xref: /openbmc/linux/drivers/tty/serial/imx.c (revision a89a501c)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Driver for Motorola/Freescale IMX serial ports
4  *
5  * Based on drivers/char/serial.c, by Linus Torvalds, Theodore Ts'o.
6  *
7  * Author: Sascha Hauer <sascha@saschahauer.de>
8  * Copyright (C) 2004 Pengutronix
9  */
10 
11 #include <linux/module.h>
12 #include <linux/ioport.h>
13 #include <linux/init.h>
14 #include <linux/console.h>
15 #include <linux/sysrq.h>
16 #include <linux/platform_device.h>
17 #include <linux/tty.h>
18 #include <linux/tty_flip.h>
19 #include <linux/serial_core.h>
20 #include <linux/serial.h>
21 #include <linux/clk.h>
22 #include <linux/delay.h>
23 #include <linux/ktime.h>
24 #include <linux/pinctrl/consumer.h>
25 #include <linux/rational.h>
26 #include <linux/slab.h>
27 #include <linux/of.h>
28 #include <linux/of_device.h>
29 #include <linux/io.h>
30 #include <linux/dma-mapping.h>
31 
32 #include <asm/irq.h>
33 #include <linux/platform_data/serial-imx.h>
34 #include <linux/platform_data/dma-imx.h>
35 
36 #include "serial_mctrl_gpio.h"
37 
38 /* Register definitions */
39 #define URXD0 0x0  /* Receiver Register */
40 #define URTX0 0x40 /* Transmitter Register */
41 #define UCR1  0x80 /* Control Register 1 */
42 #define UCR2  0x84 /* Control Register 2 */
43 #define UCR3  0x88 /* Control Register 3 */
44 #define UCR4  0x8c /* Control Register 4 */
45 #define UFCR  0x90 /* FIFO Control Register */
46 #define USR1  0x94 /* Status Register 1 */
47 #define USR2  0x98 /* Status Register 2 */
48 #define UESC  0x9c /* Escape Character Register */
49 #define UTIM  0xa0 /* Escape Timer Register */
50 #define UBIR  0xa4 /* BRM Incremental Register */
51 #define UBMR  0xa8 /* BRM Modulator Register */
52 #define UBRC  0xac /* Baud Rate Count Register */
53 #define IMX21_ONEMS 0xb0 /* One Millisecond register */
54 #define IMX1_UTS 0xd0 /* UART Test Register on i.mx1 */
55 #define IMX21_UTS 0xb4 /* UART Test Register on all other i.mx*/
56 
57 /* UART Control Register Bit Fields.*/
58 #define URXD_DUMMY_READ (1<<16)
59 #define URXD_CHARRDY	(1<<15)
60 #define URXD_ERR	(1<<14)
61 #define URXD_OVRRUN	(1<<13)
62 #define URXD_FRMERR	(1<<12)
63 #define URXD_BRK	(1<<11)
64 #define URXD_PRERR	(1<<10)
65 #define URXD_RX_DATA	(0xFF<<0)
66 #define UCR1_ADEN	(1<<15) /* Auto detect interrupt */
67 #define UCR1_ADBR	(1<<14) /* Auto detect baud rate */
68 #define UCR1_TRDYEN	(1<<13) /* Transmitter ready interrupt enable */
69 #define UCR1_IDEN	(1<<12) /* Idle condition interrupt */
70 #define UCR1_ICD_REG(x) (((x) & 3) << 10) /* idle condition detect */
71 #define UCR1_RRDYEN	(1<<9)	/* Recv ready interrupt enable */
72 #define UCR1_RXDMAEN	(1<<8)	/* Recv ready DMA enable */
73 #define UCR1_IREN	(1<<7)	/* Infrared interface enable */
74 #define UCR1_TXMPTYEN	(1<<6)	/* Transimitter empty interrupt enable */
75 #define UCR1_RTSDEN	(1<<5)	/* RTS delta interrupt enable */
76 #define UCR1_SNDBRK	(1<<4)	/* Send break */
77 #define UCR1_TXDMAEN	(1<<3)	/* Transmitter ready DMA enable */
78 #define IMX1_UCR1_UARTCLKEN (1<<2) /* UART clock enabled, i.mx1 only */
79 #define UCR1_ATDMAEN    (1<<2)  /* Aging DMA Timer Enable */
80 #define UCR1_DOZE	(1<<1)	/* Doze */
81 #define UCR1_UARTEN	(1<<0)	/* UART enabled */
82 #define UCR2_ESCI	(1<<15)	/* Escape seq interrupt enable */
83 #define UCR2_IRTS	(1<<14)	/* Ignore RTS pin */
84 #define UCR2_CTSC	(1<<13)	/* CTS pin control */
85 #define UCR2_CTS	(1<<12)	/* Clear to send */
86 #define UCR2_ESCEN	(1<<11)	/* Escape enable */
87 #define UCR2_PREN	(1<<8)	/* Parity enable */
88 #define UCR2_PROE	(1<<7)	/* Parity odd/even */
89 #define UCR2_STPB	(1<<6)	/* Stop */
90 #define UCR2_WS		(1<<5)	/* Word size */
91 #define UCR2_RTSEN	(1<<4)	/* Request to send interrupt enable */
92 #define UCR2_ATEN	(1<<3)	/* Aging Timer Enable */
93 #define UCR2_TXEN	(1<<2)	/* Transmitter enabled */
94 #define UCR2_RXEN	(1<<1)	/* Receiver enabled */
95 #define UCR2_SRST	(1<<0)	/* SW reset */
96 #define UCR3_DTREN	(1<<13) /* DTR interrupt enable */
97 #define UCR3_PARERREN	(1<<12) /* Parity enable */
98 #define UCR3_FRAERREN	(1<<11) /* Frame error interrupt enable */
99 #define UCR3_DSR	(1<<10) /* Data set ready */
100 #define UCR3_DCD	(1<<9)	/* Data carrier detect */
101 #define UCR3_RI		(1<<8)	/* Ring indicator */
102 #define UCR3_ADNIMP	(1<<7)	/* Autobaud Detection Not Improved */
103 #define UCR3_RXDSEN	(1<<6)	/* Receive status interrupt enable */
104 #define UCR3_AIRINTEN	(1<<5)	/* Async IR wake interrupt enable */
105 #define UCR3_AWAKEN	(1<<4)	/* Async wake interrupt enable */
106 #define UCR3_DTRDEN	(1<<3)	/* Data Terminal Ready Delta Enable. */
107 #define IMX21_UCR3_RXDMUXSEL	(1<<2)	/* RXD Muxed Input Select */
108 #define UCR3_INVT	(1<<1)	/* Inverted Infrared transmission */
109 #define UCR3_BPEN	(1<<0)	/* Preset registers enable */
110 #define UCR4_CTSTL_SHF	10	/* CTS trigger level shift */
111 #define UCR4_CTSTL_MASK	0x3F	/* CTS trigger is 6 bits wide */
112 #define UCR4_INVR	(1<<9)	/* Inverted infrared reception */
113 #define UCR4_ENIRI	(1<<8)	/* Serial infrared interrupt enable */
114 #define UCR4_WKEN	(1<<7)	/* Wake interrupt enable */
115 #define UCR4_REF16	(1<<6)	/* Ref freq 16 MHz */
116 #define UCR4_IDDMAEN    (1<<6)  /* DMA IDLE Condition Detected */
117 #define UCR4_IRSC	(1<<5)	/* IR special case */
118 #define UCR4_TCEN	(1<<3)	/* Transmit complete interrupt enable */
119 #define UCR4_BKEN	(1<<2)	/* Break condition interrupt enable */
120 #define UCR4_OREN	(1<<1)	/* Receiver overrun interrupt enable */
121 #define UCR4_DREN	(1<<0)	/* Recv data ready interrupt enable */
122 #define UFCR_RXTL_SHF	0	/* Receiver trigger level shift */
123 #define UFCR_DCEDTE	(1<<6)	/* DCE/DTE mode select */
124 #define UFCR_RFDIV	(7<<7)	/* Reference freq divider mask */
125 #define UFCR_RFDIV_REG(x)	(((x) < 7 ? 6 - (x) : 6) << 7)
126 #define UFCR_TXTL_SHF	10	/* Transmitter trigger level shift */
127 #define USR1_PARITYERR	(1<<15) /* Parity error interrupt flag */
128 #define USR1_RTSS	(1<<14) /* RTS pin status */
129 #define USR1_TRDY	(1<<13) /* Transmitter ready interrupt/dma flag */
130 #define USR1_RTSD	(1<<12) /* RTS delta */
131 #define USR1_ESCF	(1<<11) /* Escape seq interrupt flag */
132 #define USR1_FRAMERR	(1<<10) /* Frame error interrupt flag */
133 #define USR1_RRDY	(1<<9)	 /* Receiver ready interrupt/dma flag */
134 #define USR1_AGTIM	(1<<8)	 /* Ageing timer interrupt flag */
135 #define USR1_DTRD	(1<<7)	 /* DTR Delta */
136 #define USR1_RXDS	 (1<<6)	 /* Receiver idle interrupt flag */
137 #define USR1_AIRINT	 (1<<5)	 /* Async IR wake interrupt flag */
138 #define USR1_AWAKE	 (1<<4)	 /* Aysnc wake interrupt flag */
139 #define USR2_ADET	 (1<<15) /* Auto baud rate detect complete */
140 #define USR2_TXFE	 (1<<14) /* Transmit buffer FIFO empty */
141 #define USR2_DTRF	 (1<<13) /* DTR edge interrupt flag */
142 #define USR2_IDLE	 (1<<12) /* Idle condition */
143 #define USR2_RIDELT	 (1<<10) /* Ring Interrupt Delta */
144 #define USR2_RIIN	 (1<<9)	 /* Ring Indicator Input */
145 #define USR2_IRINT	 (1<<8)	 /* Serial infrared interrupt flag */
146 #define USR2_WAKE	 (1<<7)	 /* Wake */
147 #define USR2_DCDIN	 (1<<5)	 /* Data Carrier Detect Input */
148 #define USR2_RTSF	 (1<<4)	 /* RTS edge interrupt flag */
149 #define USR2_TXDC	 (1<<3)	 /* Transmitter complete */
150 #define USR2_BRCD	 (1<<2)	 /* Break condition */
151 #define USR2_ORE	(1<<1)	 /* Overrun error */
152 #define USR2_RDR	(1<<0)	 /* Recv data ready */
153 #define UTS_FRCPERR	(1<<13) /* Force parity error */
154 #define UTS_LOOP	(1<<12)	 /* Loop tx and rx */
155 #define UTS_TXEMPTY	 (1<<6)	 /* TxFIFO empty */
156 #define UTS_RXEMPTY	 (1<<5)	 /* RxFIFO empty */
157 #define UTS_TXFULL	 (1<<4)	 /* TxFIFO full */
158 #define UTS_RXFULL	 (1<<3)	 /* RxFIFO full */
159 #define UTS_SOFTRST	 (1<<0)	 /* Software reset */
160 
161 /* We've been assigned a range on the "Low-density serial ports" major */
162 #define SERIAL_IMX_MAJOR	207
163 #define MINOR_START		16
164 #define DEV_NAME		"ttymxc"
165 
166 /*
167  * This determines how often we check the modem status signals
168  * for any change.  They generally aren't connected to an IRQ
169  * so we have to poll them.  We also check immediately before
170  * filling the TX fifo incase CTS has been dropped.
171  */
172 #define MCTRL_TIMEOUT	(250*HZ/1000)
173 
174 #define DRIVER_NAME "IMX-uart"
175 
176 #define UART_NR 8
177 
178 /* i.MX21 type uart runs on all i.mx except i.MX1 and i.MX6q */
179 enum imx_uart_type {
180 	IMX1_UART,
181 	IMX21_UART,
182 	IMX53_UART,
183 	IMX6Q_UART,
184 };
185 
186 /* device type dependent stuff */
187 struct imx_uart_data {
188 	unsigned uts_reg;
189 	enum imx_uart_type devtype;
190 };
191 
192 enum imx_tx_state {
193 	OFF,
194 	WAIT_AFTER_RTS,
195 	SEND,
196 	WAIT_AFTER_SEND,
197 };
198 
199 struct imx_port {
200 	struct uart_port	port;
201 	struct timer_list	timer;
202 	unsigned int		old_status;
203 	unsigned int		have_rtscts:1;
204 	unsigned int		have_rtsgpio:1;
205 	unsigned int		dte_mode:1;
206 	unsigned int		inverted_tx:1;
207 	unsigned int		inverted_rx:1;
208 	struct clk		*clk_ipg;
209 	struct clk		*clk_per;
210 	const struct imx_uart_data *devdata;
211 
212 	struct mctrl_gpios *gpios;
213 
214 	/* shadow registers */
215 	unsigned int ucr1;
216 	unsigned int ucr2;
217 	unsigned int ucr3;
218 	unsigned int ucr4;
219 	unsigned int ufcr;
220 
221 	/* DMA fields */
222 	unsigned int		dma_is_enabled:1;
223 	unsigned int		dma_is_rxing:1;
224 	unsigned int		dma_is_txing:1;
225 	struct dma_chan		*dma_chan_rx, *dma_chan_tx;
226 	struct scatterlist	rx_sgl, tx_sgl[2];
227 	void			*rx_buf;
228 	struct circ_buf		rx_ring;
229 	unsigned int		rx_periods;
230 	dma_cookie_t		rx_cookie;
231 	unsigned int		tx_bytes;
232 	unsigned int		dma_tx_nents;
233 	unsigned int            saved_reg[10];
234 	bool			context_saved;
235 
236 	enum imx_tx_state	tx_state;
237 	struct hrtimer		trigger_start_tx;
238 	struct hrtimer		trigger_stop_tx;
239 };
240 
241 struct imx_port_ucrs {
242 	unsigned int	ucr1;
243 	unsigned int	ucr2;
244 	unsigned int	ucr3;
245 };
246 
247 static struct imx_uart_data imx_uart_devdata[] = {
248 	[IMX1_UART] = {
249 		.uts_reg = IMX1_UTS,
250 		.devtype = IMX1_UART,
251 	},
252 	[IMX21_UART] = {
253 		.uts_reg = IMX21_UTS,
254 		.devtype = IMX21_UART,
255 	},
256 	[IMX53_UART] = {
257 		.uts_reg = IMX21_UTS,
258 		.devtype = IMX53_UART,
259 	},
260 	[IMX6Q_UART] = {
261 		.uts_reg = IMX21_UTS,
262 		.devtype = IMX6Q_UART,
263 	},
264 };
265 
266 static const struct platform_device_id imx_uart_devtype[] = {
267 	{
268 		.name = "imx1-uart",
269 		.driver_data = (kernel_ulong_t) &imx_uart_devdata[IMX1_UART],
270 	}, {
271 		.name = "imx21-uart",
272 		.driver_data = (kernel_ulong_t) &imx_uart_devdata[IMX21_UART],
273 	}, {
274 		.name = "imx53-uart",
275 		.driver_data = (kernel_ulong_t) &imx_uart_devdata[IMX53_UART],
276 	}, {
277 		.name = "imx6q-uart",
278 		.driver_data = (kernel_ulong_t) &imx_uart_devdata[IMX6Q_UART],
279 	}, {
280 		/* sentinel */
281 	}
282 };
283 MODULE_DEVICE_TABLE(platform, imx_uart_devtype);
284 
285 static const struct of_device_id imx_uart_dt_ids[] = {
286 	{ .compatible = "fsl,imx6q-uart", .data = &imx_uart_devdata[IMX6Q_UART], },
287 	{ .compatible = "fsl,imx53-uart", .data = &imx_uart_devdata[IMX53_UART], },
288 	{ .compatible = "fsl,imx1-uart", .data = &imx_uart_devdata[IMX1_UART], },
289 	{ .compatible = "fsl,imx21-uart", .data = &imx_uart_devdata[IMX21_UART], },
290 	{ /* sentinel */ }
291 };
292 MODULE_DEVICE_TABLE(of, imx_uart_dt_ids);
293 
294 static void imx_uart_writel(struct imx_port *sport, u32 val, u32 offset)
295 {
296 	switch (offset) {
297 	case UCR1:
298 		sport->ucr1 = val;
299 		break;
300 	case UCR2:
301 		sport->ucr2 = val;
302 		break;
303 	case UCR3:
304 		sport->ucr3 = val;
305 		break;
306 	case UCR4:
307 		sport->ucr4 = val;
308 		break;
309 	case UFCR:
310 		sport->ufcr = val;
311 		break;
312 	default:
313 		break;
314 	}
315 	writel(val, sport->port.membase + offset);
316 }
317 
318 static u32 imx_uart_readl(struct imx_port *sport, u32 offset)
319 {
320 	switch (offset) {
321 	case UCR1:
322 		return sport->ucr1;
323 		break;
324 	case UCR2:
325 		/*
326 		 * UCR2_SRST is the only bit in the cached registers that might
327 		 * differ from the value that was last written. As it only
328 		 * automatically becomes one after being cleared, reread
329 		 * conditionally.
330 		 */
331 		if (!(sport->ucr2 & UCR2_SRST))
332 			sport->ucr2 = readl(sport->port.membase + offset);
333 		return sport->ucr2;
334 		break;
335 	case UCR3:
336 		return sport->ucr3;
337 		break;
338 	case UCR4:
339 		return sport->ucr4;
340 		break;
341 	case UFCR:
342 		return sport->ufcr;
343 		break;
344 	default:
345 		return readl(sport->port.membase + offset);
346 	}
347 }
348 
349 static inline unsigned imx_uart_uts_reg(struct imx_port *sport)
350 {
351 	return sport->devdata->uts_reg;
352 }
353 
354 static inline int imx_uart_is_imx1(struct imx_port *sport)
355 {
356 	return sport->devdata->devtype == IMX1_UART;
357 }
358 
359 static inline int imx_uart_is_imx21(struct imx_port *sport)
360 {
361 	return sport->devdata->devtype == IMX21_UART;
362 }
363 
364 static inline int imx_uart_is_imx53(struct imx_port *sport)
365 {
366 	return sport->devdata->devtype == IMX53_UART;
367 }
368 
369 static inline int imx_uart_is_imx6q(struct imx_port *sport)
370 {
371 	return sport->devdata->devtype == IMX6Q_UART;
372 }
373 /*
374  * Save and restore functions for UCR1, UCR2 and UCR3 registers
375  */
376 #if IS_ENABLED(CONFIG_SERIAL_IMX_CONSOLE)
377 static void imx_uart_ucrs_save(struct imx_port *sport,
378 			       struct imx_port_ucrs *ucr)
379 {
380 	/* save control registers */
381 	ucr->ucr1 = imx_uart_readl(sport, UCR1);
382 	ucr->ucr2 = imx_uart_readl(sport, UCR2);
383 	ucr->ucr3 = imx_uart_readl(sport, UCR3);
384 }
385 
386 static void imx_uart_ucrs_restore(struct imx_port *sport,
387 				  struct imx_port_ucrs *ucr)
388 {
389 	/* restore control registers */
390 	imx_uart_writel(sport, ucr->ucr1, UCR1);
391 	imx_uart_writel(sport, ucr->ucr2, UCR2);
392 	imx_uart_writel(sport, ucr->ucr3, UCR3);
393 }
394 #endif
395 
396 /* called with port.lock taken and irqs caller dependent */
397 static void imx_uart_rts_active(struct imx_port *sport, u32 *ucr2)
398 {
399 	*ucr2 &= ~(UCR2_CTSC | UCR2_CTS);
400 
401 	sport->port.mctrl |= TIOCM_RTS;
402 	mctrl_gpio_set(sport->gpios, sport->port.mctrl);
403 }
404 
405 /* called with port.lock taken and irqs caller dependent */
406 static void imx_uart_rts_inactive(struct imx_port *sport, u32 *ucr2)
407 {
408 	*ucr2 &= ~UCR2_CTSC;
409 	*ucr2 |= UCR2_CTS;
410 
411 	sport->port.mctrl &= ~TIOCM_RTS;
412 	mctrl_gpio_set(sport->gpios, sport->port.mctrl);
413 }
414 
415 static void start_hrtimer_ms(struct hrtimer *hrt, unsigned long msec)
416 {
417        long sec = msec / MSEC_PER_SEC;
418        long nsec = (msec % MSEC_PER_SEC) * 1000000;
419        ktime_t t = ktime_set(sec, nsec);
420 
421        hrtimer_start(hrt, t, HRTIMER_MODE_REL);
422 }
423 
424 /* called with port.lock taken and irqs off */
425 static void imx_uart_start_rx(struct uart_port *port)
426 {
427 	struct imx_port *sport = (struct imx_port *)port;
428 	unsigned int ucr1, ucr2;
429 
430 	ucr1 = imx_uart_readl(sport, UCR1);
431 	ucr2 = imx_uart_readl(sport, UCR2);
432 
433 	ucr2 |= UCR2_RXEN;
434 
435 	if (sport->dma_is_enabled) {
436 		ucr1 |= UCR1_RXDMAEN | UCR1_ATDMAEN;
437 	} else {
438 		ucr1 |= UCR1_RRDYEN;
439 		ucr2 |= UCR2_ATEN;
440 	}
441 
442 	/* Write UCR2 first as it includes RXEN */
443 	imx_uart_writel(sport, ucr2, UCR2);
444 	imx_uart_writel(sport, ucr1, UCR1);
445 }
446 
447 /* called with port.lock taken and irqs off */
448 static void imx_uart_stop_tx(struct uart_port *port)
449 {
450 	struct imx_port *sport = (struct imx_port *)port;
451 	u32 ucr1, ucr4, usr2;
452 
453 	if (sport->tx_state == OFF)
454 		return;
455 
456 	/*
457 	 * We are maybe in the SMP context, so if the DMA TX thread is running
458 	 * on other cpu, we have to wait for it to finish.
459 	 */
460 	if (sport->dma_is_txing)
461 		return;
462 
463 	ucr1 = imx_uart_readl(sport, UCR1);
464 	imx_uart_writel(sport, ucr1 & ~UCR1_TRDYEN, UCR1);
465 
466 	usr2 = imx_uart_readl(sport, USR2);
467 	if (!(usr2 & USR2_TXDC)) {
468 		/* The shifter is still busy, so retry once TC triggers */
469 		return;
470 	}
471 
472 	ucr4 = imx_uart_readl(sport, UCR4);
473 	ucr4 &= ~UCR4_TCEN;
474 	imx_uart_writel(sport, ucr4, UCR4);
475 
476 	/* in rs485 mode disable transmitter */
477 	if (port->rs485.flags & SER_RS485_ENABLED) {
478 		if (sport->tx_state == SEND) {
479 			sport->tx_state = WAIT_AFTER_SEND;
480 			start_hrtimer_ms(&sport->trigger_stop_tx,
481 					 port->rs485.delay_rts_after_send);
482 			return;
483 		}
484 
485 		if (sport->tx_state == WAIT_AFTER_RTS ||
486 		    sport->tx_state == WAIT_AFTER_SEND) {
487 			u32 ucr2;
488 
489 			hrtimer_try_to_cancel(&sport->trigger_start_tx);
490 
491 			ucr2 = imx_uart_readl(sport, UCR2);
492 			if (port->rs485.flags & SER_RS485_RTS_AFTER_SEND)
493 				imx_uart_rts_active(sport, &ucr2);
494 			else
495 				imx_uart_rts_inactive(sport, &ucr2);
496 			imx_uart_writel(sport, ucr2, UCR2);
497 
498 			imx_uart_start_rx(port);
499 
500 			sport->tx_state = OFF;
501 		}
502 	} else {
503 		sport->tx_state = OFF;
504 	}
505 }
506 
507 /* called with port.lock taken and irqs off */
508 static void imx_uart_stop_rx(struct uart_port *port)
509 {
510 	struct imx_port *sport = (struct imx_port *)port;
511 	u32 ucr1, ucr2;
512 
513 	ucr1 = imx_uart_readl(sport, UCR1);
514 	ucr2 = imx_uart_readl(sport, UCR2);
515 
516 	if (sport->dma_is_enabled) {
517 		ucr1 &= ~(UCR1_RXDMAEN | UCR1_ATDMAEN);
518 	} else {
519 		ucr1 &= ~UCR1_RRDYEN;
520 		ucr2 &= ~UCR2_ATEN;
521 	}
522 	imx_uart_writel(sport, ucr1, UCR1);
523 
524 	ucr2 &= ~UCR2_RXEN;
525 	imx_uart_writel(sport, ucr2, UCR2);
526 }
527 
528 /* called with port.lock taken and irqs off */
529 static void imx_uart_enable_ms(struct uart_port *port)
530 {
531 	struct imx_port *sport = (struct imx_port *)port;
532 
533 	mod_timer(&sport->timer, jiffies);
534 
535 	mctrl_gpio_enable_ms(sport->gpios);
536 }
537 
538 static void imx_uart_dma_tx(struct imx_port *sport);
539 
540 /* called with port.lock taken and irqs off */
541 static inline void imx_uart_transmit_buffer(struct imx_port *sport)
542 {
543 	struct circ_buf *xmit = &sport->port.state->xmit;
544 
545 	if (sport->port.x_char) {
546 		/* Send next char */
547 		imx_uart_writel(sport, sport->port.x_char, URTX0);
548 		sport->port.icount.tx++;
549 		sport->port.x_char = 0;
550 		return;
551 	}
552 
553 	if (uart_circ_empty(xmit) || uart_tx_stopped(&sport->port)) {
554 		imx_uart_stop_tx(&sport->port);
555 		return;
556 	}
557 
558 	if (sport->dma_is_enabled) {
559 		u32 ucr1;
560 		/*
561 		 * We've just sent a X-char Ensure the TX DMA is enabled
562 		 * and the TX IRQ is disabled.
563 		 **/
564 		ucr1 = imx_uart_readl(sport, UCR1);
565 		ucr1 &= ~UCR1_TRDYEN;
566 		if (sport->dma_is_txing) {
567 			ucr1 |= UCR1_TXDMAEN;
568 			imx_uart_writel(sport, ucr1, UCR1);
569 		} else {
570 			imx_uart_writel(sport, ucr1, UCR1);
571 			imx_uart_dma_tx(sport);
572 		}
573 
574 		return;
575 	}
576 
577 	while (!uart_circ_empty(xmit) &&
578 	       !(imx_uart_readl(sport, imx_uart_uts_reg(sport)) & UTS_TXFULL)) {
579 		/* send xmit->buf[xmit->tail]
580 		 * out the port here */
581 		imx_uart_writel(sport, xmit->buf[xmit->tail], URTX0);
582 		xmit->tail = (xmit->tail + 1) & (UART_XMIT_SIZE - 1);
583 		sport->port.icount.tx++;
584 	}
585 
586 	if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
587 		uart_write_wakeup(&sport->port);
588 
589 	if (uart_circ_empty(xmit))
590 		imx_uart_stop_tx(&sport->port);
591 }
592 
593 static void imx_uart_dma_tx_callback(void *data)
594 {
595 	struct imx_port *sport = data;
596 	struct scatterlist *sgl = &sport->tx_sgl[0];
597 	struct circ_buf *xmit = &sport->port.state->xmit;
598 	unsigned long flags;
599 	u32 ucr1;
600 
601 	spin_lock_irqsave(&sport->port.lock, flags);
602 
603 	dma_unmap_sg(sport->port.dev, sgl, sport->dma_tx_nents, DMA_TO_DEVICE);
604 
605 	ucr1 = imx_uart_readl(sport, UCR1);
606 	ucr1 &= ~UCR1_TXDMAEN;
607 	imx_uart_writel(sport, ucr1, UCR1);
608 
609 	/* update the stat */
610 	xmit->tail = (xmit->tail + sport->tx_bytes) & (UART_XMIT_SIZE - 1);
611 	sport->port.icount.tx += sport->tx_bytes;
612 
613 	dev_dbg(sport->port.dev, "we finish the TX DMA.\n");
614 
615 	sport->dma_is_txing = 0;
616 
617 	if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
618 		uart_write_wakeup(&sport->port);
619 
620 	if (!uart_circ_empty(xmit) && !uart_tx_stopped(&sport->port))
621 		imx_uart_dma_tx(sport);
622 	else if (sport->port.rs485.flags & SER_RS485_ENABLED) {
623 		u32 ucr4 = imx_uart_readl(sport, UCR4);
624 		ucr4 |= UCR4_TCEN;
625 		imx_uart_writel(sport, ucr4, UCR4);
626 	}
627 
628 	spin_unlock_irqrestore(&sport->port.lock, flags);
629 }
630 
631 /* called with port.lock taken and irqs off */
632 static void imx_uart_dma_tx(struct imx_port *sport)
633 {
634 	struct circ_buf *xmit = &sport->port.state->xmit;
635 	struct scatterlist *sgl = sport->tx_sgl;
636 	struct dma_async_tx_descriptor *desc;
637 	struct dma_chan	*chan = sport->dma_chan_tx;
638 	struct device *dev = sport->port.dev;
639 	u32 ucr1, ucr4;
640 	int ret;
641 
642 	if (sport->dma_is_txing)
643 		return;
644 
645 	ucr4 = imx_uart_readl(sport, UCR4);
646 	ucr4 &= ~UCR4_TCEN;
647 	imx_uart_writel(sport, ucr4, UCR4);
648 
649 	sport->tx_bytes = uart_circ_chars_pending(xmit);
650 
651 	if (xmit->tail < xmit->head || xmit->head == 0) {
652 		sport->dma_tx_nents = 1;
653 		sg_init_one(sgl, xmit->buf + xmit->tail, sport->tx_bytes);
654 	} else {
655 		sport->dma_tx_nents = 2;
656 		sg_init_table(sgl, 2);
657 		sg_set_buf(sgl, xmit->buf + xmit->tail,
658 				UART_XMIT_SIZE - xmit->tail);
659 		sg_set_buf(sgl + 1, xmit->buf, xmit->head);
660 	}
661 
662 	ret = dma_map_sg(dev, sgl, sport->dma_tx_nents, DMA_TO_DEVICE);
663 	if (ret == 0) {
664 		dev_err(dev, "DMA mapping error for TX.\n");
665 		return;
666 	}
667 	desc = dmaengine_prep_slave_sg(chan, sgl, ret,
668 					DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT);
669 	if (!desc) {
670 		dma_unmap_sg(dev, sgl, sport->dma_tx_nents,
671 			     DMA_TO_DEVICE);
672 		dev_err(dev, "We cannot prepare for the TX slave dma!\n");
673 		return;
674 	}
675 	desc->callback = imx_uart_dma_tx_callback;
676 	desc->callback_param = sport;
677 
678 	dev_dbg(dev, "TX: prepare to send %lu bytes by DMA.\n",
679 			uart_circ_chars_pending(xmit));
680 
681 	ucr1 = imx_uart_readl(sport, UCR1);
682 	ucr1 |= UCR1_TXDMAEN;
683 	imx_uart_writel(sport, ucr1, UCR1);
684 
685 	/* fire it */
686 	sport->dma_is_txing = 1;
687 	dmaengine_submit(desc);
688 	dma_async_issue_pending(chan);
689 	return;
690 }
691 
692 /* called with port.lock taken and irqs off */
693 static void imx_uart_start_tx(struct uart_port *port)
694 {
695 	struct imx_port *sport = (struct imx_port *)port;
696 	u32 ucr1;
697 
698 	if (!sport->port.x_char && uart_circ_empty(&port->state->xmit))
699 		return;
700 
701 	/*
702 	 * We cannot simply do nothing here if sport->tx_state == SEND already
703 	 * because UCR1_TXMPTYEN might already have been cleared in
704 	 * imx_uart_stop_tx(), but tx_state is still SEND.
705 	 */
706 
707 	if (port->rs485.flags & SER_RS485_ENABLED) {
708 		if (sport->tx_state == OFF) {
709 			u32 ucr2 = imx_uart_readl(sport, UCR2);
710 			if (port->rs485.flags & SER_RS485_RTS_ON_SEND)
711 				imx_uart_rts_active(sport, &ucr2);
712 			else
713 				imx_uart_rts_inactive(sport, &ucr2);
714 			imx_uart_writel(sport, ucr2, UCR2);
715 
716 			if (!(port->rs485.flags & SER_RS485_RX_DURING_TX))
717 				imx_uart_stop_rx(port);
718 
719 			sport->tx_state = WAIT_AFTER_RTS;
720 			start_hrtimer_ms(&sport->trigger_start_tx,
721 					 port->rs485.delay_rts_before_send);
722 			return;
723 		}
724 
725 		if (sport->tx_state == WAIT_AFTER_SEND
726 		    || sport->tx_state == WAIT_AFTER_RTS) {
727 
728 			hrtimer_try_to_cancel(&sport->trigger_stop_tx);
729 
730 			/*
731 			 * Enable transmitter and shifter empty irq only if DMA
732 			 * is off.  In the DMA case this is done in the
733 			 * tx-callback.
734 			 */
735 			if (!sport->dma_is_enabled) {
736 				u32 ucr4 = imx_uart_readl(sport, UCR4);
737 				ucr4 |= UCR4_TCEN;
738 				imx_uart_writel(sport, ucr4, UCR4);
739 			}
740 
741 			sport->tx_state = SEND;
742 		}
743 	} else {
744 		sport->tx_state = SEND;
745 	}
746 
747 	if (!sport->dma_is_enabled) {
748 		ucr1 = imx_uart_readl(sport, UCR1);
749 		imx_uart_writel(sport, ucr1 | UCR1_TRDYEN, UCR1);
750 	}
751 
752 	if (sport->dma_is_enabled) {
753 		if (sport->port.x_char) {
754 			/* We have X-char to send, so enable TX IRQ and
755 			 * disable TX DMA to let TX interrupt to send X-char */
756 			ucr1 = imx_uart_readl(sport, UCR1);
757 			ucr1 &= ~UCR1_TXDMAEN;
758 			ucr1 |= UCR1_TRDYEN;
759 			imx_uart_writel(sport, ucr1, UCR1);
760 			return;
761 		}
762 
763 		if (!uart_circ_empty(&port->state->xmit) &&
764 		    !uart_tx_stopped(port))
765 			imx_uart_dma_tx(sport);
766 		return;
767 	}
768 }
769 
770 static irqreturn_t __imx_uart_rtsint(int irq, void *dev_id)
771 {
772 	struct imx_port *sport = dev_id;
773 	u32 usr1;
774 
775 	imx_uart_writel(sport, USR1_RTSD, USR1);
776 	usr1 = imx_uart_readl(sport, USR1) & USR1_RTSS;
777 	uart_handle_cts_change(&sport->port, !!usr1);
778 	wake_up_interruptible(&sport->port.state->port.delta_msr_wait);
779 
780 	return IRQ_HANDLED;
781 }
782 
783 static irqreturn_t imx_uart_rtsint(int irq, void *dev_id)
784 {
785 	struct imx_port *sport = dev_id;
786 	irqreturn_t ret;
787 
788 	spin_lock(&sport->port.lock);
789 
790 	ret = __imx_uart_rtsint(irq, dev_id);
791 
792 	spin_unlock(&sport->port.lock);
793 
794 	return ret;
795 }
796 
797 static irqreturn_t imx_uart_txint(int irq, void *dev_id)
798 {
799 	struct imx_port *sport = dev_id;
800 
801 	spin_lock(&sport->port.lock);
802 	imx_uart_transmit_buffer(sport);
803 	spin_unlock(&sport->port.lock);
804 	return IRQ_HANDLED;
805 }
806 
807 static irqreturn_t __imx_uart_rxint(int irq, void *dev_id)
808 {
809 	struct imx_port *sport = dev_id;
810 	unsigned int rx, flg, ignored = 0;
811 	struct tty_port *port = &sport->port.state->port;
812 
813 	while (imx_uart_readl(sport, USR2) & USR2_RDR) {
814 		u32 usr2;
815 
816 		flg = TTY_NORMAL;
817 		sport->port.icount.rx++;
818 
819 		rx = imx_uart_readl(sport, URXD0);
820 
821 		usr2 = imx_uart_readl(sport, USR2);
822 		if (usr2 & USR2_BRCD) {
823 			imx_uart_writel(sport, USR2_BRCD, USR2);
824 			if (uart_handle_break(&sport->port))
825 				continue;
826 		}
827 
828 		if (uart_handle_sysrq_char(&sport->port, (unsigned char)rx))
829 			continue;
830 
831 		if (unlikely(rx & URXD_ERR)) {
832 			if (rx & URXD_BRK)
833 				sport->port.icount.brk++;
834 			else if (rx & URXD_PRERR)
835 				sport->port.icount.parity++;
836 			else if (rx & URXD_FRMERR)
837 				sport->port.icount.frame++;
838 			if (rx & URXD_OVRRUN)
839 				sport->port.icount.overrun++;
840 
841 			if (rx & sport->port.ignore_status_mask) {
842 				if (++ignored > 100)
843 					goto out;
844 				continue;
845 			}
846 
847 			rx &= (sport->port.read_status_mask | 0xFF);
848 
849 			if (rx & URXD_BRK)
850 				flg = TTY_BREAK;
851 			else if (rx & URXD_PRERR)
852 				flg = TTY_PARITY;
853 			else if (rx & URXD_FRMERR)
854 				flg = TTY_FRAME;
855 			if (rx & URXD_OVRRUN)
856 				flg = TTY_OVERRUN;
857 
858 			sport->port.sysrq = 0;
859 		}
860 
861 		if (sport->port.ignore_status_mask & URXD_DUMMY_READ)
862 			goto out;
863 
864 		if (tty_insert_flip_char(port, rx, flg) == 0)
865 			sport->port.icount.buf_overrun++;
866 	}
867 
868 out:
869 	tty_flip_buffer_push(port);
870 
871 	return IRQ_HANDLED;
872 }
873 
874 static irqreturn_t imx_uart_rxint(int irq, void *dev_id)
875 {
876 	struct imx_port *sport = dev_id;
877 	irqreturn_t ret;
878 
879 	spin_lock(&sport->port.lock);
880 
881 	ret = __imx_uart_rxint(irq, dev_id);
882 
883 	spin_unlock(&sport->port.lock);
884 
885 	return ret;
886 }
887 
888 static void imx_uart_clear_rx_errors(struct imx_port *sport);
889 
890 /*
891  * We have a modem side uart, so the meanings of RTS and CTS are inverted.
892  */
893 static unsigned int imx_uart_get_hwmctrl(struct imx_port *sport)
894 {
895 	unsigned int tmp = TIOCM_DSR;
896 	unsigned usr1 = imx_uart_readl(sport, USR1);
897 	unsigned usr2 = imx_uart_readl(sport, USR2);
898 
899 	if (usr1 & USR1_RTSS)
900 		tmp |= TIOCM_CTS;
901 
902 	/* in DCE mode DCDIN is always 0 */
903 	if (!(usr2 & USR2_DCDIN))
904 		tmp |= TIOCM_CAR;
905 
906 	if (sport->dte_mode)
907 		if (!(imx_uart_readl(sport, USR2) & USR2_RIIN))
908 			tmp |= TIOCM_RI;
909 
910 	return tmp;
911 }
912 
913 /*
914  * Handle any change of modem status signal since we were last called.
915  */
916 static void imx_uart_mctrl_check(struct imx_port *sport)
917 {
918 	unsigned int status, changed;
919 
920 	status = imx_uart_get_hwmctrl(sport);
921 	changed = status ^ sport->old_status;
922 
923 	if (changed == 0)
924 		return;
925 
926 	sport->old_status = status;
927 
928 	if (changed & TIOCM_RI && status & TIOCM_RI)
929 		sport->port.icount.rng++;
930 	if (changed & TIOCM_DSR)
931 		sport->port.icount.dsr++;
932 	if (changed & TIOCM_CAR)
933 		uart_handle_dcd_change(&sport->port, status & TIOCM_CAR);
934 	if (changed & TIOCM_CTS)
935 		uart_handle_cts_change(&sport->port, status & TIOCM_CTS);
936 
937 	wake_up_interruptible(&sport->port.state->port.delta_msr_wait);
938 }
939 
940 static irqreturn_t imx_uart_int(int irq, void *dev_id)
941 {
942 	struct imx_port *sport = dev_id;
943 	unsigned int usr1, usr2, ucr1, ucr2, ucr3, ucr4;
944 	irqreturn_t ret = IRQ_NONE;
945 
946 	spin_lock(&sport->port.lock);
947 
948 	usr1 = imx_uart_readl(sport, USR1);
949 	usr2 = imx_uart_readl(sport, USR2);
950 	ucr1 = imx_uart_readl(sport, UCR1);
951 	ucr2 = imx_uart_readl(sport, UCR2);
952 	ucr3 = imx_uart_readl(sport, UCR3);
953 	ucr4 = imx_uart_readl(sport, UCR4);
954 
955 	/*
956 	 * Even if a condition is true that can trigger an irq only handle it if
957 	 * the respective irq source is enabled. This prevents some undesired
958 	 * actions, for example if a character that sits in the RX FIFO and that
959 	 * should be fetched via DMA is tried to be fetched using PIO. Or the
960 	 * receiver is currently off and so reading from URXD0 results in an
961 	 * exception. So just mask the (raw) status bits for disabled irqs.
962 	 */
963 	if ((ucr1 & UCR1_RRDYEN) == 0)
964 		usr1 &= ~USR1_RRDY;
965 	if ((ucr2 & UCR2_ATEN) == 0)
966 		usr1 &= ~USR1_AGTIM;
967 	if ((ucr1 & UCR1_TRDYEN) == 0)
968 		usr1 &= ~USR1_TRDY;
969 	if ((ucr4 & UCR4_TCEN) == 0)
970 		usr2 &= ~USR2_TXDC;
971 	if ((ucr3 & UCR3_DTRDEN) == 0)
972 		usr1 &= ~USR1_DTRD;
973 	if ((ucr1 & UCR1_RTSDEN) == 0)
974 		usr1 &= ~USR1_RTSD;
975 	if ((ucr3 & UCR3_AWAKEN) == 0)
976 		usr1 &= ~USR1_AWAKE;
977 	if ((ucr4 & UCR4_OREN) == 0)
978 		usr2 &= ~USR2_ORE;
979 
980 	if (usr1 & (USR1_RRDY | USR1_AGTIM)) {
981 		imx_uart_writel(sport, USR1_AGTIM, USR1);
982 
983 		__imx_uart_rxint(irq, dev_id);
984 		ret = IRQ_HANDLED;
985 	}
986 
987 	if ((usr1 & USR1_TRDY) || (usr2 & USR2_TXDC)) {
988 		imx_uart_transmit_buffer(sport);
989 		ret = IRQ_HANDLED;
990 	}
991 
992 	if (usr1 & USR1_DTRD) {
993 		imx_uart_writel(sport, USR1_DTRD, USR1);
994 
995 		imx_uart_mctrl_check(sport);
996 
997 		ret = IRQ_HANDLED;
998 	}
999 
1000 	if (usr1 & USR1_RTSD) {
1001 		__imx_uart_rtsint(irq, dev_id);
1002 		ret = IRQ_HANDLED;
1003 	}
1004 
1005 	if (usr1 & USR1_AWAKE) {
1006 		imx_uart_writel(sport, USR1_AWAKE, USR1);
1007 		ret = IRQ_HANDLED;
1008 	}
1009 
1010 	if (usr2 & USR2_ORE) {
1011 		sport->port.icount.overrun++;
1012 		imx_uart_writel(sport, USR2_ORE, USR2);
1013 		ret = IRQ_HANDLED;
1014 	}
1015 
1016 	spin_unlock(&sport->port.lock);
1017 
1018 	return ret;
1019 }
1020 
1021 /*
1022  * Return TIOCSER_TEMT when transmitter is not busy.
1023  */
1024 static unsigned int imx_uart_tx_empty(struct uart_port *port)
1025 {
1026 	struct imx_port *sport = (struct imx_port *)port;
1027 	unsigned int ret;
1028 
1029 	ret = (imx_uart_readl(sport, USR2) & USR2_TXDC) ?  TIOCSER_TEMT : 0;
1030 
1031 	/* If the TX DMA is working, return 0. */
1032 	if (sport->dma_is_txing)
1033 		ret = 0;
1034 
1035 	return ret;
1036 }
1037 
1038 /* called with port.lock taken and irqs off */
1039 static unsigned int imx_uart_get_mctrl(struct uart_port *port)
1040 {
1041 	struct imx_port *sport = (struct imx_port *)port;
1042 	unsigned int ret = imx_uart_get_hwmctrl(sport);
1043 
1044 	mctrl_gpio_get(sport->gpios, &ret);
1045 
1046 	return ret;
1047 }
1048 
1049 /* called with port.lock taken and irqs off */
1050 static void imx_uart_set_mctrl(struct uart_port *port, unsigned int mctrl)
1051 {
1052 	struct imx_port *sport = (struct imx_port *)port;
1053 	u32 ucr3, uts;
1054 
1055 	if (!(port->rs485.flags & SER_RS485_ENABLED)) {
1056 		u32 ucr2;
1057 
1058 		/*
1059 		 * Turn off autoRTS if RTS is lowered and restore autoRTS
1060 		 * setting if RTS is raised.
1061 		 */
1062 		ucr2 = imx_uart_readl(sport, UCR2);
1063 		ucr2 &= ~(UCR2_CTS | UCR2_CTSC);
1064 		if (mctrl & TIOCM_RTS) {
1065 			ucr2 |= UCR2_CTS;
1066 			/*
1067 			 * UCR2_IRTS is unset if and only if the port is
1068 			 * configured for CRTSCTS, so we use inverted UCR2_IRTS
1069 			 * to get the state to restore to.
1070 			 */
1071 			if (!(ucr2 & UCR2_IRTS))
1072 				ucr2 |= UCR2_CTSC;
1073 		}
1074 		imx_uart_writel(sport, ucr2, UCR2);
1075 	}
1076 
1077 	ucr3 = imx_uart_readl(sport, UCR3) & ~UCR3_DSR;
1078 	if (!(mctrl & TIOCM_DTR))
1079 		ucr3 |= UCR3_DSR;
1080 	imx_uart_writel(sport, ucr3, UCR3);
1081 
1082 	uts = imx_uart_readl(sport, imx_uart_uts_reg(sport)) & ~UTS_LOOP;
1083 	if (mctrl & TIOCM_LOOP)
1084 		uts |= UTS_LOOP;
1085 	imx_uart_writel(sport, uts, imx_uart_uts_reg(sport));
1086 
1087 	mctrl_gpio_set(sport->gpios, mctrl);
1088 }
1089 
1090 /*
1091  * Interrupts always disabled.
1092  */
1093 static void imx_uart_break_ctl(struct uart_port *port, int break_state)
1094 {
1095 	struct imx_port *sport = (struct imx_port *)port;
1096 	unsigned long flags;
1097 	u32 ucr1;
1098 
1099 	spin_lock_irqsave(&sport->port.lock, flags);
1100 
1101 	ucr1 = imx_uart_readl(sport, UCR1) & ~UCR1_SNDBRK;
1102 
1103 	if (break_state != 0)
1104 		ucr1 |= UCR1_SNDBRK;
1105 
1106 	imx_uart_writel(sport, ucr1, UCR1);
1107 
1108 	spin_unlock_irqrestore(&sport->port.lock, flags);
1109 }
1110 
1111 /*
1112  * This is our per-port timeout handler, for checking the
1113  * modem status signals.
1114  */
1115 static void imx_uart_timeout(struct timer_list *t)
1116 {
1117 	struct imx_port *sport = from_timer(sport, t, timer);
1118 	unsigned long flags;
1119 
1120 	if (sport->port.state) {
1121 		spin_lock_irqsave(&sport->port.lock, flags);
1122 		imx_uart_mctrl_check(sport);
1123 		spin_unlock_irqrestore(&sport->port.lock, flags);
1124 
1125 		mod_timer(&sport->timer, jiffies + MCTRL_TIMEOUT);
1126 	}
1127 }
1128 
1129 /*
1130  * There are two kinds of RX DMA interrupts(such as in the MX6Q):
1131  *   [1] the RX DMA buffer is full.
1132  *   [2] the aging timer expires
1133  *
1134  * Condition [2] is triggered when a character has been sitting in the FIFO
1135  * for at least 8 byte durations.
1136  */
1137 static void imx_uart_dma_rx_callback(void *data)
1138 {
1139 	struct imx_port *sport = data;
1140 	struct dma_chan	*chan = sport->dma_chan_rx;
1141 	struct scatterlist *sgl = &sport->rx_sgl;
1142 	struct tty_port *port = &sport->port.state->port;
1143 	struct dma_tx_state state;
1144 	struct circ_buf *rx_ring = &sport->rx_ring;
1145 	enum dma_status status;
1146 	unsigned int w_bytes = 0;
1147 	unsigned int r_bytes;
1148 	unsigned int bd_size;
1149 
1150 	status = dmaengine_tx_status(chan, sport->rx_cookie, &state);
1151 
1152 	if (status == DMA_ERROR) {
1153 		imx_uart_clear_rx_errors(sport);
1154 		return;
1155 	}
1156 
1157 	if (!(sport->port.ignore_status_mask & URXD_DUMMY_READ)) {
1158 
1159 		/*
1160 		 * The state-residue variable represents the empty space
1161 		 * relative to the entire buffer. Taking this in consideration
1162 		 * the head is always calculated base on the buffer total
1163 		 * length - DMA transaction residue. The UART script from the
1164 		 * SDMA firmware will jump to the next buffer descriptor,
1165 		 * once a DMA transaction if finalized (IMX53 RM - A.4.1.2.4).
1166 		 * Taking this in consideration the tail is always at the
1167 		 * beginning of the buffer descriptor that contains the head.
1168 		 */
1169 
1170 		/* Calculate the head */
1171 		rx_ring->head = sg_dma_len(sgl) - state.residue;
1172 
1173 		/* Calculate the tail. */
1174 		bd_size = sg_dma_len(sgl) / sport->rx_periods;
1175 		rx_ring->tail = ((rx_ring->head-1) / bd_size) * bd_size;
1176 
1177 		if (rx_ring->head <= sg_dma_len(sgl) &&
1178 		    rx_ring->head > rx_ring->tail) {
1179 
1180 			/* Move data from tail to head */
1181 			r_bytes = rx_ring->head - rx_ring->tail;
1182 
1183 			/* CPU claims ownership of RX DMA buffer */
1184 			dma_sync_sg_for_cpu(sport->port.dev, sgl, 1,
1185 				DMA_FROM_DEVICE);
1186 
1187 			w_bytes = tty_insert_flip_string(port,
1188 				sport->rx_buf + rx_ring->tail, r_bytes);
1189 
1190 			/* UART retrieves ownership of RX DMA buffer */
1191 			dma_sync_sg_for_device(sport->port.dev, sgl, 1,
1192 				DMA_FROM_DEVICE);
1193 
1194 			if (w_bytes != r_bytes)
1195 				sport->port.icount.buf_overrun++;
1196 
1197 			sport->port.icount.rx += w_bytes;
1198 		} else	{
1199 			WARN_ON(rx_ring->head > sg_dma_len(sgl));
1200 			WARN_ON(rx_ring->head <= rx_ring->tail);
1201 		}
1202 	}
1203 
1204 	if (w_bytes) {
1205 		tty_flip_buffer_push(port);
1206 		dev_dbg(sport->port.dev, "We get %d bytes.\n", w_bytes);
1207 	}
1208 }
1209 
1210 /* RX DMA buffer periods */
1211 #define RX_DMA_PERIODS	16
1212 #define RX_BUF_SIZE	(RX_DMA_PERIODS * PAGE_SIZE / 4)
1213 
1214 static int imx_uart_start_rx_dma(struct imx_port *sport)
1215 {
1216 	struct scatterlist *sgl = &sport->rx_sgl;
1217 	struct dma_chan	*chan = sport->dma_chan_rx;
1218 	struct device *dev = sport->port.dev;
1219 	struct dma_async_tx_descriptor *desc;
1220 	int ret;
1221 
1222 	sport->rx_ring.head = 0;
1223 	sport->rx_ring.tail = 0;
1224 	sport->rx_periods = RX_DMA_PERIODS;
1225 
1226 	sg_init_one(sgl, sport->rx_buf, RX_BUF_SIZE);
1227 	ret = dma_map_sg(dev, sgl, 1, DMA_FROM_DEVICE);
1228 	if (ret == 0) {
1229 		dev_err(dev, "DMA mapping error for RX.\n");
1230 		return -EINVAL;
1231 	}
1232 
1233 	desc = dmaengine_prep_dma_cyclic(chan, sg_dma_address(sgl),
1234 		sg_dma_len(sgl), sg_dma_len(sgl) / sport->rx_periods,
1235 		DMA_DEV_TO_MEM, DMA_PREP_INTERRUPT);
1236 
1237 	if (!desc) {
1238 		dma_unmap_sg(dev, sgl, 1, DMA_FROM_DEVICE);
1239 		dev_err(dev, "We cannot prepare for the RX slave dma!\n");
1240 		return -EINVAL;
1241 	}
1242 	desc->callback = imx_uart_dma_rx_callback;
1243 	desc->callback_param = sport;
1244 
1245 	dev_dbg(dev, "RX: prepare for the DMA.\n");
1246 	sport->dma_is_rxing = 1;
1247 	sport->rx_cookie = dmaengine_submit(desc);
1248 	dma_async_issue_pending(chan);
1249 	return 0;
1250 }
1251 
1252 static void imx_uart_clear_rx_errors(struct imx_port *sport)
1253 {
1254 	struct tty_port *port = &sport->port.state->port;
1255 	u32 usr1, usr2;
1256 
1257 	usr1 = imx_uart_readl(sport, USR1);
1258 	usr2 = imx_uart_readl(sport, USR2);
1259 
1260 	if (usr2 & USR2_BRCD) {
1261 		sport->port.icount.brk++;
1262 		imx_uart_writel(sport, USR2_BRCD, USR2);
1263 		uart_handle_break(&sport->port);
1264 		if (tty_insert_flip_char(port, 0, TTY_BREAK) == 0)
1265 			sport->port.icount.buf_overrun++;
1266 		tty_flip_buffer_push(port);
1267 	} else {
1268 		if (usr1 & USR1_FRAMERR) {
1269 			sport->port.icount.frame++;
1270 			imx_uart_writel(sport, USR1_FRAMERR, USR1);
1271 		} else if (usr1 & USR1_PARITYERR) {
1272 			sport->port.icount.parity++;
1273 			imx_uart_writel(sport, USR1_PARITYERR, USR1);
1274 		}
1275 	}
1276 
1277 	if (usr2 & USR2_ORE) {
1278 		sport->port.icount.overrun++;
1279 		imx_uart_writel(sport, USR2_ORE, USR2);
1280 	}
1281 
1282 }
1283 
1284 #define TXTL_DEFAULT 2 /* reset default */
1285 #define RXTL_DEFAULT 1 /* reset default */
1286 #define TXTL_DMA 8 /* DMA burst setting */
1287 #define RXTL_DMA 9 /* DMA burst setting */
1288 
1289 static void imx_uart_setup_ufcr(struct imx_port *sport,
1290 				unsigned char txwl, unsigned char rxwl)
1291 {
1292 	unsigned int val;
1293 
1294 	/* set receiver / transmitter trigger level */
1295 	val = imx_uart_readl(sport, UFCR) & (UFCR_RFDIV | UFCR_DCEDTE);
1296 	val |= txwl << UFCR_TXTL_SHF | rxwl;
1297 	imx_uart_writel(sport, val, UFCR);
1298 }
1299 
1300 static void imx_uart_dma_exit(struct imx_port *sport)
1301 {
1302 	if (sport->dma_chan_rx) {
1303 		dmaengine_terminate_sync(sport->dma_chan_rx);
1304 		dma_release_channel(sport->dma_chan_rx);
1305 		sport->dma_chan_rx = NULL;
1306 		sport->rx_cookie = -EINVAL;
1307 		kfree(sport->rx_buf);
1308 		sport->rx_buf = NULL;
1309 	}
1310 
1311 	if (sport->dma_chan_tx) {
1312 		dmaengine_terminate_sync(sport->dma_chan_tx);
1313 		dma_release_channel(sport->dma_chan_tx);
1314 		sport->dma_chan_tx = NULL;
1315 	}
1316 }
1317 
1318 static int imx_uart_dma_init(struct imx_port *sport)
1319 {
1320 	struct dma_slave_config slave_config = {};
1321 	struct device *dev = sport->port.dev;
1322 	int ret;
1323 
1324 	/* Prepare for RX : */
1325 	sport->dma_chan_rx = dma_request_slave_channel(dev, "rx");
1326 	if (!sport->dma_chan_rx) {
1327 		dev_dbg(dev, "cannot get the DMA channel.\n");
1328 		ret = -EINVAL;
1329 		goto err;
1330 	}
1331 
1332 	slave_config.direction = DMA_DEV_TO_MEM;
1333 	slave_config.src_addr = sport->port.mapbase + URXD0;
1334 	slave_config.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
1335 	/* one byte less than the watermark level to enable the aging timer */
1336 	slave_config.src_maxburst = RXTL_DMA - 1;
1337 	ret = dmaengine_slave_config(sport->dma_chan_rx, &slave_config);
1338 	if (ret) {
1339 		dev_err(dev, "error in RX dma configuration.\n");
1340 		goto err;
1341 	}
1342 
1343 	sport->rx_buf = kzalloc(RX_BUF_SIZE, GFP_KERNEL);
1344 	if (!sport->rx_buf) {
1345 		ret = -ENOMEM;
1346 		goto err;
1347 	}
1348 	sport->rx_ring.buf = sport->rx_buf;
1349 
1350 	/* Prepare for TX : */
1351 	sport->dma_chan_tx = dma_request_slave_channel(dev, "tx");
1352 	if (!sport->dma_chan_tx) {
1353 		dev_err(dev, "cannot get the TX DMA channel!\n");
1354 		ret = -EINVAL;
1355 		goto err;
1356 	}
1357 
1358 	slave_config.direction = DMA_MEM_TO_DEV;
1359 	slave_config.dst_addr = sport->port.mapbase + URTX0;
1360 	slave_config.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
1361 	slave_config.dst_maxburst = TXTL_DMA;
1362 	ret = dmaengine_slave_config(sport->dma_chan_tx, &slave_config);
1363 	if (ret) {
1364 		dev_err(dev, "error in TX dma configuration.");
1365 		goto err;
1366 	}
1367 
1368 	return 0;
1369 err:
1370 	imx_uart_dma_exit(sport);
1371 	return ret;
1372 }
1373 
1374 static void imx_uart_enable_dma(struct imx_port *sport)
1375 {
1376 	u32 ucr1;
1377 
1378 	imx_uart_setup_ufcr(sport, TXTL_DMA, RXTL_DMA);
1379 
1380 	/* set UCR1 */
1381 	ucr1 = imx_uart_readl(sport, UCR1);
1382 	ucr1 |= UCR1_RXDMAEN | UCR1_TXDMAEN | UCR1_ATDMAEN;
1383 	imx_uart_writel(sport, ucr1, UCR1);
1384 
1385 	sport->dma_is_enabled = 1;
1386 }
1387 
1388 static void imx_uart_disable_dma(struct imx_port *sport)
1389 {
1390 	u32 ucr1;
1391 
1392 	/* clear UCR1 */
1393 	ucr1 = imx_uart_readl(sport, UCR1);
1394 	ucr1 &= ~(UCR1_RXDMAEN | UCR1_TXDMAEN | UCR1_ATDMAEN);
1395 	imx_uart_writel(sport, ucr1, UCR1);
1396 
1397 	imx_uart_setup_ufcr(sport, TXTL_DEFAULT, RXTL_DEFAULT);
1398 
1399 	sport->dma_is_enabled = 0;
1400 }
1401 
1402 /* half the RX buffer size */
1403 #define CTSTL 16
1404 
1405 static int imx_uart_startup(struct uart_port *port)
1406 {
1407 	struct imx_port *sport = (struct imx_port *)port;
1408 	int retval, i;
1409 	unsigned long flags;
1410 	int dma_is_inited = 0;
1411 	u32 ucr1, ucr2, ucr3, ucr4;
1412 
1413 	retval = clk_prepare_enable(sport->clk_per);
1414 	if (retval)
1415 		return retval;
1416 	retval = clk_prepare_enable(sport->clk_ipg);
1417 	if (retval) {
1418 		clk_disable_unprepare(sport->clk_per);
1419 		return retval;
1420 	}
1421 
1422 	imx_uart_setup_ufcr(sport, TXTL_DEFAULT, RXTL_DEFAULT);
1423 
1424 	/* disable the DREN bit (Data Ready interrupt enable) before
1425 	 * requesting IRQs
1426 	 */
1427 	ucr4 = imx_uart_readl(sport, UCR4);
1428 
1429 	/* set the trigger level for CTS */
1430 	ucr4 &= ~(UCR4_CTSTL_MASK << UCR4_CTSTL_SHF);
1431 	ucr4 |= CTSTL << UCR4_CTSTL_SHF;
1432 
1433 	imx_uart_writel(sport, ucr4 & ~UCR4_DREN, UCR4);
1434 
1435 	/* Can we enable the DMA support? */
1436 	if (!uart_console(port) && imx_uart_dma_init(sport) == 0)
1437 		dma_is_inited = 1;
1438 
1439 	spin_lock_irqsave(&sport->port.lock, flags);
1440 	/* Reset fifo's and state machines */
1441 	i = 100;
1442 
1443 	ucr2 = imx_uart_readl(sport, UCR2);
1444 	ucr2 &= ~UCR2_SRST;
1445 	imx_uart_writel(sport, ucr2, UCR2);
1446 
1447 	while (!(imx_uart_readl(sport, UCR2) & UCR2_SRST) && (--i > 0))
1448 		udelay(1);
1449 
1450 	/*
1451 	 * Finally, clear and enable interrupts
1452 	 */
1453 	imx_uart_writel(sport, USR1_RTSD | USR1_DTRD, USR1);
1454 	imx_uart_writel(sport, USR2_ORE, USR2);
1455 
1456 	ucr1 = imx_uart_readl(sport, UCR1) & ~UCR1_RRDYEN;
1457 	ucr1 |= UCR1_UARTEN;
1458 	if (sport->have_rtscts)
1459 		ucr1 |= UCR1_RTSDEN;
1460 
1461 	imx_uart_writel(sport, ucr1, UCR1);
1462 
1463 	ucr4 = imx_uart_readl(sport, UCR4) & ~(UCR4_OREN | UCR4_INVR);
1464 	if (!sport->dma_is_enabled)
1465 		ucr4 |= UCR4_OREN;
1466 	if (sport->inverted_rx)
1467 		ucr4 |= UCR4_INVR;
1468 	imx_uart_writel(sport, ucr4, UCR4);
1469 
1470 	ucr3 = imx_uart_readl(sport, UCR3) & ~UCR3_INVT;
1471 	/*
1472 	 * configure tx polarity before enabling tx
1473 	 */
1474 	if (sport->inverted_tx)
1475 		ucr3 |= UCR3_INVT;
1476 
1477 	if (!imx_uart_is_imx1(sport)) {
1478 		ucr3 |= UCR3_DTRDEN | UCR3_RI | UCR3_DCD;
1479 
1480 		if (sport->dte_mode)
1481 			/* disable broken interrupts */
1482 			ucr3 &= ~(UCR3_RI | UCR3_DCD);
1483 	}
1484 	imx_uart_writel(sport, ucr3, UCR3);
1485 
1486 	ucr2 = imx_uart_readl(sport, UCR2) & ~UCR2_ATEN;
1487 	ucr2 |= (UCR2_RXEN | UCR2_TXEN);
1488 	if (!sport->have_rtscts)
1489 		ucr2 |= UCR2_IRTS;
1490 	/*
1491 	 * make sure the edge sensitive RTS-irq is disabled,
1492 	 * we're using RTSD instead.
1493 	 */
1494 	if (!imx_uart_is_imx1(sport))
1495 		ucr2 &= ~UCR2_RTSEN;
1496 	imx_uart_writel(sport, ucr2, UCR2);
1497 
1498 	/*
1499 	 * Enable modem status interrupts
1500 	 */
1501 	imx_uart_enable_ms(&sport->port);
1502 
1503 	if (dma_is_inited) {
1504 		imx_uart_enable_dma(sport);
1505 		imx_uart_start_rx_dma(sport);
1506 	} else {
1507 		ucr1 = imx_uart_readl(sport, UCR1);
1508 		ucr1 |= UCR1_RRDYEN;
1509 		imx_uart_writel(sport, ucr1, UCR1);
1510 
1511 		ucr2 = imx_uart_readl(sport, UCR2);
1512 		ucr2 |= UCR2_ATEN;
1513 		imx_uart_writel(sport, ucr2, UCR2);
1514 	}
1515 
1516 	spin_unlock_irqrestore(&sport->port.lock, flags);
1517 
1518 	return 0;
1519 }
1520 
1521 static void imx_uart_shutdown(struct uart_port *port)
1522 {
1523 	struct imx_port *sport = (struct imx_port *)port;
1524 	unsigned long flags;
1525 	u32 ucr1, ucr2, ucr4;
1526 
1527 	if (sport->dma_is_enabled) {
1528 		dmaengine_terminate_sync(sport->dma_chan_tx);
1529 		if (sport->dma_is_txing) {
1530 			dma_unmap_sg(sport->port.dev, &sport->tx_sgl[0],
1531 				     sport->dma_tx_nents, DMA_TO_DEVICE);
1532 			sport->dma_is_txing = 0;
1533 		}
1534 		dmaengine_terminate_sync(sport->dma_chan_rx);
1535 		if (sport->dma_is_rxing) {
1536 			dma_unmap_sg(sport->port.dev, &sport->rx_sgl,
1537 				     1, DMA_FROM_DEVICE);
1538 			sport->dma_is_rxing = 0;
1539 		}
1540 
1541 		spin_lock_irqsave(&sport->port.lock, flags);
1542 		imx_uart_stop_tx(port);
1543 		imx_uart_stop_rx(port);
1544 		imx_uart_disable_dma(sport);
1545 		spin_unlock_irqrestore(&sport->port.lock, flags);
1546 		imx_uart_dma_exit(sport);
1547 	}
1548 
1549 	mctrl_gpio_disable_ms(sport->gpios);
1550 
1551 	spin_lock_irqsave(&sport->port.lock, flags);
1552 	ucr2 = imx_uart_readl(sport, UCR2);
1553 	ucr2 &= ~(UCR2_TXEN | UCR2_ATEN);
1554 	imx_uart_writel(sport, ucr2, UCR2);
1555 	spin_unlock_irqrestore(&sport->port.lock, flags);
1556 
1557 	/*
1558 	 * Stop our timer.
1559 	 */
1560 	del_timer_sync(&sport->timer);
1561 
1562 	/*
1563 	 * Disable all interrupts, port and break condition.
1564 	 */
1565 
1566 	spin_lock_irqsave(&sport->port.lock, flags);
1567 
1568 	ucr1 = imx_uart_readl(sport, UCR1);
1569 	ucr1 &= ~(UCR1_TRDYEN | UCR1_RRDYEN | UCR1_RTSDEN | UCR1_UARTEN | UCR1_RXDMAEN | UCR1_ATDMAEN);
1570 	imx_uart_writel(sport, ucr1, UCR1);
1571 
1572 	ucr4 = imx_uart_readl(sport, UCR4);
1573 	ucr4 &= ~(UCR4_OREN | UCR4_TCEN);
1574 	imx_uart_writel(sport, ucr4, UCR4);
1575 
1576 	spin_unlock_irqrestore(&sport->port.lock, flags);
1577 
1578 	clk_disable_unprepare(sport->clk_per);
1579 	clk_disable_unprepare(sport->clk_ipg);
1580 }
1581 
1582 /* called with port.lock taken and irqs off */
1583 static void imx_uart_flush_buffer(struct uart_port *port)
1584 {
1585 	struct imx_port *sport = (struct imx_port *)port;
1586 	struct scatterlist *sgl = &sport->tx_sgl[0];
1587 	u32 ucr2;
1588 	int i = 100, ubir, ubmr, uts;
1589 
1590 	if (!sport->dma_chan_tx)
1591 		return;
1592 
1593 	sport->tx_bytes = 0;
1594 	dmaengine_terminate_all(sport->dma_chan_tx);
1595 	if (sport->dma_is_txing) {
1596 		u32 ucr1;
1597 
1598 		dma_unmap_sg(sport->port.dev, sgl, sport->dma_tx_nents,
1599 			     DMA_TO_DEVICE);
1600 		ucr1 = imx_uart_readl(sport, UCR1);
1601 		ucr1 &= ~UCR1_TXDMAEN;
1602 		imx_uart_writel(sport, ucr1, UCR1);
1603 		sport->dma_is_txing = 0;
1604 	}
1605 
1606 	/*
1607 	 * According to the Reference Manual description of the UART SRST bit:
1608 	 *
1609 	 * "Reset the transmit and receive state machines,
1610 	 * all FIFOs and register USR1, USR2, UBIR, UBMR, UBRC, URXD, UTXD
1611 	 * and UTS[6-3]".
1612 	 *
1613 	 * We don't need to restore the old values from USR1, USR2, URXD and
1614 	 * UTXD. UBRC is read only, so only save/restore the other three
1615 	 * registers.
1616 	 */
1617 	ubir = imx_uart_readl(sport, UBIR);
1618 	ubmr = imx_uart_readl(sport, UBMR);
1619 	uts = imx_uart_readl(sport, IMX21_UTS);
1620 
1621 	ucr2 = imx_uart_readl(sport, UCR2);
1622 	ucr2 &= ~UCR2_SRST;
1623 	imx_uart_writel(sport, ucr2, UCR2);
1624 
1625 	while (!(imx_uart_readl(sport, UCR2) & UCR2_SRST) && (--i > 0))
1626 		udelay(1);
1627 
1628 	/* Restore the registers */
1629 	imx_uart_writel(sport, ubir, UBIR);
1630 	imx_uart_writel(sport, ubmr, UBMR);
1631 	imx_uart_writel(sport, uts, IMX21_UTS);
1632 }
1633 
1634 static void
1635 imx_uart_set_termios(struct uart_port *port, struct ktermios *termios,
1636 		     struct ktermios *old)
1637 {
1638 	struct imx_port *sport = (struct imx_port *)port;
1639 	unsigned long flags;
1640 	u32 ucr2, old_ucr2, ufcr;
1641 	unsigned int baud, quot;
1642 	unsigned int old_csize = old ? old->c_cflag & CSIZE : CS8;
1643 	unsigned long div;
1644 	unsigned long num, denom, old_ubir, old_ubmr;
1645 	uint64_t tdiv64;
1646 
1647 	/*
1648 	 * We only support CS7 and CS8.
1649 	 */
1650 	while ((termios->c_cflag & CSIZE) != CS7 &&
1651 	       (termios->c_cflag & CSIZE) != CS8) {
1652 		termios->c_cflag &= ~CSIZE;
1653 		termios->c_cflag |= old_csize;
1654 		old_csize = CS8;
1655 	}
1656 
1657 	del_timer_sync(&sport->timer);
1658 
1659 	/*
1660 	 * Ask the core to calculate the divisor for us.
1661 	 */
1662 	baud = uart_get_baud_rate(port, termios, old, 50, port->uartclk / 16);
1663 	quot = uart_get_divisor(port, baud);
1664 
1665 	spin_lock_irqsave(&sport->port.lock, flags);
1666 
1667 	/*
1668 	 * Read current UCR2 and save it for future use, then clear all the bits
1669 	 * except those we will or may need to preserve.
1670 	 */
1671 	old_ucr2 = imx_uart_readl(sport, UCR2);
1672 	ucr2 = old_ucr2 & (UCR2_TXEN | UCR2_RXEN | UCR2_ATEN | UCR2_CTS);
1673 
1674 	ucr2 |= UCR2_SRST | UCR2_IRTS;
1675 	if ((termios->c_cflag & CSIZE) == CS8)
1676 		ucr2 |= UCR2_WS;
1677 
1678 	if (!sport->have_rtscts)
1679 		termios->c_cflag &= ~CRTSCTS;
1680 
1681 	if (port->rs485.flags & SER_RS485_ENABLED) {
1682 		/*
1683 		 * RTS is mandatory for rs485 operation, so keep
1684 		 * it under manual control and keep transmitter
1685 		 * disabled.
1686 		 */
1687 		if (port->rs485.flags & SER_RS485_RTS_AFTER_SEND)
1688 			imx_uart_rts_active(sport, &ucr2);
1689 		else
1690 			imx_uart_rts_inactive(sport, &ucr2);
1691 
1692 	} else if (termios->c_cflag & CRTSCTS) {
1693 		/*
1694 		 * Only let receiver control RTS output if we were not requested
1695 		 * to have RTS inactive (which then should take precedence).
1696 		 */
1697 		if (ucr2 & UCR2_CTS)
1698 			ucr2 |= UCR2_CTSC;
1699 	}
1700 
1701 	if (termios->c_cflag & CRTSCTS)
1702 		ucr2 &= ~UCR2_IRTS;
1703 	if (termios->c_cflag & CSTOPB)
1704 		ucr2 |= UCR2_STPB;
1705 	if (termios->c_cflag & PARENB) {
1706 		ucr2 |= UCR2_PREN;
1707 		if (termios->c_cflag & PARODD)
1708 			ucr2 |= UCR2_PROE;
1709 	}
1710 
1711 	sport->port.read_status_mask = 0;
1712 	if (termios->c_iflag & INPCK)
1713 		sport->port.read_status_mask |= (URXD_FRMERR | URXD_PRERR);
1714 	if (termios->c_iflag & (BRKINT | PARMRK))
1715 		sport->port.read_status_mask |= URXD_BRK;
1716 
1717 	/*
1718 	 * Characters to ignore
1719 	 */
1720 	sport->port.ignore_status_mask = 0;
1721 	if (termios->c_iflag & IGNPAR)
1722 		sport->port.ignore_status_mask |= URXD_PRERR | URXD_FRMERR;
1723 	if (termios->c_iflag & IGNBRK) {
1724 		sport->port.ignore_status_mask |= URXD_BRK;
1725 		/*
1726 		 * If we're ignoring parity and break indicators,
1727 		 * ignore overruns too (for real raw support).
1728 		 */
1729 		if (termios->c_iflag & IGNPAR)
1730 			sport->port.ignore_status_mask |= URXD_OVRRUN;
1731 	}
1732 
1733 	if ((termios->c_cflag & CREAD) == 0)
1734 		sport->port.ignore_status_mask |= URXD_DUMMY_READ;
1735 
1736 	/*
1737 	 * Update the per-port timeout.
1738 	 */
1739 	uart_update_timeout(port, termios->c_cflag, baud);
1740 
1741 	/* custom-baudrate handling */
1742 	div = sport->port.uartclk / (baud * 16);
1743 	if (baud == 38400 && quot != div)
1744 		baud = sport->port.uartclk / (quot * 16);
1745 
1746 	div = sport->port.uartclk / (baud * 16);
1747 	if (div > 7)
1748 		div = 7;
1749 	if (!div)
1750 		div = 1;
1751 
1752 	rational_best_approximation(16 * div * baud, sport->port.uartclk,
1753 		1 << 16, 1 << 16, &num, &denom);
1754 
1755 	tdiv64 = sport->port.uartclk;
1756 	tdiv64 *= num;
1757 	do_div(tdiv64, denom * 16 * div);
1758 	tty_termios_encode_baud_rate(termios,
1759 				(speed_t)tdiv64, (speed_t)tdiv64);
1760 
1761 	num -= 1;
1762 	denom -= 1;
1763 
1764 	ufcr = imx_uart_readl(sport, UFCR);
1765 	ufcr = (ufcr & (~UFCR_RFDIV)) | UFCR_RFDIV_REG(div);
1766 	imx_uart_writel(sport, ufcr, UFCR);
1767 
1768 	/*
1769 	 *  Two registers below should always be written both and in this
1770 	 *  particular order. One consequence is that we need to check if any of
1771 	 *  them changes and then update both. We do need the check for change
1772 	 *  as even writing the same values seem to "restart"
1773 	 *  transmission/receiving logic in the hardware, that leads to data
1774 	 *  breakage even when rate doesn't in fact change. E.g., user switches
1775 	 *  RTS/CTS handshake and suddenly gets broken bytes.
1776 	 */
1777 	old_ubir = imx_uart_readl(sport, UBIR);
1778 	old_ubmr = imx_uart_readl(sport, UBMR);
1779 	if (old_ubir != num || old_ubmr != denom) {
1780 		imx_uart_writel(sport, num, UBIR);
1781 		imx_uart_writel(sport, denom, UBMR);
1782 	}
1783 
1784 	if (!imx_uart_is_imx1(sport))
1785 		imx_uart_writel(sport, sport->port.uartclk / div / 1000,
1786 				IMX21_ONEMS);
1787 
1788 	imx_uart_writel(sport, ucr2, UCR2);
1789 
1790 	if (UART_ENABLE_MS(&sport->port, termios->c_cflag))
1791 		imx_uart_enable_ms(&sport->port);
1792 
1793 	spin_unlock_irqrestore(&sport->port.lock, flags);
1794 }
1795 
1796 static const char *imx_uart_type(struct uart_port *port)
1797 {
1798 	struct imx_port *sport = (struct imx_port *)port;
1799 
1800 	return sport->port.type == PORT_IMX ? "IMX" : NULL;
1801 }
1802 
1803 /*
1804  * Configure/autoconfigure the port.
1805  */
1806 static void imx_uart_config_port(struct uart_port *port, int flags)
1807 {
1808 	struct imx_port *sport = (struct imx_port *)port;
1809 
1810 	if (flags & UART_CONFIG_TYPE)
1811 		sport->port.type = PORT_IMX;
1812 }
1813 
1814 /*
1815  * Verify the new serial_struct (for TIOCSSERIAL).
1816  * The only change we allow are to the flags and type, and
1817  * even then only between PORT_IMX and PORT_UNKNOWN
1818  */
1819 static int
1820 imx_uart_verify_port(struct uart_port *port, struct serial_struct *ser)
1821 {
1822 	struct imx_port *sport = (struct imx_port *)port;
1823 	int ret = 0;
1824 
1825 	if (ser->type != PORT_UNKNOWN && ser->type != PORT_IMX)
1826 		ret = -EINVAL;
1827 	if (sport->port.irq != ser->irq)
1828 		ret = -EINVAL;
1829 	if (ser->io_type != UPIO_MEM)
1830 		ret = -EINVAL;
1831 	if (sport->port.uartclk / 16 != ser->baud_base)
1832 		ret = -EINVAL;
1833 	if (sport->port.mapbase != (unsigned long)ser->iomem_base)
1834 		ret = -EINVAL;
1835 	if (sport->port.iobase != ser->port)
1836 		ret = -EINVAL;
1837 	if (ser->hub6 != 0)
1838 		ret = -EINVAL;
1839 	return ret;
1840 }
1841 
1842 #if defined(CONFIG_CONSOLE_POLL)
1843 
1844 static int imx_uart_poll_init(struct uart_port *port)
1845 {
1846 	struct imx_port *sport = (struct imx_port *)port;
1847 	unsigned long flags;
1848 	u32 ucr1, ucr2;
1849 	int retval;
1850 
1851 	retval = clk_prepare_enable(sport->clk_ipg);
1852 	if (retval)
1853 		return retval;
1854 	retval = clk_prepare_enable(sport->clk_per);
1855 	if (retval)
1856 		clk_disable_unprepare(sport->clk_ipg);
1857 
1858 	imx_uart_setup_ufcr(sport, TXTL_DEFAULT, RXTL_DEFAULT);
1859 
1860 	spin_lock_irqsave(&sport->port.lock, flags);
1861 
1862 	/*
1863 	 * Be careful about the order of enabling bits here. First enable the
1864 	 * receiver (UARTEN + RXEN) and only then the corresponding irqs.
1865 	 * This prevents that a character that already sits in the RX fifo is
1866 	 * triggering an irq but the try to fetch it from there results in an
1867 	 * exception because UARTEN or RXEN is still off.
1868 	 */
1869 	ucr1 = imx_uart_readl(sport, UCR1);
1870 	ucr2 = imx_uart_readl(sport, UCR2);
1871 
1872 	if (imx_uart_is_imx1(sport))
1873 		ucr1 |= IMX1_UCR1_UARTCLKEN;
1874 
1875 	ucr1 |= UCR1_UARTEN;
1876 	ucr1 &= ~(UCR1_TRDYEN | UCR1_RTSDEN | UCR1_RRDYEN);
1877 
1878 	ucr2 |= UCR2_RXEN;
1879 	ucr2 &= ~UCR2_ATEN;
1880 
1881 	imx_uart_writel(sport, ucr1, UCR1);
1882 	imx_uart_writel(sport, ucr2, UCR2);
1883 
1884 	/* now enable irqs */
1885 	imx_uart_writel(sport, ucr1 | UCR1_RRDYEN, UCR1);
1886 	imx_uart_writel(sport, ucr2 | UCR2_ATEN, UCR2);
1887 
1888 	spin_unlock_irqrestore(&sport->port.lock, flags);
1889 
1890 	return 0;
1891 }
1892 
1893 static int imx_uart_poll_get_char(struct uart_port *port)
1894 {
1895 	struct imx_port *sport = (struct imx_port *)port;
1896 	if (!(imx_uart_readl(sport, USR2) & USR2_RDR))
1897 		return NO_POLL_CHAR;
1898 
1899 	return imx_uart_readl(sport, URXD0) & URXD_RX_DATA;
1900 }
1901 
1902 static void imx_uart_poll_put_char(struct uart_port *port, unsigned char c)
1903 {
1904 	struct imx_port *sport = (struct imx_port *)port;
1905 	unsigned int status;
1906 
1907 	/* drain */
1908 	do {
1909 		status = imx_uart_readl(sport, USR1);
1910 	} while (~status & USR1_TRDY);
1911 
1912 	/* write */
1913 	imx_uart_writel(sport, c, URTX0);
1914 
1915 	/* flush */
1916 	do {
1917 		status = imx_uart_readl(sport, USR2);
1918 	} while (~status & USR2_TXDC);
1919 }
1920 #endif
1921 
1922 /* called with port.lock taken and irqs off or from .probe without locking */
1923 static int imx_uart_rs485_config(struct uart_port *port,
1924 				 struct serial_rs485 *rs485conf)
1925 {
1926 	struct imx_port *sport = (struct imx_port *)port;
1927 	u32 ucr2;
1928 
1929 	/* RTS is required to control the transmitter */
1930 	if (!sport->have_rtscts && !sport->have_rtsgpio)
1931 		rs485conf->flags &= ~SER_RS485_ENABLED;
1932 
1933 	if (rs485conf->flags & SER_RS485_ENABLED) {
1934 		/* Enable receiver if low-active RTS signal is requested */
1935 		if (sport->have_rtscts &&  !sport->have_rtsgpio &&
1936 		    !(rs485conf->flags & SER_RS485_RTS_ON_SEND))
1937 			rs485conf->flags |= SER_RS485_RX_DURING_TX;
1938 
1939 		/* disable transmitter */
1940 		ucr2 = imx_uart_readl(sport, UCR2);
1941 		if (rs485conf->flags & SER_RS485_RTS_AFTER_SEND)
1942 			imx_uart_rts_active(sport, &ucr2);
1943 		else
1944 			imx_uart_rts_inactive(sport, &ucr2);
1945 		imx_uart_writel(sport, ucr2, UCR2);
1946 	}
1947 
1948 	/* Make sure Rx is enabled in case Tx is active with Rx disabled */
1949 	if (!(rs485conf->flags & SER_RS485_ENABLED) ||
1950 	    rs485conf->flags & SER_RS485_RX_DURING_TX)
1951 		imx_uart_start_rx(port);
1952 
1953 	port->rs485 = *rs485conf;
1954 
1955 	return 0;
1956 }
1957 
1958 static const struct uart_ops imx_uart_pops = {
1959 	.tx_empty	= imx_uart_tx_empty,
1960 	.set_mctrl	= imx_uart_set_mctrl,
1961 	.get_mctrl	= imx_uart_get_mctrl,
1962 	.stop_tx	= imx_uart_stop_tx,
1963 	.start_tx	= imx_uart_start_tx,
1964 	.stop_rx	= imx_uart_stop_rx,
1965 	.enable_ms	= imx_uart_enable_ms,
1966 	.break_ctl	= imx_uart_break_ctl,
1967 	.startup	= imx_uart_startup,
1968 	.shutdown	= imx_uart_shutdown,
1969 	.flush_buffer	= imx_uart_flush_buffer,
1970 	.set_termios	= imx_uart_set_termios,
1971 	.type		= imx_uart_type,
1972 	.config_port	= imx_uart_config_port,
1973 	.verify_port	= imx_uart_verify_port,
1974 #if defined(CONFIG_CONSOLE_POLL)
1975 	.poll_init      = imx_uart_poll_init,
1976 	.poll_get_char  = imx_uart_poll_get_char,
1977 	.poll_put_char  = imx_uart_poll_put_char,
1978 #endif
1979 };
1980 
1981 static struct imx_port *imx_uart_ports[UART_NR];
1982 
1983 #if IS_ENABLED(CONFIG_SERIAL_IMX_CONSOLE)
1984 static void imx_uart_console_putchar(struct uart_port *port, int ch)
1985 {
1986 	struct imx_port *sport = (struct imx_port *)port;
1987 
1988 	while (imx_uart_readl(sport, imx_uart_uts_reg(sport)) & UTS_TXFULL)
1989 		barrier();
1990 
1991 	imx_uart_writel(sport, ch, URTX0);
1992 }
1993 
1994 /*
1995  * Interrupts are disabled on entering
1996  */
1997 static void
1998 imx_uart_console_write(struct console *co, const char *s, unsigned int count)
1999 {
2000 	struct imx_port *sport = imx_uart_ports[co->index];
2001 	struct imx_port_ucrs old_ucr;
2002 	unsigned int ucr1;
2003 	unsigned long flags = 0;
2004 	int locked = 1;
2005 	int retval;
2006 
2007 	retval = clk_enable(sport->clk_per);
2008 	if (retval)
2009 		return;
2010 	retval = clk_enable(sport->clk_ipg);
2011 	if (retval) {
2012 		clk_disable(sport->clk_per);
2013 		return;
2014 	}
2015 
2016 	if (sport->port.sysrq)
2017 		locked = 0;
2018 	else if (oops_in_progress)
2019 		locked = spin_trylock_irqsave(&sport->port.lock, flags);
2020 	else
2021 		spin_lock_irqsave(&sport->port.lock, flags);
2022 
2023 	/*
2024 	 *	First, save UCR1/2/3 and then disable interrupts
2025 	 */
2026 	imx_uart_ucrs_save(sport, &old_ucr);
2027 	ucr1 = old_ucr.ucr1;
2028 
2029 	if (imx_uart_is_imx1(sport))
2030 		ucr1 |= IMX1_UCR1_UARTCLKEN;
2031 	ucr1 |= UCR1_UARTEN;
2032 	ucr1 &= ~(UCR1_TRDYEN | UCR1_RRDYEN | UCR1_RTSDEN);
2033 
2034 	imx_uart_writel(sport, ucr1, UCR1);
2035 
2036 	imx_uart_writel(sport, old_ucr.ucr2 | UCR2_TXEN, UCR2);
2037 
2038 	uart_console_write(&sport->port, s, count, imx_uart_console_putchar);
2039 
2040 	/*
2041 	 *	Finally, wait for transmitter to become empty
2042 	 *	and restore UCR1/2/3
2043 	 */
2044 	while (!(imx_uart_readl(sport, USR2) & USR2_TXDC));
2045 
2046 	imx_uart_ucrs_restore(sport, &old_ucr);
2047 
2048 	if (locked)
2049 		spin_unlock_irqrestore(&sport->port.lock, flags);
2050 
2051 	clk_disable(sport->clk_ipg);
2052 	clk_disable(sport->clk_per);
2053 }
2054 
2055 /*
2056  * If the port was already initialised (eg, by a boot loader),
2057  * try to determine the current setup.
2058  */
2059 static void __init
2060 imx_uart_console_get_options(struct imx_port *sport, int *baud,
2061 			     int *parity, int *bits)
2062 {
2063 
2064 	if (imx_uart_readl(sport, UCR1) & UCR1_UARTEN) {
2065 		/* ok, the port was enabled */
2066 		unsigned int ucr2, ubir, ubmr, uartclk;
2067 		unsigned int baud_raw;
2068 		unsigned int ucfr_rfdiv;
2069 
2070 		ucr2 = imx_uart_readl(sport, UCR2);
2071 
2072 		*parity = 'n';
2073 		if (ucr2 & UCR2_PREN) {
2074 			if (ucr2 & UCR2_PROE)
2075 				*parity = 'o';
2076 			else
2077 				*parity = 'e';
2078 		}
2079 
2080 		if (ucr2 & UCR2_WS)
2081 			*bits = 8;
2082 		else
2083 			*bits = 7;
2084 
2085 		ubir = imx_uart_readl(sport, UBIR) & 0xffff;
2086 		ubmr = imx_uart_readl(sport, UBMR) & 0xffff;
2087 
2088 		ucfr_rfdiv = (imx_uart_readl(sport, UFCR) & UFCR_RFDIV) >> 7;
2089 		if (ucfr_rfdiv == 6)
2090 			ucfr_rfdiv = 7;
2091 		else
2092 			ucfr_rfdiv = 6 - ucfr_rfdiv;
2093 
2094 		uartclk = clk_get_rate(sport->clk_per);
2095 		uartclk /= ucfr_rfdiv;
2096 
2097 		{	/*
2098 			 * The next code provides exact computation of
2099 			 *   baud_raw = round(((uartclk/16) * (ubir + 1)) / (ubmr + 1))
2100 			 * without need of float support or long long division,
2101 			 * which would be required to prevent 32bit arithmetic overflow
2102 			 */
2103 			unsigned int mul = ubir + 1;
2104 			unsigned int div = 16 * (ubmr + 1);
2105 			unsigned int rem = uartclk % div;
2106 
2107 			baud_raw = (uartclk / div) * mul;
2108 			baud_raw += (rem * mul + div / 2) / div;
2109 			*baud = (baud_raw + 50) / 100 * 100;
2110 		}
2111 
2112 		if (*baud != baud_raw)
2113 			dev_info(sport->port.dev, "Console IMX rounded baud rate from %d to %d\n",
2114 				baud_raw, *baud);
2115 	}
2116 }
2117 
2118 static int __init
2119 imx_uart_console_setup(struct console *co, char *options)
2120 {
2121 	struct imx_port *sport;
2122 	int baud = 9600;
2123 	int bits = 8;
2124 	int parity = 'n';
2125 	int flow = 'n';
2126 	int retval;
2127 
2128 	/*
2129 	 * Check whether an invalid uart number has been specified, and
2130 	 * if so, search for the first available port that does have
2131 	 * console support.
2132 	 */
2133 	if (co->index == -1 || co->index >= ARRAY_SIZE(imx_uart_ports))
2134 		co->index = 0;
2135 	sport = imx_uart_ports[co->index];
2136 	if (sport == NULL)
2137 		return -ENODEV;
2138 
2139 	/* For setting the registers, we only need to enable the ipg clock. */
2140 	retval = clk_prepare_enable(sport->clk_ipg);
2141 	if (retval)
2142 		goto error_console;
2143 
2144 	if (options)
2145 		uart_parse_options(options, &baud, &parity, &bits, &flow);
2146 	else
2147 		imx_uart_console_get_options(sport, &baud, &parity, &bits);
2148 
2149 	imx_uart_setup_ufcr(sport, TXTL_DEFAULT, RXTL_DEFAULT);
2150 
2151 	retval = uart_set_options(&sport->port, co, baud, parity, bits, flow);
2152 
2153 	clk_disable(sport->clk_ipg);
2154 	if (retval) {
2155 		clk_unprepare(sport->clk_ipg);
2156 		goto error_console;
2157 	}
2158 
2159 	retval = clk_prepare(sport->clk_per);
2160 	if (retval)
2161 		clk_unprepare(sport->clk_ipg);
2162 
2163 error_console:
2164 	return retval;
2165 }
2166 
2167 static struct uart_driver imx_uart_uart_driver;
2168 static struct console imx_uart_console = {
2169 	.name		= DEV_NAME,
2170 	.write		= imx_uart_console_write,
2171 	.device		= uart_console_device,
2172 	.setup		= imx_uart_console_setup,
2173 	.flags		= CON_PRINTBUFFER,
2174 	.index		= -1,
2175 	.data		= &imx_uart_uart_driver,
2176 };
2177 
2178 #define IMX_CONSOLE	&imx_uart_console
2179 
2180 #else
2181 #define IMX_CONSOLE	NULL
2182 #endif
2183 
2184 static struct uart_driver imx_uart_uart_driver = {
2185 	.owner          = THIS_MODULE,
2186 	.driver_name    = DRIVER_NAME,
2187 	.dev_name       = DEV_NAME,
2188 	.major          = SERIAL_IMX_MAJOR,
2189 	.minor          = MINOR_START,
2190 	.nr             = ARRAY_SIZE(imx_uart_ports),
2191 	.cons           = IMX_CONSOLE,
2192 };
2193 
2194 #ifdef CONFIG_OF
2195 /*
2196  * This function returns 1 iff pdev isn't a device instatiated by dt, 0 iff it
2197  * could successfully get all information from dt or a negative errno.
2198  */
2199 static int imx_uart_probe_dt(struct imx_port *sport,
2200 			     struct platform_device *pdev)
2201 {
2202 	struct device_node *np = pdev->dev.of_node;
2203 	int ret;
2204 
2205 	sport->devdata = of_device_get_match_data(&pdev->dev);
2206 	if (!sport->devdata)
2207 		/* no device tree device */
2208 		return 1;
2209 
2210 	ret = of_alias_get_id(np, "serial");
2211 	if (ret < 0) {
2212 		dev_err(&pdev->dev, "failed to get alias id, errno %d\n", ret);
2213 		return ret;
2214 	}
2215 	sport->port.line = ret;
2216 
2217 	if (of_get_property(np, "uart-has-rtscts", NULL) ||
2218 	    of_get_property(np, "fsl,uart-has-rtscts", NULL) /* deprecated */)
2219 		sport->have_rtscts = 1;
2220 
2221 	if (of_get_property(np, "fsl,dte-mode", NULL))
2222 		sport->dte_mode = 1;
2223 
2224 	if (of_get_property(np, "rts-gpios", NULL))
2225 		sport->have_rtsgpio = 1;
2226 
2227 	if (of_get_property(np, "fsl,inverted-tx", NULL))
2228 		sport->inverted_tx = 1;
2229 
2230 	if (of_get_property(np, "fsl,inverted-rx", NULL))
2231 		sport->inverted_rx = 1;
2232 
2233 	return 0;
2234 }
2235 #else
2236 static inline int imx_uart_probe_dt(struct imx_port *sport,
2237 				    struct platform_device *pdev)
2238 {
2239 	return 1;
2240 }
2241 #endif
2242 
2243 static void imx_uart_probe_pdata(struct imx_port *sport,
2244 				 struct platform_device *pdev)
2245 {
2246 	struct imxuart_platform_data *pdata = dev_get_platdata(&pdev->dev);
2247 
2248 	sport->port.line = pdev->id;
2249 	sport->devdata = (struct imx_uart_data	*) pdev->id_entry->driver_data;
2250 
2251 	if (!pdata)
2252 		return;
2253 
2254 	if (pdata->flags & IMXUART_HAVE_RTSCTS)
2255 		sport->have_rtscts = 1;
2256 }
2257 
2258 static enum hrtimer_restart imx_trigger_start_tx(struct hrtimer *t)
2259 {
2260 	struct imx_port *sport = container_of(t, struct imx_port, trigger_start_tx);
2261 	unsigned long flags;
2262 
2263 	spin_lock_irqsave(&sport->port.lock, flags);
2264 	if (sport->tx_state == WAIT_AFTER_RTS)
2265 		imx_uart_start_tx(&sport->port);
2266 	spin_unlock_irqrestore(&sport->port.lock, flags);
2267 
2268 	return HRTIMER_NORESTART;
2269 }
2270 
2271 static enum hrtimer_restart imx_trigger_stop_tx(struct hrtimer *t)
2272 {
2273 	struct imx_port *sport = container_of(t, struct imx_port, trigger_stop_tx);
2274 	unsigned long flags;
2275 
2276 	spin_lock_irqsave(&sport->port.lock, flags);
2277 	if (sport->tx_state == WAIT_AFTER_SEND)
2278 		imx_uart_stop_tx(&sport->port);
2279 	spin_unlock_irqrestore(&sport->port.lock, flags);
2280 
2281 	return HRTIMER_NORESTART;
2282 }
2283 
2284 static int imx_uart_probe(struct platform_device *pdev)
2285 {
2286 	struct imx_port *sport;
2287 	void __iomem *base;
2288 	int ret = 0;
2289 	u32 ucr1;
2290 	struct resource *res;
2291 	int txirq, rxirq, rtsirq;
2292 
2293 	sport = devm_kzalloc(&pdev->dev, sizeof(*sport), GFP_KERNEL);
2294 	if (!sport)
2295 		return -ENOMEM;
2296 
2297 	ret = imx_uart_probe_dt(sport, pdev);
2298 	if (ret > 0)
2299 		imx_uart_probe_pdata(sport, pdev);
2300 	else if (ret < 0)
2301 		return ret;
2302 
2303 	if (sport->port.line >= ARRAY_SIZE(imx_uart_ports)) {
2304 		dev_err(&pdev->dev, "serial%d out of range\n",
2305 			sport->port.line);
2306 		return -EINVAL;
2307 	}
2308 
2309 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2310 	base = devm_ioremap_resource(&pdev->dev, res);
2311 	if (IS_ERR(base))
2312 		return PTR_ERR(base);
2313 
2314 	rxirq = platform_get_irq(pdev, 0);
2315 	if (rxirq < 0)
2316 		return rxirq;
2317 	txirq = platform_get_irq_optional(pdev, 1);
2318 	rtsirq = platform_get_irq_optional(pdev, 2);
2319 
2320 	sport->port.dev = &pdev->dev;
2321 	sport->port.mapbase = res->start;
2322 	sport->port.membase = base;
2323 	sport->port.type = PORT_IMX,
2324 	sport->port.iotype = UPIO_MEM;
2325 	sport->port.irq = rxirq;
2326 	sport->port.fifosize = 32;
2327 	sport->port.has_sysrq = IS_ENABLED(CONFIG_SERIAL_IMX_CONSOLE);
2328 	sport->port.ops = &imx_uart_pops;
2329 	sport->port.rs485_config = imx_uart_rs485_config;
2330 	sport->port.flags = UPF_BOOT_AUTOCONF;
2331 	timer_setup(&sport->timer, imx_uart_timeout, 0);
2332 
2333 	sport->gpios = mctrl_gpio_init(&sport->port, 0);
2334 	if (IS_ERR(sport->gpios))
2335 		return PTR_ERR(sport->gpios);
2336 
2337 	sport->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
2338 	if (IS_ERR(sport->clk_ipg)) {
2339 		ret = PTR_ERR(sport->clk_ipg);
2340 		dev_err(&pdev->dev, "failed to get ipg clk: %d\n", ret);
2341 		return ret;
2342 	}
2343 
2344 	sport->clk_per = devm_clk_get(&pdev->dev, "per");
2345 	if (IS_ERR(sport->clk_per)) {
2346 		ret = PTR_ERR(sport->clk_per);
2347 		dev_err(&pdev->dev, "failed to get per clk: %d\n", ret);
2348 		return ret;
2349 	}
2350 
2351 	sport->port.uartclk = clk_get_rate(sport->clk_per);
2352 
2353 	/* For register access, we only need to enable the ipg clock. */
2354 	ret = clk_prepare_enable(sport->clk_ipg);
2355 	if (ret) {
2356 		dev_err(&pdev->dev, "failed to enable per clk: %d\n", ret);
2357 		return ret;
2358 	}
2359 
2360 	/* initialize shadow register values */
2361 	sport->ucr1 = readl(sport->port.membase + UCR1);
2362 	sport->ucr2 = readl(sport->port.membase + UCR2);
2363 	sport->ucr3 = readl(sport->port.membase + UCR3);
2364 	sport->ucr4 = readl(sport->port.membase + UCR4);
2365 	sport->ufcr = readl(sport->port.membase + UFCR);
2366 
2367 	ret = uart_get_rs485_mode(&sport->port);
2368 	if (ret) {
2369 		clk_disable_unprepare(sport->clk_ipg);
2370 		return ret;
2371 	}
2372 
2373 	if (sport->port.rs485.flags & SER_RS485_ENABLED &&
2374 	    (!sport->have_rtscts && !sport->have_rtsgpio))
2375 		dev_err(&pdev->dev, "no RTS control, disabling rs485\n");
2376 
2377 	/*
2378 	 * If using the i.MX UART RTS/CTS control then the RTS (CTS_B)
2379 	 * signal cannot be set low during transmission in case the
2380 	 * receiver is off (limitation of the i.MX UART IP).
2381 	 */
2382 	if (sport->port.rs485.flags & SER_RS485_ENABLED &&
2383 	    sport->have_rtscts && !sport->have_rtsgpio &&
2384 	    (!(sport->port.rs485.flags & SER_RS485_RTS_ON_SEND) &&
2385 	     !(sport->port.rs485.flags & SER_RS485_RX_DURING_TX)))
2386 		dev_err(&pdev->dev,
2387 			"low-active RTS not possible when receiver is off, enabling receiver\n");
2388 
2389 	imx_uart_rs485_config(&sport->port, &sport->port.rs485);
2390 
2391 	/* Disable interrupts before requesting them */
2392 	ucr1 = imx_uart_readl(sport, UCR1);
2393 	ucr1 &= ~(UCR1_ADEN | UCR1_TRDYEN | UCR1_IDEN | UCR1_RRDYEN | UCR1_RTSDEN);
2394 	imx_uart_writel(sport, ucr1, UCR1);
2395 
2396 	if (!imx_uart_is_imx1(sport) && sport->dte_mode) {
2397 		/*
2398 		 * The DCEDTE bit changes the direction of DSR, DCD, DTR and RI
2399 		 * and influences if UCR3_RI and UCR3_DCD changes the level of RI
2400 		 * and DCD (when they are outputs) or enables the respective
2401 		 * irqs. So set this bit early, i.e. before requesting irqs.
2402 		 */
2403 		u32 ufcr = imx_uart_readl(sport, UFCR);
2404 		if (!(ufcr & UFCR_DCEDTE))
2405 			imx_uart_writel(sport, ufcr | UFCR_DCEDTE, UFCR);
2406 
2407 		/*
2408 		 * Disable UCR3_RI and UCR3_DCD irqs. They are also not
2409 		 * enabled later because they cannot be cleared
2410 		 * (confirmed on i.MX25) which makes them unusable.
2411 		 */
2412 		imx_uart_writel(sport,
2413 				IMX21_UCR3_RXDMUXSEL | UCR3_ADNIMP | UCR3_DSR,
2414 				UCR3);
2415 
2416 	} else {
2417 		u32 ucr3 = UCR3_DSR;
2418 		u32 ufcr = imx_uart_readl(sport, UFCR);
2419 		if (ufcr & UFCR_DCEDTE)
2420 			imx_uart_writel(sport, ufcr & ~UFCR_DCEDTE, UFCR);
2421 
2422 		if (!imx_uart_is_imx1(sport))
2423 			ucr3 |= IMX21_UCR3_RXDMUXSEL | UCR3_ADNIMP;
2424 		imx_uart_writel(sport, ucr3, UCR3);
2425 	}
2426 
2427 	clk_disable_unprepare(sport->clk_ipg);
2428 
2429 	hrtimer_init(&sport->trigger_start_tx, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2430 	hrtimer_init(&sport->trigger_stop_tx, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2431 	sport->trigger_start_tx.function = imx_trigger_start_tx;
2432 	sport->trigger_stop_tx.function = imx_trigger_stop_tx;
2433 
2434 	/*
2435 	 * Allocate the IRQ(s) i.MX1 has three interrupts whereas later
2436 	 * chips only have one interrupt.
2437 	 */
2438 	if (txirq > 0) {
2439 		ret = devm_request_irq(&pdev->dev, rxirq, imx_uart_rxint, 0,
2440 				       dev_name(&pdev->dev), sport);
2441 		if (ret) {
2442 			dev_err(&pdev->dev, "failed to request rx irq: %d\n",
2443 				ret);
2444 			return ret;
2445 		}
2446 
2447 		ret = devm_request_irq(&pdev->dev, txirq, imx_uart_txint, 0,
2448 				       dev_name(&pdev->dev), sport);
2449 		if (ret) {
2450 			dev_err(&pdev->dev, "failed to request tx irq: %d\n",
2451 				ret);
2452 			return ret;
2453 		}
2454 
2455 		ret = devm_request_irq(&pdev->dev, rtsirq, imx_uart_rtsint, 0,
2456 				       dev_name(&pdev->dev), sport);
2457 		if (ret) {
2458 			dev_err(&pdev->dev, "failed to request rts irq: %d\n",
2459 				ret);
2460 			return ret;
2461 		}
2462 	} else {
2463 		ret = devm_request_irq(&pdev->dev, rxirq, imx_uart_int, 0,
2464 				       dev_name(&pdev->dev), sport);
2465 		if (ret) {
2466 			dev_err(&pdev->dev, "failed to request irq: %d\n", ret);
2467 			return ret;
2468 		}
2469 	}
2470 
2471 	imx_uart_ports[sport->port.line] = sport;
2472 
2473 	platform_set_drvdata(pdev, sport);
2474 
2475 	return uart_add_one_port(&imx_uart_uart_driver, &sport->port);
2476 }
2477 
2478 static int imx_uart_remove(struct platform_device *pdev)
2479 {
2480 	struct imx_port *sport = platform_get_drvdata(pdev);
2481 
2482 	return uart_remove_one_port(&imx_uart_uart_driver, &sport->port);
2483 }
2484 
2485 static void imx_uart_restore_context(struct imx_port *sport)
2486 {
2487 	unsigned long flags;
2488 
2489 	spin_lock_irqsave(&sport->port.lock, flags);
2490 	if (!sport->context_saved) {
2491 		spin_unlock_irqrestore(&sport->port.lock, flags);
2492 		return;
2493 	}
2494 
2495 	imx_uart_writel(sport, sport->saved_reg[4], UFCR);
2496 	imx_uart_writel(sport, sport->saved_reg[5], UESC);
2497 	imx_uart_writel(sport, sport->saved_reg[6], UTIM);
2498 	imx_uart_writel(sport, sport->saved_reg[7], UBIR);
2499 	imx_uart_writel(sport, sport->saved_reg[8], UBMR);
2500 	imx_uart_writel(sport, sport->saved_reg[9], IMX21_UTS);
2501 	imx_uart_writel(sport, sport->saved_reg[0], UCR1);
2502 	imx_uart_writel(sport, sport->saved_reg[1] | UCR2_SRST, UCR2);
2503 	imx_uart_writel(sport, sport->saved_reg[2], UCR3);
2504 	imx_uart_writel(sport, sport->saved_reg[3], UCR4);
2505 	sport->context_saved = false;
2506 	spin_unlock_irqrestore(&sport->port.lock, flags);
2507 }
2508 
2509 static void imx_uart_save_context(struct imx_port *sport)
2510 {
2511 	unsigned long flags;
2512 
2513 	/* Save necessary regs */
2514 	spin_lock_irqsave(&sport->port.lock, flags);
2515 	sport->saved_reg[0] = imx_uart_readl(sport, UCR1);
2516 	sport->saved_reg[1] = imx_uart_readl(sport, UCR2);
2517 	sport->saved_reg[2] = imx_uart_readl(sport, UCR3);
2518 	sport->saved_reg[3] = imx_uart_readl(sport, UCR4);
2519 	sport->saved_reg[4] = imx_uart_readl(sport, UFCR);
2520 	sport->saved_reg[5] = imx_uart_readl(sport, UESC);
2521 	sport->saved_reg[6] = imx_uart_readl(sport, UTIM);
2522 	sport->saved_reg[7] = imx_uart_readl(sport, UBIR);
2523 	sport->saved_reg[8] = imx_uart_readl(sport, UBMR);
2524 	sport->saved_reg[9] = imx_uart_readl(sport, IMX21_UTS);
2525 	sport->context_saved = true;
2526 	spin_unlock_irqrestore(&sport->port.lock, flags);
2527 }
2528 
2529 static void imx_uart_enable_wakeup(struct imx_port *sport, bool on)
2530 {
2531 	u32 ucr3;
2532 
2533 	ucr3 = imx_uart_readl(sport, UCR3);
2534 	if (on) {
2535 		imx_uart_writel(sport, USR1_AWAKE, USR1);
2536 		ucr3 |= UCR3_AWAKEN;
2537 	} else {
2538 		ucr3 &= ~UCR3_AWAKEN;
2539 	}
2540 	imx_uart_writel(sport, ucr3, UCR3);
2541 
2542 	if (sport->have_rtscts) {
2543 		u32 ucr1 = imx_uart_readl(sport, UCR1);
2544 		if (on)
2545 			ucr1 |= UCR1_RTSDEN;
2546 		else
2547 			ucr1 &= ~UCR1_RTSDEN;
2548 		imx_uart_writel(sport, ucr1, UCR1);
2549 	}
2550 }
2551 
2552 static int imx_uart_suspend_noirq(struct device *dev)
2553 {
2554 	struct imx_port *sport = dev_get_drvdata(dev);
2555 
2556 	imx_uart_save_context(sport);
2557 
2558 	clk_disable(sport->clk_ipg);
2559 
2560 	pinctrl_pm_select_sleep_state(dev);
2561 
2562 	return 0;
2563 }
2564 
2565 static int imx_uart_resume_noirq(struct device *dev)
2566 {
2567 	struct imx_port *sport = dev_get_drvdata(dev);
2568 	int ret;
2569 
2570 	pinctrl_pm_select_default_state(dev);
2571 
2572 	ret = clk_enable(sport->clk_ipg);
2573 	if (ret)
2574 		return ret;
2575 
2576 	imx_uart_restore_context(sport);
2577 
2578 	return 0;
2579 }
2580 
2581 static int imx_uart_suspend(struct device *dev)
2582 {
2583 	struct imx_port *sport = dev_get_drvdata(dev);
2584 	int ret;
2585 
2586 	uart_suspend_port(&imx_uart_uart_driver, &sport->port);
2587 	disable_irq(sport->port.irq);
2588 
2589 	ret = clk_prepare_enable(sport->clk_ipg);
2590 	if (ret)
2591 		return ret;
2592 
2593 	/* enable wakeup from i.MX UART */
2594 	imx_uart_enable_wakeup(sport, true);
2595 
2596 	return 0;
2597 }
2598 
2599 static int imx_uart_resume(struct device *dev)
2600 {
2601 	struct imx_port *sport = dev_get_drvdata(dev);
2602 
2603 	/* disable wakeup from i.MX UART */
2604 	imx_uart_enable_wakeup(sport, false);
2605 
2606 	uart_resume_port(&imx_uart_uart_driver, &sport->port);
2607 	enable_irq(sport->port.irq);
2608 
2609 	clk_disable_unprepare(sport->clk_ipg);
2610 
2611 	return 0;
2612 }
2613 
2614 static int imx_uart_freeze(struct device *dev)
2615 {
2616 	struct imx_port *sport = dev_get_drvdata(dev);
2617 
2618 	uart_suspend_port(&imx_uart_uart_driver, &sport->port);
2619 
2620 	return clk_prepare_enable(sport->clk_ipg);
2621 }
2622 
2623 static int imx_uart_thaw(struct device *dev)
2624 {
2625 	struct imx_port *sport = dev_get_drvdata(dev);
2626 
2627 	uart_resume_port(&imx_uart_uart_driver, &sport->port);
2628 
2629 	clk_disable_unprepare(sport->clk_ipg);
2630 
2631 	return 0;
2632 }
2633 
2634 static const struct dev_pm_ops imx_uart_pm_ops = {
2635 	.suspend_noirq = imx_uart_suspend_noirq,
2636 	.resume_noirq = imx_uart_resume_noirq,
2637 	.freeze_noirq = imx_uart_suspend_noirq,
2638 	.restore_noirq = imx_uart_resume_noirq,
2639 	.suspend = imx_uart_suspend,
2640 	.resume = imx_uart_resume,
2641 	.freeze = imx_uart_freeze,
2642 	.thaw = imx_uart_thaw,
2643 	.restore = imx_uart_thaw,
2644 };
2645 
2646 static struct platform_driver imx_uart_platform_driver = {
2647 	.probe = imx_uart_probe,
2648 	.remove = imx_uart_remove,
2649 
2650 	.id_table = imx_uart_devtype,
2651 	.driver = {
2652 		.name = "imx-uart",
2653 		.of_match_table = imx_uart_dt_ids,
2654 		.pm = &imx_uart_pm_ops,
2655 	},
2656 };
2657 
2658 static int __init imx_uart_init(void)
2659 {
2660 	int ret = uart_register_driver(&imx_uart_uart_driver);
2661 
2662 	if (ret)
2663 		return ret;
2664 
2665 	ret = platform_driver_register(&imx_uart_platform_driver);
2666 	if (ret != 0)
2667 		uart_unregister_driver(&imx_uart_uart_driver);
2668 
2669 	return ret;
2670 }
2671 
2672 static void __exit imx_uart_exit(void)
2673 {
2674 	platform_driver_unregister(&imx_uart_platform_driver);
2675 	uart_unregister_driver(&imx_uart_uart_driver);
2676 }
2677 
2678 module_init(imx_uart_init);
2679 module_exit(imx_uart_exit);
2680 
2681 MODULE_AUTHOR("Sascha Hauer");
2682 MODULE_DESCRIPTION("IMX generic serial port driver");
2683 MODULE_LICENSE("GPL");
2684 MODULE_ALIAS("platform:imx-uart");
2685