xref: /openbmc/linux/drivers/tty/serial/imx.c (revision ca55b2fe)
1 /*
2  * Driver for Motorola/Freescale IMX serial ports
3  *
4  * Based on drivers/char/serial.c, by Linus Torvalds, Theodore Ts'o.
5  *
6  * Author: Sascha Hauer <sascha@saschahauer.de>
7  * Copyright (C) 2004 Pengutronix
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License as published by
11  * the Free Software Foundation; either version 2 of the License, or
12  * (at your option) any later version.
13  *
14  * This program is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  * GNU General Public License for more details.
18  */
19 
20 #if defined(CONFIG_SERIAL_IMX_CONSOLE) && defined(CONFIG_MAGIC_SYSRQ)
21 #define SUPPORT_SYSRQ
22 #endif
23 
24 #include <linux/module.h>
25 #include <linux/ioport.h>
26 #include <linux/init.h>
27 #include <linux/console.h>
28 #include <linux/sysrq.h>
29 #include <linux/platform_device.h>
30 #include <linux/tty.h>
31 #include <linux/tty_flip.h>
32 #include <linux/serial_core.h>
33 #include <linux/serial.h>
34 #include <linux/clk.h>
35 #include <linux/delay.h>
36 #include <linux/rational.h>
37 #include <linux/slab.h>
38 #include <linux/of.h>
39 #include <linux/of_device.h>
40 #include <linux/io.h>
41 #include <linux/dma-mapping.h>
42 
43 #include <asm/irq.h>
44 #include <linux/platform_data/serial-imx.h>
45 #include <linux/platform_data/dma-imx.h>
46 
47 /* Register definitions */
48 #define URXD0 0x0  /* Receiver Register */
49 #define URTX0 0x40 /* Transmitter Register */
50 #define UCR1  0x80 /* Control Register 1 */
51 #define UCR2  0x84 /* Control Register 2 */
52 #define UCR3  0x88 /* Control Register 3 */
53 #define UCR4  0x8c /* Control Register 4 */
54 #define UFCR  0x90 /* FIFO Control Register */
55 #define USR1  0x94 /* Status Register 1 */
56 #define USR2  0x98 /* Status Register 2 */
57 #define UESC  0x9c /* Escape Character Register */
58 #define UTIM  0xa0 /* Escape Timer Register */
59 #define UBIR  0xa4 /* BRM Incremental Register */
60 #define UBMR  0xa8 /* BRM Modulator Register */
61 #define UBRC  0xac /* Baud Rate Count Register */
62 #define IMX21_ONEMS 0xb0 /* One Millisecond register */
63 #define IMX1_UTS 0xd0 /* UART Test Register on i.mx1 */
64 #define IMX21_UTS 0xb4 /* UART Test Register on all other i.mx*/
65 
66 /* UART Control Register Bit Fields.*/
67 #define URXD_DUMMY_READ (1<<16)
68 #define URXD_CHARRDY	(1<<15)
69 #define URXD_ERR	(1<<14)
70 #define URXD_OVRRUN	(1<<13)
71 #define URXD_FRMERR	(1<<12)
72 #define URXD_BRK	(1<<11)
73 #define URXD_PRERR	(1<<10)
74 #define URXD_RX_DATA	(0xFF<<0)
75 #define UCR1_ADEN	(1<<15) /* Auto detect interrupt */
76 #define UCR1_ADBR	(1<<14) /* Auto detect baud rate */
77 #define UCR1_TRDYEN	(1<<13) /* Transmitter ready interrupt enable */
78 #define UCR1_IDEN	(1<<12) /* Idle condition interrupt */
79 #define UCR1_ICD_REG(x) (((x) & 3) << 10) /* idle condition detect */
80 #define UCR1_RRDYEN	(1<<9)	/* Recv ready interrupt enable */
81 #define UCR1_RDMAEN	(1<<8)	/* Recv ready DMA enable */
82 #define UCR1_IREN	(1<<7)	/* Infrared interface enable */
83 #define UCR1_TXMPTYEN	(1<<6)	/* Transimitter empty interrupt enable */
84 #define UCR1_RTSDEN	(1<<5)	/* RTS delta interrupt enable */
85 #define UCR1_SNDBRK	(1<<4)	/* Send break */
86 #define UCR1_TDMAEN	(1<<3)	/* Transmitter ready DMA enable */
87 #define IMX1_UCR1_UARTCLKEN (1<<2) /* UART clock enabled, i.mx1 only */
88 #define UCR1_ATDMAEN    (1<<2)  /* Aging DMA Timer Enable */
89 #define UCR1_DOZE	(1<<1)	/* Doze */
90 #define UCR1_UARTEN	(1<<0)	/* UART enabled */
91 #define UCR2_ESCI	(1<<15)	/* Escape seq interrupt enable */
92 #define UCR2_IRTS	(1<<14)	/* Ignore RTS pin */
93 #define UCR2_CTSC	(1<<13)	/* CTS pin control */
94 #define UCR2_CTS	(1<<12)	/* Clear to send */
95 #define UCR2_ESCEN	(1<<11)	/* Escape enable */
96 #define UCR2_PREN	(1<<8)	/* Parity enable */
97 #define UCR2_PROE	(1<<7)	/* Parity odd/even */
98 #define UCR2_STPB	(1<<6)	/* Stop */
99 #define UCR2_WS		(1<<5)	/* Word size */
100 #define UCR2_RTSEN	(1<<4)	/* Request to send interrupt enable */
101 #define UCR2_ATEN	(1<<3)	/* Aging Timer Enable */
102 #define UCR2_TXEN	(1<<2)	/* Transmitter enabled */
103 #define UCR2_RXEN	(1<<1)	/* Receiver enabled */
104 #define UCR2_SRST	(1<<0)	/* SW reset */
105 #define UCR3_DTREN	(1<<13) /* DTR interrupt enable */
106 #define UCR3_PARERREN	(1<<12) /* Parity enable */
107 #define UCR3_FRAERREN	(1<<11) /* Frame error interrupt enable */
108 #define UCR3_DSR	(1<<10) /* Data set ready */
109 #define UCR3_DCD	(1<<9)	/* Data carrier detect */
110 #define UCR3_RI		(1<<8)	/* Ring indicator */
111 #define UCR3_ADNIMP	(1<<7)	/* Autobaud Detection Not Improved */
112 #define UCR3_RXDSEN	(1<<6)	/* Receive status interrupt enable */
113 #define UCR3_AIRINTEN	(1<<5)	/* Async IR wake interrupt enable */
114 #define UCR3_AWAKEN	(1<<4)	/* Async wake interrupt enable */
115 #define IMX21_UCR3_RXDMUXSEL	(1<<2)	/* RXD Muxed Input Select */
116 #define UCR3_INVT	(1<<1)	/* Inverted Infrared transmission */
117 #define UCR3_BPEN	(1<<0)	/* Preset registers enable */
118 #define UCR4_CTSTL_SHF	10	/* CTS trigger level shift */
119 #define UCR4_CTSTL_MASK	0x3F	/* CTS trigger is 6 bits wide */
120 #define UCR4_INVR	(1<<9)	/* Inverted infrared reception */
121 #define UCR4_ENIRI	(1<<8)	/* Serial infrared interrupt enable */
122 #define UCR4_WKEN	(1<<7)	/* Wake interrupt enable */
123 #define UCR4_REF16	(1<<6)	/* Ref freq 16 MHz */
124 #define UCR4_IDDMAEN    (1<<6)  /* DMA IDLE Condition Detected */
125 #define UCR4_IRSC	(1<<5)	/* IR special case */
126 #define UCR4_TCEN	(1<<3)	/* Transmit complete interrupt enable */
127 #define UCR4_BKEN	(1<<2)	/* Break condition interrupt enable */
128 #define UCR4_OREN	(1<<1)	/* Receiver overrun interrupt enable */
129 #define UCR4_DREN	(1<<0)	/* Recv data ready interrupt enable */
130 #define UFCR_RXTL_SHF	0	/* Receiver trigger level shift */
131 #define UFCR_DCEDTE	(1<<6)	/* DCE/DTE mode select */
132 #define UFCR_RFDIV	(7<<7)	/* Reference freq divider mask */
133 #define UFCR_RFDIV_REG(x)	(((x) < 7 ? 6 - (x) : 6) << 7)
134 #define UFCR_TXTL_SHF	10	/* Transmitter trigger level shift */
135 #define USR1_PARITYERR	(1<<15) /* Parity error interrupt flag */
136 #define USR1_RTSS	(1<<14) /* RTS pin status */
137 #define USR1_TRDY	(1<<13) /* Transmitter ready interrupt/dma flag */
138 #define USR1_RTSD	(1<<12) /* RTS delta */
139 #define USR1_ESCF	(1<<11) /* Escape seq interrupt flag */
140 #define USR1_FRAMERR	(1<<10) /* Frame error interrupt flag */
141 #define USR1_RRDY	(1<<9)	 /* Receiver ready interrupt/dma flag */
142 #define USR1_TIMEOUT	(1<<7)	 /* Receive timeout interrupt status */
143 #define USR1_RXDS	 (1<<6)	 /* Receiver idle interrupt flag */
144 #define USR1_AIRINT	 (1<<5)	 /* Async IR wake interrupt flag */
145 #define USR1_AWAKE	 (1<<4)	 /* Aysnc wake interrupt flag */
146 #define USR2_ADET	 (1<<15) /* Auto baud rate detect complete */
147 #define USR2_TXFE	 (1<<14) /* Transmit buffer FIFO empty */
148 #define USR2_DTRF	 (1<<13) /* DTR edge interrupt flag */
149 #define USR2_IDLE	 (1<<12) /* Idle condition */
150 #define USR2_IRINT	 (1<<8)	 /* Serial infrared interrupt flag */
151 #define USR2_WAKE	 (1<<7)	 /* Wake */
152 #define USR2_RTSF	 (1<<4)	 /* RTS edge interrupt flag */
153 #define USR2_TXDC	 (1<<3)	 /* Transmitter complete */
154 #define USR2_BRCD	 (1<<2)	 /* Break condition */
155 #define USR2_ORE	(1<<1)	 /* Overrun error */
156 #define USR2_RDR	(1<<0)	 /* Recv data ready */
157 #define UTS_FRCPERR	(1<<13) /* Force parity error */
158 #define UTS_LOOP	(1<<12)	 /* Loop tx and rx */
159 #define UTS_TXEMPTY	 (1<<6)	 /* TxFIFO empty */
160 #define UTS_RXEMPTY	 (1<<5)	 /* RxFIFO empty */
161 #define UTS_TXFULL	 (1<<4)	 /* TxFIFO full */
162 #define UTS_RXFULL	 (1<<3)	 /* RxFIFO full */
163 #define UTS_SOFTRST	 (1<<0)	 /* Software reset */
164 
165 /* We've been assigned a range on the "Low-density serial ports" major */
166 #define SERIAL_IMX_MAJOR	207
167 #define MINOR_START		16
168 #define DEV_NAME		"ttymxc"
169 
170 /*
171  * This determines how often we check the modem status signals
172  * for any change.  They generally aren't connected to an IRQ
173  * so we have to poll them.  We also check immediately before
174  * filling the TX fifo incase CTS has been dropped.
175  */
176 #define MCTRL_TIMEOUT	(250*HZ/1000)
177 
178 #define DRIVER_NAME "IMX-uart"
179 
180 #define UART_NR 8
181 
182 /* i.MX21 type uart runs on all i.mx except i.MX1 and i.MX6q */
183 enum imx_uart_type {
184 	IMX1_UART,
185 	IMX21_UART,
186 	IMX6Q_UART,
187 };
188 
189 /* device type dependent stuff */
190 struct imx_uart_data {
191 	unsigned uts_reg;
192 	enum imx_uart_type devtype;
193 };
194 
195 struct imx_port {
196 	struct uart_port	port;
197 	struct timer_list	timer;
198 	unsigned int		old_status;
199 	unsigned int		have_rtscts:1;
200 	unsigned int		dte_mode:1;
201 	unsigned int		irda_inv_rx:1;
202 	unsigned int		irda_inv_tx:1;
203 	unsigned short		trcv_delay; /* transceiver delay */
204 	struct clk		*clk_ipg;
205 	struct clk		*clk_per;
206 	const struct imx_uart_data *devdata;
207 
208 	/* DMA fields */
209 	unsigned int		dma_is_inited:1;
210 	unsigned int		dma_is_enabled:1;
211 	unsigned int		dma_is_rxing:1;
212 	unsigned int		dma_is_txing:1;
213 	struct dma_chan		*dma_chan_rx, *dma_chan_tx;
214 	struct scatterlist	rx_sgl, tx_sgl[2];
215 	void			*rx_buf;
216 	unsigned int		tx_bytes;
217 	unsigned int		dma_tx_nents;
218 	wait_queue_head_t	dma_wait;
219 	unsigned int            saved_reg[10];
220 	bool			context_saved;
221 };
222 
223 struct imx_port_ucrs {
224 	unsigned int	ucr1;
225 	unsigned int	ucr2;
226 	unsigned int	ucr3;
227 };
228 
229 static struct imx_uart_data imx_uart_devdata[] = {
230 	[IMX1_UART] = {
231 		.uts_reg = IMX1_UTS,
232 		.devtype = IMX1_UART,
233 	},
234 	[IMX21_UART] = {
235 		.uts_reg = IMX21_UTS,
236 		.devtype = IMX21_UART,
237 	},
238 	[IMX6Q_UART] = {
239 		.uts_reg = IMX21_UTS,
240 		.devtype = IMX6Q_UART,
241 	},
242 };
243 
244 static const struct platform_device_id imx_uart_devtype[] = {
245 	{
246 		.name = "imx1-uart",
247 		.driver_data = (kernel_ulong_t) &imx_uart_devdata[IMX1_UART],
248 	}, {
249 		.name = "imx21-uart",
250 		.driver_data = (kernel_ulong_t) &imx_uart_devdata[IMX21_UART],
251 	}, {
252 		.name = "imx6q-uart",
253 		.driver_data = (kernel_ulong_t) &imx_uart_devdata[IMX6Q_UART],
254 	}, {
255 		/* sentinel */
256 	}
257 };
258 MODULE_DEVICE_TABLE(platform, imx_uart_devtype);
259 
260 static const struct of_device_id imx_uart_dt_ids[] = {
261 	{ .compatible = "fsl,imx6q-uart", .data = &imx_uart_devdata[IMX6Q_UART], },
262 	{ .compatible = "fsl,imx1-uart", .data = &imx_uart_devdata[IMX1_UART], },
263 	{ .compatible = "fsl,imx21-uart", .data = &imx_uart_devdata[IMX21_UART], },
264 	{ /* sentinel */ }
265 };
266 MODULE_DEVICE_TABLE(of, imx_uart_dt_ids);
267 
268 static inline unsigned uts_reg(struct imx_port *sport)
269 {
270 	return sport->devdata->uts_reg;
271 }
272 
273 static inline int is_imx1_uart(struct imx_port *sport)
274 {
275 	return sport->devdata->devtype == IMX1_UART;
276 }
277 
278 static inline int is_imx21_uart(struct imx_port *sport)
279 {
280 	return sport->devdata->devtype == IMX21_UART;
281 }
282 
283 static inline int is_imx6q_uart(struct imx_port *sport)
284 {
285 	return sport->devdata->devtype == IMX6Q_UART;
286 }
287 /*
288  * Save and restore functions for UCR1, UCR2 and UCR3 registers
289  */
290 #if defined(CONFIG_SERIAL_IMX_CONSOLE)
291 static void imx_port_ucrs_save(struct uart_port *port,
292 			       struct imx_port_ucrs *ucr)
293 {
294 	/* save control registers */
295 	ucr->ucr1 = readl(port->membase + UCR1);
296 	ucr->ucr2 = readl(port->membase + UCR2);
297 	ucr->ucr3 = readl(port->membase + UCR3);
298 }
299 
300 static void imx_port_ucrs_restore(struct uart_port *port,
301 				  struct imx_port_ucrs *ucr)
302 {
303 	/* restore control registers */
304 	writel(ucr->ucr1, port->membase + UCR1);
305 	writel(ucr->ucr2, port->membase + UCR2);
306 	writel(ucr->ucr3, port->membase + UCR3);
307 }
308 #endif
309 
310 /*
311  * Handle any change of modem status signal since we were last called.
312  */
313 static void imx_mctrl_check(struct imx_port *sport)
314 {
315 	unsigned int status, changed;
316 
317 	status = sport->port.ops->get_mctrl(&sport->port);
318 	changed = status ^ sport->old_status;
319 
320 	if (changed == 0)
321 		return;
322 
323 	sport->old_status = status;
324 
325 	if (changed & TIOCM_RI)
326 		sport->port.icount.rng++;
327 	if (changed & TIOCM_DSR)
328 		sport->port.icount.dsr++;
329 	if (changed & TIOCM_CAR)
330 		uart_handle_dcd_change(&sport->port, status & TIOCM_CAR);
331 	if (changed & TIOCM_CTS)
332 		uart_handle_cts_change(&sport->port, status & TIOCM_CTS);
333 
334 	wake_up_interruptible(&sport->port.state->port.delta_msr_wait);
335 }
336 
337 /*
338  * This is our per-port timeout handler, for checking the
339  * modem status signals.
340  */
341 static void imx_timeout(unsigned long data)
342 {
343 	struct imx_port *sport = (struct imx_port *)data;
344 	unsigned long flags;
345 
346 	if (sport->port.state) {
347 		spin_lock_irqsave(&sport->port.lock, flags);
348 		imx_mctrl_check(sport);
349 		spin_unlock_irqrestore(&sport->port.lock, flags);
350 
351 		mod_timer(&sport->timer, jiffies + MCTRL_TIMEOUT);
352 	}
353 }
354 
355 /*
356  * interrupts disabled on entry
357  */
358 static void imx_stop_tx(struct uart_port *port)
359 {
360 	struct imx_port *sport = (struct imx_port *)port;
361 	unsigned long temp;
362 
363 	/*
364 	 * We are maybe in the SMP context, so if the DMA TX thread is running
365 	 * on other cpu, we have to wait for it to finish.
366 	 */
367 	if (sport->dma_is_enabled && sport->dma_is_txing)
368 		return;
369 
370 	temp = readl(port->membase + UCR1);
371 	writel(temp & ~UCR1_TXMPTYEN, port->membase + UCR1);
372 
373 	/* in rs485 mode disable transmitter if shifter is empty */
374 	if (port->rs485.flags & SER_RS485_ENABLED &&
375 	    readl(port->membase + USR2) & USR2_TXDC) {
376 		temp = readl(port->membase + UCR2);
377 		if (port->rs485.flags & SER_RS485_RTS_AFTER_SEND)
378 			temp &= ~UCR2_CTS;
379 		else
380 			temp |= UCR2_CTS;
381 		writel(temp, port->membase + UCR2);
382 
383 		temp = readl(port->membase + UCR4);
384 		temp &= ~UCR4_TCEN;
385 		writel(temp, port->membase + UCR4);
386 	}
387 }
388 
389 /*
390  * interrupts disabled on entry
391  */
392 static void imx_stop_rx(struct uart_port *port)
393 {
394 	struct imx_port *sport = (struct imx_port *)port;
395 	unsigned long temp;
396 
397 	if (sport->dma_is_enabled && sport->dma_is_rxing) {
398 		if (sport->port.suspended) {
399 			dmaengine_terminate_all(sport->dma_chan_rx);
400 			sport->dma_is_rxing = 0;
401 		} else {
402 			return;
403 		}
404 	}
405 
406 	temp = readl(sport->port.membase + UCR2);
407 	writel(temp & ~UCR2_RXEN, sport->port.membase + UCR2);
408 
409 	/* disable the `Receiver Ready Interrrupt` */
410 	temp = readl(sport->port.membase + UCR1);
411 	writel(temp & ~UCR1_RRDYEN, sport->port.membase + UCR1);
412 }
413 
414 /*
415  * Set the modem control timer to fire immediately.
416  */
417 static void imx_enable_ms(struct uart_port *port)
418 {
419 	struct imx_port *sport = (struct imx_port *)port;
420 
421 	mod_timer(&sport->timer, jiffies);
422 }
423 
424 static void imx_dma_tx(struct imx_port *sport);
425 static inline void imx_transmit_buffer(struct imx_port *sport)
426 {
427 	struct circ_buf *xmit = &sport->port.state->xmit;
428 	unsigned long temp;
429 
430 	if (sport->port.x_char) {
431 		/* Send next char */
432 		writel(sport->port.x_char, sport->port.membase + URTX0);
433 		sport->port.icount.tx++;
434 		sport->port.x_char = 0;
435 		return;
436 	}
437 
438 	if (uart_circ_empty(xmit) || uart_tx_stopped(&sport->port)) {
439 		imx_stop_tx(&sport->port);
440 		return;
441 	}
442 
443 	if (sport->dma_is_enabled) {
444 		/*
445 		 * We've just sent a X-char Ensure the TX DMA is enabled
446 		 * and the TX IRQ is disabled.
447 		 **/
448 		temp = readl(sport->port.membase + UCR1);
449 		temp &= ~UCR1_TXMPTYEN;
450 		if (sport->dma_is_txing) {
451 			temp |= UCR1_TDMAEN;
452 			writel(temp, sport->port.membase + UCR1);
453 		} else {
454 			writel(temp, sport->port.membase + UCR1);
455 			imx_dma_tx(sport);
456 		}
457 	}
458 
459 	while (!uart_circ_empty(xmit) &&
460 	       !(readl(sport->port.membase + uts_reg(sport)) & UTS_TXFULL)) {
461 		/* send xmit->buf[xmit->tail]
462 		 * out the port here */
463 		writel(xmit->buf[xmit->tail], sport->port.membase + URTX0);
464 		xmit->tail = (xmit->tail + 1) & (UART_XMIT_SIZE - 1);
465 		sport->port.icount.tx++;
466 	}
467 
468 	if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
469 		uart_write_wakeup(&sport->port);
470 
471 	if (uart_circ_empty(xmit))
472 		imx_stop_tx(&sport->port);
473 }
474 
475 static void dma_tx_callback(void *data)
476 {
477 	struct imx_port *sport = data;
478 	struct scatterlist *sgl = &sport->tx_sgl[0];
479 	struct circ_buf *xmit = &sport->port.state->xmit;
480 	unsigned long flags;
481 	unsigned long temp;
482 
483 	spin_lock_irqsave(&sport->port.lock, flags);
484 
485 	dma_unmap_sg(sport->port.dev, sgl, sport->dma_tx_nents, DMA_TO_DEVICE);
486 
487 	temp = readl(sport->port.membase + UCR1);
488 	temp &= ~UCR1_TDMAEN;
489 	writel(temp, sport->port.membase + UCR1);
490 
491 	/* update the stat */
492 	xmit->tail = (xmit->tail + sport->tx_bytes) & (UART_XMIT_SIZE - 1);
493 	sport->port.icount.tx += sport->tx_bytes;
494 
495 	dev_dbg(sport->port.dev, "we finish the TX DMA.\n");
496 
497 	sport->dma_is_txing = 0;
498 
499 	spin_unlock_irqrestore(&sport->port.lock, flags);
500 
501 	if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
502 		uart_write_wakeup(&sport->port);
503 
504 	if (waitqueue_active(&sport->dma_wait)) {
505 		wake_up(&sport->dma_wait);
506 		dev_dbg(sport->port.dev, "exit in %s.\n", __func__);
507 		return;
508 	}
509 
510 	spin_lock_irqsave(&sport->port.lock, flags);
511 	if (!uart_circ_empty(xmit) && !uart_tx_stopped(&sport->port))
512 		imx_dma_tx(sport);
513 	spin_unlock_irqrestore(&sport->port.lock, flags);
514 }
515 
516 static void imx_dma_tx(struct imx_port *sport)
517 {
518 	struct circ_buf *xmit = &sport->port.state->xmit;
519 	struct scatterlist *sgl = sport->tx_sgl;
520 	struct dma_async_tx_descriptor *desc;
521 	struct dma_chan	*chan = sport->dma_chan_tx;
522 	struct device *dev = sport->port.dev;
523 	unsigned long temp;
524 	int ret;
525 
526 	if (sport->dma_is_txing)
527 		return;
528 
529 	sport->tx_bytes = uart_circ_chars_pending(xmit);
530 
531 	if (xmit->tail < xmit->head) {
532 		sport->dma_tx_nents = 1;
533 		sg_init_one(sgl, xmit->buf + xmit->tail, sport->tx_bytes);
534 	} else {
535 		sport->dma_tx_nents = 2;
536 		sg_init_table(sgl, 2);
537 		sg_set_buf(sgl, xmit->buf + xmit->tail,
538 				UART_XMIT_SIZE - xmit->tail);
539 		sg_set_buf(sgl + 1, xmit->buf, xmit->head);
540 	}
541 
542 	ret = dma_map_sg(dev, sgl, sport->dma_tx_nents, DMA_TO_DEVICE);
543 	if (ret == 0) {
544 		dev_err(dev, "DMA mapping error for TX.\n");
545 		return;
546 	}
547 	desc = dmaengine_prep_slave_sg(chan, sgl, sport->dma_tx_nents,
548 					DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT);
549 	if (!desc) {
550 		dma_unmap_sg(dev, sgl, sport->dma_tx_nents,
551 			     DMA_TO_DEVICE);
552 		dev_err(dev, "We cannot prepare for the TX slave dma!\n");
553 		return;
554 	}
555 	desc->callback = dma_tx_callback;
556 	desc->callback_param = sport;
557 
558 	dev_dbg(dev, "TX: prepare to send %lu bytes by DMA.\n",
559 			uart_circ_chars_pending(xmit));
560 
561 	temp = readl(sport->port.membase + UCR1);
562 	temp |= UCR1_TDMAEN;
563 	writel(temp, sport->port.membase + UCR1);
564 
565 	/* fire it */
566 	sport->dma_is_txing = 1;
567 	dmaengine_submit(desc);
568 	dma_async_issue_pending(chan);
569 	return;
570 }
571 
572 /*
573  * interrupts disabled on entry
574  */
575 static void imx_start_tx(struct uart_port *port)
576 {
577 	struct imx_port *sport = (struct imx_port *)port;
578 	unsigned long temp;
579 
580 	if (port->rs485.flags & SER_RS485_ENABLED) {
581 		/* enable transmitter and shifter empty irq */
582 		temp = readl(port->membase + UCR2);
583 		if (port->rs485.flags & SER_RS485_RTS_ON_SEND)
584 			temp &= ~UCR2_CTS;
585 		else
586 			temp |= UCR2_CTS;
587 		writel(temp, port->membase + UCR2);
588 
589 		temp = readl(port->membase + UCR4);
590 		temp |= UCR4_TCEN;
591 		writel(temp, port->membase + UCR4);
592 	}
593 
594 	if (!sport->dma_is_enabled) {
595 		temp = readl(sport->port.membase + UCR1);
596 		writel(temp | UCR1_TXMPTYEN, sport->port.membase + UCR1);
597 	}
598 
599 	if (sport->dma_is_enabled) {
600 		if (sport->port.x_char) {
601 			/* We have X-char to send, so enable TX IRQ and
602 			 * disable TX DMA to let TX interrupt to send X-char */
603 			temp = readl(sport->port.membase + UCR1);
604 			temp &= ~UCR1_TDMAEN;
605 			temp |= UCR1_TXMPTYEN;
606 			writel(temp, sport->port.membase + UCR1);
607 			return;
608 		}
609 
610 		if (!uart_circ_empty(&port->state->xmit) &&
611 		    !uart_tx_stopped(port))
612 			imx_dma_tx(sport);
613 		return;
614 	}
615 }
616 
617 static irqreturn_t imx_rtsint(int irq, void *dev_id)
618 {
619 	struct imx_port *sport = dev_id;
620 	unsigned int val;
621 	unsigned long flags;
622 
623 	spin_lock_irqsave(&sport->port.lock, flags);
624 
625 	writel(USR1_RTSD, sport->port.membase + USR1);
626 	val = readl(sport->port.membase + USR1) & USR1_RTSS;
627 	uart_handle_cts_change(&sport->port, !!val);
628 	wake_up_interruptible(&sport->port.state->port.delta_msr_wait);
629 
630 	spin_unlock_irqrestore(&sport->port.lock, flags);
631 	return IRQ_HANDLED;
632 }
633 
634 static irqreturn_t imx_txint(int irq, void *dev_id)
635 {
636 	struct imx_port *sport = dev_id;
637 	unsigned long flags;
638 
639 	spin_lock_irqsave(&sport->port.lock, flags);
640 	imx_transmit_buffer(sport);
641 	spin_unlock_irqrestore(&sport->port.lock, flags);
642 	return IRQ_HANDLED;
643 }
644 
645 static irqreturn_t imx_rxint(int irq, void *dev_id)
646 {
647 	struct imx_port *sport = dev_id;
648 	unsigned int rx, flg, ignored = 0;
649 	struct tty_port *port = &sport->port.state->port;
650 	unsigned long flags, temp;
651 
652 	spin_lock_irqsave(&sport->port.lock, flags);
653 
654 	while (readl(sport->port.membase + USR2) & USR2_RDR) {
655 		flg = TTY_NORMAL;
656 		sport->port.icount.rx++;
657 
658 		rx = readl(sport->port.membase + URXD0);
659 
660 		temp = readl(sport->port.membase + USR2);
661 		if (temp & USR2_BRCD) {
662 			writel(USR2_BRCD, sport->port.membase + USR2);
663 			if (uart_handle_break(&sport->port))
664 				continue;
665 		}
666 
667 		if (uart_handle_sysrq_char(&sport->port, (unsigned char)rx))
668 			continue;
669 
670 		if (unlikely(rx & URXD_ERR)) {
671 			if (rx & URXD_BRK)
672 				sport->port.icount.brk++;
673 			else if (rx & URXD_PRERR)
674 				sport->port.icount.parity++;
675 			else if (rx & URXD_FRMERR)
676 				sport->port.icount.frame++;
677 			if (rx & URXD_OVRRUN)
678 				sport->port.icount.overrun++;
679 
680 			if (rx & sport->port.ignore_status_mask) {
681 				if (++ignored > 100)
682 					goto out;
683 				continue;
684 			}
685 
686 			rx &= (sport->port.read_status_mask | 0xFF);
687 
688 			if (rx & URXD_BRK)
689 				flg = TTY_BREAK;
690 			else if (rx & URXD_PRERR)
691 				flg = TTY_PARITY;
692 			else if (rx & URXD_FRMERR)
693 				flg = TTY_FRAME;
694 			if (rx & URXD_OVRRUN)
695 				flg = TTY_OVERRUN;
696 
697 #ifdef SUPPORT_SYSRQ
698 			sport->port.sysrq = 0;
699 #endif
700 		}
701 
702 		if (sport->port.ignore_status_mask & URXD_DUMMY_READ)
703 			goto out;
704 
705 		if (tty_insert_flip_char(port, rx, flg) == 0)
706 			sport->port.icount.buf_overrun++;
707 	}
708 
709 out:
710 	spin_unlock_irqrestore(&sport->port.lock, flags);
711 	tty_flip_buffer_push(port);
712 	return IRQ_HANDLED;
713 }
714 
715 static int start_rx_dma(struct imx_port *sport);
716 /*
717  * If the RXFIFO is filled with some data, and then we
718  * arise a DMA operation to receive them.
719  */
720 static void imx_dma_rxint(struct imx_port *sport)
721 {
722 	unsigned long temp;
723 	unsigned long flags;
724 
725 	spin_lock_irqsave(&sport->port.lock, flags);
726 
727 	temp = readl(sport->port.membase + USR2);
728 	if ((temp & USR2_RDR) && !sport->dma_is_rxing) {
729 		sport->dma_is_rxing = 1;
730 
731 		/* disable the `Recerver Ready Interrrupt` */
732 		temp = readl(sport->port.membase + UCR1);
733 		temp &= ~(UCR1_RRDYEN);
734 		writel(temp, sport->port.membase + UCR1);
735 
736 		/* tell the DMA to receive the data. */
737 		start_rx_dma(sport);
738 	}
739 
740 	spin_unlock_irqrestore(&sport->port.lock, flags);
741 }
742 
743 static irqreturn_t imx_int(int irq, void *dev_id)
744 {
745 	struct imx_port *sport = dev_id;
746 	unsigned int sts;
747 	unsigned int sts2;
748 
749 	sts = readl(sport->port.membase + USR1);
750 	sts2 = readl(sport->port.membase + USR2);
751 
752 	if (sts & USR1_RRDY) {
753 		if (sport->dma_is_enabled)
754 			imx_dma_rxint(sport);
755 		else
756 			imx_rxint(irq, dev_id);
757 	}
758 
759 	if ((sts & USR1_TRDY &&
760 	     readl(sport->port.membase + UCR1) & UCR1_TXMPTYEN) ||
761 	    (sts2 & USR2_TXDC &&
762 	     readl(sport->port.membase + UCR4) & UCR4_TCEN))
763 		imx_txint(irq, dev_id);
764 
765 	if (sts & USR1_RTSD)
766 		imx_rtsint(irq, dev_id);
767 
768 	if (sts & USR1_AWAKE)
769 		writel(USR1_AWAKE, sport->port.membase + USR1);
770 
771 	if (sts2 & USR2_ORE) {
772 		sport->port.icount.overrun++;
773 		writel(USR2_ORE, sport->port.membase + USR2);
774 	}
775 
776 	return IRQ_HANDLED;
777 }
778 
779 /*
780  * Return TIOCSER_TEMT when transmitter is not busy.
781  */
782 static unsigned int imx_tx_empty(struct uart_port *port)
783 {
784 	struct imx_port *sport = (struct imx_port *)port;
785 	unsigned int ret;
786 
787 	ret = (readl(sport->port.membase + USR2) & USR2_TXDC) ?  TIOCSER_TEMT : 0;
788 
789 	/* If the TX DMA is working, return 0. */
790 	if (sport->dma_is_enabled && sport->dma_is_txing)
791 		ret = 0;
792 
793 	return ret;
794 }
795 
796 /*
797  * We have a modem side uart, so the meanings of RTS and CTS are inverted.
798  */
799 static unsigned int imx_get_mctrl(struct uart_port *port)
800 {
801 	struct imx_port *sport = (struct imx_port *)port;
802 	unsigned int tmp = TIOCM_DSR | TIOCM_CAR;
803 
804 	if (readl(sport->port.membase + USR1) & USR1_RTSS)
805 		tmp |= TIOCM_CTS;
806 
807 	if (readl(sport->port.membase + UCR2) & UCR2_CTS)
808 		tmp |= TIOCM_RTS;
809 
810 	if (readl(sport->port.membase + uts_reg(sport)) & UTS_LOOP)
811 		tmp |= TIOCM_LOOP;
812 
813 	return tmp;
814 }
815 
816 static void imx_set_mctrl(struct uart_port *port, unsigned int mctrl)
817 {
818 	struct imx_port *sport = (struct imx_port *)port;
819 	unsigned long temp;
820 
821 	if (!(port->rs485.flags & SER_RS485_ENABLED)) {
822 		temp = readl(sport->port.membase + UCR2);
823 		temp &= ~(UCR2_CTS | UCR2_CTSC);
824 		if (mctrl & TIOCM_RTS)
825 			temp |= UCR2_CTS | UCR2_CTSC;
826 		writel(temp, sport->port.membase + UCR2);
827 	}
828 
829 	temp = readl(sport->port.membase + uts_reg(sport)) & ~UTS_LOOP;
830 	if (mctrl & TIOCM_LOOP)
831 		temp |= UTS_LOOP;
832 	writel(temp, sport->port.membase + uts_reg(sport));
833 }
834 
835 /*
836  * Interrupts always disabled.
837  */
838 static void imx_break_ctl(struct uart_port *port, int break_state)
839 {
840 	struct imx_port *sport = (struct imx_port *)port;
841 	unsigned long flags, temp;
842 
843 	spin_lock_irqsave(&sport->port.lock, flags);
844 
845 	temp = readl(sport->port.membase + UCR1) & ~UCR1_SNDBRK;
846 
847 	if (break_state != 0)
848 		temp |= UCR1_SNDBRK;
849 
850 	writel(temp, sport->port.membase + UCR1);
851 
852 	spin_unlock_irqrestore(&sport->port.lock, flags);
853 }
854 
855 #define TXTL 2 /* reset default */
856 #define RXTL 1 /* reset default */
857 
858 static void imx_setup_ufcr(struct imx_port *sport, unsigned int mode)
859 {
860 	unsigned int val;
861 
862 	/* set receiver / transmitter trigger level */
863 	val = readl(sport->port.membase + UFCR) & (UFCR_RFDIV | UFCR_DCEDTE);
864 	val |= TXTL << UFCR_TXTL_SHF | RXTL;
865 	writel(val, sport->port.membase + UFCR);
866 }
867 
868 #define RX_BUF_SIZE	(PAGE_SIZE)
869 static void imx_rx_dma_done(struct imx_port *sport)
870 {
871 	unsigned long temp;
872 	unsigned long flags;
873 
874 	spin_lock_irqsave(&sport->port.lock, flags);
875 
876 	/* Enable this interrupt when the RXFIFO is empty. */
877 	temp = readl(sport->port.membase + UCR1);
878 	temp |= UCR1_RRDYEN;
879 	writel(temp, sport->port.membase + UCR1);
880 
881 	sport->dma_is_rxing = 0;
882 
883 	/* Is the shutdown waiting for us? */
884 	if (waitqueue_active(&sport->dma_wait))
885 		wake_up(&sport->dma_wait);
886 
887 	spin_unlock_irqrestore(&sport->port.lock, flags);
888 }
889 
890 /*
891  * There are three kinds of RX DMA interrupts(such as in the MX6Q):
892  *   [1] the RX DMA buffer is full.
893  *   [2] the Aging timer expires(wait for 8 bytes long)
894  *   [3] the Idle Condition Detect(enabled the UCR4_IDDMAEN).
895  *
896  * The [2] is trigger when a character was been sitting in the FIFO
897  * meanwhile [3] can wait for 32 bytes long when the RX line is
898  * on IDLE state and RxFIFO is empty.
899  */
900 static void dma_rx_callback(void *data)
901 {
902 	struct imx_port *sport = data;
903 	struct dma_chan	*chan = sport->dma_chan_rx;
904 	struct scatterlist *sgl = &sport->rx_sgl;
905 	struct tty_port *port = &sport->port.state->port;
906 	struct dma_tx_state state;
907 	enum dma_status status;
908 	unsigned int count;
909 
910 	/* unmap it first */
911 	dma_unmap_sg(sport->port.dev, sgl, 1, DMA_FROM_DEVICE);
912 
913 	status = dmaengine_tx_status(chan, (dma_cookie_t)0, &state);
914 	count = RX_BUF_SIZE - state.residue;
915 
916 	if (readl(sport->port.membase + USR2) & USR2_IDLE) {
917 		/* In condition [3] the SDMA counted up too early */
918 		count--;
919 
920 		writel(USR2_IDLE, sport->port.membase + USR2);
921 	}
922 
923 	dev_dbg(sport->port.dev, "We get %d bytes.\n", count);
924 
925 	if (count) {
926 		if (!(sport->port.ignore_status_mask & URXD_DUMMY_READ)) {
927 			int bytes = tty_insert_flip_string(port, sport->rx_buf,
928 					count);
929 
930 			if (bytes != count)
931 				sport->port.icount.buf_overrun++;
932 		}
933 		tty_flip_buffer_push(port);
934 
935 		start_rx_dma(sport);
936 	} else if (readl(sport->port.membase + USR2) & USR2_RDR) {
937 		/*
938 		 * start rx_dma directly once data in RXFIFO, more efficient
939 		 * than before:
940 		 *	1. call imx_rx_dma_done to stop dma if no data received
941 		 *	2. wait next  RDR interrupt to start dma transfer.
942 		 */
943 		start_rx_dma(sport);
944 	} else {
945 		/*
946 		 * stop dma to prevent too many IDLE event trigged if no data
947 		 * in RXFIFO
948 		 */
949 		imx_rx_dma_done(sport);
950 	}
951 }
952 
953 static int start_rx_dma(struct imx_port *sport)
954 {
955 	struct scatterlist *sgl = &sport->rx_sgl;
956 	struct dma_chan	*chan = sport->dma_chan_rx;
957 	struct device *dev = sport->port.dev;
958 	struct dma_async_tx_descriptor *desc;
959 	int ret;
960 
961 	sg_init_one(sgl, sport->rx_buf, RX_BUF_SIZE);
962 	ret = dma_map_sg(dev, sgl, 1, DMA_FROM_DEVICE);
963 	if (ret == 0) {
964 		dev_err(dev, "DMA mapping error for RX.\n");
965 		return -EINVAL;
966 	}
967 	desc = dmaengine_prep_slave_sg(chan, sgl, 1, DMA_DEV_TO_MEM,
968 					DMA_PREP_INTERRUPT);
969 	if (!desc) {
970 		dma_unmap_sg(dev, sgl, 1, DMA_FROM_DEVICE);
971 		dev_err(dev, "We cannot prepare for the RX slave dma!\n");
972 		return -EINVAL;
973 	}
974 	desc->callback = dma_rx_callback;
975 	desc->callback_param = sport;
976 
977 	dev_dbg(dev, "RX: prepare for the DMA.\n");
978 	dmaengine_submit(desc);
979 	dma_async_issue_pending(chan);
980 	return 0;
981 }
982 
983 static void imx_uart_dma_exit(struct imx_port *sport)
984 {
985 	if (sport->dma_chan_rx) {
986 		dma_release_channel(sport->dma_chan_rx);
987 		sport->dma_chan_rx = NULL;
988 
989 		kfree(sport->rx_buf);
990 		sport->rx_buf = NULL;
991 	}
992 
993 	if (sport->dma_chan_tx) {
994 		dma_release_channel(sport->dma_chan_tx);
995 		sport->dma_chan_tx = NULL;
996 	}
997 
998 	sport->dma_is_inited = 0;
999 }
1000 
1001 static int imx_uart_dma_init(struct imx_port *sport)
1002 {
1003 	struct dma_slave_config slave_config = {};
1004 	struct device *dev = sport->port.dev;
1005 	int ret;
1006 
1007 	/* Prepare for RX : */
1008 	sport->dma_chan_rx = dma_request_slave_channel(dev, "rx");
1009 	if (!sport->dma_chan_rx) {
1010 		dev_dbg(dev, "cannot get the DMA channel.\n");
1011 		ret = -EINVAL;
1012 		goto err;
1013 	}
1014 
1015 	slave_config.direction = DMA_DEV_TO_MEM;
1016 	slave_config.src_addr = sport->port.mapbase + URXD0;
1017 	slave_config.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
1018 	slave_config.src_maxburst = RXTL;
1019 	ret = dmaengine_slave_config(sport->dma_chan_rx, &slave_config);
1020 	if (ret) {
1021 		dev_err(dev, "error in RX dma configuration.\n");
1022 		goto err;
1023 	}
1024 
1025 	sport->rx_buf = kzalloc(PAGE_SIZE, GFP_KERNEL);
1026 	if (!sport->rx_buf) {
1027 		ret = -ENOMEM;
1028 		goto err;
1029 	}
1030 
1031 	/* Prepare for TX : */
1032 	sport->dma_chan_tx = dma_request_slave_channel(dev, "tx");
1033 	if (!sport->dma_chan_tx) {
1034 		dev_err(dev, "cannot get the TX DMA channel!\n");
1035 		ret = -EINVAL;
1036 		goto err;
1037 	}
1038 
1039 	slave_config.direction = DMA_MEM_TO_DEV;
1040 	slave_config.dst_addr = sport->port.mapbase + URTX0;
1041 	slave_config.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
1042 	slave_config.dst_maxburst = TXTL;
1043 	ret = dmaengine_slave_config(sport->dma_chan_tx, &slave_config);
1044 	if (ret) {
1045 		dev_err(dev, "error in TX dma configuration.");
1046 		goto err;
1047 	}
1048 
1049 	sport->dma_is_inited = 1;
1050 
1051 	return 0;
1052 err:
1053 	imx_uart_dma_exit(sport);
1054 	return ret;
1055 }
1056 
1057 static void imx_enable_dma(struct imx_port *sport)
1058 {
1059 	unsigned long temp;
1060 
1061 	init_waitqueue_head(&sport->dma_wait);
1062 
1063 	/* set UCR1 */
1064 	temp = readl(sport->port.membase + UCR1);
1065 	temp |= UCR1_RDMAEN | UCR1_TDMAEN | UCR1_ATDMAEN |
1066 		/* wait for 32 idle frames for IDDMA interrupt */
1067 		UCR1_ICD_REG(3);
1068 	writel(temp, sport->port.membase + UCR1);
1069 
1070 	/* set UCR4 */
1071 	temp = readl(sport->port.membase + UCR4);
1072 	temp |= UCR4_IDDMAEN;
1073 	writel(temp, sport->port.membase + UCR4);
1074 
1075 	sport->dma_is_enabled = 1;
1076 }
1077 
1078 static void imx_disable_dma(struct imx_port *sport)
1079 {
1080 	unsigned long temp;
1081 
1082 	/* clear UCR1 */
1083 	temp = readl(sport->port.membase + UCR1);
1084 	temp &= ~(UCR1_RDMAEN | UCR1_TDMAEN | UCR1_ATDMAEN);
1085 	writel(temp, sport->port.membase + UCR1);
1086 
1087 	/* clear UCR2 */
1088 	temp = readl(sport->port.membase + UCR2);
1089 	temp &= ~(UCR2_CTSC | UCR2_CTS);
1090 	writel(temp, sport->port.membase + UCR2);
1091 
1092 	/* clear UCR4 */
1093 	temp = readl(sport->port.membase + UCR4);
1094 	temp &= ~UCR4_IDDMAEN;
1095 	writel(temp, sport->port.membase + UCR4);
1096 
1097 	sport->dma_is_enabled = 0;
1098 }
1099 
1100 /* half the RX buffer size */
1101 #define CTSTL 16
1102 
1103 static int imx_startup(struct uart_port *port)
1104 {
1105 	struct imx_port *sport = (struct imx_port *)port;
1106 	int retval, i;
1107 	unsigned long flags, temp;
1108 
1109 	retval = clk_prepare_enable(sport->clk_per);
1110 	if (retval)
1111 		return retval;
1112 	retval = clk_prepare_enable(sport->clk_ipg);
1113 	if (retval) {
1114 		clk_disable_unprepare(sport->clk_per);
1115 		return retval;
1116 	}
1117 
1118 	imx_setup_ufcr(sport, 0);
1119 
1120 	/* disable the DREN bit (Data Ready interrupt enable) before
1121 	 * requesting IRQs
1122 	 */
1123 	temp = readl(sport->port.membase + UCR4);
1124 
1125 	/* set the trigger level for CTS */
1126 	temp &= ~(UCR4_CTSTL_MASK << UCR4_CTSTL_SHF);
1127 	temp |= CTSTL << UCR4_CTSTL_SHF;
1128 
1129 	writel(temp & ~UCR4_DREN, sport->port.membase + UCR4);
1130 
1131 	spin_lock_irqsave(&sport->port.lock, flags);
1132 	/* Reset fifo's and state machines */
1133 	i = 100;
1134 
1135 	temp = readl(sport->port.membase + UCR2);
1136 	temp &= ~UCR2_SRST;
1137 	writel(temp, sport->port.membase + UCR2);
1138 
1139 	while (!(readl(sport->port.membase + UCR2) & UCR2_SRST) && (--i > 0))
1140 		udelay(1);
1141 
1142 	/*
1143 	 * Finally, clear and enable interrupts
1144 	 */
1145 	writel(USR1_RTSD, sport->port.membase + USR1);
1146 	writel(USR2_ORE, sport->port.membase + USR2);
1147 
1148 	temp = readl(sport->port.membase + UCR1);
1149 	temp |= UCR1_RRDYEN | UCR1_RTSDEN | UCR1_UARTEN;
1150 
1151 	writel(temp, sport->port.membase + UCR1);
1152 
1153 	temp = readl(sport->port.membase + UCR4);
1154 	temp |= UCR4_OREN;
1155 	writel(temp, sport->port.membase + UCR4);
1156 
1157 	temp = readl(sport->port.membase + UCR2);
1158 	temp |= (UCR2_RXEN | UCR2_TXEN);
1159 	if (!sport->have_rtscts)
1160 		temp |= UCR2_IRTS;
1161 	writel(temp, sport->port.membase + UCR2);
1162 
1163 	if (!is_imx1_uart(sport)) {
1164 		temp = readl(sport->port.membase + UCR3);
1165 		temp |= IMX21_UCR3_RXDMUXSEL | UCR3_ADNIMP;
1166 		writel(temp, sport->port.membase + UCR3);
1167 	}
1168 
1169 	/*
1170 	 * Enable modem status interrupts
1171 	 */
1172 	imx_enable_ms(&sport->port);
1173 	spin_unlock_irqrestore(&sport->port.lock, flags);
1174 
1175 	return 0;
1176 }
1177 
1178 static void imx_shutdown(struct uart_port *port)
1179 {
1180 	struct imx_port *sport = (struct imx_port *)port;
1181 	unsigned long temp;
1182 	unsigned long flags;
1183 
1184 	if (sport->dma_is_enabled) {
1185 		int ret;
1186 
1187 		/* We have to wait for the DMA to finish. */
1188 		ret = wait_event_interruptible(sport->dma_wait,
1189 			!sport->dma_is_rxing && !sport->dma_is_txing);
1190 		if (ret != 0) {
1191 			sport->dma_is_rxing = 0;
1192 			sport->dma_is_txing = 0;
1193 			dmaengine_terminate_all(sport->dma_chan_tx);
1194 			dmaengine_terminate_all(sport->dma_chan_rx);
1195 		}
1196 		spin_lock_irqsave(&sport->port.lock, flags);
1197 		imx_stop_tx(port);
1198 		imx_stop_rx(port);
1199 		imx_disable_dma(sport);
1200 		spin_unlock_irqrestore(&sport->port.lock, flags);
1201 		imx_uart_dma_exit(sport);
1202 	}
1203 
1204 	spin_lock_irqsave(&sport->port.lock, flags);
1205 	temp = readl(sport->port.membase + UCR2);
1206 	temp &= ~(UCR2_TXEN);
1207 	writel(temp, sport->port.membase + UCR2);
1208 	spin_unlock_irqrestore(&sport->port.lock, flags);
1209 
1210 	/*
1211 	 * Stop our timer.
1212 	 */
1213 	del_timer_sync(&sport->timer);
1214 
1215 	/*
1216 	 * Disable all interrupts, port and break condition.
1217 	 */
1218 
1219 	spin_lock_irqsave(&sport->port.lock, flags);
1220 	temp = readl(sport->port.membase + UCR1);
1221 	temp &= ~(UCR1_TXMPTYEN | UCR1_RRDYEN | UCR1_RTSDEN | UCR1_UARTEN);
1222 
1223 	writel(temp, sport->port.membase + UCR1);
1224 	spin_unlock_irqrestore(&sport->port.lock, flags);
1225 
1226 	clk_disable_unprepare(sport->clk_per);
1227 	clk_disable_unprepare(sport->clk_ipg);
1228 }
1229 
1230 static void imx_flush_buffer(struct uart_port *port)
1231 {
1232 	struct imx_port *sport = (struct imx_port *)port;
1233 	struct scatterlist *sgl = &sport->tx_sgl[0];
1234 	unsigned long temp;
1235 	int i = 100, ubir, ubmr, uts;
1236 
1237 	if (!sport->dma_chan_tx)
1238 		return;
1239 
1240 	sport->tx_bytes = 0;
1241 	dmaengine_terminate_all(sport->dma_chan_tx);
1242 	if (sport->dma_is_txing) {
1243 		dma_unmap_sg(sport->port.dev, sgl, sport->dma_tx_nents,
1244 			     DMA_TO_DEVICE);
1245 		temp = readl(sport->port.membase + UCR1);
1246 		temp &= ~UCR1_TDMAEN;
1247 		writel(temp, sport->port.membase + UCR1);
1248 		sport->dma_is_txing = false;
1249 	}
1250 
1251 	/*
1252 	 * According to the Reference Manual description of the UART SRST bit:
1253 	 * "Reset the transmit and receive state machines,
1254 	 * all FIFOs and register USR1, USR2, UBIR, UBMR, UBRC, URXD, UTXD
1255 	 * and UTS[6-3]". As we don't need to restore the old values from
1256 	 * USR1, USR2, URXD, UTXD, only save/restore the other four registers
1257 	 */
1258 	ubir = readl(sport->port.membase + UBIR);
1259 	ubmr = readl(sport->port.membase + UBMR);
1260 	uts = readl(sport->port.membase + IMX21_UTS);
1261 
1262 	temp = readl(sport->port.membase + UCR2);
1263 	temp &= ~UCR2_SRST;
1264 	writel(temp, sport->port.membase + UCR2);
1265 
1266 	while (!(readl(sport->port.membase + UCR2) & UCR2_SRST) && (--i > 0))
1267 		udelay(1);
1268 
1269 	/* Restore the registers */
1270 	writel(ubir, sport->port.membase + UBIR);
1271 	writel(ubmr, sport->port.membase + UBMR);
1272 	writel(uts, sport->port.membase + IMX21_UTS);
1273 }
1274 
1275 static void
1276 imx_set_termios(struct uart_port *port, struct ktermios *termios,
1277 		   struct ktermios *old)
1278 {
1279 	struct imx_port *sport = (struct imx_port *)port;
1280 	unsigned long flags;
1281 	unsigned int ucr2, old_ucr1, old_txrxen, baud, quot;
1282 	unsigned int old_csize = old ? old->c_cflag & CSIZE : CS8;
1283 	unsigned int div, ufcr;
1284 	unsigned long num, denom;
1285 	uint64_t tdiv64;
1286 
1287 	/*
1288 	 * We only support CS7 and CS8.
1289 	 */
1290 	while ((termios->c_cflag & CSIZE) != CS7 &&
1291 	       (termios->c_cflag & CSIZE) != CS8) {
1292 		termios->c_cflag &= ~CSIZE;
1293 		termios->c_cflag |= old_csize;
1294 		old_csize = CS8;
1295 	}
1296 
1297 	if ((termios->c_cflag & CSIZE) == CS8)
1298 		ucr2 = UCR2_WS | UCR2_SRST | UCR2_IRTS;
1299 	else
1300 		ucr2 = UCR2_SRST | UCR2_IRTS;
1301 
1302 	if (termios->c_cflag & CRTSCTS) {
1303 		if (sport->have_rtscts) {
1304 			ucr2 &= ~UCR2_IRTS;
1305 
1306 			if (port->rs485.flags & SER_RS485_ENABLED) {
1307 				/*
1308 				 * RTS is mandatory for rs485 operation, so keep
1309 				 * it under manual control and keep transmitter
1310 				 * disabled.
1311 				 */
1312 				if (!(port->rs485.flags &
1313 				      SER_RS485_RTS_AFTER_SEND))
1314 					ucr2 |= UCR2_CTS;
1315 			} else {
1316 				ucr2 |= UCR2_CTSC;
1317 			}
1318 
1319 			/* Can we enable the DMA support? */
1320 			if (is_imx6q_uart(sport) && !uart_console(port)
1321 				&& !sport->dma_is_inited)
1322 				imx_uart_dma_init(sport);
1323 		} else {
1324 			termios->c_cflag &= ~CRTSCTS;
1325 		}
1326 	} else if (port->rs485.flags & SER_RS485_ENABLED)
1327 		/* disable transmitter */
1328 		if (!(port->rs485.flags & SER_RS485_RTS_AFTER_SEND))
1329 			ucr2 |= UCR2_CTS;
1330 
1331 	if (termios->c_cflag & CSTOPB)
1332 		ucr2 |= UCR2_STPB;
1333 	if (termios->c_cflag & PARENB) {
1334 		ucr2 |= UCR2_PREN;
1335 		if (termios->c_cflag & PARODD)
1336 			ucr2 |= UCR2_PROE;
1337 	}
1338 
1339 	del_timer_sync(&sport->timer);
1340 
1341 	/*
1342 	 * Ask the core to calculate the divisor for us.
1343 	 */
1344 	baud = uart_get_baud_rate(port, termios, old, 50, port->uartclk / 16);
1345 	quot = uart_get_divisor(port, baud);
1346 
1347 	spin_lock_irqsave(&sport->port.lock, flags);
1348 
1349 	sport->port.read_status_mask = 0;
1350 	if (termios->c_iflag & INPCK)
1351 		sport->port.read_status_mask |= (URXD_FRMERR | URXD_PRERR);
1352 	if (termios->c_iflag & (BRKINT | PARMRK))
1353 		sport->port.read_status_mask |= URXD_BRK;
1354 
1355 	/*
1356 	 * Characters to ignore
1357 	 */
1358 	sport->port.ignore_status_mask = 0;
1359 	if (termios->c_iflag & IGNPAR)
1360 		sport->port.ignore_status_mask |= URXD_PRERR | URXD_FRMERR;
1361 	if (termios->c_iflag & IGNBRK) {
1362 		sport->port.ignore_status_mask |= URXD_BRK;
1363 		/*
1364 		 * If we're ignoring parity and break indicators,
1365 		 * ignore overruns too (for real raw support).
1366 		 */
1367 		if (termios->c_iflag & IGNPAR)
1368 			sport->port.ignore_status_mask |= URXD_OVRRUN;
1369 	}
1370 
1371 	if ((termios->c_cflag & CREAD) == 0)
1372 		sport->port.ignore_status_mask |= URXD_DUMMY_READ;
1373 
1374 	/*
1375 	 * Update the per-port timeout.
1376 	 */
1377 	uart_update_timeout(port, termios->c_cflag, baud);
1378 
1379 	/*
1380 	 * disable interrupts and drain transmitter
1381 	 */
1382 	old_ucr1 = readl(sport->port.membase + UCR1);
1383 	writel(old_ucr1 & ~(UCR1_TXMPTYEN | UCR1_RRDYEN | UCR1_RTSDEN),
1384 			sport->port.membase + UCR1);
1385 
1386 	while (!(readl(sport->port.membase + USR2) & USR2_TXDC))
1387 		barrier();
1388 
1389 	/* then, disable everything */
1390 	old_txrxen = readl(sport->port.membase + UCR2);
1391 	writel(old_txrxen & ~(UCR2_TXEN | UCR2_RXEN),
1392 			sport->port.membase + UCR2);
1393 	old_txrxen &= (UCR2_TXEN | UCR2_RXEN);
1394 
1395 	/* custom-baudrate handling */
1396 	div = sport->port.uartclk / (baud * 16);
1397 	if (baud == 38400 && quot != div)
1398 		baud = sport->port.uartclk / (quot * 16);
1399 
1400 	div = sport->port.uartclk / (baud * 16);
1401 	if (div > 7)
1402 		div = 7;
1403 	if (!div)
1404 		div = 1;
1405 
1406 	rational_best_approximation(16 * div * baud, sport->port.uartclk,
1407 		1 << 16, 1 << 16, &num, &denom);
1408 
1409 	tdiv64 = sport->port.uartclk;
1410 	tdiv64 *= num;
1411 	do_div(tdiv64, denom * 16 * div);
1412 	tty_termios_encode_baud_rate(termios,
1413 				(speed_t)tdiv64, (speed_t)tdiv64);
1414 
1415 	num -= 1;
1416 	denom -= 1;
1417 
1418 	ufcr = readl(sport->port.membase + UFCR);
1419 	ufcr = (ufcr & (~UFCR_RFDIV)) | UFCR_RFDIV_REG(div);
1420 	if (sport->dte_mode)
1421 		ufcr |= UFCR_DCEDTE;
1422 	writel(ufcr, sport->port.membase + UFCR);
1423 
1424 	writel(num, sport->port.membase + UBIR);
1425 	writel(denom, sport->port.membase + UBMR);
1426 
1427 	if (!is_imx1_uart(sport))
1428 		writel(sport->port.uartclk / div / 1000,
1429 				sport->port.membase + IMX21_ONEMS);
1430 
1431 	writel(old_ucr1, sport->port.membase + UCR1);
1432 
1433 	/* set the parity, stop bits and data size */
1434 	writel(ucr2 | old_txrxen, sport->port.membase + UCR2);
1435 
1436 	if (UART_ENABLE_MS(&sport->port, termios->c_cflag))
1437 		imx_enable_ms(&sport->port);
1438 
1439 	if (sport->dma_is_inited && !sport->dma_is_enabled)
1440 		imx_enable_dma(sport);
1441 	spin_unlock_irqrestore(&sport->port.lock, flags);
1442 }
1443 
1444 static const char *imx_type(struct uart_port *port)
1445 {
1446 	struct imx_port *sport = (struct imx_port *)port;
1447 
1448 	return sport->port.type == PORT_IMX ? "IMX" : NULL;
1449 }
1450 
1451 /*
1452  * Configure/autoconfigure the port.
1453  */
1454 static void imx_config_port(struct uart_port *port, int flags)
1455 {
1456 	struct imx_port *sport = (struct imx_port *)port;
1457 
1458 	if (flags & UART_CONFIG_TYPE)
1459 		sport->port.type = PORT_IMX;
1460 }
1461 
1462 /*
1463  * Verify the new serial_struct (for TIOCSSERIAL).
1464  * The only change we allow are to the flags and type, and
1465  * even then only between PORT_IMX and PORT_UNKNOWN
1466  */
1467 static int
1468 imx_verify_port(struct uart_port *port, struct serial_struct *ser)
1469 {
1470 	struct imx_port *sport = (struct imx_port *)port;
1471 	int ret = 0;
1472 
1473 	if (ser->type != PORT_UNKNOWN && ser->type != PORT_IMX)
1474 		ret = -EINVAL;
1475 	if (sport->port.irq != ser->irq)
1476 		ret = -EINVAL;
1477 	if (ser->io_type != UPIO_MEM)
1478 		ret = -EINVAL;
1479 	if (sport->port.uartclk / 16 != ser->baud_base)
1480 		ret = -EINVAL;
1481 	if (sport->port.mapbase != (unsigned long)ser->iomem_base)
1482 		ret = -EINVAL;
1483 	if (sport->port.iobase != ser->port)
1484 		ret = -EINVAL;
1485 	if (ser->hub6 != 0)
1486 		ret = -EINVAL;
1487 	return ret;
1488 }
1489 
1490 #if defined(CONFIG_CONSOLE_POLL)
1491 
1492 static int imx_poll_init(struct uart_port *port)
1493 {
1494 	struct imx_port *sport = (struct imx_port *)port;
1495 	unsigned long flags;
1496 	unsigned long temp;
1497 	int retval;
1498 
1499 	retval = clk_prepare_enable(sport->clk_ipg);
1500 	if (retval)
1501 		return retval;
1502 	retval = clk_prepare_enable(sport->clk_per);
1503 	if (retval)
1504 		clk_disable_unprepare(sport->clk_ipg);
1505 
1506 	imx_setup_ufcr(sport, 0);
1507 
1508 	spin_lock_irqsave(&sport->port.lock, flags);
1509 
1510 	temp = readl(sport->port.membase + UCR1);
1511 	if (is_imx1_uart(sport))
1512 		temp |= IMX1_UCR1_UARTCLKEN;
1513 	temp |= UCR1_UARTEN | UCR1_RRDYEN;
1514 	temp &= ~(UCR1_TXMPTYEN | UCR1_RTSDEN);
1515 	writel(temp, sport->port.membase + UCR1);
1516 
1517 	temp = readl(sport->port.membase + UCR2);
1518 	temp |= UCR2_RXEN;
1519 	writel(temp, sport->port.membase + UCR2);
1520 
1521 	spin_unlock_irqrestore(&sport->port.lock, flags);
1522 
1523 	return 0;
1524 }
1525 
1526 static int imx_poll_get_char(struct uart_port *port)
1527 {
1528 	if (!(readl_relaxed(port->membase + USR2) & USR2_RDR))
1529 		return NO_POLL_CHAR;
1530 
1531 	return readl_relaxed(port->membase + URXD0) & URXD_RX_DATA;
1532 }
1533 
1534 static void imx_poll_put_char(struct uart_port *port, unsigned char c)
1535 {
1536 	unsigned int status;
1537 
1538 	/* drain */
1539 	do {
1540 		status = readl_relaxed(port->membase + USR1);
1541 	} while (~status & USR1_TRDY);
1542 
1543 	/* write */
1544 	writel_relaxed(c, port->membase + URTX0);
1545 
1546 	/* flush */
1547 	do {
1548 		status = readl_relaxed(port->membase + USR2);
1549 	} while (~status & USR2_TXDC);
1550 }
1551 #endif
1552 
1553 static int imx_rs485_config(struct uart_port *port,
1554 			    struct serial_rs485 *rs485conf)
1555 {
1556 	struct imx_port *sport = (struct imx_port *)port;
1557 
1558 	/* unimplemented */
1559 	rs485conf->delay_rts_before_send = 0;
1560 	rs485conf->delay_rts_after_send = 0;
1561 	rs485conf->flags |= SER_RS485_RX_DURING_TX;
1562 
1563 	/* RTS is required to control the transmitter */
1564 	if (!sport->have_rtscts)
1565 		rs485conf->flags &= ~SER_RS485_ENABLED;
1566 
1567 	if (rs485conf->flags & SER_RS485_ENABLED) {
1568 		unsigned long temp;
1569 
1570 		/* disable transmitter */
1571 		temp = readl(sport->port.membase + UCR2);
1572 		temp &= ~UCR2_CTSC;
1573 		if (rs485conf->flags & SER_RS485_RTS_AFTER_SEND)
1574 			temp &= ~UCR2_CTS;
1575 		else
1576 			temp |= UCR2_CTS;
1577 		writel(temp, sport->port.membase + UCR2);
1578 	}
1579 
1580 	port->rs485 = *rs485conf;
1581 
1582 	return 0;
1583 }
1584 
1585 static struct uart_ops imx_pops = {
1586 	.tx_empty	= imx_tx_empty,
1587 	.set_mctrl	= imx_set_mctrl,
1588 	.get_mctrl	= imx_get_mctrl,
1589 	.stop_tx	= imx_stop_tx,
1590 	.start_tx	= imx_start_tx,
1591 	.stop_rx	= imx_stop_rx,
1592 	.enable_ms	= imx_enable_ms,
1593 	.break_ctl	= imx_break_ctl,
1594 	.startup	= imx_startup,
1595 	.shutdown	= imx_shutdown,
1596 	.flush_buffer	= imx_flush_buffer,
1597 	.set_termios	= imx_set_termios,
1598 	.type		= imx_type,
1599 	.config_port	= imx_config_port,
1600 	.verify_port	= imx_verify_port,
1601 #if defined(CONFIG_CONSOLE_POLL)
1602 	.poll_init      = imx_poll_init,
1603 	.poll_get_char  = imx_poll_get_char,
1604 	.poll_put_char  = imx_poll_put_char,
1605 #endif
1606 };
1607 
1608 static struct imx_port *imx_ports[UART_NR];
1609 
1610 #ifdef CONFIG_SERIAL_IMX_CONSOLE
1611 static void imx_console_putchar(struct uart_port *port, int ch)
1612 {
1613 	struct imx_port *sport = (struct imx_port *)port;
1614 
1615 	while (readl(sport->port.membase + uts_reg(sport)) & UTS_TXFULL)
1616 		barrier();
1617 
1618 	writel(ch, sport->port.membase + URTX0);
1619 }
1620 
1621 /*
1622  * Interrupts are disabled on entering
1623  */
1624 static void
1625 imx_console_write(struct console *co, const char *s, unsigned int count)
1626 {
1627 	struct imx_port *sport = imx_ports[co->index];
1628 	struct imx_port_ucrs old_ucr;
1629 	unsigned int ucr1;
1630 	unsigned long flags = 0;
1631 	int locked = 1;
1632 	int retval;
1633 
1634 	retval = clk_enable(sport->clk_per);
1635 	if (retval)
1636 		return;
1637 	retval = clk_enable(sport->clk_ipg);
1638 	if (retval) {
1639 		clk_disable(sport->clk_per);
1640 		return;
1641 	}
1642 
1643 	if (sport->port.sysrq)
1644 		locked = 0;
1645 	else if (oops_in_progress)
1646 		locked = spin_trylock_irqsave(&sport->port.lock, flags);
1647 	else
1648 		spin_lock_irqsave(&sport->port.lock, flags);
1649 
1650 	/*
1651 	 *	First, save UCR1/2/3 and then disable interrupts
1652 	 */
1653 	imx_port_ucrs_save(&sport->port, &old_ucr);
1654 	ucr1 = old_ucr.ucr1;
1655 
1656 	if (is_imx1_uart(sport))
1657 		ucr1 |= IMX1_UCR1_UARTCLKEN;
1658 	ucr1 |= UCR1_UARTEN;
1659 	ucr1 &= ~(UCR1_TXMPTYEN | UCR1_RRDYEN | UCR1_RTSDEN);
1660 
1661 	writel(ucr1, sport->port.membase + UCR1);
1662 
1663 	writel(old_ucr.ucr2 | UCR2_TXEN, sport->port.membase + UCR2);
1664 
1665 	uart_console_write(&sport->port, s, count, imx_console_putchar);
1666 
1667 	/*
1668 	 *	Finally, wait for transmitter to become empty
1669 	 *	and restore UCR1/2/3
1670 	 */
1671 	while (!(readl(sport->port.membase + USR2) & USR2_TXDC));
1672 
1673 	imx_port_ucrs_restore(&sport->port, &old_ucr);
1674 
1675 	if (locked)
1676 		spin_unlock_irqrestore(&sport->port.lock, flags);
1677 
1678 	clk_disable(sport->clk_ipg);
1679 	clk_disable(sport->clk_per);
1680 }
1681 
1682 /*
1683  * If the port was already initialised (eg, by a boot loader),
1684  * try to determine the current setup.
1685  */
1686 static void __init
1687 imx_console_get_options(struct imx_port *sport, int *baud,
1688 			   int *parity, int *bits)
1689 {
1690 
1691 	if (readl(sport->port.membase + UCR1) & UCR1_UARTEN) {
1692 		/* ok, the port was enabled */
1693 		unsigned int ucr2, ubir, ubmr, uartclk;
1694 		unsigned int baud_raw;
1695 		unsigned int ucfr_rfdiv;
1696 
1697 		ucr2 = readl(sport->port.membase + UCR2);
1698 
1699 		*parity = 'n';
1700 		if (ucr2 & UCR2_PREN) {
1701 			if (ucr2 & UCR2_PROE)
1702 				*parity = 'o';
1703 			else
1704 				*parity = 'e';
1705 		}
1706 
1707 		if (ucr2 & UCR2_WS)
1708 			*bits = 8;
1709 		else
1710 			*bits = 7;
1711 
1712 		ubir = readl(sport->port.membase + UBIR) & 0xffff;
1713 		ubmr = readl(sport->port.membase + UBMR) & 0xffff;
1714 
1715 		ucfr_rfdiv = (readl(sport->port.membase + UFCR) & UFCR_RFDIV) >> 7;
1716 		if (ucfr_rfdiv == 6)
1717 			ucfr_rfdiv = 7;
1718 		else
1719 			ucfr_rfdiv = 6 - ucfr_rfdiv;
1720 
1721 		uartclk = clk_get_rate(sport->clk_per);
1722 		uartclk /= ucfr_rfdiv;
1723 
1724 		{	/*
1725 			 * The next code provides exact computation of
1726 			 *   baud_raw = round(((uartclk/16) * (ubir + 1)) / (ubmr + 1))
1727 			 * without need of float support or long long division,
1728 			 * which would be required to prevent 32bit arithmetic overflow
1729 			 */
1730 			unsigned int mul = ubir + 1;
1731 			unsigned int div = 16 * (ubmr + 1);
1732 			unsigned int rem = uartclk % div;
1733 
1734 			baud_raw = (uartclk / div) * mul;
1735 			baud_raw += (rem * mul + div / 2) / div;
1736 			*baud = (baud_raw + 50) / 100 * 100;
1737 		}
1738 
1739 		if (*baud != baud_raw)
1740 			pr_info("Console IMX rounded baud rate from %d to %d\n",
1741 				baud_raw, *baud);
1742 	}
1743 }
1744 
1745 static int __init
1746 imx_console_setup(struct console *co, char *options)
1747 {
1748 	struct imx_port *sport;
1749 	int baud = 9600;
1750 	int bits = 8;
1751 	int parity = 'n';
1752 	int flow = 'n';
1753 	int retval;
1754 
1755 	/*
1756 	 * Check whether an invalid uart number has been specified, and
1757 	 * if so, search for the first available port that does have
1758 	 * console support.
1759 	 */
1760 	if (co->index == -1 || co->index >= ARRAY_SIZE(imx_ports))
1761 		co->index = 0;
1762 	sport = imx_ports[co->index];
1763 	if (sport == NULL)
1764 		return -ENODEV;
1765 
1766 	/* For setting the registers, we only need to enable the ipg clock. */
1767 	retval = clk_prepare_enable(sport->clk_ipg);
1768 	if (retval)
1769 		goto error_console;
1770 
1771 	if (options)
1772 		uart_parse_options(options, &baud, &parity, &bits, &flow);
1773 	else
1774 		imx_console_get_options(sport, &baud, &parity, &bits);
1775 
1776 	imx_setup_ufcr(sport, 0);
1777 
1778 	retval = uart_set_options(&sport->port, co, baud, parity, bits, flow);
1779 
1780 	clk_disable(sport->clk_ipg);
1781 	if (retval) {
1782 		clk_unprepare(sport->clk_ipg);
1783 		goto error_console;
1784 	}
1785 
1786 	retval = clk_prepare(sport->clk_per);
1787 	if (retval)
1788 		clk_disable_unprepare(sport->clk_ipg);
1789 
1790 error_console:
1791 	return retval;
1792 }
1793 
1794 static struct uart_driver imx_reg;
1795 static struct console imx_console = {
1796 	.name		= DEV_NAME,
1797 	.write		= imx_console_write,
1798 	.device		= uart_console_device,
1799 	.setup		= imx_console_setup,
1800 	.flags		= CON_PRINTBUFFER,
1801 	.index		= -1,
1802 	.data		= &imx_reg,
1803 };
1804 
1805 #define IMX_CONSOLE	&imx_console
1806 #else
1807 #define IMX_CONSOLE	NULL
1808 #endif
1809 
1810 static struct uart_driver imx_reg = {
1811 	.owner          = THIS_MODULE,
1812 	.driver_name    = DRIVER_NAME,
1813 	.dev_name       = DEV_NAME,
1814 	.major          = SERIAL_IMX_MAJOR,
1815 	.minor          = MINOR_START,
1816 	.nr             = ARRAY_SIZE(imx_ports),
1817 	.cons           = IMX_CONSOLE,
1818 };
1819 
1820 #ifdef CONFIG_OF
1821 /*
1822  * This function returns 1 iff pdev isn't a device instatiated by dt, 0 iff it
1823  * could successfully get all information from dt or a negative errno.
1824  */
1825 static int serial_imx_probe_dt(struct imx_port *sport,
1826 		struct platform_device *pdev)
1827 {
1828 	struct device_node *np = pdev->dev.of_node;
1829 	const struct of_device_id *of_id =
1830 			of_match_device(imx_uart_dt_ids, &pdev->dev);
1831 	int ret;
1832 
1833 	if (!np)
1834 		/* no device tree device */
1835 		return 1;
1836 
1837 	ret = of_alias_get_id(np, "serial");
1838 	if (ret < 0) {
1839 		dev_err(&pdev->dev, "failed to get alias id, errno %d\n", ret);
1840 		return ret;
1841 	}
1842 	sport->port.line = ret;
1843 
1844 	if (of_get_property(np, "fsl,uart-has-rtscts", NULL))
1845 		sport->have_rtscts = 1;
1846 
1847 	if (of_get_property(np, "fsl,dte-mode", NULL))
1848 		sport->dte_mode = 1;
1849 
1850 	sport->devdata = of_id->data;
1851 
1852 	return 0;
1853 }
1854 #else
1855 static inline int serial_imx_probe_dt(struct imx_port *sport,
1856 		struct platform_device *pdev)
1857 {
1858 	return 1;
1859 }
1860 #endif
1861 
1862 static void serial_imx_probe_pdata(struct imx_port *sport,
1863 		struct platform_device *pdev)
1864 {
1865 	struct imxuart_platform_data *pdata = dev_get_platdata(&pdev->dev);
1866 
1867 	sport->port.line = pdev->id;
1868 	sport->devdata = (struct imx_uart_data	*) pdev->id_entry->driver_data;
1869 
1870 	if (!pdata)
1871 		return;
1872 
1873 	if (pdata->flags & IMXUART_HAVE_RTSCTS)
1874 		sport->have_rtscts = 1;
1875 }
1876 
1877 static int serial_imx_probe(struct platform_device *pdev)
1878 {
1879 	struct imx_port *sport;
1880 	void __iomem *base;
1881 	int ret = 0, reg;
1882 	struct resource *res;
1883 	int txirq, rxirq, rtsirq;
1884 
1885 	sport = devm_kzalloc(&pdev->dev, sizeof(*sport), GFP_KERNEL);
1886 	if (!sport)
1887 		return -ENOMEM;
1888 
1889 	ret = serial_imx_probe_dt(sport, pdev);
1890 	if (ret > 0)
1891 		serial_imx_probe_pdata(sport, pdev);
1892 	else if (ret < 0)
1893 		return ret;
1894 
1895 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1896 	base = devm_ioremap_resource(&pdev->dev, res);
1897 	if (IS_ERR(base))
1898 		return PTR_ERR(base);
1899 
1900 	rxirq = platform_get_irq(pdev, 0);
1901 	txirq = platform_get_irq(pdev, 1);
1902 	rtsirq = platform_get_irq(pdev, 2);
1903 
1904 	sport->port.dev = &pdev->dev;
1905 	sport->port.mapbase = res->start;
1906 	sport->port.membase = base;
1907 	sport->port.type = PORT_IMX,
1908 	sport->port.iotype = UPIO_MEM;
1909 	sport->port.irq = rxirq;
1910 	sport->port.fifosize = 32;
1911 	sport->port.ops = &imx_pops;
1912 	sport->port.rs485_config = imx_rs485_config;
1913 	sport->port.rs485.flags =
1914 		SER_RS485_RTS_ON_SEND | SER_RS485_RX_DURING_TX;
1915 	sport->port.flags = UPF_BOOT_AUTOCONF;
1916 	init_timer(&sport->timer);
1917 	sport->timer.function = imx_timeout;
1918 	sport->timer.data     = (unsigned long)sport;
1919 
1920 	sport->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
1921 	if (IS_ERR(sport->clk_ipg)) {
1922 		ret = PTR_ERR(sport->clk_ipg);
1923 		dev_err(&pdev->dev, "failed to get ipg clk: %d\n", ret);
1924 		return ret;
1925 	}
1926 
1927 	sport->clk_per = devm_clk_get(&pdev->dev, "per");
1928 	if (IS_ERR(sport->clk_per)) {
1929 		ret = PTR_ERR(sport->clk_per);
1930 		dev_err(&pdev->dev, "failed to get per clk: %d\n", ret);
1931 		return ret;
1932 	}
1933 
1934 	sport->port.uartclk = clk_get_rate(sport->clk_per);
1935 
1936 	/* For register access, we only need to enable the ipg clock. */
1937 	ret = clk_prepare_enable(sport->clk_ipg);
1938 	if (ret)
1939 		return ret;
1940 
1941 	/* Disable interrupts before requesting them */
1942 	reg = readl_relaxed(sport->port.membase + UCR1);
1943 	reg &= ~(UCR1_ADEN | UCR1_TRDYEN | UCR1_IDEN | UCR1_RRDYEN |
1944 		 UCR1_TXMPTYEN | UCR1_RTSDEN);
1945 	writel_relaxed(reg, sport->port.membase + UCR1);
1946 
1947 	clk_disable_unprepare(sport->clk_ipg);
1948 
1949 	/*
1950 	 * Allocate the IRQ(s) i.MX1 has three interrupts whereas later
1951 	 * chips only have one interrupt.
1952 	 */
1953 	if (txirq > 0) {
1954 		ret = devm_request_irq(&pdev->dev, rxirq, imx_rxint, 0,
1955 				       dev_name(&pdev->dev), sport);
1956 		if (ret)
1957 			return ret;
1958 
1959 		ret = devm_request_irq(&pdev->dev, txirq, imx_txint, 0,
1960 				       dev_name(&pdev->dev), sport);
1961 		if (ret)
1962 			return ret;
1963 	} else {
1964 		ret = devm_request_irq(&pdev->dev, rxirq, imx_int, 0,
1965 				       dev_name(&pdev->dev), sport);
1966 		if (ret)
1967 			return ret;
1968 	}
1969 
1970 	imx_ports[sport->port.line] = sport;
1971 
1972 	platform_set_drvdata(pdev, sport);
1973 
1974 	return uart_add_one_port(&imx_reg, &sport->port);
1975 }
1976 
1977 static int serial_imx_remove(struct platform_device *pdev)
1978 {
1979 	struct imx_port *sport = platform_get_drvdata(pdev);
1980 
1981 	return uart_remove_one_port(&imx_reg, &sport->port);
1982 }
1983 
1984 static void serial_imx_restore_context(struct imx_port *sport)
1985 {
1986 	if (!sport->context_saved)
1987 		return;
1988 
1989 	writel(sport->saved_reg[4], sport->port.membase + UFCR);
1990 	writel(sport->saved_reg[5], sport->port.membase + UESC);
1991 	writel(sport->saved_reg[6], sport->port.membase + UTIM);
1992 	writel(sport->saved_reg[7], sport->port.membase + UBIR);
1993 	writel(sport->saved_reg[8], sport->port.membase + UBMR);
1994 	writel(sport->saved_reg[9], sport->port.membase + IMX21_UTS);
1995 	writel(sport->saved_reg[0], sport->port.membase + UCR1);
1996 	writel(sport->saved_reg[1] | UCR2_SRST, sport->port.membase + UCR2);
1997 	writel(sport->saved_reg[2], sport->port.membase + UCR3);
1998 	writel(sport->saved_reg[3], sport->port.membase + UCR4);
1999 	sport->context_saved = false;
2000 }
2001 
2002 static void serial_imx_save_context(struct imx_port *sport)
2003 {
2004 	/* Save necessary regs */
2005 	sport->saved_reg[0] = readl(sport->port.membase + UCR1);
2006 	sport->saved_reg[1] = readl(sport->port.membase + UCR2);
2007 	sport->saved_reg[2] = readl(sport->port.membase + UCR3);
2008 	sport->saved_reg[3] = readl(sport->port.membase + UCR4);
2009 	sport->saved_reg[4] = readl(sport->port.membase + UFCR);
2010 	sport->saved_reg[5] = readl(sport->port.membase + UESC);
2011 	sport->saved_reg[6] = readl(sport->port.membase + UTIM);
2012 	sport->saved_reg[7] = readl(sport->port.membase + UBIR);
2013 	sport->saved_reg[8] = readl(sport->port.membase + UBMR);
2014 	sport->saved_reg[9] = readl(sport->port.membase + IMX21_UTS);
2015 	sport->context_saved = true;
2016 }
2017 
2018 static void serial_imx_enable_wakeup(struct imx_port *sport, bool on)
2019 {
2020 	unsigned int val;
2021 
2022 	val = readl(sport->port.membase + UCR3);
2023 	if (on)
2024 		val |= UCR3_AWAKEN;
2025 	else
2026 		val &= ~UCR3_AWAKEN;
2027 	writel(val, sport->port.membase + UCR3);
2028 
2029 	val = readl(sport->port.membase + UCR1);
2030 	if (on)
2031 		val |= UCR1_RTSDEN;
2032 	else
2033 		val &= ~UCR1_RTSDEN;
2034 	writel(val, sport->port.membase + UCR1);
2035 }
2036 
2037 static int imx_serial_port_suspend_noirq(struct device *dev)
2038 {
2039 	struct platform_device *pdev = to_platform_device(dev);
2040 	struct imx_port *sport = platform_get_drvdata(pdev);
2041 	int ret;
2042 
2043 	ret = clk_enable(sport->clk_ipg);
2044 	if (ret)
2045 		return ret;
2046 
2047 	serial_imx_save_context(sport);
2048 
2049 	clk_disable(sport->clk_ipg);
2050 
2051 	return 0;
2052 }
2053 
2054 static int imx_serial_port_resume_noirq(struct device *dev)
2055 {
2056 	struct platform_device *pdev = to_platform_device(dev);
2057 	struct imx_port *sport = platform_get_drvdata(pdev);
2058 	int ret;
2059 
2060 	ret = clk_enable(sport->clk_ipg);
2061 	if (ret)
2062 		return ret;
2063 
2064 	serial_imx_restore_context(sport);
2065 
2066 	clk_disable(sport->clk_ipg);
2067 
2068 	return 0;
2069 }
2070 
2071 static int imx_serial_port_suspend(struct device *dev)
2072 {
2073 	struct platform_device *pdev = to_platform_device(dev);
2074 	struct imx_port *sport = platform_get_drvdata(pdev);
2075 
2076 	/* enable wakeup from i.MX UART */
2077 	serial_imx_enable_wakeup(sport, true);
2078 
2079 	uart_suspend_port(&imx_reg, &sport->port);
2080 
2081 	return 0;
2082 }
2083 
2084 static int imx_serial_port_resume(struct device *dev)
2085 {
2086 	struct platform_device *pdev = to_platform_device(dev);
2087 	struct imx_port *sport = platform_get_drvdata(pdev);
2088 
2089 	/* disable wakeup from i.MX UART */
2090 	serial_imx_enable_wakeup(sport, false);
2091 
2092 	uart_resume_port(&imx_reg, &sport->port);
2093 
2094 	return 0;
2095 }
2096 
2097 static const struct dev_pm_ops imx_serial_port_pm_ops = {
2098 	.suspend_noirq = imx_serial_port_suspend_noirq,
2099 	.resume_noirq = imx_serial_port_resume_noirq,
2100 	.suspend = imx_serial_port_suspend,
2101 	.resume = imx_serial_port_resume,
2102 };
2103 
2104 static struct platform_driver serial_imx_driver = {
2105 	.probe		= serial_imx_probe,
2106 	.remove		= serial_imx_remove,
2107 
2108 	.id_table	= imx_uart_devtype,
2109 	.driver		= {
2110 		.name	= "imx-uart",
2111 		.of_match_table = imx_uart_dt_ids,
2112 		.pm	= &imx_serial_port_pm_ops,
2113 	},
2114 };
2115 
2116 static int __init imx_serial_init(void)
2117 {
2118 	int ret = uart_register_driver(&imx_reg);
2119 
2120 	if (ret)
2121 		return ret;
2122 
2123 	ret = platform_driver_register(&serial_imx_driver);
2124 	if (ret != 0)
2125 		uart_unregister_driver(&imx_reg);
2126 
2127 	return ret;
2128 }
2129 
2130 static void __exit imx_serial_exit(void)
2131 {
2132 	platform_driver_unregister(&serial_imx_driver);
2133 	uart_unregister_driver(&imx_reg);
2134 }
2135 
2136 module_init(imx_serial_init);
2137 module_exit(imx_serial_exit);
2138 
2139 MODULE_AUTHOR("Sascha Hauer");
2140 MODULE_DESCRIPTION("IMX generic serial port driver");
2141 MODULE_LICENSE("GPL");
2142 MODULE_ALIAS("platform:imx-uart");
2143