xref: /openbmc/linux/drivers/tty/serial/imx.c (revision 9df839a711aee437390b16ee39cf0b5c1620be6a)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Driver for Motorola/Freescale IMX serial ports
4  *
5  * Based on drivers/char/serial.c, by Linus Torvalds, Theodore Ts'o.
6  *
7  * Author: Sascha Hauer <sascha@saschahauer.de>
8  * Copyright (C) 2004 Pengutronix
9  */
10 
11 #include <linux/module.h>
12 #include <linux/ioport.h>
13 #include <linux/init.h>
14 #include <linux/console.h>
15 #include <linux/sysrq.h>
16 #include <linux/platform_device.h>
17 #include <linux/tty.h>
18 #include <linux/tty_flip.h>
19 #include <linux/serial_core.h>
20 #include <linux/serial.h>
21 #include <linux/clk.h>
22 #include <linux/delay.h>
23 #include <linux/ktime.h>
24 #include <linux/pinctrl/consumer.h>
25 #include <linux/rational.h>
26 #include <linux/slab.h>
27 #include <linux/of.h>
28 #include <linux/of_device.h>
29 #include <linux/io.h>
30 #include <linux/dma-mapping.h>
31 
32 #include <asm/irq.h>
33 #include <linux/dma/imx-dma.h>
34 
35 #include "serial_mctrl_gpio.h"
36 
37 /* Register definitions */
38 #define URXD0 0x0  /* Receiver Register */
39 #define URTX0 0x40 /* Transmitter Register */
40 #define UCR1  0x80 /* Control Register 1 */
41 #define UCR2  0x84 /* Control Register 2 */
42 #define UCR3  0x88 /* Control Register 3 */
43 #define UCR4  0x8c /* Control Register 4 */
44 #define UFCR  0x90 /* FIFO Control Register */
45 #define USR1  0x94 /* Status Register 1 */
46 #define USR2  0x98 /* Status Register 2 */
47 #define UESC  0x9c /* Escape Character Register */
48 #define UTIM  0xa0 /* Escape Timer Register */
49 #define UBIR  0xa4 /* BRM Incremental Register */
50 #define UBMR  0xa8 /* BRM Modulator Register */
51 #define UBRC  0xac /* Baud Rate Count Register */
52 #define IMX21_ONEMS 0xb0 /* One Millisecond register */
53 #define IMX1_UTS 0xd0 /* UART Test Register on i.mx1 */
54 #define IMX21_UTS 0xb4 /* UART Test Register on all other i.mx*/
55 
56 /* UART Control Register Bit Fields.*/
57 #define URXD_DUMMY_READ (1<<16)
58 #define URXD_CHARRDY	(1<<15)
59 #define URXD_ERR	(1<<14)
60 #define URXD_OVRRUN	(1<<13)
61 #define URXD_FRMERR	(1<<12)
62 #define URXD_BRK	(1<<11)
63 #define URXD_PRERR	(1<<10)
64 #define URXD_RX_DATA	(0xFF<<0)
65 #define UCR1_ADEN	(1<<15) /* Auto detect interrupt */
66 #define UCR1_ADBR	(1<<14) /* Auto detect baud rate */
67 #define UCR1_TRDYEN	(1<<13) /* Transmitter ready interrupt enable */
68 #define UCR1_IDEN	(1<<12) /* Idle condition interrupt */
69 #define UCR1_ICD_REG(x) (((x) & 3) << 10) /* idle condition detect */
70 #define UCR1_RRDYEN	(1<<9)	/* Recv ready interrupt enable */
71 #define UCR1_RXDMAEN	(1<<8)	/* Recv ready DMA enable */
72 #define UCR1_IREN	(1<<7)	/* Infrared interface enable */
73 #define UCR1_TXMPTYEN	(1<<6)	/* Transimitter empty interrupt enable */
74 #define UCR1_RTSDEN	(1<<5)	/* RTS delta interrupt enable */
75 #define UCR1_SNDBRK	(1<<4)	/* Send break */
76 #define UCR1_TXDMAEN	(1<<3)	/* Transmitter ready DMA enable */
77 #define IMX1_UCR1_UARTCLKEN (1<<2) /* UART clock enabled, i.mx1 only */
78 #define UCR1_ATDMAEN    (1<<2)  /* Aging DMA Timer Enable */
79 #define UCR1_DOZE	(1<<1)	/* Doze */
80 #define UCR1_UARTEN	(1<<0)	/* UART enabled */
81 #define UCR2_ESCI	(1<<15)	/* Escape seq interrupt enable */
82 #define UCR2_IRTS	(1<<14)	/* Ignore RTS pin */
83 #define UCR2_CTSC	(1<<13)	/* CTS pin control */
84 #define UCR2_CTS	(1<<12)	/* Clear to send */
85 #define UCR2_ESCEN	(1<<11)	/* Escape enable */
86 #define UCR2_PREN	(1<<8)	/* Parity enable */
87 #define UCR2_PROE	(1<<7)	/* Parity odd/even */
88 #define UCR2_STPB	(1<<6)	/* Stop */
89 #define UCR2_WS		(1<<5)	/* Word size */
90 #define UCR2_RTSEN	(1<<4)	/* Request to send interrupt enable */
91 #define UCR2_ATEN	(1<<3)	/* Aging Timer Enable */
92 #define UCR2_TXEN	(1<<2)	/* Transmitter enabled */
93 #define UCR2_RXEN	(1<<1)	/* Receiver enabled */
94 #define UCR2_SRST	(1<<0)	/* SW reset */
95 #define UCR3_DTREN	(1<<13) /* DTR interrupt enable */
96 #define UCR3_PARERREN	(1<<12) /* Parity enable */
97 #define UCR3_FRAERREN	(1<<11) /* Frame error interrupt enable */
98 #define UCR3_DSR	(1<<10) /* Data set ready */
99 #define UCR3_DCD	(1<<9)	/* Data carrier detect */
100 #define UCR3_RI		(1<<8)	/* Ring indicator */
101 #define UCR3_ADNIMP	(1<<7)	/* Autobaud Detection Not Improved */
102 #define UCR3_RXDSEN	(1<<6)	/* Receive status interrupt enable */
103 #define UCR3_AIRINTEN	(1<<5)	/* Async IR wake interrupt enable */
104 #define UCR3_AWAKEN	(1<<4)	/* Async wake interrupt enable */
105 #define UCR3_DTRDEN	(1<<3)	/* Data Terminal Ready Delta Enable. */
106 #define IMX21_UCR3_RXDMUXSEL	(1<<2)	/* RXD Muxed Input Select */
107 #define UCR3_INVT	(1<<1)	/* Inverted Infrared transmission */
108 #define UCR3_BPEN	(1<<0)	/* Preset registers enable */
109 #define UCR4_CTSTL_SHF	10	/* CTS trigger level shift */
110 #define UCR4_CTSTL_MASK	0x3F	/* CTS trigger is 6 bits wide */
111 #define UCR4_INVR	(1<<9)	/* Inverted infrared reception */
112 #define UCR4_ENIRI	(1<<8)	/* Serial infrared interrupt enable */
113 #define UCR4_WKEN	(1<<7)	/* Wake interrupt enable */
114 #define UCR4_REF16	(1<<6)	/* Ref freq 16 MHz */
115 #define UCR4_IDDMAEN    (1<<6)  /* DMA IDLE Condition Detected */
116 #define UCR4_IRSC	(1<<5)	/* IR special case */
117 #define UCR4_TCEN	(1<<3)	/* Transmit complete interrupt enable */
118 #define UCR4_BKEN	(1<<2)	/* Break condition interrupt enable */
119 #define UCR4_OREN	(1<<1)	/* Receiver overrun interrupt enable */
120 #define UCR4_DREN	(1<<0)	/* Recv data ready interrupt enable */
121 #define UFCR_RXTL_SHF	0	/* Receiver trigger level shift */
122 #define UFCR_DCEDTE	(1<<6)	/* DCE/DTE mode select */
123 #define UFCR_RFDIV	(7<<7)	/* Reference freq divider mask */
124 #define UFCR_RFDIV_REG(x)	(((x) < 7 ? 6 - (x) : 6) << 7)
125 #define UFCR_TXTL_SHF	10	/* Transmitter trigger level shift */
126 #define USR1_PARITYERR	(1<<15) /* Parity error interrupt flag */
127 #define USR1_RTSS	(1<<14) /* RTS pin status */
128 #define USR1_TRDY	(1<<13) /* Transmitter ready interrupt/dma flag */
129 #define USR1_RTSD	(1<<12) /* RTS delta */
130 #define USR1_ESCF	(1<<11) /* Escape seq interrupt flag */
131 #define USR1_FRAMERR	(1<<10) /* Frame error interrupt flag */
132 #define USR1_RRDY	(1<<9)	 /* Receiver ready interrupt/dma flag */
133 #define USR1_AGTIM	(1<<8)	 /* Ageing timer interrupt flag */
134 #define USR1_DTRD	(1<<7)	 /* DTR Delta */
135 #define USR1_RXDS	 (1<<6)	 /* Receiver idle interrupt flag */
136 #define USR1_AIRINT	 (1<<5)	 /* Async IR wake interrupt flag */
137 #define USR1_AWAKE	 (1<<4)	 /* Aysnc wake interrupt flag */
138 #define USR2_ADET	 (1<<15) /* Auto baud rate detect complete */
139 #define USR2_TXFE	 (1<<14) /* Transmit buffer FIFO empty */
140 #define USR2_DTRF	 (1<<13) /* DTR edge interrupt flag */
141 #define USR2_IDLE	 (1<<12) /* Idle condition */
142 #define USR2_RIDELT	 (1<<10) /* Ring Interrupt Delta */
143 #define USR2_RIIN	 (1<<9)	 /* Ring Indicator Input */
144 #define USR2_IRINT	 (1<<8)	 /* Serial infrared interrupt flag */
145 #define USR2_WAKE	 (1<<7)	 /* Wake */
146 #define USR2_DCDIN	 (1<<5)	 /* Data Carrier Detect Input */
147 #define USR2_RTSF	 (1<<4)	 /* RTS edge interrupt flag */
148 #define USR2_TXDC	 (1<<3)	 /* Transmitter complete */
149 #define USR2_BRCD	 (1<<2)	 /* Break condition */
150 #define USR2_ORE	(1<<1)	 /* Overrun error */
151 #define USR2_RDR	(1<<0)	 /* Recv data ready */
152 #define UTS_FRCPERR	(1<<13) /* Force parity error */
153 #define UTS_LOOP	(1<<12)	 /* Loop tx and rx */
154 #define UTS_TXEMPTY	 (1<<6)	 /* TxFIFO empty */
155 #define UTS_RXEMPTY	 (1<<5)	 /* RxFIFO empty */
156 #define UTS_TXFULL	 (1<<4)	 /* TxFIFO full */
157 #define UTS_RXFULL	 (1<<3)	 /* RxFIFO full */
158 #define UTS_SOFTRST	 (1<<0)	 /* Software reset */
159 
160 /* We've been assigned a range on the "Low-density serial ports" major */
161 #define SERIAL_IMX_MAJOR	207
162 #define MINOR_START		16
163 #define DEV_NAME		"ttymxc"
164 
165 /*
166  * This determines how often we check the modem status signals
167  * for any change.  They generally aren't connected to an IRQ
168  * so we have to poll them.  We also check immediately before
169  * filling the TX fifo incase CTS has been dropped.
170  */
171 #define MCTRL_TIMEOUT	(250*HZ/1000)
172 
173 #define DRIVER_NAME "IMX-uart"
174 
175 #define UART_NR 8
176 
177 /* i.MX21 type uart runs on all i.mx except i.MX1 and i.MX6q */
178 enum imx_uart_type {
179 	IMX1_UART,
180 	IMX21_UART,
181 	IMX53_UART,
182 	IMX6Q_UART,
183 };
184 
185 /* device type dependent stuff */
186 struct imx_uart_data {
187 	unsigned uts_reg;
188 	enum imx_uart_type devtype;
189 };
190 
191 enum imx_tx_state {
192 	OFF,
193 	WAIT_AFTER_RTS,
194 	SEND,
195 	WAIT_AFTER_SEND,
196 };
197 
198 struct imx_port {
199 	struct uart_port	port;
200 	struct timer_list	timer;
201 	unsigned int		old_status;
202 	unsigned int		have_rtscts:1;
203 	unsigned int		have_rtsgpio:1;
204 	unsigned int		dte_mode:1;
205 	unsigned int		inverted_tx:1;
206 	unsigned int		inverted_rx:1;
207 	struct clk		*clk_ipg;
208 	struct clk		*clk_per;
209 	const struct imx_uart_data *devdata;
210 
211 	struct mctrl_gpios *gpios;
212 
213 	/* counter to stop 0xff flood */
214 	int idle_counter;
215 
216 	/* DMA fields */
217 	unsigned int		dma_is_enabled:1;
218 	unsigned int		dma_is_rxing:1;
219 	unsigned int		dma_is_txing:1;
220 	struct dma_chan		*dma_chan_rx, *dma_chan_tx;
221 	struct scatterlist	rx_sgl, tx_sgl[2];
222 	void			*rx_buf;
223 	struct circ_buf		rx_ring;
224 	unsigned int		rx_buf_size;
225 	unsigned int		rx_period_length;
226 	unsigned int		rx_periods;
227 	dma_cookie_t		rx_cookie;
228 	unsigned int		tx_bytes;
229 	unsigned int		dma_tx_nents;
230 	unsigned int            saved_reg[10];
231 	bool			context_saved;
232 
233 	enum imx_tx_state	tx_state;
234 	struct hrtimer		trigger_start_tx;
235 	struct hrtimer		trigger_stop_tx;
236 };
237 
238 struct imx_port_ucrs {
239 	unsigned int	ucr1;
240 	unsigned int	ucr2;
241 	unsigned int	ucr3;
242 };
243 
244 static struct imx_uart_data imx_uart_devdata[] = {
245 	[IMX1_UART] = {
246 		.uts_reg = IMX1_UTS,
247 		.devtype = IMX1_UART,
248 	},
249 	[IMX21_UART] = {
250 		.uts_reg = IMX21_UTS,
251 		.devtype = IMX21_UART,
252 	},
253 	[IMX53_UART] = {
254 		.uts_reg = IMX21_UTS,
255 		.devtype = IMX53_UART,
256 	},
257 	[IMX6Q_UART] = {
258 		.uts_reg = IMX21_UTS,
259 		.devtype = IMX6Q_UART,
260 	},
261 };
262 
263 static const struct of_device_id imx_uart_dt_ids[] = {
264 	{ .compatible = "fsl,imx6q-uart", .data = &imx_uart_devdata[IMX6Q_UART], },
265 	{ .compatible = "fsl,imx53-uart", .data = &imx_uart_devdata[IMX53_UART], },
266 	{ .compatible = "fsl,imx1-uart", .data = &imx_uart_devdata[IMX1_UART], },
267 	{ .compatible = "fsl,imx21-uart", .data = &imx_uart_devdata[IMX21_UART], },
268 	{ /* sentinel */ }
269 };
270 MODULE_DEVICE_TABLE(of, imx_uart_dt_ids);
271 
272 static inline void imx_uart_writel(struct imx_port *sport, u32 val, u32 offset)
273 {
274 	writel(val, sport->port.membase + offset);
275 }
276 
277 static inline u32 imx_uart_readl(struct imx_port *sport, u32 offset)
278 {
279 	return readl(sport->port.membase + offset);
280 }
281 
282 static inline unsigned imx_uart_uts_reg(struct imx_port *sport)
283 {
284 	return sport->devdata->uts_reg;
285 }
286 
287 static inline int imx_uart_is_imx1(struct imx_port *sport)
288 {
289 	return sport->devdata->devtype == IMX1_UART;
290 }
291 
292 static inline int imx_uart_is_imx21(struct imx_port *sport)
293 {
294 	return sport->devdata->devtype == IMX21_UART;
295 }
296 
297 static inline int imx_uart_is_imx53(struct imx_port *sport)
298 {
299 	return sport->devdata->devtype == IMX53_UART;
300 }
301 
302 static inline int imx_uart_is_imx6q(struct imx_port *sport)
303 {
304 	return sport->devdata->devtype == IMX6Q_UART;
305 }
306 /*
307  * Save and restore functions for UCR1, UCR2 and UCR3 registers
308  */
309 #if IS_ENABLED(CONFIG_SERIAL_IMX_CONSOLE)
310 static void imx_uart_ucrs_save(struct imx_port *sport,
311 			       struct imx_port_ucrs *ucr)
312 {
313 	/* save control registers */
314 	ucr->ucr1 = imx_uart_readl(sport, UCR1);
315 	ucr->ucr2 = imx_uart_readl(sport, UCR2);
316 	ucr->ucr3 = imx_uart_readl(sport, UCR3);
317 }
318 
319 static void imx_uart_ucrs_restore(struct imx_port *sport,
320 				  struct imx_port_ucrs *ucr)
321 {
322 	/* restore control registers */
323 	imx_uart_writel(sport, ucr->ucr1, UCR1);
324 	imx_uart_writel(sport, ucr->ucr2, UCR2);
325 	imx_uart_writel(sport, ucr->ucr3, UCR3);
326 }
327 #endif
328 
329 /* called with port.lock taken and irqs caller dependent */
330 static void imx_uart_rts_active(struct imx_port *sport, u32 *ucr2)
331 {
332 	*ucr2 &= ~(UCR2_CTSC | UCR2_CTS);
333 
334 	mctrl_gpio_set(sport->gpios, sport->port.mctrl | TIOCM_RTS);
335 }
336 
337 /* called with port.lock taken and irqs caller dependent */
338 static void imx_uart_rts_inactive(struct imx_port *sport, u32 *ucr2)
339 {
340 	*ucr2 &= ~UCR2_CTSC;
341 	*ucr2 |= UCR2_CTS;
342 
343 	mctrl_gpio_set(sport->gpios, sport->port.mctrl & ~TIOCM_RTS);
344 }
345 
346 static void start_hrtimer_ms(struct hrtimer *hrt, unsigned long msec)
347 {
348        hrtimer_start(hrt, ms_to_ktime(msec), HRTIMER_MODE_REL);
349 }
350 
351 /* called with port.lock taken and irqs off */
352 static void imx_uart_soft_reset(struct imx_port *sport)
353 {
354 	int i = 10;
355 	u32 ucr2, ubir, ubmr, uts;
356 
357 	/*
358 	 * According to the Reference Manual description of the UART SRST bit:
359 	 *
360 	 * "Reset the transmit and receive state machines,
361 	 * all FIFOs and register USR1, USR2, UBIR, UBMR, UBRC, URXD, UTXD
362 	 * and UTS[6-3]".
363 	 *
364 	 * We don't need to restore the old values from USR1, USR2, URXD and
365 	 * UTXD. UBRC is read only, so only save/restore the other three
366 	 * registers.
367 	 */
368 	ubir = imx_uart_readl(sport, UBIR);
369 	ubmr = imx_uart_readl(sport, UBMR);
370 	uts = imx_uart_readl(sport, IMX21_UTS);
371 
372 	ucr2 = imx_uart_readl(sport, UCR2);
373 	imx_uart_writel(sport, ucr2 & ~UCR2_SRST, UCR2);
374 
375 	while (!(imx_uart_readl(sport, UCR2) & UCR2_SRST) && (--i > 0))
376 		udelay(1);
377 
378 	/* Restore the registers */
379 	imx_uart_writel(sport, ubir, UBIR);
380 	imx_uart_writel(sport, ubmr, UBMR);
381 	imx_uart_writel(sport, uts, IMX21_UTS);
382 
383 	sport->idle_counter = 0;
384 }
385 
386 /* called with port.lock taken and irqs off */
387 static void imx_uart_start_rx(struct uart_port *port)
388 {
389 	struct imx_port *sport = (struct imx_port *)port;
390 	unsigned int ucr1, ucr2;
391 
392 	ucr1 = imx_uart_readl(sport, UCR1);
393 	ucr2 = imx_uart_readl(sport, UCR2);
394 
395 	ucr2 |= UCR2_RXEN;
396 
397 	if (sport->dma_is_enabled) {
398 		ucr1 |= UCR1_RXDMAEN | UCR1_ATDMAEN;
399 	} else {
400 		ucr1 |= UCR1_RRDYEN;
401 		ucr2 |= UCR2_ATEN;
402 	}
403 
404 	/* Write UCR2 first as it includes RXEN */
405 	imx_uart_writel(sport, ucr2, UCR2);
406 	imx_uart_writel(sport, ucr1, UCR1);
407 }
408 
409 /* called with port.lock taken and irqs off */
410 static void imx_uart_stop_tx(struct uart_port *port)
411 {
412 	struct imx_port *sport = (struct imx_port *)port;
413 	u32 ucr1, ucr4, usr2;
414 
415 	if (sport->tx_state == OFF)
416 		return;
417 
418 	/*
419 	 * We are maybe in the SMP context, so if the DMA TX thread is running
420 	 * on other cpu, we have to wait for it to finish.
421 	 */
422 	if (sport->dma_is_txing)
423 		return;
424 
425 	ucr1 = imx_uart_readl(sport, UCR1);
426 	imx_uart_writel(sport, ucr1 & ~UCR1_TRDYEN, UCR1);
427 
428 	usr2 = imx_uart_readl(sport, USR2);
429 	if (!(usr2 & USR2_TXDC)) {
430 		/* The shifter is still busy, so retry once TC triggers */
431 		return;
432 	}
433 
434 	ucr4 = imx_uart_readl(sport, UCR4);
435 	ucr4 &= ~UCR4_TCEN;
436 	imx_uart_writel(sport, ucr4, UCR4);
437 
438 	/* in rs485 mode disable transmitter */
439 	if (port->rs485.flags & SER_RS485_ENABLED) {
440 		if (sport->tx_state == SEND) {
441 			sport->tx_state = WAIT_AFTER_SEND;
442 
443 			if (port->rs485.delay_rts_after_send > 0) {
444 				start_hrtimer_ms(&sport->trigger_stop_tx,
445 					 port->rs485.delay_rts_after_send);
446 				return;
447 			}
448 
449 			/* continue without any delay */
450 		}
451 
452 		if (sport->tx_state == WAIT_AFTER_RTS ||
453 		    sport->tx_state == WAIT_AFTER_SEND) {
454 			u32 ucr2;
455 
456 			hrtimer_try_to_cancel(&sport->trigger_start_tx);
457 
458 			ucr2 = imx_uart_readl(sport, UCR2);
459 			if (port->rs485.flags & SER_RS485_RTS_AFTER_SEND)
460 				imx_uart_rts_active(sport, &ucr2);
461 			else
462 				imx_uart_rts_inactive(sport, &ucr2);
463 			imx_uart_writel(sport, ucr2, UCR2);
464 
465 			if (!port->rs485_rx_during_tx_gpio)
466 				imx_uart_start_rx(port);
467 
468 			sport->tx_state = OFF;
469 		}
470 	} else {
471 		sport->tx_state = OFF;
472 	}
473 }
474 
475 /* called with port.lock taken and irqs off */
476 static void imx_uart_stop_rx(struct uart_port *port)
477 {
478 	struct imx_port *sport = (struct imx_port *)port;
479 	u32 ucr1, ucr2, ucr4, uts;
480 
481 	ucr1 = imx_uart_readl(sport, UCR1);
482 	ucr2 = imx_uart_readl(sport, UCR2);
483 	ucr4 = imx_uart_readl(sport, UCR4);
484 
485 	if (sport->dma_is_enabled) {
486 		ucr1 &= ~(UCR1_RXDMAEN | UCR1_ATDMAEN);
487 	} else {
488 		ucr1 &= ~UCR1_RRDYEN;
489 		ucr2 &= ~UCR2_ATEN;
490 		ucr4 &= ~UCR4_OREN;
491 	}
492 	imx_uart_writel(sport, ucr1, UCR1);
493 	imx_uart_writel(sport, ucr4, UCR4);
494 
495 	/* See SER_RS485_ENABLED/UTS_LOOP comment in imx_uart_probe() */
496 	if (port->rs485.flags & SER_RS485_ENABLED &&
497 	    port->rs485.flags & SER_RS485_RTS_ON_SEND &&
498 	    sport->have_rtscts && !sport->have_rtsgpio) {
499 		uts = imx_uart_readl(sport, imx_uart_uts_reg(sport));
500 		uts |= UTS_LOOP;
501 		imx_uart_writel(sport, uts, imx_uart_uts_reg(sport));
502 		ucr2 |= UCR2_RXEN;
503 	} else {
504 		ucr2 &= ~UCR2_RXEN;
505 	}
506 
507 	imx_uart_writel(sport, ucr2, UCR2);
508 }
509 
510 /* called with port.lock taken and irqs off */
511 static void imx_uart_enable_ms(struct uart_port *port)
512 {
513 	struct imx_port *sport = (struct imx_port *)port;
514 
515 	mod_timer(&sport->timer, jiffies);
516 
517 	mctrl_gpio_enable_ms(sport->gpios);
518 }
519 
520 static void imx_uart_dma_tx(struct imx_port *sport);
521 
522 /* called with port.lock taken and irqs off */
523 static inline void imx_uart_transmit_buffer(struct imx_port *sport)
524 {
525 	struct circ_buf *xmit = &sport->port.state->xmit;
526 
527 	if (sport->port.x_char) {
528 		/* Send next char */
529 		imx_uart_writel(sport, sport->port.x_char, URTX0);
530 		sport->port.icount.tx++;
531 		sport->port.x_char = 0;
532 		return;
533 	}
534 
535 	if (uart_circ_empty(xmit) || uart_tx_stopped(&sport->port)) {
536 		imx_uart_stop_tx(&sport->port);
537 		return;
538 	}
539 
540 	if (sport->dma_is_enabled) {
541 		u32 ucr1;
542 		/*
543 		 * We've just sent a X-char Ensure the TX DMA is enabled
544 		 * and the TX IRQ is disabled.
545 		 **/
546 		ucr1 = imx_uart_readl(sport, UCR1);
547 		ucr1 &= ~UCR1_TRDYEN;
548 		if (sport->dma_is_txing) {
549 			ucr1 |= UCR1_TXDMAEN;
550 			imx_uart_writel(sport, ucr1, UCR1);
551 		} else {
552 			imx_uart_writel(sport, ucr1, UCR1);
553 			imx_uart_dma_tx(sport);
554 		}
555 
556 		return;
557 	}
558 
559 	while (!uart_circ_empty(xmit) &&
560 	       !(imx_uart_readl(sport, imx_uart_uts_reg(sport)) & UTS_TXFULL)) {
561 		/* send xmit->buf[xmit->tail]
562 		 * out the port here */
563 		imx_uart_writel(sport, xmit->buf[xmit->tail], URTX0);
564 		uart_xmit_advance(&sport->port, 1);
565 	}
566 
567 	if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
568 		uart_write_wakeup(&sport->port);
569 
570 	if (uart_circ_empty(xmit))
571 		imx_uart_stop_tx(&sport->port);
572 }
573 
574 static void imx_uart_dma_tx_callback(void *data)
575 {
576 	struct imx_port *sport = data;
577 	struct scatterlist *sgl = &sport->tx_sgl[0];
578 	struct circ_buf *xmit = &sport->port.state->xmit;
579 	unsigned long flags;
580 	u32 ucr1;
581 
582 	spin_lock_irqsave(&sport->port.lock, flags);
583 
584 	dma_unmap_sg(sport->port.dev, sgl, sport->dma_tx_nents, DMA_TO_DEVICE);
585 
586 	ucr1 = imx_uart_readl(sport, UCR1);
587 	ucr1 &= ~UCR1_TXDMAEN;
588 	imx_uart_writel(sport, ucr1, UCR1);
589 
590 	uart_xmit_advance(&sport->port, sport->tx_bytes);
591 
592 	dev_dbg(sport->port.dev, "we finish the TX DMA.\n");
593 
594 	sport->dma_is_txing = 0;
595 
596 	if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
597 		uart_write_wakeup(&sport->port);
598 
599 	if (!uart_circ_empty(xmit) && !uart_tx_stopped(&sport->port))
600 		imx_uart_dma_tx(sport);
601 	else if (sport->port.rs485.flags & SER_RS485_ENABLED) {
602 		u32 ucr4 = imx_uart_readl(sport, UCR4);
603 		ucr4 |= UCR4_TCEN;
604 		imx_uart_writel(sport, ucr4, UCR4);
605 	}
606 
607 	spin_unlock_irqrestore(&sport->port.lock, flags);
608 }
609 
610 /* called with port.lock taken and irqs off */
611 static void imx_uart_dma_tx(struct imx_port *sport)
612 {
613 	struct circ_buf *xmit = &sport->port.state->xmit;
614 	struct scatterlist *sgl = sport->tx_sgl;
615 	struct dma_async_tx_descriptor *desc;
616 	struct dma_chan	*chan = sport->dma_chan_tx;
617 	struct device *dev = sport->port.dev;
618 	u32 ucr1, ucr4;
619 	int ret;
620 
621 	if (sport->dma_is_txing)
622 		return;
623 
624 	ucr4 = imx_uart_readl(sport, UCR4);
625 	ucr4 &= ~UCR4_TCEN;
626 	imx_uart_writel(sport, ucr4, UCR4);
627 
628 	sport->tx_bytes = uart_circ_chars_pending(xmit);
629 
630 	if (xmit->tail < xmit->head || xmit->head == 0) {
631 		sport->dma_tx_nents = 1;
632 		sg_init_one(sgl, xmit->buf + xmit->tail, sport->tx_bytes);
633 	} else {
634 		sport->dma_tx_nents = 2;
635 		sg_init_table(sgl, 2);
636 		sg_set_buf(sgl, xmit->buf + xmit->tail,
637 				UART_XMIT_SIZE - xmit->tail);
638 		sg_set_buf(sgl + 1, xmit->buf, xmit->head);
639 	}
640 
641 	ret = dma_map_sg(dev, sgl, sport->dma_tx_nents, DMA_TO_DEVICE);
642 	if (ret == 0) {
643 		dev_err(dev, "DMA mapping error for TX.\n");
644 		return;
645 	}
646 	desc = dmaengine_prep_slave_sg(chan, sgl, ret,
647 					DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT);
648 	if (!desc) {
649 		dma_unmap_sg(dev, sgl, sport->dma_tx_nents,
650 			     DMA_TO_DEVICE);
651 		dev_err(dev, "We cannot prepare for the TX slave dma!\n");
652 		return;
653 	}
654 	desc->callback = imx_uart_dma_tx_callback;
655 	desc->callback_param = sport;
656 
657 	dev_dbg(dev, "TX: prepare to send %lu bytes by DMA.\n",
658 			uart_circ_chars_pending(xmit));
659 
660 	ucr1 = imx_uart_readl(sport, UCR1);
661 	ucr1 |= UCR1_TXDMAEN;
662 	imx_uart_writel(sport, ucr1, UCR1);
663 
664 	/* fire it */
665 	sport->dma_is_txing = 1;
666 	dmaengine_submit(desc);
667 	dma_async_issue_pending(chan);
668 	return;
669 }
670 
671 /* called with port.lock taken and irqs off */
672 static void imx_uart_start_tx(struct uart_port *port)
673 {
674 	struct imx_port *sport = (struct imx_port *)port;
675 	u32 ucr1;
676 
677 	if (!sport->port.x_char && uart_circ_empty(&port->state->xmit))
678 		return;
679 
680 	/*
681 	 * We cannot simply do nothing here if sport->tx_state == SEND already
682 	 * because UCR1_TXMPTYEN might already have been cleared in
683 	 * imx_uart_stop_tx(), but tx_state is still SEND.
684 	 */
685 
686 	if (port->rs485.flags & SER_RS485_ENABLED) {
687 		if (sport->tx_state == OFF) {
688 			u32 ucr2 = imx_uart_readl(sport, UCR2);
689 			if (port->rs485.flags & SER_RS485_RTS_ON_SEND)
690 				imx_uart_rts_active(sport, &ucr2);
691 			else
692 				imx_uart_rts_inactive(sport, &ucr2);
693 			imx_uart_writel(sport, ucr2, UCR2);
694 
695 			if (!(port->rs485.flags & SER_RS485_RX_DURING_TX) &&
696 			    !port->rs485_rx_during_tx_gpio)
697 				imx_uart_stop_rx(port);
698 
699 			sport->tx_state = WAIT_AFTER_RTS;
700 
701 			if (port->rs485.delay_rts_before_send > 0) {
702 				start_hrtimer_ms(&sport->trigger_start_tx,
703 					 port->rs485.delay_rts_before_send);
704 				return;
705 			}
706 
707 			/* continue without any delay */
708 		}
709 
710 		if (sport->tx_state == WAIT_AFTER_SEND
711 		    || sport->tx_state == WAIT_AFTER_RTS) {
712 
713 			hrtimer_try_to_cancel(&sport->trigger_stop_tx);
714 
715 			/*
716 			 * Enable transmitter and shifter empty irq only if DMA
717 			 * is off.  In the DMA case this is done in the
718 			 * tx-callback.
719 			 */
720 			if (!sport->dma_is_enabled) {
721 				u32 ucr4 = imx_uart_readl(sport, UCR4);
722 				ucr4 |= UCR4_TCEN;
723 				imx_uart_writel(sport, ucr4, UCR4);
724 			}
725 
726 			sport->tx_state = SEND;
727 		}
728 	} else {
729 		sport->tx_state = SEND;
730 	}
731 
732 	if (!sport->dma_is_enabled) {
733 		ucr1 = imx_uart_readl(sport, UCR1);
734 		imx_uart_writel(sport, ucr1 | UCR1_TRDYEN, UCR1);
735 	}
736 
737 	if (sport->dma_is_enabled) {
738 		if (sport->port.x_char) {
739 			/* We have X-char to send, so enable TX IRQ and
740 			 * disable TX DMA to let TX interrupt to send X-char */
741 			ucr1 = imx_uart_readl(sport, UCR1);
742 			ucr1 &= ~UCR1_TXDMAEN;
743 			ucr1 |= UCR1_TRDYEN;
744 			imx_uart_writel(sport, ucr1, UCR1);
745 			return;
746 		}
747 
748 		if (!uart_circ_empty(&port->state->xmit) &&
749 		    !uart_tx_stopped(port))
750 			imx_uart_dma_tx(sport);
751 		return;
752 	}
753 }
754 
755 static irqreturn_t __imx_uart_rtsint(int irq, void *dev_id)
756 {
757 	struct imx_port *sport = dev_id;
758 	u32 usr1;
759 
760 	imx_uart_writel(sport, USR1_RTSD, USR1);
761 	usr1 = imx_uart_readl(sport, USR1) & USR1_RTSS;
762 	uart_handle_cts_change(&sport->port, usr1);
763 	wake_up_interruptible(&sport->port.state->port.delta_msr_wait);
764 
765 	return IRQ_HANDLED;
766 }
767 
768 static irqreturn_t imx_uart_rtsint(int irq, void *dev_id)
769 {
770 	struct imx_port *sport = dev_id;
771 	irqreturn_t ret;
772 
773 	spin_lock(&sport->port.lock);
774 
775 	ret = __imx_uart_rtsint(irq, dev_id);
776 
777 	spin_unlock(&sport->port.lock);
778 
779 	return ret;
780 }
781 
782 static irqreturn_t imx_uart_txint(int irq, void *dev_id)
783 {
784 	struct imx_port *sport = dev_id;
785 
786 	spin_lock(&sport->port.lock);
787 	imx_uart_transmit_buffer(sport);
788 	spin_unlock(&sport->port.lock);
789 	return IRQ_HANDLED;
790 }
791 
792 /* Check if hardware Rx flood is in progress, and issue soft reset to stop it.
793  * This is to be called from Rx ISRs only when some bytes were actually
794  * received.
795  *
796  * A way to reproduce the flood (checked on iMX6SX) is: open iMX UART at 9600
797  * 8N1, and from external source send 0xf0 char at 115200 8N1. In about 90% of
798  * cases this starts a flood of "receiving" of 0xff characters by the iMX6 UART
799  * that is terminated by any activity on RxD line, or could be stopped by
800  * issuing soft reset to the UART (just stop/start of RX does not help). Note
801  * that what we do here is sending isolated start bit about 2.4 times shorter
802  * than it is to be on UART configured baud rate.
803  */
804 static void imx_uart_check_flood(struct imx_port *sport, u32 usr2)
805 {
806 	/* To detect hardware 0xff flood we monitor RxD line between RX
807 	 * interrupts to isolate "receiving" of char(s) with no activity
808 	 * on RxD line, that'd never happen on actual data transfers.
809 	 *
810 	 * We use USR2_WAKE bit to check for activity on RxD line, but we have a
811 	 * race here if we clear USR2_WAKE when receiving of a char is in
812 	 * progress, so we might get RX interrupt later with USR2_WAKE bit
813 	 * cleared. Note though that as we don't try to clear USR2_WAKE when we
814 	 * detected no activity, this race may hide actual activity only once.
815 	 *
816 	 * Yet another case where receive interrupt may occur without RxD
817 	 * activity is expiration of aging timer, so we consider this as well.
818 	 *
819 	 * We use 'idle_counter' to ensure that we got at least so many RX
820 	 * interrupts without any detected activity on RxD line. 2 cases
821 	 * described plus 1 to be on the safe side gives us a margin of 3,
822 	 * below. In practice I was not able to produce a false positive to
823 	 * induce soft reset at regular data transfers even using 1 as the
824 	 * margin, so 3 is actually very strong.
825 	 *
826 	 * We count interrupts, not chars in 'idle-counter' for simplicity.
827 	 */
828 
829 	if (usr2 & USR2_WAKE) {
830 		imx_uart_writel(sport, USR2_WAKE, USR2);
831 		sport->idle_counter = 0;
832 	} else if (++sport->idle_counter > 3) {
833 		dev_warn(sport->port.dev, "RX flood detected: soft reset.");
834 		imx_uart_soft_reset(sport); /* also clears 'sport->idle_counter' */
835 	}
836 }
837 
838 static irqreturn_t __imx_uart_rxint(int irq, void *dev_id)
839 {
840 	struct imx_port *sport = dev_id;
841 	struct tty_port *port = &sport->port.state->port;
842 	u32 usr2, rx;
843 
844 	/* If we received something, check for 0xff flood */
845 	usr2 = imx_uart_readl(sport, USR2);
846 	if (usr2 & USR2_RDR)
847 		imx_uart_check_flood(sport, usr2);
848 
849 	while ((rx = imx_uart_readl(sport, URXD0)) & URXD_CHARRDY) {
850 		unsigned int flg = TTY_NORMAL;
851 		sport->port.icount.rx++;
852 
853 		if (unlikely(rx & URXD_ERR)) {
854 			if (rx & URXD_BRK) {
855 				sport->port.icount.brk++;
856 				if (uart_handle_break(&sport->port))
857 					continue;
858 			}
859 			else if (rx & URXD_PRERR)
860 				sport->port.icount.parity++;
861 			else if (rx & URXD_FRMERR)
862 				sport->port.icount.frame++;
863 			if (rx & URXD_OVRRUN)
864 				sport->port.icount.overrun++;
865 
866 			if (rx & sport->port.ignore_status_mask)
867 				continue;
868 
869 			rx &= (sport->port.read_status_mask | 0xFF);
870 
871 			if (rx & URXD_BRK)
872 				flg = TTY_BREAK;
873 			else if (rx & URXD_PRERR)
874 				flg = TTY_PARITY;
875 			else if (rx & URXD_FRMERR)
876 				flg = TTY_FRAME;
877 			if (rx & URXD_OVRRUN)
878 				flg = TTY_OVERRUN;
879 
880 			sport->port.sysrq = 0;
881 		} else if (uart_handle_sysrq_char(&sport->port, (unsigned char)rx)) {
882 			continue;
883 		}
884 
885 		if (sport->port.ignore_status_mask & URXD_DUMMY_READ)
886 			continue;
887 
888 		if (tty_insert_flip_char(port, rx, flg) == 0)
889 			sport->port.icount.buf_overrun++;
890 	}
891 
892 	tty_flip_buffer_push(port);
893 
894 	return IRQ_HANDLED;
895 }
896 
897 static irqreturn_t imx_uart_rxint(int irq, void *dev_id)
898 {
899 	struct imx_port *sport = dev_id;
900 	irqreturn_t ret;
901 
902 	spin_lock(&sport->port.lock);
903 
904 	ret = __imx_uart_rxint(irq, dev_id);
905 
906 	spin_unlock(&sport->port.lock);
907 
908 	return ret;
909 }
910 
911 static void imx_uart_clear_rx_errors(struct imx_port *sport);
912 
913 /*
914  * We have a modem side uart, so the meanings of RTS and CTS are inverted.
915  */
916 static unsigned int imx_uart_get_hwmctrl(struct imx_port *sport)
917 {
918 	unsigned int tmp = TIOCM_DSR;
919 	unsigned usr1 = imx_uart_readl(sport, USR1);
920 	unsigned usr2 = imx_uart_readl(sport, USR2);
921 
922 	if (usr1 & USR1_RTSS)
923 		tmp |= TIOCM_CTS;
924 
925 	/* in DCE mode DCDIN is always 0 */
926 	if (!(usr2 & USR2_DCDIN))
927 		tmp |= TIOCM_CAR;
928 
929 	if (sport->dte_mode)
930 		if (!(imx_uart_readl(sport, USR2) & USR2_RIIN))
931 			tmp |= TIOCM_RI;
932 
933 	return tmp;
934 }
935 
936 /*
937  * Handle any change of modem status signal since we were last called.
938  */
939 static void imx_uart_mctrl_check(struct imx_port *sport)
940 {
941 	unsigned int status, changed;
942 
943 	status = imx_uart_get_hwmctrl(sport);
944 	changed = status ^ sport->old_status;
945 
946 	if (changed == 0)
947 		return;
948 
949 	sport->old_status = status;
950 
951 	if (changed & TIOCM_RI && status & TIOCM_RI)
952 		sport->port.icount.rng++;
953 	if (changed & TIOCM_DSR)
954 		sport->port.icount.dsr++;
955 	if (changed & TIOCM_CAR)
956 		uart_handle_dcd_change(&sport->port, status & TIOCM_CAR);
957 	if (changed & TIOCM_CTS)
958 		uart_handle_cts_change(&sport->port, status & TIOCM_CTS);
959 
960 	wake_up_interruptible(&sport->port.state->port.delta_msr_wait);
961 }
962 
963 static irqreturn_t imx_uart_int(int irq, void *dev_id)
964 {
965 	struct imx_port *sport = dev_id;
966 	unsigned int usr1, usr2, ucr1, ucr2, ucr3, ucr4;
967 	irqreturn_t ret = IRQ_NONE;
968 
969 	spin_lock(&sport->port.lock);
970 
971 	usr1 = imx_uart_readl(sport, USR1);
972 	usr2 = imx_uart_readl(sport, USR2);
973 	ucr1 = imx_uart_readl(sport, UCR1);
974 	ucr2 = imx_uart_readl(sport, UCR2);
975 	ucr3 = imx_uart_readl(sport, UCR3);
976 	ucr4 = imx_uart_readl(sport, UCR4);
977 
978 	/*
979 	 * Even if a condition is true that can trigger an irq only handle it if
980 	 * the respective irq source is enabled. This prevents some undesired
981 	 * actions, for example if a character that sits in the RX FIFO and that
982 	 * should be fetched via DMA is tried to be fetched using PIO. Or the
983 	 * receiver is currently off and so reading from URXD0 results in an
984 	 * exception. So just mask the (raw) status bits for disabled irqs.
985 	 */
986 	if ((ucr1 & UCR1_RRDYEN) == 0)
987 		usr1 &= ~USR1_RRDY;
988 	if ((ucr2 & UCR2_ATEN) == 0)
989 		usr1 &= ~USR1_AGTIM;
990 	if ((ucr1 & UCR1_TRDYEN) == 0)
991 		usr1 &= ~USR1_TRDY;
992 	if ((ucr4 & UCR4_TCEN) == 0)
993 		usr2 &= ~USR2_TXDC;
994 	if ((ucr3 & UCR3_DTRDEN) == 0)
995 		usr1 &= ~USR1_DTRD;
996 	if ((ucr1 & UCR1_RTSDEN) == 0)
997 		usr1 &= ~USR1_RTSD;
998 	if ((ucr3 & UCR3_AWAKEN) == 0)
999 		usr1 &= ~USR1_AWAKE;
1000 	if ((ucr4 & UCR4_OREN) == 0)
1001 		usr2 &= ~USR2_ORE;
1002 
1003 	if (usr1 & (USR1_RRDY | USR1_AGTIM)) {
1004 		imx_uart_writel(sport, USR1_AGTIM, USR1);
1005 
1006 		__imx_uart_rxint(irq, dev_id);
1007 		ret = IRQ_HANDLED;
1008 	}
1009 
1010 	if ((usr1 & USR1_TRDY) || (usr2 & USR2_TXDC)) {
1011 		imx_uart_transmit_buffer(sport);
1012 		ret = IRQ_HANDLED;
1013 	}
1014 
1015 	if (usr1 & USR1_DTRD) {
1016 		imx_uart_writel(sport, USR1_DTRD, USR1);
1017 
1018 		imx_uart_mctrl_check(sport);
1019 
1020 		ret = IRQ_HANDLED;
1021 	}
1022 
1023 	if (usr1 & USR1_RTSD) {
1024 		__imx_uart_rtsint(irq, dev_id);
1025 		ret = IRQ_HANDLED;
1026 	}
1027 
1028 	if (usr1 & USR1_AWAKE) {
1029 		imx_uart_writel(sport, USR1_AWAKE, USR1);
1030 		ret = IRQ_HANDLED;
1031 	}
1032 
1033 	if (usr2 & USR2_ORE) {
1034 		sport->port.icount.overrun++;
1035 		imx_uart_writel(sport, USR2_ORE, USR2);
1036 		ret = IRQ_HANDLED;
1037 	}
1038 
1039 	spin_unlock(&sport->port.lock);
1040 
1041 	return ret;
1042 }
1043 
1044 /*
1045  * Return TIOCSER_TEMT when transmitter is not busy.
1046  */
1047 static unsigned int imx_uart_tx_empty(struct uart_port *port)
1048 {
1049 	struct imx_port *sport = (struct imx_port *)port;
1050 	unsigned int ret;
1051 
1052 	ret = (imx_uart_readl(sport, USR2) & USR2_TXDC) ?  TIOCSER_TEMT : 0;
1053 
1054 	/* If the TX DMA is working, return 0. */
1055 	if (sport->dma_is_txing)
1056 		ret = 0;
1057 
1058 	return ret;
1059 }
1060 
1061 /* called with port.lock taken and irqs off */
1062 static unsigned int imx_uart_get_mctrl(struct uart_port *port)
1063 {
1064 	struct imx_port *sport = (struct imx_port *)port;
1065 	unsigned int ret = imx_uart_get_hwmctrl(sport);
1066 
1067 	mctrl_gpio_get(sport->gpios, &ret);
1068 
1069 	return ret;
1070 }
1071 
1072 /* called with port.lock taken and irqs off */
1073 static void imx_uart_set_mctrl(struct uart_port *port, unsigned int mctrl)
1074 {
1075 	struct imx_port *sport = (struct imx_port *)port;
1076 	u32 ucr3, uts;
1077 
1078 	if (!(port->rs485.flags & SER_RS485_ENABLED)) {
1079 		u32 ucr2;
1080 
1081 		/*
1082 		 * Turn off autoRTS if RTS is lowered and restore autoRTS
1083 		 * setting if RTS is raised.
1084 		 */
1085 		ucr2 = imx_uart_readl(sport, UCR2);
1086 		ucr2 &= ~(UCR2_CTS | UCR2_CTSC);
1087 		if (mctrl & TIOCM_RTS) {
1088 			ucr2 |= UCR2_CTS;
1089 			/*
1090 			 * UCR2_IRTS is unset if and only if the port is
1091 			 * configured for CRTSCTS, so we use inverted UCR2_IRTS
1092 			 * to get the state to restore to.
1093 			 */
1094 			if (!(ucr2 & UCR2_IRTS))
1095 				ucr2 |= UCR2_CTSC;
1096 		}
1097 		imx_uart_writel(sport, ucr2, UCR2);
1098 	}
1099 
1100 	ucr3 = imx_uart_readl(sport, UCR3) & ~UCR3_DSR;
1101 	if (!(mctrl & TIOCM_DTR))
1102 		ucr3 |= UCR3_DSR;
1103 	imx_uart_writel(sport, ucr3, UCR3);
1104 
1105 	uts = imx_uart_readl(sport, imx_uart_uts_reg(sport)) & ~UTS_LOOP;
1106 	if (mctrl & TIOCM_LOOP)
1107 		uts |= UTS_LOOP;
1108 	imx_uart_writel(sport, uts, imx_uart_uts_reg(sport));
1109 
1110 	mctrl_gpio_set(sport->gpios, mctrl);
1111 }
1112 
1113 /*
1114  * Interrupts always disabled.
1115  */
1116 static void imx_uart_break_ctl(struct uart_port *port, int break_state)
1117 {
1118 	struct imx_port *sport = (struct imx_port *)port;
1119 	unsigned long flags;
1120 	u32 ucr1;
1121 
1122 	spin_lock_irqsave(&sport->port.lock, flags);
1123 
1124 	ucr1 = imx_uart_readl(sport, UCR1) & ~UCR1_SNDBRK;
1125 
1126 	if (break_state != 0)
1127 		ucr1 |= UCR1_SNDBRK;
1128 
1129 	imx_uart_writel(sport, ucr1, UCR1);
1130 
1131 	spin_unlock_irqrestore(&sport->port.lock, flags);
1132 }
1133 
1134 /*
1135  * This is our per-port timeout handler, for checking the
1136  * modem status signals.
1137  */
1138 static void imx_uart_timeout(struct timer_list *t)
1139 {
1140 	struct imx_port *sport = from_timer(sport, t, timer);
1141 	unsigned long flags;
1142 
1143 	if (sport->port.state) {
1144 		spin_lock_irqsave(&sport->port.lock, flags);
1145 		imx_uart_mctrl_check(sport);
1146 		spin_unlock_irqrestore(&sport->port.lock, flags);
1147 
1148 		mod_timer(&sport->timer, jiffies + MCTRL_TIMEOUT);
1149 	}
1150 }
1151 
1152 /*
1153  * There are two kinds of RX DMA interrupts(such as in the MX6Q):
1154  *   [1] the RX DMA buffer is full.
1155  *   [2] the aging timer expires
1156  *
1157  * Condition [2] is triggered when a character has been sitting in the FIFO
1158  * for at least 8 byte durations.
1159  */
1160 static void imx_uart_dma_rx_callback(void *data)
1161 {
1162 	struct imx_port *sport = data;
1163 	struct dma_chan	*chan = sport->dma_chan_rx;
1164 	struct scatterlist *sgl = &sport->rx_sgl;
1165 	struct tty_port *port = &sport->port.state->port;
1166 	struct dma_tx_state state;
1167 	struct circ_buf *rx_ring = &sport->rx_ring;
1168 	enum dma_status status;
1169 	unsigned int w_bytes = 0;
1170 	unsigned int r_bytes;
1171 	unsigned int bd_size;
1172 
1173 	status = dmaengine_tx_status(chan, sport->rx_cookie, &state);
1174 
1175 	if (status == DMA_ERROR) {
1176 		spin_lock(&sport->port.lock);
1177 		imx_uart_clear_rx_errors(sport);
1178 		spin_unlock(&sport->port.lock);
1179 		return;
1180 	}
1181 
1182 	/*
1183 	 * The state-residue variable represents the empty space
1184 	 * relative to the entire buffer. Taking this in consideration
1185 	 * the head is always calculated base on the buffer total
1186 	 * length - DMA transaction residue. The UART script from the
1187 	 * SDMA firmware will jump to the next buffer descriptor,
1188 	 * once a DMA transaction if finalized (IMX53 RM - A.4.1.2.4).
1189 	 * Taking this in consideration the tail is always at the
1190 	 * beginning of the buffer descriptor that contains the head.
1191 	 */
1192 
1193 	/* Calculate the head */
1194 	rx_ring->head = sg_dma_len(sgl) - state.residue;
1195 
1196 	/* Calculate the tail. */
1197 	bd_size = sg_dma_len(sgl) / sport->rx_periods;
1198 	rx_ring->tail = ((rx_ring->head-1) / bd_size) * bd_size;
1199 
1200 	if (rx_ring->head <= sg_dma_len(sgl) &&
1201 	    rx_ring->head > rx_ring->tail) {
1202 
1203 		/* Move data from tail to head */
1204 		r_bytes = rx_ring->head - rx_ring->tail;
1205 
1206 		/* If we received something, check for 0xff flood */
1207 		spin_lock(&sport->port.lock);
1208 		imx_uart_check_flood(sport, imx_uart_readl(sport, USR2));
1209 		spin_unlock(&sport->port.lock);
1210 
1211 		if (!(sport->port.ignore_status_mask & URXD_DUMMY_READ)) {
1212 
1213 			/* CPU claims ownership of RX DMA buffer */
1214 			dma_sync_sg_for_cpu(sport->port.dev, sgl, 1,
1215 					    DMA_FROM_DEVICE);
1216 
1217 			w_bytes = tty_insert_flip_string(port,
1218 							 sport->rx_buf + rx_ring->tail, r_bytes);
1219 
1220 			/* UART retrieves ownership of RX DMA buffer */
1221 			dma_sync_sg_for_device(sport->port.dev, sgl, 1,
1222 					       DMA_FROM_DEVICE);
1223 
1224 			if (w_bytes != r_bytes)
1225 				sport->port.icount.buf_overrun++;
1226 
1227 			sport->port.icount.rx += w_bytes;
1228 		}
1229 	} else	{
1230 		WARN_ON(rx_ring->head > sg_dma_len(sgl));
1231 		WARN_ON(rx_ring->head <= rx_ring->tail);
1232 	}
1233 
1234 	if (w_bytes) {
1235 		tty_flip_buffer_push(port);
1236 		dev_dbg(sport->port.dev, "We get %d bytes.\n", w_bytes);
1237 	}
1238 }
1239 
1240 static int imx_uart_start_rx_dma(struct imx_port *sport)
1241 {
1242 	struct scatterlist *sgl = &sport->rx_sgl;
1243 	struct dma_chan	*chan = sport->dma_chan_rx;
1244 	struct device *dev = sport->port.dev;
1245 	struct dma_async_tx_descriptor *desc;
1246 	int ret;
1247 
1248 	sport->rx_ring.head = 0;
1249 	sport->rx_ring.tail = 0;
1250 
1251 	sg_init_one(sgl, sport->rx_buf, sport->rx_buf_size);
1252 	ret = dma_map_sg(dev, sgl, 1, DMA_FROM_DEVICE);
1253 	if (ret == 0) {
1254 		dev_err(dev, "DMA mapping error for RX.\n");
1255 		return -EINVAL;
1256 	}
1257 
1258 	desc = dmaengine_prep_dma_cyclic(chan, sg_dma_address(sgl),
1259 		sg_dma_len(sgl), sg_dma_len(sgl) / sport->rx_periods,
1260 		DMA_DEV_TO_MEM, DMA_PREP_INTERRUPT);
1261 
1262 	if (!desc) {
1263 		dma_unmap_sg(dev, sgl, 1, DMA_FROM_DEVICE);
1264 		dev_err(dev, "We cannot prepare for the RX slave dma!\n");
1265 		return -EINVAL;
1266 	}
1267 	desc->callback = imx_uart_dma_rx_callback;
1268 	desc->callback_param = sport;
1269 
1270 	dev_dbg(dev, "RX: prepare for the DMA.\n");
1271 	sport->dma_is_rxing = 1;
1272 	sport->rx_cookie = dmaengine_submit(desc);
1273 	dma_async_issue_pending(chan);
1274 	return 0;
1275 }
1276 
1277 static void imx_uart_clear_rx_errors(struct imx_port *sport)
1278 {
1279 	struct tty_port *port = &sport->port.state->port;
1280 	u32 usr1, usr2;
1281 
1282 	usr1 = imx_uart_readl(sport, USR1);
1283 	usr2 = imx_uart_readl(sport, USR2);
1284 
1285 	if (usr2 & USR2_BRCD) {
1286 		sport->port.icount.brk++;
1287 		imx_uart_writel(sport, USR2_BRCD, USR2);
1288 		uart_handle_break(&sport->port);
1289 		if (tty_insert_flip_char(port, 0, TTY_BREAK) == 0)
1290 			sport->port.icount.buf_overrun++;
1291 		tty_flip_buffer_push(port);
1292 	} else {
1293 		if (usr1 & USR1_FRAMERR) {
1294 			sport->port.icount.frame++;
1295 			imx_uart_writel(sport, USR1_FRAMERR, USR1);
1296 		} else if (usr1 & USR1_PARITYERR) {
1297 			sport->port.icount.parity++;
1298 			imx_uart_writel(sport, USR1_PARITYERR, USR1);
1299 		}
1300 	}
1301 
1302 	if (usr2 & USR2_ORE) {
1303 		sport->port.icount.overrun++;
1304 		imx_uart_writel(sport, USR2_ORE, USR2);
1305 	}
1306 
1307 	sport->idle_counter = 0;
1308 
1309 }
1310 
1311 #define TXTL_DEFAULT 2 /* reset default */
1312 #define RXTL_DEFAULT 8 /* 8 characters or aging timer */
1313 #define TXTL_DMA 8 /* DMA burst setting */
1314 #define RXTL_DMA 9 /* DMA burst setting */
1315 
1316 static void imx_uart_setup_ufcr(struct imx_port *sport,
1317 				unsigned char txwl, unsigned char rxwl)
1318 {
1319 	unsigned int val;
1320 
1321 	/* set receiver / transmitter trigger level */
1322 	val = imx_uart_readl(sport, UFCR) & (UFCR_RFDIV | UFCR_DCEDTE);
1323 	val |= txwl << UFCR_TXTL_SHF | rxwl;
1324 	imx_uart_writel(sport, val, UFCR);
1325 }
1326 
1327 static void imx_uart_dma_exit(struct imx_port *sport)
1328 {
1329 	if (sport->dma_chan_rx) {
1330 		dmaengine_terminate_sync(sport->dma_chan_rx);
1331 		dma_release_channel(sport->dma_chan_rx);
1332 		sport->dma_chan_rx = NULL;
1333 		sport->rx_cookie = -EINVAL;
1334 		kfree(sport->rx_buf);
1335 		sport->rx_buf = NULL;
1336 	}
1337 
1338 	if (sport->dma_chan_tx) {
1339 		dmaengine_terminate_sync(sport->dma_chan_tx);
1340 		dma_release_channel(sport->dma_chan_tx);
1341 		sport->dma_chan_tx = NULL;
1342 	}
1343 }
1344 
1345 static int imx_uart_dma_init(struct imx_port *sport)
1346 {
1347 	struct dma_slave_config slave_config = {};
1348 	struct device *dev = sport->port.dev;
1349 	int ret;
1350 
1351 	/* Prepare for RX : */
1352 	sport->dma_chan_rx = dma_request_slave_channel(dev, "rx");
1353 	if (!sport->dma_chan_rx) {
1354 		dev_dbg(dev, "cannot get the DMA channel.\n");
1355 		ret = -EINVAL;
1356 		goto err;
1357 	}
1358 
1359 	slave_config.direction = DMA_DEV_TO_MEM;
1360 	slave_config.src_addr = sport->port.mapbase + URXD0;
1361 	slave_config.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
1362 	/* one byte less than the watermark level to enable the aging timer */
1363 	slave_config.src_maxburst = RXTL_DMA - 1;
1364 	ret = dmaengine_slave_config(sport->dma_chan_rx, &slave_config);
1365 	if (ret) {
1366 		dev_err(dev, "error in RX dma configuration.\n");
1367 		goto err;
1368 	}
1369 
1370 	sport->rx_buf_size = sport->rx_period_length * sport->rx_periods;
1371 	sport->rx_buf = kzalloc(sport->rx_buf_size, GFP_KERNEL);
1372 	if (!sport->rx_buf) {
1373 		ret = -ENOMEM;
1374 		goto err;
1375 	}
1376 	sport->rx_ring.buf = sport->rx_buf;
1377 
1378 	/* Prepare for TX : */
1379 	sport->dma_chan_tx = dma_request_slave_channel(dev, "tx");
1380 	if (!sport->dma_chan_tx) {
1381 		dev_err(dev, "cannot get the TX DMA channel!\n");
1382 		ret = -EINVAL;
1383 		goto err;
1384 	}
1385 
1386 	slave_config.direction = DMA_MEM_TO_DEV;
1387 	slave_config.dst_addr = sport->port.mapbase + URTX0;
1388 	slave_config.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
1389 	slave_config.dst_maxburst = TXTL_DMA;
1390 	ret = dmaengine_slave_config(sport->dma_chan_tx, &slave_config);
1391 	if (ret) {
1392 		dev_err(dev, "error in TX dma configuration.");
1393 		goto err;
1394 	}
1395 
1396 	return 0;
1397 err:
1398 	imx_uart_dma_exit(sport);
1399 	return ret;
1400 }
1401 
1402 static void imx_uart_enable_dma(struct imx_port *sport)
1403 {
1404 	u32 ucr1;
1405 
1406 	imx_uart_setup_ufcr(sport, TXTL_DMA, RXTL_DMA);
1407 
1408 	/* set UCR1 */
1409 	ucr1 = imx_uart_readl(sport, UCR1);
1410 	ucr1 |= UCR1_RXDMAEN | UCR1_TXDMAEN | UCR1_ATDMAEN;
1411 	imx_uart_writel(sport, ucr1, UCR1);
1412 
1413 	sport->dma_is_enabled = 1;
1414 }
1415 
1416 static void imx_uart_disable_dma(struct imx_port *sport)
1417 {
1418 	u32 ucr1;
1419 
1420 	/* clear UCR1 */
1421 	ucr1 = imx_uart_readl(sport, UCR1);
1422 	ucr1 &= ~(UCR1_RXDMAEN | UCR1_TXDMAEN | UCR1_ATDMAEN);
1423 	imx_uart_writel(sport, ucr1, UCR1);
1424 
1425 	imx_uart_setup_ufcr(sport, TXTL_DEFAULT, RXTL_DEFAULT);
1426 
1427 	sport->dma_is_enabled = 0;
1428 }
1429 
1430 /* half the RX buffer size */
1431 #define CTSTL 16
1432 
1433 static int imx_uart_startup(struct uart_port *port)
1434 {
1435 	struct imx_port *sport = (struct imx_port *)port;
1436 	int retval;
1437 	unsigned long flags;
1438 	int dma_is_inited = 0;
1439 	u32 ucr1, ucr2, ucr3, ucr4, uts;
1440 
1441 	retval = clk_prepare_enable(sport->clk_per);
1442 	if (retval)
1443 		return retval;
1444 	retval = clk_prepare_enable(sport->clk_ipg);
1445 	if (retval) {
1446 		clk_disable_unprepare(sport->clk_per);
1447 		return retval;
1448 	}
1449 
1450 	imx_uart_setup_ufcr(sport, TXTL_DEFAULT, RXTL_DEFAULT);
1451 
1452 	/* disable the DREN bit (Data Ready interrupt enable) before
1453 	 * requesting IRQs
1454 	 */
1455 	ucr4 = imx_uart_readl(sport, UCR4);
1456 
1457 	/* set the trigger level for CTS */
1458 	ucr4 &= ~(UCR4_CTSTL_MASK << UCR4_CTSTL_SHF);
1459 	ucr4 |= CTSTL << UCR4_CTSTL_SHF;
1460 
1461 	imx_uart_writel(sport, ucr4 & ~UCR4_DREN, UCR4);
1462 
1463 	/* Can we enable the DMA support? */
1464 	if (!uart_console(port) && imx_uart_dma_init(sport) == 0)
1465 		dma_is_inited = 1;
1466 
1467 	spin_lock_irqsave(&sport->port.lock, flags);
1468 
1469 	/* Reset fifo's and state machines */
1470 	imx_uart_soft_reset(sport);
1471 
1472 	/*
1473 	 * Finally, clear and enable interrupts
1474 	 */
1475 	imx_uart_writel(sport, USR1_RTSD | USR1_DTRD, USR1);
1476 	imx_uart_writel(sport, USR2_ORE, USR2);
1477 
1478 	ucr1 = imx_uart_readl(sport, UCR1) & ~UCR1_RRDYEN;
1479 	ucr1 |= UCR1_UARTEN;
1480 	if (sport->have_rtscts)
1481 		ucr1 |= UCR1_RTSDEN;
1482 
1483 	imx_uart_writel(sport, ucr1, UCR1);
1484 
1485 	ucr4 = imx_uart_readl(sport, UCR4) & ~(UCR4_OREN | UCR4_INVR);
1486 	if (!dma_is_inited)
1487 		ucr4 |= UCR4_OREN;
1488 	if (sport->inverted_rx)
1489 		ucr4 |= UCR4_INVR;
1490 	imx_uart_writel(sport, ucr4, UCR4);
1491 
1492 	ucr3 = imx_uart_readl(sport, UCR3) & ~UCR3_INVT;
1493 	/*
1494 	 * configure tx polarity before enabling tx
1495 	 */
1496 	if (sport->inverted_tx)
1497 		ucr3 |= UCR3_INVT;
1498 
1499 	if (!imx_uart_is_imx1(sport)) {
1500 		ucr3 |= UCR3_DTRDEN | UCR3_RI | UCR3_DCD;
1501 
1502 		if (sport->dte_mode)
1503 			/* disable broken interrupts */
1504 			ucr3 &= ~(UCR3_RI | UCR3_DCD);
1505 	}
1506 	imx_uart_writel(sport, ucr3, UCR3);
1507 
1508 	ucr2 = imx_uart_readl(sport, UCR2) & ~UCR2_ATEN;
1509 	ucr2 |= (UCR2_RXEN | UCR2_TXEN);
1510 	if (!sport->have_rtscts)
1511 		ucr2 |= UCR2_IRTS;
1512 	/*
1513 	 * make sure the edge sensitive RTS-irq is disabled,
1514 	 * we're using RTSD instead.
1515 	 */
1516 	if (!imx_uart_is_imx1(sport))
1517 		ucr2 &= ~UCR2_RTSEN;
1518 	imx_uart_writel(sport, ucr2, UCR2);
1519 
1520 	/*
1521 	 * Enable modem status interrupts
1522 	 */
1523 	imx_uart_enable_ms(&sport->port);
1524 
1525 	if (dma_is_inited) {
1526 		imx_uart_enable_dma(sport);
1527 		imx_uart_start_rx_dma(sport);
1528 	} else {
1529 		ucr1 = imx_uart_readl(sport, UCR1);
1530 		ucr1 |= UCR1_RRDYEN;
1531 		imx_uart_writel(sport, ucr1, UCR1);
1532 
1533 		ucr2 = imx_uart_readl(sport, UCR2);
1534 		ucr2 |= UCR2_ATEN;
1535 		imx_uart_writel(sport, ucr2, UCR2);
1536 	}
1537 
1538 	/* See SER_RS485_ENABLED/UTS_LOOP comment in imx_uart_probe() */
1539 	uts = imx_uart_readl(sport, imx_uart_uts_reg(sport));
1540 	uts &= ~UTS_LOOP;
1541 	imx_uart_writel(sport, uts, imx_uart_uts_reg(sport));
1542 
1543 	spin_unlock_irqrestore(&sport->port.lock, flags);
1544 
1545 	return 0;
1546 }
1547 
1548 static void imx_uart_shutdown(struct uart_port *port)
1549 {
1550 	struct imx_port *sport = (struct imx_port *)port;
1551 	unsigned long flags;
1552 	u32 ucr1, ucr2, ucr4, uts;
1553 
1554 	if (sport->dma_is_enabled) {
1555 		dmaengine_terminate_sync(sport->dma_chan_tx);
1556 		if (sport->dma_is_txing) {
1557 			dma_unmap_sg(sport->port.dev, &sport->tx_sgl[0],
1558 				     sport->dma_tx_nents, DMA_TO_DEVICE);
1559 			sport->dma_is_txing = 0;
1560 		}
1561 		dmaengine_terminate_sync(sport->dma_chan_rx);
1562 		if (sport->dma_is_rxing) {
1563 			dma_unmap_sg(sport->port.dev, &sport->rx_sgl,
1564 				     1, DMA_FROM_DEVICE);
1565 			sport->dma_is_rxing = 0;
1566 		}
1567 
1568 		spin_lock_irqsave(&sport->port.lock, flags);
1569 		imx_uart_stop_tx(port);
1570 		imx_uart_stop_rx(port);
1571 		imx_uart_disable_dma(sport);
1572 		spin_unlock_irqrestore(&sport->port.lock, flags);
1573 		imx_uart_dma_exit(sport);
1574 	}
1575 
1576 	mctrl_gpio_disable_ms(sport->gpios);
1577 
1578 	spin_lock_irqsave(&sport->port.lock, flags);
1579 	ucr2 = imx_uart_readl(sport, UCR2);
1580 	ucr2 &= ~(UCR2_TXEN | UCR2_ATEN);
1581 	imx_uart_writel(sport, ucr2, UCR2);
1582 	spin_unlock_irqrestore(&sport->port.lock, flags);
1583 
1584 	/*
1585 	 * Stop our timer.
1586 	 */
1587 	del_timer_sync(&sport->timer);
1588 
1589 	/*
1590 	 * Disable all interrupts, port and break condition.
1591 	 */
1592 
1593 	spin_lock_irqsave(&sport->port.lock, flags);
1594 
1595 	ucr1 = imx_uart_readl(sport, UCR1);
1596 	ucr1 &= ~(UCR1_TRDYEN | UCR1_RRDYEN | UCR1_RTSDEN | UCR1_RXDMAEN |
1597 		  UCR1_ATDMAEN | UCR1_SNDBRK);
1598 	/* See SER_RS485_ENABLED/UTS_LOOP comment in imx_uart_probe() */
1599 	if (port->rs485.flags & SER_RS485_ENABLED &&
1600 	    port->rs485.flags & SER_RS485_RTS_ON_SEND &&
1601 	    sport->have_rtscts && !sport->have_rtsgpio) {
1602 		uts = imx_uart_readl(sport, imx_uart_uts_reg(sport));
1603 		uts |= UTS_LOOP;
1604 		imx_uart_writel(sport, uts, imx_uart_uts_reg(sport));
1605 		ucr1 |= UCR1_UARTEN;
1606 	} else {
1607 		ucr1 &= ~UCR1_UARTEN;
1608 	}
1609 	imx_uart_writel(sport, ucr1, UCR1);
1610 
1611 	ucr4 = imx_uart_readl(sport, UCR4);
1612 	ucr4 &= ~UCR4_TCEN;
1613 	imx_uart_writel(sport, ucr4, UCR4);
1614 
1615 	spin_unlock_irqrestore(&sport->port.lock, flags);
1616 
1617 	clk_disable_unprepare(sport->clk_per);
1618 	clk_disable_unprepare(sport->clk_ipg);
1619 }
1620 
1621 /* called with port.lock taken and irqs off */
1622 static void imx_uart_flush_buffer(struct uart_port *port)
1623 {
1624 	struct imx_port *sport = (struct imx_port *)port;
1625 	struct scatterlist *sgl = &sport->tx_sgl[0];
1626 
1627 	if (!sport->dma_chan_tx)
1628 		return;
1629 
1630 	sport->tx_bytes = 0;
1631 	dmaengine_terminate_all(sport->dma_chan_tx);
1632 	if (sport->dma_is_txing) {
1633 		u32 ucr1;
1634 
1635 		dma_unmap_sg(sport->port.dev, sgl, sport->dma_tx_nents,
1636 			     DMA_TO_DEVICE);
1637 		ucr1 = imx_uart_readl(sport, UCR1);
1638 		ucr1 &= ~UCR1_TXDMAEN;
1639 		imx_uart_writel(sport, ucr1, UCR1);
1640 		sport->dma_is_txing = 0;
1641 	}
1642 
1643 	imx_uart_soft_reset(sport);
1644 
1645 }
1646 
1647 static void
1648 imx_uart_set_termios(struct uart_port *port, struct ktermios *termios,
1649 		     const struct ktermios *old)
1650 {
1651 	struct imx_port *sport = (struct imx_port *)port;
1652 	unsigned long flags;
1653 	u32 ucr2, old_ucr2, ufcr;
1654 	unsigned int baud, quot;
1655 	unsigned int old_csize = old ? old->c_cflag & CSIZE : CS8;
1656 	unsigned long div;
1657 	unsigned long num, denom, old_ubir, old_ubmr;
1658 	uint64_t tdiv64;
1659 
1660 	/*
1661 	 * We only support CS7 and CS8.
1662 	 */
1663 	while ((termios->c_cflag & CSIZE) != CS7 &&
1664 	       (termios->c_cflag & CSIZE) != CS8) {
1665 		termios->c_cflag &= ~CSIZE;
1666 		termios->c_cflag |= old_csize;
1667 		old_csize = CS8;
1668 	}
1669 
1670 	del_timer_sync(&sport->timer);
1671 
1672 	/*
1673 	 * Ask the core to calculate the divisor for us.
1674 	 */
1675 	baud = uart_get_baud_rate(port, termios, old, 50, port->uartclk / 16);
1676 	quot = uart_get_divisor(port, baud);
1677 
1678 	spin_lock_irqsave(&sport->port.lock, flags);
1679 
1680 	/*
1681 	 * Read current UCR2 and save it for future use, then clear all the bits
1682 	 * except those we will or may need to preserve.
1683 	 */
1684 	old_ucr2 = imx_uart_readl(sport, UCR2);
1685 	ucr2 = old_ucr2 & (UCR2_TXEN | UCR2_RXEN | UCR2_ATEN | UCR2_CTS);
1686 
1687 	ucr2 |= UCR2_SRST | UCR2_IRTS;
1688 	if ((termios->c_cflag & CSIZE) == CS8)
1689 		ucr2 |= UCR2_WS;
1690 
1691 	if (!sport->have_rtscts)
1692 		termios->c_cflag &= ~CRTSCTS;
1693 
1694 	if (port->rs485.flags & SER_RS485_ENABLED) {
1695 		/*
1696 		 * RTS is mandatory for rs485 operation, so keep
1697 		 * it under manual control and keep transmitter
1698 		 * disabled.
1699 		 */
1700 		if (port->rs485.flags & SER_RS485_RTS_AFTER_SEND)
1701 			imx_uart_rts_active(sport, &ucr2);
1702 		else
1703 			imx_uart_rts_inactive(sport, &ucr2);
1704 
1705 	} else if (termios->c_cflag & CRTSCTS) {
1706 		/*
1707 		 * Only let receiver control RTS output if we were not requested
1708 		 * to have RTS inactive (which then should take precedence).
1709 		 */
1710 		if (ucr2 & UCR2_CTS)
1711 			ucr2 |= UCR2_CTSC;
1712 	}
1713 
1714 	if (termios->c_cflag & CRTSCTS)
1715 		ucr2 &= ~UCR2_IRTS;
1716 	if (termios->c_cflag & CSTOPB)
1717 		ucr2 |= UCR2_STPB;
1718 	if (termios->c_cflag & PARENB) {
1719 		ucr2 |= UCR2_PREN;
1720 		if (termios->c_cflag & PARODD)
1721 			ucr2 |= UCR2_PROE;
1722 	}
1723 
1724 	sport->port.read_status_mask = 0;
1725 	if (termios->c_iflag & INPCK)
1726 		sport->port.read_status_mask |= (URXD_FRMERR | URXD_PRERR);
1727 	if (termios->c_iflag & (BRKINT | PARMRK))
1728 		sport->port.read_status_mask |= URXD_BRK;
1729 
1730 	/*
1731 	 * Characters to ignore
1732 	 */
1733 	sport->port.ignore_status_mask = 0;
1734 	if (termios->c_iflag & IGNPAR)
1735 		sport->port.ignore_status_mask |= URXD_PRERR | URXD_FRMERR;
1736 	if (termios->c_iflag & IGNBRK) {
1737 		sport->port.ignore_status_mask |= URXD_BRK;
1738 		/*
1739 		 * If we're ignoring parity and break indicators,
1740 		 * ignore overruns too (for real raw support).
1741 		 */
1742 		if (termios->c_iflag & IGNPAR)
1743 			sport->port.ignore_status_mask |= URXD_OVRRUN;
1744 	}
1745 
1746 	if ((termios->c_cflag & CREAD) == 0)
1747 		sport->port.ignore_status_mask |= URXD_DUMMY_READ;
1748 
1749 	/*
1750 	 * Update the per-port timeout.
1751 	 */
1752 	uart_update_timeout(port, termios->c_cflag, baud);
1753 
1754 	/* custom-baudrate handling */
1755 	div = sport->port.uartclk / (baud * 16);
1756 	if (baud == 38400 && quot != div)
1757 		baud = sport->port.uartclk / (quot * 16);
1758 
1759 	div = sport->port.uartclk / (baud * 16);
1760 	if (div > 7)
1761 		div = 7;
1762 	if (!div)
1763 		div = 1;
1764 
1765 	rational_best_approximation(16 * div * baud, sport->port.uartclk,
1766 		1 << 16, 1 << 16, &num, &denom);
1767 
1768 	tdiv64 = sport->port.uartclk;
1769 	tdiv64 *= num;
1770 	do_div(tdiv64, denom * 16 * div);
1771 	tty_termios_encode_baud_rate(termios,
1772 				(speed_t)tdiv64, (speed_t)tdiv64);
1773 
1774 	num -= 1;
1775 	denom -= 1;
1776 
1777 	ufcr = imx_uart_readl(sport, UFCR);
1778 	ufcr = (ufcr & (~UFCR_RFDIV)) | UFCR_RFDIV_REG(div);
1779 	imx_uart_writel(sport, ufcr, UFCR);
1780 
1781 	/*
1782 	 *  Two registers below should always be written both and in this
1783 	 *  particular order. One consequence is that we need to check if any of
1784 	 *  them changes and then update both. We do need the check for change
1785 	 *  as even writing the same values seem to "restart"
1786 	 *  transmission/receiving logic in the hardware, that leads to data
1787 	 *  breakage even when rate doesn't in fact change. E.g., user switches
1788 	 *  RTS/CTS handshake and suddenly gets broken bytes.
1789 	 */
1790 	old_ubir = imx_uart_readl(sport, UBIR);
1791 	old_ubmr = imx_uart_readl(sport, UBMR);
1792 	if (old_ubir != num || old_ubmr != denom) {
1793 		imx_uart_writel(sport, num, UBIR);
1794 		imx_uart_writel(sport, denom, UBMR);
1795 	}
1796 
1797 	if (!imx_uart_is_imx1(sport))
1798 		imx_uart_writel(sport, sport->port.uartclk / div / 1000,
1799 				IMX21_ONEMS);
1800 
1801 	imx_uart_writel(sport, ucr2, UCR2);
1802 
1803 	if (UART_ENABLE_MS(&sport->port, termios->c_cflag))
1804 		imx_uart_enable_ms(&sport->port);
1805 
1806 	spin_unlock_irqrestore(&sport->port.lock, flags);
1807 }
1808 
1809 static const char *imx_uart_type(struct uart_port *port)
1810 {
1811 	struct imx_port *sport = (struct imx_port *)port;
1812 
1813 	return sport->port.type == PORT_IMX ? "IMX" : NULL;
1814 }
1815 
1816 /*
1817  * Configure/autoconfigure the port.
1818  */
1819 static void imx_uart_config_port(struct uart_port *port, int flags)
1820 {
1821 	struct imx_port *sport = (struct imx_port *)port;
1822 
1823 	if (flags & UART_CONFIG_TYPE)
1824 		sport->port.type = PORT_IMX;
1825 }
1826 
1827 /*
1828  * Verify the new serial_struct (for TIOCSSERIAL).
1829  * The only change we allow are to the flags and type, and
1830  * even then only between PORT_IMX and PORT_UNKNOWN
1831  */
1832 static int
1833 imx_uart_verify_port(struct uart_port *port, struct serial_struct *ser)
1834 {
1835 	struct imx_port *sport = (struct imx_port *)port;
1836 	int ret = 0;
1837 
1838 	if (ser->type != PORT_UNKNOWN && ser->type != PORT_IMX)
1839 		ret = -EINVAL;
1840 	if (sport->port.irq != ser->irq)
1841 		ret = -EINVAL;
1842 	if (ser->io_type != UPIO_MEM)
1843 		ret = -EINVAL;
1844 	if (sport->port.uartclk / 16 != ser->baud_base)
1845 		ret = -EINVAL;
1846 	if (sport->port.mapbase != (unsigned long)ser->iomem_base)
1847 		ret = -EINVAL;
1848 	if (sport->port.iobase != ser->port)
1849 		ret = -EINVAL;
1850 	if (ser->hub6 != 0)
1851 		ret = -EINVAL;
1852 	return ret;
1853 }
1854 
1855 #if defined(CONFIG_CONSOLE_POLL)
1856 
1857 static int imx_uart_poll_init(struct uart_port *port)
1858 {
1859 	struct imx_port *sport = (struct imx_port *)port;
1860 	unsigned long flags;
1861 	u32 ucr1, ucr2;
1862 	int retval;
1863 
1864 	retval = clk_prepare_enable(sport->clk_ipg);
1865 	if (retval)
1866 		return retval;
1867 	retval = clk_prepare_enable(sport->clk_per);
1868 	if (retval)
1869 		clk_disable_unprepare(sport->clk_ipg);
1870 
1871 	imx_uart_setup_ufcr(sport, TXTL_DEFAULT, RXTL_DEFAULT);
1872 
1873 	spin_lock_irqsave(&sport->port.lock, flags);
1874 
1875 	/*
1876 	 * Be careful about the order of enabling bits here. First enable the
1877 	 * receiver (UARTEN + RXEN) and only then the corresponding irqs.
1878 	 * This prevents that a character that already sits in the RX fifo is
1879 	 * triggering an irq but the try to fetch it from there results in an
1880 	 * exception because UARTEN or RXEN is still off.
1881 	 */
1882 	ucr1 = imx_uart_readl(sport, UCR1);
1883 	ucr2 = imx_uart_readl(sport, UCR2);
1884 
1885 	if (imx_uart_is_imx1(sport))
1886 		ucr1 |= IMX1_UCR1_UARTCLKEN;
1887 
1888 	ucr1 |= UCR1_UARTEN;
1889 	ucr1 &= ~(UCR1_TRDYEN | UCR1_RTSDEN | UCR1_RRDYEN);
1890 
1891 	ucr2 |= UCR2_RXEN | UCR2_TXEN;
1892 	ucr2 &= ~UCR2_ATEN;
1893 
1894 	imx_uart_writel(sport, ucr1, UCR1);
1895 	imx_uart_writel(sport, ucr2, UCR2);
1896 
1897 	/* now enable irqs */
1898 	imx_uart_writel(sport, ucr1 | UCR1_RRDYEN, UCR1);
1899 	imx_uart_writel(sport, ucr2 | UCR2_ATEN, UCR2);
1900 
1901 	spin_unlock_irqrestore(&sport->port.lock, flags);
1902 
1903 	return 0;
1904 }
1905 
1906 static int imx_uart_poll_get_char(struct uart_port *port)
1907 {
1908 	struct imx_port *sport = (struct imx_port *)port;
1909 	if (!(imx_uart_readl(sport, USR2) & USR2_RDR))
1910 		return NO_POLL_CHAR;
1911 
1912 	return imx_uart_readl(sport, URXD0) & URXD_RX_DATA;
1913 }
1914 
1915 static void imx_uart_poll_put_char(struct uart_port *port, unsigned char c)
1916 {
1917 	struct imx_port *sport = (struct imx_port *)port;
1918 	unsigned int status;
1919 
1920 	/* drain */
1921 	do {
1922 		status = imx_uart_readl(sport, USR1);
1923 	} while (~status & USR1_TRDY);
1924 
1925 	/* write */
1926 	imx_uart_writel(sport, c, URTX0);
1927 
1928 	/* flush */
1929 	do {
1930 		status = imx_uart_readl(sport, USR2);
1931 	} while (~status & USR2_TXDC);
1932 }
1933 #endif
1934 
1935 /* called with port.lock taken and irqs off or from .probe without locking */
1936 static int imx_uart_rs485_config(struct uart_port *port, struct ktermios *termios,
1937 				 struct serial_rs485 *rs485conf)
1938 {
1939 	struct imx_port *sport = (struct imx_port *)port;
1940 	u32 ucr2;
1941 
1942 	if (rs485conf->flags & SER_RS485_ENABLED) {
1943 		/* Enable receiver if low-active RTS signal is requested */
1944 		if (sport->have_rtscts &&  !sport->have_rtsgpio &&
1945 		    !(rs485conf->flags & SER_RS485_RTS_ON_SEND))
1946 			rs485conf->flags |= SER_RS485_RX_DURING_TX;
1947 
1948 		/* disable transmitter */
1949 		ucr2 = imx_uart_readl(sport, UCR2);
1950 		if (rs485conf->flags & SER_RS485_RTS_AFTER_SEND)
1951 			imx_uart_rts_active(sport, &ucr2);
1952 		else
1953 			imx_uart_rts_inactive(sport, &ucr2);
1954 		imx_uart_writel(sport, ucr2, UCR2);
1955 	}
1956 
1957 	/* Make sure Rx is enabled in case Tx is active with Rx disabled */
1958 	if (!(rs485conf->flags & SER_RS485_ENABLED) ||
1959 	    rs485conf->flags & SER_RS485_RX_DURING_TX)
1960 		imx_uart_start_rx(port);
1961 
1962 	if (port->rs485_rx_during_tx_gpio)
1963 		gpiod_set_value_cansleep(port->rs485_rx_during_tx_gpio,
1964 					 !!(rs485conf->flags & SER_RS485_RX_DURING_TX));
1965 
1966 	return 0;
1967 }
1968 
1969 static const struct uart_ops imx_uart_pops = {
1970 	.tx_empty	= imx_uart_tx_empty,
1971 	.set_mctrl	= imx_uart_set_mctrl,
1972 	.get_mctrl	= imx_uart_get_mctrl,
1973 	.stop_tx	= imx_uart_stop_tx,
1974 	.start_tx	= imx_uart_start_tx,
1975 	.stop_rx	= imx_uart_stop_rx,
1976 	.enable_ms	= imx_uart_enable_ms,
1977 	.break_ctl	= imx_uart_break_ctl,
1978 	.startup	= imx_uart_startup,
1979 	.shutdown	= imx_uart_shutdown,
1980 	.flush_buffer	= imx_uart_flush_buffer,
1981 	.set_termios	= imx_uart_set_termios,
1982 	.type		= imx_uart_type,
1983 	.config_port	= imx_uart_config_port,
1984 	.verify_port	= imx_uart_verify_port,
1985 #if defined(CONFIG_CONSOLE_POLL)
1986 	.poll_init      = imx_uart_poll_init,
1987 	.poll_get_char  = imx_uart_poll_get_char,
1988 	.poll_put_char  = imx_uart_poll_put_char,
1989 #endif
1990 };
1991 
1992 static struct imx_port *imx_uart_ports[UART_NR];
1993 
1994 #if IS_ENABLED(CONFIG_SERIAL_IMX_CONSOLE)
1995 static void imx_uart_console_putchar(struct uart_port *port, unsigned char ch)
1996 {
1997 	struct imx_port *sport = (struct imx_port *)port;
1998 
1999 	while (imx_uart_readl(sport, imx_uart_uts_reg(sport)) & UTS_TXFULL)
2000 		barrier();
2001 
2002 	imx_uart_writel(sport, ch, URTX0);
2003 }
2004 
2005 /*
2006  * Interrupts are disabled on entering
2007  */
2008 static void
2009 imx_uart_console_write(struct console *co, const char *s, unsigned int count)
2010 {
2011 	struct imx_port *sport = imx_uart_ports[co->index];
2012 	struct imx_port_ucrs old_ucr;
2013 	unsigned long flags;
2014 	unsigned int ucr1;
2015 	int locked = 1;
2016 
2017 	if (sport->port.sysrq)
2018 		locked = 0;
2019 	else if (oops_in_progress)
2020 		locked = spin_trylock_irqsave(&sport->port.lock, flags);
2021 	else
2022 		spin_lock_irqsave(&sport->port.lock, flags);
2023 
2024 	/*
2025 	 *	First, save UCR1/2/3 and then disable interrupts
2026 	 */
2027 	imx_uart_ucrs_save(sport, &old_ucr);
2028 	ucr1 = old_ucr.ucr1;
2029 
2030 	if (imx_uart_is_imx1(sport))
2031 		ucr1 |= IMX1_UCR1_UARTCLKEN;
2032 	ucr1 |= UCR1_UARTEN;
2033 	ucr1 &= ~(UCR1_TRDYEN | UCR1_RRDYEN | UCR1_RTSDEN);
2034 
2035 	imx_uart_writel(sport, ucr1, UCR1);
2036 
2037 	imx_uart_writel(sport, old_ucr.ucr2 | UCR2_TXEN, UCR2);
2038 
2039 	uart_console_write(&sport->port, s, count, imx_uart_console_putchar);
2040 
2041 	/*
2042 	 *	Finally, wait for transmitter to become empty
2043 	 *	and restore UCR1/2/3
2044 	 */
2045 	while (!(imx_uart_readl(sport, USR2) & USR2_TXDC));
2046 
2047 	imx_uart_ucrs_restore(sport, &old_ucr);
2048 
2049 	if (locked)
2050 		spin_unlock_irqrestore(&sport->port.lock, flags);
2051 }
2052 
2053 /*
2054  * If the port was already initialised (eg, by a boot loader),
2055  * try to determine the current setup.
2056  */
2057 static void
2058 imx_uart_console_get_options(struct imx_port *sport, int *baud,
2059 			     int *parity, int *bits)
2060 {
2061 
2062 	if (imx_uart_readl(sport, UCR1) & UCR1_UARTEN) {
2063 		/* ok, the port was enabled */
2064 		unsigned int ucr2, ubir, ubmr, uartclk;
2065 		unsigned int baud_raw;
2066 		unsigned int ucfr_rfdiv;
2067 
2068 		ucr2 = imx_uart_readl(sport, UCR2);
2069 
2070 		*parity = 'n';
2071 		if (ucr2 & UCR2_PREN) {
2072 			if (ucr2 & UCR2_PROE)
2073 				*parity = 'o';
2074 			else
2075 				*parity = 'e';
2076 		}
2077 
2078 		if (ucr2 & UCR2_WS)
2079 			*bits = 8;
2080 		else
2081 			*bits = 7;
2082 
2083 		ubir = imx_uart_readl(sport, UBIR) & 0xffff;
2084 		ubmr = imx_uart_readl(sport, UBMR) & 0xffff;
2085 
2086 		ucfr_rfdiv = (imx_uart_readl(sport, UFCR) & UFCR_RFDIV) >> 7;
2087 		if (ucfr_rfdiv == 6)
2088 			ucfr_rfdiv = 7;
2089 		else
2090 			ucfr_rfdiv = 6 - ucfr_rfdiv;
2091 
2092 		uartclk = clk_get_rate(sport->clk_per);
2093 		uartclk /= ucfr_rfdiv;
2094 
2095 		{	/*
2096 			 * The next code provides exact computation of
2097 			 *   baud_raw = round(((uartclk/16) * (ubir + 1)) / (ubmr + 1))
2098 			 * without need of float support or long long division,
2099 			 * which would be required to prevent 32bit arithmetic overflow
2100 			 */
2101 			unsigned int mul = ubir + 1;
2102 			unsigned int div = 16 * (ubmr + 1);
2103 			unsigned int rem = uartclk % div;
2104 
2105 			baud_raw = (uartclk / div) * mul;
2106 			baud_raw += (rem * mul + div / 2) / div;
2107 			*baud = (baud_raw + 50) / 100 * 100;
2108 		}
2109 
2110 		if (*baud != baud_raw)
2111 			dev_info(sport->port.dev, "Console IMX rounded baud rate from %d to %d\n",
2112 				baud_raw, *baud);
2113 	}
2114 }
2115 
2116 static int
2117 imx_uart_console_setup(struct console *co, char *options)
2118 {
2119 	struct imx_port *sport;
2120 	int baud = 9600;
2121 	int bits = 8;
2122 	int parity = 'n';
2123 	int flow = 'n';
2124 	int retval;
2125 
2126 	/*
2127 	 * Check whether an invalid uart number has been specified, and
2128 	 * if so, search for the first available port that does have
2129 	 * console support.
2130 	 */
2131 	if (co->index == -1 || co->index >= ARRAY_SIZE(imx_uart_ports))
2132 		co->index = 0;
2133 	sport = imx_uart_ports[co->index];
2134 	if (sport == NULL)
2135 		return -ENODEV;
2136 
2137 	/* For setting the registers, we only need to enable the ipg clock. */
2138 	retval = clk_prepare_enable(sport->clk_ipg);
2139 	if (retval)
2140 		goto error_console;
2141 
2142 	if (options)
2143 		uart_parse_options(options, &baud, &parity, &bits, &flow);
2144 	else
2145 		imx_uart_console_get_options(sport, &baud, &parity, &bits);
2146 
2147 	imx_uart_setup_ufcr(sport, TXTL_DEFAULT, RXTL_DEFAULT);
2148 
2149 	retval = uart_set_options(&sport->port, co, baud, parity, bits, flow);
2150 
2151 	if (retval) {
2152 		clk_disable_unprepare(sport->clk_ipg);
2153 		goto error_console;
2154 	}
2155 
2156 	retval = clk_prepare_enable(sport->clk_per);
2157 	if (retval)
2158 		clk_disable_unprepare(sport->clk_ipg);
2159 
2160 error_console:
2161 	return retval;
2162 }
2163 
2164 static int
2165 imx_uart_console_exit(struct console *co)
2166 {
2167 	struct imx_port *sport = imx_uart_ports[co->index];
2168 
2169 	clk_disable_unprepare(sport->clk_per);
2170 	clk_disable_unprepare(sport->clk_ipg);
2171 
2172 	return 0;
2173 }
2174 
2175 static struct uart_driver imx_uart_uart_driver;
2176 static struct console imx_uart_console = {
2177 	.name		= DEV_NAME,
2178 	.write		= imx_uart_console_write,
2179 	.device		= uart_console_device,
2180 	.setup		= imx_uart_console_setup,
2181 	.exit		= imx_uart_console_exit,
2182 	.flags		= CON_PRINTBUFFER,
2183 	.index		= -1,
2184 	.data		= &imx_uart_uart_driver,
2185 };
2186 
2187 #define IMX_CONSOLE	&imx_uart_console
2188 
2189 #else
2190 #define IMX_CONSOLE	NULL
2191 #endif
2192 
2193 static struct uart_driver imx_uart_uart_driver = {
2194 	.owner          = THIS_MODULE,
2195 	.driver_name    = DRIVER_NAME,
2196 	.dev_name       = DEV_NAME,
2197 	.major          = SERIAL_IMX_MAJOR,
2198 	.minor          = MINOR_START,
2199 	.nr             = ARRAY_SIZE(imx_uart_ports),
2200 	.cons           = IMX_CONSOLE,
2201 };
2202 
2203 static enum hrtimer_restart imx_trigger_start_tx(struct hrtimer *t)
2204 {
2205 	struct imx_port *sport = container_of(t, struct imx_port, trigger_start_tx);
2206 	unsigned long flags;
2207 
2208 	spin_lock_irqsave(&sport->port.lock, flags);
2209 	if (sport->tx_state == WAIT_AFTER_RTS)
2210 		imx_uart_start_tx(&sport->port);
2211 	spin_unlock_irqrestore(&sport->port.lock, flags);
2212 
2213 	return HRTIMER_NORESTART;
2214 }
2215 
2216 static enum hrtimer_restart imx_trigger_stop_tx(struct hrtimer *t)
2217 {
2218 	struct imx_port *sport = container_of(t, struct imx_port, trigger_stop_tx);
2219 	unsigned long flags;
2220 
2221 	spin_lock_irqsave(&sport->port.lock, flags);
2222 	if (sport->tx_state == WAIT_AFTER_SEND)
2223 		imx_uart_stop_tx(&sport->port);
2224 	spin_unlock_irqrestore(&sport->port.lock, flags);
2225 
2226 	return HRTIMER_NORESTART;
2227 }
2228 
2229 static const struct serial_rs485 imx_no_rs485 = {};	/* No RS485 if no RTS */
2230 static const struct serial_rs485 imx_rs485_supported = {
2231 	.flags = SER_RS485_ENABLED | SER_RS485_RTS_ON_SEND | SER_RS485_RTS_AFTER_SEND |
2232 		 SER_RS485_RX_DURING_TX,
2233 	.delay_rts_before_send = 1,
2234 	.delay_rts_after_send = 1,
2235 };
2236 
2237 /* Default RX DMA buffer configuration */
2238 #define RX_DMA_PERIODS		16
2239 #define RX_DMA_PERIOD_LEN	(PAGE_SIZE / 4)
2240 
2241 static int imx_uart_probe(struct platform_device *pdev)
2242 {
2243 	struct device_node *np = pdev->dev.of_node;
2244 	struct imx_port *sport;
2245 	void __iomem *base;
2246 	u32 dma_buf_conf[2];
2247 	int ret = 0;
2248 	u32 ucr1, ucr2, uts;
2249 	struct resource *res;
2250 	int txirq, rxirq, rtsirq;
2251 
2252 	sport = devm_kzalloc(&pdev->dev, sizeof(*sport), GFP_KERNEL);
2253 	if (!sport)
2254 		return -ENOMEM;
2255 
2256 	sport->devdata = of_device_get_match_data(&pdev->dev);
2257 
2258 	ret = of_alias_get_id(np, "serial");
2259 	if (ret < 0) {
2260 		dev_err(&pdev->dev, "failed to get alias id, errno %d\n", ret);
2261 		return ret;
2262 	}
2263 	sport->port.line = ret;
2264 
2265 	if (of_get_property(np, "uart-has-rtscts", NULL) ||
2266 	    of_get_property(np, "fsl,uart-has-rtscts", NULL) /* deprecated */)
2267 		sport->have_rtscts = 1;
2268 
2269 	if (of_get_property(np, "fsl,dte-mode", NULL))
2270 		sport->dte_mode = 1;
2271 
2272 	if (of_get_property(np, "rts-gpios", NULL))
2273 		sport->have_rtsgpio = 1;
2274 
2275 	if (of_get_property(np, "fsl,inverted-tx", NULL))
2276 		sport->inverted_tx = 1;
2277 
2278 	if (of_get_property(np, "fsl,inverted-rx", NULL))
2279 		sport->inverted_rx = 1;
2280 
2281 	if (!of_property_read_u32_array(np, "fsl,dma-info", dma_buf_conf, 2)) {
2282 		sport->rx_period_length = dma_buf_conf[0];
2283 		sport->rx_periods = dma_buf_conf[1];
2284 	} else {
2285 		sport->rx_period_length = RX_DMA_PERIOD_LEN;
2286 		sport->rx_periods = RX_DMA_PERIODS;
2287 	}
2288 
2289 	if (sport->port.line >= ARRAY_SIZE(imx_uart_ports)) {
2290 		dev_err(&pdev->dev, "serial%d out of range\n",
2291 			sport->port.line);
2292 		return -EINVAL;
2293 	}
2294 
2295 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2296 	base = devm_ioremap_resource(&pdev->dev, res);
2297 	if (IS_ERR(base))
2298 		return PTR_ERR(base);
2299 
2300 	rxirq = platform_get_irq(pdev, 0);
2301 	if (rxirq < 0)
2302 		return rxirq;
2303 	txirq = platform_get_irq_optional(pdev, 1);
2304 	rtsirq = platform_get_irq_optional(pdev, 2);
2305 
2306 	sport->port.dev = &pdev->dev;
2307 	sport->port.mapbase = res->start;
2308 	sport->port.membase = base;
2309 	sport->port.type = PORT_IMX;
2310 	sport->port.iotype = UPIO_MEM;
2311 	sport->port.irq = rxirq;
2312 	sport->port.fifosize = 32;
2313 	sport->port.has_sysrq = IS_ENABLED(CONFIG_SERIAL_IMX_CONSOLE);
2314 	sport->port.ops = &imx_uart_pops;
2315 	sport->port.rs485_config = imx_uart_rs485_config;
2316 	/* RTS is required to control the RS485 transmitter */
2317 	if (sport->have_rtscts || sport->have_rtsgpio)
2318 		sport->port.rs485_supported = imx_rs485_supported;
2319 	else
2320 		sport->port.rs485_supported = imx_no_rs485;
2321 	sport->port.flags = UPF_BOOT_AUTOCONF;
2322 	timer_setup(&sport->timer, imx_uart_timeout, 0);
2323 
2324 	sport->gpios = mctrl_gpio_init(&sport->port, 0);
2325 	if (IS_ERR(sport->gpios))
2326 		return PTR_ERR(sport->gpios);
2327 
2328 	sport->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
2329 	if (IS_ERR(sport->clk_ipg)) {
2330 		ret = PTR_ERR(sport->clk_ipg);
2331 		dev_err(&pdev->dev, "failed to get ipg clk: %d\n", ret);
2332 		return ret;
2333 	}
2334 
2335 	sport->clk_per = devm_clk_get(&pdev->dev, "per");
2336 	if (IS_ERR(sport->clk_per)) {
2337 		ret = PTR_ERR(sport->clk_per);
2338 		dev_err(&pdev->dev, "failed to get per clk: %d\n", ret);
2339 		return ret;
2340 	}
2341 
2342 	sport->port.uartclk = clk_get_rate(sport->clk_per);
2343 
2344 	/* For register access, we only need to enable the ipg clock. */
2345 	ret = clk_prepare_enable(sport->clk_ipg);
2346 	if (ret) {
2347 		dev_err(&pdev->dev, "failed to enable per clk: %d\n", ret);
2348 		return ret;
2349 	}
2350 
2351 	ret = uart_get_rs485_mode(&sport->port);
2352 	if (ret) {
2353 		clk_disable_unprepare(sport->clk_ipg);
2354 		return ret;
2355 	}
2356 
2357 	if (sport->port.rs485.flags & SER_RS485_ENABLED &&
2358 	    (!sport->have_rtscts && !sport->have_rtsgpio))
2359 		dev_err(&pdev->dev, "no RTS control, disabling rs485\n");
2360 
2361 	/*
2362 	 * If using the i.MX UART RTS/CTS control then the RTS (CTS_B)
2363 	 * signal cannot be set low during transmission in case the
2364 	 * receiver is off (limitation of the i.MX UART IP).
2365 	 */
2366 	if (sport->port.rs485.flags & SER_RS485_ENABLED &&
2367 	    sport->have_rtscts && !sport->have_rtsgpio &&
2368 	    (!(sport->port.rs485.flags & SER_RS485_RTS_ON_SEND) &&
2369 	     !(sport->port.rs485.flags & SER_RS485_RX_DURING_TX)))
2370 		dev_err(&pdev->dev,
2371 			"low-active RTS not possible when receiver is off, enabling receiver\n");
2372 
2373 	/* Disable interrupts before requesting them */
2374 	ucr1 = imx_uart_readl(sport, UCR1);
2375 	ucr1 &= ~(UCR1_ADEN | UCR1_TRDYEN | UCR1_IDEN | UCR1_RRDYEN | UCR1_RTSDEN);
2376 	imx_uart_writel(sport, ucr1, UCR1);
2377 
2378 	/* Disable Ageing Timer interrupt */
2379 	ucr2 = imx_uart_readl(sport, UCR2);
2380 	ucr2 &= ~UCR2_ATEN;
2381 	imx_uart_writel(sport, ucr2, UCR2);
2382 
2383 	/*
2384 	 * In case RS485 is enabled without GPIO RTS control, the UART IP
2385 	 * is used to control CTS signal. Keep both the UART and Receiver
2386 	 * enabled, otherwise the UART IP pulls CTS signal always HIGH no
2387 	 * matter how the UCR2 CTSC and CTS bits are set. To prevent any
2388 	 * data from being fed into the RX FIFO, enable loopback mode in
2389 	 * UTS register, which disconnects the RX path from external RXD
2390 	 * pin and connects it to the Transceiver, which is disabled, so
2391 	 * no data can be fed to the RX FIFO that way.
2392 	 */
2393 	if (sport->port.rs485.flags & SER_RS485_ENABLED &&
2394 	    sport->have_rtscts && !sport->have_rtsgpio) {
2395 		uts = imx_uart_readl(sport, imx_uart_uts_reg(sport));
2396 		uts |= UTS_LOOP;
2397 		imx_uart_writel(sport, uts, imx_uart_uts_reg(sport));
2398 
2399 		ucr1 = imx_uart_readl(sport, UCR1);
2400 		ucr1 |= UCR1_UARTEN;
2401 		imx_uart_writel(sport, ucr1, UCR1);
2402 
2403 		ucr2 = imx_uart_readl(sport, UCR2);
2404 		ucr2 |= UCR2_RXEN;
2405 		imx_uart_writel(sport, ucr2, UCR2);
2406 	}
2407 
2408 	if (!imx_uart_is_imx1(sport) && sport->dte_mode) {
2409 		/*
2410 		 * The DCEDTE bit changes the direction of DSR, DCD, DTR and RI
2411 		 * and influences if UCR3_RI and UCR3_DCD changes the level of RI
2412 		 * and DCD (when they are outputs) or enables the respective
2413 		 * irqs. So set this bit early, i.e. before requesting irqs.
2414 		 */
2415 		u32 ufcr = imx_uart_readl(sport, UFCR);
2416 		if (!(ufcr & UFCR_DCEDTE))
2417 			imx_uart_writel(sport, ufcr | UFCR_DCEDTE, UFCR);
2418 
2419 		/*
2420 		 * Disable UCR3_RI and UCR3_DCD irqs. They are also not
2421 		 * enabled later because they cannot be cleared
2422 		 * (confirmed on i.MX25) which makes them unusable.
2423 		 */
2424 		imx_uart_writel(sport,
2425 				IMX21_UCR3_RXDMUXSEL | UCR3_ADNIMP | UCR3_DSR,
2426 				UCR3);
2427 
2428 	} else {
2429 		u32 ucr3 = UCR3_DSR;
2430 		u32 ufcr = imx_uart_readl(sport, UFCR);
2431 		if (ufcr & UFCR_DCEDTE)
2432 			imx_uart_writel(sport, ufcr & ~UFCR_DCEDTE, UFCR);
2433 
2434 		if (!imx_uart_is_imx1(sport))
2435 			ucr3 |= IMX21_UCR3_RXDMUXSEL | UCR3_ADNIMP;
2436 		imx_uart_writel(sport, ucr3, UCR3);
2437 	}
2438 
2439 	clk_disable_unprepare(sport->clk_ipg);
2440 
2441 	hrtimer_init(&sport->trigger_start_tx, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2442 	hrtimer_init(&sport->trigger_stop_tx, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2443 	sport->trigger_start_tx.function = imx_trigger_start_tx;
2444 	sport->trigger_stop_tx.function = imx_trigger_stop_tx;
2445 
2446 	/*
2447 	 * Allocate the IRQ(s) i.MX1 has three interrupts whereas later
2448 	 * chips only have one interrupt.
2449 	 */
2450 	if (txirq > 0) {
2451 		ret = devm_request_irq(&pdev->dev, rxirq, imx_uart_rxint, 0,
2452 				       dev_name(&pdev->dev), sport);
2453 		if (ret) {
2454 			dev_err(&pdev->dev, "failed to request rx irq: %d\n",
2455 				ret);
2456 			return ret;
2457 		}
2458 
2459 		ret = devm_request_irq(&pdev->dev, txirq, imx_uart_txint, 0,
2460 				       dev_name(&pdev->dev), sport);
2461 		if (ret) {
2462 			dev_err(&pdev->dev, "failed to request tx irq: %d\n",
2463 				ret);
2464 			return ret;
2465 		}
2466 
2467 		ret = devm_request_irq(&pdev->dev, rtsirq, imx_uart_rtsint, 0,
2468 				       dev_name(&pdev->dev), sport);
2469 		if (ret) {
2470 			dev_err(&pdev->dev, "failed to request rts irq: %d\n",
2471 				ret);
2472 			return ret;
2473 		}
2474 	} else {
2475 		ret = devm_request_irq(&pdev->dev, rxirq, imx_uart_int, 0,
2476 				       dev_name(&pdev->dev), sport);
2477 		if (ret) {
2478 			dev_err(&pdev->dev, "failed to request irq: %d\n", ret);
2479 			return ret;
2480 		}
2481 	}
2482 
2483 	imx_uart_ports[sport->port.line] = sport;
2484 
2485 	platform_set_drvdata(pdev, sport);
2486 
2487 	return uart_add_one_port(&imx_uart_uart_driver, &sport->port);
2488 }
2489 
2490 static int imx_uart_remove(struct platform_device *pdev)
2491 {
2492 	struct imx_port *sport = platform_get_drvdata(pdev);
2493 
2494 	return uart_remove_one_port(&imx_uart_uart_driver, &sport->port);
2495 }
2496 
2497 static void imx_uart_restore_context(struct imx_port *sport)
2498 {
2499 	unsigned long flags;
2500 
2501 	spin_lock_irqsave(&sport->port.lock, flags);
2502 	if (!sport->context_saved) {
2503 		spin_unlock_irqrestore(&sport->port.lock, flags);
2504 		return;
2505 	}
2506 
2507 	imx_uart_writel(sport, sport->saved_reg[4], UFCR);
2508 	imx_uart_writel(sport, sport->saved_reg[5], UESC);
2509 	imx_uart_writel(sport, sport->saved_reg[6], UTIM);
2510 	imx_uart_writel(sport, sport->saved_reg[7], UBIR);
2511 	imx_uart_writel(sport, sport->saved_reg[8], UBMR);
2512 	imx_uart_writel(sport, sport->saved_reg[9], IMX21_UTS);
2513 	imx_uart_writel(sport, sport->saved_reg[0], UCR1);
2514 	imx_uart_writel(sport, sport->saved_reg[1] | UCR2_SRST, UCR2);
2515 	imx_uart_writel(sport, sport->saved_reg[2], UCR3);
2516 	imx_uart_writel(sport, sport->saved_reg[3], UCR4);
2517 	sport->context_saved = false;
2518 	spin_unlock_irqrestore(&sport->port.lock, flags);
2519 }
2520 
2521 static void imx_uart_save_context(struct imx_port *sport)
2522 {
2523 	unsigned long flags;
2524 
2525 	/* Save necessary regs */
2526 	spin_lock_irqsave(&sport->port.lock, flags);
2527 	sport->saved_reg[0] = imx_uart_readl(sport, UCR1);
2528 	sport->saved_reg[1] = imx_uart_readl(sport, UCR2);
2529 	sport->saved_reg[2] = imx_uart_readl(sport, UCR3);
2530 	sport->saved_reg[3] = imx_uart_readl(sport, UCR4);
2531 	sport->saved_reg[4] = imx_uart_readl(sport, UFCR);
2532 	sport->saved_reg[5] = imx_uart_readl(sport, UESC);
2533 	sport->saved_reg[6] = imx_uart_readl(sport, UTIM);
2534 	sport->saved_reg[7] = imx_uart_readl(sport, UBIR);
2535 	sport->saved_reg[8] = imx_uart_readl(sport, UBMR);
2536 	sport->saved_reg[9] = imx_uart_readl(sport, IMX21_UTS);
2537 	sport->context_saved = true;
2538 	spin_unlock_irqrestore(&sport->port.lock, flags);
2539 }
2540 
2541 static void imx_uart_enable_wakeup(struct imx_port *sport, bool on)
2542 {
2543 	u32 ucr3;
2544 
2545 	ucr3 = imx_uart_readl(sport, UCR3);
2546 	if (on) {
2547 		imx_uart_writel(sport, USR1_AWAKE, USR1);
2548 		ucr3 |= UCR3_AWAKEN;
2549 	} else {
2550 		ucr3 &= ~UCR3_AWAKEN;
2551 	}
2552 	imx_uart_writel(sport, ucr3, UCR3);
2553 
2554 	if (sport->have_rtscts) {
2555 		u32 ucr1 = imx_uart_readl(sport, UCR1);
2556 		if (on) {
2557 			imx_uart_writel(sport, USR1_RTSD, USR1);
2558 			ucr1 |= UCR1_RTSDEN;
2559 		} else {
2560 			ucr1 &= ~UCR1_RTSDEN;
2561 		}
2562 		imx_uart_writel(sport, ucr1, UCR1);
2563 	}
2564 }
2565 
2566 static int imx_uart_suspend_noirq(struct device *dev)
2567 {
2568 	struct imx_port *sport = dev_get_drvdata(dev);
2569 
2570 	imx_uart_save_context(sport);
2571 
2572 	clk_disable(sport->clk_ipg);
2573 
2574 	pinctrl_pm_select_sleep_state(dev);
2575 
2576 	return 0;
2577 }
2578 
2579 static int imx_uart_resume_noirq(struct device *dev)
2580 {
2581 	struct imx_port *sport = dev_get_drvdata(dev);
2582 	int ret;
2583 
2584 	pinctrl_pm_select_default_state(dev);
2585 
2586 	ret = clk_enable(sport->clk_ipg);
2587 	if (ret)
2588 		return ret;
2589 
2590 	imx_uart_restore_context(sport);
2591 
2592 	return 0;
2593 }
2594 
2595 static int imx_uart_suspend(struct device *dev)
2596 {
2597 	struct imx_port *sport = dev_get_drvdata(dev);
2598 	int ret;
2599 
2600 	uart_suspend_port(&imx_uart_uart_driver, &sport->port);
2601 	disable_irq(sport->port.irq);
2602 
2603 	ret = clk_prepare_enable(sport->clk_ipg);
2604 	if (ret)
2605 		return ret;
2606 
2607 	/* enable wakeup from i.MX UART */
2608 	imx_uart_enable_wakeup(sport, true);
2609 
2610 	return 0;
2611 }
2612 
2613 static int imx_uart_resume(struct device *dev)
2614 {
2615 	struct imx_port *sport = dev_get_drvdata(dev);
2616 
2617 	/* disable wakeup from i.MX UART */
2618 	imx_uart_enable_wakeup(sport, false);
2619 
2620 	uart_resume_port(&imx_uart_uart_driver, &sport->port);
2621 	enable_irq(sport->port.irq);
2622 
2623 	clk_disable_unprepare(sport->clk_ipg);
2624 
2625 	return 0;
2626 }
2627 
2628 static int imx_uart_freeze(struct device *dev)
2629 {
2630 	struct imx_port *sport = dev_get_drvdata(dev);
2631 
2632 	uart_suspend_port(&imx_uart_uart_driver, &sport->port);
2633 
2634 	return clk_prepare_enable(sport->clk_ipg);
2635 }
2636 
2637 static int imx_uart_thaw(struct device *dev)
2638 {
2639 	struct imx_port *sport = dev_get_drvdata(dev);
2640 
2641 	uart_resume_port(&imx_uart_uart_driver, &sport->port);
2642 
2643 	clk_disable_unprepare(sport->clk_ipg);
2644 
2645 	return 0;
2646 }
2647 
2648 static const struct dev_pm_ops imx_uart_pm_ops = {
2649 	.suspend_noirq = imx_uart_suspend_noirq,
2650 	.resume_noirq = imx_uart_resume_noirq,
2651 	.freeze_noirq = imx_uart_suspend_noirq,
2652 	.thaw_noirq = imx_uart_resume_noirq,
2653 	.restore_noirq = imx_uart_resume_noirq,
2654 	.suspend = imx_uart_suspend,
2655 	.resume = imx_uart_resume,
2656 	.freeze = imx_uart_freeze,
2657 	.thaw = imx_uart_thaw,
2658 	.restore = imx_uart_thaw,
2659 };
2660 
2661 static struct platform_driver imx_uart_platform_driver = {
2662 	.probe = imx_uart_probe,
2663 	.remove = imx_uart_remove,
2664 
2665 	.driver = {
2666 		.name = "imx-uart",
2667 		.of_match_table = imx_uart_dt_ids,
2668 		.pm = &imx_uart_pm_ops,
2669 	},
2670 };
2671 
2672 static int __init imx_uart_init(void)
2673 {
2674 	int ret = uart_register_driver(&imx_uart_uart_driver);
2675 
2676 	if (ret)
2677 		return ret;
2678 
2679 	ret = platform_driver_register(&imx_uart_platform_driver);
2680 	if (ret != 0)
2681 		uart_unregister_driver(&imx_uart_uart_driver);
2682 
2683 	return ret;
2684 }
2685 
2686 static void __exit imx_uart_exit(void)
2687 {
2688 	platform_driver_unregister(&imx_uart_platform_driver);
2689 	uart_unregister_driver(&imx_uart_uart_driver);
2690 }
2691 
2692 module_init(imx_uart_init);
2693 module_exit(imx_uart_exit);
2694 
2695 MODULE_AUTHOR("Sascha Hauer");
2696 MODULE_DESCRIPTION("IMX generic serial port driver");
2697 MODULE_LICENSE("GPL");
2698 MODULE_ALIAS("platform:imx-uart");
2699