xref: /openbmc/linux/drivers/tty/serial/imx.c (revision b1c3d2be)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Driver for Motorola/Freescale IMX serial ports
4  *
5  * Based on drivers/char/serial.c, by Linus Torvalds, Theodore Ts'o.
6  *
7  * Author: Sascha Hauer <sascha@saschahauer.de>
8  * Copyright (C) 2004 Pengutronix
9  */
10 
11 #include <linux/module.h>
12 #include <linux/ioport.h>
13 #include <linux/init.h>
14 #include <linux/console.h>
15 #include <linux/sysrq.h>
16 #include <linux/platform_device.h>
17 #include <linux/tty.h>
18 #include <linux/tty_flip.h>
19 #include <linux/serial_core.h>
20 #include <linux/serial.h>
21 #include <linux/clk.h>
22 #include <linux/delay.h>
23 #include <linux/ktime.h>
24 #include <linux/pinctrl/consumer.h>
25 #include <linux/rational.h>
26 #include <linux/slab.h>
27 #include <linux/of.h>
28 #include <linux/of_device.h>
29 #include <linux/io.h>
30 #include <linux/dma-mapping.h>
31 
32 #include <asm/irq.h>
33 #include <linux/dma/imx-dma.h>
34 
35 #include "serial_mctrl_gpio.h"
36 
37 /* Register definitions */
38 #define URXD0 0x0  /* Receiver Register */
39 #define URTX0 0x40 /* Transmitter Register */
40 #define UCR1  0x80 /* Control Register 1 */
41 #define UCR2  0x84 /* Control Register 2 */
42 #define UCR3  0x88 /* Control Register 3 */
43 #define UCR4  0x8c /* Control Register 4 */
44 #define UFCR  0x90 /* FIFO Control Register */
45 #define USR1  0x94 /* Status Register 1 */
46 #define USR2  0x98 /* Status Register 2 */
47 #define UESC  0x9c /* Escape Character Register */
48 #define UTIM  0xa0 /* Escape Timer Register */
49 #define UBIR  0xa4 /* BRM Incremental Register */
50 #define UBMR  0xa8 /* BRM Modulator Register */
51 #define UBRC  0xac /* Baud Rate Count Register */
52 #define IMX21_ONEMS 0xb0 /* One Millisecond register */
53 #define IMX1_UTS 0xd0 /* UART Test Register on i.mx1 */
54 #define IMX21_UTS 0xb4 /* UART Test Register on all other i.mx*/
55 
56 /* UART Control Register Bit Fields.*/
57 #define URXD_DUMMY_READ (1<<16)
58 #define URXD_CHARRDY	(1<<15)
59 #define URXD_ERR	(1<<14)
60 #define URXD_OVRRUN	(1<<13)
61 #define URXD_FRMERR	(1<<12)
62 #define URXD_BRK	(1<<11)
63 #define URXD_PRERR	(1<<10)
64 #define URXD_RX_DATA	(0xFF<<0)
65 #define UCR1_ADEN	(1<<15) /* Auto detect interrupt */
66 #define UCR1_ADBR	(1<<14) /* Auto detect baud rate */
67 #define UCR1_TRDYEN	(1<<13) /* Transmitter ready interrupt enable */
68 #define UCR1_IDEN	(1<<12) /* Idle condition interrupt */
69 #define UCR1_ICD_REG(x) (((x) & 3) << 10) /* idle condition detect */
70 #define UCR1_RRDYEN	(1<<9)	/* Recv ready interrupt enable */
71 #define UCR1_RXDMAEN	(1<<8)	/* Recv ready DMA enable */
72 #define UCR1_IREN	(1<<7)	/* Infrared interface enable */
73 #define UCR1_TXMPTYEN	(1<<6)	/* Transimitter empty interrupt enable */
74 #define UCR1_RTSDEN	(1<<5)	/* RTS delta interrupt enable */
75 #define UCR1_SNDBRK	(1<<4)	/* Send break */
76 #define UCR1_TXDMAEN	(1<<3)	/* Transmitter ready DMA enable */
77 #define IMX1_UCR1_UARTCLKEN (1<<2) /* UART clock enabled, i.mx1 only */
78 #define UCR1_ATDMAEN    (1<<2)  /* Aging DMA Timer Enable */
79 #define UCR1_DOZE	(1<<1)	/* Doze */
80 #define UCR1_UARTEN	(1<<0)	/* UART enabled */
81 #define UCR2_ESCI	(1<<15)	/* Escape seq interrupt enable */
82 #define UCR2_IRTS	(1<<14)	/* Ignore RTS pin */
83 #define UCR2_CTSC	(1<<13)	/* CTS pin control */
84 #define UCR2_CTS	(1<<12)	/* Clear to send */
85 #define UCR2_ESCEN	(1<<11)	/* Escape enable */
86 #define UCR2_PREN	(1<<8)	/* Parity enable */
87 #define UCR2_PROE	(1<<7)	/* Parity odd/even */
88 #define UCR2_STPB	(1<<6)	/* Stop */
89 #define UCR2_WS		(1<<5)	/* Word size */
90 #define UCR2_RTSEN	(1<<4)	/* Request to send interrupt enable */
91 #define UCR2_ATEN	(1<<3)	/* Aging Timer Enable */
92 #define UCR2_TXEN	(1<<2)	/* Transmitter enabled */
93 #define UCR2_RXEN	(1<<1)	/* Receiver enabled */
94 #define UCR2_SRST	(1<<0)	/* SW reset */
95 #define UCR3_DTREN	(1<<13) /* DTR interrupt enable */
96 #define UCR3_PARERREN	(1<<12) /* Parity enable */
97 #define UCR3_FRAERREN	(1<<11) /* Frame error interrupt enable */
98 #define UCR3_DSR	(1<<10) /* Data set ready */
99 #define UCR3_DCD	(1<<9)	/* Data carrier detect */
100 #define UCR3_RI		(1<<8)	/* Ring indicator */
101 #define UCR3_ADNIMP	(1<<7)	/* Autobaud Detection Not Improved */
102 #define UCR3_RXDSEN	(1<<6)	/* Receive status interrupt enable */
103 #define UCR3_AIRINTEN	(1<<5)	/* Async IR wake interrupt enable */
104 #define UCR3_AWAKEN	(1<<4)	/* Async wake interrupt enable */
105 #define UCR3_DTRDEN	(1<<3)	/* Data Terminal Ready Delta Enable. */
106 #define IMX21_UCR3_RXDMUXSEL	(1<<2)	/* RXD Muxed Input Select */
107 #define UCR3_INVT	(1<<1)	/* Inverted Infrared transmission */
108 #define UCR3_BPEN	(1<<0)	/* Preset registers enable */
109 #define UCR4_CTSTL_SHF	10	/* CTS trigger level shift */
110 #define UCR4_CTSTL_MASK	0x3F	/* CTS trigger is 6 bits wide */
111 #define UCR4_INVR	(1<<9)	/* Inverted infrared reception */
112 #define UCR4_ENIRI	(1<<8)	/* Serial infrared interrupt enable */
113 #define UCR4_WKEN	(1<<7)	/* Wake interrupt enable */
114 #define UCR4_REF16	(1<<6)	/* Ref freq 16 MHz */
115 #define UCR4_IDDMAEN    (1<<6)  /* DMA IDLE Condition Detected */
116 #define UCR4_IRSC	(1<<5)	/* IR special case */
117 #define UCR4_TCEN	(1<<3)	/* Transmit complete interrupt enable */
118 #define UCR4_BKEN	(1<<2)	/* Break condition interrupt enable */
119 #define UCR4_OREN	(1<<1)	/* Receiver overrun interrupt enable */
120 #define UCR4_DREN	(1<<0)	/* Recv data ready interrupt enable */
121 #define UFCR_RXTL_SHF	0	/* Receiver trigger level shift */
122 #define UFCR_DCEDTE	(1<<6)	/* DCE/DTE mode select */
123 #define UFCR_RFDIV	(7<<7)	/* Reference freq divider mask */
124 #define UFCR_RFDIV_REG(x)	(((x) < 7 ? 6 - (x) : 6) << 7)
125 #define UFCR_TXTL_SHF	10	/* Transmitter trigger level shift */
126 #define USR1_PARITYERR	(1<<15) /* Parity error interrupt flag */
127 #define USR1_RTSS	(1<<14) /* RTS pin status */
128 #define USR1_TRDY	(1<<13) /* Transmitter ready interrupt/dma flag */
129 #define USR1_RTSD	(1<<12) /* RTS delta */
130 #define USR1_ESCF	(1<<11) /* Escape seq interrupt flag */
131 #define USR1_FRAMERR	(1<<10) /* Frame error interrupt flag */
132 #define USR1_RRDY	(1<<9)	 /* Receiver ready interrupt/dma flag */
133 #define USR1_AGTIM	(1<<8)	 /* Ageing timer interrupt flag */
134 #define USR1_DTRD	(1<<7)	 /* DTR Delta */
135 #define USR1_RXDS	 (1<<6)	 /* Receiver idle interrupt flag */
136 #define USR1_AIRINT	 (1<<5)	 /* Async IR wake interrupt flag */
137 #define USR1_AWAKE	 (1<<4)	 /* Aysnc wake interrupt flag */
138 #define USR2_ADET	 (1<<15) /* Auto baud rate detect complete */
139 #define USR2_TXFE	 (1<<14) /* Transmit buffer FIFO empty */
140 #define USR2_DTRF	 (1<<13) /* DTR edge interrupt flag */
141 #define USR2_IDLE	 (1<<12) /* Idle condition */
142 #define USR2_RIDELT	 (1<<10) /* Ring Interrupt Delta */
143 #define USR2_RIIN	 (1<<9)	 /* Ring Indicator Input */
144 #define USR2_IRINT	 (1<<8)	 /* Serial infrared interrupt flag */
145 #define USR2_WAKE	 (1<<7)	 /* Wake */
146 #define USR2_DCDIN	 (1<<5)	 /* Data Carrier Detect Input */
147 #define USR2_RTSF	 (1<<4)	 /* RTS edge interrupt flag */
148 #define USR2_TXDC	 (1<<3)	 /* Transmitter complete */
149 #define USR2_BRCD	 (1<<2)	 /* Break condition */
150 #define USR2_ORE	(1<<1)	 /* Overrun error */
151 #define USR2_RDR	(1<<0)	 /* Recv data ready */
152 #define UTS_FRCPERR	(1<<13) /* Force parity error */
153 #define UTS_LOOP	(1<<12)	 /* Loop tx and rx */
154 #define UTS_TXEMPTY	 (1<<6)	 /* TxFIFO empty */
155 #define UTS_RXEMPTY	 (1<<5)	 /* RxFIFO empty */
156 #define UTS_TXFULL	 (1<<4)	 /* TxFIFO full */
157 #define UTS_RXFULL	 (1<<3)	 /* RxFIFO full */
158 #define UTS_SOFTRST	 (1<<0)	 /* Software reset */
159 
160 /* We've been assigned a range on the "Low-density serial ports" major */
161 #define SERIAL_IMX_MAJOR	207
162 #define MINOR_START		16
163 #define DEV_NAME		"ttymxc"
164 
165 /*
166  * This determines how often we check the modem status signals
167  * for any change.  They generally aren't connected to an IRQ
168  * so we have to poll them.  We also check immediately before
169  * filling the TX fifo incase CTS has been dropped.
170  */
171 #define MCTRL_TIMEOUT	(250*HZ/1000)
172 
173 #define DRIVER_NAME "IMX-uart"
174 
175 #define UART_NR 8
176 
177 /* i.MX21 type uart runs on all i.mx except i.MX1 and i.MX6q */
178 enum imx_uart_type {
179 	IMX1_UART,
180 	IMX21_UART,
181 	IMX53_UART,
182 	IMX6Q_UART,
183 };
184 
185 /* device type dependent stuff */
186 struct imx_uart_data {
187 	unsigned uts_reg;
188 	enum imx_uart_type devtype;
189 };
190 
191 enum imx_tx_state {
192 	OFF,
193 	WAIT_AFTER_RTS,
194 	SEND,
195 	WAIT_AFTER_SEND,
196 };
197 
198 struct imx_port {
199 	struct uart_port	port;
200 	struct timer_list	timer;
201 	unsigned int		old_status;
202 	unsigned int		have_rtscts:1;
203 	unsigned int		have_rtsgpio:1;
204 	unsigned int		dte_mode:1;
205 	unsigned int		inverted_tx:1;
206 	unsigned int		inverted_rx:1;
207 	struct clk		*clk_ipg;
208 	struct clk		*clk_per;
209 	const struct imx_uart_data *devdata;
210 
211 	struct mctrl_gpios *gpios;
212 
213 	/* shadow registers */
214 	unsigned int ucr1;
215 	unsigned int ucr2;
216 	unsigned int ucr3;
217 	unsigned int ucr4;
218 	unsigned int ufcr;
219 
220 	/* DMA fields */
221 	unsigned int		dma_is_enabled:1;
222 	unsigned int		dma_is_rxing:1;
223 	unsigned int		dma_is_txing:1;
224 	struct dma_chan		*dma_chan_rx, *dma_chan_tx;
225 	struct scatterlist	rx_sgl, tx_sgl[2];
226 	void			*rx_buf;
227 	struct circ_buf		rx_ring;
228 	unsigned int		rx_buf_size;
229 	unsigned int		rx_period_length;
230 	unsigned int		rx_periods;
231 	dma_cookie_t		rx_cookie;
232 	unsigned int		tx_bytes;
233 	unsigned int		dma_tx_nents;
234 	unsigned int            saved_reg[10];
235 	bool			context_saved;
236 
237 	enum imx_tx_state	tx_state;
238 	struct hrtimer		trigger_start_tx;
239 	struct hrtimer		trigger_stop_tx;
240 };
241 
242 struct imx_port_ucrs {
243 	unsigned int	ucr1;
244 	unsigned int	ucr2;
245 	unsigned int	ucr3;
246 };
247 
248 static struct imx_uart_data imx_uart_devdata[] = {
249 	[IMX1_UART] = {
250 		.uts_reg = IMX1_UTS,
251 		.devtype = IMX1_UART,
252 	},
253 	[IMX21_UART] = {
254 		.uts_reg = IMX21_UTS,
255 		.devtype = IMX21_UART,
256 	},
257 	[IMX53_UART] = {
258 		.uts_reg = IMX21_UTS,
259 		.devtype = IMX53_UART,
260 	},
261 	[IMX6Q_UART] = {
262 		.uts_reg = IMX21_UTS,
263 		.devtype = IMX6Q_UART,
264 	},
265 };
266 
267 static const struct of_device_id imx_uart_dt_ids[] = {
268 	{ .compatible = "fsl,imx6q-uart", .data = &imx_uart_devdata[IMX6Q_UART], },
269 	{ .compatible = "fsl,imx53-uart", .data = &imx_uart_devdata[IMX53_UART], },
270 	{ .compatible = "fsl,imx1-uart", .data = &imx_uart_devdata[IMX1_UART], },
271 	{ .compatible = "fsl,imx21-uart", .data = &imx_uart_devdata[IMX21_UART], },
272 	{ /* sentinel */ }
273 };
274 MODULE_DEVICE_TABLE(of, imx_uart_dt_ids);
275 
276 static void imx_uart_writel(struct imx_port *sport, u32 val, u32 offset)
277 {
278 	switch (offset) {
279 	case UCR1:
280 		sport->ucr1 = val;
281 		break;
282 	case UCR2:
283 		sport->ucr2 = val;
284 		break;
285 	case UCR3:
286 		sport->ucr3 = val;
287 		break;
288 	case UCR4:
289 		sport->ucr4 = val;
290 		break;
291 	case UFCR:
292 		sport->ufcr = val;
293 		break;
294 	default:
295 		break;
296 	}
297 	writel(val, sport->port.membase + offset);
298 }
299 
300 static u32 imx_uart_readl(struct imx_port *sport, u32 offset)
301 {
302 	switch (offset) {
303 	case UCR1:
304 		return sport->ucr1;
305 		break;
306 	case UCR2:
307 		/*
308 		 * UCR2_SRST is the only bit in the cached registers that might
309 		 * differ from the value that was last written. As it only
310 		 * automatically becomes one after being cleared, reread
311 		 * conditionally.
312 		 */
313 		if (!(sport->ucr2 & UCR2_SRST))
314 			sport->ucr2 = readl(sport->port.membase + offset);
315 		return sport->ucr2;
316 		break;
317 	case UCR3:
318 		return sport->ucr3;
319 		break;
320 	case UCR4:
321 		return sport->ucr4;
322 		break;
323 	case UFCR:
324 		return sport->ufcr;
325 		break;
326 	default:
327 		return readl(sport->port.membase + offset);
328 	}
329 }
330 
331 static inline unsigned imx_uart_uts_reg(struct imx_port *sport)
332 {
333 	return sport->devdata->uts_reg;
334 }
335 
336 static inline int imx_uart_is_imx1(struct imx_port *sport)
337 {
338 	return sport->devdata->devtype == IMX1_UART;
339 }
340 
341 static inline int imx_uart_is_imx21(struct imx_port *sport)
342 {
343 	return sport->devdata->devtype == IMX21_UART;
344 }
345 
346 static inline int imx_uart_is_imx53(struct imx_port *sport)
347 {
348 	return sport->devdata->devtype == IMX53_UART;
349 }
350 
351 static inline int imx_uart_is_imx6q(struct imx_port *sport)
352 {
353 	return sport->devdata->devtype == IMX6Q_UART;
354 }
355 /*
356  * Save and restore functions for UCR1, UCR2 and UCR3 registers
357  */
358 #if IS_ENABLED(CONFIG_SERIAL_IMX_CONSOLE)
359 static void imx_uart_ucrs_save(struct imx_port *sport,
360 			       struct imx_port_ucrs *ucr)
361 {
362 	/* save control registers */
363 	ucr->ucr1 = imx_uart_readl(sport, UCR1);
364 	ucr->ucr2 = imx_uart_readl(sport, UCR2);
365 	ucr->ucr3 = imx_uart_readl(sport, UCR3);
366 }
367 
368 static void imx_uart_ucrs_restore(struct imx_port *sport,
369 				  struct imx_port_ucrs *ucr)
370 {
371 	/* restore control registers */
372 	imx_uart_writel(sport, ucr->ucr1, UCR1);
373 	imx_uart_writel(sport, ucr->ucr2, UCR2);
374 	imx_uart_writel(sport, ucr->ucr3, UCR3);
375 }
376 #endif
377 
378 /* called with port.lock taken and irqs caller dependent */
379 static void imx_uart_rts_active(struct imx_port *sport, u32 *ucr2)
380 {
381 	*ucr2 &= ~(UCR2_CTSC | UCR2_CTS);
382 
383 	mctrl_gpio_set(sport->gpios, sport->port.mctrl | TIOCM_RTS);
384 }
385 
386 /* called with port.lock taken and irqs caller dependent */
387 static void imx_uart_rts_inactive(struct imx_port *sport, u32 *ucr2)
388 {
389 	*ucr2 &= ~UCR2_CTSC;
390 	*ucr2 |= UCR2_CTS;
391 
392 	mctrl_gpio_set(sport->gpios, sport->port.mctrl & ~TIOCM_RTS);
393 }
394 
395 static void start_hrtimer_ms(struct hrtimer *hrt, unsigned long msec)
396 {
397        hrtimer_start(hrt, ms_to_ktime(msec), HRTIMER_MODE_REL);
398 }
399 
400 /* called with port.lock taken and irqs off */
401 static void imx_uart_start_rx(struct uart_port *port)
402 {
403 	struct imx_port *sport = (struct imx_port *)port;
404 	unsigned int ucr1, ucr2;
405 
406 	ucr1 = imx_uart_readl(sport, UCR1);
407 	ucr2 = imx_uart_readl(sport, UCR2);
408 
409 	ucr2 |= UCR2_RXEN;
410 
411 	if (sport->dma_is_enabled) {
412 		ucr1 |= UCR1_RXDMAEN | UCR1_ATDMAEN;
413 	} else {
414 		ucr1 |= UCR1_RRDYEN;
415 		ucr2 |= UCR2_ATEN;
416 	}
417 
418 	/* Write UCR2 first as it includes RXEN */
419 	imx_uart_writel(sport, ucr2, UCR2);
420 	imx_uart_writel(sport, ucr1, UCR1);
421 }
422 
423 /* called with port.lock taken and irqs off */
424 static void imx_uart_stop_tx(struct uart_port *port)
425 {
426 	struct imx_port *sport = (struct imx_port *)port;
427 	u32 ucr1, ucr4, usr2;
428 
429 	if (sport->tx_state == OFF)
430 		return;
431 
432 	/*
433 	 * We are maybe in the SMP context, so if the DMA TX thread is running
434 	 * on other cpu, we have to wait for it to finish.
435 	 */
436 	if (sport->dma_is_txing)
437 		return;
438 
439 	ucr1 = imx_uart_readl(sport, UCR1);
440 	imx_uart_writel(sport, ucr1 & ~UCR1_TRDYEN, UCR1);
441 
442 	usr2 = imx_uart_readl(sport, USR2);
443 	if (!(usr2 & USR2_TXDC)) {
444 		/* The shifter is still busy, so retry once TC triggers */
445 		return;
446 	}
447 
448 	ucr4 = imx_uart_readl(sport, UCR4);
449 	ucr4 &= ~UCR4_TCEN;
450 	imx_uart_writel(sport, ucr4, UCR4);
451 
452 	/* in rs485 mode disable transmitter */
453 	if (port->rs485.flags & SER_RS485_ENABLED) {
454 		if (sport->tx_state == SEND) {
455 			sport->tx_state = WAIT_AFTER_SEND;
456 
457 			if (port->rs485.delay_rts_after_send > 0) {
458 				start_hrtimer_ms(&sport->trigger_stop_tx,
459 					 port->rs485.delay_rts_after_send);
460 				return;
461 			}
462 
463 			/* continue without any delay */
464 		}
465 
466 		if (sport->tx_state == WAIT_AFTER_RTS ||
467 		    sport->tx_state == WAIT_AFTER_SEND) {
468 			u32 ucr2;
469 
470 			hrtimer_try_to_cancel(&sport->trigger_start_tx);
471 
472 			ucr2 = imx_uart_readl(sport, UCR2);
473 			if (port->rs485.flags & SER_RS485_RTS_AFTER_SEND)
474 				imx_uart_rts_active(sport, &ucr2);
475 			else
476 				imx_uart_rts_inactive(sport, &ucr2);
477 			imx_uart_writel(sport, ucr2, UCR2);
478 
479 			imx_uart_start_rx(port);
480 
481 			sport->tx_state = OFF;
482 		}
483 	} else {
484 		sport->tx_state = OFF;
485 	}
486 }
487 
488 /* called with port.lock taken and irqs off */
489 static void imx_uart_stop_rx(struct uart_port *port)
490 {
491 	struct imx_port *sport = (struct imx_port *)port;
492 	u32 ucr1, ucr2, ucr4, uts;
493 
494 	ucr1 = imx_uart_readl(sport, UCR1);
495 	ucr2 = imx_uart_readl(sport, UCR2);
496 	ucr4 = imx_uart_readl(sport, UCR4);
497 
498 	if (sport->dma_is_enabled) {
499 		ucr1 &= ~(UCR1_RXDMAEN | UCR1_ATDMAEN);
500 	} else {
501 		ucr1 &= ~UCR1_RRDYEN;
502 		ucr2 &= ~UCR2_ATEN;
503 		ucr4 &= ~UCR4_OREN;
504 	}
505 	imx_uart_writel(sport, ucr1, UCR1);
506 	imx_uart_writel(sport, ucr4, UCR4);
507 
508 	/* See SER_RS485_ENABLED/UTS_LOOP comment in imx_uart_probe() */
509 	if (port->rs485.flags & SER_RS485_ENABLED &&
510 	    port->rs485.flags & SER_RS485_RTS_ON_SEND &&
511 	    sport->have_rtscts && !sport->have_rtsgpio) {
512 		uts = imx_uart_readl(sport, imx_uart_uts_reg(sport));
513 		uts |= UTS_LOOP;
514 		imx_uart_writel(sport, uts, imx_uart_uts_reg(sport));
515 		ucr2 |= UCR2_RXEN;
516 	} else {
517 		ucr2 &= ~UCR2_RXEN;
518 	}
519 
520 	imx_uart_writel(sport, ucr2, UCR2);
521 }
522 
523 /* called with port.lock taken and irqs off */
524 static void imx_uart_enable_ms(struct uart_port *port)
525 {
526 	struct imx_port *sport = (struct imx_port *)port;
527 
528 	mod_timer(&sport->timer, jiffies);
529 
530 	mctrl_gpio_enable_ms(sport->gpios);
531 }
532 
533 static void imx_uart_dma_tx(struct imx_port *sport);
534 
535 /* called with port.lock taken and irqs off */
536 static inline void imx_uart_transmit_buffer(struct imx_port *sport)
537 {
538 	struct circ_buf *xmit = &sport->port.state->xmit;
539 
540 	if (sport->port.x_char) {
541 		/* Send next char */
542 		imx_uart_writel(sport, sport->port.x_char, URTX0);
543 		sport->port.icount.tx++;
544 		sport->port.x_char = 0;
545 		return;
546 	}
547 
548 	if (uart_circ_empty(xmit) || uart_tx_stopped(&sport->port)) {
549 		imx_uart_stop_tx(&sport->port);
550 		return;
551 	}
552 
553 	if (sport->dma_is_enabled) {
554 		u32 ucr1;
555 		/*
556 		 * We've just sent a X-char Ensure the TX DMA is enabled
557 		 * and the TX IRQ is disabled.
558 		 **/
559 		ucr1 = imx_uart_readl(sport, UCR1);
560 		ucr1 &= ~UCR1_TRDYEN;
561 		if (sport->dma_is_txing) {
562 			ucr1 |= UCR1_TXDMAEN;
563 			imx_uart_writel(sport, ucr1, UCR1);
564 		} else {
565 			imx_uart_writel(sport, ucr1, UCR1);
566 			imx_uart_dma_tx(sport);
567 		}
568 
569 		return;
570 	}
571 
572 	while (!uart_circ_empty(xmit) &&
573 	       !(imx_uart_readl(sport, imx_uart_uts_reg(sport)) & UTS_TXFULL)) {
574 		/* send xmit->buf[xmit->tail]
575 		 * out the port here */
576 		imx_uart_writel(sport, xmit->buf[xmit->tail], URTX0);
577 		uart_xmit_advance(&sport->port, 1);
578 	}
579 
580 	if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
581 		uart_write_wakeup(&sport->port);
582 
583 	if (uart_circ_empty(xmit))
584 		imx_uart_stop_tx(&sport->port);
585 }
586 
587 static void imx_uart_dma_tx_callback(void *data)
588 {
589 	struct imx_port *sport = data;
590 	struct scatterlist *sgl = &sport->tx_sgl[0];
591 	struct circ_buf *xmit = &sport->port.state->xmit;
592 	unsigned long flags;
593 	u32 ucr1;
594 
595 	spin_lock_irqsave(&sport->port.lock, flags);
596 
597 	dma_unmap_sg(sport->port.dev, sgl, sport->dma_tx_nents, DMA_TO_DEVICE);
598 
599 	ucr1 = imx_uart_readl(sport, UCR1);
600 	ucr1 &= ~UCR1_TXDMAEN;
601 	imx_uart_writel(sport, ucr1, UCR1);
602 
603 	uart_xmit_advance(&sport->port, sport->tx_bytes);
604 
605 	dev_dbg(sport->port.dev, "we finish the TX DMA.\n");
606 
607 	sport->dma_is_txing = 0;
608 
609 	if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
610 		uart_write_wakeup(&sport->port);
611 
612 	if (!uart_circ_empty(xmit) && !uart_tx_stopped(&sport->port))
613 		imx_uart_dma_tx(sport);
614 	else if (sport->port.rs485.flags & SER_RS485_ENABLED) {
615 		u32 ucr4 = imx_uart_readl(sport, UCR4);
616 		ucr4 |= UCR4_TCEN;
617 		imx_uart_writel(sport, ucr4, UCR4);
618 	}
619 
620 	spin_unlock_irqrestore(&sport->port.lock, flags);
621 }
622 
623 /* called with port.lock taken and irqs off */
624 static void imx_uart_dma_tx(struct imx_port *sport)
625 {
626 	struct circ_buf *xmit = &sport->port.state->xmit;
627 	struct scatterlist *sgl = sport->tx_sgl;
628 	struct dma_async_tx_descriptor *desc;
629 	struct dma_chan	*chan = sport->dma_chan_tx;
630 	struct device *dev = sport->port.dev;
631 	u32 ucr1, ucr4;
632 	int ret;
633 
634 	if (sport->dma_is_txing)
635 		return;
636 
637 	ucr4 = imx_uart_readl(sport, UCR4);
638 	ucr4 &= ~UCR4_TCEN;
639 	imx_uart_writel(sport, ucr4, UCR4);
640 
641 	sport->tx_bytes = uart_circ_chars_pending(xmit);
642 
643 	if (xmit->tail < xmit->head || xmit->head == 0) {
644 		sport->dma_tx_nents = 1;
645 		sg_init_one(sgl, xmit->buf + xmit->tail, sport->tx_bytes);
646 	} else {
647 		sport->dma_tx_nents = 2;
648 		sg_init_table(sgl, 2);
649 		sg_set_buf(sgl, xmit->buf + xmit->tail,
650 				UART_XMIT_SIZE - xmit->tail);
651 		sg_set_buf(sgl + 1, xmit->buf, xmit->head);
652 	}
653 
654 	ret = dma_map_sg(dev, sgl, sport->dma_tx_nents, DMA_TO_DEVICE);
655 	if (ret == 0) {
656 		dev_err(dev, "DMA mapping error for TX.\n");
657 		return;
658 	}
659 	desc = dmaengine_prep_slave_sg(chan, sgl, ret,
660 					DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT);
661 	if (!desc) {
662 		dma_unmap_sg(dev, sgl, sport->dma_tx_nents,
663 			     DMA_TO_DEVICE);
664 		dev_err(dev, "We cannot prepare for the TX slave dma!\n");
665 		return;
666 	}
667 	desc->callback = imx_uart_dma_tx_callback;
668 	desc->callback_param = sport;
669 
670 	dev_dbg(dev, "TX: prepare to send %lu bytes by DMA.\n",
671 			uart_circ_chars_pending(xmit));
672 
673 	ucr1 = imx_uart_readl(sport, UCR1);
674 	ucr1 |= UCR1_TXDMAEN;
675 	imx_uart_writel(sport, ucr1, UCR1);
676 
677 	/* fire it */
678 	sport->dma_is_txing = 1;
679 	dmaengine_submit(desc);
680 	dma_async_issue_pending(chan);
681 	return;
682 }
683 
684 /* called with port.lock taken and irqs off */
685 static void imx_uart_start_tx(struct uart_port *port)
686 {
687 	struct imx_port *sport = (struct imx_port *)port;
688 	u32 ucr1;
689 
690 	if (!sport->port.x_char && uart_circ_empty(&port->state->xmit))
691 		return;
692 
693 	/*
694 	 * We cannot simply do nothing here if sport->tx_state == SEND already
695 	 * because UCR1_TXMPTYEN might already have been cleared in
696 	 * imx_uart_stop_tx(), but tx_state is still SEND.
697 	 */
698 
699 	if (port->rs485.flags & SER_RS485_ENABLED) {
700 		if (sport->tx_state == OFF) {
701 			u32 ucr2 = imx_uart_readl(sport, UCR2);
702 			if (port->rs485.flags & SER_RS485_RTS_ON_SEND)
703 				imx_uart_rts_active(sport, &ucr2);
704 			else
705 				imx_uart_rts_inactive(sport, &ucr2);
706 			imx_uart_writel(sport, ucr2, UCR2);
707 
708 			if (!(port->rs485.flags & SER_RS485_RX_DURING_TX))
709 				imx_uart_stop_rx(port);
710 
711 			sport->tx_state = WAIT_AFTER_RTS;
712 
713 			if (port->rs485.delay_rts_before_send > 0) {
714 				start_hrtimer_ms(&sport->trigger_start_tx,
715 					 port->rs485.delay_rts_before_send);
716 				return;
717 			}
718 
719 			/* continue without any delay */
720 		}
721 
722 		if (sport->tx_state == WAIT_AFTER_SEND
723 		    || sport->tx_state == WAIT_AFTER_RTS) {
724 
725 			hrtimer_try_to_cancel(&sport->trigger_stop_tx);
726 
727 			/*
728 			 * Enable transmitter and shifter empty irq only if DMA
729 			 * is off.  In the DMA case this is done in the
730 			 * tx-callback.
731 			 */
732 			if (!sport->dma_is_enabled) {
733 				u32 ucr4 = imx_uart_readl(sport, UCR4);
734 				ucr4 |= UCR4_TCEN;
735 				imx_uart_writel(sport, ucr4, UCR4);
736 			}
737 
738 			sport->tx_state = SEND;
739 		}
740 	} else {
741 		sport->tx_state = SEND;
742 	}
743 
744 	if (!sport->dma_is_enabled) {
745 		ucr1 = imx_uart_readl(sport, UCR1);
746 		imx_uart_writel(sport, ucr1 | UCR1_TRDYEN, UCR1);
747 	}
748 
749 	if (sport->dma_is_enabled) {
750 		if (sport->port.x_char) {
751 			/* We have X-char to send, so enable TX IRQ and
752 			 * disable TX DMA to let TX interrupt to send X-char */
753 			ucr1 = imx_uart_readl(sport, UCR1);
754 			ucr1 &= ~UCR1_TXDMAEN;
755 			ucr1 |= UCR1_TRDYEN;
756 			imx_uart_writel(sport, ucr1, UCR1);
757 			return;
758 		}
759 
760 		if (!uart_circ_empty(&port->state->xmit) &&
761 		    !uart_tx_stopped(port))
762 			imx_uart_dma_tx(sport);
763 		return;
764 	}
765 }
766 
767 static irqreturn_t __imx_uart_rtsint(int irq, void *dev_id)
768 {
769 	struct imx_port *sport = dev_id;
770 	u32 usr1;
771 
772 	imx_uart_writel(sport, USR1_RTSD, USR1);
773 	usr1 = imx_uart_readl(sport, USR1) & USR1_RTSS;
774 	uart_handle_cts_change(&sport->port, !!usr1);
775 	wake_up_interruptible(&sport->port.state->port.delta_msr_wait);
776 
777 	return IRQ_HANDLED;
778 }
779 
780 static irqreturn_t imx_uart_rtsint(int irq, void *dev_id)
781 {
782 	struct imx_port *sport = dev_id;
783 	irqreturn_t ret;
784 
785 	spin_lock(&sport->port.lock);
786 
787 	ret = __imx_uart_rtsint(irq, dev_id);
788 
789 	spin_unlock(&sport->port.lock);
790 
791 	return ret;
792 }
793 
794 static irqreturn_t imx_uart_txint(int irq, void *dev_id)
795 {
796 	struct imx_port *sport = dev_id;
797 
798 	spin_lock(&sport->port.lock);
799 	imx_uart_transmit_buffer(sport);
800 	spin_unlock(&sport->port.lock);
801 	return IRQ_HANDLED;
802 }
803 
804 static irqreturn_t __imx_uart_rxint(int irq, void *dev_id)
805 {
806 	struct imx_port *sport = dev_id;
807 	unsigned int rx, flg, ignored = 0;
808 	struct tty_port *port = &sport->port.state->port;
809 
810 	while (imx_uart_readl(sport, USR2) & USR2_RDR) {
811 		u32 usr2;
812 
813 		flg = TTY_NORMAL;
814 		sport->port.icount.rx++;
815 
816 		rx = imx_uart_readl(sport, URXD0);
817 
818 		usr2 = imx_uart_readl(sport, USR2);
819 		if (usr2 & USR2_BRCD) {
820 			imx_uart_writel(sport, USR2_BRCD, USR2);
821 			if (uart_handle_break(&sport->port))
822 				continue;
823 		}
824 
825 		if (uart_handle_sysrq_char(&sport->port, (unsigned char)rx))
826 			continue;
827 
828 		if (unlikely(rx & URXD_ERR)) {
829 			if (rx & URXD_BRK)
830 				sport->port.icount.brk++;
831 			else if (rx & URXD_PRERR)
832 				sport->port.icount.parity++;
833 			else if (rx & URXD_FRMERR)
834 				sport->port.icount.frame++;
835 			if (rx & URXD_OVRRUN)
836 				sport->port.icount.overrun++;
837 
838 			if (rx & sport->port.ignore_status_mask) {
839 				if (++ignored > 100)
840 					goto out;
841 				continue;
842 			}
843 
844 			rx &= (sport->port.read_status_mask | 0xFF);
845 
846 			if (rx & URXD_BRK)
847 				flg = TTY_BREAK;
848 			else if (rx & URXD_PRERR)
849 				flg = TTY_PARITY;
850 			else if (rx & URXD_FRMERR)
851 				flg = TTY_FRAME;
852 			if (rx & URXD_OVRRUN)
853 				flg = TTY_OVERRUN;
854 
855 			sport->port.sysrq = 0;
856 		}
857 
858 		if (sport->port.ignore_status_mask & URXD_DUMMY_READ)
859 			goto out;
860 
861 		if (tty_insert_flip_char(port, rx, flg) == 0)
862 			sport->port.icount.buf_overrun++;
863 	}
864 
865 out:
866 	tty_flip_buffer_push(port);
867 
868 	return IRQ_HANDLED;
869 }
870 
871 static irqreturn_t imx_uart_rxint(int irq, void *dev_id)
872 {
873 	struct imx_port *sport = dev_id;
874 	irqreturn_t ret;
875 
876 	spin_lock(&sport->port.lock);
877 
878 	ret = __imx_uart_rxint(irq, dev_id);
879 
880 	spin_unlock(&sport->port.lock);
881 
882 	return ret;
883 }
884 
885 static void imx_uart_clear_rx_errors(struct imx_port *sport);
886 
887 /*
888  * We have a modem side uart, so the meanings of RTS and CTS are inverted.
889  */
890 static unsigned int imx_uart_get_hwmctrl(struct imx_port *sport)
891 {
892 	unsigned int tmp = TIOCM_DSR;
893 	unsigned usr1 = imx_uart_readl(sport, USR1);
894 	unsigned usr2 = imx_uart_readl(sport, USR2);
895 
896 	if (usr1 & USR1_RTSS)
897 		tmp |= TIOCM_CTS;
898 
899 	/* in DCE mode DCDIN is always 0 */
900 	if (!(usr2 & USR2_DCDIN))
901 		tmp |= TIOCM_CAR;
902 
903 	if (sport->dte_mode)
904 		if (!(imx_uart_readl(sport, USR2) & USR2_RIIN))
905 			tmp |= TIOCM_RI;
906 
907 	return tmp;
908 }
909 
910 /*
911  * Handle any change of modem status signal since we were last called.
912  */
913 static void imx_uart_mctrl_check(struct imx_port *sport)
914 {
915 	unsigned int status, changed;
916 
917 	status = imx_uart_get_hwmctrl(sport);
918 	changed = status ^ sport->old_status;
919 
920 	if (changed == 0)
921 		return;
922 
923 	sport->old_status = status;
924 
925 	if (changed & TIOCM_RI && status & TIOCM_RI)
926 		sport->port.icount.rng++;
927 	if (changed & TIOCM_DSR)
928 		sport->port.icount.dsr++;
929 	if (changed & TIOCM_CAR)
930 		uart_handle_dcd_change(&sport->port, status & TIOCM_CAR);
931 	if (changed & TIOCM_CTS)
932 		uart_handle_cts_change(&sport->port, status & TIOCM_CTS);
933 
934 	wake_up_interruptible(&sport->port.state->port.delta_msr_wait);
935 }
936 
937 static irqreturn_t imx_uart_int(int irq, void *dev_id)
938 {
939 	struct imx_port *sport = dev_id;
940 	unsigned int usr1, usr2, ucr1, ucr2, ucr3, ucr4;
941 	irqreturn_t ret = IRQ_NONE;
942 
943 	spin_lock(&sport->port.lock);
944 
945 	usr1 = imx_uart_readl(sport, USR1);
946 	usr2 = imx_uart_readl(sport, USR2);
947 	ucr1 = imx_uart_readl(sport, UCR1);
948 	ucr2 = imx_uart_readl(sport, UCR2);
949 	ucr3 = imx_uart_readl(sport, UCR3);
950 	ucr4 = imx_uart_readl(sport, UCR4);
951 
952 	/*
953 	 * Even if a condition is true that can trigger an irq only handle it if
954 	 * the respective irq source is enabled. This prevents some undesired
955 	 * actions, for example if a character that sits in the RX FIFO and that
956 	 * should be fetched via DMA is tried to be fetched using PIO. Or the
957 	 * receiver is currently off and so reading from URXD0 results in an
958 	 * exception. So just mask the (raw) status bits for disabled irqs.
959 	 */
960 	if ((ucr1 & UCR1_RRDYEN) == 0)
961 		usr1 &= ~USR1_RRDY;
962 	if ((ucr2 & UCR2_ATEN) == 0)
963 		usr1 &= ~USR1_AGTIM;
964 	if ((ucr1 & UCR1_TRDYEN) == 0)
965 		usr1 &= ~USR1_TRDY;
966 	if ((ucr4 & UCR4_TCEN) == 0)
967 		usr2 &= ~USR2_TXDC;
968 	if ((ucr3 & UCR3_DTRDEN) == 0)
969 		usr1 &= ~USR1_DTRD;
970 	if ((ucr1 & UCR1_RTSDEN) == 0)
971 		usr1 &= ~USR1_RTSD;
972 	if ((ucr3 & UCR3_AWAKEN) == 0)
973 		usr1 &= ~USR1_AWAKE;
974 	if ((ucr4 & UCR4_OREN) == 0)
975 		usr2 &= ~USR2_ORE;
976 
977 	if (usr1 & (USR1_RRDY | USR1_AGTIM)) {
978 		imx_uart_writel(sport, USR1_AGTIM, USR1);
979 
980 		__imx_uart_rxint(irq, dev_id);
981 		ret = IRQ_HANDLED;
982 	}
983 
984 	if ((usr1 & USR1_TRDY) || (usr2 & USR2_TXDC)) {
985 		imx_uart_transmit_buffer(sport);
986 		ret = IRQ_HANDLED;
987 	}
988 
989 	if (usr1 & USR1_DTRD) {
990 		imx_uart_writel(sport, USR1_DTRD, USR1);
991 
992 		imx_uart_mctrl_check(sport);
993 
994 		ret = IRQ_HANDLED;
995 	}
996 
997 	if (usr1 & USR1_RTSD) {
998 		__imx_uart_rtsint(irq, dev_id);
999 		ret = IRQ_HANDLED;
1000 	}
1001 
1002 	if (usr1 & USR1_AWAKE) {
1003 		imx_uart_writel(sport, USR1_AWAKE, USR1);
1004 		ret = IRQ_HANDLED;
1005 	}
1006 
1007 	if (usr2 & USR2_ORE) {
1008 		sport->port.icount.overrun++;
1009 		imx_uart_writel(sport, USR2_ORE, USR2);
1010 		ret = IRQ_HANDLED;
1011 	}
1012 
1013 	spin_unlock(&sport->port.lock);
1014 
1015 	return ret;
1016 }
1017 
1018 /*
1019  * Return TIOCSER_TEMT when transmitter is not busy.
1020  */
1021 static unsigned int imx_uart_tx_empty(struct uart_port *port)
1022 {
1023 	struct imx_port *sport = (struct imx_port *)port;
1024 	unsigned int ret;
1025 
1026 	ret = (imx_uart_readl(sport, USR2) & USR2_TXDC) ?  TIOCSER_TEMT : 0;
1027 
1028 	/* If the TX DMA is working, return 0. */
1029 	if (sport->dma_is_txing)
1030 		ret = 0;
1031 
1032 	return ret;
1033 }
1034 
1035 /* called with port.lock taken and irqs off */
1036 static unsigned int imx_uart_get_mctrl(struct uart_port *port)
1037 {
1038 	struct imx_port *sport = (struct imx_port *)port;
1039 	unsigned int ret = imx_uart_get_hwmctrl(sport);
1040 
1041 	mctrl_gpio_get(sport->gpios, &ret);
1042 
1043 	return ret;
1044 }
1045 
1046 /* called with port.lock taken and irqs off */
1047 static void imx_uart_set_mctrl(struct uart_port *port, unsigned int mctrl)
1048 {
1049 	struct imx_port *sport = (struct imx_port *)port;
1050 	u32 ucr3, uts;
1051 
1052 	if (!(port->rs485.flags & SER_RS485_ENABLED)) {
1053 		u32 ucr2;
1054 
1055 		/*
1056 		 * Turn off autoRTS if RTS is lowered and restore autoRTS
1057 		 * setting if RTS is raised.
1058 		 */
1059 		ucr2 = imx_uart_readl(sport, UCR2);
1060 		ucr2 &= ~(UCR2_CTS | UCR2_CTSC);
1061 		if (mctrl & TIOCM_RTS) {
1062 			ucr2 |= UCR2_CTS;
1063 			/*
1064 			 * UCR2_IRTS is unset if and only if the port is
1065 			 * configured for CRTSCTS, so we use inverted UCR2_IRTS
1066 			 * to get the state to restore to.
1067 			 */
1068 			if (!(ucr2 & UCR2_IRTS))
1069 				ucr2 |= UCR2_CTSC;
1070 		}
1071 		imx_uart_writel(sport, ucr2, UCR2);
1072 	}
1073 
1074 	ucr3 = imx_uart_readl(sport, UCR3) & ~UCR3_DSR;
1075 	if (!(mctrl & TIOCM_DTR))
1076 		ucr3 |= UCR3_DSR;
1077 	imx_uart_writel(sport, ucr3, UCR3);
1078 
1079 	uts = imx_uart_readl(sport, imx_uart_uts_reg(sport)) & ~UTS_LOOP;
1080 	if (mctrl & TIOCM_LOOP)
1081 		uts |= UTS_LOOP;
1082 	imx_uart_writel(sport, uts, imx_uart_uts_reg(sport));
1083 
1084 	mctrl_gpio_set(sport->gpios, mctrl);
1085 }
1086 
1087 /*
1088  * Interrupts always disabled.
1089  */
1090 static void imx_uart_break_ctl(struct uart_port *port, int break_state)
1091 {
1092 	struct imx_port *sport = (struct imx_port *)port;
1093 	unsigned long flags;
1094 	u32 ucr1;
1095 
1096 	spin_lock_irqsave(&sport->port.lock, flags);
1097 
1098 	ucr1 = imx_uart_readl(sport, UCR1) & ~UCR1_SNDBRK;
1099 
1100 	if (break_state != 0)
1101 		ucr1 |= UCR1_SNDBRK;
1102 
1103 	imx_uart_writel(sport, ucr1, UCR1);
1104 
1105 	spin_unlock_irqrestore(&sport->port.lock, flags);
1106 }
1107 
1108 /*
1109  * This is our per-port timeout handler, for checking the
1110  * modem status signals.
1111  */
1112 static void imx_uart_timeout(struct timer_list *t)
1113 {
1114 	struct imx_port *sport = from_timer(sport, t, timer);
1115 	unsigned long flags;
1116 
1117 	if (sport->port.state) {
1118 		spin_lock_irqsave(&sport->port.lock, flags);
1119 		imx_uart_mctrl_check(sport);
1120 		spin_unlock_irqrestore(&sport->port.lock, flags);
1121 
1122 		mod_timer(&sport->timer, jiffies + MCTRL_TIMEOUT);
1123 	}
1124 }
1125 
1126 /*
1127  * There are two kinds of RX DMA interrupts(such as in the MX6Q):
1128  *   [1] the RX DMA buffer is full.
1129  *   [2] the aging timer expires
1130  *
1131  * Condition [2] is triggered when a character has been sitting in the FIFO
1132  * for at least 8 byte durations.
1133  */
1134 static void imx_uart_dma_rx_callback(void *data)
1135 {
1136 	struct imx_port *sport = data;
1137 	struct dma_chan	*chan = sport->dma_chan_rx;
1138 	struct scatterlist *sgl = &sport->rx_sgl;
1139 	struct tty_port *port = &sport->port.state->port;
1140 	struct dma_tx_state state;
1141 	struct circ_buf *rx_ring = &sport->rx_ring;
1142 	enum dma_status status;
1143 	unsigned int w_bytes = 0;
1144 	unsigned int r_bytes;
1145 	unsigned int bd_size;
1146 
1147 	status = dmaengine_tx_status(chan, sport->rx_cookie, &state);
1148 
1149 	if (status == DMA_ERROR) {
1150 		imx_uart_clear_rx_errors(sport);
1151 		return;
1152 	}
1153 
1154 	if (!(sport->port.ignore_status_mask & URXD_DUMMY_READ)) {
1155 
1156 		/*
1157 		 * The state-residue variable represents the empty space
1158 		 * relative to the entire buffer. Taking this in consideration
1159 		 * the head is always calculated base on the buffer total
1160 		 * length - DMA transaction residue. The UART script from the
1161 		 * SDMA firmware will jump to the next buffer descriptor,
1162 		 * once a DMA transaction if finalized (IMX53 RM - A.4.1.2.4).
1163 		 * Taking this in consideration the tail is always at the
1164 		 * beginning of the buffer descriptor that contains the head.
1165 		 */
1166 
1167 		/* Calculate the head */
1168 		rx_ring->head = sg_dma_len(sgl) - state.residue;
1169 
1170 		/* Calculate the tail. */
1171 		bd_size = sg_dma_len(sgl) / sport->rx_periods;
1172 		rx_ring->tail = ((rx_ring->head-1) / bd_size) * bd_size;
1173 
1174 		if (rx_ring->head <= sg_dma_len(sgl) &&
1175 		    rx_ring->head > rx_ring->tail) {
1176 
1177 			/* Move data from tail to head */
1178 			r_bytes = rx_ring->head - rx_ring->tail;
1179 
1180 			/* CPU claims ownership of RX DMA buffer */
1181 			dma_sync_sg_for_cpu(sport->port.dev, sgl, 1,
1182 				DMA_FROM_DEVICE);
1183 
1184 			w_bytes = tty_insert_flip_string(port,
1185 				sport->rx_buf + rx_ring->tail, r_bytes);
1186 
1187 			/* UART retrieves ownership of RX DMA buffer */
1188 			dma_sync_sg_for_device(sport->port.dev, sgl, 1,
1189 				DMA_FROM_DEVICE);
1190 
1191 			if (w_bytes != r_bytes)
1192 				sport->port.icount.buf_overrun++;
1193 
1194 			sport->port.icount.rx += w_bytes;
1195 		} else	{
1196 			WARN_ON(rx_ring->head > sg_dma_len(sgl));
1197 			WARN_ON(rx_ring->head <= rx_ring->tail);
1198 		}
1199 	}
1200 
1201 	if (w_bytes) {
1202 		tty_flip_buffer_push(port);
1203 		dev_dbg(sport->port.dev, "We get %d bytes.\n", w_bytes);
1204 	}
1205 }
1206 
1207 static int imx_uart_start_rx_dma(struct imx_port *sport)
1208 {
1209 	struct scatterlist *sgl = &sport->rx_sgl;
1210 	struct dma_chan	*chan = sport->dma_chan_rx;
1211 	struct device *dev = sport->port.dev;
1212 	struct dma_async_tx_descriptor *desc;
1213 	int ret;
1214 
1215 	sport->rx_ring.head = 0;
1216 	sport->rx_ring.tail = 0;
1217 
1218 	sg_init_one(sgl, sport->rx_buf, sport->rx_buf_size);
1219 	ret = dma_map_sg(dev, sgl, 1, DMA_FROM_DEVICE);
1220 	if (ret == 0) {
1221 		dev_err(dev, "DMA mapping error for RX.\n");
1222 		return -EINVAL;
1223 	}
1224 
1225 	desc = dmaengine_prep_dma_cyclic(chan, sg_dma_address(sgl),
1226 		sg_dma_len(sgl), sg_dma_len(sgl) / sport->rx_periods,
1227 		DMA_DEV_TO_MEM, DMA_PREP_INTERRUPT);
1228 
1229 	if (!desc) {
1230 		dma_unmap_sg(dev, sgl, 1, DMA_FROM_DEVICE);
1231 		dev_err(dev, "We cannot prepare for the RX slave dma!\n");
1232 		return -EINVAL;
1233 	}
1234 	desc->callback = imx_uart_dma_rx_callback;
1235 	desc->callback_param = sport;
1236 
1237 	dev_dbg(dev, "RX: prepare for the DMA.\n");
1238 	sport->dma_is_rxing = 1;
1239 	sport->rx_cookie = dmaengine_submit(desc);
1240 	dma_async_issue_pending(chan);
1241 	return 0;
1242 }
1243 
1244 static void imx_uart_clear_rx_errors(struct imx_port *sport)
1245 {
1246 	struct tty_port *port = &sport->port.state->port;
1247 	u32 usr1, usr2;
1248 
1249 	usr1 = imx_uart_readl(sport, USR1);
1250 	usr2 = imx_uart_readl(sport, USR2);
1251 
1252 	if (usr2 & USR2_BRCD) {
1253 		sport->port.icount.brk++;
1254 		imx_uart_writel(sport, USR2_BRCD, USR2);
1255 		uart_handle_break(&sport->port);
1256 		if (tty_insert_flip_char(port, 0, TTY_BREAK) == 0)
1257 			sport->port.icount.buf_overrun++;
1258 		tty_flip_buffer_push(port);
1259 	} else {
1260 		if (usr1 & USR1_FRAMERR) {
1261 			sport->port.icount.frame++;
1262 			imx_uart_writel(sport, USR1_FRAMERR, USR1);
1263 		} else if (usr1 & USR1_PARITYERR) {
1264 			sport->port.icount.parity++;
1265 			imx_uart_writel(sport, USR1_PARITYERR, USR1);
1266 		}
1267 	}
1268 
1269 	if (usr2 & USR2_ORE) {
1270 		sport->port.icount.overrun++;
1271 		imx_uart_writel(sport, USR2_ORE, USR2);
1272 	}
1273 
1274 }
1275 
1276 #define TXTL_DEFAULT 2 /* reset default */
1277 #define RXTL_DEFAULT 8 /* 8 characters or aging timer */
1278 #define TXTL_DMA 8 /* DMA burst setting */
1279 #define RXTL_DMA 9 /* DMA burst setting */
1280 
1281 static void imx_uart_setup_ufcr(struct imx_port *sport,
1282 				unsigned char txwl, unsigned char rxwl)
1283 {
1284 	unsigned int val;
1285 
1286 	/* set receiver / transmitter trigger level */
1287 	val = imx_uart_readl(sport, UFCR) & (UFCR_RFDIV | UFCR_DCEDTE);
1288 	val |= txwl << UFCR_TXTL_SHF | rxwl;
1289 	imx_uart_writel(sport, val, UFCR);
1290 }
1291 
1292 static void imx_uart_dma_exit(struct imx_port *sport)
1293 {
1294 	if (sport->dma_chan_rx) {
1295 		dmaengine_terminate_sync(sport->dma_chan_rx);
1296 		dma_release_channel(sport->dma_chan_rx);
1297 		sport->dma_chan_rx = NULL;
1298 		sport->rx_cookie = -EINVAL;
1299 		kfree(sport->rx_buf);
1300 		sport->rx_buf = NULL;
1301 	}
1302 
1303 	if (sport->dma_chan_tx) {
1304 		dmaengine_terminate_sync(sport->dma_chan_tx);
1305 		dma_release_channel(sport->dma_chan_tx);
1306 		sport->dma_chan_tx = NULL;
1307 	}
1308 }
1309 
1310 static int imx_uart_dma_init(struct imx_port *sport)
1311 {
1312 	struct dma_slave_config slave_config = {};
1313 	struct device *dev = sport->port.dev;
1314 	int ret;
1315 
1316 	/* Prepare for RX : */
1317 	sport->dma_chan_rx = dma_request_slave_channel(dev, "rx");
1318 	if (!sport->dma_chan_rx) {
1319 		dev_dbg(dev, "cannot get the DMA channel.\n");
1320 		ret = -EINVAL;
1321 		goto err;
1322 	}
1323 
1324 	slave_config.direction = DMA_DEV_TO_MEM;
1325 	slave_config.src_addr = sport->port.mapbase + URXD0;
1326 	slave_config.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
1327 	/* one byte less than the watermark level to enable the aging timer */
1328 	slave_config.src_maxburst = RXTL_DMA - 1;
1329 	ret = dmaengine_slave_config(sport->dma_chan_rx, &slave_config);
1330 	if (ret) {
1331 		dev_err(dev, "error in RX dma configuration.\n");
1332 		goto err;
1333 	}
1334 
1335 	sport->rx_buf_size = sport->rx_period_length * sport->rx_periods;
1336 	sport->rx_buf = kzalloc(sport->rx_buf_size, GFP_KERNEL);
1337 	if (!sport->rx_buf) {
1338 		ret = -ENOMEM;
1339 		goto err;
1340 	}
1341 	sport->rx_ring.buf = sport->rx_buf;
1342 
1343 	/* Prepare for TX : */
1344 	sport->dma_chan_tx = dma_request_slave_channel(dev, "tx");
1345 	if (!sport->dma_chan_tx) {
1346 		dev_err(dev, "cannot get the TX DMA channel!\n");
1347 		ret = -EINVAL;
1348 		goto err;
1349 	}
1350 
1351 	slave_config.direction = DMA_MEM_TO_DEV;
1352 	slave_config.dst_addr = sport->port.mapbase + URTX0;
1353 	slave_config.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
1354 	slave_config.dst_maxburst = TXTL_DMA;
1355 	ret = dmaengine_slave_config(sport->dma_chan_tx, &slave_config);
1356 	if (ret) {
1357 		dev_err(dev, "error in TX dma configuration.");
1358 		goto err;
1359 	}
1360 
1361 	return 0;
1362 err:
1363 	imx_uart_dma_exit(sport);
1364 	return ret;
1365 }
1366 
1367 static void imx_uart_enable_dma(struct imx_port *sport)
1368 {
1369 	u32 ucr1;
1370 
1371 	imx_uart_setup_ufcr(sport, TXTL_DMA, RXTL_DMA);
1372 
1373 	/* set UCR1 */
1374 	ucr1 = imx_uart_readl(sport, UCR1);
1375 	ucr1 |= UCR1_RXDMAEN | UCR1_TXDMAEN | UCR1_ATDMAEN;
1376 	imx_uart_writel(sport, ucr1, UCR1);
1377 
1378 	sport->dma_is_enabled = 1;
1379 }
1380 
1381 static void imx_uart_disable_dma(struct imx_port *sport)
1382 {
1383 	u32 ucr1;
1384 
1385 	/* clear UCR1 */
1386 	ucr1 = imx_uart_readl(sport, UCR1);
1387 	ucr1 &= ~(UCR1_RXDMAEN | UCR1_TXDMAEN | UCR1_ATDMAEN);
1388 	imx_uart_writel(sport, ucr1, UCR1);
1389 
1390 	imx_uart_setup_ufcr(sport, TXTL_DEFAULT, RXTL_DEFAULT);
1391 
1392 	sport->dma_is_enabled = 0;
1393 }
1394 
1395 /* half the RX buffer size */
1396 #define CTSTL 16
1397 
1398 static int imx_uart_startup(struct uart_port *port)
1399 {
1400 	struct imx_port *sport = (struct imx_port *)port;
1401 	int retval, i;
1402 	unsigned long flags;
1403 	int dma_is_inited = 0;
1404 	u32 ucr1, ucr2, ucr3, ucr4, uts;
1405 
1406 	retval = clk_prepare_enable(sport->clk_per);
1407 	if (retval)
1408 		return retval;
1409 	retval = clk_prepare_enable(sport->clk_ipg);
1410 	if (retval) {
1411 		clk_disable_unprepare(sport->clk_per);
1412 		return retval;
1413 	}
1414 
1415 	imx_uart_setup_ufcr(sport, TXTL_DEFAULT, RXTL_DEFAULT);
1416 
1417 	/* disable the DREN bit (Data Ready interrupt enable) before
1418 	 * requesting IRQs
1419 	 */
1420 	ucr4 = imx_uart_readl(sport, UCR4);
1421 
1422 	/* set the trigger level for CTS */
1423 	ucr4 &= ~(UCR4_CTSTL_MASK << UCR4_CTSTL_SHF);
1424 	ucr4 |= CTSTL << UCR4_CTSTL_SHF;
1425 
1426 	imx_uart_writel(sport, ucr4 & ~UCR4_DREN, UCR4);
1427 
1428 	/* Can we enable the DMA support? */
1429 	if (!uart_console(port) && imx_uart_dma_init(sport) == 0)
1430 		dma_is_inited = 1;
1431 
1432 	spin_lock_irqsave(&sport->port.lock, flags);
1433 	/* Reset fifo's and state machines */
1434 	i = 100;
1435 
1436 	ucr2 = imx_uart_readl(sport, UCR2);
1437 	ucr2 &= ~UCR2_SRST;
1438 	imx_uart_writel(sport, ucr2, UCR2);
1439 
1440 	while (!(imx_uart_readl(sport, UCR2) & UCR2_SRST) && (--i > 0))
1441 		udelay(1);
1442 
1443 	/*
1444 	 * Finally, clear and enable interrupts
1445 	 */
1446 	imx_uart_writel(sport, USR1_RTSD | USR1_DTRD, USR1);
1447 	imx_uart_writel(sport, USR2_ORE, USR2);
1448 
1449 	ucr1 = imx_uart_readl(sport, UCR1) & ~UCR1_RRDYEN;
1450 	ucr1 |= UCR1_UARTEN;
1451 	if (sport->have_rtscts)
1452 		ucr1 |= UCR1_RTSDEN;
1453 
1454 	imx_uart_writel(sport, ucr1, UCR1);
1455 
1456 	ucr4 = imx_uart_readl(sport, UCR4) & ~(UCR4_OREN | UCR4_INVR);
1457 	if (!dma_is_inited)
1458 		ucr4 |= UCR4_OREN;
1459 	if (sport->inverted_rx)
1460 		ucr4 |= UCR4_INVR;
1461 	imx_uart_writel(sport, ucr4, UCR4);
1462 
1463 	ucr3 = imx_uart_readl(sport, UCR3) & ~UCR3_INVT;
1464 	/*
1465 	 * configure tx polarity before enabling tx
1466 	 */
1467 	if (sport->inverted_tx)
1468 		ucr3 |= UCR3_INVT;
1469 
1470 	if (!imx_uart_is_imx1(sport)) {
1471 		ucr3 |= UCR3_DTRDEN | UCR3_RI | UCR3_DCD;
1472 
1473 		if (sport->dte_mode)
1474 			/* disable broken interrupts */
1475 			ucr3 &= ~(UCR3_RI | UCR3_DCD);
1476 	}
1477 	imx_uart_writel(sport, ucr3, UCR3);
1478 
1479 	ucr2 = imx_uart_readl(sport, UCR2) & ~UCR2_ATEN;
1480 	ucr2 |= (UCR2_RXEN | UCR2_TXEN);
1481 	if (!sport->have_rtscts)
1482 		ucr2 |= UCR2_IRTS;
1483 	/*
1484 	 * make sure the edge sensitive RTS-irq is disabled,
1485 	 * we're using RTSD instead.
1486 	 */
1487 	if (!imx_uart_is_imx1(sport))
1488 		ucr2 &= ~UCR2_RTSEN;
1489 	imx_uart_writel(sport, ucr2, UCR2);
1490 
1491 	/*
1492 	 * Enable modem status interrupts
1493 	 */
1494 	imx_uart_enable_ms(&sport->port);
1495 
1496 	if (dma_is_inited) {
1497 		imx_uart_enable_dma(sport);
1498 		imx_uart_start_rx_dma(sport);
1499 	} else {
1500 		ucr1 = imx_uart_readl(sport, UCR1);
1501 		ucr1 |= UCR1_RRDYEN;
1502 		imx_uart_writel(sport, ucr1, UCR1);
1503 
1504 		ucr2 = imx_uart_readl(sport, UCR2);
1505 		ucr2 |= UCR2_ATEN;
1506 		imx_uart_writel(sport, ucr2, UCR2);
1507 	}
1508 
1509 	/* See SER_RS485_ENABLED/UTS_LOOP comment in imx_uart_probe() */
1510 	uts = imx_uart_readl(sport, imx_uart_uts_reg(sport));
1511 	uts &= ~UTS_LOOP;
1512 	imx_uart_writel(sport, uts, imx_uart_uts_reg(sport));
1513 
1514 	spin_unlock_irqrestore(&sport->port.lock, flags);
1515 
1516 	return 0;
1517 }
1518 
1519 static void imx_uart_shutdown(struct uart_port *port)
1520 {
1521 	struct imx_port *sport = (struct imx_port *)port;
1522 	unsigned long flags;
1523 	u32 ucr1, ucr2, ucr4, uts;
1524 
1525 	if (sport->dma_is_enabled) {
1526 		dmaengine_terminate_sync(sport->dma_chan_tx);
1527 		if (sport->dma_is_txing) {
1528 			dma_unmap_sg(sport->port.dev, &sport->tx_sgl[0],
1529 				     sport->dma_tx_nents, DMA_TO_DEVICE);
1530 			sport->dma_is_txing = 0;
1531 		}
1532 		dmaengine_terminate_sync(sport->dma_chan_rx);
1533 		if (sport->dma_is_rxing) {
1534 			dma_unmap_sg(sport->port.dev, &sport->rx_sgl,
1535 				     1, DMA_FROM_DEVICE);
1536 			sport->dma_is_rxing = 0;
1537 		}
1538 
1539 		spin_lock_irqsave(&sport->port.lock, flags);
1540 		imx_uart_stop_tx(port);
1541 		imx_uart_stop_rx(port);
1542 		imx_uart_disable_dma(sport);
1543 		spin_unlock_irqrestore(&sport->port.lock, flags);
1544 		imx_uart_dma_exit(sport);
1545 	}
1546 
1547 	mctrl_gpio_disable_ms(sport->gpios);
1548 
1549 	spin_lock_irqsave(&sport->port.lock, flags);
1550 	ucr2 = imx_uart_readl(sport, UCR2);
1551 	ucr2 &= ~(UCR2_TXEN | UCR2_ATEN);
1552 	imx_uart_writel(sport, ucr2, UCR2);
1553 	spin_unlock_irqrestore(&sport->port.lock, flags);
1554 
1555 	/*
1556 	 * Stop our timer.
1557 	 */
1558 	del_timer_sync(&sport->timer);
1559 
1560 	/*
1561 	 * Disable all interrupts, port and break condition.
1562 	 */
1563 
1564 	spin_lock_irqsave(&sport->port.lock, flags);
1565 
1566 	ucr1 = imx_uart_readl(sport, UCR1);
1567 	ucr1 &= ~(UCR1_TRDYEN | UCR1_RRDYEN | UCR1_RTSDEN | UCR1_RXDMAEN | UCR1_ATDMAEN);
1568 	/* See SER_RS485_ENABLED/UTS_LOOP comment in imx_uart_probe() */
1569 	if (port->rs485.flags & SER_RS485_ENABLED &&
1570 	    port->rs485.flags & SER_RS485_RTS_ON_SEND &&
1571 	    sport->have_rtscts && !sport->have_rtsgpio) {
1572 		uts = imx_uart_readl(sport, imx_uart_uts_reg(sport));
1573 		uts |= UTS_LOOP;
1574 		imx_uart_writel(sport, uts, imx_uart_uts_reg(sport));
1575 		ucr1 |= UCR1_UARTEN;
1576 	} else {
1577 		ucr1 &= ~UCR1_UARTEN;
1578 	}
1579 	imx_uart_writel(sport, ucr1, UCR1);
1580 
1581 	ucr4 = imx_uart_readl(sport, UCR4);
1582 	ucr4 &= ~UCR4_TCEN;
1583 	imx_uart_writel(sport, ucr4, UCR4);
1584 
1585 	spin_unlock_irqrestore(&sport->port.lock, flags);
1586 
1587 	clk_disable_unprepare(sport->clk_per);
1588 	clk_disable_unprepare(sport->clk_ipg);
1589 }
1590 
1591 /* called with port.lock taken and irqs off */
1592 static void imx_uart_flush_buffer(struct uart_port *port)
1593 {
1594 	struct imx_port *sport = (struct imx_port *)port;
1595 	struct scatterlist *sgl = &sport->tx_sgl[0];
1596 	u32 ucr2;
1597 	int i = 100, ubir, ubmr, uts;
1598 
1599 	if (!sport->dma_chan_tx)
1600 		return;
1601 
1602 	sport->tx_bytes = 0;
1603 	dmaengine_terminate_all(sport->dma_chan_tx);
1604 	if (sport->dma_is_txing) {
1605 		u32 ucr1;
1606 
1607 		dma_unmap_sg(sport->port.dev, sgl, sport->dma_tx_nents,
1608 			     DMA_TO_DEVICE);
1609 		ucr1 = imx_uart_readl(sport, UCR1);
1610 		ucr1 &= ~UCR1_TXDMAEN;
1611 		imx_uart_writel(sport, ucr1, UCR1);
1612 		sport->dma_is_txing = 0;
1613 	}
1614 
1615 	/*
1616 	 * According to the Reference Manual description of the UART SRST bit:
1617 	 *
1618 	 * "Reset the transmit and receive state machines,
1619 	 * all FIFOs and register USR1, USR2, UBIR, UBMR, UBRC, URXD, UTXD
1620 	 * and UTS[6-3]".
1621 	 *
1622 	 * We don't need to restore the old values from USR1, USR2, URXD and
1623 	 * UTXD. UBRC is read only, so only save/restore the other three
1624 	 * registers.
1625 	 */
1626 	ubir = imx_uart_readl(sport, UBIR);
1627 	ubmr = imx_uart_readl(sport, UBMR);
1628 	uts = imx_uart_readl(sport, IMX21_UTS);
1629 
1630 	ucr2 = imx_uart_readl(sport, UCR2);
1631 	ucr2 &= ~UCR2_SRST;
1632 	imx_uart_writel(sport, ucr2, UCR2);
1633 
1634 	while (!(imx_uart_readl(sport, UCR2) & UCR2_SRST) && (--i > 0))
1635 		udelay(1);
1636 
1637 	/* Restore the registers */
1638 	imx_uart_writel(sport, ubir, UBIR);
1639 	imx_uart_writel(sport, ubmr, UBMR);
1640 	imx_uart_writel(sport, uts, IMX21_UTS);
1641 }
1642 
1643 static void
1644 imx_uart_set_termios(struct uart_port *port, struct ktermios *termios,
1645 		     const struct ktermios *old)
1646 {
1647 	struct imx_port *sport = (struct imx_port *)port;
1648 	unsigned long flags;
1649 	u32 ucr2, old_ucr2, ufcr;
1650 	unsigned int baud, quot;
1651 	unsigned int old_csize = old ? old->c_cflag & CSIZE : CS8;
1652 	unsigned long div;
1653 	unsigned long num, denom, old_ubir, old_ubmr;
1654 	uint64_t tdiv64;
1655 
1656 	/*
1657 	 * We only support CS7 and CS8.
1658 	 */
1659 	while ((termios->c_cflag & CSIZE) != CS7 &&
1660 	       (termios->c_cflag & CSIZE) != CS8) {
1661 		termios->c_cflag &= ~CSIZE;
1662 		termios->c_cflag |= old_csize;
1663 		old_csize = CS8;
1664 	}
1665 
1666 	del_timer_sync(&sport->timer);
1667 
1668 	/*
1669 	 * Ask the core to calculate the divisor for us.
1670 	 */
1671 	baud = uart_get_baud_rate(port, termios, old, 50, port->uartclk / 16);
1672 	quot = uart_get_divisor(port, baud);
1673 
1674 	spin_lock_irqsave(&sport->port.lock, flags);
1675 
1676 	/*
1677 	 * Read current UCR2 and save it for future use, then clear all the bits
1678 	 * except those we will or may need to preserve.
1679 	 */
1680 	old_ucr2 = imx_uart_readl(sport, UCR2);
1681 	ucr2 = old_ucr2 & (UCR2_TXEN | UCR2_RXEN | UCR2_ATEN | UCR2_CTS);
1682 
1683 	ucr2 |= UCR2_SRST | UCR2_IRTS;
1684 	if ((termios->c_cflag & CSIZE) == CS8)
1685 		ucr2 |= UCR2_WS;
1686 
1687 	if (!sport->have_rtscts)
1688 		termios->c_cflag &= ~CRTSCTS;
1689 
1690 	if (port->rs485.flags & SER_RS485_ENABLED) {
1691 		/*
1692 		 * RTS is mandatory for rs485 operation, so keep
1693 		 * it under manual control and keep transmitter
1694 		 * disabled.
1695 		 */
1696 		if (port->rs485.flags & SER_RS485_RTS_AFTER_SEND)
1697 			imx_uart_rts_active(sport, &ucr2);
1698 		else
1699 			imx_uart_rts_inactive(sport, &ucr2);
1700 
1701 	} else if (termios->c_cflag & CRTSCTS) {
1702 		/*
1703 		 * Only let receiver control RTS output if we were not requested
1704 		 * to have RTS inactive (which then should take precedence).
1705 		 */
1706 		if (ucr2 & UCR2_CTS)
1707 			ucr2 |= UCR2_CTSC;
1708 	}
1709 
1710 	if (termios->c_cflag & CRTSCTS)
1711 		ucr2 &= ~UCR2_IRTS;
1712 	if (termios->c_cflag & CSTOPB)
1713 		ucr2 |= UCR2_STPB;
1714 	if (termios->c_cflag & PARENB) {
1715 		ucr2 |= UCR2_PREN;
1716 		if (termios->c_cflag & PARODD)
1717 			ucr2 |= UCR2_PROE;
1718 	}
1719 
1720 	sport->port.read_status_mask = 0;
1721 	if (termios->c_iflag & INPCK)
1722 		sport->port.read_status_mask |= (URXD_FRMERR | URXD_PRERR);
1723 	if (termios->c_iflag & (BRKINT | PARMRK))
1724 		sport->port.read_status_mask |= URXD_BRK;
1725 
1726 	/*
1727 	 * Characters to ignore
1728 	 */
1729 	sport->port.ignore_status_mask = 0;
1730 	if (termios->c_iflag & IGNPAR)
1731 		sport->port.ignore_status_mask |= URXD_PRERR | URXD_FRMERR;
1732 	if (termios->c_iflag & IGNBRK) {
1733 		sport->port.ignore_status_mask |= URXD_BRK;
1734 		/*
1735 		 * If we're ignoring parity and break indicators,
1736 		 * ignore overruns too (for real raw support).
1737 		 */
1738 		if (termios->c_iflag & IGNPAR)
1739 			sport->port.ignore_status_mask |= URXD_OVRRUN;
1740 	}
1741 
1742 	if ((termios->c_cflag & CREAD) == 0)
1743 		sport->port.ignore_status_mask |= URXD_DUMMY_READ;
1744 
1745 	/*
1746 	 * Update the per-port timeout.
1747 	 */
1748 	uart_update_timeout(port, termios->c_cflag, baud);
1749 
1750 	/* custom-baudrate handling */
1751 	div = sport->port.uartclk / (baud * 16);
1752 	if (baud == 38400 && quot != div)
1753 		baud = sport->port.uartclk / (quot * 16);
1754 
1755 	div = sport->port.uartclk / (baud * 16);
1756 	if (div > 7)
1757 		div = 7;
1758 	if (!div)
1759 		div = 1;
1760 
1761 	rational_best_approximation(16 * div * baud, sport->port.uartclk,
1762 		1 << 16, 1 << 16, &num, &denom);
1763 
1764 	tdiv64 = sport->port.uartclk;
1765 	tdiv64 *= num;
1766 	do_div(tdiv64, denom * 16 * div);
1767 	tty_termios_encode_baud_rate(termios,
1768 				(speed_t)tdiv64, (speed_t)tdiv64);
1769 
1770 	num -= 1;
1771 	denom -= 1;
1772 
1773 	ufcr = imx_uart_readl(sport, UFCR);
1774 	ufcr = (ufcr & (~UFCR_RFDIV)) | UFCR_RFDIV_REG(div);
1775 	imx_uart_writel(sport, ufcr, UFCR);
1776 
1777 	/*
1778 	 *  Two registers below should always be written both and in this
1779 	 *  particular order. One consequence is that we need to check if any of
1780 	 *  them changes and then update both. We do need the check for change
1781 	 *  as even writing the same values seem to "restart"
1782 	 *  transmission/receiving logic in the hardware, that leads to data
1783 	 *  breakage even when rate doesn't in fact change. E.g., user switches
1784 	 *  RTS/CTS handshake and suddenly gets broken bytes.
1785 	 */
1786 	old_ubir = imx_uart_readl(sport, UBIR);
1787 	old_ubmr = imx_uart_readl(sport, UBMR);
1788 	if (old_ubir != num || old_ubmr != denom) {
1789 		imx_uart_writel(sport, num, UBIR);
1790 		imx_uart_writel(sport, denom, UBMR);
1791 	}
1792 
1793 	if (!imx_uart_is_imx1(sport))
1794 		imx_uart_writel(sport, sport->port.uartclk / div / 1000,
1795 				IMX21_ONEMS);
1796 
1797 	imx_uart_writel(sport, ucr2, UCR2);
1798 
1799 	if (UART_ENABLE_MS(&sport->port, termios->c_cflag))
1800 		imx_uart_enable_ms(&sport->port);
1801 
1802 	spin_unlock_irqrestore(&sport->port.lock, flags);
1803 }
1804 
1805 static const char *imx_uart_type(struct uart_port *port)
1806 {
1807 	struct imx_port *sport = (struct imx_port *)port;
1808 
1809 	return sport->port.type == PORT_IMX ? "IMX" : NULL;
1810 }
1811 
1812 /*
1813  * Configure/autoconfigure the port.
1814  */
1815 static void imx_uart_config_port(struct uart_port *port, int flags)
1816 {
1817 	struct imx_port *sport = (struct imx_port *)port;
1818 
1819 	if (flags & UART_CONFIG_TYPE)
1820 		sport->port.type = PORT_IMX;
1821 }
1822 
1823 /*
1824  * Verify the new serial_struct (for TIOCSSERIAL).
1825  * The only change we allow are to the flags and type, and
1826  * even then only between PORT_IMX and PORT_UNKNOWN
1827  */
1828 static int
1829 imx_uart_verify_port(struct uart_port *port, struct serial_struct *ser)
1830 {
1831 	struct imx_port *sport = (struct imx_port *)port;
1832 	int ret = 0;
1833 
1834 	if (ser->type != PORT_UNKNOWN && ser->type != PORT_IMX)
1835 		ret = -EINVAL;
1836 	if (sport->port.irq != ser->irq)
1837 		ret = -EINVAL;
1838 	if (ser->io_type != UPIO_MEM)
1839 		ret = -EINVAL;
1840 	if (sport->port.uartclk / 16 != ser->baud_base)
1841 		ret = -EINVAL;
1842 	if (sport->port.mapbase != (unsigned long)ser->iomem_base)
1843 		ret = -EINVAL;
1844 	if (sport->port.iobase != ser->port)
1845 		ret = -EINVAL;
1846 	if (ser->hub6 != 0)
1847 		ret = -EINVAL;
1848 	return ret;
1849 }
1850 
1851 #if defined(CONFIG_CONSOLE_POLL)
1852 
1853 static int imx_uart_poll_init(struct uart_port *port)
1854 {
1855 	struct imx_port *sport = (struct imx_port *)port;
1856 	unsigned long flags;
1857 	u32 ucr1, ucr2;
1858 	int retval;
1859 
1860 	retval = clk_prepare_enable(sport->clk_ipg);
1861 	if (retval)
1862 		return retval;
1863 	retval = clk_prepare_enable(sport->clk_per);
1864 	if (retval)
1865 		clk_disable_unprepare(sport->clk_ipg);
1866 
1867 	imx_uart_setup_ufcr(sport, TXTL_DEFAULT, RXTL_DEFAULT);
1868 
1869 	spin_lock_irqsave(&sport->port.lock, flags);
1870 
1871 	/*
1872 	 * Be careful about the order of enabling bits here. First enable the
1873 	 * receiver (UARTEN + RXEN) and only then the corresponding irqs.
1874 	 * This prevents that a character that already sits in the RX fifo is
1875 	 * triggering an irq but the try to fetch it from there results in an
1876 	 * exception because UARTEN or RXEN is still off.
1877 	 */
1878 	ucr1 = imx_uart_readl(sport, UCR1);
1879 	ucr2 = imx_uart_readl(sport, UCR2);
1880 
1881 	if (imx_uart_is_imx1(sport))
1882 		ucr1 |= IMX1_UCR1_UARTCLKEN;
1883 
1884 	ucr1 |= UCR1_UARTEN;
1885 	ucr1 &= ~(UCR1_TRDYEN | UCR1_RTSDEN | UCR1_RRDYEN);
1886 
1887 	ucr2 |= UCR2_RXEN | UCR2_TXEN;
1888 	ucr2 &= ~UCR2_ATEN;
1889 
1890 	imx_uart_writel(sport, ucr1, UCR1);
1891 	imx_uart_writel(sport, ucr2, UCR2);
1892 
1893 	/* now enable irqs */
1894 	imx_uart_writel(sport, ucr1 | UCR1_RRDYEN, UCR1);
1895 	imx_uart_writel(sport, ucr2 | UCR2_ATEN, UCR2);
1896 
1897 	spin_unlock_irqrestore(&sport->port.lock, flags);
1898 
1899 	return 0;
1900 }
1901 
1902 static int imx_uart_poll_get_char(struct uart_port *port)
1903 {
1904 	struct imx_port *sport = (struct imx_port *)port;
1905 	if (!(imx_uart_readl(sport, USR2) & USR2_RDR))
1906 		return NO_POLL_CHAR;
1907 
1908 	return imx_uart_readl(sport, URXD0) & URXD_RX_DATA;
1909 }
1910 
1911 static void imx_uart_poll_put_char(struct uart_port *port, unsigned char c)
1912 {
1913 	struct imx_port *sport = (struct imx_port *)port;
1914 	unsigned int status;
1915 
1916 	/* drain */
1917 	do {
1918 		status = imx_uart_readl(sport, USR1);
1919 	} while (~status & USR1_TRDY);
1920 
1921 	/* write */
1922 	imx_uart_writel(sport, c, URTX0);
1923 
1924 	/* flush */
1925 	do {
1926 		status = imx_uart_readl(sport, USR2);
1927 	} while (~status & USR2_TXDC);
1928 }
1929 #endif
1930 
1931 /* called with port.lock taken and irqs off or from .probe without locking */
1932 static int imx_uart_rs485_config(struct uart_port *port, struct ktermios *termios,
1933 				 struct serial_rs485 *rs485conf)
1934 {
1935 	struct imx_port *sport = (struct imx_port *)port;
1936 	u32 ucr2;
1937 
1938 	if (rs485conf->flags & SER_RS485_ENABLED) {
1939 		/* Enable receiver if low-active RTS signal is requested */
1940 		if (sport->have_rtscts &&  !sport->have_rtsgpio &&
1941 		    !(rs485conf->flags & SER_RS485_RTS_ON_SEND))
1942 			rs485conf->flags |= SER_RS485_RX_DURING_TX;
1943 
1944 		/* disable transmitter */
1945 		ucr2 = imx_uart_readl(sport, UCR2);
1946 		if (rs485conf->flags & SER_RS485_RTS_AFTER_SEND)
1947 			imx_uart_rts_active(sport, &ucr2);
1948 		else
1949 			imx_uart_rts_inactive(sport, &ucr2);
1950 		imx_uart_writel(sport, ucr2, UCR2);
1951 	}
1952 
1953 	/* Make sure Rx is enabled in case Tx is active with Rx disabled */
1954 	if (!(rs485conf->flags & SER_RS485_ENABLED) ||
1955 	    rs485conf->flags & SER_RS485_RX_DURING_TX)
1956 		imx_uart_start_rx(port);
1957 
1958 	return 0;
1959 }
1960 
1961 static const struct uart_ops imx_uart_pops = {
1962 	.tx_empty	= imx_uart_tx_empty,
1963 	.set_mctrl	= imx_uart_set_mctrl,
1964 	.get_mctrl	= imx_uart_get_mctrl,
1965 	.stop_tx	= imx_uart_stop_tx,
1966 	.start_tx	= imx_uart_start_tx,
1967 	.stop_rx	= imx_uart_stop_rx,
1968 	.enable_ms	= imx_uart_enable_ms,
1969 	.break_ctl	= imx_uart_break_ctl,
1970 	.startup	= imx_uart_startup,
1971 	.shutdown	= imx_uart_shutdown,
1972 	.flush_buffer	= imx_uart_flush_buffer,
1973 	.set_termios	= imx_uart_set_termios,
1974 	.type		= imx_uart_type,
1975 	.config_port	= imx_uart_config_port,
1976 	.verify_port	= imx_uart_verify_port,
1977 #if defined(CONFIG_CONSOLE_POLL)
1978 	.poll_init      = imx_uart_poll_init,
1979 	.poll_get_char  = imx_uart_poll_get_char,
1980 	.poll_put_char  = imx_uart_poll_put_char,
1981 #endif
1982 };
1983 
1984 static struct imx_port *imx_uart_ports[UART_NR];
1985 
1986 #if IS_ENABLED(CONFIG_SERIAL_IMX_CONSOLE)
1987 static void imx_uart_console_putchar(struct uart_port *port, unsigned char ch)
1988 {
1989 	struct imx_port *sport = (struct imx_port *)port;
1990 
1991 	while (imx_uart_readl(sport, imx_uart_uts_reg(sport)) & UTS_TXFULL)
1992 		barrier();
1993 
1994 	imx_uart_writel(sport, ch, URTX0);
1995 }
1996 
1997 /*
1998  * Interrupts are disabled on entering
1999  */
2000 static void
2001 imx_uart_console_write(struct console *co, const char *s, unsigned int count)
2002 {
2003 	struct imx_port *sport = imx_uart_ports[co->index];
2004 	struct imx_port_ucrs old_ucr;
2005 	unsigned long flags;
2006 	unsigned int ucr1;
2007 	int locked = 1;
2008 
2009 	if (sport->port.sysrq)
2010 		locked = 0;
2011 	else if (oops_in_progress)
2012 		locked = spin_trylock_irqsave(&sport->port.lock, flags);
2013 	else
2014 		spin_lock_irqsave(&sport->port.lock, flags);
2015 
2016 	/*
2017 	 *	First, save UCR1/2/3 and then disable interrupts
2018 	 */
2019 	imx_uart_ucrs_save(sport, &old_ucr);
2020 	ucr1 = old_ucr.ucr1;
2021 
2022 	if (imx_uart_is_imx1(sport))
2023 		ucr1 |= IMX1_UCR1_UARTCLKEN;
2024 	ucr1 |= UCR1_UARTEN;
2025 	ucr1 &= ~(UCR1_TRDYEN | UCR1_RRDYEN | UCR1_RTSDEN);
2026 
2027 	imx_uart_writel(sport, ucr1, UCR1);
2028 
2029 	imx_uart_writel(sport, old_ucr.ucr2 | UCR2_TXEN, UCR2);
2030 
2031 	uart_console_write(&sport->port, s, count, imx_uart_console_putchar);
2032 
2033 	/*
2034 	 *	Finally, wait for transmitter to become empty
2035 	 *	and restore UCR1/2/3
2036 	 */
2037 	while (!(imx_uart_readl(sport, USR2) & USR2_TXDC));
2038 
2039 	imx_uart_ucrs_restore(sport, &old_ucr);
2040 
2041 	if (locked)
2042 		spin_unlock_irqrestore(&sport->port.lock, flags);
2043 }
2044 
2045 /*
2046  * If the port was already initialised (eg, by a boot loader),
2047  * try to determine the current setup.
2048  */
2049 static void
2050 imx_uart_console_get_options(struct imx_port *sport, int *baud,
2051 			     int *parity, int *bits)
2052 {
2053 
2054 	if (imx_uart_readl(sport, UCR1) & UCR1_UARTEN) {
2055 		/* ok, the port was enabled */
2056 		unsigned int ucr2, ubir, ubmr, uartclk;
2057 		unsigned int baud_raw;
2058 		unsigned int ucfr_rfdiv;
2059 
2060 		ucr2 = imx_uart_readl(sport, UCR2);
2061 
2062 		*parity = 'n';
2063 		if (ucr2 & UCR2_PREN) {
2064 			if (ucr2 & UCR2_PROE)
2065 				*parity = 'o';
2066 			else
2067 				*parity = 'e';
2068 		}
2069 
2070 		if (ucr2 & UCR2_WS)
2071 			*bits = 8;
2072 		else
2073 			*bits = 7;
2074 
2075 		ubir = imx_uart_readl(sport, UBIR) & 0xffff;
2076 		ubmr = imx_uart_readl(sport, UBMR) & 0xffff;
2077 
2078 		ucfr_rfdiv = (imx_uart_readl(sport, UFCR) & UFCR_RFDIV) >> 7;
2079 		if (ucfr_rfdiv == 6)
2080 			ucfr_rfdiv = 7;
2081 		else
2082 			ucfr_rfdiv = 6 - ucfr_rfdiv;
2083 
2084 		uartclk = clk_get_rate(sport->clk_per);
2085 		uartclk /= ucfr_rfdiv;
2086 
2087 		{	/*
2088 			 * The next code provides exact computation of
2089 			 *   baud_raw = round(((uartclk/16) * (ubir + 1)) / (ubmr + 1))
2090 			 * without need of float support or long long division,
2091 			 * which would be required to prevent 32bit arithmetic overflow
2092 			 */
2093 			unsigned int mul = ubir + 1;
2094 			unsigned int div = 16 * (ubmr + 1);
2095 			unsigned int rem = uartclk % div;
2096 
2097 			baud_raw = (uartclk / div) * mul;
2098 			baud_raw += (rem * mul + div / 2) / div;
2099 			*baud = (baud_raw + 50) / 100 * 100;
2100 		}
2101 
2102 		if (*baud != baud_raw)
2103 			dev_info(sport->port.dev, "Console IMX rounded baud rate from %d to %d\n",
2104 				baud_raw, *baud);
2105 	}
2106 }
2107 
2108 static int
2109 imx_uart_console_setup(struct console *co, char *options)
2110 {
2111 	struct imx_port *sport;
2112 	int baud = 9600;
2113 	int bits = 8;
2114 	int parity = 'n';
2115 	int flow = 'n';
2116 	int retval;
2117 
2118 	/*
2119 	 * Check whether an invalid uart number has been specified, and
2120 	 * if so, search for the first available port that does have
2121 	 * console support.
2122 	 */
2123 	if (co->index == -1 || co->index >= ARRAY_SIZE(imx_uart_ports))
2124 		co->index = 0;
2125 	sport = imx_uart_ports[co->index];
2126 	if (sport == NULL)
2127 		return -ENODEV;
2128 
2129 	/* For setting the registers, we only need to enable the ipg clock. */
2130 	retval = clk_prepare_enable(sport->clk_ipg);
2131 	if (retval)
2132 		goto error_console;
2133 
2134 	if (options)
2135 		uart_parse_options(options, &baud, &parity, &bits, &flow);
2136 	else
2137 		imx_uart_console_get_options(sport, &baud, &parity, &bits);
2138 
2139 	imx_uart_setup_ufcr(sport, TXTL_DEFAULT, RXTL_DEFAULT);
2140 
2141 	retval = uart_set_options(&sport->port, co, baud, parity, bits, flow);
2142 
2143 	if (retval) {
2144 		clk_disable_unprepare(sport->clk_ipg);
2145 		goto error_console;
2146 	}
2147 
2148 	retval = clk_prepare_enable(sport->clk_per);
2149 	if (retval)
2150 		clk_disable_unprepare(sport->clk_ipg);
2151 
2152 error_console:
2153 	return retval;
2154 }
2155 
2156 static int
2157 imx_uart_console_exit(struct console *co)
2158 {
2159 	struct imx_port *sport = imx_uart_ports[co->index];
2160 
2161 	clk_disable_unprepare(sport->clk_per);
2162 	clk_disable_unprepare(sport->clk_ipg);
2163 
2164 	return 0;
2165 }
2166 
2167 static struct uart_driver imx_uart_uart_driver;
2168 static struct console imx_uart_console = {
2169 	.name		= DEV_NAME,
2170 	.write		= imx_uart_console_write,
2171 	.device		= uart_console_device,
2172 	.setup		= imx_uart_console_setup,
2173 	.exit		= imx_uart_console_exit,
2174 	.flags		= CON_PRINTBUFFER,
2175 	.index		= -1,
2176 	.data		= &imx_uart_uart_driver,
2177 };
2178 
2179 #define IMX_CONSOLE	&imx_uart_console
2180 
2181 #else
2182 #define IMX_CONSOLE	NULL
2183 #endif
2184 
2185 static struct uart_driver imx_uart_uart_driver = {
2186 	.owner          = THIS_MODULE,
2187 	.driver_name    = DRIVER_NAME,
2188 	.dev_name       = DEV_NAME,
2189 	.major          = SERIAL_IMX_MAJOR,
2190 	.minor          = MINOR_START,
2191 	.nr             = ARRAY_SIZE(imx_uart_ports),
2192 	.cons           = IMX_CONSOLE,
2193 };
2194 
2195 static enum hrtimer_restart imx_trigger_start_tx(struct hrtimer *t)
2196 {
2197 	struct imx_port *sport = container_of(t, struct imx_port, trigger_start_tx);
2198 	unsigned long flags;
2199 
2200 	spin_lock_irqsave(&sport->port.lock, flags);
2201 	if (sport->tx_state == WAIT_AFTER_RTS)
2202 		imx_uart_start_tx(&sport->port);
2203 	spin_unlock_irqrestore(&sport->port.lock, flags);
2204 
2205 	return HRTIMER_NORESTART;
2206 }
2207 
2208 static enum hrtimer_restart imx_trigger_stop_tx(struct hrtimer *t)
2209 {
2210 	struct imx_port *sport = container_of(t, struct imx_port, trigger_stop_tx);
2211 	unsigned long flags;
2212 
2213 	spin_lock_irqsave(&sport->port.lock, flags);
2214 	if (sport->tx_state == WAIT_AFTER_SEND)
2215 		imx_uart_stop_tx(&sport->port);
2216 	spin_unlock_irqrestore(&sport->port.lock, flags);
2217 
2218 	return HRTIMER_NORESTART;
2219 }
2220 
2221 static const struct serial_rs485 imx_no_rs485 = {};	/* No RS485 if no RTS */
2222 static const struct serial_rs485 imx_rs485_supported = {
2223 	.flags = SER_RS485_ENABLED | SER_RS485_RTS_ON_SEND | SER_RS485_RTS_AFTER_SEND |
2224 		 SER_RS485_RX_DURING_TX,
2225 	.delay_rts_before_send = 1,
2226 	.delay_rts_after_send = 1,
2227 };
2228 
2229 /* Default RX DMA buffer configuration */
2230 #define RX_DMA_PERIODS		16
2231 #define RX_DMA_PERIOD_LEN	(PAGE_SIZE / 4)
2232 
2233 static int imx_uart_probe(struct platform_device *pdev)
2234 {
2235 	struct device_node *np = pdev->dev.of_node;
2236 	struct imx_port *sport;
2237 	void __iomem *base;
2238 	u32 dma_buf_conf[2];
2239 	int ret = 0;
2240 	u32 ucr1, ucr2, uts;
2241 	struct resource *res;
2242 	int txirq, rxirq, rtsirq;
2243 
2244 	sport = devm_kzalloc(&pdev->dev, sizeof(*sport), GFP_KERNEL);
2245 	if (!sport)
2246 		return -ENOMEM;
2247 
2248 	sport->devdata = of_device_get_match_data(&pdev->dev);
2249 
2250 	ret = of_alias_get_id(np, "serial");
2251 	if (ret < 0) {
2252 		dev_err(&pdev->dev, "failed to get alias id, errno %d\n", ret);
2253 		return ret;
2254 	}
2255 	sport->port.line = ret;
2256 
2257 	if (of_get_property(np, "uart-has-rtscts", NULL) ||
2258 	    of_get_property(np, "fsl,uart-has-rtscts", NULL) /* deprecated */)
2259 		sport->have_rtscts = 1;
2260 
2261 	if (of_get_property(np, "fsl,dte-mode", NULL))
2262 		sport->dte_mode = 1;
2263 
2264 	if (of_get_property(np, "rts-gpios", NULL))
2265 		sport->have_rtsgpio = 1;
2266 
2267 	if (of_get_property(np, "fsl,inverted-tx", NULL))
2268 		sport->inverted_tx = 1;
2269 
2270 	if (of_get_property(np, "fsl,inverted-rx", NULL))
2271 		sport->inverted_rx = 1;
2272 
2273 	if (!of_property_read_u32_array(np, "fsl,dma-info", dma_buf_conf, 2)) {
2274 		sport->rx_period_length = dma_buf_conf[0];
2275 		sport->rx_periods = dma_buf_conf[1];
2276 	} else {
2277 		sport->rx_period_length = RX_DMA_PERIOD_LEN;
2278 		sport->rx_periods = RX_DMA_PERIODS;
2279 	}
2280 
2281 	if (sport->port.line >= ARRAY_SIZE(imx_uart_ports)) {
2282 		dev_err(&pdev->dev, "serial%d out of range\n",
2283 			sport->port.line);
2284 		return -EINVAL;
2285 	}
2286 
2287 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2288 	base = devm_ioremap_resource(&pdev->dev, res);
2289 	if (IS_ERR(base))
2290 		return PTR_ERR(base);
2291 
2292 	rxirq = platform_get_irq(pdev, 0);
2293 	if (rxirq < 0)
2294 		return rxirq;
2295 	txirq = platform_get_irq_optional(pdev, 1);
2296 	rtsirq = platform_get_irq_optional(pdev, 2);
2297 
2298 	sport->port.dev = &pdev->dev;
2299 	sport->port.mapbase = res->start;
2300 	sport->port.membase = base;
2301 	sport->port.type = PORT_IMX;
2302 	sport->port.iotype = UPIO_MEM;
2303 	sport->port.irq = rxirq;
2304 	sport->port.fifosize = 32;
2305 	sport->port.has_sysrq = IS_ENABLED(CONFIG_SERIAL_IMX_CONSOLE);
2306 	sport->port.ops = &imx_uart_pops;
2307 	sport->port.rs485_config = imx_uart_rs485_config;
2308 	/* RTS is required to control the RS485 transmitter */
2309 	if (sport->have_rtscts || sport->have_rtsgpio)
2310 		sport->port.rs485_supported = imx_rs485_supported;
2311 	else
2312 		sport->port.rs485_supported = imx_no_rs485;
2313 	sport->port.flags = UPF_BOOT_AUTOCONF;
2314 	timer_setup(&sport->timer, imx_uart_timeout, 0);
2315 
2316 	sport->gpios = mctrl_gpio_init(&sport->port, 0);
2317 	if (IS_ERR(sport->gpios))
2318 		return PTR_ERR(sport->gpios);
2319 
2320 	sport->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
2321 	if (IS_ERR(sport->clk_ipg)) {
2322 		ret = PTR_ERR(sport->clk_ipg);
2323 		dev_err(&pdev->dev, "failed to get ipg clk: %d\n", ret);
2324 		return ret;
2325 	}
2326 
2327 	sport->clk_per = devm_clk_get(&pdev->dev, "per");
2328 	if (IS_ERR(sport->clk_per)) {
2329 		ret = PTR_ERR(sport->clk_per);
2330 		dev_err(&pdev->dev, "failed to get per clk: %d\n", ret);
2331 		return ret;
2332 	}
2333 
2334 	sport->port.uartclk = clk_get_rate(sport->clk_per);
2335 
2336 	/* For register access, we only need to enable the ipg clock. */
2337 	ret = clk_prepare_enable(sport->clk_ipg);
2338 	if (ret) {
2339 		dev_err(&pdev->dev, "failed to enable per clk: %d\n", ret);
2340 		return ret;
2341 	}
2342 
2343 	/* initialize shadow register values */
2344 	sport->ucr1 = readl(sport->port.membase + UCR1);
2345 	sport->ucr2 = readl(sport->port.membase + UCR2);
2346 	sport->ucr3 = readl(sport->port.membase + UCR3);
2347 	sport->ucr4 = readl(sport->port.membase + UCR4);
2348 	sport->ufcr = readl(sport->port.membase + UFCR);
2349 
2350 	ret = uart_get_rs485_mode(&sport->port);
2351 	if (ret) {
2352 		clk_disable_unprepare(sport->clk_ipg);
2353 		return ret;
2354 	}
2355 
2356 	if (sport->port.rs485.flags & SER_RS485_ENABLED &&
2357 	    (!sport->have_rtscts && !sport->have_rtsgpio))
2358 		dev_err(&pdev->dev, "no RTS control, disabling rs485\n");
2359 
2360 	/*
2361 	 * If using the i.MX UART RTS/CTS control then the RTS (CTS_B)
2362 	 * signal cannot be set low during transmission in case the
2363 	 * receiver is off (limitation of the i.MX UART IP).
2364 	 */
2365 	if (sport->port.rs485.flags & SER_RS485_ENABLED &&
2366 	    sport->have_rtscts && !sport->have_rtsgpio &&
2367 	    (!(sport->port.rs485.flags & SER_RS485_RTS_ON_SEND) &&
2368 	     !(sport->port.rs485.flags & SER_RS485_RX_DURING_TX)))
2369 		dev_err(&pdev->dev,
2370 			"low-active RTS not possible when receiver is off, enabling receiver\n");
2371 
2372 	/* Disable interrupts before requesting them */
2373 	ucr1 = imx_uart_readl(sport, UCR1);
2374 	ucr1 &= ~(UCR1_ADEN | UCR1_TRDYEN | UCR1_IDEN | UCR1_RRDYEN | UCR1_RTSDEN);
2375 	imx_uart_writel(sport, ucr1, UCR1);
2376 
2377 	/*
2378 	 * In case RS485 is enabled without GPIO RTS control, the UART IP
2379 	 * is used to control CTS signal. Keep both the UART and Receiver
2380 	 * enabled, otherwise the UART IP pulls CTS signal always HIGH no
2381 	 * matter how the UCR2 CTSC and CTS bits are set. To prevent any
2382 	 * data from being fed into the RX FIFO, enable loopback mode in
2383 	 * UTS register, which disconnects the RX path from external RXD
2384 	 * pin and connects it to the Transceiver, which is disabled, so
2385 	 * no data can be fed to the RX FIFO that way.
2386 	 */
2387 	if (sport->port.rs485.flags & SER_RS485_ENABLED &&
2388 	    sport->have_rtscts && !sport->have_rtsgpio) {
2389 		uts = imx_uart_readl(sport, imx_uart_uts_reg(sport));
2390 		uts |= UTS_LOOP;
2391 		imx_uart_writel(sport, uts, imx_uart_uts_reg(sport));
2392 
2393 		ucr1 = imx_uart_readl(sport, UCR1);
2394 		ucr1 |= UCR1_UARTEN;
2395 		imx_uart_writel(sport, ucr1, UCR1);
2396 
2397 		ucr2 = imx_uart_readl(sport, UCR2);
2398 		ucr2 |= UCR2_RXEN;
2399 		imx_uart_writel(sport, ucr2, UCR2);
2400 	}
2401 
2402 	if (!imx_uart_is_imx1(sport) && sport->dte_mode) {
2403 		/*
2404 		 * The DCEDTE bit changes the direction of DSR, DCD, DTR and RI
2405 		 * and influences if UCR3_RI and UCR3_DCD changes the level of RI
2406 		 * and DCD (when they are outputs) or enables the respective
2407 		 * irqs. So set this bit early, i.e. before requesting irqs.
2408 		 */
2409 		u32 ufcr = imx_uart_readl(sport, UFCR);
2410 		if (!(ufcr & UFCR_DCEDTE))
2411 			imx_uart_writel(sport, ufcr | UFCR_DCEDTE, UFCR);
2412 
2413 		/*
2414 		 * Disable UCR3_RI and UCR3_DCD irqs. They are also not
2415 		 * enabled later because they cannot be cleared
2416 		 * (confirmed on i.MX25) which makes them unusable.
2417 		 */
2418 		imx_uart_writel(sport,
2419 				IMX21_UCR3_RXDMUXSEL | UCR3_ADNIMP | UCR3_DSR,
2420 				UCR3);
2421 
2422 	} else {
2423 		u32 ucr3 = UCR3_DSR;
2424 		u32 ufcr = imx_uart_readl(sport, UFCR);
2425 		if (ufcr & UFCR_DCEDTE)
2426 			imx_uart_writel(sport, ufcr & ~UFCR_DCEDTE, UFCR);
2427 
2428 		if (!imx_uart_is_imx1(sport))
2429 			ucr3 |= IMX21_UCR3_RXDMUXSEL | UCR3_ADNIMP;
2430 		imx_uart_writel(sport, ucr3, UCR3);
2431 	}
2432 
2433 	clk_disable_unprepare(sport->clk_ipg);
2434 
2435 	hrtimer_init(&sport->trigger_start_tx, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2436 	hrtimer_init(&sport->trigger_stop_tx, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2437 	sport->trigger_start_tx.function = imx_trigger_start_tx;
2438 	sport->trigger_stop_tx.function = imx_trigger_stop_tx;
2439 
2440 	/*
2441 	 * Allocate the IRQ(s) i.MX1 has three interrupts whereas later
2442 	 * chips only have one interrupt.
2443 	 */
2444 	if (txirq > 0) {
2445 		ret = devm_request_irq(&pdev->dev, rxirq, imx_uart_rxint, 0,
2446 				       dev_name(&pdev->dev), sport);
2447 		if (ret) {
2448 			dev_err(&pdev->dev, "failed to request rx irq: %d\n",
2449 				ret);
2450 			return ret;
2451 		}
2452 
2453 		ret = devm_request_irq(&pdev->dev, txirq, imx_uart_txint, 0,
2454 				       dev_name(&pdev->dev), sport);
2455 		if (ret) {
2456 			dev_err(&pdev->dev, "failed to request tx irq: %d\n",
2457 				ret);
2458 			return ret;
2459 		}
2460 
2461 		ret = devm_request_irq(&pdev->dev, rtsirq, imx_uart_rtsint, 0,
2462 				       dev_name(&pdev->dev), sport);
2463 		if (ret) {
2464 			dev_err(&pdev->dev, "failed to request rts irq: %d\n",
2465 				ret);
2466 			return ret;
2467 		}
2468 	} else {
2469 		ret = devm_request_irq(&pdev->dev, rxirq, imx_uart_int, 0,
2470 				       dev_name(&pdev->dev), sport);
2471 		if (ret) {
2472 			dev_err(&pdev->dev, "failed to request irq: %d\n", ret);
2473 			return ret;
2474 		}
2475 	}
2476 
2477 	imx_uart_ports[sport->port.line] = sport;
2478 
2479 	platform_set_drvdata(pdev, sport);
2480 
2481 	return uart_add_one_port(&imx_uart_uart_driver, &sport->port);
2482 }
2483 
2484 static int imx_uart_remove(struct platform_device *pdev)
2485 {
2486 	struct imx_port *sport = platform_get_drvdata(pdev);
2487 
2488 	return uart_remove_one_port(&imx_uart_uart_driver, &sport->port);
2489 }
2490 
2491 static void imx_uart_restore_context(struct imx_port *sport)
2492 {
2493 	unsigned long flags;
2494 
2495 	spin_lock_irqsave(&sport->port.lock, flags);
2496 	if (!sport->context_saved) {
2497 		spin_unlock_irqrestore(&sport->port.lock, flags);
2498 		return;
2499 	}
2500 
2501 	imx_uart_writel(sport, sport->saved_reg[4], UFCR);
2502 	imx_uart_writel(sport, sport->saved_reg[5], UESC);
2503 	imx_uart_writel(sport, sport->saved_reg[6], UTIM);
2504 	imx_uart_writel(sport, sport->saved_reg[7], UBIR);
2505 	imx_uart_writel(sport, sport->saved_reg[8], UBMR);
2506 	imx_uart_writel(sport, sport->saved_reg[9], IMX21_UTS);
2507 	imx_uart_writel(sport, sport->saved_reg[0], UCR1);
2508 	imx_uart_writel(sport, sport->saved_reg[1] | UCR2_SRST, UCR2);
2509 	imx_uart_writel(sport, sport->saved_reg[2], UCR3);
2510 	imx_uart_writel(sport, sport->saved_reg[3], UCR4);
2511 	sport->context_saved = false;
2512 	spin_unlock_irqrestore(&sport->port.lock, flags);
2513 }
2514 
2515 static void imx_uart_save_context(struct imx_port *sport)
2516 {
2517 	unsigned long flags;
2518 
2519 	/* Save necessary regs */
2520 	spin_lock_irqsave(&sport->port.lock, flags);
2521 	sport->saved_reg[0] = imx_uart_readl(sport, UCR1);
2522 	sport->saved_reg[1] = imx_uart_readl(sport, UCR2);
2523 	sport->saved_reg[2] = imx_uart_readl(sport, UCR3);
2524 	sport->saved_reg[3] = imx_uart_readl(sport, UCR4);
2525 	sport->saved_reg[4] = imx_uart_readl(sport, UFCR);
2526 	sport->saved_reg[5] = imx_uart_readl(sport, UESC);
2527 	sport->saved_reg[6] = imx_uart_readl(sport, UTIM);
2528 	sport->saved_reg[7] = imx_uart_readl(sport, UBIR);
2529 	sport->saved_reg[8] = imx_uart_readl(sport, UBMR);
2530 	sport->saved_reg[9] = imx_uart_readl(sport, IMX21_UTS);
2531 	sport->context_saved = true;
2532 	spin_unlock_irqrestore(&sport->port.lock, flags);
2533 }
2534 
2535 static void imx_uart_enable_wakeup(struct imx_port *sport, bool on)
2536 {
2537 	u32 ucr3;
2538 
2539 	ucr3 = imx_uart_readl(sport, UCR3);
2540 	if (on) {
2541 		imx_uart_writel(sport, USR1_AWAKE, USR1);
2542 		ucr3 |= UCR3_AWAKEN;
2543 	} else {
2544 		ucr3 &= ~UCR3_AWAKEN;
2545 	}
2546 	imx_uart_writel(sport, ucr3, UCR3);
2547 
2548 	if (sport->have_rtscts) {
2549 		u32 ucr1 = imx_uart_readl(sport, UCR1);
2550 		if (on) {
2551 			imx_uart_writel(sport, USR1_RTSD, USR1);
2552 			ucr1 |= UCR1_RTSDEN;
2553 		} else {
2554 			ucr1 &= ~UCR1_RTSDEN;
2555 		}
2556 		imx_uart_writel(sport, ucr1, UCR1);
2557 	}
2558 }
2559 
2560 static int imx_uart_suspend_noirq(struct device *dev)
2561 {
2562 	struct imx_port *sport = dev_get_drvdata(dev);
2563 
2564 	imx_uart_save_context(sport);
2565 
2566 	clk_disable(sport->clk_ipg);
2567 
2568 	pinctrl_pm_select_sleep_state(dev);
2569 
2570 	return 0;
2571 }
2572 
2573 static int imx_uart_resume_noirq(struct device *dev)
2574 {
2575 	struct imx_port *sport = dev_get_drvdata(dev);
2576 	int ret;
2577 
2578 	pinctrl_pm_select_default_state(dev);
2579 
2580 	ret = clk_enable(sport->clk_ipg);
2581 	if (ret)
2582 		return ret;
2583 
2584 	imx_uart_restore_context(sport);
2585 
2586 	return 0;
2587 }
2588 
2589 static int imx_uart_suspend(struct device *dev)
2590 {
2591 	struct imx_port *sport = dev_get_drvdata(dev);
2592 	int ret;
2593 
2594 	uart_suspend_port(&imx_uart_uart_driver, &sport->port);
2595 	disable_irq(sport->port.irq);
2596 
2597 	ret = clk_prepare_enable(sport->clk_ipg);
2598 	if (ret)
2599 		return ret;
2600 
2601 	/* enable wakeup from i.MX UART */
2602 	imx_uart_enable_wakeup(sport, true);
2603 
2604 	return 0;
2605 }
2606 
2607 static int imx_uart_resume(struct device *dev)
2608 {
2609 	struct imx_port *sport = dev_get_drvdata(dev);
2610 
2611 	/* disable wakeup from i.MX UART */
2612 	imx_uart_enable_wakeup(sport, false);
2613 
2614 	uart_resume_port(&imx_uart_uart_driver, &sport->port);
2615 	enable_irq(sport->port.irq);
2616 
2617 	clk_disable_unprepare(sport->clk_ipg);
2618 
2619 	return 0;
2620 }
2621 
2622 static int imx_uart_freeze(struct device *dev)
2623 {
2624 	struct imx_port *sport = dev_get_drvdata(dev);
2625 
2626 	uart_suspend_port(&imx_uart_uart_driver, &sport->port);
2627 
2628 	return clk_prepare_enable(sport->clk_ipg);
2629 }
2630 
2631 static int imx_uart_thaw(struct device *dev)
2632 {
2633 	struct imx_port *sport = dev_get_drvdata(dev);
2634 
2635 	uart_resume_port(&imx_uart_uart_driver, &sport->port);
2636 
2637 	clk_disable_unprepare(sport->clk_ipg);
2638 
2639 	return 0;
2640 }
2641 
2642 static const struct dev_pm_ops imx_uart_pm_ops = {
2643 	.suspend_noirq = imx_uart_suspend_noirq,
2644 	.resume_noirq = imx_uart_resume_noirq,
2645 	.freeze_noirq = imx_uart_suspend_noirq,
2646 	.thaw_noirq = imx_uart_resume_noirq,
2647 	.restore_noirq = imx_uart_resume_noirq,
2648 	.suspend = imx_uart_suspend,
2649 	.resume = imx_uart_resume,
2650 	.freeze = imx_uart_freeze,
2651 	.thaw = imx_uart_thaw,
2652 	.restore = imx_uart_thaw,
2653 };
2654 
2655 static struct platform_driver imx_uart_platform_driver = {
2656 	.probe = imx_uart_probe,
2657 	.remove = imx_uart_remove,
2658 
2659 	.driver = {
2660 		.name = "imx-uart",
2661 		.of_match_table = imx_uart_dt_ids,
2662 		.pm = &imx_uart_pm_ops,
2663 	},
2664 };
2665 
2666 static int __init imx_uart_init(void)
2667 {
2668 	int ret = uart_register_driver(&imx_uart_uart_driver);
2669 
2670 	if (ret)
2671 		return ret;
2672 
2673 	ret = platform_driver_register(&imx_uart_platform_driver);
2674 	if (ret != 0)
2675 		uart_unregister_driver(&imx_uart_uart_driver);
2676 
2677 	return ret;
2678 }
2679 
2680 static void __exit imx_uart_exit(void)
2681 {
2682 	platform_driver_unregister(&imx_uart_platform_driver);
2683 	uart_unregister_driver(&imx_uart_uart_driver);
2684 }
2685 
2686 module_init(imx_uart_init);
2687 module_exit(imx_uart_exit);
2688 
2689 MODULE_AUTHOR("Sascha Hauer");
2690 MODULE_DESCRIPTION("IMX generic serial port driver");
2691 MODULE_LICENSE("GPL");
2692 MODULE_ALIAS("platform:imx-uart");
2693