD_OVRRUN (1<<13) 65 #define URXD_FRMERR (1<<12) 66 #define URXD_BRK (1<<11) 67 #define URXD_PRERR (1<<10) 68 #define URXD_RX_DATA (0xFF<<0) 69 #define UCR1_ADEN (1<<15) /* Auto detect interrupt */ 70 #define UCR1_ADBR (1<<14) /* Auto detect baud rate */ 71 #define UCR1_TRDYEN (1<<13) /* Transmitter ready interrupt enable */ 72 #define UCR1_IDEN (1<<12) /* Idle condition interrupt */ 73 #define UCR1_ICD_REG(x) (((x) & 3) << 10) /* idle condition detect */ 74 #define UCR1_RRDYEN (1<<9) /* Recv ready interrupt enable */ 75 #define UCR1_RXDMAEN (1<<8) /* Recv ready DMA enable */ 76 #define UCR1_IREN (1<<7) /* Infrared interface enable */ 77 #define UCR1_TXMPTYEN (1<<6) /* Transimitter empty interrupt enable */ 78 #define UCR1_RTSDEN (1<<5) /* RTS delta interrupt enable */ 79 #define UCR1_SNDBRK (1<<4) /* Send break */ 80 #define UCR1_TXDMAEN (1<<3) /* Transmitter ready DMA enable */ 81 #define IMX1_UCR1_UARTCLKEN (1<<2) /* UART clock enabled, i.mx1 only */ 82 #define UCR1_ATDMAEN (1<<2) /* Aging DMA Timer Enable */ 83 #define UCR1_DOZE (1<<1) /* Doze */ 84 #define UCR1_UARTEN (1<<0) /* UART enabled */ 85 #define UCR2_ESCI (1<<15) /* Escape seq interrupt enable */ 86 #define UCR2_IRTS (1<<14) /* Ignore RTS pin */ 87 #define UCR2_CTSC (1<<13) /* CTS pin control */ 88 #define UCR2_CTS (1<<12) /* Clear to send */ 89 #define UCR2_ESCEN (1<<11) /* Escape enable */ 90 #define UCR2_PREN (1<<8) /* Parity enable */ 91 #define UCR2_PROE (1<<7) /* Parity odd/even */ 92 #define UCR2_STPB (1<<6) /* Stop */ 93 #define UCR2_WS (1<<5) /* Word size */ 94 #define UCR2_RTSEN (1<<4) /* Request to send interrupt enable */ 95 #define UCR2_ATEN (1<<3) /* Aging Timer Enable */ 96 #define UCR2_TXEN (1<<2) /* Transmitter enabled */ 97 #define UCR2_RXEN (1<<1) /* Receiver enabled */ 98 #define UCR2_SRST (1<<0) /* SW reset */ 99 #define UCR3_DTREN (1<<13) /* DTR interrupt enable */ 100 #define UCR3_PARERREN (1<<12) /* Parity enable */ 101 #define UCR3_FRAERREN (1<<11) /* Frame error interrupt enable */ 102 #define UCR3_DSR (1<<10) /* Data set ready */ 103 #define UCR3_DCD (1<<9) /* Data carrier detect */ 104 #define UCR3_RI (1<<8) /* Ring indicator */ 105 #define UCR3_ADNIMP (1<<7) /* Autobaud Detection Not Improved */ 106 #define UCR3_RXDSEN (1<<6) /* Receive status interrupt enable */ 107 #define UCR3_AIRINTEN (1<<5) /* Async IR wake interrupt enable */ 108 #define UCR3_AWAKEN (1<<4) /* Async wake interrupt enable */ 109 #define UCR3_DTRDEN (1<<3) /* Data Terminal Ready Delta Enable. */ 110 #define IMX21_UCR3_RXDMUXSEL (1<<2) /* RXD Muxed Input Select */ 111 #define UCR3_INVT (1<<1) /* Inverted Infrared transmission */ 112 #define UCR3_BPEN (1<<0) /* Preset registers enable */ 113 #define UCR4_CTSTL_SHF 10 /* CTS trigger level shift */ 114 #define UCR4_CTSTL_MASK 0x3F /* CTS trigger is 6 bits wide */ 115 #define UCR4_INVR (1<<9) /* Inverted infrared reception */ 116 #define UCR4_ENIRI (1<<8) /* Serial infrared interrupt enable */ 117 #define UCR4_WKEN (1<<7) /* Wake interrupt enable */ 118 #define UCR4_REF16 (1<<6) /* Ref freq 16 MHz */ 119 #define UCR4_IDDMAEN (1<<6) /* DMA IDLE Condition Detected */ 120 #define UCR4_IRSC (1<<5) /* IR special case */ 121 #define UCR4_TCEN (1<<3) /* Transmit complete interrupt enable */ 122 #define UCR4_BKEN (1<<2) /* Break condition interrupt enable */ 123 #define UCR4_OREN (1<<1) /* Receiver overrun interrupt enable */ 124 #define UCR4_DREN (1<<0) /* Recv data ready interrupt enable */ 125 #define UFCR_RXTL_SHF 0 /* Receiver trigger level shift */ 126 #define UFCR_DCEDTE (1<<6) /* DCE/DTE mode select */ 127 #define UFCR_RFDIV (7<<7) /* Reference freq divider mask */ 128 #define UFCR_RFDIV_REG(x) (((x) < 7 ? 6 - (x) : 6) << 7) 129 #define UFCR_TXTL_SHF 10 /* Transmitter trigger level shift */ 130 #define USR1_PARITYERR (1<<15) /* Parity error interrupt flag */ 131 #define USR1_RTSS (1<<14) /* RTS pin status */ 132 #define USR1_TRDY (1<<13) /* Transmitter ready interrupt/dma flag */ 133 #define USR1_RTSD (1<<12) /* RTS delta */ 134 #define USR1_ESCF (1<<11) /* Escape seq interrupt flag */ 135 #define USR1_FRAMERR (1<<10) /* Frame error interrupt flag */ 136 #define USR1_RRDY (1<<9) /* Receiver ready interrupt/dma flag */ 137 #define USR1_AGTIM (1<<8) /* Ageing timer interrupt flag */ 138 #define USR1_DTRD (1<<7) /* DTR Delta */ 139 #define USR1_RXDS (1<<6) /* Receiver idle interrupt flag */ 140 #define USR1_AIRINT (1<<5) /* Async IR wake interrupt flag */ 141 #define USR1_AWAKE (1<<4) /* Aysnc wake interrupt flag */ 142 #define USR2_ADET (1<<15) /* Auto baud rate detect complete */ 143 #define USR2_TXFE (1<<14) /* Transmit buffer FIFO empty */ 144 #define USR2_DTRF (1<<13) /* DTR edge interrupt flag */ 145 #define USR2_IDLE (1<<12) /* Idle condition */ 146 #define USR2_RIDELT (1<<10) /* Ring Interrupt Delta */ 147 #define USR2_RIIN (1<<9) /* Ring Indicator Input */ 148 #define USR2_IRINT (1<<8) /* Serial infrared interrupt flag */ 149 #define USR2_WAKE (1<<7) /* Wake */ 150 #define USR2_DCDIN (1<<5) /* Data Carrier Detect Input */ 151 #define USR2_RTSF (1<<4) /* RTS edge interrupt flag */ 152 #define USR2_TXDC (1<<3) /* Transmitter complete */ 153 #define USR2_BRCD (1<<2) /* Break condition */ 154 #define USR2_ORE (1<<1) /* Overrun error */ 155 #define USR2_RDR (1<<0) /* Recv data ready */ 156 #define UTS_FRCPERR (1<<13) /* Force parity error */ 157 #define UTS_LOOP (1<<12) /* Loop tx and rx */ 158 #define UTS_TXEMPTY (1<<6) /* TxFIFO empty */ 159 #define UTS_RXEMPTY (1<<5) /* RxFIFO empty */ 160 #define UTS_TXFULL (1<<4) /* TxFIFO full */ 161 #define UTS_RXFULL (1<<3) /* RxFIFO full */ 162 #define UTS_SOFTRST (1<<0) /* Software reset */ 163 164 /* We've been assigned a range on the "Low-density serial ports" major */ 165 #define SERIAL_IMX_MAJOR 207 166 #define MINOR_START 16 167 #define DEV_NAME "ttymxc" 168 169 /* 170 * This determines how often we check the modem status signals 171 * for any change. They generally aren't connected to an IRQ 172 * so we have to poll them. We also check immediately before 173 * filling the TX fifo incase CTS has been dropped. 174 */ 175 #define MCTRL_TIMEOUT (250*HZ/1000) 176 177 #define DRIVER_NAME "IMX-uart" 178 179 #define UART_NR 8 180 181 /* i.MX21 type uart runs on all i.mx except i.MX1 and i.MX6q */ 182 enum imx_uart_type { 183 IMX1_UART, 184 IMX21_UART, 185 IMX53_UART, 186 IMX6Q_UART, 187 }; 188 189 /* device type dependent stuff */ 190 struct imx_uart_data { 191 unsigned uts_reg; 192 enum imx_uart_type devtype; 193 }; 194 195 struct imx_port { 196 struct uart_port port; 197 struct timer_list timer; 198 unsigned int old_status; 199 unsigned int have_rtscts:1; 200 unsigned int have_rtsgpio:1; 201 unsigned int dte_mode:1; 202 struct clk *clk_ipg; 203 struct clk *clk_per; 204 const struct imx_uart_data *devdata; 205 206 struct mctrl_gpios *gpios; 207 208 /* shadow registers */ 209 unsigned int ucr1; 210 unsigned int ucr2; 211 unsigned int ucr3; 212 unsigned int ucr4; 213 unsigned int ufcr; 214 215 /* DMA fields */ 216 unsigned int dma_is_enabled:1; 217 unsigned int dma_is_rxing:1; 218 unsigned int dma_is_txing:1; 219 struct dma_chan *dma_chan_rx, *dma_chan_tx; 220 struct scatterlist rx_sgl, tx_sgl[2]; 221 void *rx_buf; 222 struct circ_buf rx_ring; 223 unsigned int rx_periods; 224 dma_cookie_t rx_cookie; 225 unsigned int tx_bytes; 226 unsigned int dma_tx_nents; 227 unsigned int saved_reg[10]; 228 bool context_saved; 229 }; 230 231 struct imx_port_ucrs { 232 unsigned int ucr1; 233 unsigned int ucr2; 234 unsigned int ucr3; 235 }; 236 237 static struct imx_uart_data imx_uart_devdata[] = { 238 [IMX1_UART] = { 239 .uts_reg = IMX1_UTS, 240 .devtype = IMX1_UART, 241 }, 242 [IMX21_UART] = { 243 .uts_reg = IMX21_UTS, 244 .devtype = IMX21_UART, 245 }, 246 [IMX53_UART] = { 247 .uts_reg = IMX21_UTS, 248 .devtype = IMX53_UART, 249 }, 250 [IMX6Q_UART] = { 251 .uts_reg = IMX21_UTS, 252 .devtype = IMX6Q_UART, 253 }, 254 }; 255 256 static const struct platform_device_id imx_uart_devtype[] = { 257 { 258 .name = "imx1-uart", 259 .driver_data = (kernel_ulong_t) &imx_uart_devdata[IMX1_UART], 260 }, { 261 .name = "imx21-uart", 262 .driver_data = (kernel_ulong_t) &imx_uart_devdata[IMX21_UART], 263 }, { 264 .name = "imx53-uart", 265 .driver_data = (kernel_ulong_t) &imx_uart_devdata[IMX53_UART], 266 }, { 267 .name = "imx6q-uart", 268 .driver_data = (kernel_ulong_t) &imx_uart_devdata[IMX6Q_UART], 269 }, { 270 /* sentinel */ 271 } 272 }; 273 MODULE_DEVICE_TABLE(platform, imx_uart_devtype); 274 275 static const struct of_device_id imx_uart_dt_ids[] = { 276 { .compatible = "fsl,imx6q-uart", .data = &imx_uart_devdata[IMX6Q_UART], }, 277 { .compatible = "fsl,imx53-uart", .data = &imx_uart_devdata[IMX53_UART], }, 278 { .compatible = "fsl,imx1-uart", .data = &imx_uart_devdata[IMX1_UART], }, 279 { .compatible = "fsl,imx21-uart", .data = &imx_uart_devdata[IMX21_UART], }, 280 { /* sentinel */ } 281 }; 282 MODULE_DEVICE_TABLE(of, imx_uart_dt_ids); 283 284 static void imx_uart_writel(struct imx_port *sport, u32 val, u32 offset) 285 { 286 switch (offset) { 287 case UCR1: 288 sport->ucr1 = val; 289 break; 290 case UCR2: 291 sport->ucr2 = val; 292 break; 293 case UCR3: 294 sport->ucr3 = val; 295 break; 296 case UCR4: 297 sport->ucr4 = val; 298 break; 299 case UFCR: 300 sport->ufcr = val; 301 break; 302 default: 303 break; 304 } 305 writel(val, sport->port.membase + offset); 306 } 307 308 static u32 imx_uart_readl(struct imx_port *sport, u32 offset) 309 { 310 switch (offset) { 311 case UCR1: 312 return sport->ucr1; 313 break; 314 case UCR2: 315 /* 316 * UCR2_SRST is the only bit in the cached registers that might 317 * differ from the value that was last written. As it only 318 * automatically becomes one after being cleared, reread 319 * conditionally. 320 */ 321 if (!(sport->ucr2 & UCR2_SRST)) 322 sport->ucr2 = readl(sport->port.membase + offset); 323 return sport->ucr2; 324 break; 325 case UCR3: 326 return sport->ucr3; 327 break; 328 case UCR4: 329 return sport->ucr4; 330 break; 331 case UFCR: 332 return sport->ufcr; 333 break; 334 default: 335 return readl(sport->port.membase + offset); 336 } 337 } 338 339 static inline unsigned imx_uart_uts_reg(struct imx_port *sport) 340 { 341 return sport->devdata->uts_reg; 342 } 343 344 static inline int imx_uart_is_imx1(struct imx_port *sport) 345 { 346 return sport->devdata->devtype == IMX1_UART; 347 } 348 349 static inline int imx_uart_is_imx21(struct imx_port *sport) 350 { 351 return sport->devdata->devtype == IMX21_UART; 352 } 353 354 static inline int imx_uart_is_imx53(struct imx_port *sport) 355 { 356 return sport->devdata->devtype == IMX53_UART; 357 } 358 359 static inline int imx_uart_is_imx6q(struct imx_port *sport) 360 { 361 return sport->devdata->devtype == IMX6Q_UART; 362 } 363 /* 364 * Save and restore functions for UCR1, UCR2 and UCR3 registers 365 */ 366 #if defined(CONFIG_SERIAL_IMX_CONSOLE) 367 static void imx_uart_ucrs_save(struct imx_port *sport, 368 struct imx_port_ucrs *ucr) 369 { 370 /* save control registers */ 371 ucr->ucr1 = imx_uart_readl(sport, UCR1); 372 ucr->ucr2 = imx_uart_readl(sport, UCR2); 373 ucr->ucr3 = imx_uart_readl(sport, UCR3); 374 } 375 376 static void imx_uart_ucrs_restore(struct imx_port *sport, 377 struct imx_port_ucrs *ucr) 378 { 379 /* restore control registers */ 380 imx_uart_writel(sport, ucr->ucr1, UCR1); 381 imx_uart_writel(sport, ucr->ucr2, UCR2); 382 imx_uart_writel(sport, ucr->ucr3, UCR3); 383 } 384 #endif 385 386 static void imx_uart_rts_active(struct imx_port *sport, u32 *ucr2) 387 { 388 *ucr2 &= ~(UCR2_CTSC | UCR2_CTS); 389 390 sport->port.mctrl |= TIOCM_RTS; 391 mctrl_gpio_set(sport->gpios, sport->port.mctrl); 392 } 393 394 static void imx_uart_rts_inactive(struct imx_port *sport, u32 *ucr2) 395 { 396 *ucr2 &= ~UCR2_CTSC; 397 *ucr2 |= UCR2_CTS; 398 399 sport->port.mctrl &= ~TIOCM_RTS; 400 mctrl_gpio_set(sport->gpios, sport->port.mctrl); 401 } 402 403 static void imx_uart_rts_auto(struct imx_port *sport, u32 *ucr2) 404 { 405 *ucr2 |= UCR2_CTSC; 406 } 407 408 /* called with port.lock taken and irqs off */ 409 static void imx_uart_start_rx(struct uart_port *port) 410 { 411 struct imx_port *sport = (struct imx_port *)port; 412 unsigned int ucr1, ucr2; 413 414 ucr1 = imx_uart_readl(sport, UCR1); 415 ucr2 = imx_uart_readl(sport, UCR2); 416 417 ucr2 |= UCR2_RXEN; 418 419 if (sport->dma_is_enabled) { 420 ucr1 |= UCR1_RXDMAEN | UCR1_ATDMAEN; 421 } else { 422 ucr1 |= UCR1_RRDYEN; 423 ucr2 |= UCR2_ATEN; 424 } 425 426 /* Write UCR2 first as it includes RXEN */ 427 imx_uart_writel(sport, ucr2, UCR2); 428 imx_uart_writel(sport, ucr1, UCR1); 429 } 430 431 /* called with port.lock taken and irqs off */ 432 static void imx_uart_stop_tx(struct uart_port *port) 433 { 434 struct imx_port *sport = (struct imx_port *)port; 435 u32 ucr1; 436 437 /* 438 * We are maybe in the SMP context, so if the DMA TX thread is running 439 * on other cpu, we have to wait for it to finish. 440 */ 441 if (sport->dma_is_txing) 442 return; 443 444 ucr1 = imx_uart_readl(sport, UCR1); 445 imx_uart_writel(sport, ucr1 & ~UCR1_TXMPTYEN, UCR1); 446 447 /* in rs485 mode disable transmitter if shifter is empty */ 448 if (port->rs485.flags & SER_RS485_ENABLED && 449 imx_uart_readl(sport, USR2) & USR2_TXDC) { 450 u32 ucr2 = imx_uart_readl(sport, UCR2), ucr4; 451 if (port->rs485.flags & SER_RS485_RTS_AFTER_SEND) 452 imx_uart_rts_active(sport, &ucr2); 453 else 454 imx_uart_rts_inactive(sport, &ucr2); 455 imx_uart_writel(sport, ucr2, UCR2); 456 457 imx_uart_start_rx(port); 458 459 ucr4 = imx_uart_readl(sport, UCR4); 460 ucr4 &= ~UCR4_TCEN; 461 imx_uart_writel(sport, ucr4, UCR4); 462 } 463 } 464 465 /* called with port.lock taken and irqs off */ 466 static void imx_uart_stop_rx(struct uart_port *port) 467 { 468 struct imx_port *sport = (struct imx_port *)port; 469 u32 ucr1, ucr2; 470 471 ucr1 = imx_uart_readl(sport, UCR1); 472 ucr2 = imx_uart_readl(sport, UCR2); 473 474 if (sport->dma_is_enabled) { 475 ucr1 &= ~(UCR1_RXDMAEN | UCR1_ATDMAEN); 476 } else { 477 ucr1 &= ~UCR1_RRDYEN; 478 ucr2 &= ~UCR2_ATEN; 479 } 480 imx_uart_writel(sport, ucr1, UCR1); 481 482 ucr2 &= ~UCR2_RXEN; 483 imx_uart_writel(sport, ucr2, UCR2); 484 } 485 486 /* called with port.lock taken and irqs off */ 487 static void imx_uart_enable_ms(struct uart_port *port) 488 { 489 struct imx_port *sport = (struct imx_port *)port; 490 491 mod_timer(&sport->timer, jiffies); 492 493 mctrl_gpio_enable_ms(sport->gpios); 494 } 495 496 static void imx_uart_dma_tx(struct imx_port *sport); 497 498 /* called with port.lock taken and irqs off */ 499 static inline void imx_uart_transmit_buffer(struct imx_port *sport) 500 { 501 struct circ_buf *xmit = &sport->port.state->xmit; 502 503 if (sport->port.x_char) { 504 /* Send next char */ 505 imx_uart_writel(sport, sport->port.x_char, URTX0); 506 sport->port.icount.tx++; 507 sport->port.x_char = 0; 508 return; 509 } 510 511 if (uart_circ_empty(xmit) || uart_tx_stopped(&sport->port)) { 512 imx_uart_stop_tx(&sport->port); 513 return; 514 } 515 516 if (sport->dma_is_enabled) { 517 u32 ucr1; 518 /* 519 * We've just sent a X-char Ensure the TX DMA is enabled 520 * and the TX IRQ is disabled. 521 **/ 522 ucr1 = imx_uart_readl(sport, UCR1); 523 ucr1 &= ~UCR1_TXMPTYEN; 524 if (sport->dma_is_txing) { 525 ucr1 |= UCR1_TXDMAEN; 526 imx_uart_writel(sport, ucr1, UCR1); 527 } else { 528 imx_uart_writel(sport, ucr1, UCR1); 529 imx_uart_dma_tx(sport); 530 } 531 532 return; 533 } 534 535 while (!uart_circ_empty(xmit) && 536 !(imx_uart_readl(sport, imx_uart_uts_reg(sport)) & UTS_TXFULL)) { 537 /* send xmit->buf[xmit->tail] 538 * out the port here */ 539 imx_uart_writel(sport, xmit->buf[xmit->tail], URTX0); 540 xmit->tail = (xmit->tail + 1) & (UART_XMIT_SIZE - 1); 541 sport->port.icount.tx++; 542 } 543 544 if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS) 545 uart_write_wakeup(&sport->port); 546 547 if (uart_circ_empty(xmit)) 548 imx_uart_stop_tx(&sport->port); 549 } 550 551 static void imx_uart_dma_tx_callback(void *data) 552 { 553 struct imx_port *sport = data; 554 struct scatterlist *sgl = &sport->tx_sgl[0]; 555 struct circ_buf *xmit = &sport->port.state->xmit; 556 unsigned long flags; 557 u32 ucr1; 558 559 spin_lock_irqsave(&sport->port.lock, flags); 560 561 dma_unmap_sg(sport->port.dev, sgl, sport->dma_tx_nents, DMA_TO_DEVICE); 562 563 ucr1 = imx_uart_readl(sport, UCR1); 564 ucr1 &= ~UCR1_TXDMAEN; 565 imx_uart_writel(sport, ucr1, UCR1); 566 567 /* update the stat */ 568 xmit->tail = (xmit->tail + sport->tx_bytes) & (UART_XMIT_SIZE - 1); 569 sport->port.icount.tx += sport->tx_bytes; 570 571 dev_dbg(sport->port.dev, "we finish the TX DMA.\n"); 572 573 sport->dma_is_txing = 0; 574 575 if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS) 576 uart_write_wakeup(&sport->port); 577 578 if (!uart_circ_empty(xmit) && !uart_tx_stopped(&sport->port)) 579 imx_uart_dma_tx(sport); 580 else if (sport->port.rs485.flags & SER_RS485_ENABLED) { 581 u32 ucr4 = imx_uart_readl(sport, UCR4); 582 ucr4 |= UCR4_TCEN; 583 imx_uart_writel(sport, ucr4, UCR4); 584 } 585 586 spin_unlock_irqrestore(&sport->port.lock, flags); 587 } 588 589 /* called with port.lock taken and irqs off */ 590 static void imx_uart_dma_tx(struct imx_port *sport) 591 { 592 struct circ_buf *xmit = &sport->port.state->xmit; 593 struct scatterlist *sgl = sport->tx_sgl; 594 struct dma_async_tx_descriptor *desc; 595 struct dma_chan *chan = sport->dma_chan_tx; 596 struct device *dev = sport->port.dev; 597 u32 ucr1, ucr4; 598 int ret; 599 600 if (sport->dma_is_txing) 601 return; 602 603 ucr4 = imx_uart_readl(sport, UCR4); 604 ucr4 &= ~UCR4_TCEN; 605 imx_uart_writel(sport, ucr4, UCR4); 606 607 sport->tx_bytes = uart_circ_chars_pending(xmit); 608 609 if (xmit->tail < xmit->head) { 610 sport->dma_tx_nents = 1; 611 sg_init_one(sgl, xmit->buf + xmit->tail, sport->tx_bytes); 612 } else { 613 sport->dma_tx_nents = 2; 614 sg_init_table(sgl, 2); 615 sg_set_buf(sgl, xmit->buf + xmit->tail, 616 UART_XMIT_SIZE - xmit->tail); 617 sg_set_buf(sgl + 1, xmit->buf, xmit->head); 618 } 619 620 ret = dma_map_sg(dev, sgl, sport->dma_tx_nents, DMA_TO_DEVICE); 621 if (ret == 0) { 622 dev_err(dev, "DMA mapping error for TX.\n"); 623 return; 624 } 625 desc = dmaengine_prep_slave_sg(chan, sgl, sport->dma_tx_nents, 626 DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT); 627 if (!desc) { 628 dma_unmap_sg(dev, sgl, sport->dma_tx_nents, 629 DMA_TO_DEVICE); 630 dev_err(dev, "We cannot prepare for the TX slave dma!\n"); 631 return; 632 } 633 desc->callback = imx_uart_dma_tx_callback; 634 desc->callback_param = sport; 635 636 dev_dbg(dev, "TX: prepare to send %lu bytes by DMA.\n", 637 uart_circ_chars_pending(xmit)); 638 639 ucr1 = imx_uart_readl(sport, UCR1); 640 ucr1 |= UCR1_TXDMAEN; 641 imx_uart_writel(sport, ucr1, UCR1); 642 643 /* fire it */ 644 sport->dma_is_txing = 1; 645 dmaengine_submit(desc); 646 dma_async_issue_pending(chan); 647 return; 648 } 649 650 /* called with port.lock taken and irqs off */ 651 static void imx_uart_start_tx(struct uart_port *port) 652 { 653 struct imx_port *sport = (struct imx_port *)port; 654 u32 ucr1; 655 656 if (!sport->port.x_char && uart_circ_empty(&port->state->xmit)) 657 return; 658 659 if (port->rs485.flags & SER_RS485_ENABLED) { 660 u32 ucr2; 661 662 ucr2 = imx_uart_readl(sport, UCR2); 663 if (port->rs485.flags & SER_RS485_RTS_ON_SEND) 664 imx_uart_rts_active(sport, &ucr2); 665 else 666 imx_uart_rts_inactive(sport, &ucr2); 667 imx_uart_writel(sport, ucr2, UCR2); 668 669 if (!(port->rs485.flags & SER_RS485_RX_DURING_TX)) 670 imx_uart_stop_rx(port); 671 672 /* 673 * Enable transmitter and shifter empty irq only if DMA is off. 674 * In the DMA case this is done in the tx-callback. 675 */ 676 if (!sport->dma_is_enabled) { 677 u32 ucr4 = imx_uart_readl(sport, UCR4); 678 ucr4 |= UCR4_TCEN; 679 imx_uart_writel(sport, ucr4, UCR4); 680 } 681 } 682 683 if (!sport->dma_is_enabled) { 684 ucr1 = imx_uart_readl(sport, UCR1); 685 imx_uart_writel(sport, ucr1 | UCR1_TXMPTYEN, UCR1); 686 } 687 688 if (sport->dma_is_enabled) { 689 if (sport->port.x_char) { 690 /* We have X-char to send, so enable TX IRQ and 691 * disable TX DMA to let TX interrupt to send X-char */ 692 ucr1 = imx_uart_readl(sport, UCR1); 693 ucr1 &= ~UCR1_TXDMAEN; 694 ucr1 |= UCR1_TXMPTYEN; 695 imx_uart_writel(sport, ucr1, UCR1); 696 return; 697 } 698 699 if (!uart_circ_empty(&port->state->xmit) && 700 !uart_tx_stopped(port)) 701 imx_uart_dma_tx(sport); 702 return; 703 } 704 } 705 706 static irqreturn_t imx_uart_rtsint(int irq, void *dev_id) 707 { 708 struct imx_port *sport = dev_id; 709 u32 usr1; 710 711 spin_lock(&sport->port.lock); 712 713 imx_uart_writel(sport, USR1_RTSD, USR1); 714 usr1 = imx_uart_readl(sport, USR1) & USR1_RTSS; 715 uart_handle_cts_change(&sport->port, !!usr1); 716 wake_up_interruptible(&sport->port.state->port.delta_msr_wait); 717 718 spin_unlock(&sport->port.lock); 719 return IRQ_HANDLED; 720 } 721 722 static irqreturn_t imx_uart_txint(int irq, void *dev_id) 723 { 724 struct imx_port *sport = dev_id; 725 726 spin_lock(&sport->port.lock); 727 imx_uart_transmit_buffer(sport); 728 spin_unlock(&sport->port.lock); 729 return IRQ_HANDLED; 730 } 731 732 static irqreturn_t imx_uart_rxint(int irq, void *dev_id) 733 { 734 struct imx_port *sport = dev_id; 735 unsigned int rx, flg, ignored = 0; 736 struct tty_port *port = &sport->port.state->port; 737 738 spin_lock(&sport->port.lock); 739 740 while (imx_uart_readl(sport, USR2) & USR2_RDR) { 741 u32 usr2; 742 743 flg = TTY_NORMAL; 744 sport->port.icount.rx++; 745 746 rx = imx_uart_readl(sport, URXD0); 747 748 usr2 = imx_uart_readl(sport, USR2); 749 if (usr2 & USR2_BRCD) { 750 imx_uart_writel(sport, USR2_BRCD, USR2); 751 if (uart_handle_break(&sport->port)) 752 continue; 753 } 754 755 if (uart_handle_sysrq_char(&sport->port, (unsigned char)rx)) 756 continue; 757 758 if (unlikely(rx & URXD_ERR)) { 759 if (rx & URXD_BRK) 760 sport->port.icount.brk++; 761 else if (rx & URXD_PRERR) 762 sport->port.icount.parity++; 763 else if (rx & URXD_FRMERR) 764 sport->port.icount.frame++; 765 if (rx & URXD_OVRRUN) 766 sport->port.icount.overrun++; 767 768 if (rx & sport->port.ignore_status_mask) { 769 if (++ignored > 100) 770 goto out; 771 continue; 772 } 773 774 rx &= (sport->port.read_status_mask | 0xFF); 775 776 if (rx & URXD_BRK) 777 flg = TTY_BREAK; 778 else if (rx & URXD_PRERR) 779 flg = TTY_PARITY; 780 else if (rx & URXD_FRMERR) 781 flg = TTY_FRAME; 782 if (rx & URXD_OVRRUN) 783 flg = TTY_OVERRUN; 784 785 #ifdef SUPPORT_SYSRQ 786 sport->port.sysrq = 0; 787 #endif 788 } 789 790 if (sport->port.ignore_status_mask & URXD_DUMMY_READ) 791 goto out; 792 793 if (tty_insert_flip_char(port, rx, flg) == 0) 794 sport->port.icount.buf_overrun++; 795 } 796 797 out: 798 spin_unlock(&sport->port.lock); 799 tty_flip_buffer_push(port); 800 return IRQ_HANDLED; 801 } 802 803 static void imx_uart_clear_rx_errors(struct imx_port *sport); 804 805 /* 806 * We have a modem side uart, so the meanings of RTS and CTS are inverted. 807 */ 808 static unsigned int imx_uart_get_hwmctrl(struct imx_port *sport) 809 { 810 unsigned int tmp = TIOCM_DSR; 811 unsigned usr1 = imx_uart_readl(sport, USR1); 812 unsigned usr2 = imx_uart_readl(sport, USR2); 813 814 if (usr1 & USR1_RTSS) 815 tmp |= TIOCM_CTS; 816 817 /* in DCE mode DCDIN is always 0 */ 818 if (!(usr2 & USR2_DCDIN)) 819 tmp |= TIOCM_CAR; 820 821 if (sport->dte_mode) 822 if (!(imx_uart_readl(sport, USR2) & USR2_RIIN)) 823 tmp |= TIOCM_RI; 824 825 return tmp; 826 } 827 828 /* 829 * Handle any change of modem status signal since we were last called. 830 */ 831 static void imx_uart_mctrl_check(struct imx_port *sport) 832 { 833 unsigned int status, changed; 834 835 status = imx_uart_get_hwmctrl(sport); 836 changed = status ^ sport->old_status; 837 838 if (changed == 0) 839 return; 840 841 sport->old_status = status; 842 843 if (changed & TIOCM_RI && status & TIOCM_RI) 844 sport->port.icount.rng++; 845 if (changed & TIOCM_DSR) 846 sport->port.icount.dsr++; 847 if (changed & TIOCM_CAR) 848 uart_handle_dcd_change(&sport->port, status & TIOCM_CAR); 849 if (changed & TIOCM_CTS) 850 uart_handle_cts_change(&sport->port, status & TIOCM_CTS); 851 852 wake_up_interruptible(&sport->port.state->port.delta_msr_wait); 853 } 854 855 static irqreturn_t imx_uart_int(int irq, void *dev_id) 856 { 857 struct imx_port *sport = dev_id; 858 unsigned int usr1, usr2, ucr1, ucr2, ucr3, ucr4; 859 irqreturn_t ret = IRQ_NONE; 860 861 usr1 = imx_uart_readl(sport, USR1); 862 usr2 = imx_uart_readl(sport, USR2); 863 ucr1 = imx_uart_readl(sport, UCR1); 864 ucr2 = imx_uart_readl(sport, UCR2); 865 ucr3 = imx_uart_readl(sport, UCR3); 866 ucr4 = imx_uart_readl(sport, UCR4); 867 868 /* 869 * Even if a condition is true that can trigger an irq only handle it if 870 * the respective irq source is enabled. This prevents some undesired 871 * actions, for example if a character that sits in the RX FIFO and that 872 * should be fetched via DMA is tried to be fetched using PIO. Or the 873 * receiver is currently off and so reading from URXD0 results in an 874 * exception. So just mask the (raw) status bits for disabled irqs. 875 */ 876 if ((ucr1 & UCR1_RRDYEN) == 0) 877 usr1 &= ~USR1_RRDY; 878 if ((ucr2 & UCR2_ATEN) == 0) 879 usr1 &= ~USR1_AGTIM; 880 if ((ucr1 & UCR1_TXMPTYEN) == 0) 881 usr1 &= ~USR1_TRDY; 882 if ((ucr4 & UCR4_TCEN) == 0) 883 usr2 &= ~USR2_TXDC; 884 if ((ucr3 & UCR3_DTRDEN) == 0) 885 usr1 &= ~USR1_DTRD; 886 if ((ucr1 & UCR1_RTSDEN) == 0) 887 usr1 &= ~USR1_RTSD; 888 if ((ucr3 & UCR3_AWAKEN) == 0) 889 usr1 &= ~USR1_AWAKE; 890 if ((ucr4 & UCR4_OREN) == 0) 891 usr2 &= ~USR2_ORE; 892 893 if (usr1 & (USR1_RRDY | USR1_AGTIM)) { 894 imx_uart_rxint(irq, dev_id); 895 ret = IRQ_HANDLED; 896 } 897 898 if ((usr1 & USR1_TRDY) || (usr2 & USR2_TXDC)) { 899 imx_uart_txint(irq, dev_id); 900 ret = IRQ_HANDLED; 901 } 902 903 if (usr1 & USR1_DTRD) { 904 imx_uart_writel(sport, USR1_DTRD, USR1); 905 906 spin_lock(&sport->port.lock); 907 imx_uart_mctrl_check(sport); 908 spin_unlock(&sport->port.lock); 909 910 ret = IRQ_HANDLED; 911 } 912 913 if (usr1 & USR1_RTSD) { 914 imx_uart_rtsint(irq, dev_id); 915 ret = IRQ_HANDLED; 916 } 917 918 if (usr1 & USR1_AWAKE) { 919 imx_uart_writel(sport, USR1_AWAKE, USR1); 920 ret = IRQ_HANDLED; 921 } 922 923 if (usr2 & USR2_ORE) { 924 sport->port.icount.overrun++; 925 imx_uart_writel(sport, USR2_ORE, USR2); 926 ret = IRQ_HANDLED; 927 } 928 929 return ret; 930 } 931 932 /* 933 * Return TIOCSER_TEMT when transmitter is not busy. 934 */ 935 static unsigned int imx_uart_tx_empty(struct uart_port *port) 936 { 937 struct imx_port *sport = (struct imx_port *)port; 938 unsigned int ret; 939 940 ret = (imx_uart_readl(sport, USR2) & USR2_TXDC) ? TIOCSER_TEMT : 0; 941 942 /* If the TX DMA is working, return 0. */ 943 if (sport->dma_is_txing) 944 ret = 0; 945 946 return ret; 947 } 948 949 /* called with port.lock taken and irqs off */ 950 static unsigned int imx_uart_get_mctrl(struct uart_port *port) 951 { 952 struct imx_port *sport = (struct imx_port *)port; 953 unsigned int ret = imx_uart_get_hwmctrl(sport); 954 955 mctrl_gpio_get(sport->gpios, &ret); 956 957 return ret; 958 } 959 960 /* called with port.lock taken and irqs off */ 961 static void imx_uart_set_mctrl(struct uart_port *port, unsigned int mctrl) 962 { 963 struct imx_port *sport = (struct imx_port *)port; 964 u32 ucr3, uts; 965 966 if (!(port->rs485.flags & SER_RS485_ENABLED)) { 967 u32 ucr2; 968 969 ucr2 = imx_uart_readl(sport, UCR2); 970 ucr2 &= ~(UCR2_CTS | UCR2_CTSC); 971 if (mctrl & TIOCM_RTS) 972 ucr2 |= UCR2_CTS | UCR2_CTSC; 973 imx_uart_writel(sport, ucr2, UCR2); 974 } 975 976 ucr3 = imx_uart_readl(sport, UCR3) & ~UCR3_DSR; 977 if (!(mctrl & TIOCM_DTR)) 978 ucr3 |= UCR3_DSR; 979 imx_uart_writel(sport, ucr3, UCR3); 980 981 uts = imx_uart_readl(sport, imx_uart_uts_reg(sport)) & ~UTS_LOOP; 982 if (mctrl & TIOCM_LOOP) 983 uts |= UTS_LOOP; 984 imx_uart_writel(sport, uts, imx_uart_uts_reg(sport)); 985 986 mctrl_gpio_set(sport->gpios, mctrl); 987 } 988 989 /* 990 * Interrupts always disabled. 991 */ 992 static void imx_uart_break_ctl(struct uart_port *port, int break_state) 993 { 994 struct imx_port *sport = (struct imx_port *)port; 995 unsigned long flags; 996 u32 ucr1; 997 998 spin_lock_irqsave(&sport->port.lock, flags); 999 1000 ucr1 = imx_uart_readl(sport, UCR1) & ~UCR1_SNDBRK; 1001 1002 if (break_state != 0) 1003 ucr1 |= UCR1_SNDBRK; 1004 1005 imx_uart_writel(sport, ucr1, UCR1); 1006 1007 spin_unlock_irqrestore(&sport->port.lock, flags); 1008 } 1009 1010 /* 1011 * This is our per-port timeout handler, for checking the 1012 * modem status signals. 1013 */ 1014 static void imx_uart_timeout(struct timer_list *t) 1015 { 1016 struct imx_port *sport = from_timer(sport, t, timer); 1017 unsigned long flags; 1018 1019 if (sport->port.state) { 1020 spin_lock_irqsave(&sport->port.lock, flags); 1021 imx_uart_mctrl_check(sport); 1022 spin_unlock_irqrestore(&sport->port.lock, flags); 1023 1024 mod_timer(&sport->timer, jiffies + MCTRL_TIMEOUT); 1025 } 1026 } 1027 1028 #define RX_BUF_SIZE (PAGE_SIZE) 1029 1030 /* 1031 * There are two kinds of RX DMA interrupts(such as in the MX6Q): 1032 * [1] the RX DMA buffer is full. 1033 * [2] the aging timer expires 1034 * 1035 * Condition [2] is triggered when a character has been sitting in the FIFO 1036 * for at least 8 byte durations. 1037 */ 1038 static void imx_uart_dma_rx_callback(void *data) 1039 { 1040 struct imx_port *sport = data; 1041 struct dma_chan *chan = sport->dma_chan_rx; 1042 struct scatterlist *sgl = &sport->rx_sgl; 1043 struct tty_port *port = &sport->port.state->port; 1044 struct dma_tx_state state; 1045 struct circ_buf *rx_ring = &sport->rx_ring; 1046 enum dma_status status; 1047 unsigned int w_bytes = 0; 1048 unsigned int r_bytes; 1049 unsigned int bd_size; 1050 1051 status = dmaengine_tx_status(chan, sport->rx_cookie, &state); 1052 1053 if (status == DMA_ERROR) { 1054 imx_uart_clear_rx_errors(sport); 1055 return; 1056 } 1057 1058 if (!(sport->port.ignore_status_mask & URXD_DUMMY_READ)) { 1059 1060 /* 1061 * The state-residue variable represents the empty space 1062 * relative to the entire buffer. Taking this in consideration 1063 * the head is always calculated base on the buffer total 1064 * length - DMA transaction residue. The UART script from the 1065 * SDMA firmware will jump to the next buffer descriptor, 1066 * once a DMA transaction if finalized (IMX53 RM - A.4.1.2.4). 1067 * Taking this in consideration the tail is always at the 1068 * beginning of the buffer descriptor that contains the head. 1069 */ 1070 1071 /* Calculate the head */ 1072 rx_ring->head = sg_dma_len(sgl) - state.residue; 1073 1074 /* Calculate the tail. */ 1075 bd_size = sg_dma_len(sgl) / sport->rx_periods; 1076 rx_ring->tail = ((rx_ring->head-1) / bd_size) * bd_size; 1077 1078 if (rx_ring->head <= sg_dma_len(sgl) && 1079 rx_ring->head > rx_ring->tail) { 1080 1081 /* Move data from tail to head */ 1082 r_bytes = rx_ring->head - rx_ring->tail; 1083 1084 /* CPU claims ownership of RX DMA buffer */ 1085 dma_sync_sg_for_cpu(sport->port.dev, sgl, 1, 1086 DMA_FROM_DEVICE); 1087 1088 w_bytes = tty_insert_flip_string(port, 1089 sport->rx_buf + rx_ring->tail, r_bytes); 1090 1091 /* UART retrieves ownership of RX DMA buffer */ 1092 dma_sync_sg_for_device(sport->port.dev, sgl, 1, 1093 DMA_FROM_DEVICE); 1094 1095 if (w_bytes != r_bytes) 1096 sport->port.icount.buf_overrun++; 1097 1098 sport->port.icount.rx += w_bytes; 1099 } else { 1100 WARN_ON(rx_ring->head > sg_dma_len(sgl)); 1101 WARN_ON(rx_ring->head <= rx_ring->tail); 1102 } 1103 } 1104 1105 if (w_bytes) { 1106 tty_flip_buffer_push(port); 1107 dev_dbg(sport->port.dev, "We get %d bytes.\n", w_bytes); 1108 } 1109 } 1110 1111 /* RX DMA buffer periods */ 1112 #define RX_DMA_PERIODS 4 1113 1114 static int imx_uart_start_rx_dma(struct imx_port *sport) 1115 { 1116 struct scatterlist *sgl = &sport->rx_sgl; 1117 struct dma_chan *chan = sport->dma_chan_rx; 1118 struct device *dev = sport->port.dev; 1119 struct dma_async_tx_descriptor *desc; 1120 int ret; 1121 1122 sport->rx_ring.head = 0; 1123 sport->rx_ring.tail = 0; 1124 sport->rx_periods = RX_DMA_PERIODS; 1125 1126 sg_init_one(sgl, sport->rx_buf, RX_BUF_SIZE); 1127 ret = dma_map_sg(dev, sgl, 1, DMA_FROM_DEVICE); 1128 if (ret == 0) { 1129 dev_err(dev, "DMA mapping error for RX.\n"); 1130 return -EINVAL; 1131 } 1132 1133 desc = dmaengine_prep_dma_cyclic(chan, sg_dma_address(sgl), 1134 sg_dma_len(sgl), sg_dma_len(sgl) / sport->rx_periods, 1135 DMA_DEV_TO_MEM, DMA_PREP_INTERRUPT); 1136 1137 if (!desc) { 1138 dma_unmap_sg(dev, sgl, 1, DMA_FROM_DEVICE); 1139 dev_err(dev, "We cannot prepare for the RX slave dma!\n"); 1140 return -EINVAL; 1141 } 1142 desc->callback = imx_uart_dma_rx_callback; 1143 desc->callback_param = sport; 1144 1145 dev_dbg(dev, "RX: prepare for the DMA.\n"); 1146 sport->dma_is_rxing = 1; 1147 sport->rx_cookie = dmaengine_submit(desc); 1148 dma_async_issue_pending(chan); 1149 return 0; 1150 } 1151 1152 static void imx_uart_clear_rx_errors(struct imx_port *sport) 1153 { 1154 struct tty_port *port = &sport->port.state->port; 1155 u32 usr1, usr2; 1156 1157 usr1 = imx_uart_readl(sport, USR1); 1158 usr2 = imx_uart_readl(sport, USR2); 1159 1160 if (usr2 & USR2_BRCD) { 1161 sport->port.icount.brk++; 1162 imx_uart_writel(sport, USR2_BRCD, USR2); 1163 uart_handle_break(&sport->port); 1164 if (tty_insert_flip_char(port, 0, TTY_BREAK) == 0) 1165 sport->port.icount.buf_overrun++; 1166 tty_flip_buffer_push(port); 1167 } else { 1168 dev_err(sport->port.dev, "DMA transaction error.\n"); 1169 if (usr1 & USR1_FRAMERR) { 1170 sport->port.icount.frame++; 1171 imx_uart_writel(sport, USR1_FRAMERR, USR1); 1172 } else if (usr1 & USR1_PARITYERR) { 1173 sport->port.icount.parity++; 1174 imx_uart_writel(sport, USR1_PARITYERR, USR1); 1175 } 1176 } 1177 1178 if (usr2 & USR2_ORE) { 1179 sport->port.icount.overrun++; 1180 imx_uart_writel(sport, USR2_ORE, USR2); 1181 } 1182 1183 } 1184 1185 #define TXTL_DEFAULT 2 /* reset default */ 1186 #define RXTL_DEFAULT 1 /* reset default */ 1187 #define TXTL_DMA 8 /* DMA burst setting */ 1188 #define RXTL_DMA 9 /* DMA burst setting */ 1189 1190 static void imx_uart_setup_ufcr(struct imx_port *sport, 1191 unsigned char txwl, unsigned char rxwl) 1192 { 1193 unsigned int val; 1194 1195 /* set receiver / transmitter trigger level */ 1196 val = imx_uart_readl(sport, UFCR) & (UFCR_RFDIV | UFCR_DCEDTE); 1197 val |= txwl << UFCR_TXTL_SHF | rxwl; 1198 imx_uart_writel(sport, val, UFCR); 1199 } 1200 1201 static void imx_uart_dma_exit(struct imx_port *sport) 1202 { 1203 if (sport->dma_chan_rx) { 1204 dmaengine_terminate_sync(sport->dma_chan_rx); 1205 dma_release_channel(sport->dma_chan_rx); 1206 sport->dma_chan_rx = NULL; 1207 sport->rx_cookie = -EINVAL; 1208 kfree(sport->rx_buf); 1209 sport->rx_buf = NULL; 1210 } 1211 1212 if (sport->dma_chan_tx) { 1213 dmaengine_terminate_sync(sport->dma_chan_tx); 1214 dma_release_channel(sport->dma_chan_tx); 1215 sport->dma_chan_tx = NULL; 1216 } 1217 } 1218 1219 static int imx_uart_dma_init(struct imx_port *sport) 1220 { 1221 struct dma_slave_config slave_config = {}; 1222 struct device *dev = sport->port.dev; 1223 int ret; 1224 1225 /* Prepare for RX : */ 1226 sport->dma_chan_rx = dma_request_slave_channel(dev, "rx"); 1227 if (!sport->dma_chan_rx) { 1228 dev_dbg(dev, "cannot get the DMA channel.\n"); 1229 ret = -EINVAL; 1230 goto err; 1231 } 1232 1233 slave_config.direction = DMA_DEV_TO_MEM; 1234 slave_config.src_addr = sport->port.mapbase + URXD0; 1235 slave_config.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE; 1236 /* one byte less than the watermark level to enable the aging timer */ 1237 slave_config.src_maxburst = RXTL_DMA - 1; 1238 ret = dmaengine_slave_config(sport->dma_chan_rx, &slave_config); 1239 if (ret) { 1240 dev_err(dev, "error in RX dma configuration.\n"); 1241 goto err; 1242 } 1243 1244 sport->rx_buf = kzalloc(RX_BUF_SIZE, GFP_KERNEL); 1245 if (!sport->rx_buf) { 1246 ret = -ENOMEM; 1247 goto err; 1248 } 1249 sport->rx_ring.buf = sport->rx_buf; 1250 1251 /* Prepare for TX : */ 1252 sport->dma_chan_tx = dma_request_slave_channel(dev, "tx"); 1253 if (!sport->dma_chan_tx) { 1254 dev_err(dev, "cannot get the TX DMA channel!\n"); 1255 ret = -EINVAL; 1256 goto err; 1257 } 1258 1259 slave_config.direction = DMA_MEM_TO_DEV; 1260 slave_config.dst_addr = sport->port.mapbase + URTX0; 1261 slave_config.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE; 1262 slave_config.dst_maxburst = TXTL_DMA; 1263 ret = dmaengine_slave_config(sport->dma_chan_tx, &slave_config); 1264 if (ret) { 1265 dev_err(dev, "error in TX dma configuration."); 1266 goto err; 1267 } 1268 1269 return 0; 1270 err: 1271 imx_uart_dma_exit(sport); 1272 return ret; 1273 } 1274 1275 static void imx_uart_enable_dma(struct imx_port *sport) 1276 { 1277 u32 ucr1; 1278 1279 imx_uart_setup_ufcr(sport, TXTL_DMA, RXTL_DMA); 1280 1281 /* set UCR1 */ 1282 ucr1 = imx_uart_readl(sport, UCR1); 1283 ucr1 |= UCR1_RXDMAEN | UCR1_TXDMAEN | UCR1_ATDMAEN; 1284 imx_uart_writel(sport, ucr1, UCR1); 1285 1286 sport->dma_is_enabled = 1; 1287 } 1288 1289 static void imx_uart_disable_dma(struct imx_port *sport) 1290 { 1291 u32 ucr1; 1292 1293 /* clear UCR1 */ 1294 ucr1 = imx_uart_readl(sport, UCR1); 1295 ucr1 &= ~(UCR1_RXDMAEN | UCR1_TXDMAEN | UCR1_ATDMAEN); 1296 imx_uart_writel(sport, ucr1, UCR1); 1297 1298 imx_uart_setup_ufcr(sport, TXTL_DEFAULT, RXTL_DEFAULT); 1299 1300 sport->dma_is_enabled = 0; 1301 } 1302 1303 /* half the RX buffer size */ 1304 #define CTSTL 16 1305 1306 static int imx_uart_startup(struct uart_port *port) 1307 { 1308 struct imx_port *sport = (struct imx_port *)port; 1309 int retval, i; 1310 unsigned long flags; 1311 int dma_is_inited = 0; 1312 u32 ucr1, ucr2, ucr4; 1313 1314 retval = clk_prepare_enable(sport->clk_per); 1315 if (retval) 1316 return retval; 1317 retval = clk_prepare_enable(sport->clk_ipg); 1318 if (retval) { 1319 clk_disable_unprepare(sport->clk_per); 1320 return retval; 1321 } 1322 1323 imx_uart_setup_ufcr(sport, TXTL_DEFAULT, RXTL_DEFAULT); 1324 1325 /* disable the DREN bit (Data Ready interrupt enable) before 1326 * requesting IRQs 1327 */ 1328 ucr4 = imx_uart_readl(sport, UCR4); 1329 1330 /* set the trigger level for CTS */ 1331 ucr4 &= ~(UCR4_CTSTL_MASK << UCR4_CTSTL_SHF); 1332 ucr4 |= CTSTL << UCR4_CTSTL_SHF; 1333 1334 imx_uart_writel(sport, ucr4 & ~UCR4_DREN, UCR4); 1335 1336 /* Can we enable the DMA support? */ 1337 if (!uart_console(port) && imx_uart_dma_init(sport) == 0) 1338 dma_is_inited = 1; 1339 1340 spin_lock_irqsave(&sport->port.lock, flags); 1341 /* Reset fifo's and state machines */ 1342 i = 100; 1343 1344 ucr2 = imx_uart_readl(sport, UCR2); 1345 ucr2 &= ~UCR2_SRST; 1346 imx_uart_writel(sport, ucr2, UCR2); 1347 1348 while (!(imx_uart_readl(sport, UCR2) & UCR2_SRST) && (--i > 0)) 1349 udelay(1); 1350 1351 /* 1352 * Finally, clear and enable interrupts 1353 */ 1354 imx_uart_writel(sport, USR1_RTSD | USR1_DTRD, USR1); 1355 imx_uart_writel(sport, USR2_ORE, USR2); 1356 1357 ucr1 = imx_uart_readl(sport, UCR1) & ~UCR1_RRDYEN; 1358 ucr1 |= UCR1_UARTEN; 1359 if (sport->have_rtscts) 1360 ucr1 |= UCR1_RTSDEN; 1361 1362 imx_uart_writel(sport, ucr1, UCR1); 1363 1364 ucr4 = imx_uart_readl(sport, UCR4) & ~UCR4_OREN; 1365 if (!sport->dma_is_enabled) 1366 ucr4 |= UCR4_OREN; 1367 imx_uart_writel(sport, ucr4, UCR4); 1368 1369 ucr2 = imx_uart_readl(sport, UCR2) & ~UCR2_ATEN; 1370 ucr2 |= (UCR2_RXEN | UCR2_TXEN); 1371 if (!sport->have_rtscts) 1372 ucr2 |= UCR2_IRTS; 1373 /* 1374 * make sure the edge sensitive RTS-irq is disabled, 1375 * we're using RTSD instead. 1376 */ 1377 if (!imx_uart_is_imx1(sport)) 1378 ucr2 &= ~UCR2_RTSEN; 1379 imx_uart_writel(sport, ucr2, UCR2); 1380 1381 if (!imx_uart_is_imx1(sport)) { 1382 u32 ucr3; 1383 1384 ucr3 = imx_uart_readl(sport, UCR3); 1385 1386 ucr3 |= UCR3_DTRDEN | UCR3_RI | UCR3_DCD; 1387 1388 if (sport->dte_mode) 1389 /* disable broken interrupts */ 1390 ucr3 &= ~(UCR3_RI | UCR3_DCD); 1391 1392 imx_uart_writel(sport, ucr3, UCR3); 1393 } 1394 1395 /* 1396 * Enable modem status interrupts 1397 */ 1398 imx_uart_enable_ms(&sport->port); 1399 1400 if (dma_is_inited) { 1401 imx_uart_enable_dma(sport); 1402 imx_uart_start_rx_dma(sport); 1403 } else { 1404 ucr1 = imx_uart_readl(sport, UCR1); 1405 ucr1 |= UCR1_RRDYEN; 1406 imx_uart_writel(sport, ucr1, UCR1); 1407 1408 ucr2 = imx_uart_readl(sport, UCR2); 1409 ucr2 |= UCR2_ATEN; 1410 imx_uart_writel(sport, ucr2, UCR2); 1411 } 1412 1413 spin_unlock_irqrestore(&sport->port.lock, flags); 1414 1415 return 0; 1416 } 1417 1418 static void imx_uart_shutdown(struct uart_port *port) 1419 { 1420 struct imx_port *sport = (struct imx_port *)port; 1421 unsigned long flags; 1422 u32 ucr1, ucr2, ucr4; 1423 1424 if (sport->dma_is_enabled) { 1425 dmaengine_terminate_sync(sport->dma_chan_tx); 1426 if (sport->dma_is_txing) { 1427 dma_unmap_sg(sport->port.dev, &sport->tx_sgl[0], 1428 sport->dma_tx_nents, DMA_TO_DEVICE); 1429 sport->dma_is_txing = 0; 1430 } 1431 dmaengine_terminate_sync(sport->dma_chan_rx); 1432 if (sport->dma_is_rxing) { 1433 dma_unmap_sg(sport->port.dev, &sport->rx_sgl, 1434 1, DMA_FROM_DEVICE); 1435 sport->dma_is_rxing = 0; 1436 } 1437 1438 spin_lock_irqsave(&sport->port.lock, flags); 1439 imx_uart_stop_tx(port); 1440 imx_uart_stop_rx(port); 1441 imx_uart_disable_dma(sport); 1442 spin_unlock_irqrestore(&sport->port.lock, flags); 1443 imx_uart_dma_exit(sport); 1444 } 1445 1446 mctrl_gpio_disable_ms(sport->gpios); 1447 1448 spin_lock_irqsave(&sport->port.lock, flags); 1449 ucr2 = imx_uart_readl(sport, UCR2); 1450 ucr2 &= ~(UCR2_TXEN | UCR2_ATEN); 1451 imx_uart_writel(sport, ucr2, UCR2); 1452 1453 ucr4 = imx_uart_readl(sport, UCR4); 1454 ucr4 &= ~UCR4_OREN; 1455 imx_uart_writel(sport, ucr4, UCR4); 1456 spin_unlock_irqrestore(&sport->port.lock, flags); 1457 1458 /* 1459 * Stop our timer. 1460 */ 1461 del_timer_sync(&sport->timer); 1462 1463 /* 1464 * Disable all interrupts, port and break condition. 1465 */ 1466 1467 spin_lock_irqsave(&sport->port.lock, flags); 1468 ucr1 = imx_uart_readl(sport, UCR1); 1469 ucr1 &= ~(UCR1_TXMPTYEN | UCR1_RRDYEN | UCR1_RTSDEN | UCR1_UARTEN | UCR1_RXDMAEN | UCR1_ATDMAEN); 1470 1471 imx_uart_writel(sport, ucr1, UCR1); 1472 spin_unlock_irqrestore(&sport->port.lock, flags); 1473 1474 clk_disable_unprepare(sport->clk_per); 1475 clk_disable_unprepare(sport->clk_ipg); 1476 } 1477 1478 /* called with port.lock taken and irqs off */ 1479 static void imx_uart_flush_buffer(struct uart_port *port) 1480 { 1481 struct imx_port *sport = (struct imx_port *)port; 1482 struct scatterlist *sgl = &sport->tx_sgl[0]; 1483 u32 ucr2; 1484 int i = 100, ubir, ubmr, uts; 1485 1486 if (!sport->dma_chan_tx) 1487 return; 1488 1489 sport->tx_bytes = 0; 1490 dmaengine_terminate_all(sport->dma_chan_tx); 1491 if (sport->dma_is_txing) { 1492 u32 ucr1; 1493 1494 dma_unmap_sg(sport->port.dev, sgl, sport->dma_tx_nents, 1495 DMA_TO_DEVICE); 1496 ucr1 = imx_uart_readl(sport, UCR1); 1497 ucr1 &= ~UCR1_TXDMAEN; 1498 imx_uart_writel(sport, ucr1, UCR1); 1499 sport->dma_is_txing = 0; 1500 } 1501 1502 /* 1503 * According to the Reference Manual description of the UART SRST bit: 1504 * 1505 * "Reset the transmit and receive state machines, 1506 * all FIFOs and register USR1, USR2, UBIR, UBMR, UBRC, URXD, UTXD 1507 * and UTS[6-3]". 1508 * 1509 * We don't need to restore the old values from USR1, USR2, URXD and 1510 * UTXD. UBRC is read only, so only save/restore the other three 1511 * registers. 1512 */ 1513 ubir = imx_uart_readl(sport, UBIR); 1514 ubmr = imx_uart_readl(sport, UBMR); 1515 uts = imx_uart_readl(sport, IMX21_UTS); 1516 1517 ucr2 = imx_uart_readl(sport, UCR2); 1518 ucr2 &= ~UCR2_SRST; 1519 imx_uart_writel(sport, ucr2, UCR2); 1520 1521 while (!(imx_uart_readl(sport, UCR2) & UCR2_SRST) && (--i > 0)) 1522 udelay(1); 1523 1524 /* Restore the registers */ 1525 imx_uart_writel(sport, ubir, UBIR); 1526 imx_uart_writel(sport, ubmr, UBMR); 1527 imx_uart_writel(sport, uts, IMX21_UTS); 1528 } 1529 1530 static void 1531 imx_uart_set_termios(struct uart_port *port, struct ktermios *termios, 1532 struct ktermios *old) 1533 { 1534 struct imx_port *sport = (struct imx_port *)port; 1535 unsigned long flags; 1536 u32 ucr2, old_ucr1, old_ucr2, ufcr; 1537 unsigned int baud, quot; 1538 unsigned int old_csize = old ? old->c_cflag & CSIZE : CS8; 1539 unsigned long div; 1540 unsigned long num, denom; 1541 uint64_t tdiv64; 1542 1543 /* 1544 * We only support CS7 and CS8. 1545 */ 1546 while ((termios->c_cflag & CSIZE) != CS7 && 1547 (termios->c_cflag & CSIZE) != CS8) { 1548 termios->c_cflag &= ~CSIZE; 1549 termios->c_cflag |= old_csize; 1550 old_csize = CS8; 1551 } 1552 1553 if ((termios->c_cflag & CSIZE) == CS8) 1554 ucr2 = UCR2_WS | UCR2_SRST | UCR2_IRTS; 1555 else 1556 ucr2 = UCR2_SRST | UCR2_IRTS; 1557 1558 if (termios->c_cflag & CRTSCTS) { 1559 if (sport->have_rtscts) { 1560 ucr2 &= ~UCR2_IRTS; 1561 1562 if (port->rs485.flags & SER_RS485_ENABLED) { 1563 /* 1564 * RTS is mandatory for rs485 operation, so keep 1565 * it under manual control and keep transmitter 1566 * disabled. 1567 */ 1568 if (port->rs485.flags & 1569 SER_RS485_RTS_AFTER_SEND) 1570 imx_uart_rts_active(sport, &ucr2); 1571 else 1572 imx_uart_rts_inactive(sport, &ucr2); 1573 } else { 1574 imx_uart_rts_auto(sport, &ucr2); 1575 } 1576 } else { 1577 termios->c_cflag &= ~CRTSCTS; 1578 } 1579 } else if (port->rs485.flags & SER_RS485_ENABLED) { 1580 /* disable transmitter */ 1581 if (port->rs485.flags & SER_RS485_RTS_AFTER_SEND) 1582 imx_uart_rts_active(sport, &ucr2); 1583 else 1584 imx_uart_rts_inactive(sport, &ucr2); 1585 } 1586 1587 1588 if (termios->c_cflag & CSTOPB) 1589 ucr2 |= UCR2_STPB; 1590 if (termios->c_cflag & PARENB) { 1591 ucr2 |= UCR2_PREN; 1592 if (termios->c_cflag & PARODD) 1593 ucr2 |= UCR2_PROE; 1594 } 1595 1596 del_timer_sync(&sport->timer); 1597 1598 /* 1599 * Ask the core to calculate the divisor for us. 1600 */ 1601 baud = uart_get_baud_rate(port, termios, old, 50, port->uartclk / 16); 1602 quot = uart_get_divisor(port, baud); 1603 1604 spin_lock_irqsave(&sport->port.lock, flags); 1605 1606 sport->port.read_status_mask = 0; 1607 if (termios->c_iflag & INPCK) 1608 sport->port.read_status_mask |= (URXD_FRMERR | URXD_PRERR); 1609 if (termios->c_iflag & (BRKINT | PARMRK)) 1610 sport->port.read_status_mask |= URXD_BRK; 1611 1612 /* 1613 * Characters to ignore 1614 */ 1615 sport->port.ignore_status_mask = 0; 1616 if (termios->c_iflag & IGNPAR) 1617 sport->port.ignore_status_mask |= URXD_PRERR | URXD_FRMERR; 1618 if (termios->c_iflag & IGNBRK) { 1619 sport->port.ignore_status_mask |= URXD_BRK; 1620 /* 1621 * If we're ignoring parity and break indicators, 1622 * ignore overruns too (for real raw support). 1623 */ 1624 if (termios->c_iflag & IGNPAR) 1625 sport->port.ignore_status_mask |= URXD_OVRRUN; 1626 } 1627 1628 if ((termios->c_cflag & CREAD) == 0) 1629 sport->port.ignore_status_mask |= URXD_DUMMY_READ; 1630 1631 /* 1632 * Update the per-port timeout. 1633 */ 1634 uart_update_timeout(port, termios->c_cflag, baud); 1635 1636 /* 1637 * disable interrupts and drain transmitter 1638 */ 1639 old_ucr1 = imx_uart_readl(sport, UCR1); 1640 imx_uart_writel(sport, 1641 old_ucr1 & ~(UCR1_TXMPTYEN | UCR1_RRDYEN | UCR1_RTSDEN), 1642 UCR1); 1643 old_ucr2 = imx_uart_readl(sport, UCR2); 1644 imx_uart_writel(sport, old_ucr2 & ~UCR2_ATEN, UCR2); 1645 1646 while (!(imx_uart_readl(sport, USR2) & USR2_TXDC)) 1647 barrier(); 1648 1649 /* then, disable everything */ 1650 imx_uart_writel(sport, old_ucr2 & ~(UCR2_TXEN | UCR2_RXEN | UCR2_ATEN), UCR2); 1651 old_ucr2 &= (UCR2_TXEN | UCR2_RXEN | UCR2_ATEN); 1652 1653 /* custom-baudrate handling */ 1654 div = sport->port.uartclk / (baud * 16); 1655 if (baud == 38400 && quot != div) 1656 baud = sport->port.uartclk / (quot * 16); 1657 1658 div = sport->port.uartclk / (baud * 16); 1659 if (div > 7) 1660 div = 7; 1661 if (!div) 1662 div = 1; 1663 1664 rational_best_approximation(16 * div * baud, sport->port.uartclk, 1665 1 << 16, 1 << 16, &num, &denom); 1666 1667 tdiv64 = sport->port.uartclk; 1668 tdiv64 *= num; 1669 do_div(tdiv64, denom * 16 * div); 1670 tty_termios_encode_baud_rate(termios, 1671 (speed_t)tdiv64, (speed_t)tdiv64); 1672 1673 num -= 1; 1674 denom -= 1; 1675 1676 ufcr = imx_uart_readl(sport, UFCR); 1677 ufcr = (ufcr & (~UFCR_RFDIV)) | UFCR_RFDIV_REG(div); 1678 imx_uart_writel(sport, ufcr, UFCR); 1679 1680 imx_uart_writel(sport, num, UBIR); 1681 imx_uart_writel(sport, denom, UBMR); 1682 1683 if (!imx_uart_is_imx1(sport)) 1684 imx_uart_writel(sport, sport->port.uartclk / div / 1000, 1685 IMX21_ONEMS); 1686 1687 imx_uart_writel(sport, old_ucr1, UCR1); 1688 1689 /* set the parity, stop bits and data size */ 1690 imx_uart_writel(sport, ucr2 | old_ucr2, UCR2); 1691 1692 if (UART_ENABLE_MS(&sport->port, termios->c_cflag)) 1693 imx_uart_enable_ms(&sport->port); 1694 1695 spin_unlock_irqrestore(&sport->port.lock, flags); 1696 } 1697 1698 static const char *imx_uart_type(struct uart_port *port) 1699 { 1700 struct imx_port *sport = (struct imx_port *)port; 1701 1702 return sport->port.type == PORT_IMX ? "IMX" : NULL; 1703 } 1704 1705 /* 1706 * Configure/autoconfigure the port. 1707 */ 1708 static void imx_uart_config_port(struct uart_port *port, int flags) 1709 { 1710 struct imx_port *sport = (struct imx_port *)port; 1711 1712 if (flags & UART_CONFIG_TYPE) 1713 sport->port.type = PORT_IMX; 1714 } 1715 1716 /* 1717 * Verify the new serial_struct (for TIOCSSERIAL). 1718 * The only change we allow are to the flags and type, and 1719 * even then only between PORT_IMX and PORT_UNKNOWN 1720 */ 1721 static int 1722 imx_uart_verify_port(struct uart_port *port, struct serial_struct *ser) 1723 { 1724 struct imx_port *sport = (struct imx_port *)port; 1725 int ret = 0; 1726 1727 if (ser->type != PORT_UNKNOWN && ser->type != PORT_IMX) 1728 ret = -EINVAL; 1729 if (sport->port.irq != ser->irq) 1730 ret = -EINVAL; 1731 if (ser->io_type != UPIO_MEM) 1732 ret = -EINVAL; 1733 if (sport->port.uartclk / 16 != ser->baud_base) 1734 ret = -EINVAL; 1735 if (sport->port.mapbase != (unsigned long)ser->iomem_base) 1736 ret = -EINVAL; 1737 if (sport->port.iobase != ser->port) 1738 ret = -EINVAL; 1739 if (ser->hub6 != 0) 1740 ret = -EINVAL; 1741 return ret; 1742 } 1743 1744 #if defined(CONFIG_CONSOLE_POLL) 1745 1746 static int imx_uart_poll_init(struct uart_port *port) 1747 { 1748 struct imx_port *sport = (struct imx_port *)port; 1749 unsigned long flags; 1750 u32 ucr1, ucr2; 1751 int retval; 1752 1753 retval = clk_prepare_enable(sport->clk_ipg); 1754 if (retval) 1755 return retval; 1756 retval = clk_prepare_enable(sport->clk_per); 1757 if (retval) 1758 clk_disable_unprepare(sport->clk_ipg); 1759 1760 imx_uart_setup_ufcr(sport, TXTL_DEFAULT, RXTL_DEFAULT); 1761 1762 spin_lock_irqsave(&sport->port.lock, flags); 1763 1764 /* 1765 * Be careful about the order of enabling bits here. First enable the 1766 * receiver (UARTEN + RXEN) and only then the corresponding irqs. 1767 * This prevents that a character that already sits in the RX fifo is 1768 * triggering an irq but the try to fetch it from there results in an 1769 * exception because UARTEN or RXEN is still off. 1770 */ 1771 ucr1 = imx_uart_readl(sport, UCR1); 1772 ucr2 = imx_uart_readl(sport, UCR2); 1773 1774 if (imx_uart_is_imx1(sport)) 1775 ucr1 |= IMX1_UCR1_UARTCLKEN; 1776 1777 ucr1 |= UCR1_UARTEN; 1778 ucr1 &= ~(UCR1_TXMPTYEN | UCR1_RTSDEN | UCR1_RRDYEN); 1779 1780 ucr2 |= UCR2_RXEN; 1781 ucr2 &= ~UCR2_ATEN; 1782 1783 imx_uart_writel(sport, ucr1, UCR1); 1784 imx_uart_writel(sport, ucr2, UCR2); 1785 1786 /* now enable irqs */ 1787 imx_uart_writel(sport, ucr1 | UCR1_RRDYEN, UCR1); 1788 imx_uart_writel(sport, ucr2 | UCR2_ATEN, UCR2); 1789 1790 spin_unlock_irqrestore(&sport->port.lock, flags); 1791 1792 return 0; 1793 } 1794 1795 static int imx_uart_poll_get_char(struct uart_port *port) 1796 { 1797 struct imx_port *sport = (struct imx_port *)port; 1798 if (!(imx_uart_readl(sport, USR2) & USR2_RDR)) 1799 return NO_POLL_CHAR; 1800 1801 return imx_uart_readl(sport, URXD0) & URXD_RX_DATA; 1802 } 1803 1804 static void imx_uart_poll_put_char(struct uart_port *port, unsigned char c) 1805 { 1806 struct imx_port *sport = (struct imx_port *)port; 1807 unsigned int status; 1808 1809 /* drain */ 1810 do { 1811 status = imx_uart_readl(sport, USR1); 1812 } while (~status & USR1_TRDY); 1813 1814 /* write */ 1815 imx_uart_writel(sport, c, URTX0); 1816 1817 /* flush */ 1818 do { 1819 status = imx_uart_readl(sport, USR2); 1820 } while (~status & USR2_TXDC); 1821 } 1822 #endif 1823 1824 /* called with port.lock taken and irqs off or from .probe without locking */ 1825 static int imx_uart_rs485_config(struct uart_port *port, 1826 struct serial_rs485 *rs485conf) 1827 { 1828 struct imx_port *sport = (struct imx_port *)port; 1829 u32 ucr2; 1830 1831 /* unimplemented */ 1832 rs485conf->delay_rts_before_send = 0; 1833 rs485conf->delay_rts_after_send = 0; 1834 1835 /* RTS is required to control the transmitter */ 1836 if (!sport->have_rtscts && !sport->have_rtsgpio) 1837 rs485conf->flags &= ~SER_RS485_ENABLED; 1838 1839 if (rs485conf->flags & SER_RS485_ENABLED) { 1840 /* Enable receiver if low-active RTS signal is requested */ 1841 if (sport->have_rtscts && !sport->have_rtsgpio && 1842 !(rs485conf->flags & SER_RS485_RTS_ON_SEND)) 1843 rs485conf->flags |= SER_RS485_RX_DURING_TX; 1844 1845 /* disable transmitter */ 1846 ucr2 = imx_uart_readl(sport, UCR2); 1847 if (rs485conf->flags & SER_RS485_RTS_AFTER_SEND) 1848 imx_uart_rts_active(sport, &ucr2); 1849 else 1850 imx_uart_rts_inactive(sport, &ucr2); 1851 imx_uart_writel(sport, ucr2, UCR2); 1852 } 1853 1854 /* Make sure Rx is enabled in case Tx is active with Rx disabled */ 1855 if (!(rs485conf->flags & SER_RS485_ENABLED) || 1856 rs485conf->flags & SER_RS485_RX_DURING_TX) 1857 imx_uart_start_rx(port); 1858 1859 port->rs485 = *rs485conf; 1860 1861 return 0; 1862 } 1863 1864 static const struct uart_ops imx_uart_pops = { 1865 .tx_empty = imx_uart_tx_empty, 1866 .set_mctrl = imx_uart_set_mctrl, 1867 .get_mctrl = imx_uart_get_mctrl, 1868 .stop_tx = imx_uart_stop_tx, 1869 .start_tx = imx_uart_start_tx, 1870 .stop_rx = imx_uart_stop_rx, 1871 .enable_ms = imx_uart_enable_ms, 1872 .break_ctl = imx_uart_break_ctl, 1873 .startup = imx_uart_startup, 1874 .shutdown = imx_uart_shutdown, 1875 .flush_buffer = imx_uart_flush_buffer, 1876 .set_termios = imx_uart_set_termios, 1877 .type = imx_uart_type, 1878 .config_port = imx_uart_config_port, 1879 .verify_port = imx_uart_verify_port, 1880 #if defined(CONFIG_CONSOLE_POLL) 1881 .poll_init = imx_uart_poll_init, 1882 .poll_get_char = imx_uart_poll_get_char, 1883 .poll_put_char = imx_uart_poll_put_char, 1884 #endif 1885 }; 1886 1887 static struct imx_port *imx_uart_ports[UART_NR]; 1888 1889 #ifdef CONFIG_SERIAL_IMX_CONSOLE 1890 static void imx_uart_console_putchar(struct uart_port *port, int ch) 1891 { 1892 struct imx_port *sport = (struct imx_port *)port; 1893 1894 while (imx_uart_readl(sport, imx_uart_uts_reg(sport)) & UTS_TXFULL) 1895 barrier(); 1896 1897 imx_uart_writel(sport, ch, URTX0); 1898 } 1899 1900 /* 1901 * Interrupts are disabled on entering 1902 */ 1903 static void 1904 imx_uart_console_write(struct console *co, const char *s, unsigned int count) 1905 { 1906 struct imx_port *sport = imx_uart_ports[co->index]; 1907 struct imx_port_ucrs old_ucr; 1908 unsigned int ucr1; 1909 unsigned long flags = 0; 1910 int locked = 1; 1911 int retval; 1912 1913 retval = clk_enable(sport->clk_per); 1914 if (retval) 1915 return; 1916 retval = clk_enable(sport->clk_ipg); 1917 if (retval) { 1918 clk_disable(sport->clk_per); 1919 return; 1920 } 1921 1922 if (sport->port.sysrq) 1923 locked = 0; 1924 else if (oops_in_progress) 1925 locked = spin_trylock_irqsave(&sport->port.lock, flags); 1926 else 1927 spin_lock_irqsave(&sport->port.lock, flags); 1928 1929 /* 1930 * First, save UCR1/2/3 and then disable interrupts 1931 */ 1932 imx_uart_ucrs_save(sport, &old_ucr); 1933 ucr1 = old_ucr.ucr1; 1934 1935 if (imx_uart_is_imx1(sport)) 1936 ucr1 |= IMX1_UCR1_UARTCLKEN; 1937 ucr1 |= UCR1_UARTEN; 1938 ucr1 &= ~(UCR1_TXMPTYEN | UCR1_RRDYEN | UCR1_RTSDEN); 1939 1940 imx_uart_writel(sport, ucr1, UCR1); 1941 1942 imx_uart_writel(sport, old_ucr.ucr2 | UCR2_TXEN, UCR2); 1943 1944 uart_console_write(&sport->port, s, count, imx_uart_console_putchar); 1945 1946 /* 1947 * Finally, wait for transmitter to become empty 1948 * and restore UCR1/2/3 1949 */ 1950 while (!(imx_uart_readl(sport, USR2) & USR2_TXDC)); 1951 1952 imx_uart_ucrs_restore(sport, &old_ucr); 1953 1954 if (locked) 1955 spin_unlock_irqrestore(&sport->port.lock, flags); 1956 1957 clk_disable(sport->clk_ipg); 1958 clk_disable(sport->clk_per); 1959 } 1960 1961 /* 1962 * If the port was already initialised (eg, by a boot loader), 1963 * try to determine the current setup. 1964 */ 1965 static void __init 1966 imx_uart_console_get_options(struct imx_port *sport, int *baud, 1967 int *parity, int *bits) 1968 { 1969 1970 if (imx_uart_readl(sport, UCR1) & UCR1_UARTEN) { 1971 /* ok, the port was enabled */ 1972 unsigned int ucr2, ubir, ubmr, uartclk; 1973 unsigned int baud_raw; 1974 unsigned int ucfr_rfdiv; 1975 1976 ucr2 = imx_uart_readl(sport, UCR2); 1977 1978 *parity = 'n'; 1979 if (ucr2 & UCR2_PREN) { 1980 if (ucr2 & UCR2_PROE) 1981 *parity = 'o'; 1982 else 1983 *parity = 'e'; 1984 } 1985 1986 if (ucr2 & UCR2_WS) 1987 *bits = 8; 1988 else 1989 *bits = 7; 1990 1991 ubir = imx_uart_readl(sport, UBIR) & 0xffff; 1992 ubmr = imx_uart_readl(sport, UBMR) & 0xffff; 1993 1994 ucfr_rfdiv = (imx_uart_readl(sport, UFCR) & UFCR_RFDIV) >> 7; 1995 if (ucfr_rfdiv == 6) 1996 ucfr_rfdiv = 7; 1997 else 1998 ucfr_rfdiv = 6 - ucfr_rfdiv; 1999 2000 uartclk = clk_get_rate(sport->clk_per); 2001 uartclk /= ucfr_rfdiv; 2002 2003 { /* 2004 * The next code provides exact computation of 2005 * baud_raw = round(((uartclk/16) * (ubir + 1)) / (ubmr + 1)) 2006 * without need of float support or long long division, 2007 * which would be required to prevent 32bit arithmetic overflow 2008 */ 2009 unsigned int mul = ubir + 1; 2010 unsigned int div = 16 * (ubmr + 1); 2011 unsigned int rem = uartclk % div; 2012 2013 baud_raw = (uartclk / div) * mul; 2014 baud_raw += (rem * mul + div / 2) / div; 2015 *baud = (baud_raw + 50) / 100 * 100; 2016 } 2017 2018 if (*baud != baud_raw) 2019 pr_info("Console IMX rounded baud rate from %d to %d\n", 2020 baud_raw, *baud); 2021 } 2022 } 2023 2024 static int __init 2025 imx_uart_console_setup(struct console *co, char *options) 2026 { 2027 struct imx_port *sport; 2028 int baud = 9600; 2029 int bits = 8; 2030 int parity = 'n'; 2031 int flow = 'n'; 2032 int retval; 2033 2034 /* 2035 * Check whether an invalid uart number has been specified, and 2036 * if so, search for the first available port that does have 2037 * console support. 2038 */ 2039 if (co->index == -1 || co->index >= ARRAY_SIZE(imx_uart_ports)) 2040 co->index = 0; 2041 sport = imx_uart_ports[co->index]; 2042 if (sport == NULL) 2043 return -ENODEV; 2044 2045 /* For setting the registers, we only need to enable the ipg clock. */ 2046 retval = clk_prepare_enable(sport->clk_ipg); 2047 if (retval) 2048 goto error_console; 2049 2050 if (options) 2051 uart_parse_options(options, &baud, &parity, &bits, &flow); 2052 else 2053 imx_uart_console_get_options(sport, &baud, &parity, &bits); 2054 2055 imx_uart_setup_ufcr(sport, TXTL_DEFAULT, RXTL_DEFAULT); 2056 2057 retval = uart_set_options(&sport->port, co, baud, parity, bits, flow); 2058 2059 clk_disable(sport->clk_ipg); 2060 if (retval) { 2061 clk_unprepare(sport->clk_ipg); 2062 goto error_console; 2063 } 2064 2065 retval = clk_prepare(sport->clk_per); 2066 if (retval) 2067 clk_disable_unprepare(sport->clk_ipg); 2068 2069 error_console: 2070 return retval; 2071 } 2072 2073 static struct uart_driver imx_uart_uart_driver; 2074 static struct console imx_uart_console = { 2075 .name = DEV_NAME, 2076 .write = imx_uart_console_write, 2077 .device = uart_console_device, 2078 .setup = imx_uart_console_setup, 2079 .flags = CON_PRINTBUFFER, 2080 .index = -1, 2081 .data = &imx_uart_uart_driver, 2082 }; 2083 2084 #define IMX_CONSOLE &imx_uart_console 2085 2086 #ifdef CONFIG_OF 2087 static void imx_uart_console_early_putchar(struct uart_port *port, int ch) 2088 { 2089 struct imx_port *sport = (struct imx_port *)port; 2090 2091 while (imx_uart_readl(sport, IMX21_UTS) & UTS_TXFULL) 2092 cpu_relax(); 2093 2094 imx_uart_writel(sport, ch, URTX0); 2095 } 2096 2097 static void imx_uart_console_early_write(struct console *con, const char *s, 2098 unsigned count) 2099 { 2100 struct earlycon_device *dev = con->data; 2101 2102 uart_console_write(&dev->port, s, count, imx_uart_console_early_putchar); 2103 } 2104 2105 static int __init 2106 imx_console_early_setup(struct earlycon_device *dev, const char *opt) 2107 { 2108 if (!dev->port.membase) 2109 return -ENODEV; 2110 2111 dev->con->write = imx_uart_console_early_write; 2112 2113 return 0; 2114 } 2115 OF_EARLYCON_DECLARE(ec_imx6q, "fsl,imx6q-uart", imx_console_early_setup); 2116 OF_EARLYCON_DECLARE(ec_imx21, "fsl,imx21-uart", imx_console_early_setup); 2117 #endif 2118 2119 #else 2120 #define IMX_CONSOLE NULL 2121 #endif 2122 2123 static struct uart_driver imx_uart_uart_driver = { 2124 .owner = THIS_MODULE, 2125 .driver_name = DRIVER_NAME, 2126 .dev_name = DEV_NAME, 2127 .major = SERIAL_IMX_MAJOR, 2128 .minor = MINOR_START, 2129 .nr = ARRAY_SIZE(imx_uart_ports), 2130 .cons = IMX_CONSOLE, 2131 }; 2132 2133 #ifdef CONFIG_OF 2134 /* 2135 * This function returns 1 iff pdev isn't a device instatiated by dt, 0 iff it 2136 * could successfully get all information from dt or a negative errno. 2137 */ 2138 static int imx_uart_probe_dt(struct imx_port *sport, 2139 struct platform_device *pdev) 2140 { 2141 struct device_node *np = pdev->dev.of_node; 2142 int ret; 2143 2144 sport->devdata = of_device_get_match_data(&pdev->dev); 2145 if (!sport->devdata) 2146 /* no device tree device */ 2147 return 1; 2148 2149 ret = of_alias_get_id(np, "serial"); 2150 if (ret < 0) { 2151 dev_err(&pdev->dev, "failed to get alias id, errno %d\n", ret); 2152 return ret; 2153 } 2154 sport->port.line = ret; 2155 2156 if (of_get_property(np, "uart-has-rtscts", NULL) || 2157 of_get_property(np, "fsl,uart-has-rtscts", NULL) /* deprecated */) 2158 sport->have_rtscts = 1; 2159 2160 if (of_get_property(np, "fsl,dte-mode", NULL)) 2161 sport->dte_mode = 1; 2162 2163 if (of_get_property(np, "rts-gpios", NULL)) 2164 sport->have_rtsgpio = 1; 2165 2166 return 0; 2167 } 2168 #else 2169 static inline int imx_uart_probe_dt(struct imx_port *sport, 2170 struct platform_device *pdev) 2171 { 2172 return 1; 2173 } 2174 #endif 2175 2176 static void imx_uart_probe_pdata(struct imx_port *sport, 2177 struct platform_device *pdev) 2178 { 2179 struct imxuart_platform_data *pdata = dev_get_platdata(&pdev->dev); 2180 2181 sport->port.line = pdev->id; 2182 sport->devdata = (struct imx_uart_data *) pdev->id_entry->driver_data; 2183 2184 if (!pdata) 2185 return; 2186 2187 if (pdata->flags & IMXUART_HAVE_RTSCTS) 2188 sport->have_rtscts = 1; 2189 } 2190 2191 static int imx_uart_probe(struct platform_device *pdev) 2192 { 2193 struct imx_port *sport; 2194 void __iomem *base; 2195 int ret = 0; 2196 u32 ucr1; 2197 struct resource *res; 2198 int txirq, rxirq, rtsirq; 2199 2200 sport = devm_kzalloc(&pdev->dev, sizeof(*sport), GFP_KERNEL); 2201 if (!sport) 2202 return -ENOMEM; 2203 2204 ret = imx_uart_probe_dt(sport, pdev); 2205 if (ret > 0) 2206 imx_uart_probe_pdata(sport, pdev); 2207 else if (ret < 0) 2208 return ret; 2209 2210 if (sport->port.line >= ARRAY_SIZE(imx_uart_ports)) { 2211 dev_err(&pdev->dev, "serial%d out of range\n", 2212 sport->port.line); 2213 return -EINVAL; 2214 } 2215 2216 res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 2217 base = devm_ioremap_resource(&pdev->dev, res); 2218 if (IS_ERR(base)) 2219 return PTR_ERR(base); 2220 2221 rxirq = platform_get_irq(pdev, 0); 2222 txirq = platform_get_irq(pdev, 1); 2223 rtsirq = platform_get_irq(pdev, 2); 2224 2225 sport->port.dev = &pdev->dev; 2226 sport->port.mapbase = res->start; 2227 sport->port.membase = base; 2228 sport->port.type = PORT_IMX, 2229 sport->port.iotype = UPIO_MEM; 2230 sport->port.irq = rxirq; 2231 sport->port.fifosize = 32; 2232 sport->port.ops = &imx_uart_pops; 2233 sport->port.rs485_config = imx_uart_rs485_config; 2234 sport->port.flags = UPF_BOOT_AUTOCONF; 2235 timer_setup(&sport->timer, imx_uart_timeout, 0); 2236 2237 sport->gpios = mctrl_gpio_init(&sport->port, 0); 2238 if (IS_ERR(sport->gpios)) 2239 return PTR_ERR(sport->gpios); 2240 2241 sport->clk_ipg = devm_clk_get(&pdev->dev, "ipg"); 2242 if (IS_ERR(sport->clk_ipg)) { 2243 ret = PTR_ERR(sport->clk_ipg); 2244 dev_err(&pdev->dev, "failed to get ipg clk: %d\n", ret); 2245 return ret; 2246 } 2247 2248 sport->clk_per = devm_clk_get(&pdev->dev, "per"); 2249 if (IS_ERR(sport->clk_per)) { 2250 ret = PTR_ERR(sport->clk_per); 2251 dev_err(&pdev->dev, "failed to get per clk: %d\n", ret); 2252 return ret; 2253 } 2254 2255 sport->port.uartclk = clk_get_rate(sport->clk_per); 2256 2257 /* For register access, we only need to enable the ipg clock. */ 2258 ret = clk_prepare_enable(sport->clk_ipg); 2259 if (ret) { 2260 dev_err(&pdev->dev, "failed to enable per clk: %d\n", ret); 2261 return ret; 2262 } 2263 2264 /* initialize shadow register values */ 2265 sport->ucr1 = readl(sport->port.membase + UCR1); 2266 sport->ucr2 = readl(sport->port.membase + UCR2); 2267 sport->ucr3 = readl(sport->port.membase + UCR3); 2268 sport->ucr4 = readl(sport->port.membase + UCR4); 2269 sport->ufcr = readl(sport->port.membase + UFCR); 2270 2271 uart_get_rs485_mode(&pdev->dev, &sport->port.rs485); 2272 2273 if (sport->port.rs485.flags & SER_RS485_ENABLED && 2274 (!sport->have_rtscts && !sport->have_rtsgpio)) 2275 dev_err(&pdev->dev, "no RTS control, disabling rs485\n"); 2276 2277 /* 2278 * If using the i.MX UART RTS/CTS control then the RTS (CTS_B) 2279 * signal cannot be set low during transmission in case the 2280 * receiver is off (limitation of the i.MX UART IP). 2281 */ 2282 if (sport->port.rs485.flags & SER_RS485_ENABLED && 2283 sport->have_rtscts && !sport->have_rtsgpio && 2284 (!(sport->port.rs485.flags & SER_RS485_RTS_ON_SEND) && 2285 !(sport->port.rs485.flags & SER_RS485_RX_DURING_TX))) 2286 dev_err(&pdev->dev, 2287 "low-active RTS not possible when receiver is off, enabling receiver\n"); 2288 2289 imx_uart_rs485_config(&sport->port, &sport->port.rs485); 2290 2291 /* Disable interrupts before requesting them */ 2292 ucr1 = imx_uart_readl(sport, UCR1); 2293 ucr1 &= ~(UCR1_ADEN | UCR1_TRDYEN | UCR1_IDEN | UCR1_RRDYEN | 2294 UCR1_TXMPTYEN | UCR1_RTSDEN); 2295 imx_uart_writel(sport, ucr1, UCR1); 2296 2297 if (!imx_uart_is_imx1(sport) && sport->dte_mode) { 2298 /* 2299 * The DCEDTE bit changes the direction of DSR, DCD, DTR and RI 2300 * and influences if UCR3_RI and UCR3_DCD changes the level of RI 2301 * and DCD (when they are outputs) or enables the respective 2302 * irqs. So set this bit early, i.e. before requesting irqs. 2303 */ 2304 u32 ufcr = imx_uart_readl(sport, UFCR); 2305 if (!(ufcr & UFCR_DCEDTE)) 2306 imx_uart_writel(sport, ufcr | UFCR_DCEDTE, UFCR); 2307 2308 /* 2309 * Disable UCR3_RI and UCR3_DCD irqs. They are also not 2310 * enabled later because they cannot be cleared 2311 * (confirmed on i.MX25) which makes them unusable. 2312 */ 2313 imx_uart_writel(sport, 2314 IMX21_UCR3_RXDMUXSEL | UCR3_ADNIMP | UCR3_DSR, 2315 UCR3); 2316 2317 } else { 2318 u32 ucr3 = UCR3_DSR; 2319 u32 ufcr = imx_uart_readl(sport, UFCR); 2320 if (ufcr & UFCR_DCEDTE) 2321 imx_uart_writel(sport, ufcr & ~UFCR_DCEDTE, UFCR); 2322 2323 if (!imx_uart_is_imx1(sport)) 2324 ucr3 |= IMX21_UCR3_RXDMUXSEL | UCR3_ADNIMP; 2325 imx_uart_writel(sport, ucr3, UCR3); 2326 } 2327 2328 clk_disable_unprepare(sport->clk_ipg); 2329 2330 /* 2331 * Allocate the IRQ(s) i.MX1 has three interrupts whereas later 2332 * chips only have one interrupt. 2333 */ 2334 if (txirq > 0) { 2335 ret = devm_request_irq(&pdev->dev, rxirq, imx_uart_rxint, 0, 2336 dev_name(&pdev->dev), sport); 2337 if (ret) { 2338 dev_err(&pdev->dev, "failed to request rx irq: %d\n", 2339 ret); 2340 return ret; 2341 } 2342 2343 ret = devm_request_irq(&pdev->dev, txirq, imx_uart_txint, 0, 2344 dev_name(&pdev->dev), sport); 2345 if (ret) { 2346 dev_err(&pdev->dev, "failed to request tx irq: %d\n", 2347 ret); 2348 return ret; 2349 } 2350 2351 ret = devm_request_irq(&pdev->dev, rtsirq, imx_uart_rtsint, 0, 2352 dev_name(&pdev->dev), sport); 2353 if (ret) { 2354 dev_err(&pdev->dev, "failed to request rts irq: %d\n", 2355 ret); 2356 return ret; 2357 } 2358 } else { 2359 ret = devm_request_irq(&pdev->dev, rxirq, imx_uart_int, 0, 2360 dev_name(&pdev->dev), sport); 2361 if (ret) { 2362 dev_err(&pdev->dev, "failed to request irq: %d\n", ret); 2363 return ret; 2364 } 2365 } 2366 2367 imx_uart_ports[sport->port.line] = sport; 2368 2369 platform_set_drvdata(pdev, sport); 2370 2371 return uart_add_one_port(&imx_uart_uart_driver, &sport->port); 2372 } 2373 2374 static int imx_uart_remove(struct platform_device *pdev) 2375 { 2376 struct imx_port *sport = platform_get_drvdata(pdev); 2377 2378 return uart_remove_one_port(&imx_uart_uart_driver, &sport->port); 2379 } 2380 2381 static void imx_uart_restore_context(struct imx_port *sport) 2382 { 2383 unsigned long flags; 2384 2385 spin_lock_irqsave(&sport->port.lock, flags); 2386 if (!sport->context_saved) { 2387 spin_unlock_irqrestore(&sport->port.lock, flags); 2388 return; 2389 } 2390 2391 imx_uart_writel(sport, sport->saved_reg[4], UFCR); 2392 imx_uart_writel(sport, sport->saved_reg[5], UESC); 2393 imx_uart_writel(sport, sport->saved_reg[6], UTIM); 2394 imx_uart_writel(sport, sport->saved_reg[7], UBIR); 2395 imx_uart_writel(sport, sport->saved_reg[8], UBMR); 2396 imx_uart_writel(sport, sport->saved_reg[9], IMX21_UTS); 2397 imx_uart_writel(sport, sport->saved_reg[0], UCR1); 2398 imx_uart_writel(sport, sport->saved_reg[1] | UCR2_SRST, UCR2); 2399 imx_uart_writel(sport, sport->saved_reg[2], UCR3); 2400 imx_uart_writel(sport, sport->saved_reg[3], UCR4); 2401 sport->context_saved = false; 2402 spin_unlock_irqrestore(&sport->port.lock, flags); 2403 } 2404 2405 static void imx_uart_save_context(struct imx_port *sport) 2406 { 2407 unsigned long flags; 2408 2409 /* Save necessary regs */ 2410 spin_lock_irqsave(&sport->port.lock, flags); 2411 sport->saved_reg[0] = imx_uart_readl(sport, UCR1); 2412 sport->saved_reg[1] = imx_uart_readl(sport, UCR2); 2413 sport->saved_reg[2] = imx_uart_readl(sport, UCR3); 2414 sport->saved_reg[3] = imx_uart_readl(sport, UCR4); 2415 sport->saved_reg[4] = imx_uart_readl(sport, UFCR); 2416 sport->saved_reg[5] = imx_uart_readl(sport, UESC); 2417 sport->saved_reg[6] = imx_uart_readl(sport, UTIM); 2418 sport->saved_reg[7] = imx_uart_readl(sport, UBIR); 2419 sport->saved_reg[8] = imx_uart_readl(sport, UBMR); 2420 sport->saved_reg[9] = imx_uart_readl(sport, IMX21_UTS); 2421 sport->context_saved = true; 2422 spin_unlock_irqrestore(&sport->port.lock, flags); 2423 } 2424 2425 static void imx_uart_enable_wakeup(struct imx_port *sport, bool on) 2426 { 2427 u32 ucr3; 2428 2429 ucr3 = imx_uart_readl(sport, UCR3); 2430 if (on) { 2431 imx_uart_writel(sport, USR1_AWAKE, USR1); 2432 ucr3 |= UCR3_AWAKEN; 2433 } else { 2434 ucr3 &= ~UCR3_AWAKEN; 2435 } 2436 imx_uart_writel(sport, ucr3, UCR3); 2437 2438 if (sport->have_rtscts) { 2439 u32 ucr1 = imx_uart_readl(sport, UCR1); 2440 if (on) 2441 ucr1 |= UCR1_RTSDEN; 2442 else 2443 ucr1 &= ~UCR1_RTSDEN; 2444 imx_uart_writel(sport, ucr1, UCR1); 2445 } 2446 } 2447 2448 static int imx_uart_suspend_noirq(struct device *dev) 2449 { 2450 struct imx_port *sport = dev_get_drvdata(dev); 2451 2452 imx_uart_save_context(sport); 2453 2454 clk_disable(sport->clk_ipg); 2455 2456 pinctrl_pm_select_sleep_state(dev); 2457 2458 return 0; 2459 } 2460 2461 static int imx_uart_resume_noirq(struct device *dev) 2462 { 2463 struct imx_port *sport = dev_get_drvdata(dev); 2464 int ret; 2465 2466 pinctrl_pm_select_default_state(dev); 2467 2468 ret = clk_enable(sport->clk_ipg); 2469 if (ret) 2470 return ret; 2471 2472 imx_uart_restore_context(sport); 2473 2474 return 0; 2475 } 2476 2477 static int imx_uart_suspend(struct device *dev) 2478 { 2479 struct imx_port *sport = dev_get_drvdata(dev); 2480 int ret; 2481 2482 uart_suspend_port(&imx_uart_uart_driver, &sport->port); 2483 disable_irq(sport->port.irq); 2484 2485 ret = clk_prepare_enable(sport->clk_ipg); 2486 if (ret) 2487 return ret; 2488 2489 /* enable wakeup from i.MX UART */ 2490 imx_uart_enable_wakeup(sport, true); 2491 2492 return 0; 2493 } 2494 2495 static int imx_uart_resume(struct device *dev) 2496 { 2497 struct imx_port *sport = dev_get_drvdata(dev); 2498 2499 /* disable wakeup from i.MX UART */ 2500 imx_uart_enable_wakeup(sport, false); 2501 2502 uart_resume_port(&imx_uart_uart_driver, &sport->port); 2503 enable_irq(sport->port.irq); 2504 2505 clk_disable_unprepare(sport->clk_ipg); 2506 2507 return 0; 2508 } 2509 2510 static int imx_uart_freeze(struct device *dev) 2511 { 2512 struct imx_port *sport = dev_get_drvdata(dev); 2513 2514 uart_suspend_port(&imx_uart_uart_driver, &sport->port); 2515 2516 return clk_prepare_enable(sport->clk_ipg); 2517 } 2518 2519 static int imx_uart_thaw(struct device *dev) 2520 { 2521 struct imx_port *sport = dev_get_drvdata(dev); 2522 2523 uart_resume_port(&imx_uart_uart_driver, &sport->port); 2524 2525 clk_disable_unprepare(sport->clk_ipg); 2526 2527 return 0; 2528 } 2529 2530 static const struct dev_pm_ops imx_uart_pm_ops = { 2531 .suspend_noirq = imx_uart_suspend_noirq, 2532 .resume_noirq = imx_uart_resume_noirq, 2533 .freeze_noirq = imx_uart_suspend_noirq, 2534 .restore_noirq = imx_uart_resume_noirq, 2535 .suspend = imx_uart_suspend, 2536 .resume = imx_uart_resume, 2537 .freeze = imx_uart_freeze, 2538 .thaw = imx_uart_thaw, 2539 .restore = imx_uart_thaw, 2540 }; 2541 2542 static struct platform_driver imx_uart_platform_driver = { 2543 .probe = imx_uart_probe, 2544 .remove = imx_uart_remove, 2545 2546 .id_table = imx_uart_devtype, 2547 .driver = { 2548 .name = "imx-uart", 2549 .of_match_table = imx_uart_dt_ids, 2550 .pm = &imx_uart_pm_ops, 2551 }, 2552 }; 2553 2554 static int __init imx_uart_init(void) 2555 { 2556 int ret = uart_register_driver(&imx_uart_uart_driver); 2557 2558 if (ret) 2559 return ret; 2560 2561 ret = platform_driver_register(&imx_uart_platform_driver); 2562 if (ret != 0) 2563 uart_unregister_driver(&imx_uart_uart_driver); 2564 2565 return ret; 2566 } 2567 2568 static void __exit imx_uart_exit(void) 2569 { 2570 platform_driver_unregister(&imx_uart_platform_driver); 2571 uart_unregister_driver(&imx_uart_uart_driver); 2572 } 2573 2574 module_init(imx_uart_init); 2575 module_exit(imx_uart_exit); 2576 2577 MODULE_AUTHOR("Sascha Hauer"); 2578 MODULE_DESCRIPTION("IMX generic serial port driver"); 2579 MODULE_LICENSE("GPL"); 2580 MODULE_ALIAS("platform:imx-uart"); 2581