xref: /openbmc/linux/drivers/tty/serial/imx.c (revision c6acb1e7)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Driver for Motorola/Freescale IMX serial ports
4  *
5  * Based on drivers/char/serial.c, by Linus Torvalds, Theodore Ts'o.
6  *
7  * Author: Sascha Hauer <sascha@saschahauer.de>
8  * Copyright (C) 2004 Pengutronix
9  */
10 
11 #include <linux/module.h>
12 #include <linux/ioport.h>
13 #include <linux/init.h>
14 #include <linux/console.h>
15 #include <linux/sysrq.h>
16 #include <linux/platform_device.h>
17 #include <linux/tty.h>
18 #include <linux/tty_flip.h>
19 #include <linux/serial_core.h>
20 #include <linux/serial.h>
21 #include <linux/clk.h>
22 #include <linux/delay.h>
23 #include <linux/ktime.h>
24 #include <linux/pinctrl/consumer.h>
25 #include <linux/rational.h>
26 #include <linux/slab.h>
27 #include <linux/of.h>
28 #include <linux/of_device.h>
29 #include <linux/io.h>
30 #include <linux/dma-mapping.h>
31 
32 #include <asm/irq.h>
33 #include <linux/platform_data/dma-imx.h>
34 
35 #include "serial_mctrl_gpio.h"
36 
37 /* Register definitions */
38 #define URXD0 0x0  /* Receiver Register */
39 #define URTX0 0x40 /* Transmitter Register */
40 #define UCR1  0x80 /* Control Register 1 */
41 #define UCR2  0x84 /* Control Register 2 */
42 #define UCR3  0x88 /* Control Register 3 */
43 #define UCR4  0x8c /* Control Register 4 */
44 #define UFCR  0x90 /* FIFO Control Register */
45 #define USR1  0x94 /* Status Register 1 */
46 #define USR2  0x98 /* Status Register 2 */
47 #define UESC  0x9c /* Escape Character Register */
48 #define UTIM  0xa0 /* Escape Timer Register */
49 #define UBIR  0xa4 /* BRM Incremental Register */
50 #define UBMR  0xa8 /* BRM Modulator Register */
51 #define UBRC  0xac /* Baud Rate Count Register */
52 #define IMX21_ONEMS 0xb0 /* One Millisecond register */
53 #define IMX1_UTS 0xd0 /* UART Test Register on i.mx1 */
54 #define IMX21_UTS 0xb4 /* UART Test Register on all other i.mx*/
55 
56 /* UART Control Register Bit Fields.*/
57 #define URXD_DUMMY_READ (1<<16)
58 #define URXD_CHARRDY	(1<<15)
59 #define URXD_ERR	(1<<14)
60 #define URXD_OVRRUN	(1<<13)
61 #define URXD_FRMERR	(1<<12)
62 #define URXD_BRK	(1<<11)
63 #define URXD_PRERR	(1<<10)
64 #define URXD_RX_DATA	(0xFF<<0)
65 #define UCR1_ADEN	(1<<15) /* Auto detect interrupt */
66 #define UCR1_ADBR	(1<<14) /* Auto detect baud rate */
67 #define UCR1_TRDYEN	(1<<13) /* Transmitter ready interrupt enable */
68 #define UCR1_IDEN	(1<<12) /* Idle condition interrupt */
69 #define UCR1_ICD_REG(x) (((x) & 3) << 10) /* idle condition detect */
70 #define UCR1_RRDYEN	(1<<9)	/* Recv ready interrupt enable */
71 #define UCR1_RXDMAEN	(1<<8)	/* Recv ready DMA enable */
72 #define UCR1_IREN	(1<<7)	/* Infrared interface enable */
73 #define UCR1_TXMPTYEN	(1<<6)	/* Transimitter empty interrupt enable */
74 #define UCR1_RTSDEN	(1<<5)	/* RTS delta interrupt enable */
75 #define UCR1_SNDBRK	(1<<4)	/* Send break */
76 #define UCR1_TXDMAEN	(1<<3)	/* Transmitter ready DMA enable */
77 #define IMX1_UCR1_UARTCLKEN (1<<2) /* UART clock enabled, i.mx1 only */
78 #define UCR1_ATDMAEN    (1<<2)  /* Aging DMA Timer Enable */
79 #define UCR1_DOZE	(1<<1)	/* Doze */
80 #define UCR1_UARTEN	(1<<0)	/* UART enabled */
81 #define UCR2_ESCI	(1<<15)	/* Escape seq interrupt enable */
82 #define UCR2_IRTS	(1<<14)	/* Ignore RTS pin */
83 #define UCR2_CTSC	(1<<13)	/* CTS pin control */
84 #define UCR2_CTS	(1<<12)	/* Clear to send */
85 #define UCR2_ESCEN	(1<<11)	/* Escape enable */
86 #define UCR2_PREN	(1<<8)	/* Parity enable */
87 #define UCR2_PROE	(1<<7)	/* Parity odd/even */
88 #define UCR2_STPB	(1<<6)	/* Stop */
89 #define UCR2_WS		(1<<5)	/* Word size */
90 #define UCR2_RTSEN	(1<<4)	/* Request to send interrupt enable */
91 #define UCR2_ATEN	(1<<3)	/* Aging Timer Enable */
92 #define UCR2_TXEN	(1<<2)	/* Transmitter enabled */
93 #define UCR2_RXEN	(1<<1)	/* Receiver enabled */
94 #define UCR2_SRST	(1<<0)	/* SW reset */
95 #define UCR3_DTREN	(1<<13) /* DTR interrupt enable */
96 #define UCR3_PARERREN	(1<<12) /* Parity enable */
97 #define UCR3_FRAERREN	(1<<11) /* Frame error interrupt enable */
98 #define UCR3_DSR	(1<<10) /* Data set ready */
99 #define UCR3_DCD	(1<<9)	/* Data carrier detect */
100 #define UCR3_RI		(1<<8)	/* Ring indicator */
101 #define UCR3_ADNIMP	(1<<7)	/* Autobaud Detection Not Improved */
102 #define UCR3_RXDSEN	(1<<6)	/* Receive status interrupt enable */
103 #define UCR3_AIRINTEN	(1<<5)	/* Async IR wake interrupt enable */
104 #define UCR3_AWAKEN	(1<<4)	/* Async wake interrupt enable */
105 #define UCR3_DTRDEN	(1<<3)	/* Data Terminal Ready Delta Enable. */
106 #define IMX21_UCR3_RXDMUXSEL	(1<<2)	/* RXD Muxed Input Select */
107 #define UCR3_INVT	(1<<1)	/* Inverted Infrared transmission */
108 #define UCR3_BPEN	(1<<0)	/* Preset registers enable */
109 #define UCR4_CTSTL_SHF	10	/* CTS trigger level shift */
110 #define UCR4_CTSTL_MASK	0x3F	/* CTS trigger is 6 bits wide */
111 #define UCR4_INVR	(1<<9)	/* Inverted infrared reception */
112 #define UCR4_ENIRI	(1<<8)	/* Serial infrared interrupt enable */
113 #define UCR4_WKEN	(1<<7)	/* Wake interrupt enable */
114 #define UCR4_REF16	(1<<6)	/* Ref freq 16 MHz */
115 #define UCR4_IDDMAEN    (1<<6)  /* DMA IDLE Condition Detected */
116 #define UCR4_IRSC	(1<<5)	/* IR special case */
117 #define UCR4_TCEN	(1<<3)	/* Transmit complete interrupt enable */
118 #define UCR4_BKEN	(1<<2)	/* Break condition interrupt enable */
119 #define UCR4_OREN	(1<<1)	/* Receiver overrun interrupt enable */
120 #define UCR4_DREN	(1<<0)	/* Recv data ready interrupt enable */
121 #define UFCR_RXTL_SHF	0	/* Receiver trigger level shift */
122 #define UFCR_DCEDTE	(1<<6)	/* DCE/DTE mode select */
123 #define UFCR_RFDIV	(7<<7)	/* Reference freq divider mask */
124 #define UFCR_RFDIV_REG(x)	(((x) < 7 ? 6 - (x) : 6) << 7)
125 #define UFCR_TXTL_SHF	10	/* Transmitter trigger level shift */
126 #define USR1_PARITYERR	(1<<15) /* Parity error interrupt flag */
127 #define USR1_RTSS	(1<<14) /* RTS pin status */
128 #define USR1_TRDY	(1<<13) /* Transmitter ready interrupt/dma flag */
129 #define USR1_RTSD	(1<<12) /* RTS delta */
130 #define USR1_ESCF	(1<<11) /* Escape seq interrupt flag */
131 #define USR1_FRAMERR	(1<<10) /* Frame error interrupt flag */
132 #define USR1_RRDY	(1<<9)	 /* Receiver ready interrupt/dma flag */
133 #define USR1_AGTIM	(1<<8)	 /* Ageing timer interrupt flag */
134 #define USR1_DTRD	(1<<7)	 /* DTR Delta */
135 #define USR1_RXDS	 (1<<6)	 /* Receiver idle interrupt flag */
136 #define USR1_AIRINT	 (1<<5)	 /* Async IR wake interrupt flag */
137 #define USR1_AWAKE	 (1<<4)	 /* Aysnc wake interrupt flag */
138 #define USR2_ADET	 (1<<15) /* Auto baud rate detect complete */
139 #define USR2_TXFE	 (1<<14) /* Transmit buffer FIFO empty */
140 #define USR2_DTRF	 (1<<13) /* DTR edge interrupt flag */
141 #define USR2_IDLE	 (1<<12) /* Idle condition */
142 #define USR2_RIDELT	 (1<<10) /* Ring Interrupt Delta */
143 #define USR2_RIIN	 (1<<9)	 /* Ring Indicator Input */
144 #define USR2_IRINT	 (1<<8)	 /* Serial infrared interrupt flag */
145 #define USR2_WAKE	 (1<<7)	 /* Wake */
146 #define USR2_DCDIN	 (1<<5)	 /* Data Carrier Detect Input */
147 #define USR2_RTSF	 (1<<4)	 /* RTS edge interrupt flag */
148 #define USR2_TXDC	 (1<<3)	 /* Transmitter complete */
149 #define USR2_BRCD	 (1<<2)	 /* Break condition */
150 #define USR2_ORE	(1<<1)	 /* Overrun error */
151 #define USR2_RDR	(1<<0)	 /* Recv data ready */
152 #define UTS_FRCPERR	(1<<13) /* Force parity error */
153 #define UTS_LOOP	(1<<12)	 /* Loop tx and rx */
154 #define UTS_TXEMPTY	 (1<<6)	 /* TxFIFO empty */
155 #define UTS_RXEMPTY	 (1<<5)	 /* RxFIFO empty */
156 #define UTS_TXFULL	 (1<<4)	 /* TxFIFO full */
157 #define UTS_RXFULL	 (1<<3)	 /* RxFIFO full */
158 #define UTS_SOFTRST	 (1<<0)	 /* Software reset */
159 
160 /* We've been assigned a range on the "Low-density serial ports" major */
161 #define SERIAL_IMX_MAJOR	207
162 #define MINOR_START		16
163 #define DEV_NAME		"ttymxc"
164 
165 /*
166  * This determines how often we check the modem status signals
167  * for any change.  They generally aren't connected to an IRQ
168  * so we have to poll them.  We also check immediately before
169  * filling the TX fifo incase CTS has been dropped.
170  */
171 #define MCTRL_TIMEOUT	(250*HZ/1000)
172 
173 #define DRIVER_NAME "IMX-uart"
174 
175 #define UART_NR 8
176 
177 /* i.MX21 type uart runs on all i.mx except i.MX1 and i.MX6q */
178 enum imx_uart_type {
179 	IMX1_UART,
180 	IMX21_UART,
181 	IMX53_UART,
182 	IMX6Q_UART,
183 };
184 
185 /* device type dependent stuff */
186 struct imx_uart_data {
187 	unsigned uts_reg;
188 	enum imx_uart_type devtype;
189 };
190 
191 enum imx_tx_state {
192 	OFF,
193 	WAIT_AFTER_RTS,
194 	SEND,
195 	WAIT_AFTER_SEND,
196 };
197 
198 struct imx_port {
199 	struct uart_port	port;
200 	struct timer_list	timer;
201 	unsigned int		old_status;
202 	unsigned int		have_rtscts:1;
203 	unsigned int		have_rtsgpio:1;
204 	unsigned int		dte_mode:1;
205 	unsigned int		inverted_tx:1;
206 	unsigned int		inverted_rx:1;
207 	struct clk		*clk_ipg;
208 	struct clk		*clk_per;
209 	const struct imx_uart_data *devdata;
210 
211 	struct mctrl_gpios *gpios;
212 
213 	/* shadow registers */
214 	unsigned int ucr1;
215 	unsigned int ucr2;
216 	unsigned int ucr3;
217 	unsigned int ucr4;
218 	unsigned int ufcr;
219 
220 	/* DMA fields */
221 	unsigned int		dma_is_enabled:1;
222 	unsigned int		dma_is_rxing:1;
223 	unsigned int		dma_is_txing:1;
224 	struct dma_chan		*dma_chan_rx, *dma_chan_tx;
225 	struct scatterlist	rx_sgl, tx_sgl[2];
226 	void			*rx_buf;
227 	struct circ_buf		rx_ring;
228 	unsigned int		rx_buf_size;
229 	unsigned int		rx_period_length;
230 	unsigned int		rx_periods;
231 	dma_cookie_t		rx_cookie;
232 	unsigned int		tx_bytes;
233 	unsigned int		dma_tx_nents;
234 	unsigned int            saved_reg[10];
235 	bool			context_saved;
236 
237 	enum imx_tx_state	tx_state;
238 	struct hrtimer		trigger_start_tx;
239 	struct hrtimer		trigger_stop_tx;
240 };
241 
242 struct imx_port_ucrs {
243 	unsigned int	ucr1;
244 	unsigned int	ucr2;
245 	unsigned int	ucr3;
246 };
247 
248 static struct imx_uart_data imx_uart_devdata[] = {
249 	[IMX1_UART] = {
250 		.uts_reg = IMX1_UTS,
251 		.devtype = IMX1_UART,
252 	},
253 	[IMX21_UART] = {
254 		.uts_reg = IMX21_UTS,
255 		.devtype = IMX21_UART,
256 	},
257 	[IMX53_UART] = {
258 		.uts_reg = IMX21_UTS,
259 		.devtype = IMX53_UART,
260 	},
261 	[IMX6Q_UART] = {
262 		.uts_reg = IMX21_UTS,
263 		.devtype = IMX6Q_UART,
264 	},
265 };
266 
267 static const struct of_device_id imx_uart_dt_ids[] = {
268 	{ .compatible = "fsl,imx6q-uart", .data = &imx_uart_devdata[IMX6Q_UART], },
269 	{ .compatible = "fsl,imx53-uart", .data = &imx_uart_devdata[IMX53_UART], },
270 	{ .compatible = "fsl,imx1-uart", .data = &imx_uart_devdata[IMX1_UART], },
271 	{ .compatible = "fsl,imx21-uart", .data = &imx_uart_devdata[IMX21_UART], },
272 	{ /* sentinel */ }
273 };
274 MODULE_DEVICE_TABLE(of, imx_uart_dt_ids);
275 
276 static void imx_uart_writel(struct imx_port *sport, u32 val, u32 offset)
277 {
278 	switch (offset) {
279 	case UCR1:
280 		sport->ucr1 = val;
281 		break;
282 	case UCR2:
283 		sport->ucr2 = val;
284 		break;
285 	case UCR3:
286 		sport->ucr3 = val;
287 		break;
288 	case UCR4:
289 		sport->ucr4 = val;
290 		break;
291 	case UFCR:
292 		sport->ufcr = val;
293 		break;
294 	default:
295 		break;
296 	}
297 	writel(val, sport->port.membase + offset);
298 }
299 
300 static u32 imx_uart_readl(struct imx_port *sport, u32 offset)
301 {
302 	switch (offset) {
303 	case UCR1:
304 		return sport->ucr1;
305 		break;
306 	case UCR2:
307 		/*
308 		 * UCR2_SRST is the only bit in the cached registers that might
309 		 * differ from the value that was last written. As it only
310 		 * automatically becomes one after being cleared, reread
311 		 * conditionally.
312 		 */
313 		if (!(sport->ucr2 & UCR2_SRST))
314 			sport->ucr2 = readl(sport->port.membase + offset);
315 		return sport->ucr2;
316 		break;
317 	case UCR3:
318 		return sport->ucr3;
319 		break;
320 	case UCR4:
321 		return sport->ucr4;
322 		break;
323 	case UFCR:
324 		return sport->ufcr;
325 		break;
326 	default:
327 		return readl(sport->port.membase + offset);
328 	}
329 }
330 
331 static inline unsigned imx_uart_uts_reg(struct imx_port *sport)
332 {
333 	return sport->devdata->uts_reg;
334 }
335 
336 static inline int imx_uart_is_imx1(struct imx_port *sport)
337 {
338 	return sport->devdata->devtype == IMX1_UART;
339 }
340 
341 static inline int imx_uart_is_imx21(struct imx_port *sport)
342 {
343 	return sport->devdata->devtype == IMX21_UART;
344 }
345 
346 static inline int imx_uart_is_imx53(struct imx_port *sport)
347 {
348 	return sport->devdata->devtype == IMX53_UART;
349 }
350 
351 static inline int imx_uart_is_imx6q(struct imx_port *sport)
352 {
353 	return sport->devdata->devtype == IMX6Q_UART;
354 }
355 /*
356  * Save and restore functions for UCR1, UCR2 and UCR3 registers
357  */
358 #if IS_ENABLED(CONFIG_SERIAL_IMX_CONSOLE)
359 static void imx_uart_ucrs_save(struct imx_port *sport,
360 			       struct imx_port_ucrs *ucr)
361 {
362 	/* save control registers */
363 	ucr->ucr1 = imx_uart_readl(sport, UCR1);
364 	ucr->ucr2 = imx_uart_readl(sport, UCR2);
365 	ucr->ucr3 = imx_uart_readl(sport, UCR3);
366 }
367 
368 static void imx_uart_ucrs_restore(struct imx_port *sport,
369 				  struct imx_port_ucrs *ucr)
370 {
371 	/* restore control registers */
372 	imx_uart_writel(sport, ucr->ucr1, UCR1);
373 	imx_uart_writel(sport, ucr->ucr2, UCR2);
374 	imx_uart_writel(sport, ucr->ucr3, UCR3);
375 }
376 #endif
377 
378 /* called with port.lock taken and irqs caller dependent */
379 static void imx_uart_rts_active(struct imx_port *sport, u32 *ucr2)
380 {
381 	*ucr2 &= ~(UCR2_CTSC | UCR2_CTS);
382 
383 	sport->port.mctrl |= TIOCM_RTS;
384 	mctrl_gpio_set(sport->gpios, sport->port.mctrl);
385 }
386 
387 /* called with port.lock taken and irqs caller dependent */
388 static void imx_uart_rts_inactive(struct imx_port *sport, u32 *ucr2)
389 {
390 	*ucr2 &= ~UCR2_CTSC;
391 	*ucr2 |= UCR2_CTS;
392 
393 	sport->port.mctrl &= ~TIOCM_RTS;
394 	mctrl_gpio_set(sport->gpios, sport->port.mctrl);
395 }
396 
397 static void start_hrtimer_ms(struct hrtimer *hrt, unsigned long msec)
398 {
399        hrtimer_start(hrt, ms_to_ktime(msec), HRTIMER_MODE_REL);
400 }
401 
402 /* called with port.lock taken and irqs off */
403 static void imx_uart_start_rx(struct uart_port *port)
404 {
405 	struct imx_port *sport = (struct imx_port *)port;
406 	unsigned int ucr1, ucr2;
407 
408 	ucr1 = imx_uart_readl(sport, UCR1);
409 	ucr2 = imx_uart_readl(sport, UCR2);
410 
411 	ucr2 |= UCR2_RXEN;
412 
413 	if (sport->dma_is_enabled) {
414 		ucr1 |= UCR1_RXDMAEN | UCR1_ATDMAEN;
415 	} else {
416 		ucr1 |= UCR1_RRDYEN;
417 		ucr2 |= UCR2_ATEN;
418 	}
419 
420 	/* Write UCR2 first as it includes RXEN */
421 	imx_uart_writel(sport, ucr2, UCR2);
422 	imx_uart_writel(sport, ucr1, UCR1);
423 }
424 
425 /* called with port.lock taken and irqs off */
426 static void imx_uart_stop_tx(struct uart_port *port)
427 {
428 	struct imx_port *sport = (struct imx_port *)port;
429 	u32 ucr1, ucr4, usr2;
430 
431 	if (sport->tx_state == OFF)
432 		return;
433 
434 	/*
435 	 * We are maybe in the SMP context, so if the DMA TX thread is running
436 	 * on other cpu, we have to wait for it to finish.
437 	 */
438 	if (sport->dma_is_txing)
439 		return;
440 
441 	ucr1 = imx_uart_readl(sport, UCR1);
442 	imx_uart_writel(sport, ucr1 & ~UCR1_TRDYEN, UCR1);
443 
444 	usr2 = imx_uart_readl(sport, USR2);
445 	if (!(usr2 & USR2_TXDC)) {
446 		/* The shifter is still busy, so retry once TC triggers */
447 		return;
448 	}
449 
450 	ucr4 = imx_uart_readl(sport, UCR4);
451 	ucr4 &= ~UCR4_TCEN;
452 	imx_uart_writel(sport, ucr4, UCR4);
453 
454 	/* in rs485 mode disable transmitter */
455 	if (port->rs485.flags & SER_RS485_ENABLED) {
456 		if (sport->tx_state == SEND) {
457 			sport->tx_state = WAIT_AFTER_SEND;
458 			start_hrtimer_ms(&sport->trigger_stop_tx,
459 					 port->rs485.delay_rts_after_send);
460 			return;
461 		}
462 
463 		if (sport->tx_state == WAIT_AFTER_RTS ||
464 		    sport->tx_state == WAIT_AFTER_SEND) {
465 			u32 ucr2;
466 
467 			hrtimer_try_to_cancel(&sport->trigger_start_tx);
468 
469 			ucr2 = imx_uart_readl(sport, UCR2);
470 			if (port->rs485.flags & SER_RS485_RTS_AFTER_SEND)
471 				imx_uart_rts_active(sport, &ucr2);
472 			else
473 				imx_uart_rts_inactive(sport, &ucr2);
474 			imx_uart_writel(sport, ucr2, UCR2);
475 
476 			imx_uart_start_rx(port);
477 
478 			sport->tx_state = OFF;
479 		}
480 	} else {
481 		sport->tx_state = OFF;
482 	}
483 }
484 
485 /* called with port.lock taken and irqs off */
486 static void imx_uart_stop_rx(struct uart_port *port)
487 {
488 	struct imx_port *sport = (struct imx_port *)port;
489 	u32 ucr1, ucr2;
490 
491 	ucr1 = imx_uart_readl(sport, UCR1);
492 	ucr2 = imx_uart_readl(sport, UCR2);
493 
494 	if (sport->dma_is_enabled) {
495 		ucr1 &= ~(UCR1_RXDMAEN | UCR1_ATDMAEN);
496 	} else {
497 		ucr1 &= ~UCR1_RRDYEN;
498 		ucr2 &= ~UCR2_ATEN;
499 	}
500 	imx_uart_writel(sport, ucr1, UCR1);
501 
502 	ucr2 &= ~UCR2_RXEN;
503 	imx_uart_writel(sport, ucr2, UCR2);
504 }
505 
506 /* called with port.lock taken and irqs off */
507 static void imx_uart_enable_ms(struct uart_port *port)
508 {
509 	struct imx_port *sport = (struct imx_port *)port;
510 
511 	mod_timer(&sport->timer, jiffies);
512 
513 	mctrl_gpio_enable_ms(sport->gpios);
514 }
515 
516 static void imx_uart_dma_tx(struct imx_port *sport);
517 
518 /* called with port.lock taken and irqs off */
519 static inline void imx_uart_transmit_buffer(struct imx_port *sport)
520 {
521 	struct circ_buf *xmit = &sport->port.state->xmit;
522 
523 	if (sport->port.x_char) {
524 		/* Send next char */
525 		imx_uart_writel(sport, sport->port.x_char, URTX0);
526 		sport->port.icount.tx++;
527 		sport->port.x_char = 0;
528 		return;
529 	}
530 
531 	if (uart_circ_empty(xmit) || uart_tx_stopped(&sport->port)) {
532 		imx_uart_stop_tx(&sport->port);
533 		return;
534 	}
535 
536 	if (sport->dma_is_enabled) {
537 		u32 ucr1;
538 		/*
539 		 * We've just sent a X-char Ensure the TX DMA is enabled
540 		 * and the TX IRQ is disabled.
541 		 **/
542 		ucr1 = imx_uart_readl(sport, UCR1);
543 		ucr1 &= ~UCR1_TRDYEN;
544 		if (sport->dma_is_txing) {
545 			ucr1 |= UCR1_TXDMAEN;
546 			imx_uart_writel(sport, ucr1, UCR1);
547 		} else {
548 			imx_uart_writel(sport, ucr1, UCR1);
549 			imx_uart_dma_tx(sport);
550 		}
551 
552 		return;
553 	}
554 
555 	while (!uart_circ_empty(xmit) &&
556 	       !(imx_uart_readl(sport, imx_uart_uts_reg(sport)) & UTS_TXFULL)) {
557 		/* send xmit->buf[xmit->tail]
558 		 * out the port here */
559 		imx_uart_writel(sport, xmit->buf[xmit->tail], URTX0);
560 		xmit->tail = (xmit->tail + 1) & (UART_XMIT_SIZE - 1);
561 		sport->port.icount.tx++;
562 	}
563 
564 	if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
565 		uart_write_wakeup(&sport->port);
566 
567 	if (uart_circ_empty(xmit))
568 		imx_uart_stop_tx(&sport->port);
569 }
570 
571 static void imx_uart_dma_tx_callback(void *data)
572 {
573 	struct imx_port *sport = data;
574 	struct scatterlist *sgl = &sport->tx_sgl[0];
575 	struct circ_buf *xmit = &sport->port.state->xmit;
576 	unsigned long flags;
577 	u32 ucr1;
578 
579 	spin_lock_irqsave(&sport->port.lock, flags);
580 
581 	dma_unmap_sg(sport->port.dev, sgl, sport->dma_tx_nents, DMA_TO_DEVICE);
582 
583 	ucr1 = imx_uart_readl(sport, UCR1);
584 	ucr1 &= ~UCR1_TXDMAEN;
585 	imx_uart_writel(sport, ucr1, UCR1);
586 
587 	/* update the stat */
588 	xmit->tail = (xmit->tail + sport->tx_bytes) & (UART_XMIT_SIZE - 1);
589 	sport->port.icount.tx += sport->tx_bytes;
590 
591 	dev_dbg(sport->port.dev, "we finish the TX DMA.\n");
592 
593 	sport->dma_is_txing = 0;
594 
595 	if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
596 		uart_write_wakeup(&sport->port);
597 
598 	if (!uart_circ_empty(xmit) && !uart_tx_stopped(&sport->port))
599 		imx_uart_dma_tx(sport);
600 	else if (sport->port.rs485.flags & SER_RS485_ENABLED) {
601 		u32 ucr4 = imx_uart_readl(sport, UCR4);
602 		ucr4 |= UCR4_TCEN;
603 		imx_uart_writel(sport, ucr4, UCR4);
604 	}
605 
606 	spin_unlock_irqrestore(&sport->port.lock, flags);
607 }
608 
609 /* called with port.lock taken and irqs off */
610 static void imx_uart_dma_tx(struct imx_port *sport)
611 {
612 	struct circ_buf *xmit = &sport->port.state->xmit;
613 	struct scatterlist *sgl = sport->tx_sgl;
614 	struct dma_async_tx_descriptor *desc;
615 	struct dma_chan	*chan = sport->dma_chan_tx;
616 	struct device *dev = sport->port.dev;
617 	u32 ucr1, ucr4;
618 	int ret;
619 
620 	if (sport->dma_is_txing)
621 		return;
622 
623 	ucr4 = imx_uart_readl(sport, UCR4);
624 	ucr4 &= ~UCR4_TCEN;
625 	imx_uart_writel(sport, ucr4, UCR4);
626 
627 	sport->tx_bytes = uart_circ_chars_pending(xmit);
628 
629 	if (xmit->tail < xmit->head || xmit->head == 0) {
630 		sport->dma_tx_nents = 1;
631 		sg_init_one(sgl, xmit->buf + xmit->tail, sport->tx_bytes);
632 	} else {
633 		sport->dma_tx_nents = 2;
634 		sg_init_table(sgl, 2);
635 		sg_set_buf(sgl, xmit->buf + xmit->tail,
636 				UART_XMIT_SIZE - xmit->tail);
637 		sg_set_buf(sgl + 1, xmit->buf, xmit->head);
638 	}
639 
640 	ret = dma_map_sg(dev, sgl, sport->dma_tx_nents, DMA_TO_DEVICE);
641 	if (ret == 0) {
642 		dev_err(dev, "DMA mapping error for TX.\n");
643 		return;
644 	}
645 	desc = dmaengine_prep_slave_sg(chan, sgl, ret,
646 					DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT);
647 	if (!desc) {
648 		dma_unmap_sg(dev, sgl, sport->dma_tx_nents,
649 			     DMA_TO_DEVICE);
650 		dev_err(dev, "We cannot prepare for the TX slave dma!\n");
651 		return;
652 	}
653 	desc->callback = imx_uart_dma_tx_callback;
654 	desc->callback_param = sport;
655 
656 	dev_dbg(dev, "TX: prepare to send %lu bytes by DMA.\n",
657 			uart_circ_chars_pending(xmit));
658 
659 	ucr1 = imx_uart_readl(sport, UCR1);
660 	ucr1 |= UCR1_TXDMAEN;
661 	imx_uart_writel(sport, ucr1, UCR1);
662 
663 	/* fire it */
664 	sport->dma_is_txing = 1;
665 	dmaengine_submit(desc);
666 	dma_async_issue_pending(chan);
667 	return;
668 }
669 
670 /* called with port.lock taken and irqs off */
671 static void imx_uart_start_tx(struct uart_port *port)
672 {
673 	struct imx_port *sport = (struct imx_port *)port;
674 	u32 ucr1;
675 
676 	if (!sport->port.x_char && uart_circ_empty(&port->state->xmit))
677 		return;
678 
679 	/*
680 	 * We cannot simply do nothing here if sport->tx_state == SEND already
681 	 * because UCR1_TXMPTYEN might already have been cleared in
682 	 * imx_uart_stop_tx(), but tx_state is still SEND.
683 	 */
684 
685 	if (port->rs485.flags & SER_RS485_ENABLED) {
686 		if (sport->tx_state == OFF) {
687 			u32 ucr2 = imx_uart_readl(sport, UCR2);
688 			if (port->rs485.flags & SER_RS485_RTS_ON_SEND)
689 				imx_uart_rts_active(sport, &ucr2);
690 			else
691 				imx_uart_rts_inactive(sport, &ucr2);
692 			imx_uart_writel(sport, ucr2, UCR2);
693 
694 			if (!(port->rs485.flags & SER_RS485_RX_DURING_TX))
695 				imx_uart_stop_rx(port);
696 
697 			sport->tx_state = WAIT_AFTER_RTS;
698 			start_hrtimer_ms(&sport->trigger_start_tx,
699 					 port->rs485.delay_rts_before_send);
700 			return;
701 		}
702 
703 		if (sport->tx_state == WAIT_AFTER_SEND
704 		    || sport->tx_state == WAIT_AFTER_RTS) {
705 
706 			hrtimer_try_to_cancel(&sport->trigger_stop_tx);
707 
708 			/*
709 			 * Enable transmitter and shifter empty irq only if DMA
710 			 * is off.  In the DMA case this is done in the
711 			 * tx-callback.
712 			 */
713 			if (!sport->dma_is_enabled) {
714 				u32 ucr4 = imx_uart_readl(sport, UCR4);
715 				ucr4 |= UCR4_TCEN;
716 				imx_uart_writel(sport, ucr4, UCR4);
717 			}
718 
719 			sport->tx_state = SEND;
720 		}
721 	} else {
722 		sport->tx_state = SEND;
723 	}
724 
725 	if (!sport->dma_is_enabled) {
726 		ucr1 = imx_uart_readl(sport, UCR1);
727 		imx_uart_writel(sport, ucr1 | UCR1_TRDYEN, UCR1);
728 	}
729 
730 	if (sport->dma_is_enabled) {
731 		if (sport->port.x_char) {
732 			/* We have X-char to send, so enable TX IRQ and
733 			 * disable TX DMA to let TX interrupt to send X-char */
734 			ucr1 = imx_uart_readl(sport, UCR1);
735 			ucr1 &= ~UCR1_TXDMAEN;
736 			ucr1 |= UCR1_TRDYEN;
737 			imx_uart_writel(sport, ucr1, UCR1);
738 			return;
739 		}
740 
741 		if (!uart_circ_empty(&port->state->xmit) &&
742 		    !uart_tx_stopped(port))
743 			imx_uart_dma_tx(sport);
744 		return;
745 	}
746 }
747 
748 static irqreturn_t __imx_uart_rtsint(int irq, void *dev_id)
749 {
750 	struct imx_port *sport = dev_id;
751 	u32 usr1;
752 
753 	imx_uart_writel(sport, USR1_RTSD, USR1);
754 	usr1 = imx_uart_readl(sport, USR1) & USR1_RTSS;
755 	uart_handle_cts_change(&sport->port, !!usr1);
756 	wake_up_interruptible(&sport->port.state->port.delta_msr_wait);
757 
758 	return IRQ_HANDLED;
759 }
760 
761 static irqreturn_t imx_uart_rtsint(int irq, void *dev_id)
762 {
763 	struct imx_port *sport = dev_id;
764 	irqreturn_t ret;
765 
766 	spin_lock(&sport->port.lock);
767 
768 	ret = __imx_uart_rtsint(irq, dev_id);
769 
770 	spin_unlock(&sport->port.lock);
771 
772 	return ret;
773 }
774 
775 static irqreturn_t imx_uart_txint(int irq, void *dev_id)
776 {
777 	struct imx_port *sport = dev_id;
778 
779 	spin_lock(&sport->port.lock);
780 	imx_uart_transmit_buffer(sport);
781 	spin_unlock(&sport->port.lock);
782 	return IRQ_HANDLED;
783 }
784 
785 static irqreturn_t __imx_uart_rxint(int irq, void *dev_id)
786 {
787 	struct imx_port *sport = dev_id;
788 	unsigned int rx, flg, ignored = 0;
789 	struct tty_port *port = &sport->port.state->port;
790 
791 	while (imx_uart_readl(sport, USR2) & USR2_RDR) {
792 		u32 usr2;
793 
794 		flg = TTY_NORMAL;
795 		sport->port.icount.rx++;
796 
797 		rx = imx_uart_readl(sport, URXD0);
798 
799 		usr2 = imx_uart_readl(sport, USR2);
800 		if (usr2 & USR2_BRCD) {
801 			imx_uart_writel(sport, USR2_BRCD, USR2);
802 			if (uart_handle_break(&sport->port))
803 				continue;
804 		}
805 
806 		if (uart_handle_sysrq_char(&sport->port, (unsigned char)rx))
807 			continue;
808 
809 		if (unlikely(rx & URXD_ERR)) {
810 			if (rx & URXD_BRK)
811 				sport->port.icount.brk++;
812 			else if (rx & URXD_PRERR)
813 				sport->port.icount.parity++;
814 			else if (rx & URXD_FRMERR)
815 				sport->port.icount.frame++;
816 			if (rx & URXD_OVRRUN)
817 				sport->port.icount.overrun++;
818 
819 			if (rx & sport->port.ignore_status_mask) {
820 				if (++ignored > 100)
821 					goto out;
822 				continue;
823 			}
824 
825 			rx &= (sport->port.read_status_mask | 0xFF);
826 
827 			if (rx & URXD_BRK)
828 				flg = TTY_BREAK;
829 			else if (rx & URXD_PRERR)
830 				flg = TTY_PARITY;
831 			else if (rx & URXD_FRMERR)
832 				flg = TTY_FRAME;
833 			if (rx & URXD_OVRRUN)
834 				flg = TTY_OVERRUN;
835 
836 			sport->port.sysrq = 0;
837 		}
838 
839 		if (sport->port.ignore_status_mask & URXD_DUMMY_READ)
840 			goto out;
841 
842 		if (tty_insert_flip_char(port, rx, flg) == 0)
843 			sport->port.icount.buf_overrun++;
844 	}
845 
846 out:
847 	tty_flip_buffer_push(port);
848 
849 	return IRQ_HANDLED;
850 }
851 
852 static irqreturn_t imx_uart_rxint(int irq, void *dev_id)
853 {
854 	struct imx_port *sport = dev_id;
855 	irqreturn_t ret;
856 
857 	spin_lock(&sport->port.lock);
858 
859 	ret = __imx_uart_rxint(irq, dev_id);
860 
861 	spin_unlock(&sport->port.lock);
862 
863 	return ret;
864 }
865 
866 static void imx_uart_clear_rx_errors(struct imx_port *sport);
867 
868 /*
869  * We have a modem side uart, so the meanings of RTS and CTS are inverted.
870  */
871 static unsigned int imx_uart_get_hwmctrl(struct imx_port *sport)
872 {
873 	unsigned int tmp = TIOCM_DSR;
874 	unsigned usr1 = imx_uart_readl(sport, USR1);
875 	unsigned usr2 = imx_uart_readl(sport, USR2);
876 
877 	if (usr1 & USR1_RTSS)
878 		tmp |= TIOCM_CTS;
879 
880 	/* in DCE mode DCDIN is always 0 */
881 	if (!(usr2 & USR2_DCDIN))
882 		tmp |= TIOCM_CAR;
883 
884 	if (sport->dte_mode)
885 		if (!(imx_uart_readl(sport, USR2) & USR2_RIIN))
886 			tmp |= TIOCM_RI;
887 
888 	return tmp;
889 }
890 
891 /*
892  * Handle any change of modem status signal since we were last called.
893  */
894 static void imx_uart_mctrl_check(struct imx_port *sport)
895 {
896 	unsigned int status, changed;
897 
898 	status = imx_uart_get_hwmctrl(sport);
899 	changed = status ^ sport->old_status;
900 
901 	if (changed == 0)
902 		return;
903 
904 	sport->old_status = status;
905 
906 	if (changed & TIOCM_RI && status & TIOCM_RI)
907 		sport->port.icount.rng++;
908 	if (changed & TIOCM_DSR)
909 		sport->port.icount.dsr++;
910 	if (changed & TIOCM_CAR)
911 		uart_handle_dcd_change(&sport->port, status & TIOCM_CAR);
912 	if (changed & TIOCM_CTS)
913 		uart_handle_cts_change(&sport->port, status & TIOCM_CTS);
914 
915 	wake_up_interruptible(&sport->port.state->port.delta_msr_wait);
916 }
917 
918 static irqreturn_t imx_uart_int(int irq, void *dev_id)
919 {
920 	struct imx_port *sport = dev_id;
921 	unsigned int usr1, usr2, ucr1, ucr2, ucr3, ucr4;
922 	irqreturn_t ret = IRQ_NONE;
923 
924 	spin_lock(&sport->port.lock);
925 
926 	usr1 = imx_uart_readl(sport, USR1);
927 	usr2 = imx_uart_readl(sport, USR2);
928 	ucr1 = imx_uart_readl(sport, UCR1);
929 	ucr2 = imx_uart_readl(sport, UCR2);
930 	ucr3 = imx_uart_readl(sport, UCR3);
931 	ucr4 = imx_uart_readl(sport, UCR4);
932 
933 	/*
934 	 * Even if a condition is true that can trigger an irq only handle it if
935 	 * the respective irq source is enabled. This prevents some undesired
936 	 * actions, for example if a character that sits in the RX FIFO and that
937 	 * should be fetched via DMA is tried to be fetched using PIO. Or the
938 	 * receiver is currently off and so reading from URXD0 results in an
939 	 * exception. So just mask the (raw) status bits for disabled irqs.
940 	 */
941 	if ((ucr1 & UCR1_RRDYEN) == 0)
942 		usr1 &= ~USR1_RRDY;
943 	if ((ucr2 & UCR2_ATEN) == 0)
944 		usr1 &= ~USR1_AGTIM;
945 	if ((ucr1 & UCR1_TRDYEN) == 0)
946 		usr1 &= ~USR1_TRDY;
947 	if ((ucr4 & UCR4_TCEN) == 0)
948 		usr2 &= ~USR2_TXDC;
949 	if ((ucr3 & UCR3_DTRDEN) == 0)
950 		usr1 &= ~USR1_DTRD;
951 	if ((ucr1 & UCR1_RTSDEN) == 0)
952 		usr1 &= ~USR1_RTSD;
953 	if ((ucr3 & UCR3_AWAKEN) == 0)
954 		usr1 &= ~USR1_AWAKE;
955 	if ((ucr4 & UCR4_OREN) == 0)
956 		usr2 &= ~USR2_ORE;
957 
958 	if (usr1 & (USR1_RRDY | USR1_AGTIM)) {
959 		imx_uart_writel(sport, USR1_AGTIM, USR1);
960 
961 		__imx_uart_rxint(irq, dev_id);
962 		ret = IRQ_HANDLED;
963 	}
964 
965 	if ((usr1 & USR1_TRDY) || (usr2 & USR2_TXDC)) {
966 		imx_uart_transmit_buffer(sport);
967 		ret = IRQ_HANDLED;
968 	}
969 
970 	if (usr1 & USR1_DTRD) {
971 		imx_uart_writel(sport, USR1_DTRD, USR1);
972 
973 		imx_uart_mctrl_check(sport);
974 
975 		ret = IRQ_HANDLED;
976 	}
977 
978 	if (usr1 & USR1_RTSD) {
979 		__imx_uart_rtsint(irq, dev_id);
980 		ret = IRQ_HANDLED;
981 	}
982 
983 	if (usr1 & USR1_AWAKE) {
984 		imx_uart_writel(sport, USR1_AWAKE, USR1);
985 		ret = IRQ_HANDLED;
986 	}
987 
988 	if (usr2 & USR2_ORE) {
989 		sport->port.icount.overrun++;
990 		imx_uart_writel(sport, USR2_ORE, USR2);
991 		ret = IRQ_HANDLED;
992 	}
993 
994 	spin_unlock(&sport->port.lock);
995 
996 	return ret;
997 }
998 
999 /*
1000  * Return TIOCSER_TEMT when transmitter is not busy.
1001  */
1002 static unsigned int imx_uart_tx_empty(struct uart_port *port)
1003 {
1004 	struct imx_port *sport = (struct imx_port *)port;
1005 	unsigned int ret;
1006 
1007 	ret = (imx_uart_readl(sport, USR2) & USR2_TXDC) ?  TIOCSER_TEMT : 0;
1008 
1009 	/* If the TX DMA is working, return 0. */
1010 	if (sport->dma_is_txing)
1011 		ret = 0;
1012 
1013 	return ret;
1014 }
1015 
1016 /* called with port.lock taken and irqs off */
1017 static unsigned int imx_uart_get_mctrl(struct uart_port *port)
1018 {
1019 	struct imx_port *sport = (struct imx_port *)port;
1020 	unsigned int ret = imx_uart_get_hwmctrl(sport);
1021 
1022 	mctrl_gpio_get(sport->gpios, &ret);
1023 
1024 	return ret;
1025 }
1026 
1027 /* called with port.lock taken and irqs off */
1028 static void imx_uart_set_mctrl(struct uart_port *port, unsigned int mctrl)
1029 {
1030 	struct imx_port *sport = (struct imx_port *)port;
1031 	u32 ucr3, uts;
1032 
1033 	if (!(port->rs485.flags & SER_RS485_ENABLED)) {
1034 		u32 ucr2;
1035 
1036 		/*
1037 		 * Turn off autoRTS if RTS is lowered and restore autoRTS
1038 		 * setting if RTS is raised.
1039 		 */
1040 		ucr2 = imx_uart_readl(sport, UCR2);
1041 		ucr2 &= ~(UCR2_CTS | UCR2_CTSC);
1042 		if (mctrl & TIOCM_RTS) {
1043 			ucr2 |= UCR2_CTS;
1044 			/*
1045 			 * UCR2_IRTS is unset if and only if the port is
1046 			 * configured for CRTSCTS, so we use inverted UCR2_IRTS
1047 			 * to get the state to restore to.
1048 			 */
1049 			if (!(ucr2 & UCR2_IRTS))
1050 				ucr2 |= UCR2_CTSC;
1051 		}
1052 		imx_uart_writel(sport, ucr2, UCR2);
1053 	}
1054 
1055 	ucr3 = imx_uart_readl(sport, UCR3) & ~UCR3_DSR;
1056 	if (!(mctrl & TIOCM_DTR))
1057 		ucr3 |= UCR3_DSR;
1058 	imx_uart_writel(sport, ucr3, UCR3);
1059 
1060 	uts = imx_uart_readl(sport, imx_uart_uts_reg(sport)) & ~UTS_LOOP;
1061 	if (mctrl & TIOCM_LOOP)
1062 		uts |= UTS_LOOP;
1063 	imx_uart_writel(sport, uts, imx_uart_uts_reg(sport));
1064 
1065 	mctrl_gpio_set(sport->gpios, mctrl);
1066 }
1067 
1068 /*
1069  * Interrupts always disabled.
1070  */
1071 static void imx_uart_break_ctl(struct uart_port *port, int break_state)
1072 {
1073 	struct imx_port *sport = (struct imx_port *)port;
1074 	unsigned long flags;
1075 	u32 ucr1;
1076 
1077 	spin_lock_irqsave(&sport->port.lock, flags);
1078 
1079 	ucr1 = imx_uart_readl(sport, UCR1) & ~UCR1_SNDBRK;
1080 
1081 	if (break_state != 0)
1082 		ucr1 |= UCR1_SNDBRK;
1083 
1084 	imx_uart_writel(sport, ucr1, UCR1);
1085 
1086 	spin_unlock_irqrestore(&sport->port.lock, flags);
1087 }
1088 
1089 /*
1090  * This is our per-port timeout handler, for checking the
1091  * modem status signals.
1092  */
1093 static void imx_uart_timeout(struct timer_list *t)
1094 {
1095 	struct imx_port *sport = from_timer(sport, t, timer);
1096 	unsigned long flags;
1097 
1098 	if (sport->port.state) {
1099 		spin_lock_irqsave(&sport->port.lock, flags);
1100 		imx_uart_mctrl_check(sport);
1101 		spin_unlock_irqrestore(&sport->port.lock, flags);
1102 
1103 		mod_timer(&sport->timer, jiffies + MCTRL_TIMEOUT);
1104 	}
1105 }
1106 
1107 /*
1108  * There are two kinds of RX DMA interrupts(such as in the MX6Q):
1109  *   [1] the RX DMA buffer is full.
1110  *   [2] the aging timer expires
1111  *
1112  * Condition [2] is triggered when a character has been sitting in the FIFO
1113  * for at least 8 byte durations.
1114  */
1115 static void imx_uart_dma_rx_callback(void *data)
1116 {
1117 	struct imx_port *sport = data;
1118 	struct dma_chan	*chan = sport->dma_chan_rx;
1119 	struct scatterlist *sgl = &sport->rx_sgl;
1120 	struct tty_port *port = &sport->port.state->port;
1121 	struct dma_tx_state state;
1122 	struct circ_buf *rx_ring = &sport->rx_ring;
1123 	enum dma_status status;
1124 	unsigned int w_bytes = 0;
1125 	unsigned int r_bytes;
1126 	unsigned int bd_size;
1127 
1128 	status = dmaengine_tx_status(chan, sport->rx_cookie, &state);
1129 
1130 	if (status == DMA_ERROR) {
1131 		imx_uart_clear_rx_errors(sport);
1132 		return;
1133 	}
1134 
1135 	if (!(sport->port.ignore_status_mask & URXD_DUMMY_READ)) {
1136 
1137 		/*
1138 		 * The state-residue variable represents the empty space
1139 		 * relative to the entire buffer. Taking this in consideration
1140 		 * the head is always calculated base on the buffer total
1141 		 * length - DMA transaction residue. The UART script from the
1142 		 * SDMA firmware will jump to the next buffer descriptor,
1143 		 * once a DMA transaction if finalized (IMX53 RM - A.4.1.2.4).
1144 		 * Taking this in consideration the tail is always at the
1145 		 * beginning of the buffer descriptor that contains the head.
1146 		 */
1147 
1148 		/* Calculate the head */
1149 		rx_ring->head = sg_dma_len(sgl) - state.residue;
1150 
1151 		/* Calculate the tail. */
1152 		bd_size = sg_dma_len(sgl) / sport->rx_periods;
1153 		rx_ring->tail = ((rx_ring->head-1) / bd_size) * bd_size;
1154 
1155 		if (rx_ring->head <= sg_dma_len(sgl) &&
1156 		    rx_ring->head > rx_ring->tail) {
1157 
1158 			/* Move data from tail to head */
1159 			r_bytes = rx_ring->head - rx_ring->tail;
1160 
1161 			/* CPU claims ownership of RX DMA buffer */
1162 			dma_sync_sg_for_cpu(sport->port.dev, sgl, 1,
1163 				DMA_FROM_DEVICE);
1164 
1165 			w_bytes = tty_insert_flip_string(port,
1166 				sport->rx_buf + rx_ring->tail, r_bytes);
1167 
1168 			/* UART retrieves ownership of RX DMA buffer */
1169 			dma_sync_sg_for_device(sport->port.dev, sgl, 1,
1170 				DMA_FROM_DEVICE);
1171 
1172 			if (w_bytes != r_bytes)
1173 				sport->port.icount.buf_overrun++;
1174 
1175 			sport->port.icount.rx += w_bytes;
1176 		} else	{
1177 			WARN_ON(rx_ring->head > sg_dma_len(sgl));
1178 			WARN_ON(rx_ring->head <= rx_ring->tail);
1179 		}
1180 	}
1181 
1182 	if (w_bytes) {
1183 		tty_flip_buffer_push(port);
1184 		dev_dbg(sport->port.dev, "We get %d bytes.\n", w_bytes);
1185 	}
1186 }
1187 
1188 static int imx_uart_start_rx_dma(struct imx_port *sport)
1189 {
1190 	struct scatterlist *sgl = &sport->rx_sgl;
1191 	struct dma_chan	*chan = sport->dma_chan_rx;
1192 	struct device *dev = sport->port.dev;
1193 	struct dma_async_tx_descriptor *desc;
1194 	int ret;
1195 
1196 	sport->rx_ring.head = 0;
1197 	sport->rx_ring.tail = 0;
1198 
1199 	sg_init_one(sgl, sport->rx_buf, sport->rx_buf_size);
1200 	ret = dma_map_sg(dev, sgl, 1, DMA_FROM_DEVICE);
1201 	if (ret == 0) {
1202 		dev_err(dev, "DMA mapping error for RX.\n");
1203 		return -EINVAL;
1204 	}
1205 
1206 	desc = dmaengine_prep_dma_cyclic(chan, sg_dma_address(sgl),
1207 		sg_dma_len(sgl), sg_dma_len(sgl) / sport->rx_periods,
1208 		DMA_DEV_TO_MEM, DMA_PREP_INTERRUPT);
1209 
1210 	if (!desc) {
1211 		dma_unmap_sg(dev, sgl, 1, DMA_FROM_DEVICE);
1212 		dev_err(dev, "We cannot prepare for the RX slave dma!\n");
1213 		return -EINVAL;
1214 	}
1215 	desc->callback = imx_uart_dma_rx_callback;
1216 	desc->callback_param = sport;
1217 
1218 	dev_dbg(dev, "RX: prepare for the DMA.\n");
1219 	sport->dma_is_rxing = 1;
1220 	sport->rx_cookie = dmaengine_submit(desc);
1221 	dma_async_issue_pending(chan);
1222 	return 0;
1223 }
1224 
1225 static void imx_uart_clear_rx_errors(struct imx_port *sport)
1226 {
1227 	struct tty_port *port = &sport->port.state->port;
1228 	u32 usr1, usr2;
1229 
1230 	usr1 = imx_uart_readl(sport, USR1);
1231 	usr2 = imx_uart_readl(sport, USR2);
1232 
1233 	if (usr2 & USR2_BRCD) {
1234 		sport->port.icount.brk++;
1235 		imx_uart_writel(sport, USR2_BRCD, USR2);
1236 		uart_handle_break(&sport->port);
1237 		if (tty_insert_flip_char(port, 0, TTY_BREAK) == 0)
1238 			sport->port.icount.buf_overrun++;
1239 		tty_flip_buffer_push(port);
1240 	} else {
1241 		if (usr1 & USR1_FRAMERR) {
1242 			sport->port.icount.frame++;
1243 			imx_uart_writel(sport, USR1_FRAMERR, USR1);
1244 		} else if (usr1 & USR1_PARITYERR) {
1245 			sport->port.icount.parity++;
1246 			imx_uart_writel(sport, USR1_PARITYERR, USR1);
1247 		}
1248 	}
1249 
1250 	if (usr2 & USR2_ORE) {
1251 		sport->port.icount.overrun++;
1252 		imx_uart_writel(sport, USR2_ORE, USR2);
1253 	}
1254 
1255 }
1256 
1257 #define TXTL_DEFAULT 2 /* reset default */
1258 #define RXTL_DEFAULT 1 /* reset default */
1259 #define TXTL_DMA 8 /* DMA burst setting */
1260 #define RXTL_DMA 9 /* DMA burst setting */
1261 
1262 static void imx_uart_setup_ufcr(struct imx_port *sport,
1263 				unsigned char txwl, unsigned char rxwl)
1264 {
1265 	unsigned int val;
1266 
1267 	/* set receiver / transmitter trigger level */
1268 	val = imx_uart_readl(sport, UFCR) & (UFCR_RFDIV | UFCR_DCEDTE);
1269 	val |= txwl << UFCR_TXTL_SHF | rxwl;
1270 	imx_uart_writel(sport, val, UFCR);
1271 }
1272 
1273 static void imx_uart_dma_exit(struct imx_port *sport)
1274 {
1275 	if (sport->dma_chan_rx) {
1276 		dmaengine_terminate_sync(sport->dma_chan_rx);
1277 		dma_release_channel(sport->dma_chan_rx);
1278 		sport->dma_chan_rx = NULL;
1279 		sport->rx_cookie = -EINVAL;
1280 		kfree(sport->rx_buf);
1281 		sport->rx_buf = NULL;
1282 	}
1283 
1284 	if (sport->dma_chan_tx) {
1285 		dmaengine_terminate_sync(sport->dma_chan_tx);
1286 		dma_release_channel(sport->dma_chan_tx);
1287 		sport->dma_chan_tx = NULL;
1288 	}
1289 }
1290 
1291 static int imx_uart_dma_init(struct imx_port *sport)
1292 {
1293 	struct dma_slave_config slave_config = {};
1294 	struct device *dev = sport->port.dev;
1295 	int ret;
1296 
1297 	/* Prepare for RX : */
1298 	sport->dma_chan_rx = dma_request_slave_channel(dev, "rx");
1299 	if (!sport->dma_chan_rx) {
1300 		dev_dbg(dev, "cannot get the DMA channel.\n");
1301 		ret = -EINVAL;
1302 		goto err;
1303 	}
1304 
1305 	slave_config.direction = DMA_DEV_TO_MEM;
1306 	slave_config.src_addr = sport->port.mapbase + URXD0;
1307 	slave_config.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
1308 	/* one byte less than the watermark level to enable the aging timer */
1309 	slave_config.src_maxburst = RXTL_DMA - 1;
1310 	ret = dmaengine_slave_config(sport->dma_chan_rx, &slave_config);
1311 	if (ret) {
1312 		dev_err(dev, "error in RX dma configuration.\n");
1313 		goto err;
1314 	}
1315 
1316 	sport->rx_buf_size = sport->rx_period_length * sport->rx_periods;
1317 	sport->rx_buf = kzalloc(sport->rx_buf_size, GFP_KERNEL);
1318 	if (!sport->rx_buf) {
1319 		ret = -ENOMEM;
1320 		goto err;
1321 	}
1322 	sport->rx_ring.buf = sport->rx_buf;
1323 
1324 	/* Prepare for TX : */
1325 	sport->dma_chan_tx = dma_request_slave_channel(dev, "tx");
1326 	if (!sport->dma_chan_tx) {
1327 		dev_err(dev, "cannot get the TX DMA channel!\n");
1328 		ret = -EINVAL;
1329 		goto err;
1330 	}
1331 
1332 	slave_config.direction = DMA_MEM_TO_DEV;
1333 	slave_config.dst_addr = sport->port.mapbase + URTX0;
1334 	slave_config.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
1335 	slave_config.dst_maxburst = TXTL_DMA;
1336 	ret = dmaengine_slave_config(sport->dma_chan_tx, &slave_config);
1337 	if (ret) {
1338 		dev_err(dev, "error in TX dma configuration.");
1339 		goto err;
1340 	}
1341 
1342 	return 0;
1343 err:
1344 	imx_uart_dma_exit(sport);
1345 	return ret;
1346 }
1347 
1348 static void imx_uart_enable_dma(struct imx_port *sport)
1349 {
1350 	u32 ucr1;
1351 
1352 	imx_uart_setup_ufcr(sport, TXTL_DMA, RXTL_DMA);
1353 
1354 	/* set UCR1 */
1355 	ucr1 = imx_uart_readl(sport, UCR1);
1356 	ucr1 |= UCR1_RXDMAEN | UCR1_TXDMAEN | UCR1_ATDMAEN;
1357 	imx_uart_writel(sport, ucr1, UCR1);
1358 
1359 	sport->dma_is_enabled = 1;
1360 }
1361 
1362 static void imx_uart_disable_dma(struct imx_port *sport)
1363 {
1364 	u32 ucr1;
1365 
1366 	/* clear UCR1 */
1367 	ucr1 = imx_uart_readl(sport, UCR1);
1368 	ucr1 &= ~(UCR1_RXDMAEN | UCR1_TXDMAEN | UCR1_ATDMAEN);
1369 	imx_uart_writel(sport, ucr1, UCR1);
1370 
1371 	imx_uart_setup_ufcr(sport, TXTL_DEFAULT, RXTL_DEFAULT);
1372 
1373 	sport->dma_is_enabled = 0;
1374 }
1375 
1376 /* half the RX buffer size */
1377 #define CTSTL 16
1378 
1379 static int imx_uart_startup(struct uart_port *port)
1380 {
1381 	struct imx_port *sport = (struct imx_port *)port;
1382 	int retval, i;
1383 	unsigned long flags;
1384 	int dma_is_inited = 0;
1385 	u32 ucr1, ucr2, ucr3, ucr4;
1386 
1387 	retval = clk_prepare_enable(sport->clk_per);
1388 	if (retval)
1389 		return retval;
1390 	retval = clk_prepare_enable(sport->clk_ipg);
1391 	if (retval) {
1392 		clk_disable_unprepare(sport->clk_per);
1393 		return retval;
1394 	}
1395 
1396 	imx_uart_setup_ufcr(sport, TXTL_DEFAULT, RXTL_DEFAULT);
1397 
1398 	/* disable the DREN bit (Data Ready interrupt enable) before
1399 	 * requesting IRQs
1400 	 */
1401 	ucr4 = imx_uart_readl(sport, UCR4);
1402 
1403 	/* set the trigger level for CTS */
1404 	ucr4 &= ~(UCR4_CTSTL_MASK << UCR4_CTSTL_SHF);
1405 	ucr4 |= CTSTL << UCR4_CTSTL_SHF;
1406 
1407 	imx_uart_writel(sport, ucr4 & ~UCR4_DREN, UCR4);
1408 
1409 	/* Can we enable the DMA support? */
1410 	if (!uart_console(port) && imx_uart_dma_init(sport) == 0)
1411 		dma_is_inited = 1;
1412 
1413 	spin_lock_irqsave(&sport->port.lock, flags);
1414 	/* Reset fifo's and state machines */
1415 	i = 100;
1416 
1417 	ucr2 = imx_uart_readl(sport, UCR2);
1418 	ucr2 &= ~UCR2_SRST;
1419 	imx_uart_writel(sport, ucr2, UCR2);
1420 
1421 	while (!(imx_uart_readl(sport, UCR2) & UCR2_SRST) && (--i > 0))
1422 		udelay(1);
1423 
1424 	/*
1425 	 * Finally, clear and enable interrupts
1426 	 */
1427 	imx_uart_writel(sport, USR1_RTSD | USR1_DTRD, USR1);
1428 	imx_uart_writel(sport, USR2_ORE, USR2);
1429 
1430 	ucr1 = imx_uart_readl(sport, UCR1) & ~UCR1_RRDYEN;
1431 	ucr1 |= UCR1_UARTEN;
1432 	if (sport->have_rtscts)
1433 		ucr1 |= UCR1_RTSDEN;
1434 
1435 	imx_uart_writel(sport, ucr1, UCR1);
1436 
1437 	ucr4 = imx_uart_readl(sport, UCR4) & ~(UCR4_OREN | UCR4_INVR);
1438 	if (!sport->dma_is_enabled)
1439 		ucr4 |= UCR4_OREN;
1440 	if (sport->inverted_rx)
1441 		ucr4 |= UCR4_INVR;
1442 	imx_uart_writel(sport, ucr4, UCR4);
1443 
1444 	ucr3 = imx_uart_readl(sport, UCR3) & ~UCR3_INVT;
1445 	/*
1446 	 * configure tx polarity before enabling tx
1447 	 */
1448 	if (sport->inverted_tx)
1449 		ucr3 |= UCR3_INVT;
1450 
1451 	if (!imx_uart_is_imx1(sport)) {
1452 		ucr3 |= UCR3_DTRDEN | UCR3_RI | UCR3_DCD;
1453 
1454 		if (sport->dte_mode)
1455 			/* disable broken interrupts */
1456 			ucr3 &= ~(UCR3_RI | UCR3_DCD);
1457 	}
1458 	imx_uart_writel(sport, ucr3, UCR3);
1459 
1460 	ucr2 = imx_uart_readl(sport, UCR2) & ~UCR2_ATEN;
1461 	ucr2 |= (UCR2_RXEN | UCR2_TXEN);
1462 	if (!sport->have_rtscts)
1463 		ucr2 |= UCR2_IRTS;
1464 	/*
1465 	 * make sure the edge sensitive RTS-irq is disabled,
1466 	 * we're using RTSD instead.
1467 	 */
1468 	if (!imx_uart_is_imx1(sport))
1469 		ucr2 &= ~UCR2_RTSEN;
1470 	imx_uart_writel(sport, ucr2, UCR2);
1471 
1472 	/*
1473 	 * Enable modem status interrupts
1474 	 */
1475 	imx_uart_enable_ms(&sport->port);
1476 
1477 	if (dma_is_inited) {
1478 		imx_uart_enable_dma(sport);
1479 		imx_uart_start_rx_dma(sport);
1480 	} else {
1481 		ucr1 = imx_uart_readl(sport, UCR1);
1482 		ucr1 |= UCR1_RRDYEN;
1483 		imx_uart_writel(sport, ucr1, UCR1);
1484 
1485 		ucr2 = imx_uart_readl(sport, UCR2);
1486 		ucr2 |= UCR2_ATEN;
1487 		imx_uart_writel(sport, ucr2, UCR2);
1488 	}
1489 
1490 	spin_unlock_irqrestore(&sport->port.lock, flags);
1491 
1492 	return 0;
1493 }
1494 
1495 static void imx_uart_shutdown(struct uart_port *port)
1496 {
1497 	struct imx_port *sport = (struct imx_port *)port;
1498 	unsigned long flags;
1499 	u32 ucr1, ucr2, ucr4;
1500 
1501 	if (sport->dma_is_enabled) {
1502 		dmaengine_terminate_sync(sport->dma_chan_tx);
1503 		if (sport->dma_is_txing) {
1504 			dma_unmap_sg(sport->port.dev, &sport->tx_sgl[0],
1505 				     sport->dma_tx_nents, DMA_TO_DEVICE);
1506 			sport->dma_is_txing = 0;
1507 		}
1508 		dmaengine_terminate_sync(sport->dma_chan_rx);
1509 		if (sport->dma_is_rxing) {
1510 			dma_unmap_sg(sport->port.dev, &sport->rx_sgl,
1511 				     1, DMA_FROM_DEVICE);
1512 			sport->dma_is_rxing = 0;
1513 		}
1514 
1515 		spin_lock_irqsave(&sport->port.lock, flags);
1516 		imx_uart_stop_tx(port);
1517 		imx_uart_stop_rx(port);
1518 		imx_uart_disable_dma(sport);
1519 		spin_unlock_irqrestore(&sport->port.lock, flags);
1520 		imx_uart_dma_exit(sport);
1521 	}
1522 
1523 	mctrl_gpio_disable_ms(sport->gpios);
1524 
1525 	spin_lock_irqsave(&sport->port.lock, flags);
1526 	ucr2 = imx_uart_readl(sport, UCR2);
1527 	ucr2 &= ~(UCR2_TXEN | UCR2_ATEN);
1528 	imx_uart_writel(sport, ucr2, UCR2);
1529 	spin_unlock_irqrestore(&sport->port.lock, flags);
1530 
1531 	/*
1532 	 * Stop our timer.
1533 	 */
1534 	del_timer_sync(&sport->timer);
1535 
1536 	/*
1537 	 * Disable all interrupts, port and break condition.
1538 	 */
1539 
1540 	spin_lock_irqsave(&sport->port.lock, flags);
1541 
1542 	ucr1 = imx_uart_readl(sport, UCR1);
1543 	ucr1 &= ~(UCR1_TRDYEN | UCR1_RRDYEN | UCR1_RTSDEN | UCR1_UARTEN | UCR1_RXDMAEN | UCR1_ATDMAEN);
1544 	imx_uart_writel(sport, ucr1, UCR1);
1545 
1546 	ucr4 = imx_uart_readl(sport, UCR4);
1547 	ucr4 &= ~(UCR4_OREN | UCR4_TCEN);
1548 	imx_uart_writel(sport, ucr4, UCR4);
1549 
1550 	spin_unlock_irqrestore(&sport->port.lock, flags);
1551 
1552 	clk_disable_unprepare(sport->clk_per);
1553 	clk_disable_unprepare(sport->clk_ipg);
1554 }
1555 
1556 /* called with port.lock taken and irqs off */
1557 static void imx_uart_flush_buffer(struct uart_port *port)
1558 {
1559 	struct imx_port *sport = (struct imx_port *)port;
1560 	struct scatterlist *sgl = &sport->tx_sgl[0];
1561 	u32 ucr2;
1562 	int i = 100, ubir, ubmr, uts;
1563 
1564 	if (!sport->dma_chan_tx)
1565 		return;
1566 
1567 	sport->tx_bytes = 0;
1568 	dmaengine_terminate_all(sport->dma_chan_tx);
1569 	if (sport->dma_is_txing) {
1570 		u32 ucr1;
1571 
1572 		dma_unmap_sg(sport->port.dev, sgl, sport->dma_tx_nents,
1573 			     DMA_TO_DEVICE);
1574 		ucr1 = imx_uart_readl(sport, UCR1);
1575 		ucr1 &= ~UCR1_TXDMAEN;
1576 		imx_uart_writel(sport, ucr1, UCR1);
1577 		sport->dma_is_txing = 0;
1578 	}
1579 
1580 	/*
1581 	 * According to the Reference Manual description of the UART SRST bit:
1582 	 *
1583 	 * "Reset the transmit and receive state machines,
1584 	 * all FIFOs and register USR1, USR2, UBIR, UBMR, UBRC, URXD, UTXD
1585 	 * and UTS[6-3]".
1586 	 *
1587 	 * We don't need to restore the old values from USR1, USR2, URXD and
1588 	 * UTXD. UBRC is read only, so only save/restore the other three
1589 	 * registers.
1590 	 */
1591 	ubir = imx_uart_readl(sport, UBIR);
1592 	ubmr = imx_uart_readl(sport, UBMR);
1593 	uts = imx_uart_readl(sport, IMX21_UTS);
1594 
1595 	ucr2 = imx_uart_readl(sport, UCR2);
1596 	ucr2 &= ~UCR2_SRST;
1597 	imx_uart_writel(sport, ucr2, UCR2);
1598 
1599 	while (!(imx_uart_readl(sport, UCR2) & UCR2_SRST) && (--i > 0))
1600 		udelay(1);
1601 
1602 	/* Restore the registers */
1603 	imx_uart_writel(sport, ubir, UBIR);
1604 	imx_uart_writel(sport, ubmr, UBMR);
1605 	imx_uart_writel(sport, uts, IMX21_UTS);
1606 }
1607 
1608 static void
1609 imx_uart_set_termios(struct uart_port *port, struct ktermios *termios,
1610 		     struct ktermios *old)
1611 {
1612 	struct imx_port *sport = (struct imx_port *)port;
1613 	unsigned long flags;
1614 	u32 ucr2, old_ucr2, ufcr;
1615 	unsigned int baud, quot;
1616 	unsigned int old_csize = old ? old->c_cflag & CSIZE : CS8;
1617 	unsigned long div;
1618 	unsigned long num, denom, old_ubir, old_ubmr;
1619 	uint64_t tdiv64;
1620 
1621 	/*
1622 	 * We only support CS7 and CS8.
1623 	 */
1624 	while ((termios->c_cflag & CSIZE) != CS7 &&
1625 	       (termios->c_cflag & CSIZE) != CS8) {
1626 		termios->c_cflag &= ~CSIZE;
1627 		termios->c_cflag |= old_csize;
1628 		old_csize = CS8;
1629 	}
1630 
1631 	del_timer_sync(&sport->timer);
1632 
1633 	/*
1634 	 * Ask the core to calculate the divisor for us.
1635 	 */
1636 	baud = uart_get_baud_rate(port, termios, old, 50, port->uartclk / 16);
1637 	quot = uart_get_divisor(port, baud);
1638 
1639 	spin_lock_irqsave(&sport->port.lock, flags);
1640 
1641 	/*
1642 	 * Read current UCR2 and save it for future use, then clear all the bits
1643 	 * except those we will or may need to preserve.
1644 	 */
1645 	old_ucr2 = imx_uart_readl(sport, UCR2);
1646 	ucr2 = old_ucr2 & (UCR2_TXEN | UCR2_RXEN | UCR2_ATEN | UCR2_CTS);
1647 
1648 	ucr2 |= UCR2_SRST | UCR2_IRTS;
1649 	if ((termios->c_cflag & CSIZE) == CS8)
1650 		ucr2 |= UCR2_WS;
1651 
1652 	if (!sport->have_rtscts)
1653 		termios->c_cflag &= ~CRTSCTS;
1654 
1655 	if (port->rs485.flags & SER_RS485_ENABLED) {
1656 		/*
1657 		 * RTS is mandatory for rs485 operation, so keep
1658 		 * it under manual control and keep transmitter
1659 		 * disabled.
1660 		 */
1661 		if (port->rs485.flags & SER_RS485_RTS_AFTER_SEND)
1662 			imx_uart_rts_active(sport, &ucr2);
1663 		else
1664 			imx_uart_rts_inactive(sport, &ucr2);
1665 
1666 	} else if (termios->c_cflag & CRTSCTS) {
1667 		/*
1668 		 * Only let receiver control RTS output if we were not requested
1669 		 * to have RTS inactive (which then should take precedence).
1670 		 */
1671 		if (ucr2 & UCR2_CTS)
1672 			ucr2 |= UCR2_CTSC;
1673 	}
1674 
1675 	if (termios->c_cflag & CRTSCTS)
1676 		ucr2 &= ~UCR2_IRTS;
1677 	if (termios->c_cflag & CSTOPB)
1678 		ucr2 |= UCR2_STPB;
1679 	if (termios->c_cflag & PARENB) {
1680 		ucr2 |= UCR2_PREN;
1681 		if (termios->c_cflag & PARODD)
1682 			ucr2 |= UCR2_PROE;
1683 	}
1684 
1685 	sport->port.read_status_mask = 0;
1686 	if (termios->c_iflag & INPCK)
1687 		sport->port.read_status_mask |= (URXD_FRMERR | URXD_PRERR);
1688 	if (termios->c_iflag & (BRKINT | PARMRK))
1689 		sport->port.read_status_mask |= URXD_BRK;
1690 
1691 	/*
1692 	 * Characters to ignore
1693 	 */
1694 	sport->port.ignore_status_mask = 0;
1695 	if (termios->c_iflag & IGNPAR)
1696 		sport->port.ignore_status_mask |= URXD_PRERR | URXD_FRMERR;
1697 	if (termios->c_iflag & IGNBRK) {
1698 		sport->port.ignore_status_mask |= URXD_BRK;
1699 		/*
1700 		 * If we're ignoring parity and break indicators,
1701 		 * ignore overruns too (for real raw support).
1702 		 */
1703 		if (termios->c_iflag & IGNPAR)
1704 			sport->port.ignore_status_mask |= URXD_OVRRUN;
1705 	}
1706 
1707 	if ((termios->c_cflag & CREAD) == 0)
1708 		sport->port.ignore_status_mask |= URXD_DUMMY_READ;
1709 
1710 	/*
1711 	 * Update the per-port timeout.
1712 	 */
1713 	uart_update_timeout(port, termios->c_cflag, baud);
1714 
1715 	/* custom-baudrate handling */
1716 	div = sport->port.uartclk / (baud * 16);
1717 	if (baud == 38400 && quot != div)
1718 		baud = sport->port.uartclk / (quot * 16);
1719 
1720 	div = sport->port.uartclk / (baud * 16);
1721 	if (div > 7)
1722 		div = 7;
1723 	if (!div)
1724 		div = 1;
1725 
1726 	rational_best_approximation(16 * div * baud, sport->port.uartclk,
1727 		1 << 16, 1 << 16, &num, &denom);
1728 
1729 	tdiv64 = sport->port.uartclk;
1730 	tdiv64 *= num;
1731 	do_div(tdiv64, denom * 16 * div);
1732 	tty_termios_encode_baud_rate(termios,
1733 				(speed_t)tdiv64, (speed_t)tdiv64);
1734 
1735 	num -= 1;
1736 	denom -= 1;
1737 
1738 	ufcr = imx_uart_readl(sport, UFCR);
1739 	ufcr = (ufcr & (~UFCR_RFDIV)) | UFCR_RFDIV_REG(div);
1740 	imx_uart_writel(sport, ufcr, UFCR);
1741 
1742 	/*
1743 	 *  Two registers below should always be written both and in this
1744 	 *  particular order. One consequence is that we need to check if any of
1745 	 *  them changes and then update both. We do need the check for change
1746 	 *  as even writing the same values seem to "restart"
1747 	 *  transmission/receiving logic in the hardware, that leads to data
1748 	 *  breakage even when rate doesn't in fact change. E.g., user switches
1749 	 *  RTS/CTS handshake and suddenly gets broken bytes.
1750 	 */
1751 	old_ubir = imx_uart_readl(sport, UBIR);
1752 	old_ubmr = imx_uart_readl(sport, UBMR);
1753 	if (old_ubir != num || old_ubmr != denom) {
1754 		imx_uart_writel(sport, num, UBIR);
1755 		imx_uart_writel(sport, denom, UBMR);
1756 	}
1757 
1758 	if (!imx_uart_is_imx1(sport))
1759 		imx_uart_writel(sport, sport->port.uartclk / div / 1000,
1760 				IMX21_ONEMS);
1761 
1762 	imx_uart_writel(sport, ucr2, UCR2);
1763 
1764 	if (UART_ENABLE_MS(&sport->port, termios->c_cflag))
1765 		imx_uart_enable_ms(&sport->port);
1766 
1767 	spin_unlock_irqrestore(&sport->port.lock, flags);
1768 }
1769 
1770 static const char *imx_uart_type(struct uart_port *port)
1771 {
1772 	struct imx_port *sport = (struct imx_port *)port;
1773 
1774 	return sport->port.type == PORT_IMX ? "IMX" : NULL;
1775 }
1776 
1777 /*
1778  * Configure/autoconfigure the port.
1779  */
1780 static void imx_uart_config_port(struct uart_port *port, int flags)
1781 {
1782 	struct imx_port *sport = (struct imx_port *)port;
1783 
1784 	if (flags & UART_CONFIG_TYPE)
1785 		sport->port.type = PORT_IMX;
1786 }
1787 
1788 /*
1789  * Verify the new serial_struct (for TIOCSSERIAL).
1790  * The only change we allow are to the flags and type, and
1791  * even then only between PORT_IMX and PORT_UNKNOWN
1792  */
1793 static int
1794 imx_uart_verify_port(struct uart_port *port, struct serial_struct *ser)
1795 {
1796 	struct imx_port *sport = (struct imx_port *)port;
1797 	int ret = 0;
1798 
1799 	if (ser->type != PORT_UNKNOWN && ser->type != PORT_IMX)
1800 		ret = -EINVAL;
1801 	if (sport->port.irq != ser->irq)
1802 		ret = -EINVAL;
1803 	if (ser->io_type != UPIO_MEM)
1804 		ret = -EINVAL;
1805 	if (sport->port.uartclk / 16 != ser->baud_base)
1806 		ret = -EINVAL;
1807 	if (sport->port.mapbase != (unsigned long)ser->iomem_base)
1808 		ret = -EINVAL;
1809 	if (sport->port.iobase != ser->port)
1810 		ret = -EINVAL;
1811 	if (ser->hub6 != 0)
1812 		ret = -EINVAL;
1813 	return ret;
1814 }
1815 
1816 #if defined(CONFIG_CONSOLE_POLL)
1817 
1818 static int imx_uart_poll_init(struct uart_port *port)
1819 {
1820 	struct imx_port *sport = (struct imx_port *)port;
1821 	unsigned long flags;
1822 	u32 ucr1, ucr2;
1823 	int retval;
1824 
1825 	retval = clk_prepare_enable(sport->clk_ipg);
1826 	if (retval)
1827 		return retval;
1828 	retval = clk_prepare_enable(sport->clk_per);
1829 	if (retval)
1830 		clk_disable_unprepare(sport->clk_ipg);
1831 
1832 	imx_uart_setup_ufcr(sport, TXTL_DEFAULT, RXTL_DEFAULT);
1833 
1834 	spin_lock_irqsave(&sport->port.lock, flags);
1835 
1836 	/*
1837 	 * Be careful about the order of enabling bits here. First enable the
1838 	 * receiver (UARTEN + RXEN) and only then the corresponding irqs.
1839 	 * This prevents that a character that already sits in the RX fifo is
1840 	 * triggering an irq but the try to fetch it from there results in an
1841 	 * exception because UARTEN or RXEN is still off.
1842 	 */
1843 	ucr1 = imx_uart_readl(sport, UCR1);
1844 	ucr2 = imx_uart_readl(sport, UCR2);
1845 
1846 	if (imx_uart_is_imx1(sport))
1847 		ucr1 |= IMX1_UCR1_UARTCLKEN;
1848 
1849 	ucr1 |= UCR1_UARTEN;
1850 	ucr1 &= ~(UCR1_TRDYEN | UCR1_RTSDEN | UCR1_RRDYEN);
1851 
1852 	ucr2 |= UCR2_RXEN | UCR2_TXEN;
1853 	ucr2 &= ~UCR2_ATEN;
1854 
1855 	imx_uart_writel(sport, ucr1, UCR1);
1856 	imx_uart_writel(sport, ucr2, UCR2);
1857 
1858 	/* now enable irqs */
1859 	imx_uart_writel(sport, ucr1 | UCR1_RRDYEN, UCR1);
1860 	imx_uart_writel(sport, ucr2 | UCR2_ATEN, UCR2);
1861 
1862 	spin_unlock_irqrestore(&sport->port.lock, flags);
1863 
1864 	return 0;
1865 }
1866 
1867 static int imx_uart_poll_get_char(struct uart_port *port)
1868 {
1869 	struct imx_port *sport = (struct imx_port *)port;
1870 	if (!(imx_uart_readl(sport, USR2) & USR2_RDR))
1871 		return NO_POLL_CHAR;
1872 
1873 	return imx_uart_readl(sport, URXD0) & URXD_RX_DATA;
1874 }
1875 
1876 static void imx_uart_poll_put_char(struct uart_port *port, unsigned char c)
1877 {
1878 	struct imx_port *sport = (struct imx_port *)port;
1879 	unsigned int status;
1880 
1881 	/* drain */
1882 	do {
1883 		status = imx_uart_readl(sport, USR1);
1884 	} while (~status & USR1_TRDY);
1885 
1886 	/* write */
1887 	imx_uart_writel(sport, c, URTX0);
1888 
1889 	/* flush */
1890 	do {
1891 		status = imx_uart_readl(sport, USR2);
1892 	} while (~status & USR2_TXDC);
1893 }
1894 #endif
1895 
1896 /* called with port.lock taken and irqs off or from .probe without locking */
1897 static int imx_uart_rs485_config(struct uart_port *port,
1898 				 struct serial_rs485 *rs485conf)
1899 {
1900 	struct imx_port *sport = (struct imx_port *)port;
1901 	u32 ucr2;
1902 
1903 	/* RTS is required to control the transmitter */
1904 	if (!sport->have_rtscts && !sport->have_rtsgpio)
1905 		rs485conf->flags &= ~SER_RS485_ENABLED;
1906 
1907 	if (rs485conf->flags & SER_RS485_ENABLED) {
1908 		/* Enable receiver if low-active RTS signal is requested */
1909 		if (sport->have_rtscts &&  !sport->have_rtsgpio &&
1910 		    !(rs485conf->flags & SER_RS485_RTS_ON_SEND))
1911 			rs485conf->flags |= SER_RS485_RX_DURING_TX;
1912 
1913 		/* disable transmitter */
1914 		ucr2 = imx_uart_readl(sport, UCR2);
1915 		if (rs485conf->flags & SER_RS485_RTS_AFTER_SEND)
1916 			imx_uart_rts_active(sport, &ucr2);
1917 		else
1918 			imx_uart_rts_inactive(sport, &ucr2);
1919 		imx_uart_writel(sport, ucr2, UCR2);
1920 	}
1921 
1922 	/* Make sure Rx is enabled in case Tx is active with Rx disabled */
1923 	if (!(rs485conf->flags & SER_RS485_ENABLED) ||
1924 	    rs485conf->flags & SER_RS485_RX_DURING_TX)
1925 		imx_uart_start_rx(port);
1926 
1927 	port->rs485 = *rs485conf;
1928 
1929 	return 0;
1930 }
1931 
1932 static const struct uart_ops imx_uart_pops = {
1933 	.tx_empty	= imx_uart_tx_empty,
1934 	.set_mctrl	= imx_uart_set_mctrl,
1935 	.get_mctrl	= imx_uart_get_mctrl,
1936 	.stop_tx	= imx_uart_stop_tx,
1937 	.start_tx	= imx_uart_start_tx,
1938 	.stop_rx	= imx_uart_stop_rx,
1939 	.enable_ms	= imx_uart_enable_ms,
1940 	.break_ctl	= imx_uart_break_ctl,
1941 	.startup	= imx_uart_startup,
1942 	.shutdown	= imx_uart_shutdown,
1943 	.flush_buffer	= imx_uart_flush_buffer,
1944 	.set_termios	= imx_uart_set_termios,
1945 	.type		= imx_uart_type,
1946 	.config_port	= imx_uart_config_port,
1947 	.verify_port	= imx_uart_verify_port,
1948 #if defined(CONFIG_CONSOLE_POLL)
1949 	.poll_init      = imx_uart_poll_init,
1950 	.poll_get_char  = imx_uart_poll_get_char,
1951 	.poll_put_char  = imx_uart_poll_put_char,
1952 #endif
1953 };
1954 
1955 static struct imx_port *imx_uart_ports[UART_NR];
1956 
1957 #if IS_ENABLED(CONFIG_SERIAL_IMX_CONSOLE)
1958 static void imx_uart_console_putchar(struct uart_port *port, int ch)
1959 {
1960 	struct imx_port *sport = (struct imx_port *)port;
1961 
1962 	while (imx_uart_readl(sport, imx_uart_uts_reg(sport)) & UTS_TXFULL)
1963 		barrier();
1964 
1965 	imx_uart_writel(sport, ch, URTX0);
1966 }
1967 
1968 /*
1969  * Interrupts are disabled on entering
1970  */
1971 static void
1972 imx_uart_console_write(struct console *co, const char *s, unsigned int count)
1973 {
1974 	struct imx_port *sport = imx_uart_ports[co->index];
1975 	struct imx_port_ucrs old_ucr;
1976 	unsigned long flags;
1977 	unsigned int ucr1;
1978 	int locked = 1;
1979 
1980 	if (sport->port.sysrq)
1981 		locked = 0;
1982 	else if (oops_in_progress)
1983 		locked = spin_trylock_irqsave(&sport->port.lock, flags);
1984 	else
1985 		spin_lock_irqsave(&sport->port.lock, flags);
1986 
1987 	/*
1988 	 *	First, save UCR1/2/3 and then disable interrupts
1989 	 */
1990 	imx_uart_ucrs_save(sport, &old_ucr);
1991 	ucr1 = old_ucr.ucr1;
1992 
1993 	if (imx_uart_is_imx1(sport))
1994 		ucr1 |= IMX1_UCR1_UARTCLKEN;
1995 	ucr1 |= UCR1_UARTEN;
1996 	ucr1 &= ~(UCR1_TRDYEN | UCR1_RRDYEN | UCR1_RTSDEN);
1997 
1998 	imx_uart_writel(sport, ucr1, UCR1);
1999 
2000 	imx_uart_writel(sport, old_ucr.ucr2 | UCR2_TXEN, UCR2);
2001 
2002 	uart_console_write(&sport->port, s, count, imx_uart_console_putchar);
2003 
2004 	/*
2005 	 *	Finally, wait for transmitter to become empty
2006 	 *	and restore UCR1/2/3
2007 	 */
2008 	while (!(imx_uart_readl(sport, USR2) & USR2_TXDC));
2009 
2010 	imx_uart_ucrs_restore(sport, &old_ucr);
2011 
2012 	if (locked)
2013 		spin_unlock_irqrestore(&sport->port.lock, flags);
2014 }
2015 
2016 /*
2017  * If the port was already initialised (eg, by a boot loader),
2018  * try to determine the current setup.
2019  */
2020 static void
2021 imx_uart_console_get_options(struct imx_port *sport, int *baud,
2022 			     int *parity, int *bits)
2023 {
2024 
2025 	if (imx_uart_readl(sport, UCR1) & UCR1_UARTEN) {
2026 		/* ok, the port was enabled */
2027 		unsigned int ucr2, ubir, ubmr, uartclk;
2028 		unsigned int baud_raw;
2029 		unsigned int ucfr_rfdiv;
2030 
2031 		ucr2 = imx_uart_readl(sport, UCR2);
2032 
2033 		*parity = 'n';
2034 		if (ucr2 & UCR2_PREN) {
2035 			if (ucr2 & UCR2_PROE)
2036 				*parity = 'o';
2037 			else
2038 				*parity = 'e';
2039 		}
2040 
2041 		if (ucr2 & UCR2_WS)
2042 			*bits = 8;
2043 		else
2044 			*bits = 7;
2045 
2046 		ubir = imx_uart_readl(sport, UBIR) & 0xffff;
2047 		ubmr = imx_uart_readl(sport, UBMR) & 0xffff;
2048 
2049 		ucfr_rfdiv = (imx_uart_readl(sport, UFCR) & UFCR_RFDIV) >> 7;
2050 		if (ucfr_rfdiv == 6)
2051 			ucfr_rfdiv = 7;
2052 		else
2053 			ucfr_rfdiv = 6 - ucfr_rfdiv;
2054 
2055 		uartclk = clk_get_rate(sport->clk_per);
2056 		uartclk /= ucfr_rfdiv;
2057 
2058 		{	/*
2059 			 * The next code provides exact computation of
2060 			 *   baud_raw = round(((uartclk/16) * (ubir + 1)) / (ubmr + 1))
2061 			 * without need of float support or long long division,
2062 			 * which would be required to prevent 32bit arithmetic overflow
2063 			 */
2064 			unsigned int mul = ubir + 1;
2065 			unsigned int div = 16 * (ubmr + 1);
2066 			unsigned int rem = uartclk % div;
2067 
2068 			baud_raw = (uartclk / div) * mul;
2069 			baud_raw += (rem * mul + div / 2) / div;
2070 			*baud = (baud_raw + 50) / 100 * 100;
2071 		}
2072 
2073 		if (*baud != baud_raw)
2074 			dev_info(sport->port.dev, "Console IMX rounded baud rate from %d to %d\n",
2075 				baud_raw, *baud);
2076 	}
2077 }
2078 
2079 static int
2080 imx_uart_console_setup(struct console *co, char *options)
2081 {
2082 	struct imx_port *sport;
2083 	int baud = 9600;
2084 	int bits = 8;
2085 	int parity = 'n';
2086 	int flow = 'n';
2087 	int retval;
2088 
2089 	/*
2090 	 * Check whether an invalid uart number has been specified, and
2091 	 * if so, search for the first available port that does have
2092 	 * console support.
2093 	 */
2094 	if (co->index == -1 || co->index >= ARRAY_SIZE(imx_uart_ports))
2095 		co->index = 0;
2096 	sport = imx_uart_ports[co->index];
2097 	if (sport == NULL)
2098 		return -ENODEV;
2099 
2100 	/* For setting the registers, we only need to enable the ipg clock. */
2101 	retval = clk_prepare_enable(sport->clk_ipg);
2102 	if (retval)
2103 		goto error_console;
2104 
2105 	if (options)
2106 		uart_parse_options(options, &baud, &parity, &bits, &flow);
2107 	else
2108 		imx_uart_console_get_options(sport, &baud, &parity, &bits);
2109 
2110 	imx_uart_setup_ufcr(sport, TXTL_DEFAULT, RXTL_DEFAULT);
2111 
2112 	retval = uart_set_options(&sport->port, co, baud, parity, bits, flow);
2113 
2114 	if (retval) {
2115 		clk_disable_unprepare(sport->clk_ipg);
2116 		goto error_console;
2117 	}
2118 
2119 	retval = clk_prepare_enable(sport->clk_per);
2120 	if (retval)
2121 		clk_disable_unprepare(sport->clk_ipg);
2122 
2123 error_console:
2124 	return retval;
2125 }
2126 
2127 static int
2128 imx_uart_console_exit(struct console *co)
2129 {
2130 	struct imx_port *sport = imx_uart_ports[co->index];
2131 
2132 	clk_disable_unprepare(sport->clk_per);
2133 	clk_disable_unprepare(sport->clk_ipg);
2134 
2135 	return 0;
2136 }
2137 
2138 static struct uart_driver imx_uart_uart_driver;
2139 static struct console imx_uart_console = {
2140 	.name		= DEV_NAME,
2141 	.write		= imx_uart_console_write,
2142 	.device		= uart_console_device,
2143 	.setup		= imx_uart_console_setup,
2144 	.exit		= imx_uart_console_exit,
2145 	.flags		= CON_PRINTBUFFER,
2146 	.index		= -1,
2147 	.data		= &imx_uart_uart_driver,
2148 };
2149 
2150 #define IMX_CONSOLE	&imx_uart_console
2151 
2152 #else
2153 #define IMX_CONSOLE	NULL
2154 #endif
2155 
2156 static struct uart_driver imx_uart_uart_driver = {
2157 	.owner          = THIS_MODULE,
2158 	.driver_name    = DRIVER_NAME,
2159 	.dev_name       = DEV_NAME,
2160 	.major          = SERIAL_IMX_MAJOR,
2161 	.minor          = MINOR_START,
2162 	.nr             = ARRAY_SIZE(imx_uart_ports),
2163 	.cons           = IMX_CONSOLE,
2164 };
2165 
2166 static enum hrtimer_restart imx_trigger_start_tx(struct hrtimer *t)
2167 {
2168 	struct imx_port *sport = container_of(t, struct imx_port, trigger_start_tx);
2169 	unsigned long flags;
2170 
2171 	spin_lock_irqsave(&sport->port.lock, flags);
2172 	if (sport->tx_state == WAIT_AFTER_RTS)
2173 		imx_uart_start_tx(&sport->port);
2174 	spin_unlock_irqrestore(&sport->port.lock, flags);
2175 
2176 	return HRTIMER_NORESTART;
2177 }
2178 
2179 static enum hrtimer_restart imx_trigger_stop_tx(struct hrtimer *t)
2180 {
2181 	struct imx_port *sport = container_of(t, struct imx_port, trigger_stop_tx);
2182 	unsigned long flags;
2183 
2184 	spin_lock_irqsave(&sport->port.lock, flags);
2185 	if (sport->tx_state == WAIT_AFTER_SEND)
2186 		imx_uart_stop_tx(&sport->port);
2187 	spin_unlock_irqrestore(&sport->port.lock, flags);
2188 
2189 	return HRTIMER_NORESTART;
2190 }
2191 
2192 /* Default RX DMA buffer configuration */
2193 #define RX_DMA_PERIODS		16
2194 #define RX_DMA_PERIOD_LEN	(PAGE_SIZE / 4)
2195 
2196 static int imx_uart_probe(struct platform_device *pdev)
2197 {
2198 	struct device_node *np = pdev->dev.of_node;
2199 	struct imx_port *sport;
2200 	void __iomem *base;
2201 	u32 dma_buf_conf[2];
2202 	int ret = 0;
2203 	u32 ucr1;
2204 	struct resource *res;
2205 	int txirq, rxirq, rtsirq;
2206 
2207 	sport = devm_kzalloc(&pdev->dev, sizeof(*sport), GFP_KERNEL);
2208 	if (!sport)
2209 		return -ENOMEM;
2210 
2211 	sport->devdata = of_device_get_match_data(&pdev->dev);
2212 
2213 	ret = of_alias_get_id(np, "serial");
2214 	if (ret < 0) {
2215 		dev_err(&pdev->dev, "failed to get alias id, errno %d\n", ret);
2216 		return ret;
2217 	}
2218 	sport->port.line = ret;
2219 
2220 	if (of_get_property(np, "uart-has-rtscts", NULL) ||
2221 	    of_get_property(np, "fsl,uart-has-rtscts", NULL) /* deprecated */)
2222 		sport->have_rtscts = 1;
2223 
2224 	if (of_get_property(np, "fsl,dte-mode", NULL))
2225 		sport->dte_mode = 1;
2226 
2227 	if (of_get_property(np, "rts-gpios", NULL))
2228 		sport->have_rtsgpio = 1;
2229 
2230 	if (of_get_property(np, "fsl,inverted-tx", NULL))
2231 		sport->inverted_tx = 1;
2232 
2233 	if (of_get_property(np, "fsl,inverted-rx", NULL))
2234 		sport->inverted_rx = 1;
2235 
2236 	if (!of_property_read_u32_array(np, "fsl,dma-info", dma_buf_conf, 2)) {
2237 		sport->rx_period_length = dma_buf_conf[0];
2238 		sport->rx_periods = dma_buf_conf[1];
2239 	} else {
2240 		sport->rx_period_length = RX_DMA_PERIOD_LEN;
2241 		sport->rx_periods = RX_DMA_PERIODS;
2242 	}
2243 
2244 	if (sport->port.line >= ARRAY_SIZE(imx_uart_ports)) {
2245 		dev_err(&pdev->dev, "serial%d out of range\n",
2246 			sport->port.line);
2247 		return -EINVAL;
2248 	}
2249 
2250 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2251 	base = devm_ioremap_resource(&pdev->dev, res);
2252 	if (IS_ERR(base))
2253 		return PTR_ERR(base);
2254 
2255 	rxirq = platform_get_irq(pdev, 0);
2256 	if (rxirq < 0)
2257 		return rxirq;
2258 	txirq = platform_get_irq_optional(pdev, 1);
2259 	rtsirq = platform_get_irq_optional(pdev, 2);
2260 
2261 	sport->port.dev = &pdev->dev;
2262 	sport->port.mapbase = res->start;
2263 	sport->port.membase = base;
2264 	sport->port.type = PORT_IMX;
2265 	sport->port.iotype = UPIO_MEM;
2266 	sport->port.irq = rxirq;
2267 	sport->port.fifosize = 32;
2268 	sport->port.has_sysrq = IS_ENABLED(CONFIG_SERIAL_IMX_CONSOLE);
2269 	sport->port.ops = &imx_uart_pops;
2270 	sport->port.rs485_config = imx_uart_rs485_config;
2271 	sport->port.flags = UPF_BOOT_AUTOCONF;
2272 	timer_setup(&sport->timer, imx_uart_timeout, 0);
2273 
2274 	sport->gpios = mctrl_gpio_init(&sport->port, 0);
2275 	if (IS_ERR(sport->gpios))
2276 		return PTR_ERR(sport->gpios);
2277 
2278 	sport->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
2279 	if (IS_ERR(sport->clk_ipg)) {
2280 		ret = PTR_ERR(sport->clk_ipg);
2281 		dev_err(&pdev->dev, "failed to get ipg clk: %d\n", ret);
2282 		return ret;
2283 	}
2284 
2285 	sport->clk_per = devm_clk_get(&pdev->dev, "per");
2286 	if (IS_ERR(sport->clk_per)) {
2287 		ret = PTR_ERR(sport->clk_per);
2288 		dev_err(&pdev->dev, "failed to get per clk: %d\n", ret);
2289 		return ret;
2290 	}
2291 
2292 	sport->port.uartclk = clk_get_rate(sport->clk_per);
2293 
2294 	/* For register access, we only need to enable the ipg clock. */
2295 	ret = clk_prepare_enable(sport->clk_ipg);
2296 	if (ret) {
2297 		dev_err(&pdev->dev, "failed to enable per clk: %d\n", ret);
2298 		return ret;
2299 	}
2300 
2301 	/* initialize shadow register values */
2302 	sport->ucr1 = readl(sport->port.membase + UCR1);
2303 	sport->ucr2 = readl(sport->port.membase + UCR2);
2304 	sport->ucr3 = readl(sport->port.membase + UCR3);
2305 	sport->ucr4 = readl(sport->port.membase + UCR4);
2306 	sport->ufcr = readl(sport->port.membase + UFCR);
2307 
2308 	ret = uart_get_rs485_mode(&sport->port);
2309 	if (ret) {
2310 		clk_disable_unprepare(sport->clk_ipg);
2311 		return ret;
2312 	}
2313 
2314 	if (sport->port.rs485.flags & SER_RS485_ENABLED &&
2315 	    (!sport->have_rtscts && !sport->have_rtsgpio))
2316 		dev_err(&pdev->dev, "no RTS control, disabling rs485\n");
2317 
2318 	/*
2319 	 * If using the i.MX UART RTS/CTS control then the RTS (CTS_B)
2320 	 * signal cannot be set low during transmission in case the
2321 	 * receiver is off (limitation of the i.MX UART IP).
2322 	 */
2323 	if (sport->port.rs485.flags & SER_RS485_ENABLED &&
2324 	    sport->have_rtscts && !sport->have_rtsgpio &&
2325 	    (!(sport->port.rs485.flags & SER_RS485_RTS_ON_SEND) &&
2326 	     !(sport->port.rs485.flags & SER_RS485_RX_DURING_TX)))
2327 		dev_err(&pdev->dev,
2328 			"low-active RTS not possible when receiver is off, enabling receiver\n");
2329 
2330 	imx_uart_rs485_config(&sport->port, &sport->port.rs485);
2331 
2332 	/* Disable interrupts before requesting them */
2333 	ucr1 = imx_uart_readl(sport, UCR1);
2334 	ucr1 &= ~(UCR1_ADEN | UCR1_TRDYEN | UCR1_IDEN | UCR1_RRDYEN | UCR1_RTSDEN);
2335 	imx_uart_writel(sport, ucr1, UCR1);
2336 
2337 	if (!imx_uart_is_imx1(sport) && sport->dte_mode) {
2338 		/*
2339 		 * The DCEDTE bit changes the direction of DSR, DCD, DTR and RI
2340 		 * and influences if UCR3_RI and UCR3_DCD changes the level of RI
2341 		 * and DCD (when they are outputs) or enables the respective
2342 		 * irqs. So set this bit early, i.e. before requesting irqs.
2343 		 */
2344 		u32 ufcr = imx_uart_readl(sport, UFCR);
2345 		if (!(ufcr & UFCR_DCEDTE))
2346 			imx_uart_writel(sport, ufcr | UFCR_DCEDTE, UFCR);
2347 
2348 		/*
2349 		 * Disable UCR3_RI and UCR3_DCD irqs. They are also not
2350 		 * enabled later because they cannot be cleared
2351 		 * (confirmed on i.MX25) which makes them unusable.
2352 		 */
2353 		imx_uart_writel(sport,
2354 				IMX21_UCR3_RXDMUXSEL | UCR3_ADNIMP | UCR3_DSR,
2355 				UCR3);
2356 
2357 	} else {
2358 		u32 ucr3 = UCR3_DSR;
2359 		u32 ufcr = imx_uart_readl(sport, UFCR);
2360 		if (ufcr & UFCR_DCEDTE)
2361 			imx_uart_writel(sport, ufcr & ~UFCR_DCEDTE, UFCR);
2362 
2363 		if (!imx_uart_is_imx1(sport))
2364 			ucr3 |= IMX21_UCR3_RXDMUXSEL | UCR3_ADNIMP;
2365 		imx_uart_writel(sport, ucr3, UCR3);
2366 	}
2367 
2368 	clk_disable_unprepare(sport->clk_ipg);
2369 
2370 	hrtimer_init(&sport->trigger_start_tx, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2371 	hrtimer_init(&sport->trigger_stop_tx, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2372 	sport->trigger_start_tx.function = imx_trigger_start_tx;
2373 	sport->trigger_stop_tx.function = imx_trigger_stop_tx;
2374 
2375 	/*
2376 	 * Allocate the IRQ(s) i.MX1 has three interrupts whereas later
2377 	 * chips only have one interrupt.
2378 	 */
2379 	if (txirq > 0) {
2380 		ret = devm_request_irq(&pdev->dev, rxirq, imx_uart_rxint, 0,
2381 				       dev_name(&pdev->dev), sport);
2382 		if (ret) {
2383 			dev_err(&pdev->dev, "failed to request rx irq: %d\n",
2384 				ret);
2385 			return ret;
2386 		}
2387 
2388 		ret = devm_request_irq(&pdev->dev, txirq, imx_uart_txint, 0,
2389 				       dev_name(&pdev->dev), sport);
2390 		if (ret) {
2391 			dev_err(&pdev->dev, "failed to request tx irq: %d\n",
2392 				ret);
2393 			return ret;
2394 		}
2395 
2396 		ret = devm_request_irq(&pdev->dev, rtsirq, imx_uart_rtsint, 0,
2397 				       dev_name(&pdev->dev), sport);
2398 		if (ret) {
2399 			dev_err(&pdev->dev, "failed to request rts irq: %d\n",
2400 				ret);
2401 			return ret;
2402 		}
2403 	} else {
2404 		ret = devm_request_irq(&pdev->dev, rxirq, imx_uart_int, 0,
2405 				       dev_name(&pdev->dev), sport);
2406 		if (ret) {
2407 			dev_err(&pdev->dev, "failed to request irq: %d\n", ret);
2408 			return ret;
2409 		}
2410 	}
2411 
2412 	imx_uart_ports[sport->port.line] = sport;
2413 
2414 	platform_set_drvdata(pdev, sport);
2415 
2416 	return uart_add_one_port(&imx_uart_uart_driver, &sport->port);
2417 }
2418 
2419 static int imx_uart_remove(struct platform_device *pdev)
2420 {
2421 	struct imx_port *sport = platform_get_drvdata(pdev);
2422 
2423 	return uart_remove_one_port(&imx_uart_uart_driver, &sport->port);
2424 }
2425 
2426 static void imx_uart_restore_context(struct imx_port *sport)
2427 {
2428 	unsigned long flags;
2429 
2430 	spin_lock_irqsave(&sport->port.lock, flags);
2431 	if (!sport->context_saved) {
2432 		spin_unlock_irqrestore(&sport->port.lock, flags);
2433 		return;
2434 	}
2435 
2436 	imx_uart_writel(sport, sport->saved_reg[4], UFCR);
2437 	imx_uart_writel(sport, sport->saved_reg[5], UESC);
2438 	imx_uart_writel(sport, sport->saved_reg[6], UTIM);
2439 	imx_uart_writel(sport, sport->saved_reg[7], UBIR);
2440 	imx_uart_writel(sport, sport->saved_reg[8], UBMR);
2441 	imx_uart_writel(sport, sport->saved_reg[9], IMX21_UTS);
2442 	imx_uart_writel(sport, sport->saved_reg[0], UCR1);
2443 	imx_uart_writel(sport, sport->saved_reg[1] | UCR2_SRST, UCR2);
2444 	imx_uart_writel(sport, sport->saved_reg[2], UCR3);
2445 	imx_uart_writel(sport, sport->saved_reg[3], UCR4);
2446 	sport->context_saved = false;
2447 	spin_unlock_irqrestore(&sport->port.lock, flags);
2448 }
2449 
2450 static void imx_uart_save_context(struct imx_port *sport)
2451 {
2452 	unsigned long flags;
2453 
2454 	/* Save necessary regs */
2455 	spin_lock_irqsave(&sport->port.lock, flags);
2456 	sport->saved_reg[0] = imx_uart_readl(sport, UCR1);
2457 	sport->saved_reg[1] = imx_uart_readl(sport, UCR2);
2458 	sport->saved_reg[2] = imx_uart_readl(sport, UCR3);
2459 	sport->saved_reg[3] = imx_uart_readl(sport, UCR4);
2460 	sport->saved_reg[4] = imx_uart_readl(sport, UFCR);
2461 	sport->saved_reg[5] = imx_uart_readl(sport, UESC);
2462 	sport->saved_reg[6] = imx_uart_readl(sport, UTIM);
2463 	sport->saved_reg[7] = imx_uart_readl(sport, UBIR);
2464 	sport->saved_reg[8] = imx_uart_readl(sport, UBMR);
2465 	sport->saved_reg[9] = imx_uart_readl(sport, IMX21_UTS);
2466 	sport->context_saved = true;
2467 	spin_unlock_irqrestore(&sport->port.lock, flags);
2468 }
2469 
2470 static void imx_uart_enable_wakeup(struct imx_port *sport, bool on)
2471 {
2472 	u32 ucr3;
2473 
2474 	ucr3 = imx_uart_readl(sport, UCR3);
2475 	if (on) {
2476 		imx_uart_writel(sport, USR1_AWAKE, USR1);
2477 		ucr3 |= UCR3_AWAKEN;
2478 	} else {
2479 		ucr3 &= ~UCR3_AWAKEN;
2480 	}
2481 	imx_uart_writel(sport, ucr3, UCR3);
2482 
2483 	if (sport->have_rtscts) {
2484 		u32 ucr1 = imx_uart_readl(sport, UCR1);
2485 		if (on)
2486 			ucr1 |= UCR1_RTSDEN;
2487 		else
2488 			ucr1 &= ~UCR1_RTSDEN;
2489 		imx_uart_writel(sport, ucr1, UCR1);
2490 	}
2491 }
2492 
2493 static int imx_uart_suspend_noirq(struct device *dev)
2494 {
2495 	struct imx_port *sport = dev_get_drvdata(dev);
2496 
2497 	imx_uart_save_context(sport);
2498 
2499 	clk_disable(sport->clk_ipg);
2500 
2501 	pinctrl_pm_select_sleep_state(dev);
2502 
2503 	return 0;
2504 }
2505 
2506 static int imx_uart_resume_noirq(struct device *dev)
2507 {
2508 	struct imx_port *sport = dev_get_drvdata(dev);
2509 	int ret;
2510 
2511 	pinctrl_pm_select_default_state(dev);
2512 
2513 	ret = clk_enable(sport->clk_ipg);
2514 	if (ret)
2515 		return ret;
2516 
2517 	imx_uart_restore_context(sport);
2518 
2519 	return 0;
2520 }
2521 
2522 static int imx_uart_suspend(struct device *dev)
2523 {
2524 	struct imx_port *sport = dev_get_drvdata(dev);
2525 	int ret;
2526 
2527 	uart_suspend_port(&imx_uart_uart_driver, &sport->port);
2528 	disable_irq(sport->port.irq);
2529 
2530 	ret = clk_prepare_enable(sport->clk_ipg);
2531 	if (ret)
2532 		return ret;
2533 
2534 	/* enable wakeup from i.MX UART */
2535 	imx_uart_enable_wakeup(sport, true);
2536 
2537 	return 0;
2538 }
2539 
2540 static int imx_uart_resume(struct device *dev)
2541 {
2542 	struct imx_port *sport = dev_get_drvdata(dev);
2543 
2544 	/* disable wakeup from i.MX UART */
2545 	imx_uart_enable_wakeup(sport, false);
2546 
2547 	uart_resume_port(&imx_uart_uart_driver, &sport->port);
2548 	enable_irq(sport->port.irq);
2549 
2550 	clk_disable_unprepare(sport->clk_ipg);
2551 
2552 	return 0;
2553 }
2554 
2555 static int imx_uart_freeze(struct device *dev)
2556 {
2557 	struct imx_port *sport = dev_get_drvdata(dev);
2558 
2559 	uart_suspend_port(&imx_uart_uart_driver, &sport->port);
2560 
2561 	return clk_prepare_enable(sport->clk_ipg);
2562 }
2563 
2564 static int imx_uart_thaw(struct device *dev)
2565 {
2566 	struct imx_port *sport = dev_get_drvdata(dev);
2567 
2568 	uart_resume_port(&imx_uart_uart_driver, &sport->port);
2569 
2570 	clk_disable_unprepare(sport->clk_ipg);
2571 
2572 	return 0;
2573 }
2574 
2575 static const struct dev_pm_ops imx_uart_pm_ops = {
2576 	.suspend_noirq = imx_uart_suspend_noirq,
2577 	.resume_noirq = imx_uart_resume_noirq,
2578 	.freeze_noirq = imx_uart_suspend_noirq,
2579 	.restore_noirq = imx_uart_resume_noirq,
2580 	.suspend = imx_uart_suspend,
2581 	.resume = imx_uart_resume,
2582 	.freeze = imx_uart_freeze,
2583 	.thaw = imx_uart_thaw,
2584 	.restore = imx_uart_thaw,
2585 };
2586 
2587 static struct platform_driver imx_uart_platform_driver = {
2588 	.probe = imx_uart_probe,
2589 	.remove = imx_uart_remove,
2590 
2591 	.driver = {
2592 		.name = "imx-uart",
2593 		.of_match_table = imx_uart_dt_ids,
2594 		.pm = &imx_uart_pm_ops,
2595 	},
2596 };
2597 
2598 static int __init imx_uart_init(void)
2599 {
2600 	int ret = uart_register_driver(&imx_uart_uart_driver);
2601 
2602 	if (ret)
2603 		return ret;
2604 
2605 	ret = platform_driver_register(&imx_uart_platform_driver);
2606 	if (ret != 0)
2607 		uart_unregister_driver(&imx_uart_uart_driver);
2608 
2609 	return ret;
2610 }
2611 
2612 static void __exit imx_uart_exit(void)
2613 {
2614 	platform_driver_unregister(&imx_uart_platform_driver);
2615 	uart_unregister_driver(&imx_uart_uart_driver);
2616 }
2617 
2618 module_init(imx_uart_init);
2619 module_exit(imx_uart_exit);
2620 
2621 MODULE_AUTHOR("Sascha Hauer");
2622 MODULE_DESCRIPTION("IMX generic serial port driver");
2623 MODULE_LICENSE("GPL");
2624 MODULE_ALIAS("platform:imx-uart");
2625