1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Driver for Motorola/Freescale IMX serial ports 4 * 5 * Based on drivers/char/serial.c, by Linus Torvalds, Theodore Ts'o. 6 * 7 * Author: Sascha Hauer <sascha@saschahauer.de> 8 * Copyright (C) 2004 Pengutronix 9 */ 10 11 #if defined(CONFIG_SERIAL_IMX_CONSOLE) && defined(CONFIG_MAGIC_SYSRQ) 12 #define SUPPORT_SYSRQ 13 #endif 14 15 #include <linux/module.h> 16 #include <linux/ioport.h> 17 #include <linux/init.h> 18 #include <linux/console.h> 19 #include <linux/sysrq.h> 20 #include <linux/platform_device.h> 21 #include <linux/tty.h> 22 #include <linux/tty_flip.h> 23 #include <linux/serial_core.h> 24 #include <linux/serial.h> 25 #include <linux/clk.h> 26 #include <linux/delay.h> 27 #include <linux/pinctrl/consumer.h> 28 #include <linux/rational.h> 29 #include <linux/slab.h> 30 #include <linux/of.h> 31 #include <linux/of_device.h> 32 #include <linux/io.h> 33 #include <linux/dma-mapping.h> 34 35 #include <asm/irq.h> 36 #include <linux/platform_data/serial-imx.h> 37 #include <linux/platform_data/dma-imx.h> 38 39 #include "serial_mctrl_gpio.h" 40 41 /* Register definitions */ 42 #define URXD0 0x0 /* Receiver Register */ 43 #define URTX0 0x40 /* Transmitter Register */ 44 #define UCR1 0x80 /* Control Register 1 */ 45 #define UCR2 0x84 /* Control Register 2 */ 46 #define UCR3 0x88 /* Control Register 3 */ 47 #define UCR4 0x8c /* Control Register 4 */ 48 #define UFCR 0x90 /* FIFO Control Register */ 49 #define USR1 0x94 /* Status Register 1 */ 50 #define USR2 0x98 /* Status Register 2 */ 51 #define UESC 0x9c /* Escape Character Register */ 52 #define UTIM 0xa0 /* Escape Timer Register */ 53 #define UBIR 0xa4 /* BRM Incremental Register */ 54 #define UBMR 0xa8 /* BRM Modulator Register */ 55 #define UBRC 0xac /* Baud Rate Count Register */ 56 #define IMX21_ONEMS 0xb0 /* One Millisecond register */ 57 #define IMX1_UTS 0xd0 /* UART Test Register on i.mx1 */ 58 #define IMX21_UTS 0xb4 /* UART Test Register on all other i.mx*/ 59 60 /* UART Control Register Bit Fields.*/ 61 #define URXD_DUMMY_READ (1<<16) 62 #define URXD_CHARRDY (1<<15) 63 #define URXD_ERR (1<<14) 64 #define URXD_OVRRUN (1<<13) 65 #define URXD_FRMERR (1<<12) 66 #define URXD_BRK (1<<11) 67 #define URXD_PRERR (1<<10) 68 #define URXD_RX_DATA (0xFF<<0) 69 #define UCR1_ADEN (1<<15) /* Auto detect interrupt */ 70 #define UCR1_ADBR (1<<14) /* Auto detect baud rate */ 71 #define UCR1_TRDYEN (1<<13) /* Transmitter ready interrupt enable */ 72 #define UCR1_IDEN (1<<12) /* Idle condition interrupt */ 73 #define UCR1_ICD_REG(x) (((x) & 3) << 10) /* idle condition detect */ 74 #define UCR1_RRDYEN (1<<9) /* Recv ready interrupt enable */ 75 #define UCR1_RXDMAEN (1<<8) /* Recv ready DMA enable */ 76 #define UCR1_IREN (1<<7) /* Infrared interface enable */ 77 #define UCR1_TXMPTYEN (1<<6) /* Transimitter empty interrupt enable */ 78 #define UCR1_RTSDEN (1<<5) /* RTS delta interrupt enable */ 79 #define UCR1_SNDBRK (1<<4) /* Send break */ 80 #define UCR1_TXDMAEN (1<<3) /* Transmitter ready DMA enable */ 81 #define IMX1_UCR1_UARTCLKEN (1<<2) /* UART clock enabled, i.mx1 only */ 82 #define UCR1_ATDMAEN (1<<2) /* Aging DMA Timer Enable */ 83 #define UCR1_DOZE (1<<1) /* Doze */ 84 #define UCR1_UARTEN (1<<0) /* UART enabled */ 85 #define UCR2_ESCI (1<<15) /* Escape seq interrupt enable */ 86 #define UCR2_IRTS (1<<14) /* Ignore RTS pin */ 87 #define UCR2_CTSC (1<<13) /* CTS pin control */ 88 #define UCR2_CTS (1<<12) /* Clear to send */ 89 #define UCR2_ESCEN (1<<11) /* Escape enable */ 90 #define UCR2_PREN (1<<8) /* Parity enable */ 91 #define UCR2_PROE (1<<7) /* Parity odd/even */ 92 #define UCR2_STPB (1<<6) /* Stop */ 93 #define UCR2_WS (1<<5) /* Word size */ 94 #define UCR2_RTSEN (1<<4) /* Request to send interrupt enable */ 95 #define UCR2_ATEN (1<<3) /* Aging Timer Enable */ 96 #define UCR2_TXEN (1<<2) /* Transmitter enabled */ 97 #define UCR2_RXEN (1<<1) /* Receiver enabled */ 98 #define UCR2_SRST (1<<0) /* SW reset */ 99 #define UCR3_DTREN (1<<13) /* DTR interrupt enable */ 100 #define UCR3_PARERREN (1<<12) /* Parity enable */ 101 #define UCR3_FRAERREN (1<<11) /* Frame error interrupt enable */ 102 #define UCR3_DSR (1<<10) /* Data set ready */ 103 #define UCR3_DCD (1<<9) /* Data carrier detect */ 104 #define UCR3_RI (1<<8) /* Ring indicator */ 105 #define UCR3_ADNIMP (1<<7) /* Autobaud Detection Not Improved */ 106 #define UCR3_RXDSEN (1<<6) /* Receive status interrupt enable */ 107 #define UCR3_AIRINTEN (1<<5) /* Async IR wake interrupt enable */ 108 #define UCR3_AWAKEN (1<<4) /* Async wake interrupt enable */ 109 #define UCR3_DTRDEN (1<<3) /* Data Terminal Ready Delta Enable. */ 110 #define IMX21_UCR3_RXDMUXSEL (1<<2) /* RXD Muxed Input Select */ 111 #define UCR3_INVT (1<<1) /* Inverted Infrared transmission */ 112 #define UCR3_BPEN (1<<0) /* Preset registers enable */ 113 #define UCR4_CTSTL_SHF 10 /* CTS trigger level shift */ 114 #define UCR4_CTSTL_MASK 0x3F /* CTS trigger is 6 bits wide */ 115 #define UCR4_INVR (1<<9) /* Inverted infrared reception */ 116 #define UCR4_ENIRI (1<<8) /* Serial infrared interrupt enable */ 117 #define UCR4_WKEN (1<<7) /* Wake interrupt enable */ 118 #define UCR4_REF16 (1<<6) /* Ref freq 16 MHz */ 119 #define UCR4_IDDMAEN (1<<6) /* DMA IDLE Condition Detected */ 120 #define UCR4_IRSC (1<<5) /* IR special case */ 121 #define UCR4_TCEN (1<<3) /* Transmit complete interrupt enable */ 122 #define UCR4_BKEN (1<<2) /* Break condition interrupt enable */ 123 #define UCR4_OREN (1<<1) /* Receiver overrun interrupt enable */ 124 #define UCR4_DREN (1<<0) /* Recv data ready interrupt enable */ 125 #define UFCR_RXTL_SHF 0 /* Receiver trigger level shift */ 126 #define UFCR_DCEDTE (1<<6) /* DCE/DTE mode select */ 127 #define UFCR_RFDIV (7<<7) /* Reference freq divider mask */ 128 #define UFCR_RFDIV_REG(x) (((x) < 7 ? 6 - (x) : 6) << 7) 129 #define UFCR_TXTL_SHF 10 /* Transmitter trigger level shift */ 130 #define USR1_PARITYERR (1<<15) /* Parity error interrupt flag */ 131 #define USR1_RTSS (1<<14) /* RTS pin status */ 132 #define USR1_TRDY (1<<13) /* Transmitter ready interrupt/dma flag */ 133 #define USR1_RTSD (1<<12) /* RTS delta */ 134 #define USR1_ESCF (1<<11) /* Escape seq interrupt flag */ 135 #define USR1_FRAMERR (1<<10) /* Frame error interrupt flag */ 136 #define USR1_RRDY (1<<9) /* Receiver ready interrupt/dma flag */ 137 #define USR1_AGTIM (1<<8) /* Ageing timer interrupt flag */ 138 #define USR1_DTRD (1<<7) /* DTR Delta */ 139 #define USR1_RXDS (1<<6) /* Receiver idle interrupt flag */ 140 #define USR1_AIRINT (1<<5) /* Async IR wake interrupt flag */ 141 #define USR1_AWAKE (1<<4) /* Aysnc wake interrupt flag */ 142 #define USR2_ADET (1<<15) /* Auto baud rate detect complete */ 143 #define USR2_TXFE (1<<14) /* Transmit buffer FIFO empty */ 144 #define USR2_DTRF (1<<13) /* DTR edge interrupt flag */ 145 #define USR2_IDLE (1<<12) /* Idle condition */ 146 #define USR2_RIDELT (1<<10) /* Ring Interrupt Delta */ 147 #define USR2_RIIN (1<<9) /* Ring Indicator Input */ 148 #define USR2_IRINT (1<<8) /* Serial infrared interrupt flag */ 149 #define USR2_WAKE (1<<7) /* Wake */ 150 #define USR2_DCDIN (1<<5) /* Data Carrier Detect Input */ 151 #define USR2_RTSF (1<<4) /* RTS edge interrupt flag */ 152 #define USR2_TXDC (1<<3) /* Transmitter complete */ 153 #define USR2_BRCD (1<<2) /* Break condition */ 154 #define USR2_ORE (1<<1) /* Overrun error */ 155 #define USR2_RDR (1<<0) /* Recv data ready */ 156 #define UTS_FRCPERR (1<<13) /* Force parity error */ 157 #define UTS_LOOP (1<<12) /* Loop tx and rx */ 158 #define UTS_TXEMPTY (1<<6) /* TxFIFO empty */ 159 #define UTS_RXEMPTY (1<<5) /* RxFIFO empty */ 160 #define UTS_TXFULL (1<<4) /* TxFIFO full */ 161 #define UTS_RXFULL (1<<3) /* RxFIFO full */ 162 #define UTS_SOFTRST (1<<0) /* Software reset */ 163 164 /* We've been assigned a range on the "Low-density serial ports" major */ 165 #define SERIAL_IMX_MAJOR 207 166 #define MINOR_START 16 167 #define DEV_NAME "ttymxc" 168 169 /* 170 * This determines how often we check the modem status signals 171 * for any change. They generally aren't connected to an IRQ 172 * so we have to poll them. We also check immediately before 173 * filling the TX fifo incase CTS has been dropped. 174 */ 175 #define MCTRL_TIMEOUT (250*HZ/1000) 176 177 #define DRIVER_NAME "IMX-uart" 178 179 #define UART_NR 8 180 181 /* i.MX21 type uart runs on all i.mx except i.MX1 and i.MX6q */ 182 enum imx_uart_type { 183 IMX1_UART, 184 IMX21_UART, 185 IMX53_UART, 186 IMX6Q_UART, 187 }; 188 189 /* device type dependent stuff */ 190 struct imx_uart_data { 191 unsigned uts_reg; 192 enum imx_uart_type devtype; 193 }; 194 195 struct imx_port { 196 struct uart_port port; 197 struct timer_list timer; 198 unsigned int old_status; 199 unsigned int have_rtscts:1; 200 unsigned int have_rtsgpio:1; 201 unsigned int dte_mode:1; 202 struct clk *clk_ipg; 203 struct clk *clk_per; 204 const struct imx_uart_data *devdata; 205 206 struct mctrl_gpios *gpios; 207 208 /* shadow registers */ 209 unsigned int ucr1; 210 unsigned int ucr2; 211 unsigned int ucr3; 212 unsigned int ucr4; 213 unsigned int ufcr; 214 215 /* DMA fields */ 216 unsigned int dma_is_enabled:1; 217 unsigned int dma_is_rxing:1; 218 unsigned int dma_is_txing:1; 219 struct dma_chan *dma_chan_rx, *dma_chan_tx; 220 struct scatterlist rx_sgl, tx_sgl[2]; 221 void *rx_buf; 222 struct circ_buf rx_ring; 223 unsigned int rx_periods; 224 dma_cookie_t rx_cookie; 225 unsigned int tx_bytes; 226 unsigned int dma_tx_nents; 227 unsigned int saved_reg[10]; 228 bool context_saved; 229 }; 230 231 struct imx_port_ucrs { 232 unsigned int ucr1; 233 unsigned int ucr2; 234 unsigned int ucr3; 235 }; 236 237 static struct imx_uart_data imx_uart_devdata[] = { 238 [IMX1_UART] = { 239 .uts_reg = IMX1_UTS, 240 .devtype = IMX1_UART, 241 }, 242 [IMX21_UART] = { 243 .uts_reg = IMX21_UTS, 244 .devtype = IMX21_UART, 245 }, 246 [IMX53_UART] = { 247 .uts_reg = IMX21_UTS, 248 .devtype = IMX53_UART, 249 }, 250 [IMX6Q_UART] = { 251 .uts_reg = IMX21_UTS, 252 .devtype = IMX6Q_UART, 253 }, 254 }; 255 256 static const struct platform_device_id imx_uart_devtype[] = { 257 { 258 .name = "imx1-uart", 259 .driver_data = (kernel_ulong_t) &imx_uart_devdata[IMX1_UART], 260 }, { 261 .name = "imx21-uart", 262 .driver_data = (kernel_ulong_t) &imx_uart_devdata[IMX21_UART], 263 }, { 264 .name = "imx53-uart", 265 .driver_data = (kernel_ulong_t) &imx_uart_devdata[IMX53_UART], 266 }, { 267 .name = "imx6q-uart", 268 .driver_data = (kernel_ulong_t) &imx_uart_devdata[IMX6Q_UART], 269 }, { 270 /* sentinel */ 271 } 272 }; 273 MODULE_DEVICE_TABLE(platform, imx_uart_devtype); 274 275 static const struct of_device_id imx_uart_dt_ids[] = { 276 { .compatible = "fsl,imx6q-uart", .data = &imx_uart_devdata[IMX6Q_UART], }, 277 { .compatible = "fsl,imx53-uart", .data = &imx_uart_devdata[IMX53_UART], }, 278 { .compatible = "fsl,imx1-uart", .data = &imx_uart_devdata[IMX1_UART], }, 279 { .compatible = "fsl,imx21-uart", .data = &imx_uart_devdata[IMX21_UART], }, 280 { /* sentinel */ } 281 }; 282 MODULE_DEVICE_TABLE(of, imx_uart_dt_ids); 283 284 static void imx_uart_writel(struct imx_port *sport, u32 val, u32 offset) 285 { 286 switch (offset) { 287 case UCR1: 288 sport->ucr1 = val; 289 break; 290 case UCR2: 291 sport->ucr2 = val; 292 break; 293 case UCR3: 294 sport->ucr3 = val; 295 break; 296 case UCR4: 297 sport->ucr4 = val; 298 break; 299 case UFCR: 300 sport->ufcr = val; 301 break; 302 default: 303 break; 304 } 305 writel(val, sport->port.membase + offset); 306 } 307 308 static u32 imx_uart_readl(struct imx_port *sport, u32 offset) 309 { 310 switch (offset) { 311 case UCR1: 312 return sport->ucr1; 313 break; 314 case UCR2: 315 /* 316 * UCR2_SRST is the only bit in the cached registers that might 317 * differ from the value that was last written. As it only 318 * automatically becomes one after being cleared, reread 319 * conditionally. 320 */ 321 if (!(sport->ucr2 & UCR2_SRST)) 322 sport->ucr2 = readl(sport->port.membase + offset); 323 return sport->ucr2; 324 break; 325 case UCR3: 326 return sport->ucr3; 327 break; 328 case UCR4: 329 return sport->ucr4; 330 break; 331 case UFCR: 332 return sport->ufcr; 333 break; 334 default: 335 return readl(sport->port.membase + offset); 336 } 337 } 338 339 static inline unsigned imx_uart_uts_reg(struct imx_port *sport) 340 { 341 return sport->devdata->uts_reg; 342 } 343 344 static inline int imx_uart_is_imx1(struct imx_port *sport) 345 { 346 return sport->devdata->devtype == IMX1_UART; 347 } 348 349 static inline int imx_uart_is_imx21(struct imx_port *sport) 350 { 351 return sport->devdata->devtype == IMX21_UART; 352 } 353 354 static inline int imx_uart_is_imx53(struct imx_port *sport) 355 { 356 return sport->devdata->devtype == IMX53_UART; 357 } 358 359 static inline int imx_uart_is_imx6q(struct imx_port *sport) 360 { 361 return sport->devdata->devtype == IMX6Q_UART; 362 } 363 /* 364 * Save and restore functions for UCR1, UCR2 and UCR3 registers 365 */ 366 #if defined(CONFIG_SERIAL_IMX_CONSOLE) 367 static void imx_uart_ucrs_save(struct imx_port *sport, 368 struct imx_port_ucrs *ucr) 369 { 370 /* save control registers */ 371 ucr->ucr1 = imx_uart_readl(sport, UCR1); 372 ucr->ucr2 = imx_uart_readl(sport, UCR2); 373 ucr->ucr3 = imx_uart_readl(sport, UCR3); 374 } 375 376 static void imx_uart_ucrs_restore(struct imx_port *sport, 377 struct imx_port_ucrs *ucr) 378 { 379 /* restore control registers */ 380 imx_uart_writel(sport, ucr->ucr1, UCR1); 381 imx_uart_writel(sport, ucr->ucr2, UCR2); 382 imx_uart_writel(sport, ucr->ucr3, UCR3); 383 } 384 #endif 385 386 /* called with port.lock taken and irqs caller dependent */ 387 static void imx_uart_rts_active(struct imx_port *sport, u32 *ucr2) 388 { 389 *ucr2 &= ~(UCR2_CTSC | UCR2_CTS); 390 391 sport->port.mctrl |= TIOCM_RTS; 392 mctrl_gpio_set(sport->gpios, sport->port.mctrl); 393 } 394 395 /* called with port.lock taken and irqs caller dependent */ 396 static void imx_uart_rts_inactive(struct imx_port *sport, u32 *ucr2) 397 { 398 *ucr2 &= ~UCR2_CTSC; 399 *ucr2 |= UCR2_CTS; 400 401 sport->port.mctrl &= ~TIOCM_RTS; 402 mctrl_gpio_set(sport->gpios, sport->port.mctrl); 403 } 404 405 /* called with port.lock taken and irqs caller dependent */ 406 static void imx_uart_rts_auto(struct imx_port *sport, u32 *ucr2) 407 { 408 *ucr2 |= UCR2_CTSC; 409 } 410 411 /* called with port.lock taken and irqs off */ 412 static void imx_uart_start_rx(struct uart_port *port) 413 { 414 struct imx_port *sport = (struct imx_port *)port; 415 unsigned int ucr1, ucr2; 416 417 ucr1 = imx_uart_readl(sport, UCR1); 418 ucr2 = imx_uart_readl(sport, UCR2); 419 420 ucr2 |= UCR2_RXEN; 421 422 if (sport->dma_is_enabled) { 423 ucr1 |= UCR1_RXDMAEN | UCR1_ATDMAEN; 424 } else { 425 ucr1 |= UCR1_RRDYEN; 426 ucr2 |= UCR2_ATEN; 427 } 428 429 /* Write UCR2 first as it includes RXEN */ 430 imx_uart_writel(sport, ucr2, UCR2); 431 imx_uart_writel(sport, ucr1, UCR1); 432 } 433 434 /* called with port.lock taken and irqs off */ 435 static void imx_uart_stop_tx(struct uart_port *port) 436 { 437 struct imx_port *sport = (struct imx_port *)port; 438 u32 ucr1; 439 440 /* 441 * We are maybe in the SMP context, so if the DMA TX thread is running 442 * on other cpu, we have to wait for it to finish. 443 */ 444 if (sport->dma_is_txing) 445 return; 446 447 ucr1 = imx_uart_readl(sport, UCR1); 448 imx_uart_writel(sport, ucr1 & ~UCR1_TXMPTYEN, UCR1); 449 450 /* in rs485 mode disable transmitter if shifter is empty */ 451 if (port->rs485.flags & SER_RS485_ENABLED && 452 imx_uart_readl(sport, USR2) & USR2_TXDC) { 453 u32 ucr2 = imx_uart_readl(sport, UCR2), ucr4; 454 if (port->rs485.flags & SER_RS485_RTS_AFTER_SEND) 455 imx_uart_rts_active(sport, &ucr2); 456 else 457 imx_uart_rts_inactive(sport, &ucr2); 458 imx_uart_writel(sport, ucr2, UCR2); 459 460 imx_uart_start_rx(port); 461 462 ucr4 = imx_uart_readl(sport, UCR4); 463 ucr4 &= ~UCR4_TCEN; 464 imx_uart_writel(sport, ucr4, UCR4); 465 } 466 } 467 468 /* called with port.lock taken and irqs off */ 469 static void imx_uart_stop_rx(struct uart_port *port) 470 { 471 struct imx_port *sport = (struct imx_port *)port; 472 u32 ucr1, ucr2; 473 474 ucr1 = imx_uart_readl(sport, UCR1); 475 ucr2 = imx_uart_readl(sport, UCR2); 476 477 if (sport->dma_is_enabled) { 478 ucr1 &= ~(UCR1_RXDMAEN | UCR1_ATDMAEN); 479 } else { 480 ucr1 &= ~UCR1_RRDYEN; 481 ucr2 &= ~UCR2_ATEN; 482 } 483 imx_uart_writel(sport, ucr1, UCR1); 484 485 ucr2 &= ~UCR2_RXEN; 486 imx_uart_writel(sport, ucr2, UCR2); 487 } 488 489 /* called with port.lock taken and irqs off */ 490 static void imx_uart_enable_ms(struct uart_port *port) 491 { 492 struct imx_port *sport = (struct imx_port *)port; 493 494 mod_timer(&sport->timer, jiffies); 495 496 mctrl_gpio_enable_ms(sport->gpios); 497 } 498 499 static void imx_uart_dma_tx(struct imx_port *sport); 500 501 /* called with port.lock taken and irqs off */ 502 static inline void imx_uart_transmit_buffer(struct imx_port *sport) 503 { 504 struct circ_buf *xmit = &sport->port.state->xmit; 505 506 if (sport->port.x_char) { 507 /* Send next char */ 508 imx_uart_writel(sport, sport->port.x_char, URTX0); 509 sport->port.icount.tx++; 510 sport->port.x_char = 0; 511 return; 512 } 513 514 if (uart_circ_empty(xmit) || uart_tx_stopped(&sport->port)) { 515 imx_uart_stop_tx(&sport->port); 516 return; 517 } 518 519 if (sport->dma_is_enabled) { 520 u32 ucr1; 521 /* 522 * We've just sent a X-char Ensure the TX DMA is enabled 523 * and the TX IRQ is disabled. 524 **/ 525 ucr1 = imx_uart_readl(sport, UCR1); 526 ucr1 &= ~UCR1_TXMPTYEN; 527 if (sport->dma_is_txing) { 528 ucr1 |= UCR1_TXDMAEN; 529 imx_uart_writel(sport, ucr1, UCR1); 530 } else { 531 imx_uart_writel(sport, ucr1, UCR1); 532 imx_uart_dma_tx(sport); 533 } 534 535 return; 536 } 537 538 while (!uart_circ_empty(xmit) && 539 !(imx_uart_readl(sport, imx_uart_uts_reg(sport)) & UTS_TXFULL)) { 540 /* send xmit->buf[xmit->tail] 541 * out the port here */ 542 imx_uart_writel(sport, xmit->buf[xmit->tail], URTX0); 543 xmit->tail = (xmit->tail + 1) & (UART_XMIT_SIZE - 1); 544 sport->port.icount.tx++; 545 } 546 547 if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS) 548 uart_write_wakeup(&sport->port); 549 550 if (uart_circ_empty(xmit)) 551 imx_uart_stop_tx(&sport->port); 552 } 553 554 static void imx_uart_dma_tx_callback(void *data) 555 { 556 struct imx_port *sport = data; 557 struct scatterlist *sgl = &sport->tx_sgl[0]; 558 struct circ_buf *xmit = &sport->port.state->xmit; 559 unsigned long flags; 560 u32 ucr1; 561 562 spin_lock_irqsave(&sport->port.lock, flags); 563 564 dma_unmap_sg(sport->port.dev, sgl, sport->dma_tx_nents, DMA_TO_DEVICE); 565 566 ucr1 = imx_uart_readl(sport, UCR1); 567 ucr1 &= ~UCR1_TXDMAEN; 568 imx_uart_writel(sport, ucr1, UCR1); 569 570 /* update the stat */ 571 xmit->tail = (xmit->tail + sport->tx_bytes) & (UART_XMIT_SIZE - 1); 572 sport->port.icount.tx += sport->tx_bytes; 573 574 dev_dbg(sport->port.dev, "we finish the TX DMA.\n"); 575 576 sport->dma_is_txing = 0; 577 578 if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS) 579 uart_write_wakeup(&sport->port); 580 581 if (!uart_circ_empty(xmit) && !uart_tx_stopped(&sport->port)) 582 imx_uart_dma_tx(sport); 583 else if (sport->port.rs485.flags & SER_RS485_ENABLED) { 584 u32 ucr4 = imx_uart_readl(sport, UCR4); 585 ucr4 |= UCR4_TCEN; 586 imx_uart_writel(sport, ucr4, UCR4); 587 } 588 589 spin_unlock_irqrestore(&sport->port.lock, flags); 590 } 591 592 /* called with port.lock taken and irqs off */ 593 static void imx_uart_dma_tx(struct imx_port *sport) 594 { 595 struct circ_buf *xmit = &sport->port.state->xmit; 596 struct scatterlist *sgl = sport->tx_sgl; 597 struct dma_async_tx_descriptor *desc; 598 struct dma_chan *chan = sport->dma_chan_tx; 599 struct device *dev = sport->port.dev; 600 u32 ucr1, ucr4; 601 int ret; 602 603 if (sport->dma_is_txing) 604 return; 605 606 ucr4 = imx_uart_readl(sport, UCR4); 607 ucr4 &= ~UCR4_TCEN; 608 imx_uart_writel(sport, ucr4, UCR4); 609 610 sport->tx_bytes = uart_circ_chars_pending(xmit); 611 612 if (xmit->tail < xmit->head) { 613 sport->dma_tx_nents = 1; 614 sg_init_one(sgl, xmit->buf + xmit->tail, sport->tx_bytes); 615 } else { 616 sport->dma_tx_nents = 2; 617 sg_init_table(sgl, 2); 618 sg_set_buf(sgl, xmit->buf + xmit->tail, 619 UART_XMIT_SIZE - xmit->tail); 620 sg_set_buf(sgl + 1, xmit->buf, xmit->head); 621 } 622 623 ret = dma_map_sg(dev, sgl, sport->dma_tx_nents, DMA_TO_DEVICE); 624 if (ret == 0) { 625 dev_err(dev, "DMA mapping error for TX.\n"); 626 return; 627 } 628 desc = dmaengine_prep_slave_sg(chan, sgl, sport->dma_tx_nents, 629 DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT); 630 if (!desc) { 631 dma_unmap_sg(dev, sgl, sport->dma_tx_nents, 632 DMA_TO_DEVICE); 633 dev_err(dev, "We cannot prepare for the TX slave dma!\n"); 634 return; 635 } 636 desc->callback = imx_uart_dma_tx_callback; 637 desc->callback_param = sport; 638 639 dev_dbg(dev, "TX: prepare to send %lu bytes by DMA.\n", 640 uart_circ_chars_pending(xmit)); 641 642 ucr1 = imx_uart_readl(sport, UCR1); 643 ucr1 |= UCR1_TXDMAEN; 644 imx_uart_writel(sport, ucr1, UCR1); 645 646 /* fire it */ 647 sport->dma_is_txing = 1; 648 dmaengine_submit(desc); 649 dma_async_issue_pending(chan); 650 return; 651 } 652 653 /* called with port.lock taken and irqs off */ 654 static void imx_uart_start_tx(struct uart_port *port) 655 { 656 struct imx_port *sport = (struct imx_port *)port; 657 u32 ucr1; 658 659 if (!sport->port.x_char && uart_circ_empty(&port->state->xmit)) 660 return; 661 662 if (port->rs485.flags & SER_RS485_ENABLED) { 663 u32 ucr2; 664 665 ucr2 = imx_uart_readl(sport, UCR2); 666 if (port->rs485.flags & SER_RS485_RTS_ON_SEND) 667 imx_uart_rts_active(sport, &ucr2); 668 else 669 imx_uart_rts_inactive(sport, &ucr2); 670 imx_uart_writel(sport, ucr2, UCR2); 671 672 if (!(port->rs485.flags & SER_RS485_RX_DURING_TX)) 673 imx_uart_stop_rx(port); 674 675 /* 676 * Enable transmitter and shifter empty irq only if DMA is off. 677 * In the DMA case this is done in the tx-callback. 678 */ 679 if (!sport->dma_is_enabled) { 680 u32 ucr4 = imx_uart_readl(sport, UCR4); 681 ucr4 |= UCR4_TCEN; 682 imx_uart_writel(sport, ucr4, UCR4); 683 } 684 } 685 686 if (!sport->dma_is_enabled) { 687 ucr1 = imx_uart_readl(sport, UCR1); 688 imx_uart_writel(sport, ucr1 | UCR1_TXMPTYEN, UCR1); 689 } 690 691 if (sport->dma_is_enabled) { 692 if (sport->port.x_char) { 693 /* We have X-char to send, so enable TX IRQ and 694 * disable TX DMA to let TX interrupt to send X-char */ 695 ucr1 = imx_uart_readl(sport, UCR1); 696 ucr1 &= ~UCR1_TXDMAEN; 697 ucr1 |= UCR1_TXMPTYEN; 698 imx_uart_writel(sport, ucr1, UCR1); 699 return; 700 } 701 702 if (!uart_circ_empty(&port->state->xmit) && 703 !uart_tx_stopped(port)) 704 imx_uart_dma_tx(sport); 705 return; 706 } 707 } 708 709 static irqreturn_t imx_uart_rtsint(int irq, void *dev_id) 710 { 711 struct imx_port *sport = dev_id; 712 u32 usr1; 713 714 spin_lock(&sport->port.lock); 715 716 imx_uart_writel(sport, USR1_RTSD, USR1); 717 usr1 = imx_uart_readl(sport, USR1) & USR1_RTSS; 718 uart_handle_cts_change(&sport->port, !!usr1); 719 wake_up_interruptible(&sport->port.state->port.delta_msr_wait); 720 721 spin_unlock(&sport->port.lock); 722 return IRQ_HANDLED; 723 } 724 725 static irqreturn_t imx_uart_txint(int irq, void *dev_id) 726 { 727 struct imx_port *sport = dev_id; 728 729 spin_lock(&sport->port.lock); 730 imx_uart_transmit_buffer(sport); 731 spin_unlock(&sport->port.lock); 732 return IRQ_HANDLED; 733 } 734 735 static irqreturn_t imx_uart_rxint(int irq, void *dev_id) 736 { 737 struct imx_port *sport = dev_id; 738 unsigned int rx, flg, ignored = 0; 739 struct tty_port *port = &sport->port.state->port; 740 741 spin_lock(&sport->port.lock); 742 743 while (imx_uart_readl(sport, USR2) & USR2_RDR) { 744 u32 usr2; 745 746 flg = TTY_NORMAL; 747 sport->port.icount.rx++; 748 749 rx = imx_uart_readl(sport, URXD0); 750 751 usr2 = imx_uart_readl(sport, USR2); 752 if (usr2 & USR2_BRCD) { 753 imx_uart_writel(sport, USR2_BRCD, USR2); 754 if (uart_handle_break(&sport->port)) 755 continue; 756 } 757 758 if (uart_handle_sysrq_char(&sport->port, (unsigned char)rx)) 759 continue; 760 761 if (unlikely(rx & URXD_ERR)) { 762 if (rx & URXD_BRK) 763 sport->port.icount.brk++; 764 else if (rx & URXD_PRERR) 765 sport->port.icount.parity++; 766 else if (rx & URXD_FRMERR) 767 sport->port.icount.frame++; 768 if (rx & URXD_OVRRUN) 769 sport->port.icount.overrun++; 770 771 if (rx & sport->port.ignore_status_mask) { 772 if (++ignored > 100) 773 goto out; 774 continue; 775 } 776 777 rx &= (sport->port.read_status_mask | 0xFF); 778 779 if (rx & URXD_BRK) 780 flg = TTY_BREAK; 781 else if (rx & URXD_PRERR) 782 flg = TTY_PARITY; 783 else if (rx & URXD_FRMERR) 784 flg = TTY_FRAME; 785 if (rx & URXD_OVRRUN) 786 flg = TTY_OVERRUN; 787 788 #ifdef SUPPORT_SYSRQ 789 sport->port.sysrq = 0; 790 #endif 791 } 792 793 if (sport->port.ignore_status_mask & URXD_DUMMY_READ) 794 goto out; 795 796 if (tty_insert_flip_char(port, rx, flg) == 0) 797 sport->port.icount.buf_overrun++; 798 } 799 800 out: 801 spin_unlock(&sport->port.lock); 802 tty_flip_buffer_push(port); 803 return IRQ_HANDLED; 804 } 805 806 static void imx_uart_clear_rx_errors(struct imx_port *sport); 807 808 /* 809 * We have a modem side uart, so the meanings of RTS and CTS are inverted. 810 */ 811 static unsigned int imx_uart_get_hwmctrl(struct imx_port *sport) 812 { 813 unsigned int tmp = TIOCM_DSR; 814 unsigned usr1 = imx_uart_readl(sport, USR1); 815 unsigned usr2 = imx_uart_readl(sport, USR2); 816 817 if (usr1 & USR1_RTSS) 818 tmp |= TIOCM_CTS; 819 820 /* in DCE mode DCDIN is always 0 */ 821 if (!(usr2 & USR2_DCDIN)) 822 tmp |= TIOCM_CAR; 823 824 if (sport->dte_mode) 825 if (!(imx_uart_readl(sport, USR2) & USR2_RIIN)) 826 tmp |= TIOCM_RI; 827 828 return tmp; 829 } 830 831 /* 832 * Handle any change of modem status signal since we were last called. 833 */ 834 static void imx_uart_mctrl_check(struct imx_port *sport) 835 { 836 unsigned int status, changed; 837 838 status = imx_uart_get_hwmctrl(sport); 839 changed = status ^ sport->old_status; 840 841 if (changed == 0) 842 return; 843 844 sport->old_status = status; 845 846 if (changed & TIOCM_RI && status & TIOCM_RI) 847 sport->port.icount.rng++; 848 if (changed & TIOCM_DSR) 849 sport->port.icount.dsr++; 850 if (changed & TIOCM_CAR) 851 uart_handle_dcd_change(&sport->port, status & TIOCM_CAR); 852 if (changed & TIOCM_CTS) 853 uart_handle_cts_change(&sport->port, status & TIOCM_CTS); 854 855 wake_up_interruptible(&sport->port.state->port.delta_msr_wait); 856 } 857 858 static irqreturn_t imx_uart_int(int irq, void *dev_id) 859 { 860 struct imx_port *sport = dev_id; 861 unsigned int usr1, usr2, ucr1, ucr2, ucr3, ucr4; 862 irqreturn_t ret = IRQ_NONE; 863 864 usr1 = imx_uart_readl(sport, USR1); 865 usr2 = imx_uart_readl(sport, USR2); 866 ucr1 = imx_uart_readl(sport, UCR1); 867 ucr2 = imx_uart_readl(sport, UCR2); 868 ucr3 = imx_uart_readl(sport, UCR3); 869 ucr4 = imx_uart_readl(sport, UCR4); 870 871 /* 872 * Even if a condition is true that can trigger an irq only handle it if 873 * the respective irq source is enabled. This prevents some undesired 874 * actions, for example if a character that sits in the RX FIFO and that 875 * should be fetched via DMA is tried to be fetched using PIO. Or the 876 * receiver is currently off and so reading from URXD0 results in an 877 * exception. So just mask the (raw) status bits for disabled irqs. 878 */ 879 if ((ucr1 & UCR1_RRDYEN) == 0) 880 usr1 &= ~USR1_RRDY; 881 if ((ucr2 & UCR2_ATEN) == 0) 882 usr1 &= ~USR1_AGTIM; 883 if ((ucr1 & UCR1_TXMPTYEN) == 0) 884 usr1 &= ~USR1_TRDY; 885 if ((ucr4 & UCR4_TCEN) == 0) 886 usr2 &= ~USR2_TXDC; 887 if ((ucr3 & UCR3_DTRDEN) == 0) 888 usr1 &= ~USR1_DTRD; 889 if ((ucr1 & UCR1_RTSDEN) == 0) 890 usr1 &= ~USR1_RTSD; 891 if ((ucr3 & UCR3_AWAKEN) == 0) 892 usr1 &= ~USR1_AWAKE; 893 if ((ucr4 & UCR4_OREN) == 0) 894 usr2 &= ~USR2_ORE; 895 896 if (usr1 & (USR1_RRDY | USR1_AGTIM)) { 897 imx_uart_rxint(irq, dev_id); 898 ret = IRQ_HANDLED; 899 } 900 901 if ((usr1 & USR1_TRDY) || (usr2 & USR2_TXDC)) { 902 imx_uart_txint(irq, dev_id); 903 ret = IRQ_HANDLED; 904 } 905 906 if (usr1 & USR1_DTRD) { 907 imx_uart_writel(sport, USR1_DTRD, USR1); 908 909 spin_lock(&sport->port.lock); 910 imx_uart_mctrl_check(sport); 911 spin_unlock(&sport->port.lock); 912 913 ret = IRQ_HANDLED; 914 } 915 916 if (usr1 & USR1_RTSD) { 917 imx_uart_rtsint(irq, dev_id); 918 ret = IRQ_HANDLED; 919 } 920 921 if (usr1 & USR1_AWAKE) { 922 imx_uart_writel(sport, USR1_AWAKE, USR1); 923 ret = IRQ_HANDLED; 924 } 925 926 if (usr2 & USR2_ORE) { 927 sport->port.icount.overrun++; 928 imx_uart_writel(sport, USR2_ORE, USR2); 929 ret = IRQ_HANDLED; 930 } 931 932 return ret; 933 } 934 935 /* 936 * Return TIOCSER_TEMT when transmitter is not busy. 937 */ 938 static unsigned int imx_uart_tx_empty(struct uart_port *port) 939 { 940 struct imx_port *sport = (struct imx_port *)port; 941 unsigned int ret; 942 943 ret = (imx_uart_readl(sport, USR2) & USR2_TXDC) ? TIOCSER_TEMT : 0; 944 945 /* If the TX DMA is working, return 0. */ 946 if (sport->dma_is_txing) 947 ret = 0; 948 949 return ret; 950 } 951 952 /* called with port.lock taken and irqs off */ 953 static unsigned int imx_uart_get_mctrl(struct uart_port *port) 954 { 955 struct imx_port *sport = (struct imx_port *)port; 956 unsigned int ret = imx_uart_get_hwmctrl(sport); 957 958 mctrl_gpio_get(sport->gpios, &ret); 959 960 return ret; 961 } 962 963 /* called with port.lock taken and irqs off */ 964 static void imx_uart_set_mctrl(struct uart_port *port, unsigned int mctrl) 965 { 966 struct imx_port *sport = (struct imx_port *)port; 967 u32 ucr3, uts; 968 969 if (!(port->rs485.flags & SER_RS485_ENABLED)) { 970 u32 ucr2; 971 972 ucr2 = imx_uart_readl(sport, UCR2); 973 ucr2 &= ~(UCR2_CTS | UCR2_CTSC); 974 if (mctrl & TIOCM_RTS) 975 ucr2 |= UCR2_CTS | UCR2_CTSC; 976 imx_uart_writel(sport, ucr2, UCR2); 977 } 978 979 ucr3 = imx_uart_readl(sport, UCR3) & ~UCR3_DSR; 980 if (!(mctrl & TIOCM_DTR)) 981 ucr3 |= UCR3_DSR; 982 imx_uart_writel(sport, ucr3, UCR3); 983 984 uts = imx_uart_readl(sport, imx_uart_uts_reg(sport)) & ~UTS_LOOP; 985 if (mctrl & TIOCM_LOOP) 986 uts |= UTS_LOOP; 987 imx_uart_writel(sport, uts, imx_uart_uts_reg(sport)); 988 989 mctrl_gpio_set(sport->gpios, mctrl); 990 } 991 992 /* 993 * Interrupts always disabled. 994 */ 995 static void imx_uart_break_ctl(struct uart_port *port, int break_state) 996 { 997 struct imx_port *sport = (struct imx_port *)port; 998 unsigned long flags; 999 u32 ucr1; 1000 1001 spin_lock_irqsave(&sport->port.lock, flags); 1002 1003 ucr1 = imx_uart_readl(sport, UCR1) & ~UCR1_SNDBRK; 1004 1005 if (break_state != 0) 1006 ucr1 |= UCR1_SNDBRK; 1007 1008 imx_uart_writel(sport, ucr1, UCR1); 1009 1010 spin_unlock_irqrestore(&sport->port.lock, flags); 1011 } 1012 1013 /* 1014 * This is our per-port timeout handler, for checking the 1015 * modem status signals. 1016 */ 1017 static void imx_uart_timeout(struct timer_list *t) 1018 { 1019 struct imx_port *sport = from_timer(sport, t, timer); 1020 unsigned long flags; 1021 1022 if (sport->port.state) { 1023 spin_lock_irqsave(&sport->port.lock, flags); 1024 imx_uart_mctrl_check(sport); 1025 spin_unlock_irqrestore(&sport->port.lock, flags); 1026 1027 mod_timer(&sport->timer, jiffies + MCTRL_TIMEOUT); 1028 } 1029 } 1030 1031 #define RX_BUF_SIZE (PAGE_SIZE) 1032 1033 /* 1034 * There are two kinds of RX DMA interrupts(such as in the MX6Q): 1035 * [1] the RX DMA buffer is full. 1036 * [2] the aging timer expires 1037 * 1038 * Condition [2] is triggered when a character has been sitting in the FIFO 1039 * for at least 8 byte durations. 1040 */ 1041 static void imx_uart_dma_rx_callback(void *data) 1042 { 1043 struct imx_port *sport = data; 1044 struct dma_chan *chan = sport->dma_chan_rx; 1045 struct scatterlist *sgl = &sport->rx_sgl; 1046 struct tty_port *port = &sport->port.state->port; 1047 struct dma_tx_state state; 1048 struct circ_buf *rx_ring = &sport->rx_ring; 1049 enum dma_status status; 1050 unsigned int w_bytes = 0; 1051 unsigned int r_bytes; 1052 unsigned int bd_size; 1053 1054 status = dmaengine_tx_status(chan, sport->rx_cookie, &state); 1055 1056 if (status == DMA_ERROR) { 1057 imx_uart_clear_rx_errors(sport); 1058 return; 1059 } 1060 1061 if (!(sport->port.ignore_status_mask & URXD_DUMMY_READ)) { 1062 1063 /* 1064 * The state-residue variable represents the empty space 1065 * relative to the entire buffer. Taking this in consideration 1066 * the head is always calculated base on the buffer total 1067 * length - DMA transaction residue. The UART script from the 1068 * SDMA firmware will jump to the next buffer descriptor, 1069 * once a DMA transaction if finalized (IMX53 RM - A.4.1.2.4). 1070 * Taking this in consideration the tail is always at the 1071 * beginning of the buffer descriptor that contains the head. 1072 */ 1073 1074 /* Calculate the head */ 1075 rx_ring->head = sg_dma_len(sgl) - state.residue; 1076 1077 /* Calculate the tail. */ 1078 bd_size = sg_dma_len(sgl) / sport->rx_periods; 1079 rx_ring->tail = ((rx_ring->head-1) / bd_size) * bd_size; 1080 1081 if (rx_ring->head <= sg_dma_len(sgl) && 1082 rx_ring->head > rx_ring->tail) { 1083 1084 /* Move data from tail to head */ 1085 r_bytes = rx_ring->head - rx_ring->tail; 1086 1087 /* CPU claims ownership of RX DMA buffer */ 1088 dma_sync_sg_for_cpu(sport->port.dev, sgl, 1, 1089 DMA_FROM_DEVICE); 1090 1091 w_bytes = tty_insert_flip_string(port, 1092 sport->rx_buf + rx_ring->tail, r_bytes); 1093 1094 /* UART retrieves ownership of RX DMA buffer */ 1095 dma_sync_sg_for_device(sport->port.dev, sgl, 1, 1096 DMA_FROM_DEVICE); 1097 1098 if (w_bytes != r_bytes) 1099 sport->port.icount.buf_overrun++; 1100 1101 sport->port.icount.rx += w_bytes; 1102 } else { 1103 WARN_ON(rx_ring->head > sg_dma_len(sgl)); 1104 WARN_ON(rx_ring->head <= rx_ring->tail); 1105 } 1106 } 1107 1108 if (w_bytes) { 1109 tty_flip_buffer_push(port); 1110 dev_dbg(sport->port.dev, "We get %d bytes.\n", w_bytes); 1111 } 1112 } 1113 1114 /* RX DMA buffer periods */ 1115 #define RX_DMA_PERIODS 4 1116 1117 static int imx_uart_start_rx_dma(struct imx_port *sport) 1118 { 1119 struct scatterlist *sgl = &sport->rx_sgl; 1120 struct dma_chan *chan = sport->dma_chan_rx; 1121 struct device *dev = sport->port.dev; 1122 struct dma_async_tx_descriptor *desc; 1123 int ret; 1124 1125 sport->rx_ring.head = 0; 1126 sport->rx_ring.tail = 0; 1127 sport->rx_periods = RX_DMA_PERIODS; 1128 1129 sg_init_one(sgl, sport->rx_buf, RX_BUF_SIZE); 1130 ret = dma_map_sg(dev, sgl, 1, DMA_FROM_DEVICE); 1131 if (ret == 0) { 1132 dev_err(dev, "DMA mapping error for RX.\n"); 1133 return -EINVAL; 1134 } 1135 1136 desc = dmaengine_prep_dma_cyclic(chan, sg_dma_address(sgl), 1137 sg_dma_len(sgl), sg_dma_len(sgl) / sport->rx_periods, 1138 DMA_DEV_TO_MEM, DMA_PREP_INTERRUPT); 1139 1140 if (!desc) { 1141 dma_unmap_sg(dev, sgl, 1, DMA_FROM_DEVICE); 1142 dev_err(dev, "We cannot prepare for the RX slave dma!\n"); 1143 return -EINVAL; 1144 } 1145 desc->callback = imx_uart_dma_rx_callback; 1146 desc->callback_param = sport; 1147 1148 dev_dbg(dev, "RX: prepare for the DMA.\n"); 1149 sport->dma_is_rxing = 1; 1150 sport->rx_cookie = dmaengine_submit(desc); 1151 dma_async_issue_pending(chan); 1152 return 0; 1153 } 1154 1155 static void imx_uart_clear_rx_errors(struct imx_port *sport) 1156 { 1157 struct tty_port *port = &sport->port.state->port; 1158 u32 usr1, usr2; 1159 1160 usr1 = imx_uart_readl(sport, USR1); 1161 usr2 = imx_uart_readl(sport, USR2); 1162 1163 if (usr2 & USR2_BRCD) { 1164 sport->port.icount.brk++; 1165 imx_uart_writel(sport, USR2_BRCD, USR2); 1166 uart_handle_break(&sport->port); 1167 if (tty_insert_flip_char(port, 0, TTY_BREAK) == 0) 1168 sport->port.icount.buf_overrun++; 1169 tty_flip_buffer_push(port); 1170 } else { 1171 if (usr1 & USR1_FRAMERR) { 1172 sport->port.icount.frame++; 1173 imx_uart_writel(sport, USR1_FRAMERR, USR1); 1174 } else if (usr1 & USR1_PARITYERR) { 1175 sport->port.icount.parity++; 1176 imx_uart_writel(sport, USR1_PARITYERR, USR1); 1177 } 1178 } 1179 1180 if (usr2 & USR2_ORE) { 1181 sport->port.icount.overrun++; 1182 imx_uart_writel(sport, USR2_ORE, USR2); 1183 } 1184 1185 } 1186 1187 #define TXTL_DEFAULT 2 /* reset default */ 1188 #define RXTL_DEFAULT 1 /* reset default */ 1189 #define TXTL_DMA 8 /* DMA burst setting */ 1190 #define RXTL_DMA 9 /* DMA burst setting */ 1191 1192 static void imx_uart_setup_ufcr(struct imx_port *sport, 1193 unsigned char txwl, unsigned char rxwl) 1194 { 1195 unsigned int val; 1196 1197 /* set receiver / transmitter trigger level */ 1198 val = imx_uart_readl(sport, UFCR) & (UFCR_RFDIV | UFCR_DCEDTE); 1199 val |= txwl << UFCR_TXTL_SHF | rxwl; 1200 imx_uart_writel(sport, val, UFCR); 1201 } 1202 1203 static void imx_uart_dma_exit(struct imx_port *sport) 1204 { 1205 if (sport->dma_chan_rx) { 1206 dmaengine_terminate_sync(sport->dma_chan_rx); 1207 dma_release_channel(sport->dma_chan_rx); 1208 sport->dma_chan_rx = NULL; 1209 sport->rx_cookie = -EINVAL; 1210 kfree(sport->rx_buf); 1211 sport->rx_buf = NULL; 1212 } 1213 1214 if (sport->dma_chan_tx) { 1215 dmaengine_terminate_sync(sport->dma_chan_tx); 1216 dma_release_channel(sport->dma_chan_tx); 1217 sport->dma_chan_tx = NULL; 1218 } 1219 } 1220 1221 static int imx_uart_dma_init(struct imx_port *sport) 1222 { 1223 struct dma_slave_config slave_config = {}; 1224 struct device *dev = sport->port.dev; 1225 int ret; 1226 1227 /* Prepare for RX : */ 1228 sport->dma_chan_rx = dma_request_slave_channel(dev, "rx"); 1229 if (!sport->dma_chan_rx) { 1230 dev_dbg(dev, "cannot get the DMA channel.\n"); 1231 ret = -EINVAL; 1232 goto err; 1233 } 1234 1235 slave_config.direction = DMA_DEV_TO_MEM; 1236 slave_config.src_addr = sport->port.mapbase + URXD0; 1237 slave_config.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE; 1238 /* one byte less than the watermark level to enable the aging timer */ 1239 slave_config.src_maxburst = RXTL_DMA - 1; 1240 ret = dmaengine_slave_config(sport->dma_chan_rx, &slave_config); 1241 if (ret) { 1242 dev_err(dev, "error in RX dma configuration.\n"); 1243 goto err; 1244 } 1245 1246 sport->rx_buf = kzalloc(RX_BUF_SIZE, GFP_KERNEL); 1247 if (!sport->rx_buf) { 1248 ret = -ENOMEM; 1249 goto err; 1250 } 1251 sport->rx_ring.buf = sport->rx_buf; 1252 1253 /* Prepare for TX : */ 1254 sport->dma_chan_tx = dma_request_slave_channel(dev, "tx"); 1255 if (!sport->dma_chan_tx) { 1256 dev_err(dev, "cannot get the TX DMA channel!\n"); 1257 ret = -EINVAL; 1258 goto err; 1259 } 1260 1261 slave_config.direction = DMA_MEM_TO_DEV; 1262 slave_config.dst_addr = sport->port.mapbase + URTX0; 1263 slave_config.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE; 1264 slave_config.dst_maxburst = TXTL_DMA; 1265 ret = dmaengine_slave_config(sport->dma_chan_tx, &slave_config); 1266 if (ret) { 1267 dev_err(dev, "error in TX dma configuration."); 1268 goto err; 1269 } 1270 1271 return 0; 1272 err: 1273 imx_uart_dma_exit(sport); 1274 return ret; 1275 } 1276 1277 static void imx_uart_enable_dma(struct imx_port *sport) 1278 { 1279 u32 ucr1; 1280 1281 imx_uart_setup_ufcr(sport, TXTL_DMA, RXTL_DMA); 1282 1283 /* set UCR1 */ 1284 ucr1 = imx_uart_readl(sport, UCR1); 1285 ucr1 |= UCR1_RXDMAEN | UCR1_TXDMAEN | UCR1_ATDMAEN; 1286 imx_uart_writel(sport, ucr1, UCR1); 1287 1288 sport->dma_is_enabled = 1; 1289 } 1290 1291 static void imx_uart_disable_dma(struct imx_port *sport) 1292 { 1293 u32 ucr1; 1294 1295 /* clear UCR1 */ 1296 ucr1 = imx_uart_readl(sport, UCR1); 1297 ucr1 &= ~(UCR1_RXDMAEN | UCR1_TXDMAEN | UCR1_ATDMAEN); 1298 imx_uart_writel(sport, ucr1, UCR1); 1299 1300 imx_uart_setup_ufcr(sport, TXTL_DEFAULT, RXTL_DEFAULT); 1301 1302 sport->dma_is_enabled = 0; 1303 } 1304 1305 /* half the RX buffer size */ 1306 #define CTSTL 16 1307 1308 static int imx_uart_startup(struct uart_port *port) 1309 { 1310 struct imx_port *sport = (struct imx_port *)port; 1311 int retval, i; 1312 unsigned long flags; 1313 int dma_is_inited = 0; 1314 u32 ucr1, ucr2, ucr4; 1315 1316 retval = clk_prepare_enable(sport->clk_per); 1317 if (retval) 1318 return retval; 1319 retval = clk_prepare_enable(sport->clk_ipg); 1320 if (retval) { 1321 clk_disable_unprepare(sport->clk_per); 1322 return retval; 1323 } 1324 1325 imx_uart_setup_ufcr(sport, TXTL_DEFAULT, RXTL_DEFAULT); 1326 1327 /* disable the DREN bit (Data Ready interrupt enable) before 1328 * requesting IRQs 1329 */ 1330 ucr4 = imx_uart_readl(sport, UCR4); 1331 1332 /* set the trigger level for CTS */ 1333 ucr4 &= ~(UCR4_CTSTL_MASK << UCR4_CTSTL_SHF); 1334 ucr4 |= CTSTL << UCR4_CTSTL_SHF; 1335 1336 imx_uart_writel(sport, ucr4 & ~UCR4_DREN, UCR4); 1337 1338 /* Can we enable the DMA support? */ 1339 if (!uart_console(port) && imx_uart_dma_init(sport) == 0) 1340 dma_is_inited = 1; 1341 1342 spin_lock_irqsave(&sport->port.lock, flags); 1343 /* Reset fifo's and state machines */ 1344 i = 100; 1345 1346 ucr2 = imx_uart_readl(sport, UCR2); 1347 ucr2 &= ~UCR2_SRST; 1348 imx_uart_writel(sport, ucr2, UCR2); 1349 1350 while (!(imx_uart_readl(sport, UCR2) & UCR2_SRST) && (--i > 0)) 1351 udelay(1); 1352 1353 /* 1354 * Finally, clear and enable interrupts 1355 */ 1356 imx_uart_writel(sport, USR1_RTSD | USR1_DTRD, USR1); 1357 imx_uart_writel(sport, USR2_ORE, USR2); 1358 1359 ucr1 = imx_uart_readl(sport, UCR1) & ~UCR1_RRDYEN; 1360 ucr1 |= UCR1_UARTEN; 1361 if (sport->have_rtscts) 1362 ucr1 |= UCR1_RTSDEN; 1363 1364 imx_uart_writel(sport, ucr1, UCR1); 1365 1366 ucr4 = imx_uart_readl(sport, UCR4) & ~UCR4_OREN; 1367 if (!sport->dma_is_enabled) 1368 ucr4 |= UCR4_OREN; 1369 imx_uart_writel(sport, ucr4, UCR4); 1370 1371 ucr2 = imx_uart_readl(sport, UCR2) & ~UCR2_ATEN; 1372 ucr2 |= (UCR2_RXEN | UCR2_TXEN); 1373 if (!sport->have_rtscts) 1374 ucr2 |= UCR2_IRTS; 1375 /* 1376 * make sure the edge sensitive RTS-irq is disabled, 1377 * we're using RTSD instead. 1378 */ 1379 if (!imx_uart_is_imx1(sport)) 1380 ucr2 &= ~UCR2_RTSEN; 1381 imx_uart_writel(sport, ucr2, UCR2); 1382 1383 if (!imx_uart_is_imx1(sport)) { 1384 u32 ucr3; 1385 1386 ucr3 = imx_uart_readl(sport, UCR3); 1387 1388 ucr3 |= UCR3_DTRDEN | UCR3_RI | UCR3_DCD; 1389 1390 if (sport->dte_mode) 1391 /* disable broken interrupts */ 1392 ucr3 &= ~(UCR3_RI | UCR3_DCD); 1393 1394 imx_uart_writel(sport, ucr3, UCR3); 1395 } 1396 1397 /* 1398 * Enable modem status interrupts 1399 */ 1400 imx_uart_enable_ms(&sport->port); 1401 1402 if (dma_is_inited) { 1403 imx_uart_enable_dma(sport); 1404 imx_uart_start_rx_dma(sport); 1405 } else { 1406 ucr1 = imx_uart_readl(sport, UCR1); 1407 ucr1 |= UCR1_RRDYEN; 1408 imx_uart_writel(sport, ucr1, UCR1); 1409 1410 ucr2 = imx_uart_readl(sport, UCR2); 1411 ucr2 |= UCR2_ATEN; 1412 imx_uart_writel(sport, ucr2, UCR2); 1413 } 1414 1415 spin_unlock_irqrestore(&sport->port.lock, flags); 1416 1417 return 0; 1418 } 1419 1420 static void imx_uart_shutdown(struct uart_port *port) 1421 { 1422 struct imx_port *sport = (struct imx_port *)port; 1423 unsigned long flags; 1424 u32 ucr1, ucr2, ucr4; 1425 1426 if (sport->dma_is_enabled) { 1427 dmaengine_terminate_sync(sport->dma_chan_tx); 1428 if (sport->dma_is_txing) { 1429 dma_unmap_sg(sport->port.dev, &sport->tx_sgl[0], 1430 sport->dma_tx_nents, DMA_TO_DEVICE); 1431 sport->dma_is_txing = 0; 1432 } 1433 dmaengine_terminate_sync(sport->dma_chan_rx); 1434 if (sport->dma_is_rxing) { 1435 dma_unmap_sg(sport->port.dev, &sport->rx_sgl, 1436 1, DMA_FROM_DEVICE); 1437 sport->dma_is_rxing = 0; 1438 } 1439 1440 spin_lock_irqsave(&sport->port.lock, flags); 1441 imx_uart_stop_tx(port); 1442 imx_uart_stop_rx(port); 1443 imx_uart_disable_dma(sport); 1444 spin_unlock_irqrestore(&sport->port.lock, flags); 1445 imx_uart_dma_exit(sport); 1446 } 1447 1448 mctrl_gpio_disable_ms(sport->gpios); 1449 1450 spin_lock_irqsave(&sport->port.lock, flags); 1451 ucr2 = imx_uart_readl(sport, UCR2); 1452 ucr2 &= ~(UCR2_TXEN | UCR2_ATEN); 1453 imx_uart_writel(sport, ucr2, UCR2); 1454 1455 ucr4 = imx_uart_readl(sport, UCR4); 1456 ucr4 &= ~UCR4_OREN; 1457 imx_uart_writel(sport, ucr4, UCR4); 1458 spin_unlock_irqrestore(&sport->port.lock, flags); 1459 1460 /* 1461 * Stop our timer. 1462 */ 1463 del_timer_sync(&sport->timer); 1464 1465 /* 1466 * Disable all interrupts, port and break condition. 1467 */ 1468 1469 spin_lock_irqsave(&sport->port.lock, flags); 1470 ucr1 = imx_uart_readl(sport, UCR1); 1471 ucr1 &= ~(UCR1_TXMPTYEN | UCR1_RRDYEN | UCR1_RTSDEN | UCR1_UARTEN | UCR1_RXDMAEN | UCR1_ATDMAEN); 1472 1473 imx_uart_writel(sport, ucr1, UCR1); 1474 spin_unlock_irqrestore(&sport->port.lock, flags); 1475 1476 clk_disable_unprepare(sport->clk_per); 1477 clk_disable_unprepare(sport->clk_ipg); 1478 } 1479 1480 /* called with port.lock taken and irqs off */ 1481 static void imx_uart_flush_buffer(struct uart_port *port) 1482 { 1483 struct imx_port *sport = (struct imx_port *)port; 1484 struct scatterlist *sgl = &sport->tx_sgl[0]; 1485 u32 ucr2; 1486 int i = 100, ubir, ubmr, uts; 1487 1488 if (!sport->dma_chan_tx) 1489 return; 1490 1491 sport->tx_bytes = 0; 1492 dmaengine_terminate_all(sport->dma_chan_tx); 1493 if (sport->dma_is_txing) { 1494 u32 ucr1; 1495 1496 dma_unmap_sg(sport->port.dev, sgl, sport->dma_tx_nents, 1497 DMA_TO_DEVICE); 1498 ucr1 = imx_uart_readl(sport, UCR1); 1499 ucr1 &= ~UCR1_TXDMAEN; 1500 imx_uart_writel(sport, ucr1, UCR1); 1501 sport->dma_is_txing = 0; 1502 } 1503 1504 /* 1505 * According to the Reference Manual description of the UART SRST bit: 1506 * 1507 * "Reset the transmit and receive state machines, 1508 * all FIFOs and register USR1, USR2, UBIR, UBMR, UBRC, URXD, UTXD 1509 * and UTS[6-3]". 1510 * 1511 * We don't need to restore the old values from USR1, USR2, URXD and 1512 * UTXD. UBRC is read only, so only save/restore the other three 1513 * registers. 1514 */ 1515 ubir = imx_uart_readl(sport, UBIR); 1516 ubmr = imx_uart_readl(sport, UBMR); 1517 uts = imx_uart_readl(sport, IMX21_UTS); 1518 1519 ucr2 = imx_uart_readl(sport, UCR2); 1520 ucr2 &= ~UCR2_SRST; 1521 imx_uart_writel(sport, ucr2, UCR2); 1522 1523 while (!(imx_uart_readl(sport, UCR2) & UCR2_SRST) && (--i > 0)) 1524 udelay(1); 1525 1526 /* Restore the registers */ 1527 imx_uart_writel(sport, ubir, UBIR); 1528 imx_uart_writel(sport, ubmr, UBMR); 1529 imx_uart_writel(sport, uts, IMX21_UTS); 1530 } 1531 1532 static void 1533 imx_uart_set_termios(struct uart_port *port, struct ktermios *termios, 1534 struct ktermios *old) 1535 { 1536 struct imx_port *sport = (struct imx_port *)port; 1537 unsigned long flags; 1538 u32 ucr2, old_ucr1, old_ucr2, ufcr; 1539 unsigned int baud, quot; 1540 unsigned int old_csize = old ? old->c_cflag & CSIZE : CS8; 1541 unsigned long div; 1542 unsigned long num, denom; 1543 uint64_t tdiv64; 1544 1545 /* 1546 * We only support CS7 and CS8. 1547 */ 1548 while ((termios->c_cflag & CSIZE) != CS7 && 1549 (termios->c_cflag & CSIZE) != CS8) { 1550 termios->c_cflag &= ~CSIZE; 1551 termios->c_cflag |= old_csize; 1552 old_csize = CS8; 1553 } 1554 1555 del_timer_sync(&sport->timer); 1556 1557 /* 1558 * Ask the core to calculate the divisor for us. 1559 */ 1560 baud = uart_get_baud_rate(port, termios, old, 50, port->uartclk / 16); 1561 quot = uart_get_divisor(port, baud); 1562 1563 spin_lock_irqsave(&sport->port.lock, flags); 1564 1565 /* 1566 * Read current UCR2 and save it for future use, then clear all the bits 1567 * except those we will or may need to preserve. 1568 */ 1569 old_ucr2 = imx_uart_readl(sport, UCR2); 1570 ucr2 = old_ucr2 & (UCR2_TXEN | UCR2_RXEN | UCR2_ATEN | UCR2_CTS); 1571 1572 ucr2 |= UCR2_SRST | UCR2_IRTS; 1573 if ((termios->c_cflag & CSIZE) == CS8) 1574 ucr2 |= UCR2_WS; 1575 1576 if (!sport->have_rtscts) 1577 termios->c_cflag &= ~CRTSCTS; 1578 1579 if (port->rs485.flags & SER_RS485_ENABLED) { 1580 /* 1581 * RTS is mandatory for rs485 operation, so keep 1582 * it under manual control and keep transmitter 1583 * disabled. 1584 */ 1585 if (port->rs485.flags & SER_RS485_RTS_AFTER_SEND) 1586 imx_uart_rts_active(sport, &ucr2); 1587 else 1588 imx_uart_rts_inactive(sport, &ucr2); 1589 1590 } else if (termios->c_cflag & CRTSCTS) 1591 imx_uart_rts_auto(sport, &ucr2); 1592 1593 if (termios->c_cflag & CRTSCTS) 1594 ucr2 &= ~UCR2_IRTS; 1595 1596 if (termios->c_cflag & CSTOPB) 1597 ucr2 |= UCR2_STPB; 1598 if (termios->c_cflag & PARENB) { 1599 ucr2 |= UCR2_PREN; 1600 if (termios->c_cflag & PARODD) 1601 ucr2 |= UCR2_PROE; 1602 } 1603 1604 sport->port.read_status_mask = 0; 1605 if (termios->c_iflag & INPCK) 1606 sport->port.read_status_mask |= (URXD_FRMERR | URXD_PRERR); 1607 if (termios->c_iflag & (BRKINT | PARMRK)) 1608 sport->port.read_status_mask |= URXD_BRK; 1609 1610 /* 1611 * Characters to ignore 1612 */ 1613 sport->port.ignore_status_mask = 0; 1614 if (termios->c_iflag & IGNPAR) 1615 sport->port.ignore_status_mask |= URXD_PRERR | URXD_FRMERR; 1616 if (termios->c_iflag & IGNBRK) { 1617 sport->port.ignore_status_mask |= URXD_BRK; 1618 /* 1619 * If we're ignoring parity and break indicators, 1620 * ignore overruns too (for real raw support). 1621 */ 1622 if (termios->c_iflag & IGNPAR) 1623 sport->port.ignore_status_mask |= URXD_OVRRUN; 1624 } 1625 1626 if ((termios->c_cflag & CREAD) == 0) 1627 sport->port.ignore_status_mask |= URXD_DUMMY_READ; 1628 1629 /* 1630 * Update the per-port timeout. 1631 */ 1632 uart_update_timeout(port, termios->c_cflag, baud); 1633 1634 /* 1635 * disable interrupts and drain transmitter 1636 */ 1637 old_ucr1 = imx_uart_readl(sport, UCR1); 1638 imx_uart_writel(sport, 1639 old_ucr1 & ~(UCR1_TXMPTYEN | UCR1_RRDYEN | UCR1_RTSDEN), 1640 UCR1); 1641 imx_uart_writel(sport, old_ucr2 & ~UCR2_ATEN, UCR2); 1642 1643 while (!(imx_uart_readl(sport, USR2) & USR2_TXDC)) 1644 barrier(); 1645 1646 /* then, disable everything */ 1647 imx_uart_writel(sport, old_ucr2 & ~(UCR2_TXEN | UCR2_RXEN | UCR2_ATEN), UCR2); 1648 1649 /* custom-baudrate handling */ 1650 div = sport->port.uartclk / (baud * 16); 1651 if (baud == 38400 && quot != div) 1652 baud = sport->port.uartclk / (quot * 16); 1653 1654 div = sport->port.uartclk / (baud * 16); 1655 if (div > 7) 1656 div = 7; 1657 if (!div) 1658 div = 1; 1659 1660 rational_best_approximation(16 * div * baud, sport->port.uartclk, 1661 1 << 16, 1 << 16, &num, &denom); 1662 1663 tdiv64 = sport->port.uartclk; 1664 tdiv64 *= num; 1665 do_div(tdiv64, denom * 16 * div); 1666 tty_termios_encode_baud_rate(termios, 1667 (speed_t)tdiv64, (speed_t)tdiv64); 1668 1669 num -= 1; 1670 denom -= 1; 1671 1672 ufcr = imx_uart_readl(sport, UFCR); 1673 ufcr = (ufcr & (~UFCR_RFDIV)) | UFCR_RFDIV_REG(div); 1674 imx_uart_writel(sport, ufcr, UFCR); 1675 1676 imx_uart_writel(sport, num, UBIR); 1677 imx_uart_writel(sport, denom, UBMR); 1678 1679 if (!imx_uart_is_imx1(sport)) 1680 imx_uart_writel(sport, sport->port.uartclk / div / 1000, 1681 IMX21_ONEMS); 1682 1683 imx_uart_writel(sport, old_ucr1, UCR1); 1684 1685 imx_uart_writel(sport, ucr2, UCR2); 1686 1687 if (UART_ENABLE_MS(&sport->port, termios->c_cflag)) 1688 imx_uart_enable_ms(&sport->port); 1689 1690 spin_unlock_irqrestore(&sport->port.lock, flags); 1691 } 1692 1693 static const char *imx_uart_type(struct uart_port *port) 1694 { 1695 struct imx_port *sport = (struct imx_port *)port; 1696 1697 return sport->port.type == PORT_IMX ? "IMX" : NULL; 1698 } 1699 1700 /* 1701 * Configure/autoconfigure the port. 1702 */ 1703 static void imx_uart_config_port(struct uart_port *port, int flags) 1704 { 1705 struct imx_port *sport = (struct imx_port *)port; 1706 1707 if (flags & UART_CONFIG_TYPE) 1708 sport->port.type = PORT_IMX; 1709 } 1710 1711 /* 1712 * Verify the new serial_struct (for TIOCSSERIAL). 1713 * The only change we allow are to the flags and type, and 1714 * even then only between PORT_IMX and PORT_UNKNOWN 1715 */ 1716 static int 1717 imx_uart_verify_port(struct uart_port *port, struct serial_struct *ser) 1718 { 1719 struct imx_port *sport = (struct imx_port *)port; 1720 int ret = 0; 1721 1722 if (ser->type != PORT_UNKNOWN && ser->type != PORT_IMX) 1723 ret = -EINVAL; 1724 if (sport->port.irq != ser->irq) 1725 ret = -EINVAL; 1726 if (ser->io_type != UPIO_MEM) 1727 ret = -EINVAL; 1728 if (sport->port.uartclk / 16 != ser->baud_base) 1729 ret = -EINVAL; 1730 if (sport->port.mapbase != (unsigned long)ser->iomem_base) 1731 ret = -EINVAL; 1732 if (sport->port.iobase != ser->port) 1733 ret = -EINVAL; 1734 if (ser->hub6 != 0) 1735 ret = -EINVAL; 1736 return ret; 1737 } 1738 1739 #if defined(CONFIG_CONSOLE_POLL) 1740 1741 static int imx_uart_poll_init(struct uart_port *port) 1742 { 1743 struct imx_port *sport = (struct imx_port *)port; 1744 unsigned long flags; 1745 u32 ucr1, ucr2; 1746 int retval; 1747 1748 retval = clk_prepare_enable(sport->clk_ipg); 1749 if (retval) 1750 return retval; 1751 retval = clk_prepare_enable(sport->clk_per); 1752 if (retval) 1753 clk_disable_unprepare(sport->clk_ipg); 1754 1755 imx_uart_setup_ufcr(sport, TXTL_DEFAULT, RXTL_DEFAULT); 1756 1757 spin_lock_irqsave(&sport->port.lock, flags); 1758 1759 /* 1760 * Be careful about the order of enabling bits here. First enable the 1761 * receiver (UARTEN + RXEN) and only then the corresponding irqs. 1762 * This prevents that a character that already sits in the RX fifo is 1763 * triggering an irq but the try to fetch it from there results in an 1764 * exception because UARTEN or RXEN is still off. 1765 */ 1766 ucr1 = imx_uart_readl(sport, UCR1); 1767 ucr2 = imx_uart_readl(sport, UCR2); 1768 1769 if (imx_uart_is_imx1(sport)) 1770 ucr1 |= IMX1_UCR1_UARTCLKEN; 1771 1772 ucr1 |= UCR1_UARTEN; 1773 ucr1 &= ~(UCR1_TXMPTYEN | UCR1_RTSDEN | UCR1_RRDYEN); 1774 1775 ucr2 |= UCR2_RXEN; 1776 ucr2 &= ~UCR2_ATEN; 1777 1778 imx_uart_writel(sport, ucr1, UCR1); 1779 imx_uart_writel(sport, ucr2, UCR2); 1780 1781 /* now enable irqs */ 1782 imx_uart_writel(sport, ucr1 | UCR1_RRDYEN, UCR1); 1783 imx_uart_writel(sport, ucr2 | UCR2_ATEN, UCR2); 1784 1785 spin_unlock_irqrestore(&sport->port.lock, flags); 1786 1787 return 0; 1788 } 1789 1790 static int imx_uart_poll_get_char(struct uart_port *port) 1791 { 1792 struct imx_port *sport = (struct imx_port *)port; 1793 if (!(imx_uart_readl(sport, USR2) & USR2_RDR)) 1794 return NO_POLL_CHAR; 1795 1796 return imx_uart_readl(sport, URXD0) & URXD_RX_DATA; 1797 } 1798 1799 static void imx_uart_poll_put_char(struct uart_port *port, unsigned char c) 1800 { 1801 struct imx_port *sport = (struct imx_port *)port; 1802 unsigned int status; 1803 1804 /* drain */ 1805 do { 1806 status = imx_uart_readl(sport, USR1); 1807 } while (~status & USR1_TRDY); 1808 1809 /* write */ 1810 imx_uart_writel(sport, c, URTX0); 1811 1812 /* flush */ 1813 do { 1814 status = imx_uart_readl(sport, USR2); 1815 } while (~status & USR2_TXDC); 1816 } 1817 #endif 1818 1819 /* called with port.lock taken and irqs off or from .probe without locking */ 1820 static int imx_uart_rs485_config(struct uart_port *port, 1821 struct serial_rs485 *rs485conf) 1822 { 1823 struct imx_port *sport = (struct imx_port *)port; 1824 u32 ucr2; 1825 1826 /* unimplemented */ 1827 rs485conf->delay_rts_before_send = 0; 1828 rs485conf->delay_rts_after_send = 0; 1829 1830 /* RTS is required to control the transmitter */ 1831 if (!sport->have_rtscts && !sport->have_rtsgpio) 1832 rs485conf->flags &= ~SER_RS485_ENABLED; 1833 1834 if (rs485conf->flags & SER_RS485_ENABLED) { 1835 /* Enable receiver if low-active RTS signal is requested */ 1836 if (sport->have_rtscts && !sport->have_rtsgpio && 1837 !(rs485conf->flags & SER_RS485_RTS_ON_SEND)) 1838 rs485conf->flags |= SER_RS485_RX_DURING_TX; 1839 1840 /* disable transmitter */ 1841 ucr2 = imx_uart_readl(sport, UCR2); 1842 if (rs485conf->flags & SER_RS485_RTS_AFTER_SEND) 1843 imx_uart_rts_active(sport, &ucr2); 1844 else 1845 imx_uart_rts_inactive(sport, &ucr2); 1846 imx_uart_writel(sport, ucr2, UCR2); 1847 } 1848 1849 /* Make sure Rx is enabled in case Tx is active with Rx disabled */ 1850 if (!(rs485conf->flags & SER_RS485_ENABLED) || 1851 rs485conf->flags & SER_RS485_RX_DURING_TX) 1852 imx_uart_start_rx(port); 1853 1854 port->rs485 = *rs485conf; 1855 1856 return 0; 1857 } 1858 1859 static const struct uart_ops imx_uart_pops = { 1860 .tx_empty = imx_uart_tx_empty, 1861 .set_mctrl = imx_uart_set_mctrl, 1862 .get_mctrl = imx_uart_get_mctrl, 1863 .stop_tx = imx_uart_stop_tx, 1864 .start_tx = imx_uart_start_tx, 1865 .stop_rx = imx_uart_stop_rx, 1866 .enable_ms = imx_uart_enable_ms, 1867 .break_ctl = imx_uart_break_ctl, 1868 .startup = imx_uart_startup, 1869 .shutdown = imx_uart_shutdown, 1870 .flush_buffer = imx_uart_flush_buffer, 1871 .set_termios = imx_uart_set_termios, 1872 .type = imx_uart_type, 1873 .config_port = imx_uart_config_port, 1874 .verify_port = imx_uart_verify_port, 1875 #if defined(CONFIG_CONSOLE_POLL) 1876 .poll_init = imx_uart_poll_init, 1877 .poll_get_char = imx_uart_poll_get_char, 1878 .poll_put_char = imx_uart_poll_put_char, 1879 #endif 1880 }; 1881 1882 static struct imx_port *imx_uart_ports[UART_NR]; 1883 1884 #ifdef CONFIG_SERIAL_IMX_CONSOLE 1885 static void imx_uart_console_putchar(struct uart_port *port, int ch) 1886 { 1887 struct imx_port *sport = (struct imx_port *)port; 1888 1889 while (imx_uart_readl(sport, imx_uart_uts_reg(sport)) & UTS_TXFULL) 1890 barrier(); 1891 1892 imx_uart_writel(sport, ch, URTX0); 1893 } 1894 1895 /* 1896 * Interrupts are disabled on entering 1897 */ 1898 static void 1899 imx_uart_console_write(struct console *co, const char *s, unsigned int count) 1900 { 1901 struct imx_port *sport = imx_uart_ports[co->index]; 1902 struct imx_port_ucrs old_ucr; 1903 unsigned int ucr1; 1904 unsigned long flags = 0; 1905 int locked = 1; 1906 int retval; 1907 1908 retval = clk_enable(sport->clk_per); 1909 if (retval) 1910 return; 1911 retval = clk_enable(sport->clk_ipg); 1912 if (retval) { 1913 clk_disable(sport->clk_per); 1914 return; 1915 } 1916 1917 if (sport->port.sysrq) 1918 locked = 0; 1919 else if (oops_in_progress) 1920 locked = spin_trylock_irqsave(&sport->port.lock, flags); 1921 else 1922 spin_lock_irqsave(&sport->port.lock, flags); 1923 1924 /* 1925 * First, save UCR1/2/3 and then disable interrupts 1926 */ 1927 imx_uart_ucrs_save(sport, &old_ucr); 1928 ucr1 = old_ucr.ucr1; 1929 1930 if (imx_uart_is_imx1(sport)) 1931 ucr1 |= IMX1_UCR1_UARTCLKEN; 1932 ucr1 |= UCR1_UARTEN; 1933 ucr1 &= ~(UCR1_TXMPTYEN | UCR1_RRDYEN | UCR1_RTSDEN); 1934 1935 imx_uart_writel(sport, ucr1, UCR1); 1936 1937 imx_uart_writel(sport, old_ucr.ucr2 | UCR2_TXEN, UCR2); 1938 1939 uart_console_write(&sport->port, s, count, imx_uart_console_putchar); 1940 1941 /* 1942 * Finally, wait for transmitter to become empty 1943 * and restore UCR1/2/3 1944 */ 1945 while (!(imx_uart_readl(sport, USR2) & USR2_TXDC)); 1946 1947 imx_uart_ucrs_restore(sport, &old_ucr); 1948 1949 if (locked) 1950 spin_unlock_irqrestore(&sport->port.lock, flags); 1951 1952 clk_disable(sport->clk_ipg); 1953 clk_disable(sport->clk_per); 1954 } 1955 1956 /* 1957 * If the port was already initialised (eg, by a boot loader), 1958 * try to determine the current setup. 1959 */ 1960 static void __init 1961 imx_uart_console_get_options(struct imx_port *sport, int *baud, 1962 int *parity, int *bits) 1963 { 1964 1965 if (imx_uart_readl(sport, UCR1) & UCR1_UARTEN) { 1966 /* ok, the port was enabled */ 1967 unsigned int ucr2, ubir, ubmr, uartclk; 1968 unsigned int baud_raw; 1969 unsigned int ucfr_rfdiv; 1970 1971 ucr2 = imx_uart_readl(sport, UCR2); 1972 1973 *parity = 'n'; 1974 if (ucr2 & UCR2_PREN) { 1975 if (ucr2 & UCR2_PROE) 1976 *parity = 'o'; 1977 else 1978 *parity = 'e'; 1979 } 1980 1981 if (ucr2 & UCR2_WS) 1982 *bits = 8; 1983 else 1984 *bits = 7; 1985 1986 ubir = imx_uart_readl(sport, UBIR) & 0xffff; 1987 ubmr = imx_uart_readl(sport, UBMR) & 0xffff; 1988 1989 ucfr_rfdiv = (imx_uart_readl(sport, UFCR) & UFCR_RFDIV) >> 7; 1990 if (ucfr_rfdiv == 6) 1991 ucfr_rfdiv = 7; 1992 else 1993 ucfr_rfdiv = 6 - ucfr_rfdiv; 1994 1995 uartclk = clk_get_rate(sport->clk_per); 1996 uartclk /= ucfr_rfdiv; 1997 1998 { /* 1999 * The next code provides exact computation of 2000 * baud_raw = round(((uartclk/16) * (ubir + 1)) / (ubmr + 1)) 2001 * without need of float support or long long division, 2002 * which would be required to prevent 32bit arithmetic overflow 2003 */ 2004 unsigned int mul = ubir + 1; 2005 unsigned int div = 16 * (ubmr + 1); 2006 unsigned int rem = uartclk % div; 2007 2008 baud_raw = (uartclk / div) * mul; 2009 baud_raw += (rem * mul + div / 2) / div; 2010 *baud = (baud_raw + 50) / 100 * 100; 2011 } 2012 2013 if (*baud != baud_raw) 2014 dev_info(sport->port.dev, "Console IMX rounded baud rate from %d to %d\n", 2015 baud_raw, *baud); 2016 } 2017 } 2018 2019 static int __init 2020 imx_uart_console_setup(struct console *co, char *options) 2021 { 2022 struct imx_port *sport; 2023 int baud = 9600; 2024 int bits = 8; 2025 int parity = 'n'; 2026 int flow = 'n'; 2027 int retval; 2028 2029 /* 2030 * Check whether an invalid uart number has been specified, and 2031 * if so, search for the first available port that does have 2032 * console support. 2033 */ 2034 if (co->index == -1 || co->index >= ARRAY_SIZE(imx_uart_ports)) 2035 co->index = 0; 2036 sport = imx_uart_ports[co->index]; 2037 if (sport == NULL) 2038 return -ENODEV; 2039 2040 /* For setting the registers, we only need to enable the ipg clock. */ 2041 retval = clk_prepare_enable(sport->clk_ipg); 2042 if (retval) 2043 goto error_console; 2044 2045 if (options) 2046 uart_parse_options(options, &baud, &parity, &bits, &flow); 2047 else 2048 imx_uart_console_get_options(sport, &baud, &parity, &bits); 2049 2050 imx_uart_setup_ufcr(sport, TXTL_DEFAULT, RXTL_DEFAULT); 2051 2052 retval = uart_set_options(&sport->port, co, baud, parity, bits, flow); 2053 2054 clk_disable(sport->clk_ipg); 2055 if (retval) { 2056 clk_unprepare(sport->clk_ipg); 2057 goto error_console; 2058 } 2059 2060 retval = clk_prepare(sport->clk_per); 2061 if (retval) 2062 clk_unprepare(sport->clk_ipg); 2063 2064 error_console: 2065 return retval; 2066 } 2067 2068 static struct uart_driver imx_uart_uart_driver; 2069 static struct console imx_uart_console = { 2070 .name = DEV_NAME, 2071 .write = imx_uart_console_write, 2072 .device = uart_console_device, 2073 .setup = imx_uart_console_setup, 2074 .flags = CON_PRINTBUFFER, 2075 .index = -1, 2076 .data = &imx_uart_uart_driver, 2077 }; 2078 2079 #define IMX_CONSOLE &imx_uart_console 2080 2081 #ifdef CONFIG_OF 2082 static void imx_uart_console_early_putchar(struct uart_port *port, int ch) 2083 { 2084 struct imx_port *sport = (struct imx_port *)port; 2085 2086 while (imx_uart_readl(sport, IMX21_UTS) & UTS_TXFULL) 2087 cpu_relax(); 2088 2089 imx_uart_writel(sport, ch, URTX0); 2090 } 2091 2092 static void imx_uart_console_early_write(struct console *con, const char *s, 2093 unsigned count) 2094 { 2095 struct earlycon_device *dev = con->data; 2096 2097 uart_console_write(&dev->port, s, count, imx_uart_console_early_putchar); 2098 } 2099 2100 static int __init 2101 imx_console_early_setup(struct earlycon_device *dev, const char *opt) 2102 { 2103 if (!dev->port.membase) 2104 return -ENODEV; 2105 2106 dev->con->write = imx_uart_console_early_write; 2107 2108 return 0; 2109 } 2110 OF_EARLYCON_DECLARE(ec_imx6q, "fsl,imx6q-uart", imx_console_early_setup); 2111 OF_EARLYCON_DECLARE(ec_imx21, "fsl,imx21-uart", imx_console_early_setup); 2112 #endif 2113 2114 #else 2115 #define IMX_CONSOLE NULL 2116 #endif 2117 2118 static struct uart_driver imx_uart_uart_driver = { 2119 .owner = THIS_MODULE, 2120 .driver_name = DRIVER_NAME, 2121 .dev_name = DEV_NAME, 2122 .major = SERIAL_IMX_MAJOR, 2123 .minor = MINOR_START, 2124 .nr = ARRAY_SIZE(imx_uart_ports), 2125 .cons = IMX_CONSOLE, 2126 }; 2127 2128 #ifdef CONFIG_OF 2129 /* 2130 * This function returns 1 iff pdev isn't a device instatiated by dt, 0 iff it 2131 * could successfully get all information from dt or a negative errno. 2132 */ 2133 static int imx_uart_probe_dt(struct imx_port *sport, 2134 struct platform_device *pdev) 2135 { 2136 struct device_node *np = pdev->dev.of_node; 2137 int ret; 2138 2139 sport->devdata = of_device_get_match_data(&pdev->dev); 2140 if (!sport->devdata) 2141 /* no device tree device */ 2142 return 1; 2143 2144 ret = of_alias_get_id(np, "serial"); 2145 if (ret < 0) { 2146 dev_err(&pdev->dev, "failed to get alias id, errno %d\n", ret); 2147 return ret; 2148 } 2149 sport->port.line = ret; 2150 2151 if (of_get_property(np, "uart-has-rtscts", NULL) || 2152 of_get_property(np, "fsl,uart-has-rtscts", NULL) /* deprecated */) 2153 sport->have_rtscts = 1; 2154 2155 if (of_get_property(np, "fsl,dte-mode", NULL)) 2156 sport->dte_mode = 1; 2157 2158 if (of_get_property(np, "rts-gpios", NULL)) 2159 sport->have_rtsgpio = 1; 2160 2161 return 0; 2162 } 2163 #else 2164 static inline int imx_uart_probe_dt(struct imx_port *sport, 2165 struct platform_device *pdev) 2166 { 2167 return 1; 2168 } 2169 #endif 2170 2171 static void imx_uart_probe_pdata(struct imx_port *sport, 2172 struct platform_device *pdev) 2173 { 2174 struct imxuart_platform_data *pdata = dev_get_platdata(&pdev->dev); 2175 2176 sport->port.line = pdev->id; 2177 sport->devdata = (struct imx_uart_data *) pdev->id_entry->driver_data; 2178 2179 if (!pdata) 2180 return; 2181 2182 if (pdata->flags & IMXUART_HAVE_RTSCTS) 2183 sport->have_rtscts = 1; 2184 } 2185 2186 static int imx_uart_probe(struct platform_device *pdev) 2187 { 2188 struct imx_port *sport; 2189 void __iomem *base; 2190 int ret = 0; 2191 u32 ucr1; 2192 struct resource *res; 2193 int txirq, rxirq, rtsirq; 2194 2195 sport = devm_kzalloc(&pdev->dev, sizeof(*sport), GFP_KERNEL); 2196 if (!sport) 2197 return -ENOMEM; 2198 2199 ret = imx_uart_probe_dt(sport, pdev); 2200 if (ret > 0) 2201 imx_uart_probe_pdata(sport, pdev); 2202 else if (ret < 0) 2203 return ret; 2204 2205 if (sport->port.line >= ARRAY_SIZE(imx_uart_ports)) { 2206 dev_err(&pdev->dev, "serial%d out of range\n", 2207 sport->port.line); 2208 return -EINVAL; 2209 } 2210 2211 res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 2212 base = devm_ioremap_resource(&pdev->dev, res); 2213 if (IS_ERR(base)) 2214 return PTR_ERR(base); 2215 2216 rxirq = platform_get_irq(pdev, 0); 2217 txirq = platform_get_irq(pdev, 1); 2218 rtsirq = platform_get_irq(pdev, 2); 2219 2220 sport->port.dev = &pdev->dev; 2221 sport->port.mapbase = res->start; 2222 sport->port.membase = base; 2223 sport->port.type = PORT_IMX, 2224 sport->port.iotype = UPIO_MEM; 2225 sport->port.irq = rxirq; 2226 sport->port.fifosize = 32; 2227 sport->port.ops = &imx_uart_pops; 2228 sport->port.rs485_config = imx_uart_rs485_config; 2229 sport->port.flags = UPF_BOOT_AUTOCONF; 2230 timer_setup(&sport->timer, imx_uart_timeout, 0); 2231 2232 sport->gpios = mctrl_gpio_init(&sport->port, 0); 2233 if (IS_ERR(sport->gpios)) 2234 return PTR_ERR(sport->gpios); 2235 2236 sport->clk_ipg = devm_clk_get(&pdev->dev, "ipg"); 2237 if (IS_ERR(sport->clk_ipg)) { 2238 ret = PTR_ERR(sport->clk_ipg); 2239 dev_err(&pdev->dev, "failed to get ipg clk: %d\n", ret); 2240 return ret; 2241 } 2242 2243 sport->clk_per = devm_clk_get(&pdev->dev, "per"); 2244 if (IS_ERR(sport->clk_per)) { 2245 ret = PTR_ERR(sport->clk_per); 2246 dev_err(&pdev->dev, "failed to get per clk: %d\n", ret); 2247 return ret; 2248 } 2249 2250 sport->port.uartclk = clk_get_rate(sport->clk_per); 2251 2252 /* For register access, we only need to enable the ipg clock. */ 2253 ret = clk_prepare_enable(sport->clk_ipg); 2254 if (ret) { 2255 dev_err(&pdev->dev, "failed to enable per clk: %d\n", ret); 2256 return ret; 2257 } 2258 2259 /* initialize shadow register values */ 2260 sport->ucr1 = readl(sport->port.membase + UCR1); 2261 sport->ucr2 = readl(sport->port.membase + UCR2); 2262 sport->ucr3 = readl(sport->port.membase + UCR3); 2263 sport->ucr4 = readl(sport->port.membase + UCR4); 2264 sport->ufcr = readl(sport->port.membase + UFCR); 2265 2266 uart_get_rs485_mode(&pdev->dev, &sport->port.rs485); 2267 2268 if (sport->port.rs485.flags & SER_RS485_ENABLED && 2269 (!sport->have_rtscts && !sport->have_rtsgpio)) 2270 dev_err(&pdev->dev, "no RTS control, disabling rs485\n"); 2271 2272 /* 2273 * If using the i.MX UART RTS/CTS control then the RTS (CTS_B) 2274 * signal cannot be set low during transmission in case the 2275 * receiver is off (limitation of the i.MX UART IP). 2276 */ 2277 if (sport->port.rs485.flags & SER_RS485_ENABLED && 2278 sport->have_rtscts && !sport->have_rtsgpio && 2279 (!(sport->port.rs485.flags & SER_RS485_RTS_ON_SEND) && 2280 !(sport->port.rs485.flags & SER_RS485_RX_DURING_TX))) 2281 dev_err(&pdev->dev, 2282 "low-active RTS not possible when receiver is off, enabling receiver\n"); 2283 2284 imx_uart_rs485_config(&sport->port, &sport->port.rs485); 2285 2286 /* Disable interrupts before requesting them */ 2287 ucr1 = imx_uart_readl(sport, UCR1); 2288 ucr1 &= ~(UCR1_ADEN | UCR1_TRDYEN | UCR1_IDEN | UCR1_RRDYEN | 2289 UCR1_TXMPTYEN | UCR1_RTSDEN); 2290 imx_uart_writel(sport, ucr1, UCR1); 2291 2292 if (!imx_uart_is_imx1(sport) && sport->dte_mode) { 2293 /* 2294 * The DCEDTE bit changes the direction of DSR, DCD, DTR and RI 2295 * and influences if UCR3_RI and UCR3_DCD changes the level of RI 2296 * and DCD (when they are outputs) or enables the respective 2297 * irqs. So set this bit early, i.e. before requesting irqs. 2298 */ 2299 u32 ufcr = imx_uart_readl(sport, UFCR); 2300 if (!(ufcr & UFCR_DCEDTE)) 2301 imx_uart_writel(sport, ufcr | UFCR_DCEDTE, UFCR); 2302 2303 /* 2304 * Disable UCR3_RI and UCR3_DCD irqs. They are also not 2305 * enabled later because they cannot be cleared 2306 * (confirmed on i.MX25) which makes them unusable. 2307 */ 2308 imx_uart_writel(sport, 2309 IMX21_UCR3_RXDMUXSEL | UCR3_ADNIMP | UCR3_DSR, 2310 UCR3); 2311 2312 } else { 2313 u32 ucr3 = UCR3_DSR; 2314 u32 ufcr = imx_uart_readl(sport, UFCR); 2315 if (ufcr & UFCR_DCEDTE) 2316 imx_uart_writel(sport, ufcr & ~UFCR_DCEDTE, UFCR); 2317 2318 if (!imx_uart_is_imx1(sport)) 2319 ucr3 |= IMX21_UCR3_RXDMUXSEL | UCR3_ADNIMP; 2320 imx_uart_writel(sport, ucr3, UCR3); 2321 } 2322 2323 clk_disable_unprepare(sport->clk_ipg); 2324 2325 /* 2326 * Allocate the IRQ(s) i.MX1 has three interrupts whereas later 2327 * chips only have one interrupt. 2328 */ 2329 if (txirq > 0) { 2330 ret = devm_request_irq(&pdev->dev, rxirq, imx_uart_rxint, 0, 2331 dev_name(&pdev->dev), sport); 2332 if (ret) { 2333 dev_err(&pdev->dev, "failed to request rx irq: %d\n", 2334 ret); 2335 return ret; 2336 } 2337 2338 ret = devm_request_irq(&pdev->dev, txirq, imx_uart_txint, 0, 2339 dev_name(&pdev->dev), sport); 2340 if (ret) { 2341 dev_err(&pdev->dev, "failed to request tx irq: %d\n", 2342 ret); 2343 return ret; 2344 } 2345 2346 ret = devm_request_irq(&pdev->dev, rtsirq, imx_uart_rtsint, 0, 2347 dev_name(&pdev->dev), sport); 2348 if (ret) { 2349 dev_err(&pdev->dev, "failed to request rts irq: %d\n", 2350 ret); 2351 return ret; 2352 } 2353 } else { 2354 ret = devm_request_irq(&pdev->dev, rxirq, imx_uart_int, 0, 2355 dev_name(&pdev->dev), sport); 2356 if (ret) { 2357 dev_err(&pdev->dev, "failed to request irq: %d\n", ret); 2358 return ret; 2359 } 2360 } 2361 2362 imx_uart_ports[sport->port.line] = sport; 2363 2364 platform_set_drvdata(pdev, sport); 2365 2366 return uart_add_one_port(&imx_uart_uart_driver, &sport->port); 2367 } 2368 2369 static int imx_uart_remove(struct platform_device *pdev) 2370 { 2371 struct imx_port *sport = platform_get_drvdata(pdev); 2372 2373 return uart_remove_one_port(&imx_uart_uart_driver, &sport->port); 2374 } 2375 2376 static void imx_uart_restore_context(struct imx_port *sport) 2377 { 2378 unsigned long flags; 2379 2380 spin_lock_irqsave(&sport->port.lock, flags); 2381 if (!sport->context_saved) { 2382 spin_unlock_irqrestore(&sport->port.lock, flags); 2383 return; 2384 } 2385 2386 imx_uart_writel(sport, sport->saved_reg[4], UFCR); 2387 imx_uart_writel(sport, sport->saved_reg[5], UESC); 2388 imx_uart_writel(sport, sport->saved_reg[6], UTIM); 2389 imx_uart_writel(sport, sport->saved_reg[7], UBIR); 2390 imx_uart_writel(sport, sport->saved_reg[8], UBMR); 2391 imx_uart_writel(sport, sport->saved_reg[9], IMX21_UTS); 2392 imx_uart_writel(sport, sport->saved_reg[0], UCR1); 2393 imx_uart_writel(sport, sport->saved_reg[1] | UCR2_SRST, UCR2); 2394 imx_uart_writel(sport, sport->saved_reg[2], UCR3); 2395 imx_uart_writel(sport, sport->saved_reg[3], UCR4); 2396 sport->context_saved = false; 2397 spin_unlock_irqrestore(&sport->port.lock, flags); 2398 } 2399 2400 static void imx_uart_save_context(struct imx_port *sport) 2401 { 2402 unsigned long flags; 2403 2404 /* Save necessary regs */ 2405 spin_lock_irqsave(&sport->port.lock, flags); 2406 sport->saved_reg[0] = imx_uart_readl(sport, UCR1); 2407 sport->saved_reg[1] = imx_uart_readl(sport, UCR2); 2408 sport->saved_reg[2] = imx_uart_readl(sport, UCR3); 2409 sport->saved_reg[3] = imx_uart_readl(sport, UCR4); 2410 sport->saved_reg[4] = imx_uart_readl(sport, UFCR); 2411 sport->saved_reg[5] = imx_uart_readl(sport, UESC); 2412 sport->saved_reg[6] = imx_uart_readl(sport, UTIM); 2413 sport->saved_reg[7] = imx_uart_readl(sport, UBIR); 2414 sport->saved_reg[8] = imx_uart_readl(sport, UBMR); 2415 sport->saved_reg[9] = imx_uart_readl(sport, IMX21_UTS); 2416 sport->context_saved = true; 2417 spin_unlock_irqrestore(&sport->port.lock, flags); 2418 } 2419 2420 static void imx_uart_enable_wakeup(struct imx_port *sport, bool on) 2421 { 2422 u32 ucr3; 2423 2424 ucr3 = imx_uart_readl(sport, UCR3); 2425 if (on) { 2426 imx_uart_writel(sport, USR1_AWAKE, USR1); 2427 ucr3 |= UCR3_AWAKEN; 2428 } else { 2429 ucr3 &= ~UCR3_AWAKEN; 2430 } 2431 imx_uart_writel(sport, ucr3, UCR3); 2432 2433 if (sport->have_rtscts) { 2434 u32 ucr1 = imx_uart_readl(sport, UCR1); 2435 if (on) 2436 ucr1 |= UCR1_RTSDEN; 2437 else 2438 ucr1 &= ~UCR1_RTSDEN; 2439 imx_uart_writel(sport, ucr1, UCR1); 2440 } 2441 } 2442 2443 static int imx_uart_suspend_noirq(struct device *dev) 2444 { 2445 struct imx_port *sport = dev_get_drvdata(dev); 2446 2447 imx_uart_save_context(sport); 2448 2449 clk_disable(sport->clk_ipg); 2450 2451 pinctrl_pm_select_sleep_state(dev); 2452 2453 return 0; 2454 } 2455 2456 static int imx_uart_resume_noirq(struct device *dev) 2457 { 2458 struct imx_port *sport = dev_get_drvdata(dev); 2459 int ret; 2460 2461 pinctrl_pm_select_default_state(dev); 2462 2463 ret = clk_enable(sport->clk_ipg); 2464 if (ret) 2465 return ret; 2466 2467 imx_uart_restore_context(sport); 2468 2469 return 0; 2470 } 2471 2472 static int imx_uart_suspend(struct device *dev) 2473 { 2474 struct imx_port *sport = dev_get_drvdata(dev); 2475 int ret; 2476 2477 uart_suspend_port(&imx_uart_uart_driver, &sport->port); 2478 disable_irq(sport->port.irq); 2479 2480 ret = clk_prepare_enable(sport->clk_ipg); 2481 if (ret) 2482 return ret; 2483 2484 /* enable wakeup from i.MX UART */ 2485 imx_uart_enable_wakeup(sport, true); 2486 2487 return 0; 2488 } 2489 2490 static int imx_uart_resume(struct device *dev) 2491 { 2492 struct imx_port *sport = dev_get_drvdata(dev); 2493 2494 /* disable wakeup from i.MX UART */ 2495 imx_uart_enable_wakeup(sport, false); 2496 2497 uart_resume_port(&imx_uart_uart_driver, &sport->port); 2498 enable_irq(sport->port.irq); 2499 2500 clk_disable_unprepare(sport->clk_ipg); 2501 2502 return 0; 2503 } 2504 2505 static int imx_uart_freeze(struct device *dev) 2506 { 2507 struct imx_port *sport = dev_get_drvdata(dev); 2508 2509 uart_suspend_port(&imx_uart_uart_driver, &sport->port); 2510 2511 return clk_prepare_enable(sport->clk_ipg); 2512 } 2513 2514 static int imx_uart_thaw(struct device *dev) 2515 { 2516 struct imx_port *sport = dev_get_drvdata(dev); 2517 2518 uart_resume_port(&imx_uart_uart_driver, &sport->port); 2519 2520 clk_disable_unprepare(sport->clk_ipg); 2521 2522 return 0; 2523 } 2524 2525 static const struct dev_pm_ops imx_uart_pm_ops = { 2526 .suspend_noirq = imx_uart_suspend_noirq, 2527 .resume_noirq = imx_uart_resume_noirq, 2528 .freeze_noirq = imx_uart_suspend_noirq, 2529 .restore_noirq = imx_uart_resume_noirq, 2530 .suspend = imx_uart_suspend, 2531 .resume = imx_uart_resume, 2532 .freeze = imx_uart_freeze, 2533 .thaw = imx_uart_thaw, 2534 .restore = imx_uart_thaw, 2535 }; 2536 2537 static struct platform_driver imx_uart_platform_driver = { 2538 .probe = imx_uart_probe, 2539 .remove = imx_uart_remove, 2540 2541 .id_table = imx_uart_devtype, 2542 .driver = { 2543 .name = "imx-uart", 2544 .of_match_table = imx_uart_dt_ids, 2545 .pm = &imx_uart_pm_ops, 2546 }, 2547 }; 2548 2549 static int __init imx_uart_init(void) 2550 { 2551 int ret = uart_register_driver(&imx_uart_uart_driver); 2552 2553 if (ret) 2554 return ret; 2555 2556 ret = platform_driver_register(&imx_uart_platform_driver); 2557 if (ret != 0) 2558 uart_unregister_driver(&imx_uart_uart_driver); 2559 2560 return ret; 2561 } 2562 2563 static void __exit imx_uart_exit(void) 2564 { 2565 platform_driver_unregister(&imx_uart_platform_driver); 2566 uart_unregister_driver(&imx_uart_uart_driver); 2567 } 2568 2569 module_init(imx_uart_init); 2570 module_exit(imx_uart_exit); 2571 2572 MODULE_AUTHOR("Sascha Hauer"); 2573 MODULE_DESCRIPTION("IMX generic serial port driver"); 2574 MODULE_LICENSE("GPL"); 2575 MODULE_ALIAS("platform:imx-uart"); 2576