1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Driver for Motorola/Freescale IMX serial ports 4 * 5 * Based on drivers/char/serial.c, by Linus Torvalds, Theodore Ts'o. 6 * 7 * Author: Sascha Hauer <sascha@saschahauer.de> 8 * Copyright (C) 2004 Pengutronix 9 */ 10 11 #include <linux/module.h> 12 #include <linux/ioport.h> 13 #include <linux/init.h> 14 #include <linux/console.h> 15 #include <linux/sysrq.h> 16 #include <linux/platform_device.h> 17 #include <linux/tty.h> 18 #include <linux/tty_flip.h> 19 #include <linux/serial_core.h> 20 #include <linux/serial.h> 21 #include <linux/clk.h> 22 #include <linux/delay.h> 23 #include <linux/pinctrl/consumer.h> 24 #include <linux/rational.h> 25 #include <linux/slab.h> 26 #include <linux/of.h> 27 #include <linux/of_device.h> 28 #include <linux/io.h> 29 #include <linux/dma-mapping.h> 30 31 #include <asm/irq.h> 32 #include <linux/platform_data/serial-imx.h> 33 #include <linux/platform_data/dma-imx.h> 34 35 #include "serial_mctrl_gpio.h" 36 37 /* Register definitions */ 38 #define URXD0 0x0 /* Receiver Register */ 39 #define URTX0 0x40 /* Transmitter Register */ 40 #define UCR1 0x80 /* Control Register 1 */ 41 #define UCR2 0x84 /* Control Register 2 */ 42 #define UCR3 0x88 /* Control Register 3 */ 43 #define UCR4 0x8c /* Control Register 4 */ 44 #define UFCR 0x90 /* FIFO Control Register */ 45 #define USR1 0x94 /* Status Register 1 */ 46 #define USR2 0x98 /* Status Register 2 */ 47 #define UESC 0x9c /* Escape Character Register */ 48 #define UTIM 0xa0 /* Escape Timer Register */ 49 #define UBIR 0xa4 /* BRM Incremental Register */ 50 #define UBMR 0xa8 /* BRM Modulator Register */ 51 #define UBRC 0xac /* Baud Rate Count Register */ 52 #define IMX21_ONEMS 0xb0 /* One Millisecond register */ 53 #define IMX1_UTS 0xd0 /* UART Test Register on i.mx1 */ 54 #define IMX21_UTS 0xb4 /* UART Test Register on all other i.mx*/ 55 56 /* UART Control Register Bit Fields.*/ 57 #define URXD_DUMMY_READ (1<<16) 58 #define URXD_CHARRDY (1<<15) 59 #define URXD_ERR (1<<14) 60 #define URXD_OVRRUN (1<<13) 61 #define URXD_FRMERR (1<<12) 62 #define URXD_BRK (1<<11) 63 #define URXD_PRERR (1<<10) 64 #define URXD_RX_DATA (0xFF<<0) 65 #define UCR1_ADEN (1<<15) /* Auto detect interrupt */ 66 #define UCR1_ADBR (1<<14) /* Auto detect baud rate */ 67 #define UCR1_TRDYEN (1<<13) /* Transmitter ready interrupt enable */ 68 #define UCR1_IDEN (1<<12) /* Idle condition interrupt */ 69 #define UCR1_ICD_REG(x) (((x) & 3) << 10) /* idle condition detect */ 70 #define UCR1_RRDYEN (1<<9) /* Recv ready interrupt enable */ 71 #define UCR1_RXDMAEN (1<<8) /* Recv ready DMA enable */ 72 #define UCR1_IREN (1<<7) /* Infrared interface enable */ 73 #define UCR1_TXMPTYEN (1<<6) /* Transimitter empty interrupt enable */ 74 #define UCR1_RTSDEN (1<<5) /* RTS delta interrupt enable */ 75 #define UCR1_SNDBRK (1<<4) /* Send break */ 76 #define UCR1_TXDMAEN (1<<3) /* Transmitter ready DMA enable */ 77 #define IMX1_UCR1_UARTCLKEN (1<<2) /* UART clock enabled, i.mx1 only */ 78 #define UCR1_ATDMAEN (1<<2) /* Aging DMA Timer Enable */ 79 #define UCR1_DOZE (1<<1) /* Doze */ 80 #define UCR1_UARTEN (1<<0) /* UART enabled */ 81 #define UCR2_ESCI (1<<15) /* Escape seq interrupt enable */ 82 #define UCR2_IRTS (1<<14) /* Ignore RTS pin */ 83 #define UCR2_CTSC (1<<13) /* CTS pin control */ 84 #define UCR2_CTS (1<<12) /* Clear to send */ 85 #define UCR2_ESCEN (1<<11) /* Escape enable */ 86 #define UCR2_PREN (1<<8) /* Parity enable */ 87 #define UCR2_PROE (1<<7) /* Parity odd/even */ 88 #define UCR2_STPB (1<<6) /* Stop */ 89 #define UCR2_WS (1<<5) /* Word size */ 90 #define UCR2_RTSEN (1<<4) /* Request to send interrupt enable */ 91 #define UCR2_ATEN (1<<3) /* Aging Timer Enable */ 92 #define UCR2_TXEN (1<<2) /* Transmitter enabled */ 93 #define UCR2_RXEN (1<<1) /* Receiver enabled */ 94 #define UCR2_SRST (1<<0) /* SW reset */ 95 #define UCR3_DTREN (1<<13) /* DTR interrupt enable */ 96 #define UCR3_PARERREN (1<<12) /* Parity enable */ 97 #define UCR3_FRAERREN (1<<11) /* Frame error interrupt enable */ 98 #define UCR3_DSR (1<<10) /* Data set ready */ 99 #define UCR3_DCD (1<<9) /* Data carrier detect */ 100 #define UCR3_RI (1<<8) /* Ring indicator */ 101 #define UCR3_ADNIMP (1<<7) /* Autobaud Detection Not Improved */ 102 #define UCR3_RXDSEN (1<<6) /* Receive status interrupt enable */ 103 #define UCR3_AIRINTEN (1<<5) /* Async IR wake interrupt enable */ 104 #define UCR3_AWAKEN (1<<4) /* Async wake interrupt enable */ 105 #define UCR3_DTRDEN (1<<3) /* Data Terminal Ready Delta Enable. */ 106 #define IMX21_UCR3_RXDMUXSEL (1<<2) /* RXD Muxed Input Select */ 107 #define UCR3_INVT (1<<1) /* Inverted Infrared transmission */ 108 #define UCR3_BPEN (1<<0) /* Preset registers enable */ 109 #define UCR4_CTSTL_SHF 10 /* CTS trigger level shift */ 110 #define UCR4_CTSTL_MASK 0x3F /* CTS trigger is 6 bits wide */ 111 #define UCR4_INVR (1<<9) /* Inverted infrared reception */ 112 #define UCR4_ENIRI (1<<8) /* Serial infrared interrupt enable */ 113 #define UCR4_WKEN (1<<7) /* Wake interrupt enable */ 114 #define UCR4_REF16 (1<<6) /* Ref freq 16 MHz */ 115 #define UCR4_IDDMAEN (1<<6) /* DMA IDLE Condition Detected */ 116 #define UCR4_IRSC (1<<5) /* IR special case */ 117 #define UCR4_TCEN (1<<3) /* Transmit complete interrupt enable */ 118 #define UCR4_BKEN (1<<2) /* Break condition interrupt enable */ 119 #define UCR4_OREN (1<<1) /* Receiver overrun interrupt enable */ 120 #define UCR4_DREN (1<<0) /* Recv data ready interrupt enable */ 121 #define UFCR_RXTL_SHF 0 /* Receiver trigger level shift */ 122 #define UFCR_DCEDTE (1<<6) /* DCE/DTE mode select */ 123 #define UFCR_RFDIV (7<<7) /* Reference freq divider mask */ 124 #define UFCR_RFDIV_REG(x) (((x) < 7 ? 6 - (x) : 6) << 7) 125 #define UFCR_TXTL_SHF 10 /* Transmitter trigger level shift */ 126 #define USR1_PARITYERR (1<<15) /* Parity error interrupt flag */ 127 #define USR1_RTSS (1<<14) /* RTS pin status */ 128 #define USR1_TRDY (1<<13) /* Transmitter ready interrupt/dma flag */ 129 #define USR1_RTSD (1<<12) /* RTS delta */ 130 #define USR1_ESCF (1<<11) /* Escape seq interrupt flag */ 131 #define USR1_FRAMERR (1<<10) /* Frame error interrupt flag */ 132 #define USR1_RRDY (1<<9) /* Receiver ready interrupt/dma flag */ 133 #define USR1_AGTIM (1<<8) /* Ageing timer interrupt flag */ 134 #define USR1_DTRD (1<<7) /* DTR Delta */ 135 #define USR1_RXDS (1<<6) /* Receiver idle interrupt flag */ 136 #define USR1_AIRINT (1<<5) /* Async IR wake interrupt flag */ 137 #define USR1_AWAKE (1<<4) /* Aysnc wake interrupt flag */ 138 #define USR2_ADET (1<<15) /* Auto baud rate detect complete */ 139 #define USR2_TXFE (1<<14) /* Transmit buffer FIFO empty */ 140 #define USR2_DTRF (1<<13) /* DTR edge interrupt flag */ 141 #define USR2_IDLE (1<<12) /* Idle condition */ 142 #define USR2_RIDELT (1<<10) /* Ring Interrupt Delta */ 143 #define USR2_RIIN (1<<9) /* Ring Indicator Input */ 144 #define USR2_IRINT (1<<8) /* Serial infrared interrupt flag */ 145 #define USR2_WAKE (1<<7) /* Wake */ 146 #define USR2_DCDIN (1<<5) /* Data Carrier Detect Input */ 147 #define USR2_RTSF (1<<4) /* RTS edge interrupt flag */ 148 #define USR2_TXDC (1<<3) /* Transmitter complete */ 149 #define USR2_BRCD (1<<2) /* Break condition */ 150 #define USR2_ORE (1<<1) /* Overrun error */ 151 #define USR2_RDR (1<<0) /* Recv data ready */ 152 #define UTS_FRCPERR (1<<13) /* Force parity error */ 153 #define UTS_LOOP (1<<12) /* Loop tx and rx */ 154 #define UTS_TXEMPTY (1<<6) /* TxFIFO empty */ 155 #define UTS_RXEMPTY (1<<5) /* RxFIFO empty */ 156 #define UTS_TXFULL (1<<4) /* TxFIFO full */ 157 #define UTS_RXFULL (1<<3) /* RxFIFO full */ 158 #define UTS_SOFTRST (1<<0) /* Software reset */ 159 160 /* We've been assigned a range on the "Low-density serial ports" major */ 161 #define SERIAL_IMX_MAJOR 207 162 #define MINOR_START 16 163 #define DEV_NAME "ttymxc" 164 165 /* 166 * This determines how often we check the modem status signals 167 * for any change. They generally aren't connected to an IRQ 168 * so we have to poll them. We also check immediately before 169 * filling the TX fifo incase CTS has been dropped. 170 */ 171 #define MCTRL_TIMEOUT (250*HZ/1000) 172 173 #define DRIVER_NAME "IMX-uart" 174 175 #define UART_NR 8 176 177 /* i.MX21 type uart runs on all i.mx except i.MX1 and i.MX6q */ 178 enum imx_uart_type { 179 IMX1_UART, 180 IMX21_UART, 181 IMX53_UART, 182 IMX6Q_UART, 183 }; 184 185 /* device type dependent stuff */ 186 struct imx_uart_data { 187 unsigned uts_reg; 188 enum imx_uart_type devtype; 189 }; 190 191 struct imx_port { 192 struct uart_port port; 193 struct timer_list timer; 194 unsigned int old_status; 195 unsigned int have_rtscts:1; 196 unsigned int have_rtsgpio:1; 197 unsigned int dte_mode:1; 198 unsigned int inverted_tx:1; 199 unsigned int inverted_rx:1; 200 struct clk *clk_ipg; 201 struct clk *clk_per; 202 const struct imx_uart_data *devdata; 203 204 struct mctrl_gpios *gpios; 205 206 /* shadow registers */ 207 unsigned int ucr1; 208 unsigned int ucr2; 209 unsigned int ucr3; 210 unsigned int ucr4; 211 unsigned int ufcr; 212 213 /* DMA fields */ 214 unsigned int dma_is_enabled:1; 215 unsigned int dma_is_rxing:1; 216 unsigned int dma_is_txing:1; 217 struct dma_chan *dma_chan_rx, *dma_chan_tx; 218 struct scatterlist rx_sgl, tx_sgl[2]; 219 void *rx_buf; 220 struct circ_buf rx_ring; 221 unsigned int rx_periods; 222 dma_cookie_t rx_cookie; 223 unsigned int tx_bytes; 224 unsigned int dma_tx_nents; 225 unsigned int saved_reg[10]; 226 bool context_saved; 227 }; 228 229 struct imx_port_ucrs { 230 unsigned int ucr1; 231 unsigned int ucr2; 232 unsigned int ucr3; 233 }; 234 235 static struct imx_uart_data imx_uart_devdata[] = { 236 [IMX1_UART] = { 237 .uts_reg = IMX1_UTS, 238 .devtype = IMX1_UART, 239 }, 240 [IMX21_UART] = { 241 .uts_reg = IMX21_UTS, 242 .devtype = IMX21_UART, 243 }, 244 [IMX53_UART] = { 245 .uts_reg = IMX21_UTS, 246 .devtype = IMX53_UART, 247 }, 248 [IMX6Q_UART] = { 249 .uts_reg = IMX21_UTS, 250 .devtype = IMX6Q_UART, 251 }, 252 }; 253 254 static const struct platform_device_id imx_uart_devtype[] = { 255 { 256 .name = "imx1-uart", 257 .driver_data = (kernel_ulong_t) &imx_uart_devdata[IMX1_UART], 258 }, { 259 .name = "imx21-uart", 260 .driver_data = (kernel_ulong_t) &imx_uart_devdata[IMX21_UART], 261 }, { 262 .name = "imx53-uart", 263 .driver_data = (kernel_ulong_t) &imx_uart_devdata[IMX53_UART], 264 }, { 265 .name = "imx6q-uart", 266 .driver_data = (kernel_ulong_t) &imx_uart_devdata[IMX6Q_UART], 267 }, { 268 /* sentinel */ 269 } 270 }; 271 MODULE_DEVICE_TABLE(platform, imx_uart_devtype); 272 273 static const struct of_device_id imx_uart_dt_ids[] = { 274 { .compatible = "fsl,imx6q-uart", .data = &imx_uart_devdata[IMX6Q_UART], }, 275 { .compatible = "fsl,imx53-uart", .data = &imx_uart_devdata[IMX53_UART], }, 276 { .compatible = "fsl,imx1-uart", .data = &imx_uart_devdata[IMX1_UART], }, 277 { .compatible = "fsl,imx21-uart", .data = &imx_uart_devdata[IMX21_UART], }, 278 { /* sentinel */ } 279 }; 280 MODULE_DEVICE_TABLE(of, imx_uart_dt_ids); 281 282 static void imx_uart_writel(struct imx_port *sport, u32 val, u32 offset) 283 { 284 switch (offset) { 285 case UCR1: 286 sport->ucr1 = val; 287 break; 288 case UCR2: 289 sport->ucr2 = val; 290 break; 291 case UCR3: 292 sport->ucr3 = val; 293 break; 294 case UCR4: 295 sport->ucr4 = val; 296 break; 297 case UFCR: 298 sport->ufcr = val; 299 break; 300 default: 301 break; 302 } 303 writel(val, sport->port.membase + offset); 304 } 305 306 static u32 imx_uart_readl(struct imx_port *sport, u32 offset) 307 { 308 switch (offset) { 309 case UCR1: 310 return sport->ucr1; 311 break; 312 case UCR2: 313 /* 314 * UCR2_SRST is the only bit in the cached registers that might 315 * differ from the value that was last written. As it only 316 * automatically becomes one after being cleared, reread 317 * conditionally. 318 */ 319 if (!(sport->ucr2 & UCR2_SRST)) 320 sport->ucr2 = readl(sport->port.membase + offset); 321 return sport->ucr2; 322 break; 323 case UCR3: 324 return sport->ucr3; 325 break; 326 case UCR4: 327 return sport->ucr4; 328 break; 329 case UFCR: 330 return sport->ufcr; 331 break; 332 default: 333 return readl(sport->port.membase + offset); 334 } 335 } 336 337 static inline unsigned imx_uart_uts_reg(struct imx_port *sport) 338 { 339 return sport->devdata->uts_reg; 340 } 341 342 static inline int imx_uart_is_imx1(struct imx_port *sport) 343 { 344 return sport->devdata->devtype == IMX1_UART; 345 } 346 347 static inline int imx_uart_is_imx21(struct imx_port *sport) 348 { 349 return sport->devdata->devtype == IMX21_UART; 350 } 351 352 static inline int imx_uart_is_imx53(struct imx_port *sport) 353 { 354 return sport->devdata->devtype == IMX53_UART; 355 } 356 357 static inline int imx_uart_is_imx6q(struct imx_port *sport) 358 { 359 return sport->devdata->devtype == IMX6Q_UART; 360 } 361 /* 362 * Save and restore functions for UCR1, UCR2 and UCR3 registers 363 */ 364 #if defined(CONFIG_SERIAL_IMX_CONSOLE) 365 static void imx_uart_ucrs_save(struct imx_port *sport, 366 struct imx_port_ucrs *ucr) 367 { 368 /* save control registers */ 369 ucr->ucr1 = imx_uart_readl(sport, UCR1); 370 ucr->ucr2 = imx_uart_readl(sport, UCR2); 371 ucr->ucr3 = imx_uart_readl(sport, UCR3); 372 } 373 374 static void imx_uart_ucrs_restore(struct imx_port *sport, 375 struct imx_port_ucrs *ucr) 376 { 377 /* restore control registers */ 378 imx_uart_writel(sport, ucr->ucr1, UCR1); 379 imx_uart_writel(sport, ucr->ucr2, UCR2); 380 imx_uart_writel(sport, ucr->ucr3, UCR3); 381 } 382 #endif 383 384 /* called with port.lock taken and irqs caller dependent */ 385 static void imx_uart_rts_active(struct imx_port *sport, u32 *ucr2) 386 { 387 *ucr2 &= ~(UCR2_CTSC | UCR2_CTS); 388 389 sport->port.mctrl |= TIOCM_RTS; 390 mctrl_gpio_set(sport->gpios, sport->port.mctrl); 391 } 392 393 /* called with port.lock taken and irqs caller dependent */ 394 static void imx_uart_rts_inactive(struct imx_port *sport, u32 *ucr2) 395 { 396 *ucr2 &= ~UCR2_CTSC; 397 *ucr2 |= UCR2_CTS; 398 399 sport->port.mctrl &= ~TIOCM_RTS; 400 mctrl_gpio_set(sport->gpios, sport->port.mctrl); 401 } 402 403 /* called with port.lock taken and irqs off */ 404 static void imx_uart_start_rx(struct uart_port *port) 405 { 406 struct imx_port *sport = (struct imx_port *)port; 407 unsigned int ucr1, ucr2; 408 409 ucr1 = imx_uart_readl(sport, UCR1); 410 ucr2 = imx_uart_readl(sport, UCR2); 411 412 ucr2 |= UCR2_RXEN; 413 414 if (sport->dma_is_enabled) { 415 ucr1 |= UCR1_RXDMAEN | UCR1_ATDMAEN; 416 } else { 417 ucr1 |= UCR1_RRDYEN; 418 ucr2 |= UCR2_ATEN; 419 } 420 421 /* Write UCR2 first as it includes RXEN */ 422 imx_uart_writel(sport, ucr2, UCR2); 423 imx_uart_writel(sport, ucr1, UCR1); 424 } 425 426 /* called with port.lock taken and irqs off */ 427 static void imx_uart_stop_tx(struct uart_port *port) 428 { 429 struct imx_port *sport = (struct imx_port *)port; 430 u32 ucr1; 431 432 /* 433 * We are maybe in the SMP context, so if the DMA TX thread is running 434 * on other cpu, we have to wait for it to finish. 435 */ 436 if (sport->dma_is_txing) 437 return; 438 439 ucr1 = imx_uart_readl(sport, UCR1); 440 imx_uart_writel(sport, ucr1 & ~UCR1_TRDYEN, UCR1); 441 442 /* in rs485 mode disable transmitter if shifter is empty */ 443 if (port->rs485.flags & SER_RS485_ENABLED && 444 imx_uart_readl(sport, USR2) & USR2_TXDC) { 445 u32 ucr2 = imx_uart_readl(sport, UCR2), ucr4; 446 if (port->rs485.flags & SER_RS485_RTS_AFTER_SEND) 447 imx_uart_rts_active(sport, &ucr2); 448 else 449 imx_uart_rts_inactive(sport, &ucr2); 450 imx_uart_writel(sport, ucr2, UCR2); 451 452 imx_uart_start_rx(port); 453 454 ucr4 = imx_uart_readl(sport, UCR4); 455 ucr4 &= ~UCR4_TCEN; 456 imx_uart_writel(sport, ucr4, UCR4); 457 } 458 } 459 460 /* called with port.lock taken and irqs off */ 461 static void imx_uart_stop_rx(struct uart_port *port) 462 { 463 struct imx_port *sport = (struct imx_port *)port; 464 u32 ucr1, ucr2; 465 466 ucr1 = imx_uart_readl(sport, UCR1); 467 ucr2 = imx_uart_readl(sport, UCR2); 468 469 if (sport->dma_is_enabled) { 470 ucr1 &= ~(UCR1_RXDMAEN | UCR1_ATDMAEN); 471 } else { 472 ucr1 &= ~UCR1_RRDYEN; 473 ucr2 &= ~UCR2_ATEN; 474 } 475 imx_uart_writel(sport, ucr1, UCR1); 476 477 ucr2 &= ~UCR2_RXEN; 478 imx_uart_writel(sport, ucr2, UCR2); 479 } 480 481 /* called with port.lock taken and irqs off */ 482 static void imx_uart_enable_ms(struct uart_port *port) 483 { 484 struct imx_port *sport = (struct imx_port *)port; 485 486 mod_timer(&sport->timer, jiffies); 487 488 mctrl_gpio_enable_ms(sport->gpios); 489 } 490 491 static void imx_uart_dma_tx(struct imx_port *sport); 492 493 /* called with port.lock taken and irqs off */ 494 static inline void imx_uart_transmit_buffer(struct imx_port *sport) 495 { 496 struct circ_buf *xmit = &sport->port.state->xmit; 497 498 if (sport->port.x_char) { 499 /* Send next char */ 500 imx_uart_writel(sport, sport->port.x_char, URTX0); 501 sport->port.icount.tx++; 502 sport->port.x_char = 0; 503 return; 504 } 505 506 if (uart_circ_empty(xmit) || uart_tx_stopped(&sport->port)) { 507 imx_uart_stop_tx(&sport->port); 508 return; 509 } 510 511 if (sport->dma_is_enabled) { 512 u32 ucr1; 513 /* 514 * We've just sent a X-char Ensure the TX DMA is enabled 515 * and the TX IRQ is disabled. 516 **/ 517 ucr1 = imx_uart_readl(sport, UCR1); 518 ucr1 &= ~UCR1_TRDYEN; 519 if (sport->dma_is_txing) { 520 ucr1 |= UCR1_TXDMAEN; 521 imx_uart_writel(sport, ucr1, UCR1); 522 } else { 523 imx_uart_writel(sport, ucr1, UCR1); 524 imx_uart_dma_tx(sport); 525 } 526 527 return; 528 } 529 530 while (!uart_circ_empty(xmit) && 531 !(imx_uart_readl(sport, imx_uart_uts_reg(sport)) & UTS_TXFULL)) { 532 /* send xmit->buf[xmit->tail] 533 * out the port here */ 534 imx_uart_writel(sport, xmit->buf[xmit->tail], URTX0); 535 xmit->tail = (xmit->tail + 1) & (UART_XMIT_SIZE - 1); 536 sport->port.icount.tx++; 537 } 538 539 if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS) 540 uart_write_wakeup(&sport->port); 541 542 if (uart_circ_empty(xmit)) 543 imx_uart_stop_tx(&sport->port); 544 } 545 546 static void imx_uart_dma_tx_callback(void *data) 547 { 548 struct imx_port *sport = data; 549 struct scatterlist *sgl = &sport->tx_sgl[0]; 550 struct circ_buf *xmit = &sport->port.state->xmit; 551 unsigned long flags; 552 u32 ucr1; 553 554 spin_lock_irqsave(&sport->port.lock, flags); 555 556 dma_unmap_sg(sport->port.dev, sgl, sport->dma_tx_nents, DMA_TO_DEVICE); 557 558 ucr1 = imx_uart_readl(sport, UCR1); 559 ucr1 &= ~UCR1_TXDMAEN; 560 imx_uart_writel(sport, ucr1, UCR1); 561 562 /* update the stat */ 563 xmit->tail = (xmit->tail + sport->tx_bytes) & (UART_XMIT_SIZE - 1); 564 sport->port.icount.tx += sport->tx_bytes; 565 566 dev_dbg(sport->port.dev, "we finish the TX DMA.\n"); 567 568 sport->dma_is_txing = 0; 569 570 if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS) 571 uart_write_wakeup(&sport->port); 572 573 if (!uart_circ_empty(xmit) && !uart_tx_stopped(&sport->port)) 574 imx_uart_dma_tx(sport); 575 else if (sport->port.rs485.flags & SER_RS485_ENABLED) { 576 u32 ucr4 = imx_uart_readl(sport, UCR4); 577 ucr4 |= UCR4_TCEN; 578 imx_uart_writel(sport, ucr4, UCR4); 579 } 580 581 spin_unlock_irqrestore(&sport->port.lock, flags); 582 } 583 584 /* called with port.lock taken and irqs off */ 585 static void imx_uart_dma_tx(struct imx_port *sport) 586 { 587 struct circ_buf *xmit = &sport->port.state->xmit; 588 struct scatterlist *sgl = sport->tx_sgl; 589 struct dma_async_tx_descriptor *desc; 590 struct dma_chan *chan = sport->dma_chan_tx; 591 struct device *dev = sport->port.dev; 592 u32 ucr1, ucr4; 593 int ret; 594 595 if (sport->dma_is_txing) 596 return; 597 598 ucr4 = imx_uart_readl(sport, UCR4); 599 ucr4 &= ~UCR4_TCEN; 600 imx_uart_writel(sport, ucr4, UCR4); 601 602 sport->tx_bytes = uart_circ_chars_pending(xmit); 603 604 if (xmit->tail < xmit->head || xmit->head == 0) { 605 sport->dma_tx_nents = 1; 606 sg_init_one(sgl, xmit->buf + xmit->tail, sport->tx_bytes); 607 } else { 608 sport->dma_tx_nents = 2; 609 sg_init_table(sgl, 2); 610 sg_set_buf(sgl, xmit->buf + xmit->tail, 611 UART_XMIT_SIZE - xmit->tail); 612 sg_set_buf(sgl + 1, xmit->buf, xmit->head); 613 } 614 615 ret = dma_map_sg(dev, sgl, sport->dma_tx_nents, DMA_TO_DEVICE); 616 if (ret == 0) { 617 dev_err(dev, "DMA mapping error for TX.\n"); 618 return; 619 } 620 desc = dmaengine_prep_slave_sg(chan, sgl, ret, 621 DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT); 622 if (!desc) { 623 dma_unmap_sg(dev, sgl, sport->dma_tx_nents, 624 DMA_TO_DEVICE); 625 dev_err(dev, "We cannot prepare for the TX slave dma!\n"); 626 return; 627 } 628 desc->callback = imx_uart_dma_tx_callback; 629 desc->callback_param = sport; 630 631 dev_dbg(dev, "TX: prepare to send %lu bytes by DMA.\n", 632 uart_circ_chars_pending(xmit)); 633 634 ucr1 = imx_uart_readl(sport, UCR1); 635 ucr1 |= UCR1_TXDMAEN; 636 imx_uart_writel(sport, ucr1, UCR1); 637 638 /* fire it */ 639 sport->dma_is_txing = 1; 640 dmaengine_submit(desc); 641 dma_async_issue_pending(chan); 642 return; 643 } 644 645 /* called with port.lock taken and irqs off */ 646 static void imx_uart_start_tx(struct uart_port *port) 647 { 648 struct imx_port *sport = (struct imx_port *)port; 649 u32 ucr1; 650 651 if (!sport->port.x_char && uart_circ_empty(&port->state->xmit)) 652 return; 653 654 if (port->rs485.flags & SER_RS485_ENABLED) { 655 u32 ucr2; 656 657 ucr2 = imx_uart_readl(sport, UCR2); 658 if (port->rs485.flags & SER_RS485_RTS_ON_SEND) 659 imx_uart_rts_active(sport, &ucr2); 660 else 661 imx_uart_rts_inactive(sport, &ucr2); 662 imx_uart_writel(sport, ucr2, UCR2); 663 664 if (!(port->rs485.flags & SER_RS485_RX_DURING_TX)) 665 imx_uart_stop_rx(port); 666 667 /* 668 * Enable transmitter and shifter empty irq only if DMA is off. 669 * In the DMA case this is done in the tx-callback. 670 */ 671 if (!sport->dma_is_enabled) { 672 u32 ucr4 = imx_uart_readl(sport, UCR4); 673 ucr4 |= UCR4_TCEN; 674 imx_uart_writel(sport, ucr4, UCR4); 675 } 676 } 677 678 if (!sport->dma_is_enabled) { 679 ucr1 = imx_uart_readl(sport, UCR1); 680 imx_uart_writel(sport, ucr1 | UCR1_TRDYEN, UCR1); 681 } 682 683 if (sport->dma_is_enabled) { 684 if (sport->port.x_char) { 685 /* We have X-char to send, so enable TX IRQ and 686 * disable TX DMA to let TX interrupt to send X-char */ 687 ucr1 = imx_uart_readl(sport, UCR1); 688 ucr1 &= ~UCR1_TXDMAEN; 689 ucr1 |= UCR1_TRDYEN; 690 imx_uart_writel(sport, ucr1, UCR1); 691 return; 692 } 693 694 if (!uart_circ_empty(&port->state->xmit) && 695 !uart_tx_stopped(port)) 696 imx_uart_dma_tx(sport); 697 return; 698 } 699 } 700 701 static irqreturn_t __imx_uart_rtsint(int irq, void *dev_id) 702 { 703 struct imx_port *sport = dev_id; 704 u32 usr1; 705 706 imx_uart_writel(sport, USR1_RTSD, USR1); 707 usr1 = imx_uart_readl(sport, USR1) & USR1_RTSS; 708 uart_handle_cts_change(&sport->port, !!usr1); 709 wake_up_interruptible(&sport->port.state->port.delta_msr_wait); 710 711 return IRQ_HANDLED; 712 } 713 714 static irqreturn_t imx_uart_rtsint(int irq, void *dev_id) 715 { 716 struct imx_port *sport = dev_id; 717 irqreturn_t ret; 718 719 spin_lock(&sport->port.lock); 720 721 ret = __imx_uart_rtsint(irq, dev_id); 722 723 spin_unlock(&sport->port.lock); 724 725 return ret; 726 } 727 728 static irqreturn_t imx_uart_txint(int irq, void *dev_id) 729 { 730 struct imx_port *sport = dev_id; 731 732 spin_lock(&sport->port.lock); 733 imx_uart_transmit_buffer(sport); 734 spin_unlock(&sport->port.lock); 735 return IRQ_HANDLED; 736 } 737 738 static irqreturn_t __imx_uart_rxint(int irq, void *dev_id) 739 { 740 struct imx_port *sport = dev_id; 741 unsigned int rx, flg, ignored = 0; 742 struct tty_port *port = &sport->port.state->port; 743 744 while (imx_uart_readl(sport, USR2) & USR2_RDR) { 745 u32 usr2; 746 747 flg = TTY_NORMAL; 748 sport->port.icount.rx++; 749 750 rx = imx_uart_readl(sport, URXD0); 751 752 usr2 = imx_uart_readl(sport, USR2); 753 if (usr2 & USR2_BRCD) { 754 imx_uart_writel(sport, USR2_BRCD, USR2); 755 if (uart_handle_break(&sport->port)) 756 continue; 757 } 758 759 if (uart_handle_sysrq_char(&sport->port, (unsigned char)rx)) 760 continue; 761 762 if (unlikely(rx & URXD_ERR)) { 763 if (rx & URXD_BRK) 764 sport->port.icount.brk++; 765 else if (rx & URXD_PRERR) 766 sport->port.icount.parity++; 767 else if (rx & URXD_FRMERR) 768 sport->port.icount.frame++; 769 if (rx & URXD_OVRRUN) 770 sport->port.icount.overrun++; 771 772 if (rx & sport->port.ignore_status_mask) { 773 if (++ignored > 100) 774 goto out; 775 continue; 776 } 777 778 rx &= (sport->port.read_status_mask | 0xFF); 779 780 if (rx & URXD_BRK) 781 flg = TTY_BREAK; 782 else if (rx & URXD_PRERR) 783 flg = TTY_PARITY; 784 else if (rx & URXD_FRMERR) 785 flg = TTY_FRAME; 786 if (rx & URXD_OVRRUN) 787 flg = TTY_OVERRUN; 788 789 sport->port.sysrq = 0; 790 } 791 792 if (sport->port.ignore_status_mask & URXD_DUMMY_READ) 793 goto out; 794 795 if (tty_insert_flip_char(port, rx, flg) == 0) 796 sport->port.icount.buf_overrun++; 797 } 798 799 out: 800 tty_flip_buffer_push(port); 801 802 return IRQ_HANDLED; 803 } 804 805 static irqreturn_t imx_uart_rxint(int irq, void *dev_id) 806 { 807 struct imx_port *sport = dev_id; 808 irqreturn_t ret; 809 810 spin_lock(&sport->port.lock); 811 812 ret = __imx_uart_rxint(irq, dev_id); 813 814 spin_unlock(&sport->port.lock); 815 816 return ret; 817 } 818 819 static void imx_uart_clear_rx_errors(struct imx_port *sport); 820 821 /* 822 * We have a modem side uart, so the meanings of RTS and CTS are inverted. 823 */ 824 static unsigned int imx_uart_get_hwmctrl(struct imx_port *sport) 825 { 826 unsigned int tmp = TIOCM_DSR; 827 unsigned usr1 = imx_uart_readl(sport, USR1); 828 unsigned usr2 = imx_uart_readl(sport, USR2); 829 830 if (usr1 & USR1_RTSS) 831 tmp |= TIOCM_CTS; 832 833 /* in DCE mode DCDIN is always 0 */ 834 if (!(usr2 & USR2_DCDIN)) 835 tmp |= TIOCM_CAR; 836 837 if (sport->dte_mode) 838 if (!(imx_uart_readl(sport, USR2) & USR2_RIIN)) 839 tmp |= TIOCM_RI; 840 841 return tmp; 842 } 843 844 /* 845 * Handle any change of modem status signal since we were last called. 846 */ 847 static void imx_uart_mctrl_check(struct imx_port *sport) 848 { 849 unsigned int status, changed; 850 851 status = imx_uart_get_hwmctrl(sport); 852 changed = status ^ sport->old_status; 853 854 if (changed == 0) 855 return; 856 857 sport->old_status = status; 858 859 if (changed & TIOCM_RI && status & TIOCM_RI) 860 sport->port.icount.rng++; 861 if (changed & TIOCM_DSR) 862 sport->port.icount.dsr++; 863 if (changed & TIOCM_CAR) 864 uart_handle_dcd_change(&sport->port, status & TIOCM_CAR); 865 if (changed & TIOCM_CTS) 866 uart_handle_cts_change(&sport->port, status & TIOCM_CTS); 867 868 wake_up_interruptible(&sport->port.state->port.delta_msr_wait); 869 } 870 871 static irqreturn_t imx_uart_int(int irq, void *dev_id) 872 { 873 struct imx_port *sport = dev_id; 874 unsigned int usr1, usr2, ucr1, ucr2, ucr3, ucr4; 875 irqreturn_t ret = IRQ_NONE; 876 877 spin_lock(&sport->port.lock); 878 879 usr1 = imx_uart_readl(sport, USR1); 880 usr2 = imx_uart_readl(sport, USR2); 881 ucr1 = imx_uart_readl(sport, UCR1); 882 ucr2 = imx_uart_readl(sport, UCR2); 883 ucr3 = imx_uart_readl(sport, UCR3); 884 ucr4 = imx_uart_readl(sport, UCR4); 885 886 /* 887 * Even if a condition is true that can trigger an irq only handle it if 888 * the respective irq source is enabled. This prevents some undesired 889 * actions, for example if a character that sits in the RX FIFO and that 890 * should be fetched via DMA is tried to be fetched using PIO. Or the 891 * receiver is currently off and so reading from URXD0 results in an 892 * exception. So just mask the (raw) status bits for disabled irqs. 893 */ 894 if ((ucr1 & UCR1_RRDYEN) == 0) 895 usr1 &= ~USR1_RRDY; 896 if ((ucr2 & UCR2_ATEN) == 0) 897 usr1 &= ~USR1_AGTIM; 898 if ((ucr1 & UCR1_TRDYEN) == 0) 899 usr1 &= ~USR1_TRDY; 900 if ((ucr4 & UCR4_TCEN) == 0) 901 usr2 &= ~USR2_TXDC; 902 if ((ucr3 & UCR3_DTRDEN) == 0) 903 usr1 &= ~USR1_DTRD; 904 if ((ucr1 & UCR1_RTSDEN) == 0) 905 usr1 &= ~USR1_RTSD; 906 if ((ucr3 & UCR3_AWAKEN) == 0) 907 usr1 &= ~USR1_AWAKE; 908 if ((ucr4 & UCR4_OREN) == 0) 909 usr2 &= ~USR2_ORE; 910 911 if (usr1 & (USR1_RRDY | USR1_AGTIM)) { 912 imx_uart_writel(sport, USR1_AGTIM, USR1); 913 914 __imx_uart_rxint(irq, dev_id); 915 ret = IRQ_HANDLED; 916 } 917 918 if ((usr1 & USR1_TRDY) || (usr2 & USR2_TXDC)) { 919 imx_uart_transmit_buffer(sport); 920 ret = IRQ_HANDLED; 921 } 922 923 if (usr1 & USR1_DTRD) { 924 imx_uart_writel(sport, USR1_DTRD, USR1); 925 926 imx_uart_mctrl_check(sport); 927 928 ret = IRQ_HANDLED; 929 } 930 931 if (usr1 & USR1_RTSD) { 932 __imx_uart_rtsint(irq, dev_id); 933 ret = IRQ_HANDLED; 934 } 935 936 if (usr1 & USR1_AWAKE) { 937 imx_uart_writel(sport, USR1_AWAKE, USR1); 938 ret = IRQ_HANDLED; 939 } 940 941 if (usr2 & USR2_ORE) { 942 sport->port.icount.overrun++; 943 imx_uart_writel(sport, USR2_ORE, USR2); 944 ret = IRQ_HANDLED; 945 } 946 947 spin_unlock(&sport->port.lock); 948 949 return ret; 950 } 951 952 /* 953 * Return TIOCSER_TEMT when transmitter is not busy. 954 */ 955 static unsigned int imx_uart_tx_empty(struct uart_port *port) 956 { 957 struct imx_port *sport = (struct imx_port *)port; 958 unsigned int ret; 959 960 ret = (imx_uart_readl(sport, USR2) & USR2_TXDC) ? TIOCSER_TEMT : 0; 961 962 /* If the TX DMA is working, return 0. */ 963 if (sport->dma_is_txing) 964 ret = 0; 965 966 return ret; 967 } 968 969 /* called with port.lock taken and irqs off */ 970 static unsigned int imx_uart_get_mctrl(struct uart_port *port) 971 { 972 struct imx_port *sport = (struct imx_port *)port; 973 unsigned int ret = imx_uart_get_hwmctrl(sport); 974 975 mctrl_gpio_get(sport->gpios, &ret); 976 977 return ret; 978 } 979 980 /* called with port.lock taken and irqs off */ 981 static void imx_uart_set_mctrl(struct uart_port *port, unsigned int mctrl) 982 { 983 struct imx_port *sport = (struct imx_port *)port; 984 u32 ucr3, uts; 985 986 if (!(port->rs485.flags & SER_RS485_ENABLED)) { 987 u32 ucr2; 988 989 /* 990 * Turn off autoRTS if RTS is lowered and restore autoRTS 991 * setting if RTS is raised. 992 */ 993 ucr2 = imx_uart_readl(sport, UCR2); 994 ucr2 &= ~(UCR2_CTS | UCR2_CTSC); 995 if (mctrl & TIOCM_RTS) { 996 ucr2 |= UCR2_CTS; 997 /* 998 * UCR2_IRTS is unset if and only if the port is 999 * configured for CRTSCTS, so we use inverted UCR2_IRTS 1000 * to get the state to restore to. 1001 */ 1002 if (!(ucr2 & UCR2_IRTS)) 1003 ucr2 |= UCR2_CTSC; 1004 } 1005 imx_uart_writel(sport, ucr2, UCR2); 1006 } 1007 1008 ucr3 = imx_uart_readl(sport, UCR3) & ~UCR3_DSR; 1009 if (!(mctrl & TIOCM_DTR)) 1010 ucr3 |= UCR3_DSR; 1011 imx_uart_writel(sport, ucr3, UCR3); 1012 1013 uts = imx_uart_readl(sport, imx_uart_uts_reg(sport)) & ~UTS_LOOP; 1014 if (mctrl & TIOCM_LOOP) 1015 uts |= UTS_LOOP; 1016 imx_uart_writel(sport, uts, imx_uart_uts_reg(sport)); 1017 1018 mctrl_gpio_set(sport->gpios, mctrl); 1019 } 1020 1021 /* 1022 * Interrupts always disabled. 1023 */ 1024 static void imx_uart_break_ctl(struct uart_port *port, int break_state) 1025 { 1026 struct imx_port *sport = (struct imx_port *)port; 1027 unsigned long flags; 1028 u32 ucr1; 1029 1030 spin_lock_irqsave(&sport->port.lock, flags); 1031 1032 ucr1 = imx_uart_readl(sport, UCR1) & ~UCR1_SNDBRK; 1033 1034 if (break_state != 0) 1035 ucr1 |= UCR1_SNDBRK; 1036 1037 imx_uart_writel(sport, ucr1, UCR1); 1038 1039 spin_unlock_irqrestore(&sport->port.lock, flags); 1040 } 1041 1042 /* 1043 * This is our per-port timeout handler, for checking the 1044 * modem status signals. 1045 */ 1046 static void imx_uart_timeout(struct timer_list *t) 1047 { 1048 struct imx_port *sport = from_timer(sport, t, timer); 1049 unsigned long flags; 1050 1051 if (sport->port.state) { 1052 spin_lock_irqsave(&sport->port.lock, flags); 1053 imx_uart_mctrl_check(sport); 1054 spin_unlock_irqrestore(&sport->port.lock, flags); 1055 1056 mod_timer(&sport->timer, jiffies + MCTRL_TIMEOUT); 1057 } 1058 } 1059 1060 /* 1061 * There are two kinds of RX DMA interrupts(such as in the MX6Q): 1062 * [1] the RX DMA buffer is full. 1063 * [2] the aging timer expires 1064 * 1065 * Condition [2] is triggered when a character has been sitting in the FIFO 1066 * for at least 8 byte durations. 1067 */ 1068 static void imx_uart_dma_rx_callback(void *data) 1069 { 1070 struct imx_port *sport = data; 1071 struct dma_chan *chan = sport->dma_chan_rx; 1072 struct scatterlist *sgl = &sport->rx_sgl; 1073 struct tty_port *port = &sport->port.state->port; 1074 struct dma_tx_state state; 1075 struct circ_buf *rx_ring = &sport->rx_ring; 1076 enum dma_status status; 1077 unsigned int w_bytes = 0; 1078 unsigned int r_bytes; 1079 unsigned int bd_size; 1080 1081 status = dmaengine_tx_status(chan, sport->rx_cookie, &state); 1082 1083 if (status == DMA_ERROR) { 1084 imx_uart_clear_rx_errors(sport); 1085 return; 1086 } 1087 1088 if (!(sport->port.ignore_status_mask & URXD_DUMMY_READ)) { 1089 1090 /* 1091 * The state-residue variable represents the empty space 1092 * relative to the entire buffer. Taking this in consideration 1093 * the head is always calculated base on the buffer total 1094 * length - DMA transaction residue. The UART script from the 1095 * SDMA firmware will jump to the next buffer descriptor, 1096 * once a DMA transaction if finalized (IMX53 RM - A.4.1.2.4). 1097 * Taking this in consideration the tail is always at the 1098 * beginning of the buffer descriptor that contains the head. 1099 */ 1100 1101 /* Calculate the head */ 1102 rx_ring->head = sg_dma_len(sgl) - state.residue; 1103 1104 /* Calculate the tail. */ 1105 bd_size = sg_dma_len(sgl) / sport->rx_periods; 1106 rx_ring->tail = ((rx_ring->head-1) / bd_size) * bd_size; 1107 1108 if (rx_ring->head <= sg_dma_len(sgl) && 1109 rx_ring->head > rx_ring->tail) { 1110 1111 /* Move data from tail to head */ 1112 r_bytes = rx_ring->head - rx_ring->tail; 1113 1114 /* CPU claims ownership of RX DMA buffer */ 1115 dma_sync_sg_for_cpu(sport->port.dev, sgl, 1, 1116 DMA_FROM_DEVICE); 1117 1118 w_bytes = tty_insert_flip_string(port, 1119 sport->rx_buf + rx_ring->tail, r_bytes); 1120 1121 /* UART retrieves ownership of RX DMA buffer */ 1122 dma_sync_sg_for_device(sport->port.dev, sgl, 1, 1123 DMA_FROM_DEVICE); 1124 1125 if (w_bytes != r_bytes) 1126 sport->port.icount.buf_overrun++; 1127 1128 sport->port.icount.rx += w_bytes; 1129 } else { 1130 WARN_ON(rx_ring->head > sg_dma_len(sgl)); 1131 WARN_ON(rx_ring->head <= rx_ring->tail); 1132 } 1133 } 1134 1135 if (w_bytes) { 1136 tty_flip_buffer_push(port); 1137 dev_dbg(sport->port.dev, "We get %d bytes.\n", w_bytes); 1138 } 1139 } 1140 1141 /* RX DMA buffer periods */ 1142 #define RX_DMA_PERIODS 16 1143 #define RX_BUF_SIZE (RX_DMA_PERIODS * PAGE_SIZE / 4) 1144 1145 static int imx_uart_start_rx_dma(struct imx_port *sport) 1146 { 1147 struct scatterlist *sgl = &sport->rx_sgl; 1148 struct dma_chan *chan = sport->dma_chan_rx; 1149 struct device *dev = sport->port.dev; 1150 struct dma_async_tx_descriptor *desc; 1151 int ret; 1152 1153 sport->rx_ring.head = 0; 1154 sport->rx_ring.tail = 0; 1155 sport->rx_periods = RX_DMA_PERIODS; 1156 1157 sg_init_one(sgl, sport->rx_buf, RX_BUF_SIZE); 1158 ret = dma_map_sg(dev, sgl, 1, DMA_FROM_DEVICE); 1159 if (ret == 0) { 1160 dev_err(dev, "DMA mapping error for RX.\n"); 1161 return -EINVAL; 1162 } 1163 1164 desc = dmaengine_prep_dma_cyclic(chan, sg_dma_address(sgl), 1165 sg_dma_len(sgl), sg_dma_len(sgl) / sport->rx_periods, 1166 DMA_DEV_TO_MEM, DMA_PREP_INTERRUPT); 1167 1168 if (!desc) { 1169 dma_unmap_sg(dev, sgl, 1, DMA_FROM_DEVICE); 1170 dev_err(dev, "We cannot prepare for the RX slave dma!\n"); 1171 return -EINVAL; 1172 } 1173 desc->callback = imx_uart_dma_rx_callback; 1174 desc->callback_param = sport; 1175 1176 dev_dbg(dev, "RX: prepare for the DMA.\n"); 1177 sport->dma_is_rxing = 1; 1178 sport->rx_cookie = dmaengine_submit(desc); 1179 dma_async_issue_pending(chan); 1180 return 0; 1181 } 1182 1183 static void imx_uart_clear_rx_errors(struct imx_port *sport) 1184 { 1185 struct tty_port *port = &sport->port.state->port; 1186 u32 usr1, usr2; 1187 1188 usr1 = imx_uart_readl(sport, USR1); 1189 usr2 = imx_uart_readl(sport, USR2); 1190 1191 if (usr2 & USR2_BRCD) { 1192 sport->port.icount.brk++; 1193 imx_uart_writel(sport, USR2_BRCD, USR2); 1194 uart_handle_break(&sport->port); 1195 if (tty_insert_flip_char(port, 0, TTY_BREAK) == 0) 1196 sport->port.icount.buf_overrun++; 1197 tty_flip_buffer_push(port); 1198 } else { 1199 if (usr1 & USR1_FRAMERR) { 1200 sport->port.icount.frame++; 1201 imx_uart_writel(sport, USR1_FRAMERR, USR1); 1202 } else if (usr1 & USR1_PARITYERR) { 1203 sport->port.icount.parity++; 1204 imx_uart_writel(sport, USR1_PARITYERR, USR1); 1205 } 1206 } 1207 1208 if (usr2 & USR2_ORE) { 1209 sport->port.icount.overrun++; 1210 imx_uart_writel(sport, USR2_ORE, USR2); 1211 } 1212 1213 } 1214 1215 #define TXTL_DEFAULT 2 /* reset default */ 1216 #define RXTL_DEFAULT 1 /* reset default */ 1217 #define TXTL_DMA 8 /* DMA burst setting */ 1218 #define RXTL_DMA 9 /* DMA burst setting */ 1219 1220 static void imx_uart_setup_ufcr(struct imx_port *sport, 1221 unsigned char txwl, unsigned char rxwl) 1222 { 1223 unsigned int val; 1224 1225 /* set receiver / transmitter trigger level */ 1226 val = imx_uart_readl(sport, UFCR) & (UFCR_RFDIV | UFCR_DCEDTE); 1227 val |= txwl << UFCR_TXTL_SHF | rxwl; 1228 imx_uart_writel(sport, val, UFCR); 1229 } 1230 1231 static void imx_uart_dma_exit(struct imx_port *sport) 1232 { 1233 if (sport->dma_chan_rx) { 1234 dmaengine_terminate_sync(sport->dma_chan_rx); 1235 dma_release_channel(sport->dma_chan_rx); 1236 sport->dma_chan_rx = NULL; 1237 sport->rx_cookie = -EINVAL; 1238 kfree(sport->rx_buf); 1239 sport->rx_buf = NULL; 1240 } 1241 1242 if (sport->dma_chan_tx) { 1243 dmaengine_terminate_sync(sport->dma_chan_tx); 1244 dma_release_channel(sport->dma_chan_tx); 1245 sport->dma_chan_tx = NULL; 1246 } 1247 } 1248 1249 static int imx_uart_dma_init(struct imx_port *sport) 1250 { 1251 struct dma_slave_config slave_config = {}; 1252 struct device *dev = sport->port.dev; 1253 int ret; 1254 1255 /* Prepare for RX : */ 1256 sport->dma_chan_rx = dma_request_slave_channel(dev, "rx"); 1257 if (!sport->dma_chan_rx) { 1258 dev_dbg(dev, "cannot get the DMA channel.\n"); 1259 ret = -EINVAL; 1260 goto err; 1261 } 1262 1263 slave_config.direction = DMA_DEV_TO_MEM; 1264 slave_config.src_addr = sport->port.mapbase + URXD0; 1265 slave_config.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE; 1266 /* one byte less than the watermark level to enable the aging timer */ 1267 slave_config.src_maxburst = RXTL_DMA - 1; 1268 ret = dmaengine_slave_config(sport->dma_chan_rx, &slave_config); 1269 if (ret) { 1270 dev_err(dev, "error in RX dma configuration.\n"); 1271 goto err; 1272 } 1273 1274 sport->rx_buf = kzalloc(RX_BUF_SIZE, GFP_KERNEL); 1275 if (!sport->rx_buf) { 1276 ret = -ENOMEM; 1277 goto err; 1278 } 1279 sport->rx_ring.buf = sport->rx_buf; 1280 1281 /* Prepare for TX : */ 1282 sport->dma_chan_tx = dma_request_slave_channel(dev, "tx"); 1283 if (!sport->dma_chan_tx) { 1284 dev_err(dev, "cannot get the TX DMA channel!\n"); 1285 ret = -EINVAL; 1286 goto err; 1287 } 1288 1289 slave_config.direction = DMA_MEM_TO_DEV; 1290 slave_config.dst_addr = sport->port.mapbase + URTX0; 1291 slave_config.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE; 1292 slave_config.dst_maxburst = TXTL_DMA; 1293 ret = dmaengine_slave_config(sport->dma_chan_tx, &slave_config); 1294 if (ret) { 1295 dev_err(dev, "error in TX dma configuration."); 1296 goto err; 1297 } 1298 1299 return 0; 1300 err: 1301 imx_uart_dma_exit(sport); 1302 return ret; 1303 } 1304 1305 static void imx_uart_enable_dma(struct imx_port *sport) 1306 { 1307 u32 ucr1; 1308 1309 imx_uart_setup_ufcr(sport, TXTL_DMA, RXTL_DMA); 1310 1311 /* set UCR1 */ 1312 ucr1 = imx_uart_readl(sport, UCR1); 1313 ucr1 |= UCR1_RXDMAEN | UCR1_TXDMAEN | UCR1_ATDMAEN; 1314 imx_uart_writel(sport, ucr1, UCR1); 1315 1316 sport->dma_is_enabled = 1; 1317 } 1318 1319 static void imx_uart_disable_dma(struct imx_port *sport) 1320 { 1321 u32 ucr1; 1322 1323 /* clear UCR1 */ 1324 ucr1 = imx_uart_readl(sport, UCR1); 1325 ucr1 &= ~(UCR1_RXDMAEN | UCR1_TXDMAEN | UCR1_ATDMAEN); 1326 imx_uart_writel(sport, ucr1, UCR1); 1327 1328 imx_uart_setup_ufcr(sport, TXTL_DEFAULT, RXTL_DEFAULT); 1329 1330 sport->dma_is_enabled = 0; 1331 } 1332 1333 /* half the RX buffer size */ 1334 #define CTSTL 16 1335 1336 static int imx_uart_startup(struct uart_port *port) 1337 { 1338 struct imx_port *sport = (struct imx_port *)port; 1339 int retval, i; 1340 unsigned long flags; 1341 int dma_is_inited = 0; 1342 u32 ucr1, ucr2, ucr3, ucr4; 1343 1344 retval = clk_prepare_enable(sport->clk_per); 1345 if (retval) 1346 return retval; 1347 retval = clk_prepare_enable(sport->clk_ipg); 1348 if (retval) { 1349 clk_disable_unprepare(sport->clk_per); 1350 return retval; 1351 } 1352 1353 imx_uart_setup_ufcr(sport, TXTL_DEFAULT, RXTL_DEFAULT); 1354 1355 /* disable the DREN bit (Data Ready interrupt enable) before 1356 * requesting IRQs 1357 */ 1358 ucr4 = imx_uart_readl(sport, UCR4); 1359 1360 /* set the trigger level for CTS */ 1361 ucr4 &= ~(UCR4_CTSTL_MASK << UCR4_CTSTL_SHF); 1362 ucr4 |= CTSTL << UCR4_CTSTL_SHF; 1363 1364 imx_uart_writel(sport, ucr4 & ~UCR4_DREN, UCR4); 1365 1366 /* Can we enable the DMA support? */ 1367 if (!uart_console(port) && imx_uart_dma_init(sport) == 0) 1368 dma_is_inited = 1; 1369 1370 spin_lock_irqsave(&sport->port.lock, flags); 1371 /* Reset fifo's and state machines */ 1372 i = 100; 1373 1374 ucr2 = imx_uart_readl(sport, UCR2); 1375 ucr2 &= ~UCR2_SRST; 1376 imx_uart_writel(sport, ucr2, UCR2); 1377 1378 while (!(imx_uart_readl(sport, UCR2) & UCR2_SRST) && (--i > 0)) 1379 udelay(1); 1380 1381 /* 1382 * Finally, clear and enable interrupts 1383 */ 1384 imx_uart_writel(sport, USR1_RTSD | USR1_DTRD, USR1); 1385 imx_uart_writel(sport, USR2_ORE, USR2); 1386 1387 ucr1 = imx_uart_readl(sport, UCR1) & ~UCR1_RRDYEN; 1388 ucr1 |= UCR1_UARTEN; 1389 if (sport->have_rtscts) 1390 ucr1 |= UCR1_RTSDEN; 1391 1392 imx_uart_writel(sport, ucr1, UCR1); 1393 1394 ucr4 = imx_uart_readl(sport, UCR4) & ~(UCR4_OREN | UCR4_INVR); 1395 if (!sport->dma_is_enabled) 1396 ucr4 |= UCR4_OREN; 1397 if (sport->inverted_rx) 1398 ucr4 |= UCR4_INVR; 1399 imx_uart_writel(sport, ucr4, UCR4); 1400 1401 ucr3 = imx_uart_readl(sport, UCR3) & ~UCR3_INVT; 1402 /* 1403 * configure tx polarity before enabling tx 1404 */ 1405 if (sport->inverted_tx) 1406 ucr3 |= UCR3_INVT; 1407 1408 if (!imx_uart_is_imx1(sport)) { 1409 ucr3 |= UCR3_DTRDEN | UCR3_RI | UCR3_DCD; 1410 1411 if (sport->dte_mode) 1412 /* disable broken interrupts */ 1413 ucr3 &= ~(UCR3_RI | UCR3_DCD); 1414 } 1415 imx_uart_writel(sport, ucr3, UCR3); 1416 1417 ucr2 = imx_uart_readl(sport, UCR2) & ~UCR2_ATEN; 1418 ucr2 |= (UCR2_RXEN | UCR2_TXEN); 1419 if (!sport->have_rtscts) 1420 ucr2 |= UCR2_IRTS; 1421 /* 1422 * make sure the edge sensitive RTS-irq is disabled, 1423 * we're using RTSD instead. 1424 */ 1425 if (!imx_uart_is_imx1(sport)) 1426 ucr2 &= ~UCR2_RTSEN; 1427 imx_uart_writel(sport, ucr2, UCR2); 1428 1429 /* 1430 * Enable modem status interrupts 1431 */ 1432 imx_uart_enable_ms(&sport->port); 1433 1434 if (dma_is_inited) { 1435 imx_uart_enable_dma(sport); 1436 imx_uart_start_rx_dma(sport); 1437 } else { 1438 ucr1 = imx_uart_readl(sport, UCR1); 1439 ucr1 |= UCR1_RRDYEN; 1440 imx_uart_writel(sport, ucr1, UCR1); 1441 1442 ucr2 = imx_uart_readl(sport, UCR2); 1443 ucr2 |= UCR2_ATEN; 1444 imx_uart_writel(sport, ucr2, UCR2); 1445 } 1446 1447 spin_unlock_irqrestore(&sport->port.lock, flags); 1448 1449 return 0; 1450 } 1451 1452 static void imx_uart_shutdown(struct uart_port *port) 1453 { 1454 struct imx_port *sport = (struct imx_port *)port; 1455 unsigned long flags; 1456 u32 ucr1, ucr2, ucr4; 1457 1458 if (sport->dma_is_enabled) { 1459 dmaengine_terminate_sync(sport->dma_chan_tx); 1460 if (sport->dma_is_txing) { 1461 dma_unmap_sg(sport->port.dev, &sport->tx_sgl[0], 1462 sport->dma_tx_nents, DMA_TO_DEVICE); 1463 sport->dma_is_txing = 0; 1464 } 1465 dmaengine_terminate_sync(sport->dma_chan_rx); 1466 if (sport->dma_is_rxing) { 1467 dma_unmap_sg(sport->port.dev, &sport->rx_sgl, 1468 1, DMA_FROM_DEVICE); 1469 sport->dma_is_rxing = 0; 1470 } 1471 1472 spin_lock_irqsave(&sport->port.lock, flags); 1473 imx_uart_stop_tx(port); 1474 imx_uart_stop_rx(port); 1475 imx_uart_disable_dma(sport); 1476 spin_unlock_irqrestore(&sport->port.lock, flags); 1477 imx_uart_dma_exit(sport); 1478 } 1479 1480 mctrl_gpio_disable_ms(sport->gpios); 1481 1482 spin_lock_irqsave(&sport->port.lock, flags); 1483 ucr2 = imx_uart_readl(sport, UCR2); 1484 ucr2 &= ~(UCR2_TXEN | UCR2_ATEN); 1485 imx_uart_writel(sport, ucr2, UCR2); 1486 1487 ucr4 = imx_uart_readl(sport, UCR4); 1488 ucr4 &= ~UCR4_OREN; 1489 imx_uart_writel(sport, ucr4, UCR4); 1490 spin_unlock_irqrestore(&sport->port.lock, flags); 1491 1492 /* 1493 * Stop our timer. 1494 */ 1495 del_timer_sync(&sport->timer); 1496 1497 /* 1498 * Disable all interrupts, port and break condition. 1499 */ 1500 1501 spin_lock_irqsave(&sport->port.lock, flags); 1502 ucr1 = imx_uart_readl(sport, UCR1); 1503 ucr1 &= ~(UCR1_TRDYEN | UCR1_RRDYEN | UCR1_RTSDEN | UCR1_UARTEN | UCR1_RXDMAEN | UCR1_ATDMAEN); 1504 1505 imx_uart_writel(sport, ucr1, UCR1); 1506 spin_unlock_irqrestore(&sport->port.lock, flags); 1507 1508 clk_disable_unprepare(sport->clk_per); 1509 clk_disable_unprepare(sport->clk_ipg); 1510 } 1511 1512 /* called with port.lock taken and irqs off */ 1513 static void imx_uart_flush_buffer(struct uart_port *port) 1514 { 1515 struct imx_port *sport = (struct imx_port *)port; 1516 struct scatterlist *sgl = &sport->tx_sgl[0]; 1517 u32 ucr2; 1518 int i = 100, ubir, ubmr, uts; 1519 1520 if (!sport->dma_chan_tx) 1521 return; 1522 1523 sport->tx_bytes = 0; 1524 dmaengine_terminate_all(sport->dma_chan_tx); 1525 if (sport->dma_is_txing) { 1526 u32 ucr1; 1527 1528 dma_unmap_sg(sport->port.dev, sgl, sport->dma_tx_nents, 1529 DMA_TO_DEVICE); 1530 ucr1 = imx_uart_readl(sport, UCR1); 1531 ucr1 &= ~UCR1_TXDMAEN; 1532 imx_uart_writel(sport, ucr1, UCR1); 1533 sport->dma_is_txing = 0; 1534 } 1535 1536 /* 1537 * According to the Reference Manual description of the UART SRST bit: 1538 * 1539 * "Reset the transmit and receive state machines, 1540 * all FIFOs and register USR1, USR2, UBIR, UBMR, UBRC, URXD, UTXD 1541 * and UTS[6-3]". 1542 * 1543 * We don't need to restore the old values from USR1, USR2, URXD and 1544 * UTXD. UBRC is read only, so only save/restore the other three 1545 * registers. 1546 */ 1547 ubir = imx_uart_readl(sport, UBIR); 1548 ubmr = imx_uart_readl(sport, UBMR); 1549 uts = imx_uart_readl(sport, IMX21_UTS); 1550 1551 ucr2 = imx_uart_readl(sport, UCR2); 1552 ucr2 &= ~UCR2_SRST; 1553 imx_uart_writel(sport, ucr2, UCR2); 1554 1555 while (!(imx_uart_readl(sport, UCR2) & UCR2_SRST) && (--i > 0)) 1556 udelay(1); 1557 1558 /* Restore the registers */ 1559 imx_uart_writel(sport, ubir, UBIR); 1560 imx_uart_writel(sport, ubmr, UBMR); 1561 imx_uart_writel(sport, uts, IMX21_UTS); 1562 } 1563 1564 static void 1565 imx_uart_set_termios(struct uart_port *port, struct ktermios *termios, 1566 struct ktermios *old) 1567 { 1568 struct imx_port *sport = (struct imx_port *)port; 1569 unsigned long flags; 1570 u32 ucr2, old_ucr2, ufcr; 1571 unsigned int baud, quot; 1572 unsigned int old_csize = old ? old->c_cflag & CSIZE : CS8; 1573 unsigned long div; 1574 unsigned long num, denom, old_ubir, old_ubmr; 1575 uint64_t tdiv64; 1576 1577 /* 1578 * We only support CS7 and CS8. 1579 */ 1580 while ((termios->c_cflag & CSIZE) != CS7 && 1581 (termios->c_cflag & CSIZE) != CS8) { 1582 termios->c_cflag &= ~CSIZE; 1583 termios->c_cflag |= old_csize; 1584 old_csize = CS8; 1585 } 1586 1587 del_timer_sync(&sport->timer); 1588 1589 /* 1590 * Ask the core to calculate the divisor for us. 1591 */ 1592 baud = uart_get_baud_rate(port, termios, old, 50, port->uartclk / 16); 1593 quot = uart_get_divisor(port, baud); 1594 1595 spin_lock_irqsave(&sport->port.lock, flags); 1596 1597 /* 1598 * Read current UCR2 and save it for future use, then clear all the bits 1599 * except those we will or may need to preserve. 1600 */ 1601 old_ucr2 = imx_uart_readl(sport, UCR2); 1602 ucr2 = old_ucr2 & (UCR2_TXEN | UCR2_RXEN | UCR2_ATEN | UCR2_CTS); 1603 1604 ucr2 |= UCR2_SRST | UCR2_IRTS; 1605 if ((termios->c_cflag & CSIZE) == CS8) 1606 ucr2 |= UCR2_WS; 1607 1608 if (!sport->have_rtscts) 1609 termios->c_cflag &= ~CRTSCTS; 1610 1611 if (port->rs485.flags & SER_RS485_ENABLED) { 1612 /* 1613 * RTS is mandatory for rs485 operation, so keep 1614 * it under manual control and keep transmitter 1615 * disabled. 1616 */ 1617 if (port->rs485.flags & SER_RS485_RTS_AFTER_SEND) 1618 imx_uart_rts_active(sport, &ucr2); 1619 else 1620 imx_uart_rts_inactive(sport, &ucr2); 1621 1622 } else if (termios->c_cflag & CRTSCTS) { 1623 /* 1624 * Only let receiver control RTS output if we were not requested 1625 * to have RTS inactive (which then should take precedence). 1626 */ 1627 if (ucr2 & UCR2_CTS) 1628 ucr2 |= UCR2_CTSC; 1629 } 1630 1631 if (termios->c_cflag & CRTSCTS) 1632 ucr2 &= ~UCR2_IRTS; 1633 1634 if (termios->c_cflag & CSTOPB) 1635 ucr2 |= UCR2_STPB; 1636 if (termios->c_cflag & PARENB) { 1637 ucr2 |= UCR2_PREN; 1638 if (termios->c_cflag & PARODD) 1639 ucr2 |= UCR2_PROE; 1640 } 1641 1642 sport->port.read_status_mask = 0; 1643 if (termios->c_iflag & INPCK) 1644 sport->port.read_status_mask |= (URXD_FRMERR | URXD_PRERR); 1645 if (termios->c_iflag & (BRKINT | PARMRK)) 1646 sport->port.read_status_mask |= URXD_BRK; 1647 1648 /* 1649 * Characters to ignore 1650 */ 1651 sport->port.ignore_status_mask = 0; 1652 if (termios->c_iflag & IGNPAR) 1653 sport->port.ignore_status_mask |= URXD_PRERR | URXD_FRMERR; 1654 if (termios->c_iflag & IGNBRK) { 1655 sport->port.ignore_status_mask |= URXD_BRK; 1656 /* 1657 * If we're ignoring parity and break indicators, 1658 * ignore overruns too (for real raw support). 1659 */ 1660 if (termios->c_iflag & IGNPAR) 1661 sport->port.ignore_status_mask |= URXD_OVRRUN; 1662 } 1663 1664 if ((termios->c_cflag & CREAD) == 0) 1665 sport->port.ignore_status_mask |= URXD_DUMMY_READ; 1666 1667 /* 1668 * Update the per-port timeout. 1669 */ 1670 uart_update_timeout(port, termios->c_cflag, baud); 1671 1672 /* custom-baudrate handling */ 1673 div = sport->port.uartclk / (baud * 16); 1674 if (baud == 38400 && quot != div) 1675 baud = sport->port.uartclk / (quot * 16); 1676 1677 div = sport->port.uartclk / (baud * 16); 1678 if (div > 7) 1679 div = 7; 1680 if (!div) 1681 div = 1; 1682 1683 rational_best_approximation(16 * div * baud, sport->port.uartclk, 1684 1 << 16, 1 << 16, &num, &denom); 1685 1686 tdiv64 = sport->port.uartclk; 1687 tdiv64 *= num; 1688 do_div(tdiv64, denom * 16 * div); 1689 tty_termios_encode_baud_rate(termios, 1690 (speed_t)tdiv64, (speed_t)tdiv64); 1691 1692 num -= 1; 1693 denom -= 1; 1694 1695 ufcr = imx_uart_readl(sport, UFCR); 1696 ufcr = (ufcr & (~UFCR_RFDIV)) | UFCR_RFDIV_REG(div); 1697 imx_uart_writel(sport, ufcr, UFCR); 1698 1699 /* 1700 * Two registers below should always be written both and in this 1701 * particular order. One consequence is that we need to check if any of 1702 * them changes and then update both. We do need the check for change 1703 * as even writing the same values seem to "restart" 1704 * transmission/receiving logic in the hardware, that leads to data 1705 * breakage even when rate doesn't in fact change. E.g., user switches 1706 * RTS/CTS handshake and suddenly gets broken bytes. 1707 */ 1708 old_ubir = imx_uart_readl(sport, UBIR); 1709 old_ubmr = imx_uart_readl(sport, UBMR); 1710 if (old_ubir != num || old_ubmr != denom) { 1711 imx_uart_writel(sport, num, UBIR); 1712 imx_uart_writel(sport, denom, UBMR); 1713 } 1714 1715 if (!imx_uart_is_imx1(sport)) 1716 imx_uart_writel(sport, sport->port.uartclk / div / 1000, 1717 IMX21_ONEMS); 1718 1719 imx_uart_writel(sport, ucr2, UCR2); 1720 1721 if (UART_ENABLE_MS(&sport->port, termios->c_cflag)) 1722 imx_uart_enable_ms(&sport->port); 1723 1724 spin_unlock_irqrestore(&sport->port.lock, flags); 1725 } 1726 1727 static const char *imx_uart_type(struct uart_port *port) 1728 { 1729 struct imx_port *sport = (struct imx_port *)port; 1730 1731 return sport->port.type == PORT_IMX ? "IMX" : NULL; 1732 } 1733 1734 /* 1735 * Configure/autoconfigure the port. 1736 */ 1737 static void imx_uart_config_port(struct uart_port *port, int flags) 1738 { 1739 struct imx_port *sport = (struct imx_port *)port; 1740 1741 if (flags & UART_CONFIG_TYPE) 1742 sport->port.type = PORT_IMX; 1743 } 1744 1745 /* 1746 * Verify the new serial_struct (for TIOCSSERIAL). 1747 * The only change we allow are to the flags and type, and 1748 * even then only between PORT_IMX and PORT_UNKNOWN 1749 */ 1750 static int 1751 imx_uart_verify_port(struct uart_port *port, struct serial_struct *ser) 1752 { 1753 struct imx_port *sport = (struct imx_port *)port; 1754 int ret = 0; 1755 1756 if (ser->type != PORT_UNKNOWN && ser->type != PORT_IMX) 1757 ret = -EINVAL; 1758 if (sport->port.irq != ser->irq) 1759 ret = -EINVAL; 1760 if (ser->io_type != UPIO_MEM) 1761 ret = -EINVAL; 1762 if (sport->port.uartclk / 16 != ser->baud_base) 1763 ret = -EINVAL; 1764 if (sport->port.mapbase != (unsigned long)ser->iomem_base) 1765 ret = -EINVAL; 1766 if (sport->port.iobase != ser->port) 1767 ret = -EINVAL; 1768 if (ser->hub6 != 0) 1769 ret = -EINVAL; 1770 return ret; 1771 } 1772 1773 #if defined(CONFIG_CONSOLE_POLL) 1774 1775 static int imx_uart_poll_init(struct uart_port *port) 1776 { 1777 struct imx_port *sport = (struct imx_port *)port; 1778 unsigned long flags; 1779 u32 ucr1, ucr2; 1780 int retval; 1781 1782 retval = clk_prepare_enable(sport->clk_ipg); 1783 if (retval) 1784 return retval; 1785 retval = clk_prepare_enable(sport->clk_per); 1786 if (retval) 1787 clk_disable_unprepare(sport->clk_ipg); 1788 1789 imx_uart_setup_ufcr(sport, TXTL_DEFAULT, RXTL_DEFAULT); 1790 1791 spin_lock_irqsave(&sport->port.lock, flags); 1792 1793 /* 1794 * Be careful about the order of enabling bits here. First enable the 1795 * receiver (UARTEN + RXEN) and only then the corresponding irqs. 1796 * This prevents that a character that already sits in the RX fifo is 1797 * triggering an irq but the try to fetch it from there results in an 1798 * exception because UARTEN or RXEN is still off. 1799 */ 1800 ucr1 = imx_uart_readl(sport, UCR1); 1801 ucr2 = imx_uart_readl(sport, UCR2); 1802 1803 if (imx_uart_is_imx1(sport)) 1804 ucr1 |= IMX1_UCR1_UARTCLKEN; 1805 1806 ucr1 |= UCR1_UARTEN; 1807 ucr1 &= ~(UCR1_TRDYEN | UCR1_RTSDEN | UCR1_RRDYEN); 1808 1809 ucr2 |= UCR2_RXEN; 1810 ucr2 &= ~UCR2_ATEN; 1811 1812 imx_uart_writel(sport, ucr1, UCR1); 1813 imx_uart_writel(sport, ucr2, UCR2); 1814 1815 /* now enable irqs */ 1816 imx_uart_writel(sport, ucr1 | UCR1_RRDYEN, UCR1); 1817 imx_uart_writel(sport, ucr2 | UCR2_ATEN, UCR2); 1818 1819 spin_unlock_irqrestore(&sport->port.lock, flags); 1820 1821 return 0; 1822 } 1823 1824 static int imx_uart_poll_get_char(struct uart_port *port) 1825 { 1826 struct imx_port *sport = (struct imx_port *)port; 1827 if (!(imx_uart_readl(sport, USR2) & USR2_RDR)) 1828 return NO_POLL_CHAR; 1829 1830 return imx_uart_readl(sport, URXD0) & URXD_RX_DATA; 1831 } 1832 1833 static void imx_uart_poll_put_char(struct uart_port *port, unsigned char c) 1834 { 1835 struct imx_port *sport = (struct imx_port *)port; 1836 unsigned int status; 1837 1838 /* drain */ 1839 do { 1840 status = imx_uart_readl(sport, USR1); 1841 } while (~status & USR1_TRDY); 1842 1843 /* write */ 1844 imx_uart_writel(sport, c, URTX0); 1845 1846 /* flush */ 1847 do { 1848 status = imx_uart_readl(sport, USR2); 1849 } while (~status & USR2_TXDC); 1850 } 1851 #endif 1852 1853 /* called with port.lock taken and irqs off or from .probe without locking */ 1854 static int imx_uart_rs485_config(struct uart_port *port, 1855 struct serial_rs485 *rs485conf) 1856 { 1857 struct imx_port *sport = (struct imx_port *)port; 1858 u32 ucr2; 1859 1860 /* unimplemented */ 1861 rs485conf->delay_rts_before_send = 0; 1862 rs485conf->delay_rts_after_send = 0; 1863 1864 /* RTS is required to control the transmitter */ 1865 if (!sport->have_rtscts && !sport->have_rtsgpio) 1866 rs485conf->flags &= ~SER_RS485_ENABLED; 1867 1868 if (rs485conf->flags & SER_RS485_ENABLED) { 1869 /* Enable receiver if low-active RTS signal is requested */ 1870 if (sport->have_rtscts && !sport->have_rtsgpio && 1871 !(rs485conf->flags & SER_RS485_RTS_ON_SEND)) 1872 rs485conf->flags |= SER_RS485_RX_DURING_TX; 1873 1874 /* disable transmitter */ 1875 ucr2 = imx_uart_readl(sport, UCR2); 1876 if (rs485conf->flags & SER_RS485_RTS_AFTER_SEND) 1877 imx_uart_rts_active(sport, &ucr2); 1878 else 1879 imx_uart_rts_inactive(sport, &ucr2); 1880 imx_uart_writel(sport, ucr2, UCR2); 1881 } 1882 1883 /* Make sure Rx is enabled in case Tx is active with Rx disabled */ 1884 if (!(rs485conf->flags & SER_RS485_ENABLED) || 1885 rs485conf->flags & SER_RS485_RX_DURING_TX) 1886 imx_uart_start_rx(port); 1887 1888 port->rs485 = *rs485conf; 1889 1890 return 0; 1891 } 1892 1893 static const struct uart_ops imx_uart_pops = { 1894 .tx_empty = imx_uart_tx_empty, 1895 .set_mctrl = imx_uart_set_mctrl, 1896 .get_mctrl = imx_uart_get_mctrl, 1897 .stop_tx = imx_uart_stop_tx, 1898 .start_tx = imx_uart_start_tx, 1899 .stop_rx = imx_uart_stop_rx, 1900 .enable_ms = imx_uart_enable_ms, 1901 .break_ctl = imx_uart_break_ctl, 1902 .startup = imx_uart_startup, 1903 .shutdown = imx_uart_shutdown, 1904 .flush_buffer = imx_uart_flush_buffer, 1905 .set_termios = imx_uart_set_termios, 1906 .type = imx_uart_type, 1907 .config_port = imx_uart_config_port, 1908 .verify_port = imx_uart_verify_port, 1909 #if defined(CONFIG_CONSOLE_POLL) 1910 .poll_init = imx_uart_poll_init, 1911 .poll_get_char = imx_uart_poll_get_char, 1912 .poll_put_char = imx_uart_poll_put_char, 1913 #endif 1914 }; 1915 1916 static struct imx_port *imx_uart_ports[UART_NR]; 1917 1918 #ifdef CONFIG_SERIAL_IMX_CONSOLE 1919 static void imx_uart_console_putchar(struct uart_port *port, int ch) 1920 { 1921 struct imx_port *sport = (struct imx_port *)port; 1922 1923 while (imx_uart_readl(sport, imx_uart_uts_reg(sport)) & UTS_TXFULL) 1924 barrier(); 1925 1926 imx_uart_writel(sport, ch, URTX0); 1927 } 1928 1929 /* 1930 * Interrupts are disabled on entering 1931 */ 1932 static void 1933 imx_uart_console_write(struct console *co, const char *s, unsigned int count) 1934 { 1935 struct imx_port *sport = imx_uart_ports[co->index]; 1936 struct imx_port_ucrs old_ucr; 1937 unsigned int ucr1; 1938 unsigned long flags = 0; 1939 int locked = 1; 1940 int retval; 1941 1942 retval = clk_enable(sport->clk_per); 1943 if (retval) 1944 return; 1945 retval = clk_enable(sport->clk_ipg); 1946 if (retval) { 1947 clk_disable(sport->clk_per); 1948 return; 1949 } 1950 1951 if (sport->port.sysrq) 1952 locked = 0; 1953 else if (oops_in_progress) 1954 locked = spin_trylock_irqsave(&sport->port.lock, flags); 1955 else 1956 spin_lock_irqsave(&sport->port.lock, flags); 1957 1958 /* 1959 * First, save UCR1/2/3 and then disable interrupts 1960 */ 1961 imx_uart_ucrs_save(sport, &old_ucr); 1962 ucr1 = old_ucr.ucr1; 1963 1964 if (imx_uart_is_imx1(sport)) 1965 ucr1 |= IMX1_UCR1_UARTCLKEN; 1966 ucr1 |= UCR1_UARTEN; 1967 ucr1 &= ~(UCR1_TRDYEN | UCR1_RRDYEN | UCR1_RTSDEN); 1968 1969 imx_uart_writel(sport, ucr1, UCR1); 1970 1971 imx_uart_writel(sport, old_ucr.ucr2 | UCR2_TXEN, UCR2); 1972 1973 uart_console_write(&sport->port, s, count, imx_uart_console_putchar); 1974 1975 /* 1976 * Finally, wait for transmitter to become empty 1977 * and restore UCR1/2/3 1978 */ 1979 while (!(imx_uart_readl(sport, USR2) & USR2_TXDC)); 1980 1981 imx_uart_ucrs_restore(sport, &old_ucr); 1982 1983 if (locked) 1984 spin_unlock_irqrestore(&sport->port.lock, flags); 1985 1986 clk_disable(sport->clk_ipg); 1987 clk_disable(sport->clk_per); 1988 } 1989 1990 /* 1991 * If the port was already initialised (eg, by a boot loader), 1992 * try to determine the current setup. 1993 */ 1994 static void __init 1995 imx_uart_console_get_options(struct imx_port *sport, int *baud, 1996 int *parity, int *bits) 1997 { 1998 1999 if (imx_uart_readl(sport, UCR1) & UCR1_UARTEN) { 2000 /* ok, the port was enabled */ 2001 unsigned int ucr2, ubir, ubmr, uartclk; 2002 unsigned int baud_raw; 2003 unsigned int ucfr_rfdiv; 2004 2005 ucr2 = imx_uart_readl(sport, UCR2); 2006 2007 *parity = 'n'; 2008 if (ucr2 & UCR2_PREN) { 2009 if (ucr2 & UCR2_PROE) 2010 *parity = 'o'; 2011 else 2012 *parity = 'e'; 2013 } 2014 2015 if (ucr2 & UCR2_WS) 2016 *bits = 8; 2017 else 2018 *bits = 7; 2019 2020 ubir = imx_uart_readl(sport, UBIR) & 0xffff; 2021 ubmr = imx_uart_readl(sport, UBMR) & 0xffff; 2022 2023 ucfr_rfdiv = (imx_uart_readl(sport, UFCR) & UFCR_RFDIV) >> 7; 2024 if (ucfr_rfdiv == 6) 2025 ucfr_rfdiv = 7; 2026 else 2027 ucfr_rfdiv = 6 - ucfr_rfdiv; 2028 2029 uartclk = clk_get_rate(sport->clk_per); 2030 uartclk /= ucfr_rfdiv; 2031 2032 { /* 2033 * The next code provides exact computation of 2034 * baud_raw = round(((uartclk/16) * (ubir + 1)) / (ubmr + 1)) 2035 * without need of float support or long long division, 2036 * which would be required to prevent 32bit arithmetic overflow 2037 */ 2038 unsigned int mul = ubir + 1; 2039 unsigned int div = 16 * (ubmr + 1); 2040 unsigned int rem = uartclk % div; 2041 2042 baud_raw = (uartclk / div) * mul; 2043 baud_raw += (rem * mul + div / 2) / div; 2044 *baud = (baud_raw + 50) / 100 * 100; 2045 } 2046 2047 if (*baud != baud_raw) 2048 dev_info(sport->port.dev, "Console IMX rounded baud rate from %d to %d\n", 2049 baud_raw, *baud); 2050 } 2051 } 2052 2053 static int __init 2054 imx_uart_console_setup(struct console *co, char *options) 2055 { 2056 struct imx_port *sport; 2057 int baud = 9600; 2058 int bits = 8; 2059 int parity = 'n'; 2060 int flow = 'n'; 2061 int retval; 2062 2063 /* 2064 * Check whether an invalid uart number has been specified, and 2065 * if so, search for the first available port that does have 2066 * console support. 2067 */ 2068 if (co->index == -1 || co->index >= ARRAY_SIZE(imx_uart_ports)) 2069 co->index = 0; 2070 sport = imx_uart_ports[co->index]; 2071 if (sport == NULL) 2072 return -ENODEV; 2073 2074 /* For setting the registers, we only need to enable the ipg clock. */ 2075 retval = clk_prepare_enable(sport->clk_ipg); 2076 if (retval) 2077 goto error_console; 2078 2079 if (options) 2080 uart_parse_options(options, &baud, &parity, &bits, &flow); 2081 else 2082 imx_uart_console_get_options(sport, &baud, &parity, &bits); 2083 2084 imx_uart_setup_ufcr(sport, TXTL_DEFAULT, RXTL_DEFAULT); 2085 2086 retval = uart_set_options(&sport->port, co, baud, parity, bits, flow); 2087 2088 clk_disable(sport->clk_ipg); 2089 if (retval) { 2090 clk_unprepare(sport->clk_ipg); 2091 goto error_console; 2092 } 2093 2094 retval = clk_prepare(sport->clk_per); 2095 if (retval) 2096 clk_unprepare(sport->clk_ipg); 2097 2098 error_console: 2099 return retval; 2100 } 2101 2102 static struct uart_driver imx_uart_uart_driver; 2103 static struct console imx_uart_console = { 2104 .name = DEV_NAME, 2105 .write = imx_uart_console_write, 2106 .device = uart_console_device, 2107 .setup = imx_uart_console_setup, 2108 .flags = CON_PRINTBUFFER, 2109 .index = -1, 2110 .data = &imx_uart_uart_driver, 2111 }; 2112 2113 #define IMX_CONSOLE &imx_uart_console 2114 2115 #ifdef CONFIG_OF 2116 static void imx_uart_console_early_putchar(struct uart_port *port, int ch) 2117 { 2118 struct imx_port *sport = (struct imx_port *)port; 2119 2120 while (imx_uart_readl(sport, IMX21_UTS) & UTS_TXFULL) 2121 cpu_relax(); 2122 2123 imx_uart_writel(sport, ch, URTX0); 2124 } 2125 2126 static void imx_uart_console_early_write(struct console *con, const char *s, 2127 unsigned count) 2128 { 2129 struct earlycon_device *dev = con->data; 2130 2131 uart_console_write(&dev->port, s, count, imx_uart_console_early_putchar); 2132 } 2133 2134 static int __init 2135 imx_console_early_setup(struct earlycon_device *dev, const char *opt) 2136 { 2137 if (!dev->port.membase) 2138 return -ENODEV; 2139 2140 dev->con->write = imx_uart_console_early_write; 2141 2142 return 0; 2143 } 2144 OF_EARLYCON_DECLARE(ec_imx6q, "fsl,imx6q-uart", imx_console_early_setup); 2145 OF_EARLYCON_DECLARE(ec_imx21, "fsl,imx21-uart", imx_console_early_setup); 2146 #endif 2147 2148 #else 2149 #define IMX_CONSOLE NULL 2150 #endif 2151 2152 static struct uart_driver imx_uart_uart_driver = { 2153 .owner = THIS_MODULE, 2154 .driver_name = DRIVER_NAME, 2155 .dev_name = DEV_NAME, 2156 .major = SERIAL_IMX_MAJOR, 2157 .minor = MINOR_START, 2158 .nr = ARRAY_SIZE(imx_uart_ports), 2159 .cons = IMX_CONSOLE, 2160 }; 2161 2162 #ifdef CONFIG_OF 2163 /* 2164 * This function returns 1 iff pdev isn't a device instatiated by dt, 0 iff it 2165 * could successfully get all information from dt or a negative errno. 2166 */ 2167 static int imx_uart_probe_dt(struct imx_port *sport, 2168 struct platform_device *pdev) 2169 { 2170 struct device_node *np = pdev->dev.of_node; 2171 int ret; 2172 2173 sport->devdata = of_device_get_match_data(&pdev->dev); 2174 if (!sport->devdata) 2175 /* no device tree device */ 2176 return 1; 2177 2178 ret = of_alias_get_id(np, "serial"); 2179 if (ret < 0) { 2180 dev_err(&pdev->dev, "failed to get alias id, errno %d\n", ret); 2181 return ret; 2182 } 2183 sport->port.line = ret; 2184 2185 if (of_get_property(np, "uart-has-rtscts", NULL) || 2186 of_get_property(np, "fsl,uart-has-rtscts", NULL) /* deprecated */) 2187 sport->have_rtscts = 1; 2188 2189 if (of_get_property(np, "fsl,dte-mode", NULL)) 2190 sport->dte_mode = 1; 2191 2192 if (of_get_property(np, "rts-gpios", NULL)) 2193 sport->have_rtsgpio = 1; 2194 2195 if (of_get_property(np, "fsl,inverted-tx", NULL)) 2196 sport->inverted_tx = 1; 2197 2198 if (of_get_property(np, "fsl,inverted-rx", NULL)) 2199 sport->inverted_rx = 1; 2200 2201 return 0; 2202 } 2203 #else 2204 static inline int imx_uart_probe_dt(struct imx_port *sport, 2205 struct platform_device *pdev) 2206 { 2207 return 1; 2208 } 2209 #endif 2210 2211 static void imx_uart_probe_pdata(struct imx_port *sport, 2212 struct platform_device *pdev) 2213 { 2214 struct imxuart_platform_data *pdata = dev_get_platdata(&pdev->dev); 2215 2216 sport->port.line = pdev->id; 2217 sport->devdata = (struct imx_uart_data *) pdev->id_entry->driver_data; 2218 2219 if (!pdata) 2220 return; 2221 2222 if (pdata->flags & IMXUART_HAVE_RTSCTS) 2223 sport->have_rtscts = 1; 2224 } 2225 2226 static int imx_uart_probe(struct platform_device *pdev) 2227 { 2228 struct imx_port *sport; 2229 void __iomem *base; 2230 int ret = 0; 2231 u32 ucr1; 2232 struct resource *res; 2233 int txirq, rxirq, rtsirq; 2234 2235 sport = devm_kzalloc(&pdev->dev, sizeof(*sport), GFP_KERNEL); 2236 if (!sport) 2237 return -ENOMEM; 2238 2239 ret = imx_uart_probe_dt(sport, pdev); 2240 if (ret > 0) 2241 imx_uart_probe_pdata(sport, pdev); 2242 else if (ret < 0) 2243 return ret; 2244 2245 if (sport->port.line >= ARRAY_SIZE(imx_uart_ports)) { 2246 dev_err(&pdev->dev, "serial%d out of range\n", 2247 sport->port.line); 2248 return -EINVAL; 2249 } 2250 2251 res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 2252 base = devm_ioremap_resource(&pdev->dev, res); 2253 if (IS_ERR(base)) 2254 return PTR_ERR(base); 2255 2256 rxirq = platform_get_irq(pdev, 0); 2257 if (rxirq < 0) 2258 return rxirq; 2259 txirq = platform_get_irq_optional(pdev, 1); 2260 rtsirq = platform_get_irq_optional(pdev, 2); 2261 2262 sport->port.dev = &pdev->dev; 2263 sport->port.mapbase = res->start; 2264 sport->port.membase = base; 2265 sport->port.type = PORT_IMX, 2266 sport->port.iotype = UPIO_MEM; 2267 sport->port.irq = rxirq; 2268 sport->port.fifosize = 32; 2269 sport->port.has_sysrq = IS_ENABLED(CONFIG_SERIAL_IMX_CONSOLE); 2270 sport->port.ops = &imx_uart_pops; 2271 sport->port.rs485_config = imx_uart_rs485_config; 2272 sport->port.flags = UPF_BOOT_AUTOCONF; 2273 timer_setup(&sport->timer, imx_uart_timeout, 0); 2274 2275 sport->gpios = mctrl_gpio_init(&sport->port, 0); 2276 if (IS_ERR(sport->gpios)) 2277 return PTR_ERR(sport->gpios); 2278 2279 sport->clk_ipg = devm_clk_get(&pdev->dev, "ipg"); 2280 if (IS_ERR(sport->clk_ipg)) { 2281 ret = PTR_ERR(sport->clk_ipg); 2282 dev_err(&pdev->dev, "failed to get ipg clk: %d\n", ret); 2283 return ret; 2284 } 2285 2286 sport->clk_per = devm_clk_get(&pdev->dev, "per"); 2287 if (IS_ERR(sport->clk_per)) { 2288 ret = PTR_ERR(sport->clk_per); 2289 dev_err(&pdev->dev, "failed to get per clk: %d\n", ret); 2290 return ret; 2291 } 2292 2293 sport->port.uartclk = clk_get_rate(sport->clk_per); 2294 2295 /* For register access, we only need to enable the ipg clock. */ 2296 ret = clk_prepare_enable(sport->clk_ipg); 2297 if (ret) { 2298 dev_err(&pdev->dev, "failed to enable per clk: %d\n", ret); 2299 return ret; 2300 } 2301 2302 /* initialize shadow register values */ 2303 sport->ucr1 = readl(sport->port.membase + UCR1); 2304 sport->ucr2 = readl(sport->port.membase + UCR2); 2305 sport->ucr3 = readl(sport->port.membase + UCR3); 2306 sport->ucr4 = readl(sport->port.membase + UCR4); 2307 sport->ufcr = readl(sport->port.membase + UFCR); 2308 2309 ret = uart_get_rs485_mode(&sport->port); 2310 if (ret) { 2311 clk_disable_unprepare(sport->clk_ipg); 2312 return ret; 2313 } 2314 2315 if (sport->port.rs485.flags & SER_RS485_ENABLED && 2316 (!sport->have_rtscts && !sport->have_rtsgpio)) 2317 dev_err(&pdev->dev, "no RTS control, disabling rs485\n"); 2318 2319 /* 2320 * If using the i.MX UART RTS/CTS control then the RTS (CTS_B) 2321 * signal cannot be set low during transmission in case the 2322 * receiver is off (limitation of the i.MX UART IP). 2323 */ 2324 if (sport->port.rs485.flags & SER_RS485_ENABLED && 2325 sport->have_rtscts && !sport->have_rtsgpio && 2326 (!(sport->port.rs485.flags & SER_RS485_RTS_ON_SEND) && 2327 !(sport->port.rs485.flags & SER_RS485_RX_DURING_TX))) 2328 dev_err(&pdev->dev, 2329 "low-active RTS not possible when receiver is off, enabling receiver\n"); 2330 2331 imx_uart_rs485_config(&sport->port, &sport->port.rs485); 2332 2333 /* Disable interrupts before requesting them */ 2334 ucr1 = imx_uart_readl(sport, UCR1); 2335 ucr1 &= ~(UCR1_ADEN | UCR1_TRDYEN | UCR1_IDEN | UCR1_RRDYEN | 2336 UCR1_TRDYEN | UCR1_RTSDEN); 2337 imx_uart_writel(sport, ucr1, UCR1); 2338 2339 if (!imx_uart_is_imx1(sport) && sport->dte_mode) { 2340 /* 2341 * The DCEDTE bit changes the direction of DSR, DCD, DTR and RI 2342 * and influences if UCR3_RI and UCR3_DCD changes the level of RI 2343 * and DCD (when they are outputs) or enables the respective 2344 * irqs. So set this bit early, i.e. before requesting irqs. 2345 */ 2346 u32 ufcr = imx_uart_readl(sport, UFCR); 2347 if (!(ufcr & UFCR_DCEDTE)) 2348 imx_uart_writel(sport, ufcr | UFCR_DCEDTE, UFCR); 2349 2350 /* 2351 * Disable UCR3_RI and UCR3_DCD irqs. They are also not 2352 * enabled later because they cannot be cleared 2353 * (confirmed on i.MX25) which makes them unusable. 2354 */ 2355 imx_uart_writel(sport, 2356 IMX21_UCR3_RXDMUXSEL | UCR3_ADNIMP | UCR3_DSR, 2357 UCR3); 2358 2359 } else { 2360 u32 ucr3 = UCR3_DSR; 2361 u32 ufcr = imx_uart_readl(sport, UFCR); 2362 if (ufcr & UFCR_DCEDTE) 2363 imx_uart_writel(sport, ufcr & ~UFCR_DCEDTE, UFCR); 2364 2365 if (!imx_uart_is_imx1(sport)) 2366 ucr3 |= IMX21_UCR3_RXDMUXSEL | UCR3_ADNIMP; 2367 imx_uart_writel(sport, ucr3, UCR3); 2368 } 2369 2370 clk_disable_unprepare(sport->clk_ipg); 2371 2372 /* 2373 * Allocate the IRQ(s) i.MX1 has three interrupts whereas later 2374 * chips only have one interrupt. 2375 */ 2376 if (txirq > 0) { 2377 ret = devm_request_irq(&pdev->dev, rxirq, imx_uart_rxint, 0, 2378 dev_name(&pdev->dev), sport); 2379 if (ret) { 2380 dev_err(&pdev->dev, "failed to request rx irq: %d\n", 2381 ret); 2382 return ret; 2383 } 2384 2385 ret = devm_request_irq(&pdev->dev, txirq, imx_uart_txint, 0, 2386 dev_name(&pdev->dev), sport); 2387 if (ret) { 2388 dev_err(&pdev->dev, "failed to request tx irq: %d\n", 2389 ret); 2390 return ret; 2391 } 2392 2393 ret = devm_request_irq(&pdev->dev, rtsirq, imx_uart_rtsint, 0, 2394 dev_name(&pdev->dev), sport); 2395 if (ret) { 2396 dev_err(&pdev->dev, "failed to request rts irq: %d\n", 2397 ret); 2398 return ret; 2399 } 2400 } else { 2401 ret = devm_request_irq(&pdev->dev, rxirq, imx_uart_int, 0, 2402 dev_name(&pdev->dev), sport); 2403 if (ret) { 2404 dev_err(&pdev->dev, "failed to request irq: %d\n", ret); 2405 return ret; 2406 } 2407 } 2408 2409 /* We need to initialize lock even for non-registered console */ 2410 spin_lock_init(&sport->port.lock); 2411 2412 imx_uart_ports[sport->port.line] = sport; 2413 2414 platform_set_drvdata(pdev, sport); 2415 2416 return uart_add_one_port(&imx_uart_uart_driver, &sport->port); 2417 } 2418 2419 static int imx_uart_remove(struct platform_device *pdev) 2420 { 2421 struct imx_port *sport = platform_get_drvdata(pdev); 2422 2423 return uart_remove_one_port(&imx_uart_uart_driver, &sport->port); 2424 } 2425 2426 static void imx_uart_restore_context(struct imx_port *sport) 2427 { 2428 unsigned long flags; 2429 2430 spin_lock_irqsave(&sport->port.lock, flags); 2431 if (!sport->context_saved) { 2432 spin_unlock_irqrestore(&sport->port.lock, flags); 2433 return; 2434 } 2435 2436 imx_uart_writel(sport, sport->saved_reg[4], UFCR); 2437 imx_uart_writel(sport, sport->saved_reg[5], UESC); 2438 imx_uart_writel(sport, sport->saved_reg[6], UTIM); 2439 imx_uart_writel(sport, sport->saved_reg[7], UBIR); 2440 imx_uart_writel(sport, sport->saved_reg[8], UBMR); 2441 imx_uart_writel(sport, sport->saved_reg[9], IMX21_UTS); 2442 imx_uart_writel(sport, sport->saved_reg[0], UCR1); 2443 imx_uart_writel(sport, sport->saved_reg[1] | UCR2_SRST, UCR2); 2444 imx_uart_writel(sport, sport->saved_reg[2], UCR3); 2445 imx_uart_writel(sport, sport->saved_reg[3], UCR4); 2446 sport->context_saved = false; 2447 spin_unlock_irqrestore(&sport->port.lock, flags); 2448 } 2449 2450 static void imx_uart_save_context(struct imx_port *sport) 2451 { 2452 unsigned long flags; 2453 2454 /* Save necessary regs */ 2455 spin_lock_irqsave(&sport->port.lock, flags); 2456 sport->saved_reg[0] = imx_uart_readl(sport, UCR1); 2457 sport->saved_reg[1] = imx_uart_readl(sport, UCR2); 2458 sport->saved_reg[2] = imx_uart_readl(sport, UCR3); 2459 sport->saved_reg[3] = imx_uart_readl(sport, UCR4); 2460 sport->saved_reg[4] = imx_uart_readl(sport, UFCR); 2461 sport->saved_reg[5] = imx_uart_readl(sport, UESC); 2462 sport->saved_reg[6] = imx_uart_readl(sport, UTIM); 2463 sport->saved_reg[7] = imx_uart_readl(sport, UBIR); 2464 sport->saved_reg[8] = imx_uart_readl(sport, UBMR); 2465 sport->saved_reg[9] = imx_uart_readl(sport, IMX21_UTS); 2466 sport->context_saved = true; 2467 spin_unlock_irqrestore(&sport->port.lock, flags); 2468 } 2469 2470 static void imx_uart_enable_wakeup(struct imx_port *sport, bool on) 2471 { 2472 u32 ucr3; 2473 2474 ucr3 = imx_uart_readl(sport, UCR3); 2475 if (on) { 2476 imx_uart_writel(sport, USR1_AWAKE, USR1); 2477 ucr3 |= UCR3_AWAKEN; 2478 } else { 2479 ucr3 &= ~UCR3_AWAKEN; 2480 } 2481 imx_uart_writel(sport, ucr3, UCR3); 2482 2483 if (sport->have_rtscts) { 2484 u32 ucr1 = imx_uart_readl(sport, UCR1); 2485 if (on) 2486 ucr1 |= UCR1_RTSDEN; 2487 else 2488 ucr1 &= ~UCR1_RTSDEN; 2489 imx_uart_writel(sport, ucr1, UCR1); 2490 } 2491 } 2492 2493 static int imx_uart_suspend_noirq(struct device *dev) 2494 { 2495 struct imx_port *sport = dev_get_drvdata(dev); 2496 2497 imx_uart_save_context(sport); 2498 2499 clk_disable(sport->clk_ipg); 2500 2501 pinctrl_pm_select_sleep_state(dev); 2502 2503 return 0; 2504 } 2505 2506 static int imx_uart_resume_noirq(struct device *dev) 2507 { 2508 struct imx_port *sport = dev_get_drvdata(dev); 2509 int ret; 2510 2511 pinctrl_pm_select_default_state(dev); 2512 2513 ret = clk_enable(sport->clk_ipg); 2514 if (ret) 2515 return ret; 2516 2517 imx_uart_restore_context(sport); 2518 2519 return 0; 2520 } 2521 2522 static int imx_uart_suspend(struct device *dev) 2523 { 2524 struct imx_port *sport = dev_get_drvdata(dev); 2525 int ret; 2526 2527 uart_suspend_port(&imx_uart_uart_driver, &sport->port); 2528 disable_irq(sport->port.irq); 2529 2530 ret = clk_prepare_enable(sport->clk_ipg); 2531 if (ret) 2532 return ret; 2533 2534 /* enable wakeup from i.MX UART */ 2535 imx_uart_enable_wakeup(sport, true); 2536 2537 return 0; 2538 } 2539 2540 static int imx_uart_resume(struct device *dev) 2541 { 2542 struct imx_port *sport = dev_get_drvdata(dev); 2543 2544 /* disable wakeup from i.MX UART */ 2545 imx_uart_enable_wakeup(sport, false); 2546 2547 uart_resume_port(&imx_uart_uart_driver, &sport->port); 2548 enable_irq(sport->port.irq); 2549 2550 clk_disable_unprepare(sport->clk_ipg); 2551 2552 return 0; 2553 } 2554 2555 static int imx_uart_freeze(struct device *dev) 2556 { 2557 struct imx_port *sport = dev_get_drvdata(dev); 2558 2559 uart_suspend_port(&imx_uart_uart_driver, &sport->port); 2560 2561 return clk_prepare_enable(sport->clk_ipg); 2562 } 2563 2564 static int imx_uart_thaw(struct device *dev) 2565 { 2566 struct imx_port *sport = dev_get_drvdata(dev); 2567 2568 uart_resume_port(&imx_uart_uart_driver, &sport->port); 2569 2570 clk_disable_unprepare(sport->clk_ipg); 2571 2572 return 0; 2573 } 2574 2575 static const struct dev_pm_ops imx_uart_pm_ops = { 2576 .suspend_noirq = imx_uart_suspend_noirq, 2577 .resume_noirq = imx_uart_resume_noirq, 2578 .freeze_noirq = imx_uart_suspend_noirq, 2579 .restore_noirq = imx_uart_resume_noirq, 2580 .suspend = imx_uart_suspend, 2581 .resume = imx_uart_resume, 2582 .freeze = imx_uart_freeze, 2583 .thaw = imx_uart_thaw, 2584 .restore = imx_uart_thaw, 2585 }; 2586 2587 static struct platform_driver imx_uart_platform_driver = { 2588 .probe = imx_uart_probe, 2589 .remove = imx_uart_remove, 2590 2591 .id_table = imx_uart_devtype, 2592 .driver = { 2593 .name = "imx-uart", 2594 .of_match_table = imx_uart_dt_ids, 2595 .pm = &imx_uart_pm_ops, 2596 }, 2597 }; 2598 2599 static int __init imx_uart_init(void) 2600 { 2601 int ret = uart_register_driver(&imx_uart_uart_driver); 2602 2603 if (ret) 2604 return ret; 2605 2606 ret = platform_driver_register(&imx_uart_platform_driver); 2607 if (ret != 0) 2608 uart_unregister_driver(&imx_uart_uart_driver); 2609 2610 return ret; 2611 } 2612 2613 static void __exit imx_uart_exit(void) 2614 { 2615 platform_driver_unregister(&imx_uart_platform_driver); 2616 uart_unregister_driver(&imx_uart_uart_driver); 2617 } 2618 2619 module_init(imx_uart_init); 2620 module_exit(imx_uart_exit); 2621 2622 MODULE_AUTHOR("Sascha Hauer"); 2623 MODULE_DESCRIPTION("IMX generic serial port driver"); 2624 MODULE_LICENSE("GPL"); 2625 MODULE_ALIAS("platform:imx-uart"); 2626