1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Driver for Motorola/Freescale IMX serial ports 4 * 5 * Based on drivers/char/serial.c, by Linus Torvalds, Theodore Ts'o. 6 * 7 * Author: Sascha Hauer <sascha@saschahauer.de> 8 * Copyright (C) 2004 Pengutronix 9 */ 10 11 #include <linux/module.h> 12 #include <linux/ioport.h> 13 #include <linux/init.h> 14 #include <linux/console.h> 15 #include <linux/sysrq.h> 16 #include <linux/platform_device.h> 17 #include <linux/tty.h> 18 #include <linux/tty_flip.h> 19 #include <linux/serial_core.h> 20 #include <linux/serial.h> 21 #include <linux/clk.h> 22 #include <linux/delay.h> 23 #include <linux/ktime.h> 24 #include <linux/pinctrl/consumer.h> 25 #include <linux/rational.h> 26 #include <linux/slab.h> 27 #include <linux/of.h> 28 #include <linux/of_device.h> 29 #include <linux/io.h> 30 #include <linux/dma-mapping.h> 31 32 #include <asm/irq.h> 33 #include <linux/dma/imx-dma.h> 34 35 #include "serial_mctrl_gpio.h" 36 37 /* Register definitions */ 38 #define URXD0 0x0 /* Receiver Register */ 39 #define URTX0 0x40 /* Transmitter Register */ 40 #define UCR1 0x80 /* Control Register 1 */ 41 #define UCR2 0x84 /* Control Register 2 */ 42 #define UCR3 0x88 /* Control Register 3 */ 43 #define UCR4 0x8c /* Control Register 4 */ 44 #define UFCR 0x90 /* FIFO Control Register */ 45 #define USR1 0x94 /* Status Register 1 */ 46 #define USR2 0x98 /* Status Register 2 */ 47 #define UESC 0x9c /* Escape Character Register */ 48 #define UTIM 0xa0 /* Escape Timer Register */ 49 #define UBIR 0xa4 /* BRM Incremental Register */ 50 #define UBMR 0xa8 /* BRM Modulator Register */ 51 #define UBRC 0xac /* Baud Rate Count Register */ 52 #define IMX21_ONEMS 0xb0 /* One Millisecond register */ 53 #define IMX1_UTS 0xd0 /* UART Test Register on i.mx1 */ 54 #define IMX21_UTS 0xb4 /* UART Test Register on all other i.mx*/ 55 56 /* UART Control Register Bit Fields.*/ 57 #define URXD_DUMMY_READ (1<<16) 58 #define URXD_CHARRDY (1<<15) 59 #define URXD_ERR (1<<14) 60 #define URXD_OVRRUN (1<<13) 61 #define URXD_FRMERR (1<<12) 62 #define URXD_BRK (1<<11) 63 #define URXD_PRERR (1<<10) 64 #define URXD_RX_DATA (0xFF<<0) 65 #define UCR1_ADEN (1<<15) /* Auto detect interrupt */ 66 #define UCR1_ADBR (1<<14) /* Auto detect baud rate */ 67 #define UCR1_TRDYEN (1<<13) /* Transmitter ready interrupt enable */ 68 #define UCR1_IDEN (1<<12) /* Idle condition interrupt */ 69 #define UCR1_ICD_REG(x) (((x) & 3) << 10) /* idle condition detect */ 70 #define UCR1_RRDYEN (1<<9) /* Recv ready interrupt enable */ 71 #define UCR1_RXDMAEN (1<<8) /* Recv ready DMA enable */ 72 #define UCR1_IREN (1<<7) /* Infrared interface enable */ 73 #define UCR1_TXMPTYEN (1<<6) /* Transimitter empty interrupt enable */ 74 #define UCR1_RTSDEN (1<<5) /* RTS delta interrupt enable */ 75 #define UCR1_SNDBRK (1<<4) /* Send break */ 76 #define UCR1_TXDMAEN (1<<3) /* Transmitter ready DMA enable */ 77 #define IMX1_UCR1_UARTCLKEN (1<<2) /* UART clock enabled, i.mx1 only */ 78 #define UCR1_ATDMAEN (1<<2) /* Aging DMA Timer Enable */ 79 #define UCR1_DOZE (1<<1) /* Doze */ 80 #define UCR1_UARTEN (1<<0) /* UART enabled */ 81 #define UCR2_ESCI (1<<15) /* Escape seq interrupt enable */ 82 #define UCR2_IRTS (1<<14) /* Ignore RTS pin */ 83 #define UCR2_CTSC (1<<13) /* CTS pin control */ 84 #define UCR2_CTS (1<<12) /* Clear to send */ 85 #define UCR2_ESCEN (1<<11) /* Escape enable */ 86 #define UCR2_PREN (1<<8) /* Parity enable */ 87 #define UCR2_PROE (1<<7) /* Parity odd/even */ 88 #define UCR2_STPB (1<<6) /* Stop */ 89 #define UCR2_WS (1<<5) /* Word size */ 90 #define UCR2_RTSEN (1<<4) /* Request to send interrupt enable */ 91 #define UCR2_ATEN (1<<3) /* Aging Timer Enable */ 92 #define UCR2_TXEN (1<<2) /* Transmitter enabled */ 93 #define UCR2_RXEN (1<<1) /* Receiver enabled */ 94 #define UCR2_SRST (1<<0) /* SW reset */ 95 #define UCR3_DTREN (1<<13) /* DTR interrupt enable */ 96 #define UCR3_PARERREN (1<<12) /* Parity enable */ 97 #define UCR3_FRAERREN (1<<11) /* Frame error interrupt enable */ 98 #define UCR3_DSR (1<<10) /* Data set ready */ 99 #define UCR3_DCD (1<<9) /* Data carrier detect */ 100 #define UCR3_RI (1<<8) /* Ring indicator */ 101 #define UCR3_ADNIMP (1<<7) /* Autobaud Detection Not Improved */ 102 #define UCR3_RXDSEN (1<<6) /* Receive status interrupt enable */ 103 #define UCR3_AIRINTEN (1<<5) /* Async IR wake interrupt enable */ 104 #define UCR3_AWAKEN (1<<4) /* Async wake interrupt enable */ 105 #define UCR3_DTRDEN (1<<3) /* Data Terminal Ready Delta Enable. */ 106 #define IMX21_UCR3_RXDMUXSEL (1<<2) /* RXD Muxed Input Select */ 107 #define UCR3_INVT (1<<1) /* Inverted Infrared transmission */ 108 #define UCR3_BPEN (1<<0) /* Preset registers enable */ 109 #define UCR4_CTSTL_SHF 10 /* CTS trigger level shift */ 110 #define UCR4_CTSTL_MASK 0x3F /* CTS trigger is 6 bits wide */ 111 #define UCR4_INVR (1<<9) /* Inverted infrared reception */ 112 #define UCR4_ENIRI (1<<8) /* Serial infrared interrupt enable */ 113 #define UCR4_WKEN (1<<7) /* Wake interrupt enable */ 114 #define UCR4_REF16 (1<<6) /* Ref freq 16 MHz */ 115 #define UCR4_IDDMAEN (1<<6) /* DMA IDLE Condition Detected */ 116 #define UCR4_IRSC (1<<5) /* IR special case */ 117 #define UCR4_TCEN (1<<3) /* Transmit complete interrupt enable */ 118 #define UCR4_BKEN (1<<2) /* Break condition interrupt enable */ 119 #define UCR4_OREN (1<<1) /* Receiver overrun interrupt enable */ 120 #define UCR4_DREN (1<<0) /* Recv data ready interrupt enable */ 121 #define UFCR_RXTL_SHF 0 /* Receiver trigger level shift */ 122 #define UFCR_DCEDTE (1<<6) /* DCE/DTE mode select */ 123 #define UFCR_RFDIV (7<<7) /* Reference freq divider mask */ 124 #define UFCR_RFDIV_REG(x) (((x) < 7 ? 6 - (x) : 6) << 7) 125 #define UFCR_TXTL_SHF 10 /* Transmitter trigger level shift */ 126 #define USR1_PARITYERR (1<<15) /* Parity error interrupt flag */ 127 #define USR1_RTSS (1<<14) /* RTS pin status */ 128 #define USR1_TRDY (1<<13) /* Transmitter ready interrupt/dma flag */ 129 #define USR1_RTSD (1<<12) /* RTS delta */ 130 #define USR1_ESCF (1<<11) /* Escape seq interrupt flag */ 131 #define USR1_FRAMERR (1<<10) /* Frame error interrupt flag */ 132 #define USR1_RRDY (1<<9) /* Receiver ready interrupt/dma flag */ 133 #define USR1_AGTIM (1<<8) /* Ageing timer interrupt flag */ 134 #define USR1_DTRD (1<<7) /* DTR Delta */ 135 #define USR1_RXDS (1<<6) /* Receiver idle interrupt flag */ 136 #define USR1_AIRINT (1<<5) /* Async IR wake interrupt flag */ 137 #define USR1_AWAKE (1<<4) /* Aysnc wake interrupt flag */ 138 #define USR2_ADET (1<<15) /* Auto baud rate detect complete */ 139 #define USR2_TXFE (1<<14) /* Transmit buffer FIFO empty */ 140 #define USR2_DTRF (1<<13) /* DTR edge interrupt flag */ 141 #define USR2_IDLE (1<<12) /* Idle condition */ 142 #define USR2_RIDELT (1<<10) /* Ring Interrupt Delta */ 143 #define USR2_RIIN (1<<9) /* Ring Indicator Input */ 144 #define USR2_IRINT (1<<8) /* Serial infrared interrupt flag */ 145 #define USR2_WAKE (1<<7) /* Wake */ 146 #define USR2_DCDIN (1<<5) /* Data Carrier Detect Input */ 147 #define USR2_RTSF (1<<4) /* RTS edge interrupt flag */ 148 #define USR2_TXDC (1<<3) /* Transmitter complete */ 149 #define USR2_BRCD (1<<2) /* Break condition */ 150 #define USR2_ORE (1<<1) /* Overrun error */ 151 #define USR2_RDR (1<<0) /* Recv data ready */ 152 #define UTS_FRCPERR (1<<13) /* Force parity error */ 153 #define UTS_LOOP (1<<12) /* Loop tx and rx */ 154 #define UTS_TXEMPTY (1<<6) /* TxFIFO empty */ 155 #define UTS_RXEMPTY (1<<5) /* RxFIFO empty */ 156 #define UTS_TXFULL (1<<4) /* TxFIFO full */ 157 #define UTS_RXFULL (1<<3) /* RxFIFO full */ 158 #define UTS_SOFTRST (1<<0) /* Software reset */ 159 160 /* We've been assigned a range on the "Low-density serial ports" major */ 161 #define SERIAL_IMX_MAJOR 207 162 #define MINOR_START 16 163 #define DEV_NAME "ttymxc" 164 165 /* 166 * This determines how often we check the modem status signals 167 * for any change. They generally aren't connected to an IRQ 168 * so we have to poll them. We also check immediately before 169 * filling the TX fifo incase CTS has been dropped. 170 */ 171 #define MCTRL_TIMEOUT (250*HZ/1000) 172 173 #define DRIVER_NAME "IMX-uart" 174 175 #define UART_NR 8 176 177 /* i.MX21 type uart runs on all i.mx except i.MX1 and i.MX6q */ 178 enum imx_uart_type { 179 IMX1_UART, 180 IMX21_UART, 181 IMX53_UART, 182 IMX6Q_UART, 183 }; 184 185 /* device type dependent stuff */ 186 struct imx_uart_data { 187 unsigned uts_reg; 188 enum imx_uart_type devtype; 189 }; 190 191 enum imx_tx_state { 192 OFF, 193 WAIT_AFTER_RTS, 194 SEND, 195 WAIT_AFTER_SEND, 196 }; 197 198 struct imx_port { 199 struct uart_port port; 200 struct timer_list timer; 201 unsigned int old_status; 202 unsigned int have_rtscts:1; 203 unsigned int have_rtsgpio:1; 204 unsigned int dte_mode:1; 205 unsigned int inverted_tx:1; 206 unsigned int inverted_rx:1; 207 struct clk *clk_ipg; 208 struct clk *clk_per; 209 const struct imx_uart_data *devdata; 210 211 struct mctrl_gpios *gpios; 212 213 /* shadow registers */ 214 unsigned int ucr1; 215 unsigned int ucr2; 216 unsigned int ucr3; 217 unsigned int ucr4; 218 unsigned int ufcr; 219 220 /* DMA fields */ 221 unsigned int dma_is_enabled:1; 222 unsigned int dma_is_rxing:1; 223 unsigned int dma_is_txing:1; 224 struct dma_chan *dma_chan_rx, *dma_chan_tx; 225 struct scatterlist rx_sgl, tx_sgl[2]; 226 void *rx_buf; 227 struct circ_buf rx_ring; 228 unsigned int rx_buf_size; 229 unsigned int rx_period_length; 230 unsigned int rx_periods; 231 dma_cookie_t rx_cookie; 232 unsigned int tx_bytes; 233 unsigned int dma_tx_nents; 234 unsigned int saved_reg[10]; 235 bool context_saved; 236 237 enum imx_tx_state tx_state; 238 struct hrtimer trigger_start_tx; 239 struct hrtimer trigger_stop_tx; 240 }; 241 242 struct imx_port_ucrs { 243 unsigned int ucr1; 244 unsigned int ucr2; 245 unsigned int ucr3; 246 }; 247 248 static struct imx_uart_data imx_uart_devdata[] = { 249 [IMX1_UART] = { 250 .uts_reg = IMX1_UTS, 251 .devtype = IMX1_UART, 252 }, 253 [IMX21_UART] = { 254 .uts_reg = IMX21_UTS, 255 .devtype = IMX21_UART, 256 }, 257 [IMX53_UART] = { 258 .uts_reg = IMX21_UTS, 259 .devtype = IMX53_UART, 260 }, 261 [IMX6Q_UART] = { 262 .uts_reg = IMX21_UTS, 263 .devtype = IMX6Q_UART, 264 }, 265 }; 266 267 static const struct of_device_id imx_uart_dt_ids[] = { 268 { .compatible = "fsl,imx6q-uart", .data = &imx_uart_devdata[IMX6Q_UART], }, 269 { .compatible = "fsl,imx53-uart", .data = &imx_uart_devdata[IMX53_UART], }, 270 { .compatible = "fsl,imx1-uart", .data = &imx_uart_devdata[IMX1_UART], }, 271 { .compatible = "fsl,imx21-uart", .data = &imx_uart_devdata[IMX21_UART], }, 272 { /* sentinel */ } 273 }; 274 MODULE_DEVICE_TABLE(of, imx_uart_dt_ids); 275 276 static void imx_uart_writel(struct imx_port *sport, u32 val, u32 offset) 277 { 278 switch (offset) { 279 case UCR1: 280 sport->ucr1 = val; 281 break; 282 case UCR2: 283 sport->ucr2 = val; 284 break; 285 case UCR3: 286 sport->ucr3 = val; 287 break; 288 case UCR4: 289 sport->ucr4 = val; 290 break; 291 case UFCR: 292 sport->ufcr = val; 293 break; 294 default: 295 break; 296 } 297 writel(val, sport->port.membase + offset); 298 } 299 300 static u32 imx_uart_readl(struct imx_port *sport, u32 offset) 301 { 302 switch (offset) { 303 case UCR1: 304 return sport->ucr1; 305 break; 306 case UCR2: 307 /* 308 * UCR2_SRST is the only bit in the cached registers that might 309 * differ from the value that was last written. As it only 310 * automatically becomes one after being cleared, reread 311 * conditionally. 312 */ 313 if (!(sport->ucr2 & UCR2_SRST)) 314 sport->ucr2 = readl(sport->port.membase + offset); 315 return sport->ucr2; 316 break; 317 case UCR3: 318 return sport->ucr3; 319 break; 320 case UCR4: 321 return sport->ucr4; 322 break; 323 case UFCR: 324 return sport->ufcr; 325 break; 326 default: 327 return readl(sport->port.membase + offset); 328 } 329 } 330 331 static inline unsigned imx_uart_uts_reg(struct imx_port *sport) 332 { 333 return sport->devdata->uts_reg; 334 } 335 336 static inline int imx_uart_is_imx1(struct imx_port *sport) 337 { 338 return sport->devdata->devtype == IMX1_UART; 339 } 340 341 static inline int imx_uart_is_imx21(struct imx_port *sport) 342 { 343 return sport->devdata->devtype == IMX21_UART; 344 } 345 346 static inline int imx_uart_is_imx53(struct imx_port *sport) 347 { 348 return sport->devdata->devtype == IMX53_UART; 349 } 350 351 static inline int imx_uart_is_imx6q(struct imx_port *sport) 352 { 353 return sport->devdata->devtype == IMX6Q_UART; 354 } 355 /* 356 * Save and restore functions for UCR1, UCR2 and UCR3 registers 357 */ 358 #if IS_ENABLED(CONFIG_SERIAL_IMX_CONSOLE) 359 static void imx_uart_ucrs_save(struct imx_port *sport, 360 struct imx_port_ucrs *ucr) 361 { 362 /* save control registers */ 363 ucr->ucr1 = imx_uart_readl(sport, UCR1); 364 ucr->ucr2 = imx_uart_readl(sport, UCR2); 365 ucr->ucr3 = imx_uart_readl(sport, UCR3); 366 } 367 368 static void imx_uart_ucrs_restore(struct imx_port *sport, 369 struct imx_port_ucrs *ucr) 370 { 371 /* restore control registers */ 372 imx_uart_writel(sport, ucr->ucr1, UCR1); 373 imx_uart_writel(sport, ucr->ucr2, UCR2); 374 imx_uart_writel(sport, ucr->ucr3, UCR3); 375 } 376 #endif 377 378 /* called with port.lock taken and irqs caller dependent */ 379 static void imx_uart_rts_active(struct imx_port *sport, u32 *ucr2) 380 { 381 *ucr2 &= ~(UCR2_CTSC | UCR2_CTS); 382 383 mctrl_gpio_set(sport->gpios, sport->port.mctrl | TIOCM_RTS); 384 } 385 386 /* called with port.lock taken and irqs caller dependent */ 387 static void imx_uart_rts_inactive(struct imx_port *sport, u32 *ucr2) 388 { 389 *ucr2 &= ~UCR2_CTSC; 390 *ucr2 |= UCR2_CTS; 391 392 mctrl_gpio_set(sport->gpios, sport->port.mctrl & ~TIOCM_RTS); 393 } 394 395 static void start_hrtimer_ms(struct hrtimer *hrt, unsigned long msec) 396 { 397 hrtimer_start(hrt, ms_to_ktime(msec), HRTIMER_MODE_REL); 398 } 399 400 /* called with port.lock taken and irqs off */ 401 static void imx_uart_start_rx(struct uart_port *port) 402 { 403 struct imx_port *sport = (struct imx_port *)port; 404 unsigned int ucr1, ucr2; 405 406 ucr1 = imx_uart_readl(sport, UCR1); 407 ucr2 = imx_uart_readl(sport, UCR2); 408 409 ucr2 |= UCR2_RXEN; 410 411 if (sport->dma_is_enabled) { 412 ucr1 |= UCR1_RXDMAEN | UCR1_ATDMAEN; 413 } else { 414 ucr1 |= UCR1_RRDYEN; 415 ucr2 |= UCR2_ATEN; 416 } 417 418 /* Write UCR2 first as it includes RXEN */ 419 imx_uart_writel(sport, ucr2, UCR2); 420 imx_uart_writel(sport, ucr1, UCR1); 421 } 422 423 /* called with port.lock taken and irqs off */ 424 static void imx_uart_stop_tx(struct uart_port *port) 425 { 426 struct imx_port *sport = (struct imx_port *)port; 427 u32 ucr1, ucr4, usr2; 428 429 if (sport->tx_state == OFF) 430 return; 431 432 /* 433 * We are maybe in the SMP context, so if the DMA TX thread is running 434 * on other cpu, we have to wait for it to finish. 435 */ 436 if (sport->dma_is_txing) 437 return; 438 439 ucr1 = imx_uart_readl(sport, UCR1); 440 imx_uart_writel(sport, ucr1 & ~UCR1_TRDYEN, UCR1); 441 442 usr2 = imx_uart_readl(sport, USR2); 443 if (!(usr2 & USR2_TXDC)) { 444 /* The shifter is still busy, so retry once TC triggers */ 445 return; 446 } 447 448 ucr4 = imx_uart_readl(sport, UCR4); 449 ucr4 &= ~UCR4_TCEN; 450 imx_uart_writel(sport, ucr4, UCR4); 451 452 /* in rs485 mode disable transmitter */ 453 if (port->rs485.flags & SER_RS485_ENABLED) { 454 if (sport->tx_state == SEND) { 455 sport->tx_state = WAIT_AFTER_SEND; 456 457 if (port->rs485.delay_rts_after_send > 0) { 458 start_hrtimer_ms(&sport->trigger_stop_tx, 459 port->rs485.delay_rts_after_send); 460 return; 461 } 462 463 /* continue without any delay */ 464 } 465 466 if (sport->tx_state == WAIT_AFTER_RTS || 467 sport->tx_state == WAIT_AFTER_SEND) { 468 u32 ucr2; 469 470 hrtimer_try_to_cancel(&sport->trigger_start_tx); 471 472 ucr2 = imx_uart_readl(sport, UCR2); 473 if (port->rs485.flags & SER_RS485_RTS_AFTER_SEND) 474 imx_uart_rts_active(sport, &ucr2); 475 else 476 imx_uart_rts_inactive(sport, &ucr2); 477 imx_uart_writel(sport, ucr2, UCR2); 478 479 imx_uart_start_rx(port); 480 481 sport->tx_state = OFF; 482 } 483 } else { 484 sport->tx_state = OFF; 485 } 486 } 487 488 /* called with port.lock taken and irqs off */ 489 static void imx_uart_stop_rx(struct uart_port *port) 490 { 491 struct imx_port *sport = (struct imx_port *)port; 492 u32 ucr1, ucr2, ucr4, uts; 493 494 ucr1 = imx_uart_readl(sport, UCR1); 495 ucr2 = imx_uart_readl(sport, UCR2); 496 ucr4 = imx_uart_readl(sport, UCR4); 497 498 if (sport->dma_is_enabled) { 499 ucr1 &= ~(UCR1_RXDMAEN | UCR1_ATDMAEN); 500 } else { 501 ucr1 &= ~UCR1_RRDYEN; 502 ucr2 &= ~UCR2_ATEN; 503 ucr4 &= ~UCR4_OREN; 504 } 505 imx_uart_writel(sport, ucr1, UCR1); 506 imx_uart_writel(sport, ucr4, UCR4); 507 508 /* See SER_RS485_ENABLED/UTS_LOOP comment in imx_uart_probe() */ 509 if (port->rs485.flags & SER_RS485_ENABLED && 510 port->rs485.flags & SER_RS485_RTS_ON_SEND && 511 sport->have_rtscts && !sport->have_rtsgpio) { 512 uts = imx_uart_readl(sport, imx_uart_uts_reg(sport)); 513 uts |= UTS_LOOP; 514 imx_uart_writel(sport, uts, imx_uart_uts_reg(sport)); 515 ucr2 |= UCR2_RXEN; 516 } else { 517 ucr2 &= ~UCR2_RXEN; 518 } 519 520 imx_uart_writel(sport, ucr2, UCR2); 521 } 522 523 /* called with port.lock taken and irqs off */ 524 static void imx_uart_enable_ms(struct uart_port *port) 525 { 526 struct imx_port *sport = (struct imx_port *)port; 527 528 mod_timer(&sport->timer, jiffies); 529 530 mctrl_gpio_enable_ms(sport->gpios); 531 } 532 533 static void imx_uart_dma_tx(struct imx_port *sport); 534 535 /* called with port.lock taken and irqs off */ 536 static inline void imx_uart_transmit_buffer(struct imx_port *sport) 537 { 538 struct circ_buf *xmit = &sport->port.state->xmit; 539 540 if (sport->port.x_char) { 541 /* Send next char */ 542 imx_uart_writel(sport, sport->port.x_char, URTX0); 543 sport->port.icount.tx++; 544 sport->port.x_char = 0; 545 return; 546 } 547 548 if (uart_circ_empty(xmit) || uart_tx_stopped(&sport->port)) { 549 imx_uart_stop_tx(&sport->port); 550 return; 551 } 552 553 if (sport->dma_is_enabled) { 554 u32 ucr1; 555 /* 556 * We've just sent a X-char Ensure the TX DMA is enabled 557 * and the TX IRQ is disabled. 558 **/ 559 ucr1 = imx_uart_readl(sport, UCR1); 560 ucr1 &= ~UCR1_TRDYEN; 561 if (sport->dma_is_txing) { 562 ucr1 |= UCR1_TXDMAEN; 563 imx_uart_writel(sport, ucr1, UCR1); 564 } else { 565 imx_uart_writel(sport, ucr1, UCR1); 566 imx_uart_dma_tx(sport); 567 } 568 569 return; 570 } 571 572 while (!uart_circ_empty(xmit) && 573 !(imx_uart_readl(sport, imx_uart_uts_reg(sport)) & UTS_TXFULL)) { 574 /* send xmit->buf[xmit->tail] 575 * out the port here */ 576 imx_uart_writel(sport, xmit->buf[xmit->tail], URTX0); 577 uart_xmit_advance(&sport->port, 1); 578 } 579 580 if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS) 581 uart_write_wakeup(&sport->port); 582 583 if (uart_circ_empty(xmit)) 584 imx_uart_stop_tx(&sport->port); 585 } 586 587 static void imx_uart_dma_tx_callback(void *data) 588 { 589 struct imx_port *sport = data; 590 struct scatterlist *sgl = &sport->tx_sgl[0]; 591 struct circ_buf *xmit = &sport->port.state->xmit; 592 unsigned long flags; 593 u32 ucr1; 594 595 spin_lock_irqsave(&sport->port.lock, flags); 596 597 dma_unmap_sg(sport->port.dev, sgl, sport->dma_tx_nents, DMA_TO_DEVICE); 598 599 ucr1 = imx_uart_readl(sport, UCR1); 600 ucr1 &= ~UCR1_TXDMAEN; 601 imx_uart_writel(sport, ucr1, UCR1); 602 603 uart_xmit_advance(&sport->port, sport->tx_bytes); 604 605 dev_dbg(sport->port.dev, "we finish the TX DMA.\n"); 606 607 sport->dma_is_txing = 0; 608 609 if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS) 610 uart_write_wakeup(&sport->port); 611 612 if (!uart_circ_empty(xmit) && !uart_tx_stopped(&sport->port)) 613 imx_uart_dma_tx(sport); 614 else if (sport->port.rs485.flags & SER_RS485_ENABLED) { 615 u32 ucr4 = imx_uart_readl(sport, UCR4); 616 ucr4 |= UCR4_TCEN; 617 imx_uart_writel(sport, ucr4, UCR4); 618 } 619 620 spin_unlock_irqrestore(&sport->port.lock, flags); 621 } 622 623 /* called with port.lock taken and irqs off */ 624 static void imx_uart_dma_tx(struct imx_port *sport) 625 { 626 struct circ_buf *xmit = &sport->port.state->xmit; 627 struct scatterlist *sgl = sport->tx_sgl; 628 struct dma_async_tx_descriptor *desc; 629 struct dma_chan *chan = sport->dma_chan_tx; 630 struct device *dev = sport->port.dev; 631 u32 ucr1, ucr4; 632 int ret; 633 634 if (sport->dma_is_txing) 635 return; 636 637 ucr4 = imx_uart_readl(sport, UCR4); 638 ucr4 &= ~UCR4_TCEN; 639 imx_uart_writel(sport, ucr4, UCR4); 640 641 sport->tx_bytes = uart_circ_chars_pending(xmit); 642 643 if (xmit->tail < xmit->head || xmit->head == 0) { 644 sport->dma_tx_nents = 1; 645 sg_init_one(sgl, xmit->buf + xmit->tail, sport->tx_bytes); 646 } else { 647 sport->dma_tx_nents = 2; 648 sg_init_table(sgl, 2); 649 sg_set_buf(sgl, xmit->buf + xmit->tail, 650 UART_XMIT_SIZE - xmit->tail); 651 sg_set_buf(sgl + 1, xmit->buf, xmit->head); 652 } 653 654 ret = dma_map_sg(dev, sgl, sport->dma_tx_nents, DMA_TO_DEVICE); 655 if (ret == 0) { 656 dev_err(dev, "DMA mapping error for TX.\n"); 657 return; 658 } 659 desc = dmaengine_prep_slave_sg(chan, sgl, ret, 660 DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT); 661 if (!desc) { 662 dma_unmap_sg(dev, sgl, sport->dma_tx_nents, 663 DMA_TO_DEVICE); 664 dev_err(dev, "We cannot prepare for the TX slave dma!\n"); 665 return; 666 } 667 desc->callback = imx_uart_dma_tx_callback; 668 desc->callback_param = sport; 669 670 dev_dbg(dev, "TX: prepare to send %lu bytes by DMA.\n", 671 uart_circ_chars_pending(xmit)); 672 673 ucr1 = imx_uart_readl(sport, UCR1); 674 ucr1 |= UCR1_TXDMAEN; 675 imx_uart_writel(sport, ucr1, UCR1); 676 677 /* fire it */ 678 sport->dma_is_txing = 1; 679 dmaengine_submit(desc); 680 dma_async_issue_pending(chan); 681 return; 682 } 683 684 /* called with port.lock taken and irqs off */ 685 static void imx_uart_start_tx(struct uart_port *port) 686 { 687 struct imx_port *sport = (struct imx_port *)port; 688 u32 ucr1; 689 690 if (!sport->port.x_char && uart_circ_empty(&port->state->xmit)) 691 return; 692 693 /* 694 * We cannot simply do nothing here if sport->tx_state == SEND already 695 * because UCR1_TXMPTYEN might already have been cleared in 696 * imx_uart_stop_tx(), but tx_state is still SEND. 697 */ 698 699 if (port->rs485.flags & SER_RS485_ENABLED) { 700 if (sport->tx_state == OFF) { 701 u32 ucr2 = imx_uart_readl(sport, UCR2); 702 if (port->rs485.flags & SER_RS485_RTS_ON_SEND) 703 imx_uart_rts_active(sport, &ucr2); 704 else 705 imx_uart_rts_inactive(sport, &ucr2); 706 imx_uart_writel(sport, ucr2, UCR2); 707 708 if (!(port->rs485.flags & SER_RS485_RX_DURING_TX)) 709 imx_uart_stop_rx(port); 710 711 sport->tx_state = WAIT_AFTER_RTS; 712 713 if (port->rs485.delay_rts_before_send > 0) { 714 start_hrtimer_ms(&sport->trigger_start_tx, 715 port->rs485.delay_rts_before_send); 716 return; 717 } 718 719 /* continue without any delay */ 720 } 721 722 if (sport->tx_state == WAIT_AFTER_SEND 723 || sport->tx_state == WAIT_AFTER_RTS) { 724 725 hrtimer_try_to_cancel(&sport->trigger_stop_tx); 726 727 /* 728 * Enable transmitter and shifter empty irq only if DMA 729 * is off. In the DMA case this is done in the 730 * tx-callback. 731 */ 732 if (!sport->dma_is_enabled) { 733 u32 ucr4 = imx_uart_readl(sport, UCR4); 734 ucr4 |= UCR4_TCEN; 735 imx_uart_writel(sport, ucr4, UCR4); 736 } 737 738 sport->tx_state = SEND; 739 } 740 } else { 741 sport->tx_state = SEND; 742 } 743 744 if (!sport->dma_is_enabled) { 745 ucr1 = imx_uart_readl(sport, UCR1); 746 imx_uart_writel(sport, ucr1 | UCR1_TRDYEN, UCR1); 747 } 748 749 if (sport->dma_is_enabled) { 750 if (sport->port.x_char) { 751 /* We have X-char to send, so enable TX IRQ and 752 * disable TX DMA to let TX interrupt to send X-char */ 753 ucr1 = imx_uart_readl(sport, UCR1); 754 ucr1 &= ~UCR1_TXDMAEN; 755 ucr1 |= UCR1_TRDYEN; 756 imx_uart_writel(sport, ucr1, UCR1); 757 return; 758 } 759 760 if (!uart_circ_empty(&port->state->xmit) && 761 !uart_tx_stopped(port)) 762 imx_uart_dma_tx(sport); 763 return; 764 } 765 } 766 767 static irqreturn_t __imx_uart_rtsint(int irq, void *dev_id) 768 { 769 struct imx_port *sport = dev_id; 770 u32 usr1; 771 772 imx_uart_writel(sport, USR1_RTSD, USR1); 773 usr1 = imx_uart_readl(sport, USR1) & USR1_RTSS; 774 uart_handle_cts_change(&sport->port, !!usr1); 775 wake_up_interruptible(&sport->port.state->port.delta_msr_wait); 776 777 return IRQ_HANDLED; 778 } 779 780 static irqreturn_t imx_uart_rtsint(int irq, void *dev_id) 781 { 782 struct imx_port *sport = dev_id; 783 irqreturn_t ret; 784 785 spin_lock(&sport->port.lock); 786 787 ret = __imx_uart_rtsint(irq, dev_id); 788 789 spin_unlock(&sport->port.lock); 790 791 return ret; 792 } 793 794 static irqreturn_t imx_uart_txint(int irq, void *dev_id) 795 { 796 struct imx_port *sport = dev_id; 797 798 spin_lock(&sport->port.lock); 799 imx_uart_transmit_buffer(sport); 800 spin_unlock(&sport->port.lock); 801 return IRQ_HANDLED; 802 } 803 804 static irqreturn_t __imx_uart_rxint(int irq, void *dev_id) 805 { 806 struct imx_port *sport = dev_id; 807 unsigned int rx, flg, ignored = 0; 808 struct tty_port *port = &sport->port.state->port; 809 810 while (imx_uart_readl(sport, USR2) & USR2_RDR) { 811 u32 usr2; 812 813 flg = TTY_NORMAL; 814 sport->port.icount.rx++; 815 816 rx = imx_uart_readl(sport, URXD0); 817 818 usr2 = imx_uart_readl(sport, USR2); 819 if (usr2 & USR2_BRCD) { 820 imx_uart_writel(sport, USR2_BRCD, USR2); 821 if (uart_handle_break(&sport->port)) 822 continue; 823 } 824 825 if (uart_handle_sysrq_char(&sport->port, (unsigned char)rx)) 826 continue; 827 828 if (unlikely(rx & URXD_ERR)) { 829 if (rx & URXD_BRK) 830 sport->port.icount.brk++; 831 else if (rx & URXD_PRERR) 832 sport->port.icount.parity++; 833 else if (rx & URXD_FRMERR) 834 sport->port.icount.frame++; 835 if (rx & URXD_OVRRUN) 836 sport->port.icount.overrun++; 837 838 if (rx & sport->port.ignore_status_mask) { 839 if (++ignored > 100) 840 goto out; 841 continue; 842 } 843 844 rx &= (sport->port.read_status_mask | 0xFF); 845 846 if (rx & URXD_BRK) 847 flg = TTY_BREAK; 848 else if (rx & URXD_PRERR) 849 flg = TTY_PARITY; 850 else if (rx & URXD_FRMERR) 851 flg = TTY_FRAME; 852 if (rx & URXD_OVRRUN) 853 flg = TTY_OVERRUN; 854 855 sport->port.sysrq = 0; 856 } 857 858 if (sport->port.ignore_status_mask & URXD_DUMMY_READ) 859 goto out; 860 861 if (tty_insert_flip_char(port, rx, flg) == 0) 862 sport->port.icount.buf_overrun++; 863 } 864 865 out: 866 tty_flip_buffer_push(port); 867 868 return IRQ_HANDLED; 869 } 870 871 static irqreturn_t imx_uart_rxint(int irq, void *dev_id) 872 { 873 struct imx_port *sport = dev_id; 874 irqreturn_t ret; 875 876 spin_lock(&sport->port.lock); 877 878 ret = __imx_uart_rxint(irq, dev_id); 879 880 spin_unlock(&sport->port.lock); 881 882 return ret; 883 } 884 885 static void imx_uart_clear_rx_errors(struct imx_port *sport); 886 887 /* 888 * We have a modem side uart, so the meanings of RTS and CTS are inverted. 889 */ 890 static unsigned int imx_uart_get_hwmctrl(struct imx_port *sport) 891 { 892 unsigned int tmp = TIOCM_DSR; 893 unsigned usr1 = imx_uart_readl(sport, USR1); 894 unsigned usr2 = imx_uart_readl(sport, USR2); 895 896 if (usr1 & USR1_RTSS) 897 tmp |= TIOCM_CTS; 898 899 /* in DCE mode DCDIN is always 0 */ 900 if (!(usr2 & USR2_DCDIN)) 901 tmp |= TIOCM_CAR; 902 903 if (sport->dte_mode) 904 if (!(imx_uart_readl(sport, USR2) & USR2_RIIN)) 905 tmp |= TIOCM_RI; 906 907 return tmp; 908 } 909 910 /* 911 * Handle any change of modem status signal since we were last called. 912 */ 913 static void imx_uart_mctrl_check(struct imx_port *sport) 914 { 915 unsigned int status, changed; 916 917 status = imx_uart_get_hwmctrl(sport); 918 changed = status ^ sport->old_status; 919 920 if (changed == 0) 921 return; 922 923 sport->old_status = status; 924 925 if (changed & TIOCM_RI && status & TIOCM_RI) 926 sport->port.icount.rng++; 927 if (changed & TIOCM_DSR) 928 sport->port.icount.dsr++; 929 if (changed & TIOCM_CAR) 930 uart_handle_dcd_change(&sport->port, status & TIOCM_CAR); 931 if (changed & TIOCM_CTS) 932 uart_handle_cts_change(&sport->port, status & TIOCM_CTS); 933 934 wake_up_interruptible(&sport->port.state->port.delta_msr_wait); 935 } 936 937 static irqreturn_t imx_uart_int(int irq, void *dev_id) 938 { 939 struct imx_port *sport = dev_id; 940 unsigned int usr1, usr2, ucr1, ucr2, ucr3, ucr4; 941 irqreturn_t ret = IRQ_NONE; 942 943 spin_lock(&sport->port.lock); 944 945 usr1 = imx_uart_readl(sport, USR1); 946 usr2 = imx_uart_readl(sport, USR2); 947 ucr1 = imx_uart_readl(sport, UCR1); 948 ucr2 = imx_uart_readl(sport, UCR2); 949 ucr3 = imx_uart_readl(sport, UCR3); 950 ucr4 = imx_uart_readl(sport, UCR4); 951 952 /* 953 * Even if a condition is true that can trigger an irq only handle it if 954 * the respective irq source is enabled. This prevents some undesired 955 * actions, for example if a character that sits in the RX FIFO and that 956 * should be fetched via DMA is tried to be fetched using PIO. Or the 957 * receiver is currently off and so reading from URXD0 results in an 958 * exception. So just mask the (raw) status bits for disabled irqs. 959 */ 960 if ((ucr1 & UCR1_RRDYEN) == 0) 961 usr1 &= ~USR1_RRDY; 962 if ((ucr2 & UCR2_ATEN) == 0) 963 usr1 &= ~USR1_AGTIM; 964 if ((ucr1 & UCR1_TRDYEN) == 0) 965 usr1 &= ~USR1_TRDY; 966 if ((ucr4 & UCR4_TCEN) == 0) 967 usr2 &= ~USR2_TXDC; 968 if ((ucr3 & UCR3_DTRDEN) == 0) 969 usr1 &= ~USR1_DTRD; 970 if ((ucr1 & UCR1_RTSDEN) == 0) 971 usr1 &= ~USR1_RTSD; 972 if ((ucr3 & UCR3_AWAKEN) == 0) 973 usr1 &= ~USR1_AWAKE; 974 if ((ucr4 & UCR4_OREN) == 0) 975 usr2 &= ~USR2_ORE; 976 977 if (usr1 & (USR1_RRDY | USR1_AGTIM)) { 978 imx_uart_writel(sport, USR1_AGTIM, USR1); 979 980 __imx_uart_rxint(irq, dev_id); 981 ret = IRQ_HANDLED; 982 } 983 984 if ((usr1 & USR1_TRDY) || (usr2 & USR2_TXDC)) { 985 imx_uart_transmit_buffer(sport); 986 ret = IRQ_HANDLED; 987 } 988 989 if (usr1 & USR1_DTRD) { 990 imx_uart_writel(sport, USR1_DTRD, USR1); 991 992 imx_uart_mctrl_check(sport); 993 994 ret = IRQ_HANDLED; 995 } 996 997 if (usr1 & USR1_RTSD) { 998 __imx_uart_rtsint(irq, dev_id); 999 ret = IRQ_HANDLED; 1000 } 1001 1002 if (usr1 & USR1_AWAKE) { 1003 imx_uart_writel(sport, USR1_AWAKE, USR1); 1004 ret = IRQ_HANDLED; 1005 } 1006 1007 if (usr2 & USR2_ORE) { 1008 sport->port.icount.overrun++; 1009 imx_uart_writel(sport, USR2_ORE, USR2); 1010 ret = IRQ_HANDLED; 1011 } 1012 1013 spin_unlock(&sport->port.lock); 1014 1015 return ret; 1016 } 1017 1018 /* 1019 * Return TIOCSER_TEMT when transmitter is not busy. 1020 */ 1021 static unsigned int imx_uart_tx_empty(struct uart_port *port) 1022 { 1023 struct imx_port *sport = (struct imx_port *)port; 1024 unsigned int ret; 1025 1026 ret = (imx_uart_readl(sport, USR2) & USR2_TXDC) ? TIOCSER_TEMT : 0; 1027 1028 /* If the TX DMA is working, return 0. */ 1029 if (sport->dma_is_txing) 1030 ret = 0; 1031 1032 return ret; 1033 } 1034 1035 /* called with port.lock taken and irqs off */ 1036 static unsigned int imx_uart_get_mctrl(struct uart_port *port) 1037 { 1038 struct imx_port *sport = (struct imx_port *)port; 1039 unsigned int ret = imx_uart_get_hwmctrl(sport); 1040 1041 mctrl_gpio_get(sport->gpios, &ret); 1042 1043 return ret; 1044 } 1045 1046 /* called with port.lock taken and irqs off */ 1047 static void imx_uart_set_mctrl(struct uart_port *port, unsigned int mctrl) 1048 { 1049 struct imx_port *sport = (struct imx_port *)port; 1050 u32 ucr3, uts; 1051 1052 if (!(port->rs485.flags & SER_RS485_ENABLED)) { 1053 u32 ucr2; 1054 1055 /* 1056 * Turn off autoRTS if RTS is lowered and restore autoRTS 1057 * setting if RTS is raised. 1058 */ 1059 ucr2 = imx_uart_readl(sport, UCR2); 1060 ucr2 &= ~(UCR2_CTS | UCR2_CTSC); 1061 if (mctrl & TIOCM_RTS) { 1062 ucr2 |= UCR2_CTS; 1063 /* 1064 * UCR2_IRTS is unset if and only if the port is 1065 * configured for CRTSCTS, so we use inverted UCR2_IRTS 1066 * to get the state to restore to. 1067 */ 1068 if (!(ucr2 & UCR2_IRTS)) 1069 ucr2 |= UCR2_CTSC; 1070 } 1071 imx_uart_writel(sport, ucr2, UCR2); 1072 } 1073 1074 ucr3 = imx_uart_readl(sport, UCR3) & ~UCR3_DSR; 1075 if (!(mctrl & TIOCM_DTR)) 1076 ucr3 |= UCR3_DSR; 1077 imx_uart_writel(sport, ucr3, UCR3); 1078 1079 uts = imx_uart_readl(sport, imx_uart_uts_reg(sport)) & ~UTS_LOOP; 1080 if (mctrl & TIOCM_LOOP) 1081 uts |= UTS_LOOP; 1082 imx_uart_writel(sport, uts, imx_uart_uts_reg(sport)); 1083 1084 mctrl_gpio_set(sport->gpios, mctrl); 1085 } 1086 1087 /* 1088 * Interrupts always disabled. 1089 */ 1090 static void imx_uart_break_ctl(struct uart_port *port, int break_state) 1091 { 1092 struct imx_port *sport = (struct imx_port *)port; 1093 unsigned long flags; 1094 u32 ucr1; 1095 1096 spin_lock_irqsave(&sport->port.lock, flags); 1097 1098 ucr1 = imx_uart_readl(sport, UCR1) & ~UCR1_SNDBRK; 1099 1100 if (break_state != 0) 1101 ucr1 |= UCR1_SNDBRK; 1102 1103 imx_uart_writel(sport, ucr1, UCR1); 1104 1105 spin_unlock_irqrestore(&sport->port.lock, flags); 1106 } 1107 1108 /* 1109 * This is our per-port timeout handler, for checking the 1110 * modem status signals. 1111 */ 1112 static void imx_uart_timeout(struct timer_list *t) 1113 { 1114 struct imx_port *sport = from_timer(sport, t, timer); 1115 unsigned long flags; 1116 1117 if (sport->port.state) { 1118 spin_lock_irqsave(&sport->port.lock, flags); 1119 imx_uart_mctrl_check(sport); 1120 spin_unlock_irqrestore(&sport->port.lock, flags); 1121 1122 mod_timer(&sport->timer, jiffies + MCTRL_TIMEOUT); 1123 } 1124 } 1125 1126 /* 1127 * There are two kinds of RX DMA interrupts(such as in the MX6Q): 1128 * [1] the RX DMA buffer is full. 1129 * [2] the aging timer expires 1130 * 1131 * Condition [2] is triggered when a character has been sitting in the FIFO 1132 * for at least 8 byte durations. 1133 */ 1134 static void imx_uart_dma_rx_callback(void *data) 1135 { 1136 struct imx_port *sport = data; 1137 struct dma_chan *chan = sport->dma_chan_rx; 1138 struct scatterlist *sgl = &sport->rx_sgl; 1139 struct tty_port *port = &sport->port.state->port; 1140 struct dma_tx_state state; 1141 struct circ_buf *rx_ring = &sport->rx_ring; 1142 enum dma_status status; 1143 unsigned int w_bytes = 0; 1144 unsigned int r_bytes; 1145 unsigned int bd_size; 1146 1147 status = dmaengine_tx_status(chan, sport->rx_cookie, &state); 1148 1149 if (status == DMA_ERROR) { 1150 imx_uart_clear_rx_errors(sport); 1151 return; 1152 } 1153 1154 if (!(sport->port.ignore_status_mask & URXD_DUMMY_READ)) { 1155 1156 /* 1157 * The state-residue variable represents the empty space 1158 * relative to the entire buffer. Taking this in consideration 1159 * the head is always calculated base on the buffer total 1160 * length - DMA transaction residue. The UART script from the 1161 * SDMA firmware will jump to the next buffer descriptor, 1162 * once a DMA transaction if finalized (IMX53 RM - A.4.1.2.4). 1163 * Taking this in consideration the tail is always at the 1164 * beginning of the buffer descriptor that contains the head. 1165 */ 1166 1167 /* Calculate the head */ 1168 rx_ring->head = sg_dma_len(sgl) - state.residue; 1169 1170 /* Calculate the tail. */ 1171 bd_size = sg_dma_len(sgl) / sport->rx_periods; 1172 rx_ring->tail = ((rx_ring->head-1) / bd_size) * bd_size; 1173 1174 if (rx_ring->head <= sg_dma_len(sgl) && 1175 rx_ring->head > rx_ring->tail) { 1176 1177 /* Move data from tail to head */ 1178 r_bytes = rx_ring->head - rx_ring->tail; 1179 1180 /* CPU claims ownership of RX DMA buffer */ 1181 dma_sync_sg_for_cpu(sport->port.dev, sgl, 1, 1182 DMA_FROM_DEVICE); 1183 1184 w_bytes = tty_insert_flip_string(port, 1185 sport->rx_buf + rx_ring->tail, r_bytes); 1186 1187 /* UART retrieves ownership of RX DMA buffer */ 1188 dma_sync_sg_for_device(sport->port.dev, sgl, 1, 1189 DMA_FROM_DEVICE); 1190 1191 if (w_bytes != r_bytes) 1192 sport->port.icount.buf_overrun++; 1193 1194 sport->port.icount.rx += w_bytes; 1195 } else { 1196 WARN_ON(rx_ring->head > sg_dma_len(sgl)); 1197 WARN_ON(rx_ring->head <= rx_ring->tail); 1198 } 1199 } 1200 1201 if (w_bytes) { 1202 tty_flip_buffer_push(port); 1203 dev_dbg(sport->port.dev, "We get %d bytes.\n", w_bytes); 1204 } 1205 } 1206 1207 static int imx_uart_start_rx_dma(struct imx_port *sport) 1208 { 1209 struct scatterlist *sgl = &sport->rx_sgl; 1210 struct dma_chan *chan = sport->dma_chan_rx; 1211 struct device *dev = sport->port.dev; 1212 struct dma_async_tx_descriptor *desc; 1213 int ret; 1214 1215 sport->rx_ring.head = 0; 1216 sport->rx_ring.tail = 0; 1217 1218 sg_init_one(sgl, sport->rx_buf, sport->rx_buf_size); 1219 ret = dma_map_sg(dev, sgl, 1, DMA_FROM_DEVICE); 1220 if (ret == 0) { 1221 dev_err(dev, "DMA mapping error for RX.\n"); 1222 return -EINVAL; 1223 } 1224 1225 desc = dmaengine_prep_dma_cyclic(chan, sg_dma_address(sgl), 1226 sg_dma_len(sgl), sg_dma_len(sgl) / sport->rx_periods, 1227 DMA_DEV_TO_MEM, DMA_PREP_INTERRUPT); 1228 1229 if (!desc) { 1230 dma_unmap_sg(dev, sgl, 1, DMA_FROM_DEVICE); 1231 dev_err(dev, "We cannot prepare for the RX slave dma!\n"); 1232 return -EINVAL; 1233 } 1234 desc->callback = imx_uart_dma_rx_callback; 1235 desc->callback_param = sport; 1236 1237 dev_dbg(dev, "RX: prepare for the DMA.\n"); 1238 sport->dma_is_rxing = 1; 1239 sport->rx_cookie = dmaengine_submit(desc); 1240 dma_async_issue_pending(chan); 1241 return 0; 1242 } 1243 1244 static void imx_uart_clear_rx_errors(struct imx_port *sport) 1245 { 1246 struct tty_port *port = &sport->port.state->port; 1247 u32 usr1, usr2; 1248 1249 usr1 = imx_uart_readl(sport, USR1); 1250 usr2 = imx_uart_readl(sport, USR2); 1251 1252 if (usr2 & USR2_BRCD) { 1253 sport->port.icount.brk++; 1254 imx_uart_writel(sport, USR2_BRCD, USR2); 1255 uart_handle_break(&sport->port); 1256 if (tty_insert_flip_char(port, 0, TTY_BREAK) == 0) 1257 sport->port.icount.buf_overrun++; 1258 tty_flip_buffer_push(port); 1259 } else { 1260 if (usr1 & USR1_FRAMERR) { 1261 sport->port.icount.frame++; 1262 imx_uart_writel(sport, USR1_FRAMERR, USR1); 1263 } else if (usr1 & USR1_PARITYERR) { 1264 sport->port.icount.parity++; 1265 imx_uart_writel(sport, USR1_PARITYERR, USR1); 1266 } 1267 } 1268 1269 if (usr2 & USR2_ORE) { 1270 sport->port.icount.overrun++; 1271 imx_uart_writel(sport, USR2_ORE, USR2); 1272 } 1273 1274 } 1275 1276 #define TXTL_DEFAULT 2 /* reset default */ 1277 #define RXTL_DEFAULT 8 /* 8 characters or aging timer */ 1278 #define TXTL_DMA 8 /* DMA burst setting */ 1279 #define RXTL_DMA 9 /* DMA burst setting */ 1280 1281 static void imx_uart_setup_ufcr(struct imx_port *sport, 1282 unsigned char txwl, unsigned char rxwl) 1283 { 1284 unsigned int val; 1285 1286 /* set receiver / transmitter trigger level */ 1287 val = imx_uart_readl(sport, UFCR) & (UFCR_RFDIV | UFCR_DCEDTE); 1288 val |= txwl << UFCR_TXTL_SHF | rxwl; 1289 imx_uart_writel(sport, val, UFCR); 1290 } 1291 1292 static void imx_uart_dma_exit(struct imx_port *sport) 1293 { 1294 if (sport->dma_chan_rx) { 1295 dmaengine_terminate_sync(sport->dma_chan_rx); 1296 dma_release_channel(sport->dma_chan_rx); 1297 sport->dma_chan_rx = NULL; 1298 sport->rx_cookie = -EINVAL; 1299 kfree(sport->rx_buf); 1300 sport->rx_buf = NULL; 1301 } 1302 1303 if (sport->dma_chan_tx) { 1304 dmaengine_terminate_sync(sport->dma_chan_tx); 1305 dma_release_channel(sport->dma_chan_tx); 1306 sport->dma_chan_tx = NULL; 1307 } 1308 } 1309 1310 static int imx_uart_dma_init(struct imx_port *sport) 1311 { 1312 struct dma_slave_config slave_config = {}; 1313 struct device *dev = sport->port.dev; 1314 int ret; 1315 1316 /* Prepare for RX : */ 1317 sport->dma_chan_rx = dma_request_slave_channel(dev, "rx"); 1318 if (!sport->dma_chan_rx) { 1319 dev_dbg(dev, "cannot get the DMA channel.\n"); 1320 ret = -EINVAL; 1321 goto err; 1322 } 1323 1324 slave_config.direction = DMA_DEV_TO_MEM; 1325 slave_config.src_addr = sport->port.mapbase + URXD0; 1326 slave_config.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE; 1327 /* one byte less than the watermark level to enable the aging timer */ 1328 slave_config.src_maxburst = RXTL_DMA - 1; 1329 ret = dmaengine_slave_config(sport->dma_chan_rx, &slave_config); 1330 if (ret) { 1331 dev_err(dev, "error in RX dma configuration.\n"); 1332 goto err; 1333 } 1334 1335 sport->rx_buf_size = sport->rx_period_length * sport->rx_periods; 1336 sport->rx_buf = kzalloc(sport->rx_buf_size, GFP_KERNEL); 1337 if (!sport->rx_buf) { 1338 ret = -ENOMEM; 1339 goto err; 1340 } 1341 sport->rx_ring.buf = sport->rx_buf; 1342 1343 /* Prepare for TX : */ 1344 sport->dma_chan_tx = dma_request_slave_channel(dev, "tx"); 1345 if (!sport->dma_chan_tx) { 1346 dev_err(dev, "cannot get the TX DMA channel!\n"); 1347 ret = -EINVAL; 1348 goto err; 1349 } 1350 1351 slave_config.direction = DMA_MEM_TO_DEV; 1352 slave_config.dst_addr = sport->port.mapbase + URTX0; 1353 slave_config.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE; 1354 slave_config.dst_maxburst = TXTL_DMA; 1355 ret = dmaengine_slave_config(sport->dma_chan_tx, &slave_config); 1356 if (ret) { 1357 dev_err(dev, "error in TX dma configuration."); 1358 goto err; 1359 } 1360 1361 return 0; 1362 err: 1363 imx_uart_dma_exit(sport); 1364 return ret; 1365 } 1366 1367 static void imx_uart_enable_dma(struct imx_port *sport) 1368 { 1369 u32 ucr1; 1370 1371 imx_uart_setup_ufcr(sport, TXTL_DMA, RXTL_DMA); 1372 1373 /* set UCR1 */ 1374 ucr1 = imx_uart_readl(sport, UCR1); 1375 ucr1 |= UCR1_RXDMAEN | UCR1_TXDMAEN | UCR1_ATDMAEN; 1376 imx_uart_writel(sport, ucr1, UCR1); 1377 1378 sport->dma_is_enabled = 1; 1379 } 1380 1381 static void imx_uart_disable_dma(struct imx_port *sport) 1382 { 1383 u32 ucr1; 1384 1385 /* clear UCR1 */ 1386 ucr1 = imx_uart_readl(sport, UCR1); 1387 ucr1 &= ~(UCR1_RXDMAEN | UCR1_TXDMAEN | UCR1_ATDMAEN); 1388 imx_uart_writel(sport, ucr1, UCR1); 1389 1390 imx_uart_setup_ufcr(sport, TXTL_DEFAULT, RXTL_DEFAULT); 1391 1392 sport->dma_is_enabled = 0; 1393 } 1394 1395 /* half the RX buffer size */ 1396 #define CTSTL 16 1397 1398 static int imx_uart_startup(struct uart_port *port) 1399 { 1400 struct imx_port *sport = (struct imx_port *)port; 1401 int retval, i; 1402 unsigned long flags; 1403 int dma_is_inited = 0; 1404 u32 ucr1, ucr2, ucr3, ucr4, uts; 1405 1406 retval = clk_prepare_enable(sport->clk_per); 1407 if (retval) 1408 return retval; 1409 retval = clk_prepare_enable(sport->clk_ipg); 1410 if (retval) { 1411 clk_disable_unprepare(sport->clk_per); 1412 return retval; 1413 } 1414 1415 imx_uart_setup_ufcr(sport, TXTL_DEFAULT, RXTL_DEFAULT); 1416 1417 /* disable the DREN bit (Data Ready interrupt enable) before 1418 * requesting IRQs 1419 */ 1420 ucr4 = imx_uart_readl(sport, UCR4); 1421 1422 /* set the trigger level for CTS */ 1423 ucr4 &= ~(UCR4_CTSTL_MASK << UCR4_CTSTL_SHF); 1424 ucr4 |= CTSTL << UCR4_CTSTL_SHF; 1425 1426 imx_uart_writel(sport, ucr4 & ~UCR4_DREN, UCR4); 1427 1428 /* Can we enable the DMA support? */ 1429 if (!uart_console(port) && imx_uart_dma_init(sport) == 0) 1430 dma_is_inited = 1; 1431 1432 spin_lock_irqsave(&sport->port.lock, flags); 1433 /* Reset fifo's and state machines */ 1434 i = 100; 1435 1436 ucr2 = imx_uart_readl(sport, UCR2); 1437 ucr2 &= ~UCR2_SRST; 1438 imx_uart_writel(sport, ucr2, UCR2); 1439 1440 while (!(imx_uart_readl(sport, UCR2) & UCR2_SRST) && (--i > 0)) 1441 udelay(1); 1442 1443 /* 1444 * Finally, clear and enable interrupts 1445 */ 1446 imx_uart_writel(sport, USR1_RTSD | USR1_DTRD, USR1); 1447 imx_uart_writel(sport, USR2_ORE, USR2); 1448 1449 ucr1 = imx_uart_readl(sport, UCR1) & ~UCR1_RRDYEN; 1450 ucr1 |= UCR1_UARTEN; 1451 if (sport->have_rtscts) 1452 ucr1 |= UCR1_RTSDEN; 1453 1454 imx_uart_writel(sport, ucr1, UCR1); 1455 1456 ucr4 = imx_uart_readl(sport, UCR4) & ~(UCR4_OREN | UCR4_INVR); 1457 if (!dma_is_inited) 1458 ucr4 |= UCR4_OREN; 1459 if (sport->inverted_rx) 1460 ucr4 |= UCR4_INVR; 1461 imx_uart_writel(sport, ucr4, UCR4); 1462 1463 ucr3 = imx_uart_readl(sport, UCR3) & ~UCR3_INVT; 1464 /* 1465 * configure tx polarity before enabling tx 1466 */ 1467 if (sport->inverted_tx) 1468 ucr3 |= UCR3_INVT; 1469 1470 if (!imx_uart_is_imx1(sport)) { 1471 ucr3 |= UCR3_DTRDEN | UCR3_RI | UCR3_DCD; 1472 1473 if (sport->dte_mode) 1474 /* disable broken interrupts */ 1475 ucr3 &= ~(UCR3_RI | UCR3_DCD); 1476 } 1477 imx_uart_writel(sport, ucr3, UCR3); 1478 1479 ucr2 = imx_uart_readl(sport, UCR2) & ~UCR2_ATEN; 1480 ucr2 |= (UCR2_RXEN | UCR2_TXEN); 1481 if (!sport->have_rtscts) 1482 ucr2 |= UCR2_IRTS; 1483 /* 1484 * make sure the edge sensitive RTS-irq is disabled, 1485 * we're using RTSD instead. 1486 */ 1487 if (!imx_uart_is_imx1(sport)) 1488 ucr2 &= ~UCR2_RTSEN; 1489 imx_uart_writel(sport, ucr2, UCR2); 1490 1491 /* 1492 * Enable modem status interrupts 1493 */ 1494 imx_uart_enable_ms(&sport->port); 1495 1496 if (dma_is_inited) { 1497 imx_uart_enable_dma(sport); 1498 imx_uart_start_rx_dma(sport); 1499 } else { 1500 ucr1 = imx_uart_readl(sport, UCR1); 1501 ucr1 |= UCR1_RRDYEN; 1502 imx_uart_writel(sport, ucr1, UCR1); 1503 1504 ucr2 = imx_uart_readl(sport, UCR2); 1505 ucr2 |= UCR2_ATEN; 1506 imx_uart_writel(sport, ucr2, UCR2); 1507 } 1508 1509 /* See SER_RS485_ENABLED/UTS_LOOP comment in imx_uart_probe() */ 1510 uts = imx_uart_readl(sport, imx_uart_uts_reg(sport)); 1511 uts &= ~UTS_LOOP; 1512 imx_uart_writel(sport, uts, imx_uart_uts_reg(sport)); 1513 1514 spin_unlock_irqrestore(&sport->port.lock, flags); 1515 1516 return 0; 1517 } 1518 1519 static void imx_uart_shutdown(struct uart_port *port) 1520 { 1521 struct imx_port *sport = (struct imx_port *)port; 1522 unsigned long flags; 1523 u32 ucr1, ucr2, ucr4, uts; 1524 1525 if (sport->dma_is_enabled) { 1526 dmaengine_terminate_sync(sport->dma_chan_tx); 1527 if (sport->dma_is_txing) { 1528 dma_unmap_sg(sport->port.dev, &sport->tx_sgl[0], 1529 sport->dma_tx_nents, DMA_TO_DEVICE); 1530 sport->dma_is_txing = 0; 1531 } 1532 dmaengine_terminate_sync(sport->dma_chan_rx); 1533 if (sport->dma_is_rxing) { 1534 dma_unmap_sg(sport->port.dev, &sport->rx_sgl, 1535 1, DMA_FROM_DEVICE); 1536 sport->dma_is_rxing = 0; 1537 } 1538 1539 spin_lock_irqsave(&sport->port.lock, flags); 1540 imx_uart_stop_tx(port); 1541 imx_uart_stop_rx(port); 1542 imx_uart_disable_dma(sport); 1543 spin_unlock_irqrestore(&sport->port.lock, flags); 1544 imx_uart_dma_exit(sport); 1545 } 1546 1547 mctrl_gpio_disable_ms(sport->gpios); 1548 1549 spin_lock_irqsave(&sport->port.lock, flags); 1550 ucr2 = imx_uart_readl(sport, UCR2); 1551 ucr2 &= ~(UCR2_TXEN | UCR2_ATEN); 1552 imx_uart_writel(sport, ucr2, UCR2); 1553 spin_unlock_irqrestore(&sport->port.lock, flags); 1554 1555 /* 1556 * Stop our timer. 1557 */ 1558 del_timer_sync(&sport->timer); 1559 1560 /* 1561 * Disable all interrupts, port and break condition. 1562 */ 1563 1564 spin_lock_irqsave(&sport->port.lock, flags); 1565 1566 ucr1 = imx_uart_readl(sport, UCR1); 1567 ucr1 &= ~(UCR1_TRDYEN | UCR1_RRDYEN | UCR1_RTSDEN | UCR1_RXDMAEN | UCR1_ATDMAEN); 1568 /* See SER_RS485_ENABLED/UTS_LOOP comment in imx_uart_probe() */ 1569 if (port->rs485.flags & SER_RS485_ENABLED && 1570 port->rs485.flags & SER_RS485_RTS_ON_SEND && 1571 sport->have_rtscts && !sport->have_rtsgpio) { 1572 uts = imx_uart_readl(sport, imx_uart_uts_reg(sport)); 1573 uts |= UTS_LOOP; 1574 imx_uart_writel(sport, uts, imx_uart_uts_reg(sport)); 1575 ucr1 |= UCR1_UARTEN; 1576 } else { 1577 ucr1 &= ~UCR1_UARTEN; 1578 } 1579 imx_uart_writel(sport, ucr1, UCR1); 1580 1581 ucr4 = imx_uart_readl(sport, UCR4); 1582 ucr4 &= ~UCR4_TCEN; 1583 imx_uart_writel(sport, ucr4, UCR4); 1584 1585 spin_unlock_irqrestore(&sport->port.lock, flags); 1586 1587 clk_disable_unprepare(sport->clk_per); 1588 clk_disable_unprepare(sport->clk_ipg); 1589 } 1590 1591 /* called with port.lock taken and irqs off */ 1592 static void imx_uart_flush_buffer(struct uart_port *port) 1593 { 1594 struct imx_port *sport = (struct imx_port *)port; 1595 struct scatterlist *sgl = &sport->tx_sgl[0]; 1596 u32 ucr2; 1597 int i = 100, ubir, ubmr, uts; 1598 1599 if (!sport->dma_chan_tx) 1600 return; 1601 1602 sport->tx_bytes = 0; 1603 dmaengine_terminate_all(sport->dma_chan_tx); 1604 if (sport->dma_is_txing) { 1605 u32 ucr1; 1606 1607 dma_unmap_sg(sport->port.dev, sgl, sport->dma_tx_nents, 1608 DMA_TO_DEVICE); 1609 ucr1 = imx_uart_readl(sport, UCR1); 1610 ucr1 &= ~UCR1_TXDMAEN; 1611 imx_uart_writel(sport, ucr1, UCR1); 1612 sport->dma_is_txing = 0; 1613 } 1614 1615 /* 1616 * According to the Reference Manual description of the UART SRST bit: 1617 * 1618 * "Reset the transmit and receive state machines, 1619 * all FIFOs and register USR1, USR2, UBIR, UBMR, UBRC, URXD, UTXD 1620 * and UTS[6-3]". 1621 * 1622 * We don't need to restore the old values from USR1, USR2, URXD and 1623 * UTXD. UBRC is read only, so only save/restore the other three 1624 * registers. 1625 */ 1626 ubir = imx_uart_readl(sport, UBIR); 1627 ubmr = imx_uart_readl(sport, UBMR); 1628 uts = imx_uart_readl(sport, IMX21_UTS); 1629 1630 ucr2 = imx_uart_readl(sport, UCR2); 1631 ucr2 &= ~UCR2_SRST; 1632 imx_uart_writel(sport, ucr2, UCR2); 1633 1634 while (!(imx_uart_readl(sport, UCR2) & UCR2_SRST) && (--i > 0)) 1635 udelay(1); 1636 1637 /* Restore the registers */ 1638 imx_uart_writel(sport, ubir, UBIR); 1639 imx_uart_writel(sport, ubmr, UBMR); 1640 imx_uart_writel(sport, uts, IMX21_UTS); 1641 } 1642 1643 static void 1644 imx_uart_set_termios(struct uart_port *port, struct ktermios *termios, 1645 const struct ktermios *old) 1646 { 1647 struct imx_port *sport = (struct imx_port *)port; 1648 unsigned long flags; 1649 u32 ucr2, old_ucr2, ufcr; 1650 unsigned int baud, quot; 1651 unsigned int old_csize = old ? old->c_cflag & CSIZE : CS8; 1652 unsigned long div; 1653 unsigned long num, denom, old_ubir, old_ubmr; 1654 uint64_t tdiv64; 1655 1656 /* 1657 * We only support CS7 and CS8. 1658 */ 1659 while ((termios->c_cflag & CSIZE) != CS7 && 1660 (termios->c_cflag & CSIZE) != CS8) { 1661 termios->c_cflag &= ~CSIZE; 1662 termios->c_cflag |= old_csize; 1663 old_csize = CS8; 1664 } 1665 1666 del_timer_sync(&sport->timer); 1667 1668 /* 1669 * Ask the core to calculate the divisor for us. 1670 */ 1671 baud = uart_get_baud_rate(port, termios, old, 50, port->uartclk / 16); 1672 quot = uart_get_divisor(port, baud); 1673 1674 spin_lock_irqsave(&sport->port.lock, flags); 1675 1676 /* 1677 * Read current UCR2 and save it for future use, then clear all the bits 1678 * except those we will or may need to preserve. 1679 */ 1680 old_ucr2 = imx_uart_readl(sport, UCR2); 1681 ucr2 = old_ucr2 & (UCR2_TXEN | UCR2_RXEN | UCR2_ATEN | UCR2_CTS); 1682 1683 ucr2 |= UCR2_SRST | UCR2_IRTS; 1684 if ((termios->c_cflag & CSIZE) == CS8) 1685 ucr2 |= UCR2_WS; 1686 1687 if (!sport->have_rtscts) 1688 termios->c_cflag &= ~CRTSCTS; 1689 1690 if (port->rs485.flags & SER_RS485_ENABLED) { 1691 /* 1692 * RTS is mandatory for rs485 operation, so keep 1693 * it under manual control and keep transmitter 1694 * disabled. 1695 */ 1696 if (port->rs485.flags & SER_RS485_RTS_AFTER_SEND) 1697 imx_uart_rts_active(sport, &ucr2); 1698 else 1699 imx_uart_rts_inactive(sport, &ucr2); 1700 1701 } else if (termios->c_cflag & CRTSCTS) { 1702 /* 1703 * Only let receiver control RTS output if we were not requested 1704 * to have RTS inactive (which then should take precedence). 1705 */ 1706 if (ucr2 & UCR2_CTS) 1707 ucr2 |= UCR2_CTSC; 1708 } 1709 1710 if (termios->c_cflag & CRTSCTS) 1711 ucr2 &= ~UCR2_IRTS; 1712 if (termios->c_cflag & CSTOPB) 1713 ucr2 |= UCR2_STPB; 1714 if (termios->c_cflag & PARENB) { 1715 ucr2 |= UCR2_PREN; 1716 if (termios->c_cflag & PARODD) 1717 ucr2 |= UCR2_PROE; 1718 } 1719 1720 sport->port.read_status_mask = 0; 1721 if (termios->c_iflag & INPCK) 1722 sport->port.read_status_mask |= (URXD_FRMERR | URXD_PRERR); 1723 if (termios->c_iflag & (BRKINT | PARMRK)) 1724 sport->port.read_status_mask |= URXD_BRK; 1725 1726 /* 1727 * Characters to ignore 1728 */ 1729 sport->port.ignore_status_mask = 0; 1730 if (termios->c_iflag & IGNPAR) 1731 sport->port.ignore_status_mask |= URXD_PRERR | URXD_FRMERR; 1732 if (termios->c_iflag & IGNBRK) { 1733 sport->port.ignore_status_mask |= URXD_BRK; 1734 /* 1735 * If we're ignoring parity and break indicators, 1736 * ignore overruns too (for real raw support). 1737 */ 1738 if (termios->c_iflag & IGNPAR) 1739 sport->port.ignore_status_mask |= URXD_OVRRUN; 1740 } 1741 1742 if ((termios->c_cflag & CREAD) == 0) 1743 sport->port.ignore_status_mask |= URXD_DUMMY_READ; 1744 1745 /* 1746 * Update the per-port timeout. 1747 */ 1748 uart_update_timeout(port, termios->c_cflag, baud); 1749 1750 /* custom-baudrate handling */ 1751 div = sport->port.uartclk / (baud * 16); 1752 if (baud == 38400 && quot != div) 1753 baud = sport->port.uartclk / (quot * 16); 1754 1755 div = sport->port.uartclk / (baud * 16); 1756 if (div > 7) 1757 div = 7; 1758 if (!div) 1759 div = 1; 1760 1761 rational_best_approximation(16 * div * baud, sport->port.uartclk, 1762 1 << 16, 1 << 16, &num, &denom); 1763 1764 tdiv64 = sport->port.uartclk; 1765 tdiv64 *= num; 1766 do_div(tdiv64, denom * 16 * div); 1767 tty_termios_encode_baud_rate(termios, 1768 (speed_t)tdiv64, (speed_t)tdiv64); 1769 1770 num -= 1; 1771 denom -= 1; 1772 1773 ufcr = imx_uart_readl(sport, UFCR); 1774 ufcr = (ufcr & (~UFCR_RFDIV)) | UFCR_RFDIV_REG(div); 1775 imx_uart_writel(sport, ufcr, UFCR); 1776 1777 /* 1778 * Two registers below should always be written both and in this 1779 * particular order. One consequence is that we need to check if any of 1780 * them changes and then update both. We do need the check for change 1781 * as even writing the same values seem to "restart" 1782 * transmission/receiving logic in the hardware, that leads to data 1783 * breakage even when rate doesn't in fact change. E.g., user switches 1784 * RTS/CTS handshake and suddenly gets broken bytes. 1785 */ 1786 old_ubir = imx_uart_readl(sport, UBIR); 1787 old_ubmr = imx_uart_readl(sport, UBMR); 1788 if (old_ubir != num || old_ubmr != denom) { 1789 imx_uart_writel(sport, num, UBIR); 1790 imx_uart_writel(sport, denom, UBMR); 1791 } 1792 1793 if (!imx_uart_is_imx1(sport)) 1794 imx_uart_writel(sport, sport->port.uartclk / div / 1000, 1795 IMX21_ONEMS); 1796 1797 imx_uart_writel(sport, ucr2, UCR2); 1798 1799 if (UART_ENABLE_MS(&sport->port, termios->c_cflag)) 1800 imx_uart_enable_ms(&sport->port); 1801 1802 spin_unlock_irqrestore(&sport->port.lock, flags); 1803 } 1804 1805 static const char *imx_uart_type(struct uart_port *port) 1806 { 1807 struct imx_port *sport = (struct imx_port *)port; 1808 1809 return sport->port.type == PORT_IMX ? "IMX" : NULL; 1810 } 1811 1812 /* 1813 * Configure/autoconfigure the port. 1814 */ 1815 static void imx_uart_config_port(struct uart_port *port, int flags) 1816 { 1817 struct imx_port *sport = (struct imx_port *)port; 1818 1819 if (flags & UART_CONFIG_TYPE) 1820 sport->port.type = PORT_IMX; 1821 } 1822 1823 /* 1824 * Verify the new serial_struct (for TIOCSSERIAL). 1825 * The only change we allow are to the flags and type, and 1826 * even then only between PORT_IMX and PORT_UNKNOWN 1827 */ 1828 static int 1829 imx_uart_verify_port(struct uart_port *port, struct serial_struct *ser) 1830 { 1831 struct imx_port *sport = (struct imx_port *)port; 1832 int ret = 0; 1833 1834 if (ser->type != PORT_UNKNOWN && ser->type != PORT_IMX) 1835 ret = -EINVAL; 1836 if (sport->port.irq != ser->irq) 1837 ret = -EINVAL; 1838 if (ser->io_type != UPIO_MEM) 1839 ret = -EINVAL; 1840 if (sport->port.uartclk / 16 != ser->baud_base) 1841 ret = -EINVAL; 1842 if (sport->port.mapbase != (unsigned long)ser->iomem_base) 1843 ret = -EINVAL; 1844 if (sport->port.iobase != ser->port) 1845 ret = -EINVAL; 1846 if (ser->hub6 != 0) 1847 ret = -EINVAL; 1848 return ret; 1849 } 1850 1851 #if defined(CONFIG_CONSOLE_POLL) 1852 1853 static int imx_uart_poll_init(struct uart_port *port) 1854 { 1855 struct imx_port *sport = (struct imx_port *)port; 1856 unsigned long flags; 1857 u32 ucr1, ucr2; 1858 int retval; 1859 1860 retval = clk_prepare_enable(sport->clk_ipg); 1861 if (retval) 1862 return retval; 1863 retval = clk_prepare_enable(sport->clk_per); 1864 if (retval) 1865 clk_disable_unprepare(sport->clk_ipg); 1866 1867 imx_uart_setup_ufcr(sport, TXTL_DEFAULT, RXTL_DEFAULT); 1868 1869 spin_lock_irqsave(&sport->port.lock, flags); 1870 1871 /* 1872 * Be careful about the order of enabling bits here. First enable the 1873 * receiver (UARTEN + RXEN) and only then the corresponding irqs. 1874 * This prevents that a character that already sits in the RX fifo is 1875 * triggering an irq but the try to fetch it from there results in an 1876 * exception because UARTEN or RXEN is still off. 1877 */ 1878 ucr1 = imx_uart_readl(sport, UCR1); 1879 ucr2 = imx_uart_readl(sport, UCR2); 1880 1881 if (imx_uart_is_imx1(sport)) 1882 ucr1 |= IMX1_UCR1_UARTCLKEN; 1883 1884 ucr1 |= UCR1_UARTEN; 1885 ucr1 &= ~(UCR1_TRDYEN | UCR1_RTSDEN | UCR1_RRDYEN); 1886 1887 ucr2 |= UCR2_RXEN | UCR2_TXEN; 1888 ucr2 &= ~UCR2_ATEN; 1889 1890 imx_uart_writel(sport, ucr1, UCR1); 1891 imx_uart_writel(sport, ucr2, UCR2); 1892 1893 /* now enable irqs */ 1894 imx_uart_writel(sport, ucr1 | UCR1_RRDYEN, UCR1); 1895 imx_uart_writel(sport, ucr2 | UCR2_ATEN, UCR2); 1896 1897 spin_unlock_irqrestore(&sport->port.lock, flags); 1898 1899 return 0; 1900 } 1901 1902 static int imx_uart_poll_get_char(struct uart_port *port) 1903 { 1904 struct imx_port *sport = (struct imx_port *)port; 1905 if (!(imx_uart_readl(sport, USR2) & USR2_RDR)) 1906 return NO_POLL_CHAR; 1907 1908 return imx_uart_readl(sport, URXD0) & URXD_RX_DATA; 1909 } 1910 1911 static void imx_uart_poll_put_char(struct uart_port *port, unsigned char c) 1912 { 1913 struct imx_port *sport = (struct imx_port *)port; 1914 unsigned int status; 1915 1916 /* drain */ 1917 do { 1918 status = imx_uart_readl(sport, USR1); 1919 } while (~status & USR1_TRDY); 1920 1921 /* write */ 1922 imx_uart_writel(sport, c, URTX0); 1923 1924 /* flush */ 1925 do { 1926 status = imx_uart_readl(sport, USR2); 1927 } while (~status & USR2_TXDC); 1928 } 1929 #endif 1930 1931 /* called with port.lock taken and irqs off or from .probe without locking */ 1932 static int imx_uart_rs485_config(struct uart_port *port, struct ktermios *termios, 1933 struct serial_rs485 *rs485conf) 1934 { 1935 struct imx_port *sport = (struct imx_port *)port; 1936 u32 ucr2; 1937 1938 if (rs485conf->flags & SER_RS485_ENABLED) { 1939 /* Enable receiver if low-active RTS signal is requested */ 1940 if (sport->have_rtscts && !sport->have_rtsgpio && 1941 !(rs485conf->flags & SER_RS485_RTS_ON_SEND)) 1942 rs485conf->flags |= SER_RS485_RX_DURING_TX; 1943 1944 /* disable transmitter */ 1945 ucr2 = imx_uart_readl(sport, UCR2); 1946 if (rs485conf->flags & SER_RS485_RTS_AFTER_SEND) 1947 imx_uart_rts_active(sport, &ucr2); 1948 else 1949 imx_uart_rts_inactive(sport, &ucr2); 1950 imx_uart_writel(sport, ucr2, UCR2); 1951 } 1952 1953 /* Make sure Rx is enabled in case Tx is active with Rx disabled */ 1954 if (!(rs485conf->flags & SER_RS485_ENABLED) || 1955 rs485conf->flags & SER_RS485_RX_DURING_TX) 1956 imx_uart_start_rx(port); 1957 1958 return 0; 1959 } 1960 1961 static const struct uart_ops imx_uart_pops = { 1962 .tx_empty = imx_uart_tx_empty, 1963 .set_mctrl = imx_uart_set_mctrl, 1964 .get_mctrl = imx_uart_get_mctrl, 1965 .stop_tx = imx_uart_stop_tx, 1966 .start_tx = imx_uart_start_tx, 1967 .stop_rx = imx_uart_stop_rx, 1968 .enable_ms = imx_uart_enable_ms, 1969 .break_ctl = imx_uart_break_ctl, 1970 .startup = imx_uart_startup, 1971 .shutdown = imx_uart_shutdown, 1972 .flush_buffer = imx_uart_flush_buffer, 1973 .set_termios = imx_uart_set_termios, 1974 .type = imx_uart_type, 1975 .config_port = imx_uart_config_port, 1976 .verify_port = imx_uart_verify_port, 1977 #if defined(CONFIG_CONSOLE_POLL) 1978 .poll_init = imx_uart_poll_init, 1979 .poll_get_char = imx_uart_poll_get_char, 1980 .poll_put_char = imx_uart_poll_put_char, 1981 #endif 1982 }; 1983 1984 static struct imx_port *imx_uart_ports[UART_NR]; 1985 1986 #if IS_ENABLED(CONFIG_SERIAL_IMX_CONSOLE) 1987 static void imx_uart_console_putchar(struct uart_port *port, unsigned char ch) 1988 { 1989 struct imx_port *sport = (struct imx_port *)port; 1990 1991 while (imx_uart_readl(sport, imx_uart_uts_reg(sport)) & UTS_TXFULL) 1992 barrier(); 1993 1994 imx_uart_writel(sport, ch, URTX0); 1995 } 1996 1997 /* 1998 * Interrupts are disabled on entering 1999 */ 2000 static void 2001 imx_uart_console_write(struct console *co, const char *s, unsigned int count) 2002 { 2003 struct imx_port *sport = imx_uart_ports[co->index]; 2004 struct imx_port_ucrs old_ucr; 2005 unsigned long flags; 2006 unsigned int ucr1; 2007 int locked = 1; 2008 2009 if (sport->port.sysrq) 2010 locked = 0; 2011 else if (oops_in_progress) 2012 locked = spin_trylock_irqsave(&sport->port.lock, flags); 2013 else 2014 spin_lock_irqsave(&sport->port.lock, flags); 2015 2016 /* 2017 * First, save UCR1/2/3 and then disable interrupts 2018 */ 2019 imx_uart_ucrs_save(sport, &old_ucr); 2020 ucr1 = old_ucr.ucr1; 2021 2022 if (imx_uart_is_imx1(sport)) 2023 ucr1 |= IMX1_UCR1_UARTCLKEN; 2024 ucr1 |= UCR1_UARTEN; 2025 ucr1 &= ~(UCR1_TRDYEN | UCR1_RRDYEN | UCR1_RTSDEN); 2026 2027 imx_uart_writel(sport, ucr1, UCR1); 2028 2029 imx_uart_writel(sport, old_ucr.ucr2 | UCR2_TXEN, UCR2); 2030 2031 uart_console_write(&sport->port, s, count, imx_uart_console_putchar); 2032 2033 /* 2034 * Finally, wait for transmitter to become empty 2035 * and restore UCR1/2/3 2036 */ 2037 while (!(imx_uart_readl(sport, USR2) & USR2_TXDC)); 2038 2039 imx_uart_ucrs_restore(sport, &old_ucr); 2040 2041 if (locked) 2042 spin_unlock_irqrestore(&sport->port.lock, flags); 2043 } 2044 2045 /* 2046 * If the port was already initialised (eg, by a boot loader), 2047 * try to determine the current setup. 2048 */ 2049 static void 2050 imx_uart_console_get_options(struct imx_port *sport, int *baud, 2051 int *parity, int *bits) 2052 { 2053 2054 if (imx_uart_readl(sport, UCR1) & UCR1_UARTEN) { 2055 /* ok, the port was enabled */ 2056 unsigned int ucr2, ubir, ubmr, uartclk; 2057 unsigned int baud_raw; 2058 unsigned int ucfr_rfdiv; 2059 2060 ucr2 = imx_uart_readl(sport, UCR2); 2061 2062 *parity = 'n'; 2063 if (ucr2 & UCR2_PREN) { 2064 if (ucr2 & UCR2_PROE) 2065 *parity = 'o'; 2066 else 2067 *parity = 'e'; 2068 } 2069 2070 if (ucr2 & UCR2_WS) 2071 *bits = 8; 2072 else 2073 *bits = 7; 2074 2075 ubir = imx_uart_readl(sport, UBIR) & 0xffff; 2076 ubmr = imx_uart_readl(sport, UBMR) & 0xffff; 2077 2078 ucfr_rfdiv = (imx_uart_readl(sport, UFCR) & UFCR_RFDIV) >> 7; 2079 if (ucfr_rfdiv == 6) 2080 ucfr_rfdiv = 7; 2081 else 2082 ucfr_rfdiv = 6 - ucfr_rfdiv; 2083 2084 uartclk = clk_get_rate(sport->clk_per); 2085 uartclk /= ucfr_rfdiv; 2086 2087 { /* 2088 * The next code provides exact computation of 2089 * baud_raw = round(((uartclk/16) * (ubir + 1)) / (ubmr + 1)) 2090 * without need of float support or long long division, 2091 * which would be required to prevent 32bit arithmetic overflow 2092 */ 2093 unsigned int mul = ubir + 1; 2094 unsigned int div = 16 * (ubmr + 1); 2095 unsigned int rem = uartclk % div; 2096 2097 baud_raw = (uartclk / div) * mul; 2098 baud_raw += (rem * mul + div / 2) / div; 2099 *baud = (baud_raw + 50) / 100 * 100; 2100 } 2101 2102 if (*baud != baud_raw) 2103 dev_info(sport->port.dev, "Console IMX rounded baud rate from %d to %d\n", 2104 baud_raw, *baud); 2105 } 2106 } 2107 2108 static int 2109 imx_uart_console_setup(struct console *co, char *options) 2110 { 2111 struct imx_port *sport; 2112 int baud = 9600; 2113 int bits = 8; 2114 int parity = 'n'; 2115 int flow = 'n'; 2116 int retval; 2117 2118 /* 2119 * Check whether an invalid uart number has been specified, and 2120 * if so, search for the first available port that does have 2121 * console support. 2122 */ 2123 if (co->index == -1 || co->index >= ARRAY_SIZE(imx_uart_ports)) 2124 co->index = 0; 2125 sport = imx_uart_ports[co->index]; 2126 if (sport == NULL) 2127 return -ENODEV; 2128 2129 /* For setting the registers, we only need to enable the ipg clock. */ 2130 retval = clk_prepare_enable(sport->clk_ipg); 2131 if (retval) 2132 goto error_console; 2133 2134 if (options) 2135 uart_parse_options(options, &baud, &parity, &bits, &flow); 2136 else 2137 imx_uart_console_get_options(sport, &baud, &parity, &bits); 2138 2139 imx_uart_setup_ufcr(sport, TXTL_DEFAULT, RXTL_DEFAULT); 2140 2141 retval = uart_set_options(&sport->port, co, baud, parity, bits, flow); 2142 2143 if (retval) { 2144 clk_disable_unprepare(sport->clk_ipg); 2145 goto error_console; 2146 } 2147 2148 retval = clk_prepare_enable(sport->clk_per); 2149 if (retval) 2150 clk_disable_unprepare(sport->clk_ipg); 2151 2152 error_console: 2153 return retval; 2154 } 2155 2156 static int 2157 imx_uart_console_exit(struct console *co) 2158 { 2159 struct imx_port *sport = imx_uart_ports[co->index]; 2160 2161 clk_disable_unprepare(sport->clk_per); 2162 clk_disable_unprepare(sport->clk_ipg); 2163 2164 return 0; 2165 } 2166 2167 static struct uart_driver imx_uart_uart_driver; 2168 static struct console imx_uart_console = { 2169 .name = DEV_NAME, 2170 .write = imx_uart_console_write, 2171 .device = uart_console_device, 2172 .setup = imx_uart_console_setup, 2173 .exit = imx_uart_console_exit, 2174 .flags = CON_PRINTBUFFER, 2175 .index = -1, 2176 .data = &imx_uart_uart_driver, 2177 }; 2178 2179 #define IMX_CONSOLE &imx_uart_console 2180 2181 #else 2182 #define IMX_CONSOLE NULL 2183 #endif 2184 2185 static struct uart_driver imx_uart_uart_driver = { 2186 .owner = THIS_MODULE, 2187 .driver_name = DRIVER_NAME, 2188 .dev_name = DEV_NAME, 2189 .major = SERIAL_IMX_MAJOR, 2190 .minor = MINOR_START, 2191 .nr = ARRAY_SIZE(imx_uart_ports), 2192 .cons = IMX_CONSOLE, 2193 }; 2194 2195 static enum hrtimer_restart imx_trigger_start_tx(struct hrtimer *t) 2196 { 2197 struct imx_port *sport = container_of(t, struct imx_port, trigger_start_tx); 2198 unsigned long flags; 2199 2200 spin_lock_irqsave(&sport->port.lock, flags); 2201 if (sport->tx_state == WAIT_AFTER_RTS) 2202 imx_uart_start_tx(&sport->port); 2203 spin_unlock_irqrestore(&sport->port.lock, flags); 2204 2205 return HRTIMER_NORESTART; 2206 } 2207 2208 static enum hrtimer_restart imx_trigger_stop_tx(struct hrtimer *t) 2209 { 2210 struct imx_port *sport = container_of(t, struct imx_port, trigger_stop_tx); 2211 unsigned long flags; 2212 2213 spin_lock_irqsave(&sport->port.lock, flags); 2214 if (sport->tx_state == WAIT_AFTER_SEND) 2215 imx_uart_stop_tx(&sport->port); 2216 spin_unlock_irqrestore(&sport->port.lock, flags); 2217 2218 return HRTIMER_NORESTART; 2219 } 2220 2221 static const struct serial_rs485 imx_no_rs485 = {}; /* No RS485 if no RTS */ 2222 static const struct serial_rs485 imx_rs485_supported = { 2223 .flags = SER_RS485_ENABLED | SER_RS485_RTS_ON_SEND | SER_RS485_RTS_AFTER_SEND | 2224 SER_RS485_RX_DURING_TX, 2225 .delay_rts_before_send = 1, 2226 .delay_rts_after_send = 1, 2227 }; 2228 2229 /* Default RX DMA buffer configuration */ 2230 #define RX_DMA_PERIODS 16 2231 #define RX_DMA_PERIOD_LEN (PAGE_SIZE / 4) 2232 2233 static int imx_uart_probe(struct platform_device *pdev) 2234 { 2235 struct device_node *np = pdev->dev.of_node; 2236 struct imx_port *sport; 2237 void __iomem *base; 2238 u32 dma_buf_conf[2]; 2239 int ret = 0; 2240 u32 ucr1, ucr2, uts; 2241 struct resource *res; 2242 int txirq, rxirq, rtsirq; 2243 2244 sport = devm_kzalloc(&pdev->dev, sizeof(*sport), GFP_KERNEL); 2245 if (!sport) 2246 return -ENOMEM; 2247 2248 sport->devdata = of_device_get_match_data(&pdev->dev); 2249 2250 ret = of_alias_get_id(np, "serial"); 2251 if (ret < 0) { 2252 dev_err(&pdev->dev, "failed to get alias id, errno %d\n", ret); 2253 return ret; 2254 } 2255 sport->port.line = ret; 2256 2257 if (of_get_property(np, "uart-has-rtscts", NULL) || 2258 of_get_property(np, "fsl,uart-has-rtscts", NULL) /* deprecated */) 2259 sport->have_rtscts = 1; 2260 2261 if (of_get_property(np, "fsl,dte-mode", NULL)) 2262 sport->dte_mode = 1; 2263 2264 if (of_get_property(np, "rts-gpios", NULL)) 2265 sport->have_rtsgpio = 1; 2266 2267 if (of_get_property(np, "fsl,inverted-tx", NULL)) 2268 sport->inverted_tx = 1; 2269 2270 if (of_get_property(np, "fsl,inverted-rx", NULL)) 2271 sport->inverted_rx = 1; 2272 2273 if (!of_property_read_u32_array(np, "fsl,dma-info", dma_buf_conf, 2)) { 2274 sport->rx_period_length = dma_buf_conf[0]; 2275 sport->rx_periods = dma_buf_conf[1]; 2276 } else { 2277 sport->rx_period_length = RX_DMA_PERIOD_LEN; 2278 sport->rx_periods = RX_DMA_PERIODS; 2279 } 2280 2281 if (sport->port.line >= ARRAY_SIZE(imx_uart_ports)) { 2282 dev_err(&pdev->dev, "serial%d out of range\n", 2283 sport->port.line); 2284 return -EINVAL; 2285 } 2286 2287 res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 2288 base = devm_ioremap_resource(&pdev->dev, res); 2289 if (IS_ERR(base)) 2290 return PTR_ERR(base); 2291 2292 rxirq = platform_get_irq(pdev, 0); 2293 if (rxirq < 0) 2294 return rxirq; 2295 txirq = platform_get_irq_optional(pdev, 1); 2296 rtsirq = platform_get_irq_optional(pdev, 2); 2297 2298 sport->port.dev = &pdev->dev; 2299 sport->port.mapbase = res->start; 2300 sport->port.membase = base; 2301 sport->port.type = PORT_IMX; 2302 sport->port.iotype = UPIO_MEM; 2303 sport->port.irq = rxirq; 2304 sport->port.fifosize = 32; 2305 sport->port.has_sysrq = IS_ENABLED(CONFIG_SERIAL_IMX_CONSOLE); 2306 sport->port.ops = &imx_uart_pops; 2307 sport->port.rs485_config = imx_uart_rs485_config; 2308 /* RTS is required to control the RS485 transmitter */ 2309 if (sport->have_rtscts || sport->have_rtsgpio) 2310 sport->port.rs485_supported = imx_rs485_supported; 2311 else 2312 sport->port.rs485_supported = imx_no_rs485; 2313 sport->port.flags = UPF_BOOT_AUTOCONF; 2314 timer_setup(&sport->timer, imx_uart_timeout, 0); 2315 2316 sport->gpios = mctrl_gpio_init(&sport->port, 0); 2317 if (IS_ERR(sport->gpios)) 2318 return PTR_ERR(sport->gpios); 2319 2320 sport->clk_ipg = devm_clk_get(&pdev->dev, "ipg"); 2321 if (IS_ERR(sport->clk_ipg)) { 2322 ret = PTR_ERR(sport->clk_ipg); 2323 dev_err(&pdev->dev, "failed to get ipg clk: %d\n", ret); 2324 return ret; 2325 } 2326 2327 sport->clk_per = devm_clk_get(&pdev->dev, "per"); 2328 if (IS_ERR(sport->clk_per)) { 2329 ret = PTR_ERR(sport->clk_per); 2330 dev_err(&pdev->dev, "failed to get per clk: %d\n", ret); 2331 return ret; 2332 } 2333 2334 sport->port.uartclk = clk_get_rate(sport->clk_per); 2335 2336 /* For register access, we only need to enable the ipg clock. */ 2337 ret = clk_prepare_enable(sport->clk_ipg); 2338 if (ret) { 2339 dev_err(&pdev->dev, "failed to enable per clk: %d\n", ret); 2340 return ret; 2341 } 2342 2343 /* initialize shadow register values */ 2344 sport->ucr1 = readl(sport->port.membase + UCR1); 2345 sport->ucr2 = readl(sport->port.membase + UCR2); 2346 sport->ucr3 = readl(sport->port.membase + UCR3); 2347 sport->ucr4 = readl(sport->port.membase + UCR4); 2348 sport->ufcr = readl(sport->port.membase + UFCR); 2349 2350 ret = uart_get_rs485_mode(&sport->port); 2351 if (ret) { 2352 clk_disable_unprepare(sport->clk_ipg); 2353 return ret; 2354 } 2355 2356 if (sport->port.rs485.flags & SER_RS485_ENABLED && 2357 (!sport->have_rtscts && !sport->have_rtsgpio)) 2358 dev_err(&pdev->dev, "no RTS control, disabling rs485\n"); 2359 2360 /* 2361 * If using the i.MX UART RTS/CTS control then the RTS (CTS_B) 2362 * signal cannot be set low during transmission in case the 2363 * receiver is off (limitation of the i.MX UART IP). 2364 */ 2365 if (sport->port.rs485.flags & SER_RS485_ENABLED && 2366 sport->have_rtscts && !sport->have_rtsgpio && 2367 (!(sport->port.rs485.flags & SER_RS485_RTS_ON_SEND) && 2368 !(sport->port.rs485.flags & SER_RS485_RX_DURING_TX))) 2369 dev_err(&pdev->dev, 2370 "low-active RTS not possible when receiver is off, enabling receiver\n"); 2371 2372 /* Disable interrupts before requesting them */ 2373 ucr1 = imx_uart_readl(sport, UCR1); 2374 ucr1 &= ~(UCR1_ADEN | UCR1_TRDYEN | UCR1_IDEN | UCR1_RRDYEN | UCR1_RTSDEN); 2375 imx_uart_writel(sport, ucr1, UCR1); 2376 2377 /* 2378 * In case RS485 is enabled without GPIO RTS control, the UART IP 2379 * is used to control CTS signal. Keep both the UART and Receiver 2380 * enabled, otherwise the UART IP pulls CTS signal always HIGH no 2381 * matter how the UCR2 CTSC and CTS bits are set. To prevent any 2382 * data from being fed into the RX FIFO, enable loopback mode in 2383 * UTS register, which disconnects the RX path from external RXD 2384 * pin and connects it to the Transceiver, which is disabled, so 2385 * no data can be fed to the RX FIFO that way. 2386 */ 2387 if (sport->port.rs485.flags & SER_RS485_ENABLED && 2388 sport->have_rtscts && !sport->have_rtsgpio) { 2389 uts = imx_uart_readl(sport, imx_uart_uts_reg(sport)); 2390 uts |= UTS_LOOP; 2391 imx_uart_writel(sport, uts, imx_uart_uts_reg(sport)); 2392 2393 ucr1 = imx_uart_readl(sport, UCR1); 2394 ucr1 |= UCR1_UARTEN; 2395 imx_uart_writel(sport, ucr1, UCR1); 2396 2397 ucr2 = imx_uart_readl(sport, UCR2); 2398 ucr2 |= UCR2_RXEN; 2399 imx_uart_writel(sport, ucr2, UCR2); 2400 } 2401 2402 if (!imx_uart_is_imx1(sport) && sport->dte_mode) { 2403 /* 2404 * The DCEDTE bit changes the direction of DSR, DCD, DTR and RI 2405 * and influences if UCR3_RI and UCR3_DCD changes the level of RI 2406 * and DCD (when they are outputs) or enables the respective 2407 * irqs. So set this bit early, i.e. before requesting irqs. 2408 */ 2409 u32 ufcr = imx_uart_readl(sport, UFCR); 2410 if (!(ufcr & UFCR_DCEDTE)) 2411 imx_uart_writel(sport, ufcr | UFCR_DCEDTE, UFCR); 2412 2413 /* 2414 * Disable UCR3_RI and UCR3_DCD irqs. They are also not 2415 * enabled later because they cannot be cleared 2416 * (confirmed on i.MX25) which makes them unusable. 2417 */ 2418 imx_uart_writel(sport, 2419 IMX21_UCR3_RXDMUXSEL | UCR3_ADNIMP | UCR3_DSR, 2420 UCR3); 2421 2422 } else { 2423 u32 ucr3 = UCR3_DSR; 2424 u32 ufcr = imx_uart_readl(sport, UFCR); 2425 if (ufcr & UFCR_DCEDTE) 2426 imx_uart_writel(sport, ufcr & ~UFCR_DCEDTE, UFCR); 2427 2428 if (!imx_uart_is_imx1(sport)) 2429 ucr3 |= IMX21_UCR3_RXDMUXSEL | UCR3_ADNIMP; 2430 imx_uart_writel(sport, ucr3, UCR3); 2431 } 2432 2433 clk_disable_unprepare(sport->clk_ipg); 2434 2435 hrtimer_init(&sport->trigger_start_tx, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 2436 hrtimer_init(&sport->trigger_stop_tx, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 2437 sport->trigger_start_tx.function = imx_trigger_start_tx; 2438 sport->trigger_stop_tx.function = imx_trigger_stop_tx; 2439 2440 /* 2441 * Allocate the IRQ(s) i.MX1 has three interrupts whereas later 2442 * chips only have one interrupt. 2443 */ 2444 if (txirq > 0) { 2445 ret = devm_request_irq(&pdev->dev, rxirq, imx_uart_rxint, 0, 2446 dev_name(&pdev->dev), sport); 2447 if (ret) { 2448 dev_err(&pdev->dev, "failed to request rx irq: %d\n", 2449 ret); 2450 return ret; 2451 } 2452 2453 ret = devm_request_irq(&pdev->dev, txirq, imx_uart_txint, 0, 2454 dev_name(&pdev->dev), sport); 2455 if (ret) { 2456 dev_err(&pdev->dev, "failed to request tx irq: %d\n", 2457 ret); 2458 return ret; 2459 } 2460 2461 ret = devm_request_irq(&pdev->dev, rtsirq, imx_uart_rtsint, 0, 2462 dev_name(&pdev->dev), sport); 2463 if (ret) { 2464 dev_err(&pdev->dev, "failed to request rts irq: %d\n", 2465 ret); 2466 return ret; 2467 } 2468 } else { 2469 ret = devm_request_irq(&pdev->dev, rxirq, imx_uart_int, 0, 2470 dev_name(&pdev->dev), sport); 2471 if (ret) { 2472 dev_err(&pdev->dev, "failed to request irq: %d\n", ret); 2473 return ret; 2474 } 2475 } 2476 2477 imx_uart_ports[sport->port.line] = sport; 2478 2479 platform_set_drvdata(pdev, sport); 2480 2481 return uart_add_one_port(&imx_uart_uart_driver, &sport->port); 2482 } 2483 2484 static int imx_uart_remove(struct platform_device *pdev) 2485 { 2486 struct imx_port *sport = platform_get_drvdata(pdev); 2487 2488 return uart_remove_one_port(&imx_uart_uart_driver, &sport->port); 2489 } 2490 2491 static void imx_uart_restore_context(struct imx_port *sport) 2492 { 2493 unsigned long flags; 2494 2495 spin_lock_irqsave(&sport->port.lock, flags); 2496 if (!sport->context_saved) { 2497 spin_unlock_irqrestore(&sport->port.lock, flags); 2498 return; 2499 } 2500 2501 imx_uart_writel(sport, sport->saved_reg[4], UFCR); 2502 imx_uart_writel(sport, sport->saved_reg[5], UESC); 2503 imx_uart_writel(sport, sport->saved_reg[6], UTIM); 2504 imx_uart_writel(sport, sport->saved_reg[7], UBIR); 2505 imx_uart_writel(sport, sport->saved_reg[8], UBMR); 2506 imx_uart_writel(sport, sport->saved_reg[9], IMX21_UTS); 2507 imx_uart_writel(sport, sport->saved_reg[0], UCR1); 2508 imx_uart_writel(sport, sport->saved_reg[1] | UCR2_SRST, UCR2); 2509 imx_uart_writel(sport, sport->saved_reg[2], UCR3); 2510 imx_uart_writel(sport, sport->saved_reg[3], UCR4); 2511 sport->context_saved = false; 2512 spin_unlock_irqrestore(&sport->port.lock, flags); 2513 } 2514 2515 static void imx_uart_save_context(struct imx_port *sport) 2516 { 2517 unsigned long flags; 2518 2519 /* Save necessary regs */ 2520 spin_lock_irqsave(&sport->port.lock, flags); 2521 sport->saved_reg[0] = imx_uart_readl(sport, UCR1); 2522 sport->saved_reg[1] = imx_uart_readl(sport, UCR2); 2523 sport->saved_reg[2] = imx_uart_readl(sport, UCR3); 2524 sport->saved_reg[3] = imx_uart_readl(sport, UCR4); 2525 sport->saved_reg[4] = imx_uart_readl(sport, UFCR); 2526 sport->saved_reg[5] = imx_uart_readl(sport, UESC); 2527 sport->saved_reg[6] = imx_uart_readl(sport, UTIM); 2528 sport->saved_reg[7] = imx_uart_readl(sport, UBIR); 2529 sport->saved_reg[8] = imx_uart_readl(sport, UBMR); 2530 sport->saved_reg[9] = imx_uart_readl(sport, IMX21_UTS); 2531 sport->context_saved = true; 2532 spin_unlock_irqrestore(&sport->port.lock, flags); 2533 } 2534 2535 static void imx_uart_enable_wakeup(struct imx_port *sport, bool on) 2536 { 2537 u32 ucr3; 2538 2539 ucr3 = imx_uart_readl(sport, UCR3); 2540 if (on) { 2541 imx_uart_writel(sport, USR1_AWAKE, USR1); 2542 ucr3 |= UCR3_AWAKEN; 2543 } else { 2544 ucr3 &= ~UCR3_AWAKEN; 2545 } 2546 imx_uart_writel(sport, ucr3, UCR3); 2547 2548 if (sport->have_rtscts) { 2549 u32 ucr1 = imx_uart_readl(sport, UCR1); 2550 if (on) { 2551 imx_uart_writel(sport, USR1_RTSD, USR1); 2552 ucr1 |= UCR1_RTSDEN; 2553 } else { 2554 ucr1 &= ~UCR1_RTSDEN; 2555 } 2556 imx_uart_writel(sport, ucr1, UCR1); 2557 } 2558 } 2559 2560 static int imx_uart_suspend_noirq(struct device *dev) 2561 { 2562 struct imx_port *sport = dev_get_drvdata(dev); 2563 2564 imx_uart_save_context(sport); 2565 2566 clk_disable(sport->clk_ipg); 2567 2568 pinctrl_pm_select_sleep_state(dev); 2569 2570 return 0; 2571 } 2572 2573 static int imx_uart_resume_noirq(struct device *dev) 2574 { 2575 struct imx_port *sport = dev_get_drvdata(dev); 2576 int ret; 2577 2578 pinctrl_pm_select_default_state(dev); 2579 2580 ret = clk_enable(sport->clk_ipg); 2581 if (ret) 2582 return ret; 2583 2584 imx_uart_restore_context(sport); 2585 2586 return 0; 2587 } 2588 2589 static int imx_uart_suspend(struct device *dev) 2590 { 2591 struct imx_port *sport = dev_get_drvdata(dev); 2592 int ret; 2593 2594 uart_suspend_port(&imx_uart_uart_driver, &sport->port); 2595 disable_irq(sport->port.irq); 2596 2597 ret = clk_prepare_enable(sport->clk_ipg); 2598 if (ret) 2599 return ret; 2600 2601 /* enable wakeup from i.MX UART */ 2602 imx_uart_enable_wakeup(sport, true); 2603 2604 return 0; 2605 } 2606 2607 static int imx_uart_resume(struct device *dev) 2608 { 2609 struct imx_port *sport = dev_get_drvdata(dev); 2610 2611 /* disable wakeup from i.MX UART */ 2612 imx_uart_enable_wakeup(sport, false); 2613 2614 uart_resume_port(&imx_uart_uart_driver, &sport->port); 2615 enable_irq(sport->port.irq); 2616 2617 clk_disable_unprepare(sport->clk_ipg); 2618 2619 return 0; 2620 } 2621 2622 static int imx_uart_freeze(struct device *dev) 2623 { 2624 struct imx_port *sport = dev_get_drvdata(dev); 2625 2626 uart_suspend_port(&imx_uart_uart_driver, &sport->port); 2627 2628 return clk_prepare_enable(sport->clk_ipg); 2629 } 2630 2631 static int imx_uart_thaw(struct device *dev) 2632 { 2633 struct imx_port *sport = dev_get_drvdata(dev); 2634 2635 uart_resume_port(&imx_uart_uart_driver, &sport->port); 2636 2637 clk_disable_unprepare(sport->clk_ipg); 2638 2639 return 0; 2640 } 2641 2642 static const struct dev_pm_ops imx_uart_pm_ops = { 2643 .suspend_noirq = imx_uart_suspend_noirq, 2644 .resume_noirq = imx_uart_resume_noirq, 2645 .freeze_noirq = imx_uart_suspend_noirq, 2646 .thaw_noirq = imx_uart_resume_noirq, 2647 .restore_noirq = imx_uart_resume_noirq, 2648 .suspend = imx_uart_suspend, 2649 .resume = imx_uart_resume, 2650 .freeze = imx_uart_freeze, 2651 .thaw = imx_uart_thaw, 2652 .restore = imx_uart_thaw, 2653 }; 2654 2655 static struct platform_driver imx_uart_platform_driver = { 2656 .probe = imx_uart_probe, 2657 .remove = imx_uart_remove, 2658 2659 .driver = { 2660 .name = "imx-uart", 2661 .of_match_table = imx_uart_dt_ids, 2662 .pm = &imx_uart_pm_ops, 2663 }, 2664 }; 2665 2666 static int __init imx_uart_init(void) 2667 { 2668 int ret = uart_register_driver(&imx_uart_uart_driver); 2669 2670 if (ret) 2671 return ret; 2672 2673 ret = platform_driver_register(&imx_uart_platform_driver); 2674 if (ret != 0) 2675 uart_unregister_driver(&imx_uart_uart_driver); 2676 2677 return ret; 2678 } 2679 2680 static void __exit imx_uart_exit(void) 2681 { 2682 platform_driver_unregister(&imx_uart_platform_driver); 2683 uart_unregister_driver(&imx_uart_uart_driver); 2684 } 2685 2686 module_init(imx_uart_init); 2687 module_exit(imx_uart_exit); 2688 2689 MODULE_AUTHOR("Sascha Hauer"); 2690 MODULE_DESCRIPTION("IMX generic serial port driver"); 2691 MODULE_LICENSE("GPL"); 2692 MODULE_ALIAS("platform:imx-uart"); 2693