xref: /openbmc/linux/drivers/tty/serial/imx.c (revision 81113b04)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Driver for Motorola/Freescale IMX serial ports
4  *
5  * Based on drivers/char/serial.c, by Linus Torvalds, Theodore Ts'o.
6  *
7  * Author: Sascha Hauer <sascha@saschahauer.de>
8  * Copyright (C) 2004 Pengutronix
9  */
10 
11 #include <linux/module.h>
12 #include <linux/ioport.h>
13 #include <linux/init.h>
14 #include <linux/console.h>
15 #include <linux/sysrq.h>
16 #include <linux/platform_device.h>
17 #include <linux/tty.h>
18 #include <linux/tty_flip.h>
19 #include <linux/serial_core.h>
20 #include <linux/serial.h>
21 #include <linux/clk.h>
22 #include <linux/delay.h>
23 #include <linux/ktime.h>
24 #include <linux/pinctrl/consumer.h>
25 #include <linux/rational.h>
26 #include <linux/slab.h>
27 #include <linux/of.h>
28 #include <linux/of_device.h>
29 #include <linux/io.h>
30 #include <linux/dma-mapping.h>
31 
32 #include <asm/irq.h>
33 #include <linux/platform_data/serial-imx.h>
34 #include <linux/platform_data/dma-imx.h>
35 
36 #include "serial_mctrl_gpio.h"
37 
38 /* Register definitions */
39 #define URXD0 0x0  /* Receiver Register */
40 #define URTX0 0x40 /* Transmitter Register */
41 #define UCR1  0x80 /* Control Register 1 */
42 #define UCR2  0x84 /* Control Register 2 */
43 #define UCR3  0x88 /* Control Register 3 */
44 #define UCR4  0x8c /* Control Register 4 */
45 #define UFCR  0x90 /* FIFO Control Register */
46 #define USR1  0x94 /* Status Register 1 */
47 #define USR2  0x98 /* Status Register 2 */
48 #define UESC  0x9c /* Escape Character Register */
49 #define UTIM  0xa0 /* Escape Timer Register */
50 #define UBIR  0xa4 /* BRM Incremental Register */
51 #define UBMR  0xa8 /* BRM Modulator Register */
52 #define UBRC  0xac /* Baud Rate Count Register */
53 #define IMX21_ONEMS 0xb0 /* One Millisecond register */
54 #define IMX1_UTS 0xd0 /* UART Test Register on i.mx1 */
55 #define IMX21_UTS 0xb4 /* UART Test Register on all other i.mx*/
56 
57 /* UART Control Register Bit Fields.*/
58 #define URXD_DUMMY_READ (1<<16)
59 #define URXD_CHARRDY	(1<<15)
60 #define URXD_ERR	(1<<14)
61 #define URXD_OVRRUN	(1<<13)
62 #define URXD_FRMERR	(1<<12)
63 #define URXD_BRK	(1<<11)
64 #define URXD_PRERR	(1<<10)
65 #define URXD_RX_DATA	(0xFF<<0)
66 #define UCR1_ADEN	(1<<15) /* Auto detect interrupt */
67 #define UCR1_ADBR	(1<<14) /* Auto detect baud rate */
68 #define UCR1_TRDYEN	(1<<13) /* Transmitter ready interrupt enable */
69 #define UCR1_IDEN	(1<<12) /* Idle condition interrupt */
70 #define UCR1_ICD_REG(x) (((x) & 3) << 10) /* idle condition detect */
71 #define UCR1_RRDYEN	(1<<9)	/* Recv ready interrupt enable */
72 #define UCR1_RXDMAEN	(1<<8)	/* Recv ready DMA enable */
73 #define UCR1_IREN	(1<<7)	/* Infrared interface enable */
74 #define UCR1_TXMPTYEN	(1<<6)	/* Transimitter empty interrupt enable */
75 #define UCR1_RTSDEN	(1<<5)	/* RTS delta interrupt enable */
76 #define UCR1_SNDBRK	(1<<4)	/* Send break */
77 #define UCR1_TXDMAEN	(1<<3)	/* Transmitter ready DMA enable */
78 #define IMX1_UCR1_UARTCLKEN (1<<2) /* UART clock enabled, i.mx1 only */
79 #define UCR1_ATDMAEN    (1<<2)  /* Aging DMA Timer Enable */
80 #define UCR1_DOZE	(1<<1)	/* Doze */
81 #define UCR1_UARTEN	(1<<0)	/* UART enabled */
82 #define UCR2_ESCI	(1<<15)	/* Escape seq interrupt enable */
83 #define UCR2_IRTS	(1<<14)	/* Ignore RTS pin */
84 #define UCR2_CTSC	(1<<13)	/* CTS pin control */
85 #define UCR2_CTS	(1<<12)	/* Clear to send */
86 #define UCR2_ESCEN	(1<<11)	/* Escape enable */
87 #define UCR2_PREN	(1<<8)	/* Parity enable */
88 #define UCR2_PROE	(1<<7)	/* Parity odd/even */
89 #define UCR2_STPB	(1<<6)	/* Stop */
90 #define UCR2_WS		(1<<5)	/* Word size */
91 #define UCR2_RTSEN	(1<<4)	/* Request to send interrupt enable */
92 #define UCR2_ATEN	(1<<3)	/* Aging Timer Enable */
93 #define UCR2_TXEN	(1<<2)	/* Transmitter enabled */
94 #define UCR2_RXEN	(1<<1)	/* Receiver enabled */
95 #define UCR2_SRST	(1<<0)	/* SW reset */
96 #define UCR3_DTREN	(1<<13) /* DTR interrupt enable */
97 #define UCR3_PARERREN	(1<<12) /* Parity enable */
98 #define UCR3_FRAERREN	(1<<11) /* Frame error interrupt enable */
99 #define UCR3_DSR	(1<<10) /* Data set ready */
100 #define UCR3_DCD	(1<<9)	/* Data carrier detect */
101 #define UCR3_RI		(1<<8)	/* Ring indicator */
102 #define UCR3_ADNIMP	(1<<7)	/* Autobaud Detection Not Improved */
103 #define UCR3_RXDSEN	(1<<6)	/* Receive status interrupt enable */
104 #define UCR3_AIRINTEN	(1<<5)	/* Async IR wake interrupt enable */
105 #define UCR3_AWAKEN	(1<<4)	/* Async wake interrupt enable */
106 #define UCR3_DTRDEN	(1<<3)	/* Data Terminal Ready Delta Enable. */
107 #define IMX21_UCR3_RXDMUXSEL	(1<<2)	/* RXD Muxed Input Select */
108 #define UCR3_INVT	(1<<1)	/* Inverted Infrared transmission */
109 #define UCR3_BPEN	(1<<0)	/* Preset registers enable */
110 #define UCR4_CTSTL_SHF	10	/* CTS trigger level shift */
111 #define UCR4_CTSTL_MASK	0x3F	/* CTS trigger is 6 bits wide */
112 #define UCR4_INVR	(1<<9)	/* Inverted infrared reception */
113 #define UCR4_ENIRI	(1<<8)	/* Serial infrared interrupt enable */
114 #define UCR4_WKEN	(1<<7)	/* Wake interrupt enable */
115 #define UCR4_REF16	(1<<6)	/* Ref freq 16 MHz */
116 #define UCR4_IDDMAEN    (1<<6)  /* DMA IDLE Condition Detected */
117 #define UCR4_IRSC	(1<<5)	/* IR special case */
118 #define UCR4_TCEN	(1<<3)	/* Transmit complete interrupt enable */
119 #define UCR4_BKEN	(1<<2)	/* Break condition interrupt enable */
120 #define UCR4_OREN	(1<<1)	/* Receiver overrun interrupt enable */
121 #define UCR4_DREN	(1<<0)	/* Recv data ready interrupt enable */
122 #define UFCR_RXTL_SHF	0	/* Receiver trigger level shift */
123 #define UFCR_DCEDTE	(1<<6)	/* DCE/DTE mode select */
124 #define UFCR_RFDIV	(7<<7)	/* Reference freq divider mask */
125 #define UFCR_RFDIV_REG(x)	(((x) < 7 ? 6 - (x) : 6) << 7)
126 #define UFCR_TXTL_SHF	10	/* Transmitter trigger level shift */
127 #define USR1_PARITYERR	(1<<15) /* Parity error interrupt flag */
128 #define USR1_RTSS	(1<<14) /* RTS pin status */
129 #define USR1_TRDY	(1<<13) /* Transmitter ready interrupt/dma flag */
130 #define USR1_RTSD	(1<<12) /* RTS delta */
131 #define USR1_ESCF	(1<<11) /* Escape seq interrupt flag */
132 #define USR1_FRAMERR	(1<<10) /* Frame error interrupt flag */
133 #define USR1_RRDY	(1<<9)	 /* Receiver ready interrupt/dma flag */
134 #define USR1_AGTIM	(1<<8)	 /* Ageing timer interrupt flag */
135 #define USR1_DTRD	(1<<7)	 /* DTR Delta */
136 #define USR1_RXDS	 (1<<6)	 /* Receiver idle interrupt flag */
137 #define USR1_AIRINT	 (1<<5)	 /* Async IR wake interrupt flag */
138 #define USR1_AWAKE	 (1<<4)	 /* Aysnc wake interrupt flag */
139 #define USR2_ADET	 (1<<15) /* Auto baud rate detect complete */
140 #define USR2_TXFE	 (1<<14) /* Transmit buffer FIFO empty */
141 #define USR2_DTRF	 (1<<13) /* DTR edge interrupt flag */
142 #define USR2_IDLE	 (1<<12) /* Idle condition */
143 #define USR2_RIDELT	 (1<<10) /* Ring Interrupt Delta */
144 #define USR2_RIIN	 (1<<9)	 /* Ring Indicator Input */
145 #define USR2_IRINT	 (1<<8)	 /* Serial infrared interrupt flag */
146 #define USR2_WAKE	 (1<<7)	 /* Wake */
147 #define USR2_DCDIN	 (1<<5)	 /* Data Carrier Detect Input */
148 #define USR2_RTSF	 (1<<4)	 /* RTS edge interrupt flag */
149 #define USR2_TXDC	 (1<<3)	 /* Transmitter complete */
150 #define USR2_BRCD	 (1<<2)	 /* Break condition */
151 #define USR2_ORE	(1<<1)	 /* Overrun error */
152 #define USR2_RDR	(1<<0)	 /* Recv data ready */
153 #define UTS_FRCPERR	(1<<13) /* Force parity error */
154 #define UTS_LOOP	(1<<12)	 /* Loop tx and rx */
155 #define UTS_TXEMPTY	 (1<<6)	 /* TxFIFO empty */
156 #define UTS_RXEMPTY	 (1<<5)	 /* RxFIFO empty */
157 #define UTS_TXFULL	 (1<<4)	 /* TxFIFO full */
158 #define UTS_RXFULL	 (1<<3)	 /* RxFIFO full */
159 #define UTS_SOFTRST	 (1<<0)	 /* Software reset */
160 
161 /* We've been assigned a range on the "Low-density serial ports" major */
162 #define SERIAL_IMX_MAJOR	207
163 #define MINOR_START		16
164 #define DEV_NAME		"ttymxc"
165 
166 /*
167  * This determines how often we check the modem status signals
168  * for any change.  They generally aren't connected to an IRQ
169  * so we have to poll them.  We also check immediately before
170  * filling the TX fifo incase CTS has been dropped.
171  */
172 #define MCTRL_TIMEOUT	(250*HZ/1000)
173 
174 #define DRIVER_NAME "IMX-uart"
175 
176 #define UART_NR 8
177 
178 /* i.MX21 type uart runs on all i.mx except i.MX1 and i.MX6q */
179 enum imx_uart_type {
180 	IMX1_UART,
181 	IMX21_UART,
182 	IMX53_UART,
183 	IMX6Q_UART,
184 };
185 
186 /* device type dependent stuff */
187 struct imx_uart_data {
188 	unsigned uts_reg;
189 	enum imx_uart_type devtype;
190 };
191 
192 enum imx_tx_state {
193 	OFF,
194 	WAIT_AFTER_RTS,
195 	SEND,
196 	WAIT_AFTER_SEND,
197 };
198 
199 struct imx_port {
200 	struct uart_port	port;
201 	struct timer_list	timer;
202 	unsigned int		old_status;
203 	unsigned int		have_rtscts:1;
204 	unsigned int		have_rtsgpio:1;
205 	unsigned int		dte_mode:1;
206 	unsigned int		inverted_tx:1;
207 	unsigned int		inverted_rx:1;
208 	struct clk		*clk_ipg;
209 	struct clk		*clk_per;
210 	const struct imx_uart_data *devdata;
211 
212 	struct mctrl_gpios *gpios;
213 
214 	/* shadow registers */
215 	unsigned int ucr1;
216 	unsigned int ucr2;
217 	unsigned int ucr3;
218 	unsigned int ucr4;
219 	unsigned int ufcr;
220 
221 	/* DMA fields */
222 	unsigned int		dma_is_enabled:1;
223 	unsigned int		dma_is_rxing:1;
224 	unsigned int		dma_is_txing:1;
225 	struct dma_chan		*dma_chan_rx, *dma_chan_tx;
226 	struct scatterlist	rx_sgl, tx_sgl[2];
227 	void			*rx_buf;
228 	struct circ_buf		rx_ring;
229 	unsigned int		rx_periods;
230 	dma_cookie_t		rx_cookie;
231 	unsigned int		tx_bytes;
232 	unsigned int		dma_tx_nents;
233 	unsigned int            saved_reg[10];
234 	bool			context_saved;
235 
236 	enum imx_tx_state	tx_state;
237 	struct hrtimer		trigger_start_tx;
238 	struct hrtimer		trigger_stop_tx;
239 };
240 
241 struct imx_port_ucrs {
242 	unsigned int	ucr1;
243 	unsigned int	ucr2;
244 	unsigned int	ucr3;
245 };
246 
247 static struct imx_uart_data imx_uart_devdata[] = {
248 	[IMX1_UART] = {
249 		.uts_reg = IMX1_UTS,
250 		.devtype = IMX1_UART,
251 	},
252 	[IMX21_UART] = {
253 		.uts_reg = IMX21_UTS,
254 		.devtype = IMX21_UART,
255 	},
256 	[IMX53_UART] = {
257 		.uts_reg = IMX21_UTS,
258 		.devtype = IMX53_UART,
259 	},
260 	[IMX6Q_UART] = {
261 		.uts_reg = IMX21_UTS,
262 		.devtype = IMX6Q_UART,
263 	},
264 };
265 
266 static const struct platform_device_id imx_uart_devtype[] = {
267 	{
268 		.name = "imx1-uart",
269 		.driver_data = (kernel_ulong_t) &imx_uart_devdata[IMX1_UART],
270 	}, {
271 		.name = "imx21-uart",
272 		.driver_data = (kernel_ulong_t) &imx_uart_devdata[IMX21_UART],
273 	}, {
274 		.name = "imx53-uart",
275 		.driver_data = (kernel_ulong_t) &imx_uart_devdata[IMX53_UART],
276 	}, {
277 		.name = "imx6q-uart",
278 		.driver_data = (kernel_ulong_t) &imx_uart_devdata[IMX6Q_UART],
279 	}, {
280 		/* sentinel */
281 	}
282 };
283 MODULE_DEVICE_TABLE(platform, imx_uart_devtype);
284 
285 static const struct of_device_id imx_uart_dt_ids[] = {
286 	{ .compatible = "fsl,imx6q-uart", .data = &imx_uart_devdata[IMX6Q_UART], },
287 	{ .compatible = "fsl,imx53-uart", .data = &imx_uart_devdata[IMX53_UART], },
288 	{ .compatible = "fsl,imx1-uart", .data = &imx_uart_devdata[IMX1_UART], },
289 	{ .compatible = "fsl,imx21-uart", .data = &imx_uart_devdata[IMX21_UART], },
290 	{ /* sentinel */ }
291 };
292 MODULE_DEVICE_TABLE(of, imx_uart_dt_ids);
293 
294 static void imx_uart_writel(struct imx_port *sport, u32 val, u32 offset)
295 {
296 	switch (offset) {
297 	case UCR1:
298 		sport->ucr1 = val;
299 		break;
300 	case UCR2:
301 		sport->ucr2 = val;
302 		break;
303 	case UCR3:
304 		sport->ucr3 = val;
305 		break;
306 	case UCR4:
307 		sport->ucr4 = val;
308 		break;
309 	case UFCR:
310 		sport->ufcr = val;
311 		break;
312 	default:
313 		break;
314 	}
315 	writel(val, sport->port.membase + offset);
316 }
317 
318 static u32 imx_uart_readl(struct imx_port *sport, u32 offset)
319 {
320 	switch (offset) {
321 	case UCR1:
322 		return sport->ucr1;
323 		break;
324 	case UCR2:
325 		/*
326 		 * UCR2_SRST is the only bit in the cached registers that might
327 		 * differ from the value that was last written. As it only
328 		 * automatically becomes one after being cleared, reread
329 		 * conditionally.
330 		 */
331 		if (!(sport->ucr2 & UCR2_SRST))
332 			sport->ucr2 = readl(sport->port.membase + offset);
333 		return sport->ucr2;
334 		break;
335 	case UCR3:
336 		return sport->ucr3;
337 		break;
338 	case UCR4:
339 		return sport->ucr4;
340 		break;
341 	case UFCR:
342 		return sport->ufcr;
343 		break;
344 	default:
345 		return readl(sport->port.membase + offset);
346 	}
347 }
348 
349 static inline unsigned imx_uart_uts_reg(struct imx_port *sport)
350 {
351 	return sport->devdata->uts_reg;
352 }
353 
354 static inline int imx_uart_is_imx1(struct imx_port *sport)
355 {
356 	return sport->devdata->devtype == IMX1_UART;
357 }
358 
359 static inline int imx_uart_is_imx21(struct imx_port *sport)
360 {
361 	return sport->devdata->devtype == IMX21_UART;
362 }
363 
364 static inline int imx_uart_is_imx53(struct imx_port *sport)
365 {
366 	return sport->devdata->devtype == IMX53_UART;
367 }
368 
369 static inline int imx_uart_is_imx6q(struct imx_port *sport)
370 {
371 	return sport->devdata->devtype == IMX6Q_UART;
372 }
373 /*
374  * Save and restore functions for UCR1, UCR2 and UCR3 registers
375  */
376 #if IS_ENABLED(CONFIG_SERIAL_IMX_CONSOLE)
377 static void imx_uart_ucrs_save(struct imx_port *sport,
378 			       struct imx_port_ucrs *ucr)
379 {
380 	/* save control registers */
381 	ucr->ucr1 = imx_uart_readl(sport, UCR1);
382 	ucr->ucr2 = imx_uart_readl(sport, UCR2);
383 	ucr->ucr3 = imx_uart_readl(sport, UCR3);
384 }
385 
386 static void imx_uart_ucrs_restore(struct imx_port *sport,
387 				  struct imx_port_ucrs *ucr)
388 {
389 	/* restore control registers */
390 	imx_uart_writel(sport, ucr->ucr1, UCR1);
391 	imx_uart_writel(sport, ucr->ucr2, UCR2);
392 	imx_uart_writel(sport, ucr->ucr3, UCR3);
393 }
394 #endif
395 
396 /* called with port.lock taken and irqs caller dependent */
397 static void imx_uart_rts_active(struct imx_port *sport, u32 *ucr2)
398 {
399 	*ucr2 &= ~(UCR2_CTSC | UCR2_CTS);
400 
401 	sport->port.mctrl |= TIOCM_RTS;
402 	mctrl_gpio_set(sport->gpios, sport->port.mctrl);
403 }
404 
405 /* called with port.lock taken and irqs caller dependent */
406 static void imx_uart_rts_inactive(struct imx_port *sport, u32 *ucr2)
407 {
408 	*ucr2 &= ~UCR2_CTSC;
409 	*ucr2 |= UCR2_CTS;
410 
411 	sport->port.mctrl &= ~TIOCM_RTS;
412 	mctrl_gpio_set(sport->gpios, sport->port.mctrl);
413 }
414 
415 static void start_hrtimer_ms(struct hrtimer *hrt, unsigned long msec)
416 {
417        long sec = msec / MSEC_PER_SEC;
418        long nsec = (msec % MSEC_PER_SEC) * 1000000;
419        ktime_t t = ktime_set(sec, nsec);
420 
421        hrtimer_start(hrt, t, HRTIMER_MODE_REL);
422 }
423 
424 /* called with port.lock taken and irqs off */
425 static void imx_uart_start_rx(struct uart_port *port)
426 {
427 	struct imx_port *sport = (struct imx_port *)port;
428 	unsigned int ucr1, ucr2;
429 
430 	ucr1 = imx_uart_readl(sport, UCR1);
431 	ucr2 = imx_uart_readl(sport, UCR2);
432 
433 	ucr2 |= UCR2_RXEN;
434 
435 	if (sport->dma_is_enabled) {
436 		ucr1 |= UCR1_RXDMAEN | UCR1_ATDMAEN;
437 	} else {
438 		ucr1 |= UCR1_RRDYEN;
439 		ucr2 |= UCR2_ATEN;
440 	}
441 
442 	/* Write UCR2 first as it includes RXEN */
443 	imx_uart_writel(sport, ucr2, UCR2);
444 	imx_uart_writel(sport, ucr1, UCR1);
445 }
446 
447 /* called with port.lock taken and irqs off */
448 static void imx_uart_stop_tx(struct uart_port *port)
449 {
450 	struct imx_port *sport = (struct imx_port *)port;
451 	u32 ucr1, ucr4, usr2;
452 
453 	if (sport->tx_state == OFF)
454 		return;
455 
456 	/*
457 	 * We are maybe in the SMP context, so if the DMA TX thread is running
458 	 * on other cpu, we have to wait for it to finish.
459 	 */
460 	if (sport->dma_is_txing)
461 		return;
462 
463 	ucr1 = imx_uart_readl(sport, UCR1);
464 	imx_uart_writel(sport, ucr1 & ~UCR1_TRDYEN, UCR1);
465 
466 	usr2 = imx_uart_readl(sport, USR2);
467 	if (!(usr2 & USR2_TXDC)) {
468 		/* The shifter is still busy, so retry once TC triggers */
469 		return;
470 	}
471 
472 	ucr4 = imx_uart_readl(sport, UCR4);
473 	ucr4 &= ~UCR4_TCEN;
474 	imx_uart_writel(sport, ucr4, UCR4);
475 
476 	/* in rs485 mode disable transmitter */
477 	if (port->rs485.flags & SER_RS485_ENABLED) {
478 		if (sport->tx_state == SEND) {
479 			sport->tx_state = WAIT_AFTER_SEND;
480 			start_hrtimer_ms(&sport->trigger_stop_tx,
481 					 port->rs485.delay_rts_after_send);
482 			return;
483 		}
484 
485 		if (sport->tx_state == WAIT_AFTER_RTS ||
486 		    sport->tx_state == WAIT_AFTER_SEND) {
487 			u32 ucr2;
488 
489 			hrtimer_try_to_cancel(&sport->trigger_start_tx);
490 
491 			ucr2 = imx_uart_readl(sport, UCR2);
492 			if (port->rs485.flags & SER_RS485_RTS_AFTER_SEND)
493 				imx_uart_rts_active(sport, &ucr2);
494 			else
495 				imx_uart_rts_inactive(sport, &ucr2);
496 			imx_uart_writel(sport, ucr2, UCR2);
497 
498 			imx_uart_start_rx(port);
499 
500 			sport->tx_state = OFF;
501 		}
502 	} else {
503 		sport->tx_state = OFF;
504 	}
505 }
506 
507 /* called with port.lock taken and irqs off */
508 static void imx_uart_stop_rx(struct uart_port *port)
509 {
510 	struct imx_port *sport = (struct imx_port *)port;
511 	u32 ucr1, ucr2;
512 
513 	ucr1 = imx_uart_readl(sport, UCR1);
514 	ucr2 = imx_uart_readl(sport, UCR2);
515 
516 	if (sport->dma_is_enabled) {
517 		ucr1 &= ~(UCR1_RXDMAEN | UCR1_ATDMAEN);
518 	} else {
519 		ucr1 &= ~UCR1_RRDYEN;
520 		ucr2 &= ~UCR2_ATEN;
521 	}
522 	imx_uart_writel(sport, ucr1, UCR1);
523 
524 	ucr2 &= ~UCR2_RXEN;
525 	imx_uart_writel(sport, ucr2, UCR2);
526 }
527 
528 /* called with port.lock taken and irqs off */
529 static void imx_uart_enable_ms(struct uart_port *port)
530 {
531 	struct imx_port *sport = (struct imx_port *)port;
532 
533 	mod_timer(&sport->timer, jiffies);
534 
535 	mctrl_gpio_enable_ms(sport->gpios);
536 }
537 
538 static void imx_uart_dma_tx(struct imx_port *sport);
539 
540 /* called with port.lock taken and irqs off */
541 static inline void imx_uart_transmit_buffer(struct imx_port *sport)
542 {
543 	struct circ_buf *xmit = &sport->port.state->xmit;
544 
545 	if (sport->port.x_char) {
546 		/* Send next char */
547 		imx_uart_writel(sport, sport->port.x_char, URTX0);
548 		sport->port.icount.tx++;
549 		sport->port.x_char = 0;
550 		return;
551 	}
552 
553 	if (uart_circ_empty(xmit) || uart_tx_stopped(&sport->port)) {
554 		imx_uart_stop_tx(&sport->port);
555 		return;
556 	}
557 
558 	if (sport->dma_is_enabled) {
559 		u32 ucr1;
560 		/*
561 		 * We've just sent a X-char Ensure the TX DMA is enabled
562 		 * and the TX IRQ is disabled.
563 		 **/
564 		ucr1 = imx_uart_readl(sport, UCR1);
565 		ucr1 &= ~UCR1_TRDYEN;
566 		if (sport->dma_is_txing) {
567 			ucr1 |= UCR1_TXDMAEN;
568 			imx_uart_writel(sport, ucr1, UCR1);
569 		} else {
570 			imx_uart_writel(sport, ucr1, UCR1);
571 			imx_uart_dma_tx(sport);
572 		}
573 
574 		return;
575 	}
576 
577 	while (!uart_circ_empty(xmit) &&
578 	       !(imx_uart_readl(sport, imx_uart_uts_reg(sport)) & UTS_TXFULL)) {
579 		/* send xmit->buf[xmit->tail]
580 		 * out the port here */
581 		imx_uart_writel(sport, xmit->buf[xmit->tail], URTX0);
582 		xmit->tail = (xmit->tail + 1) & (UART_XMIT_SIZE - 1);
583 		sport->port.icount.tx++;
584 	}
585 
586 	if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
587 		uart_write_wakeup(&sport->port);
588 
589 	if (uart_circ_empty(xmit))
590 		imx_uart_stop_tx(&sport->port);
591 }
592 
593 static void imx_uart_dma_tx_callback(void *data)
594 {
595 	struct imx_port *sport = data;
596 	struct scatterlist *sgl = &sport->tx_sgl[0];
597 	struct circ_buf *xmit = &sport->port.state->xmit;
598 	unsigned long flags;
599 	u32 ucr1;
600 
601 	spin_lock_irqsave(&sport->port.lock, flags);
602 
603 	dma_unmap_sg(sport->port.dev, sgl, sport->dma_tx_nents, DMA_TO_DEVICE);
604 
605 	ucr1 = imx_uart_readl(sport, UCR1);
606 	ucr1 &= ~UCR1_TXDMAEN;
607 	imx_uart_writel(sport, ucr1, UCR1);
608 
609 	/* update the stat */
610 	xmit->tail = (xmit->tail + sport->tx_bytes) & (UART_XMIT_SIZE - 1);
611 	sport->port.icount.tx += sport->tx_bytes;
612 
613 	dev_dbg(sport->port.dev, "we finish the TX DMA.\n");
614 
615 	sport->dma_is_txing = 0;
616 
617 	if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
618 		uart_write_wakeup(&sport->port);
619 
620 	if (!uart_circ_empty(xmit) && !uart_tx_stopped(&sport->port))
621 		imx_uart_dma_tx(sport);
622 	else if (sport->port.rs485.flags & SER_RS485_ENABLED) {
623 		u32 ucr4 = imx_uart_readl(sport, UCR4);
624 		ucr4 |= UCR4_TCEN;
625 		imx_uart_writel(sport, ucr4, UCR4);
626 	}
627 
628 	spin_unlock_irqrestore(&sport->port.lock, flags);
629 }
630 
631 /* called with port.lock taken and irqs off */
632 static void imx_uart_dma_tx(struct imx_port *sport)
633 {
634 	struct circ_buf *xmit = &sport->port.state->xmit;
635 	struct scatterlist *sgl = sport->tx_sgl;
636 	struct dma_async_tx_descriptor *desc;
637 	struct dma_chan	*chan = sport->dma_chan_tx;
638 	struct device *dev = sport->port.dev;
639 	u32 ucr1, ucr4;
640 	int ret;
641 
642 	if (sport->dma_is_txing)
643 		return;
644 
645 	ucr4 = imx_uart_readl(sport, UCR4);
646 	ucr4 &= ~UCR4_TCEN;
647 	imx_uart_writel(sport, ucr4, UCR4);
648 
649 	sport->tx_bytes = uart_circ_chars_pending(xmit);
650 
651 	if (xmit->tail < xmit->head || xmit->head == 0) {
652 		sport->dma_tx_nents = 1;
653 		sg_init_one(sgl, xmit->buf + xmit->tail, sport->tx_bytes);
654 	} else {
655 		sport->dma_tx_nents = 2;
656 		sg_init_table(sgl, 2);
657 		sg_set_buf(sgl, xmit->buf + xmit->tail,
658 				UART_XMIT_SIZE - xmit->tail);
659 		sg_set_buf(sgl + 1, xmit->buf, xmit->head);
660 	}
661 
662 	ret = dma_map_sg(dev, sgl, sport->dma_tx_nents, DMA_TO_DEVICE);
663 	if (ret == 0) {
664 		dev_err(dev, "DMA mapping error for TX.\n");
665 		return;
666 	}
667 	desc = dmaengine_prep_slave_sg(chan, sgl, ret,
668 					DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT);
669 	if (!desc) {
670 		dma_unmap_sg(dev, sgl, sport->dma_tx_nents,
671 			     DMA_TO_DEVICE);
672 		dev_err(dev, "We cannot prepare for the TX slave dma!\n");
673 		return;
674 	}
675 	desc->callback = imx_uart_dma_tx_callback;
676 	desc->callback_param = sport;
677 
678 	dev_dbg(dev, "TX: prepare to send %lu bytes by DMA.\n",
679 			uart_circ_chars_pending(xmit));
680 
681 	ucr1 = imx_uart_readl(sport, UCR1);
682 	ucr1 |= UCR1_TXDMAEN;
683 	imx_uart_writel(sport, ucr1, UCR1);
684 
685 	/* fire it */
686 	sport->dma_is_txing = 1;
687 	dmaengine_submit(desc);
688 	dma_async_issue_pending(chan);
689 	return;
690 }
691 
692 /* called with port.lock taken and irqs off */
693 static void imx_uart_start_tx(struct uart_port *port)
694 {
695 	struct imx_port *sport = (struct imx_port *)port;
696 	u32 ucr1;
697 
698 	if (!sport->port.x_char && uart_circ_empty(&port->state->xmit))
699 		return;
700 
701 	/*
702 	 * We cannot simply do nothing here if sport->tx_state == SEND already
703 	 * because UCR1_TXMPTYEN might already have been cleared in
704 	 * imx_uart_stop_tx(), but tx_state is still SEND.
705 	 */
706 
707 	if (port->rs485.flags & SER_RS485_ENABLED) {
708 		if (sport->tx_state == OFF) {
709 			u32 ucr2 = imx_uart_readl(sport, UCR2);
710 			if (port->rs485.flags & SER_RS485_RTS_ON_SEND)
711 				imx_uart_rts_active(sport, &ucr2);
712 			else
713 				imx_uart_rts_inactive(sport, &ucr2);
714 			imx_uart_writel(sport, ucr2, UCR2);
715 
716 			if (!(port->rs485.flags & SER_RS485_RX_DURING_TX))
717 				imx_uart_stop_rx(port);
718 
719 			sport->tx_state = WAIT_AFTER_RTS;
720 			start_hrtimer_ms(&sport->trigger_start_tx,
721 					 port->rs485.delay_rts_before_send);
722 			return;
723 		}
724 
725 		if (sport->tx_state == WAIT_AFTER_SEND
726 		    || sport->tx_state == WAIT_AFTER_RTS) {
727 
728 			hrtimer_try_to_cancel(&sport->trigger_stop_tx);
729 
730 			/*
731 			 * Enable transmitter and shifter empty irq only if DMA
732 			 * is off.  In the DMA case this is done in the
733 			 * tx-callback.
734 			 */
735 			if (!sport->dma_is_enabled) {
736 				u32 ucr4 = imx_uart_readl(sport, UCR4);
737 				ucr4 |= UCR4_TCEN;
738 				imx_uart_writel(sport, ucr4, UCR4);
739 			}
740 
741 			sport->tx_state = SEND;
742 		}
743 	} else {
744 		sport->tx_state = SEND;
745 	}
746 
747 	if (!sport->dma_is_enabled) {
748 		ucr1 = imx_uart_readl(sport, UCR1);
749 		imx_uart_writel(sport, ucr1 | UCR1_TRDYEN, UCR1);
750 	}
751 
752 	if (sport->dma_is_enabled) {
753 		if (sport->port.x_char) {
754 			/* We have X-char to send, so enable TX IRQ and
755 			 * disable TX DMA to let TX interrupt to send X-char */
756 			ucr1 = imx_uart_readl(sport, UCR1);
757 			ucr1 &= ~UCR1_TXDMAEN;
758 			ucr1 |= UCR1_TRDYEN;
759 			imx_uart_writel(sport, ucr1, UCR1);
760 			return;
761 		}
762 
763 		if (!uart_circ_empty(&port->state->xmit) &&
764 		    !uart_tx_stopped(port))
765 			imx_uart_dma_tx(sport);
766 		return;
767 	}
768 }
769 
770 static irqreturn_t __imx_uart_rtsint(int irq, void *dev_id)
771 {
772 	struct imx_port *sport = dev_id;
773 	u32 usr1;
774 
775 	imx_uart_writel(sport, USR1_RTSD, USR1);
776 	usr1 = imx_uart_readl(sport, USR1) & USR1_RTSS;
777 	uart_handle_cts_change(&sport->port, !!usr1);
778 	wake_up_interruptible(&sport->port.state->port.delta_msr_wait);
779 
780 	return IRQ_HANDLED;
781 }
782 
783 static irqreturn_t imx_uart_rtsint(int irq, void *dev_id)
784 {
785 	struct imx_port *sport = dev_id;
786 	irqreturn_t ret;
787 
788 	spin_lock(&sport->port.lock);
789 
790 	ret = __imx_uart_rtsint(irq, dev_id);
791 
792 	spin_unlock(&sport->port.lock);
793 
794 	return ret;
795 }
796 
797 static irqreturn_t imx_uart_txint(int irq, void *dev_id)
798 {
799 	struct imx_port *sport = dev_id;
800 
801 	spin_lock(&sport->port.lock);
802 	imx_uart_transmit_buffer(sport);
803 	spin_unlock(&sport->port.lock);
804 	return IRQ_HANDLED;
805 }
806 
807 static irqreturn_t __imx_uart_rxint(int irq, void *dev_id)
808 {
809 	struct imx_port *sport = dev_id;
810 	unsigned int rx, flg, ignored = 0;
811 	struct tty_port *port = &sport->port.state->port;
812 
813 	while (imx_uart_readl(sport, USR2) & USR2_RDR) {
814 		u32 usr2;
815 
816 		flg = TTY_NORMAL;
817 		sport->port.icount.rx++;
818 
819 		rx = imx_uart_readl(sport, URXD0);
820 
821 		usr2 = imx_uart_readl(sport, USR2);
822 		if (usr2 & USR2_BRCD) {
823 			imx_uart_writel(sport, USR2_BRCD, USR2);
824 			if (uart_handle_break(&sport->port))
825 				continue;
826 		}
827 
828 		if (uart_handle_sysrq_char(&sport->port, (unsigned char)rx))
829 			continue;
830 
831 		if (unlikely(rx & URXD_ERR)) {
832 			if (rx & URXD_BRK)
833 				sport->port.icount.brk++;
834 			else if (rx & URXD_PRERR)
835 				sport->port.icount.parity++;
836 			else if (rx & URXD_FRMERR)
837 				sport->port.icount.frame++;
838 			if (rx & URXD_OVRRUN)
839 				sport->port.icount.overrun++;
840 
841 			if (rx & sport->port.ignore_status_mask) {
842 				if (++ignored > 100)
843 					goto out;
844 				continue;
845 			}
846 
847 			rx &= (sport->port.read_status_mask | 0xFF);
848 
849 			if (rx & URXD_BRK)
850 				flg = TTY_BREAK;
851 			else if (rx & URXD_PRERR)
852 				flg = TTY_PARITY;
853 			else if (rx & URXD_FRMERR)
854 				flg = TTY_FRAME;
855 			if (rx & URXD_OVRRUN)
856 				flg = TTY_OVERRUN;
857 
858 			sport->port.sysrq = 0;
859 		}
860 
861 		if (sport->port.ignore_status_mask & URXD_DUMMY_READ)
862 			goto out;
863 
864 		if (tty_insert_flip_char(port, rx, flg) == 0)
865 			sport->port.icount.buf_overrun++;
866 	}
867 
868 out:
869 	tty_flip_buffer_push(port);
870 
871 	return IRQ_HANDLED;
872 }
873 
874 static irqreturn_t imx_uart_rxint(int irq, void *dev_id)
875 {
876 	struct imx_port *sport = dev_id;
877 	irqreturn_t ret;
878 
879 	spin_lock(&sport->port.lock);
880 
881 	ret = __imx_uart_rxint(irq, dev_id);
882 
883 	spin_unlock(&sport->port.lock);
884 
885 	return ret;
886 }
887 
888 static void imx_uart_clear_rx_errors(struct imx_port *sport);
889 
890 /*
891  * We have a modem side uart, so the meanings of RTS and CTS are inverted.
892  */
893 static unsigned int imx_uart_get_hwmctrl(struct imx_port *sport)
894 {
895 	unsigned int tmp = TIOCM_DSR;
896 	unsigned usr1 = imx_uart_readl(sport, USR1);
897 	unsigned usr2 = imx_uart_readl(sport, USR2);
898 
899 	if (usr1 & USR1_RTSS)
900 		tmp |= TIOCM_CTS;
901 
902 	/* in DCE mode DCDIN is always 0 */
903 	if (!(usr2 & USR2_DCDIN))
904 		tmp |= TIOCM_CAR;
905 
906 	if (sport->dte_mode)
907 		if (!(imx_uart_readl(sport, USR2) & USR2_RIIN))
908 			tmp |= TIOCM_RI;
909 
910 	return tmp;
911 }
912 
913 /*
914  * Handle any change of modem status signal since we were last called.
915  */
916 static void imx_uart_mctrl_check(struct imx_port *sport)
917 {
918 	unsigned int status, changed;
919 
920 	status = imx_uart_get_hwmctrl(sport);
921 	changed = status ^ sport->old_status;
922 
923 	if (changed == 0)
924 		return;
925 
926 	sport->old_status = status;
927 
928 	if (changed & TIOCM_RI && status & TIOCM_RI)
929 		sport->port.icount.rng++;
930 	if (changed & TIOCM_DSR)
931 		sport->port.icount.dsr++;
932 	if (changed & TIOCM_CAR)
933 		uart_handle_dcd_change(&sport->port, status & TIOCM_CAR);
934 	if (changed & TIOCM_CTS)
935 		uart_handle_cts_change(&sport->port, status & TIOCM_CTS);
936 
937 	wake_up_interruptible(&sport->port.state->port.delta_msr_wait);
938 }
939 
940 static irqreturn_t imx_uart_int(int irq, void *dev_id)
941 {
942 	struct imx_port *sport = dev_id;
943 	unsigned int usr1, usr2, ucr1, ucr2, ucr3, ucr4;
944 	irqreturn_t ret = IRQ_NONE;
945 	unsigned long flags = 0;
946 
947 	/*
948 	 * IRQs might not be disabled upon entering this interrupt handler,
949 	 * e.g. when interrupt handlers are forced to be threaded. To support
950 	 * this scenario as well, disable IRQs when acquiring the spinlock.
951 	 */
952 	spin_lock_irqsave(&sport->port.lock, flags);
953 
954 	usr1 = imx_uart_readl(sport, USR1);
955 	usr2 = imx_uart_readl(sport, USR2);
956 	ucr1 = imx_uart_readl(sport, UCR1);
957 	ucr2 = imx_uart_readl(sport, UCR2);
958 	ucr3 = imx_uart_readl(sport, UCR3);
959 	ucr4 = imx_uart_readl(sport, UCR4);
960 
961 	/*
962 	 * Even if a condition is true that can trigger an irq only handle it if
963 	 * the respective irq source is enabled. This prevents some undesired
964 	 * actions, for example if a character that sits in the RX FIFO and that
965 	 * should be fetched via DMA is tried to be fetched using PIO. Or the
966 	 * receiver is currently off and so reading from URXD0 results in an
967 	 * exception. So just mask the (raw) status bits for disabled irqs.
968 	 */
969 	if ((ucr1 & UCR1_RRDYEN) == 0)
970 		usr1 &= ~USR1_RRDY;
971 	if ((ucr2 & UCR2_ATEN) == 0)
972 		usr1 &= ~USR1_AGTIM;
973 	if ((ucr1 & UCR1_TRDYEN) == 0)
974 		usr1 &= ~USR1_TRDY;
975 	if ((ucr4 & UCR4_TCEN) == 0)
976 		usr2 &= ~USR2_TXDC;
977 	if ((ucr3 & UCR3_DTRDEN) == 0)
978 		usr1 &= ~USR1_DTRD;
979 	if ((ucr1 & UCR1_RTSDEN) == 0)
980 		usr1 &= ~USR1_RTSD;
981 	if ((ucr3 & UCR3_AWAKEN) == 0)
982 		usr1 &= ~USR1_AWAKE;
983 	if ((ucr4 & UCR4_OREN) == 0)
984 		usr2 &= ~USR2_ORE;
985 
986 	if (usr1 & (USR1_RRDY | USR1_AGTIM)) {
987 		imx_uart_writel(sport, USR1_AGTIM, USR1);
988 
989 		__imx_uart_rxint(irq, dev_id);
990 		ret = IRQ_HANDLED;
991 	}
992 
993 	if ((usr1 & USR1_TRDY) || (usr2 & USR2_TXDC)) {
994 		imx_uart_transmit_buffer(sport);
995 		ret = IRQ_HANDLED;
996 	}
997 
998 	if (usr1 & USR1_DTRD) {
999 		imx_uart_writel(sport, USR1_DTRD, USR1);
1000 
1001 		imx_uart_mctrl_check(sport);
1002 
1003 		ret = IRQ_HANDLED;
1004 	}
1005 
1006 	if (usr1 & USR1_RTSD) {
1007 		__imx_uart_rtsint(irq, dev_id);
1008 		ret = IRQ_HANDLED;
1009 	}
1010 
1011 	if (usr1 & USR1_AWAKE) {
1012 		imx_uart_writel(sport, USR1_AWAKE, USR1);
1013 		ret = IRQ_HANDLED;
1014 	}
1015 
1016 	if (usr2 & USR2_ORE) {
1017 		sport->port.icount.overrun++;
1018 		imx_uart_writel(sport, USR2_ORE, USR2);
1019 		ret = IRQ_HANDLED;
1020 	}
1021 
1022 	spin_unlock_irqrestore(&sport->port.lock, flags);
1023 
1024 	return ret;
1025 }
1026 
1027 /*
1028  * Return TIOCSER_TEMT when transmitter is not busy.
1029  */
1030 static unsigned int imx_uart_tx_empty(struct uart_port *port)
1031 {
1032 	struct imx_port *sport = (struct imx_port *)port;
1033 	unsigned int ret;
1034 
1035 	ret = (imx_uart_readl(sport, USR2) & USR2_TXDC) ?  TIOCSER_TEMT : 0;
1036 
1037 	/* If the TX DMA is working, return 0. */
1038 	if (sport->dma_is_txing)
1039 		ret = 0;
1040 
1041 	return ret;
1042 }
1043 
1044 /* called with port.lock taken and irqs off */
1045 static unsigned int imx_uart_get_mctrl(struct uart_port *port)
1046 {
1047 	struct imx_port *sport = (struct imx_port *)port;
1048 	unsigned int ret = imx_uart_get_hwmctrl(sport);
1049 
1050 	mctrl_gpio_get(sport->gpios, &ret);
1051 
1052 	return ret;
1053 }
1054 
1055 /* called with port.lock taken and irqs off */
1056 static void imx_uart_set_mctrl(struct uart_port *port, unsigned int mctrl)
1057 {
1058 	struct imx_port *sport = (struct imx_port *)port;
1059 	u32 ucr3, uts;
1060 
1061 	if (!(port->rs485.flags & SER_RS485_ENABLED)) {
1062 		u32 ucr2;
1063 
1064 		/*
1065 		 * Turn off autoRTS if RTS is lowered and restore autoRTS
1066 		 * setting if RTS is raised.
1067 		 */
1068 		ucr2 = imx_uart_readl(sport, UCR2);
1069 		ucr2 &= ~(UCR2_CTS | UCR2_CTSC);
1070 		if (mctrl & TIOCM_RTS) {
1071 			ucr2 |= UCR2_CTS;
1072 			/*
1073 			 * UCR2_IRTS is unset if and only if the port is
1074 			 * configured for CRTSCTS, so we use inverted UCR2_IRTS
1075 			 * to get the state to restore to.
1076 			 */
1077 			if (!(ucr2 & UCR2_IRTS))
1078 				ucr2 |= UCR2_CTSC;
1079 		}
1080 		imx_uart_writel(sport, ucr2, UCR2);
1081 	}
1082 
1083 	ucr3 = imx_uart_readl(sport, UCR3) & ~UCR3_DSR;
1084 	if (!(mctrl & TIOCM_DTR))
1085 		ucr3 |= UCR3_DSR;
1086 	imx_uart_writel(sport, ucr3, UCR3);
1087 
1088 	uts = imx_uart_readl(sport, imx_uart_uts_reg(sport)) & ~UTS_LOOP;
1089 	if (mctrl & TIOCM_LOOP)
1090 		uts |= UTS_LOOP;
1091 	imx_uart_writel(sport, uts, imx_uart_uts_reg(sport));
1092 
1093 	mctrl_gpio_set(sport->gpios, mctrl);
1094 }
1095 
1096 /*
1097  * Interrupts always disabled.
1098  */
1099 static void imx_uart_break_ctl(struct uart_port *port, int break_state)
1100 {
1101 	struct imx_port *sport = (struct imx_port *)port;
1102 	unsigned long flags;
1103 	u32 ucr1;
1104 
1105 	spin_lock_irqsave(&sport->port.lock, flags);
1106 
1107 	ucr1 = imx_uart_readl(sport, UCR1) & ~UCR1_SNDBRK;
1108 
1109 	if (break_state != 0)
1110 		ucr1 |= UCR1_SNDBRK;
1111 
1112 	imx_uart_writel(sport, ucr1, UCR1);
1113 
1114 	spin_unlock_irqrestore(&sport->port.lock, flags);
1115 }
1116 
1117 /*
1118  * This is our per-port timeout handler, for checking the
1119  * modem status signals.
1120  */
1121 static void imx_uart_timeout(struct timer_list *t)
1122 {
1123 	struct imx_port *sport = from_timer(sport, t, timer);
1124 	unsigned long flags;
1125 
1126 	if (sport->port.state) {
1127 		spin_lock_irqsave(&sport->port.lock, flags);
1128 		imx_uart_mctrl_check(sport);
1129 		spin_unlock_irqrestore(&sport->port.lock, flags);
1130 
1131 		mod_timer(&sport->timer, jiffies + MCTRL_TIMEOUT);
1132 	}
1133 }
1134 
1135 /*
1136  * There are two kinds of RX DMA interrupts(such as in the MX6Q):
1137  *   [1] the RX DMA buffer is full.
1138  *   [2] the aging timer expires
1139  *
1140  * Condition [2] is triggered when a character has been sitting in the FIFO
1141  * for at least 8 byte durations.
1142  */
1143 static void imx_uart_dma_rx_callback(void *data)
1144 {
1145 	struct imx_port *sport = data;
1146 	struct dma_chan	*chan = sport->dma_chan_rx;
1147 	struct scatterlist *sgl = &sport->rx_sgl;
1148 	struct tty_port *port = &sport->port.state->port;
1149 	struct dma_tx_state state;
1150 	struct circ_buf *rx_ring = &sport->rx_ring;
1151 	enum dma_status status;
1152 	unsigned int w_bytes = 0;
1153 	unsigned int r_bytes;
1154 	unsigned int bd_size;
1155 
1156 	status = dmaengine_tx_status(chan, sport->rx_cookie, &state);
1157 
1158 	if (status == DMA_ERROR) {
1159 		imx_uart_clear_rx_errors(sport);
1160 		return;
1161 	}
1162 
1163 	if (!(sport->port.ignore_status_mask & URXD_DUMMY_READ)) {
1164 
1165 		/*
1166 		 * The state-residue variable represents the empty space
1167 		 * relative to the entire buffer. Taking this in consideration
1168 		 * the head is always calculated base on the buffer total
1169 		 * length - DMA transaction residue. The UART script from the
1170 		 * SDMA firmware will jump to the next buffer descriptor,
1171 		 * once a DMA transaction if finalized (IMX53 RM - A.4.1.2.4).
1172 		 * Taking this in consideration the tail is always at the
1173 		 * beginning of the buffer descriptor that contains the head.
1174 		 */
1175 
1176 		/* Calculate the head */
1177 		rx_ring->head = sg_dma_len(sgl) - state.residue;
1178 
1179 		/* Calculate the tail. */
1180 		bd_size = sg_dma_len(sgl) / sport->rx_periods;
1181 		rx_ring->tail = ((rx_ring->head-1) / bd_size) * bd_size;
1182 
1183 		if (rx_ring->head <= sg_dma_len(sgl) &&
1184 		    rx_ring->head > rx_ring->tail) {
1185 
1186 			/* Move data from tail to head */
1187 			r_bytes = rx_ring->head - rx_ring->tail;
1188 
1189 			/* CPU claims ownership of RX DMA buffer */
1190 			dma_sync_sg_for_cpu(sport->port.dev, sgl, 1,
1191 				DMA_FROM_DEVICE);
1192 
1193 			w_bytes = tty_insert_flip_string(port,
1194 				sport->rx_buf + rx_ring->tail, r_bytes);
1195 
1196 			/* UART retrieves ownership of RX DMA buffer */
1197 			dma_sync_sg_for_device(sport->port.dev, sgl, 1,
1198 				DMA_FROM_DEVICE);
1199 
1200 			if (w_bytes != r_bytes)
1201 				sport->port.icount.buf_overrun++;
1202 
1203 			sport->port.icount.rx += w_bytes;
1204 		} else	{
1205 			WARN_ON(rx_ring->head > sg_dma_len(sgl));
1206 			WARN_ON(rx_ring->head <= rx_ring->tail);
1207 		}
1208 	}
1209 
1210 	if (w_bytes) {
1211 		tty_flip_buffer_push(port);
1212 		dev_dbg(sport->port.dev, "We get %d bytes.\n", w_bytes);
1213 	}
1214 }
1215 
1216 /* RX DMA buffer periods */
1217 #define RX_DMA_PERIODS	16
1218 #define RX_BUF_SIZE	(RX_DMA_PERIODS * PAGE_SIZE / 4)
1219 
1220 static int imx_uart_start_rx_dma(struct imx_port *sport)
1221 {
1222 	struct scatterlist *sgl = &sport->rx_sgl;
1223 	struct dma_chan	*chan = sport->dma_chan_rx;
1224 	struct device *dev = sport->port.dev;
1225 	struct dma_async_tx_descriptor *desc;
1226 	int ret;
1227 
1228 	sport->rx_ring.head = 0;
1229 	sport->rx_ring.tail = 0;
1230 	sport->rx_periods = RX_DMA_PERIODS;
1231 
1232 	sg_init_one(sgl, sport->rx_buf, RX_BUF_SIZE);
1233 	ret = dma_map_sg(dev, sgl, 1, DMA_FROM_DEVICE);
1234 	if (ret == 0) {
1235 		dev_err(dev, "DMA mapping error for RX.\n");
1236 		return -EINVAL;
1237 	}
1238 
1239 	desc = dmaengine_prep_dma_cyclic(chan, sg_dma_address(sgl),
1240 		sg_dma_len(sgl), sg_dma_len(sgl) / sport->rx_periods,
1241 		DMA_DEV_TO_MEM, DMA_PREP_INTERRUPT);
1242 
1243 	if (!desc) {
1244 		dma_unmap_sg(dev, sgl, 1, DMA_FROM_DEVICE);
1245 		dev_err(dev, "We cannot prepare for the RX slave dma!\n");
1246 		return -EINVAL;
1247 	}
1248 	desc->callback = imx_uart_dma_rx_callback;
1249 	desc->callback_param = sport;
1250 
1251 	dev_dbg(dev, "RX: prepare for the DMA.\n");
1252 	sport->dma_is_rxing = 1;
1253 	sport->rx_cookie = dmaengine_submit(desc);
1254 	dma_async_issue_pending(chan);
1255 	return 0;
1256 }
1257 
1258 static void imx_uart_clear_rx_errors(struct imx_port *sport)
1259 {
1260 	struct tty_port *port = &sport->port.state->port;
1261 	u32 usr1, usr2;
1262 
1263 	usr1 = imx_uart_readl(sport, USR1);
1264 	usr2 = imx_uart_readl(sport, USR2);
1265 
1266 	if (usr2 & USR2_BRCD) {
1267 		sport->port.icount.brk++;
1268 		imx_uart_writel(sport, USR2_BRCD, USR2);
1269 		uart_handle_break(&sport->port);
1270 		if (tty_insert_flip_char(port, 0, TTY_BREAK) == 0)
1271 			sport->port.icount.buf_overrun++;
1272 		tty_flip_buffer_push(port);
1273 	} else {
1274 		if (usr1 & USR1_FRAMERR) {
1275 			sport->port.icount.frame++;
1276 			imx_uart_writel(sport, USR1_FRAMERR, USR1);
1277 		} else if (usr1 & USR1_PARITYERR) {
1278 			sport->port.icount.parity++;
1279 			imx_uart_writel(sport, USR1_PARITYERR, USR1);
1280 		}
1281 	}
1282 
1283 	if (usr2 & USR2_ORE) {
1284 		sport->port.icount.overrun++;
1285 		imx_uart_writel(sport, USR2_ORE, USR2);
1286 	}
1287 
1288 }
1289 
1290 #define TXTL_DEFAULT 2 /* reset default */
1291 #define RXTL_DEFAULT 1 /* reset default */
1292 #define TXTL_DMA 8 /* DMA burst setting */
1293 #define RXTL_DMA 9 /* DMA burst setting */
1294 
1295 static void imx_uart_setup_ufcr(struct imx_port *sport,
1296 				unsigned char txwl, unsigned char rxwl)
1297 {
1298 	unsigned int val;
1299 
1300 	/* set receiver / transmitter trigger level */
1301 	val = imx_uart_readl(sport, UFCR) & (UFCR_RFDIV | UFCR_DCEDTE);
1302 	val |= txwl << UFCR_TXTL_SHF | rxwl;
1303 	imx_uart_writel(sport, val, UFCR);
1304 }
1305 
1306 static void imx_uart_dma_exit(struct imx_port *sport)
1307 {
1308 	if (sport->dma_chan_rx) {
1309 		dmaengine_terminate_sync(sport->dma_chan_rx);
1310 		dma_release_channel(sport->dma_chan_rx);
1311 		sport->dma_chan_rx = NULL;
1312 		sport->rx_cookie = -EINVAL;
1313 		kfree(sport->rx_buf);
1314 		sport->rx_buf = NULL;
1315 	}
1316 
1317 	if (sport->dma_chan_tx) {
1318 		dmaengine_terminate_sync(sport->dma_chan_tx);
1319 		dma_release_channel(sport->dma_chan_tx);
1320 		sport->dma_chan_tx = NULL;
1321 	}
1322 }
1323 
1324 static int imx_uart_dma_init(struct imx_port *sport)
1325 {
1326 	struct dma_slave_config slave_config = {};
1327 	struct device *dev = sport->port.dev;
1328 	int ret;
1329 
1330 	/* Prepare for RX : */
1331 	sport->dma_chan_rx = dma_request_slave_channel(dev, "rx");
1332 	if (!sport->dma_chan_rx) {
1333 		dev_dbg(dev, "cannot get the DMA channel.\n");
1334 		ret = -EINVAL;
1335 		goto err;
1336 	}
1337 
1338 	slave_config.direction = DMA_DEV_TO_MEM;
1339 	slave_config.src_addr = sport->port.mapbase + URXD0;
1340 	slave_config.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
1341 	/* one byte less than the watermark level to enable the aging timer */
1342 	slave_config.src_maxburst = RXTL_DMA - 1;
1343 	ret = dmaengine_slave_config(sport->dma_chan_rx, &slave_config);
1344 	if (ret) {
1345 		dev_err(dev, "error in RX dma configuration.\n");
1346 		goto err;
1347 	}
1348 
1349 	sport->rx_buf = kzalloc(RX_BUF_SIZE, GFP_KERNEL);
1350 	if (!sport->rx_buf) {
1351 		ret = -ENOMEM;
1352 		goto err;
1353 	}
1354 	sport->rx_ring.buf = sport->rx_buf;
1355 
1356 	/* Prepare for TX : */
1357 	sport->dma_chan_tx = dma_request_slave_channel(dev, "tx");
1358 	if (!sport->dma_chan_tx) {
1359 		dev_err(dev, "cannot get the TX DMA channel!\n");
1360 		ret = -EINVAL;
1361 		goto err;
1362 	}
1363 
1364 	slave_config.direction = DMA_MEM_TO_DEV;
1365 	slave_config.dst_addr = sport->port.mapbase + URTX0;
1366 	slave_config.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
1367 	slave_config.dst_maxburst = TXTL_DMA;
1368 	ret = dmaengine_slave_config(sport->dma_chan_tx, &slave_config);
1369 	if (ret) {
1370 		dev_err(dev, "error in TX dma configuration.");
1371 		goto err;
1372 	}
1373 
1374 	return 0;
1375 err:
1376 	imx_uart_dma_exit(sport);
1377 	return ret;
1378 }
1379 
1380 static void imx_uart_enable_dma(struct imx_port *sport)
1381 {
1382 	u32 ucr1;
1383 
1384 	imx_uart_setup_ufcr(sport, TXTL_DMA, RXTL_DMA);
1385 
1386 	/* set UCR1 */
1387 	ucr1 = imx_uart_readl(sport, UCR1);
1388 	ucr1 |= UCR1_RXDMAEN | UCR1_TXDMAEN | UCR1_ATDMAEN;
1389 	imx_uart_writel(sport, ucr1, UCR1);
1390 
1391 	sport->dma_is_enabled = 1;
1392 }
1393 
1394 static void imx_uart_disable_dma(struct imx_port *sport)
1395 {
1396 	u32 ucr1;
1397 
1398 	/* clear UCR1 */
1399 	ucr1 = imx_uart_readl(sport, UCR1);
1400 	ucr1 &= ~(UCR1_RXDMAEN | UCR1_TXDMAEN | UCR1_ATDMAEN);
1401 	imx_uart_writel(sport, ucr1, UCR1);
1402 
1403 	imx_uart_setup_ufcr(sport, TXTL_DEFAULT, RXTL_DEFAULT);
1404 
1405 	sport->dma_is_enabled = 0;
1406 }
1407 
1408 /* half the RX buffer size */
1409 #define CTSTL 16
1410 
1411 static int imx_uart_startup(struct uart_port *port)
1412 {
1413 	struct imx_port *sport = (struct imx_port *)port;
1414 	int retval, i;
1415 	unsigned long flags;
1416 	int dma_is_inited = 0;
1417 	u32 ucr1, ucr2, ucr3, ucr4;
1418 
1419 	retval = clk_prepare_enable(sport->clk_per);
1420 	if (retval)
1421 		return retval;
1422 	retval = clk_prepare_enable(sport->clk_ipg);
1423 	if (retval) {
1424 		clk_disable_unprepare(sport->clk_per);
1425 		return retval;
1426 	}
1427 
1428 	imx_uart_setup_ufcr(sport, TXTL_DEFAULT, RXTL_DEFAULT);
1429 
1430 	/* disable the DREN bit (Data Ready interrupt enable) before
1431 	 * requesting IRQs
1432 	 */
1433 	ucr4 = imx_uart_readl(sport, UCR4);
1434 
1435 	/* set the trigger level for CTS */
1436 	ucr4 &= ~(UCR4_CTSTL_MASK << UCR4_CTSTL_SHF);
1437 	ucr4 |= CTSTL << UCR4_CTSTL_SHF;
1438 
1439 	imx_uart_writel(sport, ucr4 & ~UCR4_DREN, UCR4);
1440 
1441 	/* Can we enable the DMA support? */
1442 	if (!uart_console(port) && imx_uart_dma_init(sport) == 0)
1443 		dma_is_inited = 1;
1444 
1445 	spin_lock_irqsave(&sport->port.lock, flags);
1446 	/* Reset fifo's and state machines */
1447 	i = 100;
1448 
1449 	ucr2 = imx_uart_readl(sport, UCR2);
1450 	ucr2 &= ~UCR2_SRST;
1451 	imx_uart_writel(sport, ucr2, UCR2);
1452 
1453 	while (!(imx_uart_readl(sport, UCR2) & UCR2_SRST) && (--i > 0))
1454 		udelay(1);
1455 
1456 	/*
1457 	 * Finally, clear and enable interrupts
1458 	 */
1459 	imx_uart_writel(sport, USR1_RTSD | USR1_DTRD, USR1);
1460 	imx_uart_writel(sport, USR2_ORE, USR2);
1461 
1462 	ucr1 = imx_uart_readl(sport, UCR1) & ~UCR1_RRDYEN;
1463 	ucr1 |= UCR1_UARTEN;
1464 	if (sport->have_rtscts)
1465 		ucr1 |= UCR1_RTSDEN;
1466 
1467 	imx_uart_writel(sport, ucr1, UCR1);
1468 
1469 	ucr4 = imx_uart_readl(sport, UCR4) & ~(UCR4_OREN | UCR4_INVR);
1470 	if (!sport->dma_is_enabled)
1471 		ucr4 |= UCR4_OREN;
1472 	if (sport->inverted_rx)
1473 		ucr4 |= UCR4_INVR;
1474 	imx_uart_writel(sport, ucr4, UCR4);
1475 
1476 	ucr3 = imx_uart_readl(sport, UCR3) & ~UCR3_INVT;
1477 	/*
1478 	 * configure tx polarity before enabling tx
1479 	 */
1480 	if (sport->inverted_tx)
1481 		ucr3 |= UCR3_INVT;
1482 
1483 	if (!imx_uart_is_imx1(sport)) {
1484 		ucr3 |= UCR3_DTRDEN | UCR3_RI | UCR3_DCD;
1485 
1486 		if (sport->dte_mode)
1487 			/* disable broken interrupts */
1488 			ucr3 &= ~(UCR3_RI | UCR3_DCD);
1489 	}
1490 	imx_uart_writel(sport, ucr3, UCR3);
1491 
1492 	ucr2 = imx_uart_readl(sport, UCR2) & ~UCR2_ATEN;
1493 	ucr2 |= (UCR2_RXEN | UCR2_TXEN);
1494 	if (!sport->have_rtscts)
1495 		ucr2 |= UCR2_IRTS;
1496 	/*
1497 	 * make sure the edge sensitive RTS-irq is disabled,
1498 	 * we're using RTSD instead.
1499 	 */
1500 	if (!imx_uart_is_imx1(sport))
1501 		ucr2 &= ~UCR2_RTSEN;
1502 	imx_uart_writel(sport, ucr2, UCR2);
1503 
1504 	/*
1505 	 * Enable modem status interrupts
1506 	 */
1507 	imx_uart_enable_ms(&sport->port);
1508 
1509 	if (dma_is_inited) {
1510 		imx_uart_enable_dma(sport);
1511 		imx_uart_start_rx_dma(sport);
1512 	} else {
1513 		ucr1 = imx_uart_readl(sport, UCR1);
1514 		ucr1 |= UCR1_RRDYEN;
1515 		imx_uart_writel(sport, ucr1, UCR1);
1516 
1517 		ucr2 = imx_uart_readl(sport, UCR2);
1518 		ucr2 |= UCR2_ATEN;
1519 		imx_uart_writel(sport, ucr2, UCR2);
1520 	}
1521 
1522 	spin_unlock_irqrestore(&sport->port.lock, flags);
1523 
1524 	return 0;
1525 }
1526 
1527 static void imx_uart_shutdown(struct uart_port *port)
1528 {
1529 	struct imx_port *sport = (struct imx_port *)port;
1530 	unsigned long flags;
1531 	u32 ucr1, ucr2, ucr4;
1532 
1533 	if (sport->dma_is_enabled) {
1534 		dmaengine_terminate_sync(sport->dma_chan_tx);
1535 		if (sport->dma_is_txing) {
1536 			dma_unmap_sg(sport->port.dev, &sport->tx_sgl[0],
1537 				     sport->dma_tx_nents, DMA_TO_DEVICE);
1538 			sport->dma_is_txing = 0;
1539 		}
1540 		dmaengine_terminate_sync(sport->dma_chan_rx);
1541 		if (sport->dma_is_rxing) {
1542 			dma_unmap_sg(sport->port.dev, &sport->rx_sgl,
1543 				     1, DMA_FROM_DEVICE);
1544 			sport->dma_is_rxing = 0;
1545 		}
1546 
1547 		spin_lock_irqsave(&sport->port.lock, flags);
1548 		imx_uart_stop_tx(port);
1549 		imx_uart_stop_rx(port);
1550 		imx_uart_disable_dma(sport);
1551 		spin_unlock_irqrestore(&sport->port.lock, flags);
1552 		imx_uart_dma_exit(sport);
1553 	}
1554 
1555 	mctrl_gpio_disable_ms(sport->gpios);
1556 
1557 	spin_lock_irqsave(&sport->port.lock, flags);
1558 	ucr2 = imx_uart_readl(sport, UCR2);
1559 	ucr2 &= ~(UCR2_TXEN | UCR2_ATEN);
1560 	imx_uart_writel(sport, ucr2, UCR2);
1561 	spin_unlock_irqrestore(&sport->port.lock, flags);
1562 
1563 	/*
1564 	 * Stop our timer.
1565 	 */
1566 	del_timer_sync(&sport->timer);
1567 
1568 	/*
1569 	 * Disable all interrupts, port and break condition.
1570 	 */
1571 
1572 	spin_lock_irqsave(&sport->port.lock, flags);
1573 
1574 	ucr1 = imx_uart_readl(sport, UCR1);
1575 	ucr1 &= ~(UCR1_TRDYEN | UCR1_RRDYEN | UCR1_RTSDEN | UCR1_UARTEN | UCR1_RXDMAEN | UCR1_ATDMAEN);
1576 	imx_uart_writel(sport, ucr1, UCR1);
1577 
1578 	ucr4 = imx_uart_readl(sport, UCR4);
1579 	ucr4 &= ~(UCR4_OREN | UCR4_TCEN);
1580 	imx_uart_writel(sport, ucr4, UCR4);
1581 
1582 	spin_unlock_irqrestore(&sport->port.lock, flags);
1583 
1584 	clk_disable_unprepare(sport->clk_per);
1585 	clk_disable_unprepare(sport->clk_ipg);
1586 }
1587 
1588 /* called with port.lock taken and irqs off */
1589 static void imx_uart_flush_buffer(struct uart_port *port)
1590 {
1591 	struct imx_port *sport = (struct imx_port *)port;
1592 	struct scatterlist *sgl = &sport->tx_sgl[0];
1593 	u32 ucr2;
1594 	int i = 100, ubir, ubmr, uts;
1595 
1596 	if (!sport->dma_chan_tx)
1597 		return;
1598 
1599 	sport->tx_bytes = 0;
1600 	dmaengine_terminate_all(sport->dma_chan_tx);
1601 	if (sport->dma_is_txing) {
1602 		u32 ucr1;
1603 
1604 		dma_unmap_sg(sport->port.dev, sgl, sport->dma_tx_nents,
1605 			     DMA_TO_DEVICE);
1606 		ucr1 = imx_uart_readl(sport, UCR1);
1607 		ucr1 &= ~UCR1_TXDMAEN;
1608 		imx_uart_writel(sport, ucr1, UCR1);
1609 		sport->dma_is_txing = 0;
1610 	}
1611 
1612 	/*
1613 	 * According to the Reference Manual description of the UART SRST bit:
1614 	 *
1615 	 * "Reset the transmit and receive state machines,
1616 	 * all FIFOs and register USR1, USR2, UBIR, UBMR, UBRC, URXD, UTXD
1617 	 * and UTS[6-3]".
1618 	 *
1619 	 * We don't need to restore the old values from USR1, USR2, URXD and
1620 	 * UTXD. UBRC is read only, so only save/restore the other three
1621 	 * registers.
1622 	 */
1623 	ubir = imx_uart_readl(sport, UBIR);
1624 	ubmr = imx_uart_readl(sport, UBMR);
1625 	uts = imx_uart_readl(sport, IMX21_UTS);
1626 
1627 	ucr2 = imx_uart_readl(sport, UCR2);
1628 	ucr2 &= ~UCR2_SRST;
1629 	imx_uart_writel(sport, ucr2, UCR2);
1630 
1631 	while (!(imx_uart_readl(sport, UCR2) & UCR2_SRST) && (--i > 0))
1632 		udelay(1);
1633 
1634 	/* Restore the registers */
1635 	imx_uart_writel(sport, ubir, UBIR);
1636 	imx_uart_writel(sport, ubmr, UBMR);
1637 	imx_uart_writel(sport, uts, IMX21_UTS);
1638 }
1639 
1640 static void
1641 imx_uart_set_termios(struct uart_port *port, struct ktermios *termios,
1642 		     struct ktermios *old)
1643 {
1644 	struct imx_port *sport = (struct imx_port *)port;
1645 	unsigned long flags;
1646 	u32 ucr2, old_ucr2, ufcr;
1647 	unsigned int baud, quot;
1648 	unsigned int old_csize = old ? old->c_cflag & CSIZE : CS8;
1649 	unsigned long div;
1650 	unsigned long num, denom, old_ubir, old_ubmr;
1651 	uint64_t tdiv64;
1652 
1653 	/*
1654 	 * We only support CS7 and CS8.
1655 	 */
1656 	while ((termios->c_cflag & CSIZE) != CS7 &&
1657 	       (termios->c_cflag & CSIZE) != CS8) {
1658 		termios->c_cflag &= ~CSIZE;
1659 		termios->c_cflag |= old_csize;
1660 		old_csize = CS8;
1661 	}
1662 
1663 	del_timer_sync(&sport->timer);
1664 
1665 	/*
1666 	 * Ask the core to calculate the divisor for us.
1667 	 */
1668 	baud = uart_get_baud_rate(port, termios, old, 50, port->uartclk / 16);
1669 	quot = uart_get_divisor(port, baud);
1670 
1671 	spin_lock_irqsave(&sport->port.lock, flags);
1672 
1673 	/*
1674 	 * Read current UCR2 and save it for future use, then clear all the bits
1675 	 * except those we will or may need to preserve.
1676 	 */
1677 	old_ucr2 = imx_uart_readl(sport, UCR2);
1678 	ucr2 = old_ucr2 & (UCR2_TXEN | UCR2_RXEN | UCR2_ATEN | UCR2_CTS);
1679 
1680 	ucr2 |= UCR2_SRST | UCR2_IRTS;
1681 	if ((termios->c_cflag & CSIZE) == CS8)
1682 		ucr2 |= UCR2_WS;
1683 
1684 	if (!sport->have_rtscts)
1685 		termios->c_cflag &= ~CRTSCTS;
1686 
1687 	if (port->rs485.flags & SER_RS485_ENABLED) {
1688 		/*
1689 		 * RTS is mandatory for rs485 operation, so keep
1690 		 * it under manual control and keep transmitter
1691 		 * disabled.
1692 		 */
1693 		if (port->rs485.flags & SER_RS485_RTS_AFTER_SEND)
1694 			imx_uart_rts_active(sport, &ucr2);
1695 		else
1696 			imx_uart_rts_inactive(sport, &ucr2);
1697 
1698 	} else if (termios->c_cflag & CRTSCTS) {
1699 		/*
1700 		 * Only let receiver control RTS output if we were not requested
1701 		 * to have RTS inactive (which then should take precedence).
1702 		 */
1703 		if (ucr2 & UCR2_CTS)
1704 			ucr2 |= UCR2_CTSC;
1705 	}
1706 
1707 	if (termios->c_cflag & CRTSCTS)
1708 		ucr2 &= ~UCR2_IRTS;
1709 	if (termios->c_cflag & CSTOPB)
1710 		ucr2 |= UCR2_STPB;
1711 	if (termios->c_cflag & PARENB) {
1712 		ucr2 |= UCR2_PREN;
1713 		if (termios->c_cflag & PARODD)
1714 			ucr2 |= UCR2_PROE;
1715 	}
1716 
1717 	sport->port.read_status_mask = 0;
1718 	if (termios->c_iflag & INPCK)
1719 		sport->port.read_status_mask |= (URXD_FRMERR | URXD_PRERR);
1720 	if (termios->c_iflag & (BRKINT | PARMRK))
1721 		sport->port.read_status_mask |= URXD_BRK;
1722 
1723 	/*
1724 	 * Characters to ignore
1725 	 */
1726 	sport->port.ignore_status_mask = 0;
1727 	if (termios->c_iflag & IGNPAR)
1728 		sport->port.ignore_status_mask |= URXD_PRERR | URXD_FRMERR;
1729 	if (termios->c_iflag & IGNBRK) {
1730 		sport->port.ignore_status_mask |= URXD_BRK;
1731 		/*
1732 		 * If we're ignoring parity and break indicators,
1733 		 * ignore overruns too (for real raw support).
1734 		 */
1735 		if (termios->c_iflag & IGNPAR)
1736 			sport->port.ignore_status_mask |= URXD_OVRRUN;
1737 	}
1738 
1739 	if ((termios->c_cflag & CREAD) == 0)
1740 		sport->port.ignore_status_mask |= URXD_DUMMY_READ;
1741 
1742 	/*
1743 	 * Update the per-port timeout.
1744 	 */
1745 	uart_update_timeout(port, termios->c_cflag, baud);
1746 
1747 	/* custom-baudrate handling */
1748 	div = sport->port.uartclk / (baud * 16);
1749 	if (baud == 38400 && quot != div)
1750 		baud = sport->port.uartclk / (quot * 16);
1751 
1752 	div = sport->port.uartclk / (baud * 16);
1753 	if (div > 7)
1754 		div = 7;
1755 	if (!div)
1756 		div = 1;
1757 
1758 	rational_best_approximation(16 * div * baud, sport->port.uartclk,
1759 		1 << 16, 1 << 16, &num, &denom);
1760 
1761 	tdiv64 = sport->port.uartclk;
1762 	tdiv64 *= num;
1763 	do_div(tdiv64, denom * 16 * div);
1764 	tty_termios_encode_baud_rate(termios,
1765 				(speed_t)tdiv64, (speed_t)tdiv64);
1766 
1767 	num -= 1;
1768 	denom -= 1;
1769 
1770 	ufcr = imx_uart_readl(sport, UFCR);
1771 	ufcr = (ufcr & (~UFCR_RFDIV)) | UFCR_RFDIV_REG(div);
1772 	imx_uart_writel(sport, ufcr, UFCR);
1773 
1774 	/*
1775 	 *  Two registers below should always be written both and in this
1776 	 *  particular order. One consequence is that we need to check if any of
1777 	 *  them changes and then update both. We do need the check for change
1778 	 *  as even writing the same values seem to "restart"
1779 	 *  transmission/receiving logic in the hardware, that leads to data
1780 	 *  breakage even when rate doesn't in fact change. E.g., user switches
1781 	 *  RTS/CTS handshake and suddenly gets broken bytes.
1782 	 */
1783 	old_ubir = imx_uart_readl(sport, UBIR);
1784 	old_ubmr = imx_uart_readl(sport, UBMR);
1785 	if (old_ubir != num || old_ubmr != denom) {
1786 		imx_uart_writel(sport, num, UBIR);
1787 		imx_uart_writel(sport, denom, UBMR);
1788 	}
1789 
1790 	if (!imx_uart_is_imx1(sport))
1791 		imx_uart_writel(sport, sport->port.uartclk / div / 1000,
1792 				IMX21_ONEMS);
1793 
1794 	imx_uart_writel(sport, ucr2, UCR2);
1795 
1796 	if (UART_ENABLE_MS(&sport->port, termios->c_cflag))
1797 		imx_uart_enable_ms(&sport->port);
1798 
1799 	spin_unlock_irqrestore(&sport->port.lock, flags);
1800 }
1801 
1802 static const char *imx_uart_type(struct uart_port *port)
1803 {
1804 	struct imx_port *sport = (struct imx_port *)port;
1805 
1806 	return sport->port.type == PORT_IMX ? "IMX" : NULL;
1807 }
1808 
1809 /*
1810  * Configure/autoconfigure the port.
1811  */
1812 static void imx_uart_config_port(struct uart_port *port, int flags)
1813 {
1814 	struct imx_port *sport = (struct imx_port *)port;
1815 
1816 	if (flags & UART_CONFIG_TYPE)
1817 		sport->port.type = PORT_IMX;
1818 }
1819 
1820 /*
1821  * Verify the new serial_struct (for TIOCSSERIAL).
1822  * The only change we allow are to the flags and type, and
1823  * even then only between PORT_IMX and PORT_UNKNOWN
1824  */
1825 static int
1826 imx_uart_verify_port(struct uart_port *port, struct serial_struct *ser)
1827 {
1828 	struct imx_port *sport = (struct imx_port *)port;
1829 	int ret = 0;
1830 
1831 	if (ser->type != PORT_UNKNOWN && ser->type != PORT_IMX)
1832 		ret = -EINVAL;
1833 	if (sport->port.irq != ser->irq)
1834 		ret = -EINVAL;
1835 	if (ser->io_type != UPIO_MEM)
1836 		ret = -EINVAL;
1837 	if (sport->port.uartclk / 16 != ser->baud_base)
1838 		ret = -EINVAL;
1839 	if (sport->port.mapbase != (unsigned long)ser->iomem_base)
1840 		ret = -EINVAL;
1841 	if (sport->port.iobase != ser->port)
1842 		ret = -EINVAL;
1843 	if (ser->hub6 != 0)
1844 		ret = -EINVAL;
1845 	return ret;
1846 }
1847 
1848 #if defined(CONFIG_CONSOLE_POLL)
1849 
1850 static int imx_uart_poll_init(struct uart_port *port)
1851 {
1852 	struct imx_port *sport = (struct imx_port *)port;
1853 	unsigned long flags;
1854 	u32 ucr1, ucr2;
1855 	int retval;
1856 
1857 	retval = clk_prepare_enable(sport->clk_ipg);
1858 	if (retval)
1859 		return retval;
1860 	retval = clk_prepare_enable(sport->clk_per);
1861 	if (retval)
1862 		clk_disable_unprepare(sport->clk_ipg);
1863 
1864 	imx_uart_setup_ufcr(sport, TXTL_DEFAULT, RXTL_DEFAULT);
1865 
1866 	spin_lock_irqsave(&sport->port.lock, flags);
1867 
1868 	/*
1869 	 * Be careful about the order of enabling bits here. First enable the
1870 	 * receiver (UARTEN + RXEN) and only then the corresponding irqs.
1871 	 * This prevents that a character that already sits in the RX fifo is
1872 	 * triggering an irq but the try to fetch it from there results in an
1873 	 * exception because UARTEN or RXEN is still off.
1874 	 */
1875 	ucr1 = imx_uart_readl(sport, UCR1);
1876 	ucr2 = imx_uart_readl(sport, UCR2);
1877 
1878 	if (imx_uart_is_imx1(sport))
1879 		ucr1 |= IMX1_UCR1_UARTCLKEN;
1880 
1881 	ucr1 |= UCR1_UARTEN;
1882 	ucr1 &= ~(UCR1_TRDYEN | UCR1_RTSDEN | UCR1_RRDYEN);
1883 
1884 	ucr2 |= UCR2_RXEN;
1885 	ucr2 &= ~UCR2_ATEN;
1886 
1887 	imx_uart_writel(sport, ucr1, UCR1);
1888 	imx_uart_writel(sport, ucr2, UCR2);
1889 
1890 	/* now enable irqs */
1891 	imx_uart_writel(sport, ucr1 | UCR1_RRDYEN, UCR1);
1892 	imx_uart_writel(sport, ucr2 | UCR2_ATEN, UCR2);
1893 
1894 	spin_unlock_irqrestore(&sport->port.lock, flags);
1895 
1896 	return 0;
1897 }
1898 
1899 static int imx_uart_poll_get_char(struct uart_port *port)
1900 {
1901 	struct imx_port *sport = (struct imx_port *)port;
1902 	if (!(imx_uart_readl(sport, USR2) & USR2_RDR))
1903 		return NO_POLL_CHAR;
1904 
1905 	return imx_uart_readl(sport, URXD0) & URXD_RX_DATA;
1906 }
1907 
1908 static void imx_uart_poll_put_char(struct uart_port *port, unsigned char c)
1909 {
1910 	struct imx_port *sport = (struct imx_port *)port;
1911 	unsigned int status;
1912 
1913 	/* drain */
1914 	do {
1915 		status = imx_uart_readl(sport, USR1);
1916 	} while (~status & USR1_TRDY);
1917 
1918 	/* write */
1919 	imx_uart_writel(sport, c, URTX0);
1920 
1921 	/* flush */
1922 	do {
1923 		status = imx_uart_readl(sport, USR2);
1924 	} while (~status & USR2_TXDC);
1925 }
1926 #endif
1927 
1928 /* called with port.lock taken and irqs off or from .probe without locking */
1929 static int imx_uart_rs485_config(struct uart_port *port,
1930 				 struct serial_rs485 *rs485conf)
1931 {
1932 	struct imx_port *sport = (struct imx_port *)port;
1933 	u32 ucr2;
1934 
1935 	/* RTS is required to control the transmitter */
1936 	if (!sport->have_rtscts && !sport->have_rtsgpio)
1937 		rs485conf->flags &= ~SER_RS485_ENABLED;
1938 
1939 	if (rs485conf->flags & SER_RS485_ENABLED) {
1940 		/* Enable receiver if low-active RTS signal is requested */
1941 		if (sport->have_rtscts &&  !sport->have_rtsgpio &&
1942 		    !(rs485conf->flags & SER_RS485_RTS_ON_SEND))
1943 			rs485conf->flags |= SER_RS485_RX_DURING_TX;
1944 
1945 		/* disable transmitter */
1946 		ucr2 = imx_uart_readl(sport, UCR2);
1947 		if (rs485conf->flags & SER_RS485_RTS_AFTER_SEND)
1948 			imx_uart_rts_active(sport, &ucr2);
1949 		else
1950 			imx_uart_rts_inactive(sport, &ucr2);
1951 		imx_uart_writel(sport, ucr2, UCR2);
1952 	}
1953 
1954 	/* Make sure Rx is enabled in case Tx is active with Rx disabled */
1955 	if (!(rs485conf->flags & SER_RS485_ENABLED) ||
1956 	    rs485conf->flags & SER_RS485_RX_DURING_TX)
1957 		imx_uart_start_rx(port);
1958 
1959 	port->rs485 = *rs485conf;
1960 
1961 	return 0;
1962 }
1963 
1964 static const struct uart_ops imx_uart_pops = {
1965 	.tx_empty	= imx_uart_tx_empty,
1966 	.set_mctrl	= imx_uart_set_mctrl,
1967 	.get_mctrl	= imx_uart_get_mctrl,
1968 	.stop_tx	= imx_uart_stop_tx,
1969 	.start_tx	= imx_uart_start_tx,
1970 	.stop_rx	= imx_uart_stop_rx,
1971 	.enable_ms	= imx_uart_enable_ms,
1972 	.break_ctl	= imx_uart_break_ctl,
1973 	.startup	= imx_uart_startup,
1974 	.shutdown	= imx_uart_shutdown,
1975 	.flush_buffer	= imx_uart_flush_buffer,
1976 	.set_termios	= imx_uart_set_termios,
1977 	.type		= imx_uart_type,
1978 	.config_port	= imx_uart_config_port,
1979 	.verify_port	= imx_uart_verify_port,
1980 #if defined(CONFIG_CONSOLE_POLL)
1981 	.poll_init      = imx_uart_poll_init,
1982 	.poll_get_char  = imx_uart_poll_get_char,
1983 	.poll_put_char  = imx_uart_poll_put_char,
1984 #endif
1985 };
1986 
1987 static struct imx_port *imx_uart_ports[UART_NR];
1988 
1989 #if IS_ENABLED(CONFIG_SERIAL_IMX_CONSOLE)
1990 static void imx_uart_console_putchar(struct uart_port *port, int ch)
1991 {
1992 	struct imx_port *sport = (struct imx_port *)port;
1993 
1994 	while (imx_uart_readl(sport, imx_uart_uts_reg(sport)) & UTS_TXFULL)
1995 		barrier();
1996 
1997 	imx_uart_writel(sport, ch, URTX0);
1998 }
1999 
2000 /*
2001  * Interrupts are disabled on entering
2002  */
2003 static void
2004 imx_uart_console_write(struct console *co, const char *s, unsigned int count)
2005 {
2006 	struct imx_port *sport = imx_uart_ports[co->index];
2007 	struct imx_port_ucrs old_ucr;
2008 	unsigned int ucr1;
2009 	unsigned long flags = 0;
2010 	int locked = 1;
2011 
2012 	if (sport->port.sysrq)
2013 		locked = 0;
2014 	else if (oops_in_progress)
2015 		locked = spin_trylock_irqsave(&sport->port.lock, flags);
2016 	else
2017 		spin_lock_irqsave(&sport->port.lock, flags);
2018 
2019 	/*
2020 	 *	First, save UCR1/2/3 and then disable interrupts
2021 	 */
2022 	imx_uart_ucrs_save(sport, &old_ucr);
2023 	ucr1 = old_ucr.ucr1;
2024 
2025 	if (imx_uart_is_imx1(sport))
2026 		ucr1 |= IMX1_UCR1_UARTCLKEN;
2027 	ucr1 |= UCR1_UARTEN;
2028 	ucr1 &= ~(UCR1_TRDYEN | UCR1_RRDYEN | UCR1_RTSDEN);
2029 
2030 	imx_uart_writel(sport, ucr1, UCR1);
2031 
2032 	imx_uart_writel(sport, old_ucr.ucr2 | UCR2_TXEN, UCR2);
2033 
2034 	uart_console_write(&sport->port, s, count, imx_uart_console_putchar);
2035 
2036 	/*
2037 	 *	Finally, wait for transmitter to become empty
2038 	 *	and restore UCR1/2/3
2039 	 */
2040 	while (!(imx_uart_readl(sport, USR2) & USR2_TXDC));
2041 
2042 	imx_uart_ucrs_restore(sport, &old_ucr);
2043 
2044 	if (locked)
2045 		spin_unlock_irqrestore(&sport->port.lock, flags);
2046 }
2047 
2048 /*
2049  * If the port was already initialised (eg, by a boot loader),
2050  * try to determine the current setup.
2051  */
2052 static void __init
2053 imx_uart_console_get_options(struct imx_port *sport, int *baud,
2054 			     int *parity, int *bits)
2055 {
2056 
2057 	if (imx_uart_readl(sport, UCR1) & UCR1_UARTEN) {
2058 		/* ok, the port was enabled */
2059 		unsigned int ucr2, ubir, ubmr, uartclk;
2060 		unsigned int baud_raw;
2061 		unsigned int ucfr_rfdiv;
2062 
2063 		ucr2 = imx_uart_readl(sport, UCR2);
2064 
2065 		*parity = 'n';
2066 		if (ucr2 & UCR2_PREN) {
2067 			if (ucr2 & UCR2_PROE)
2068 				*parity = 'o';
2069 			else
2070 				*parity = 'e';
2071 		}
2072 
2073 		if (ucr2 & UCR2_WS)
2074 			*bits = 8;
2075 		else
2076 			*bits = 7;
2077 
2078 		ubir = imx_uart_readl(sport, UBIR) & 0xffff;
2079 		ubmr = imx_uart_readl(sport, UBMR) & 0xffff;
2080 
2081 		ucfr_rfdiv = (imx_uart_readl(sport, UFCR) & UFCR_RFDIV) >> 7;
2082 		if (ucfr_rfdiv == 6)
2083 			ucfr_rfdiv = 7;
2084 		else
2085 			ucfr_rfdiv = 6 - ucfr_rfdiv;
2086 
2087 		uartclk = clk_get_rate(sport->clk_per);
2088 		uartclk /= ucfr_rfdiv;
2089 
2090 		{	/*
2091 			 * The next code provides exact computation of
2092 			 *   baud_raw = round(((uartclk/16) * (ubir + 1)) / (ubmr + 1))
2093 			 * without need of float support or long long division,
2094 			 * which would be required to prevent 32bit arithmetic overflow
2095 			 */
2096 			unsigned int mul = ubir + 1;
2097 			unsigned int div = 16 * (ubmr + 1);
2098 			unsigned int rem = uartclk % div;
2099 
2100 			baud_raw = (uartclk / div) * mul;
2101 			baud_raw += (rem * mul + div / 2) / div;
2102 			*baud = (baud_raw + 50) / 100 * 100;
2103 		}
2104 
2105 		if (*baud != baud_raw)
2106 			dev_info(sport->port.dev, "Console IMX rounded baud rate from %d to %d\n",
2107 				baud_raw, *baud);
2108 	}
2109 }
2110 
2111 static int __init
2112 imx_uart_console_setup(struct console *co, char *options)
2113 {
2114 	struct imx_port *sport;
2115 	int baud = 9600;
2116 	int bits = 8;
2117 	int parity = 'n';
2118 	int flow = 'n';
2119 	int retval;
2120 
2121 	/*
2122 	 * Check whether an invalid uart number has been specified, and
2123 	 * if so, search for the first available port that does have
2124 	 * console support.
2125 	 */
2126 	if (co->index == -1 || co->index >= ARRAY_SIZE(imx_uart_ports))
2127 		co->index = 0;
2128 	sport = imx_uart_ports[co->index];
2129 	if (sport == NULL)
2130 		return -ENODEV;
2131 
2132 	/* For setting the registers, we only need to enable the ipg clock. */
2133 	retval = clk_prepare_enable(sport->clk_ipg);
2134 	if (retval)
2135 		goto error_console;
2136 
2137 	if (options)
2138 		uart_parse_options(options, &baud, &parity, &bits, &flow);
2139 	else
2140 		imx_uart_console_get_options(sport, &baud, &parity, &bits);
2141 
2142 	imx_uart_setup_ufcr(sport, TXTL_DEFAULT, RXTL_DEFAULT);
2143 
2144 	retval = uart_set_options(&sport->port, co, baud, parity, bits, flow);
2145 
2146 	if (retval) {
2147 		clk_disable_unprepare(sport->clk_ipg);
2148 		goto error_console;
2149 	}
2150 
2151 	retval = clk_prepare_enable(sport->clk_per);
2152 	if (retval)
2153 		clk_disable_unprepare(sport->clk_ipg);
2154 
2155 error_console:
2156 	return retval;
2157 }
2158 
2159 static struct uart_driver imx_uart_uart_driver;
2160 static struct console imx_uart_console = {
2161 	.name		= DEV_NAME,
2162 	.write		= imx_uart_console_write,
2163 	.device		= uart_console_device,
2164 	.setup		= imx_uart_console_setup,
2165 	.flags		= CON_PRINTBUFFER,
2166 	.index		= -1,
2167 	.data		= &imx_uart_uart_driver,
2168 };
2169 
2170 #define IMX_CONSOLE	&imx_uart_console
2171 
2172 #else
2173 #define IMX_CONSOLE	NULL
2174 #endif
2175 
2176 static struct uart_driver imx_uart_uart_driver = {
2177 	.owner          = THIS_MODULE,
2178 	.driver_name    = DRIVER_NAME,
2179 	.dev_name       = DEV_NAME,
2180 	.major          = SERIAL_IMX_MAJOR,
2181 	.minor          = MINOR_START,
2182 	.nr             = ARRAY_SIZE(imx_uart_ports),
2183 	.cons           = IMX_CONSOLE,
2184 };
2185 
2186 #ifdef CONFIG_OF
2187 /*
2188  * This function returns 1 iff pdev isn't a device instatiated by dt, 0 iff it
2189  * could successfully get all information from dt or a negative errno.
2190  */
2191 static int imx_uart_probe_dt(struct imx_port *sport,
2192 			     struct platform_device *pdev)
2193 {
2194 	struct device_node *np = pdev->dev.of_node;
2195 	int ret;
2196 
2197 	sport->devdata = of_device_get_match_data(&pdev->dev);
2198 	if (!sport->devdata)
2199 		/* no device tree device */
2200 		return 1;
2201 
2202 	ret = of_alias_get_id(np, "serial");
2203 	if (ret < 0) {
2204 		dev_err(&pdev->dev, "failed to get alias id, errno %d\n", ret);
2205 		return ret;
2206 	}
2207 	sport->port.line = ret;
2208 
2209 	if (of_get_property(np, "uart-has-rtscts", NULL) ||
2210 	    of_get_property(np, "fsl,uart-has-rtscts", NULL) /* deprecated */)
2211 		sport->have_rtscts = 1;
2212 
2213 	if (of_get_property(np, "fsl,dte-mode", NULL))
2214 		sport->dte_mode = 1;
2215 
2216 	if (of_get_property(np, "rts-gpios", NULL))
2217 		sport->have_rtsgpio = 1;
2218 
2219 	if (of_get_property(np, "fsl,inverted-tx", NULL))
2220 		sport->inverted_tx = 1;
2221 
2222 	if (of_get_property(np, "fsl,inverted-rx", NULL))
2223 		sport->inverted_rx = 1;
2224 
2225 	return 0;
2226 }
2227 #else
2228 static inline int imx_uart_probe_dt(struct imx_port *sport,
2229 				    struct platform_device *pdev)
2230 {
2231 	return 1;
2232 }
2233 #endif
2234 
2235 static void imx_uart_probe_pdata(struct imx_port *sport,
2236 				 struct platform_device *pdev)
2237 {
2238 	struct imxuart_platform_data *pdata = dev_get_platdata(&pdev->dev);
2239 
2240 	sport->port.line = pdev->id;
2241 	sport->devdata = (struct imx_uart_data	*) pdev->id_entry->driver_data;
2242 
2243 	if (!pdata)
2244 		return;
2245 
2246 	if (pdata->flags & IMXUART_HAVE_RTSCTS)
2247 		sport->have_rtscts = 1;
2248 }
2249 
2250 static enum hrtimer_restart imx_trigger_start_tx(struct hrtimer *t)
2251 {
2252 	struct imx_port *sport = container_of(t, struct imx_port, trigger_start_tx);
2253 	unsigned long flags;
2254 
2255 	spin_lock_irqsave(&sport->port.lock, flags);
2256 	if (sport->tx_state == WAIT_AFTER_RTS)
2257 		imx_uart_start_tx(&sport->port);
2258 	spin_unlock_irqrestore(&sport->port.lock, flags);
2259 
2260 	return HRTIMER_NORESTART;
2261 }
2262 
2263 static enum hrtimer_restart imx_trigger_stop_tx(struct hrtimer *t)
2264 {
2265 	struct imx_port *sport = container_of(t, struct imx_port, trigger_stop_tx);
2266 	unsigned long flags;
2267 
2268 	spin_lock_irqsave(&sport->port.lock, flags);
2269 	if (sport->tx_state == WAIT_AFTER_SEND)
2270 		imx_uart_stop_tx(&sport->port);
2271 	spin_unlock_irqrestore(&sport->port.lock, flags);
2272 
2273 	return HRTIMER_NORESTART;
2274 }
2275 
2276 static int imx_uart_probe(struct platform_device *pdev)
2277 {
2278 	struct imx_port *sport;
2279 	void __iomem *base;
2280 	int ret = 0;
2281 	u32 ucr1;
2282 	struct resource *res;
2283 	int txirq, rxirq, rtsirq;
2284 
2285 	sport = devm_kzalloc(&pdev->dev, sizeof(*sport), GFP_KERNEL);
2286 	if (!sport)
2287 		return -ENOMEM;
2288 
2289 	ret = imx_uart_probe_dt(sport, pdev);
2290 	if (ret > 0)
2291 		imx_uart_probe_pdata(sport, pdev);
2292 	else if (ret < 0)
2293 		return ret;
2294 
2295 	if (sport->port.line >= ARRAY_SIZE(imx_uart_ports)) {
2296 		dev_err(&pdev->dev, "serial%d out of range\n",
2297 			sport->port.line);
2298 		return -EINVAL;
2299 	}
2300 
2301 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2302 	base = devm_ioremap_resource(&pdev->dev, res);
2303 	if (IS_ERR(base))
2304 		return PTR_ERR(base);
2305 
2306 	rxirq = platform_get_irq(pdev, 0);
2307 	if (rxirq < 0)
2308 		return rxirq;
2309 	txirq = platform_get_irq_optional(pdev, 1);
2310 	rtsirq = platform_get_irq_optional(pdev, 2);
2311 
2312 	sport->port.dev = &pdev->dev;
2313 	sport->port.mapbase = res->start;
2314 	sport->port.membase = base;
2315 	sport->port.type = PORT_IMX,
2316 	sport->port.iotype = UPIO_MEM;
2317 	sport->port.irq = rxirq;
2318 	sport->port.fifosize = 32;
2319 	sport->port.has_sysrq = IS_ENABLED(CONFIG_SERIAL_IMX_CONSOLE);
2320 	sport->port.ops = &imx_uart_pops;
2321 	sport->port.rs485_config = imx_uart_rs485_config;
2322 	sport->port.flags = UPF_BOOT_AUTOCONF;
2323 	timer_setup(&sport->timer, imx_uart_timeout, 0);
2324 
2325 	sport->gpios = mctrl_gpio_init(&sport->port, 0);
2326 	if (IS_ERR(sport->gpios))
2327 		return PTR_ERR(sport->gpios);
2328 
2329 	sport->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
2330 	if (IS_ERR(sport->clk_ipg)) {
2331 		ret = PTR_ERR(sport->clk_ipg);
2332 		dev_err(&pdev->dev, "failed to get ipg clk: %d\n", ret);
2333 		return ret;
2334 	}
2335 
2336 	sport->clk_per = devm_clk_get(&pdev->dev, "per");
2337 	if (IS_ERR(sport->clk_per)) {
2338 		ret = PTR_ERR(sport->clk_per);
2339 		dev_err(&pdev->dev, "failed to get per clk: %d\n", ret);
2340 		return ret;
2341 	}
2342 
2343 	sport->port.uartclk = clk_get_rate(sport->clk_per);
2344 
2345 	/* For register access, we only need to enable the ipg clock. */
2346 	ret = clk_prepare_enable(sport->clk_ipg);
2347 	if (ret) {
2348 		dev_err(&pdev->dev, "failed to enable per clk: %d\n", ret);
2349 		return ret;
2350 	}
2351 
2352 	/* initialize shadow register values */
2353 	sport->ucr1 = readl(sport->port.membase + UCR1);
2354 	sport->ucr2 = readl(sport->port.membase + UCR2);
2355 	sport->ucr3 = readl(sport->port.membase + UCR3);
2356 	sport->ucr4 = readl(sport->port.membase + UCR4);
2357 	sport->ufcr = readl(sport->port.membase + UFCR);
2358 
2359 	ret = uart_get_rs485_mode(&sport->port);
2360 	if (ret) {
2361 		clk_disable_unprepare(sport->clk_ipg);
2362 		return ret;
2363 	}
2364 
2365 	if (sport->port.rs485.flags & SER_RS485_ENABLED &&
2366 	    (!sport->have_rtscts && !sport->have_rtsgpio))
2367 		dev_err(&pdev->dev, "no RTS control, disabling rs485\n");
2368 
2369 	/*
2370 	 * If using the i.MX UART RTS/CTS control then the RTS (CTS_B)
2371 	 * signal cannot be set low during transmission in case the
2372 	 * receiver is off (limitation of the i.MX UART IP).
2373 	 */
2374 	if (sport->port.rs485.flags & SER_RS485_ENABLED &&
2375 	    sport->have_rtscts && !sport->have_rtsgpio &&
2376 	    (!(sport->port.rs485.flags & SER_RS485_RTS_ON_SEND) &&
2377 	     !(sport->port.rs485.flags & SER_RS485_RX_DURING_TX)))
2378 		dev_err(&pdev->dev,
2379 			"low-active RTS not possible when receiver is off, enabling receiver\n");
2380 
2381 	imx_uart_rs485_config(&sport->port, &sport->port.rs485);
2382 
2383 	/* Disable interrupts before requesting them */
2384 	ucr1 = imx_uart_readl(sport, UCR1);
2385 	ucr1 &= ~(UCR1_ADEN | UCR1_TRDYEN | UCR1_IDEN | UCR1_RRDYEN | UCR1_RTSDEN);
2386 	imx_uart_writel(sport, ucr1, UCR1);
2387 
2388 	if (!imx_uart_is_imx1(sport) && sport->dte_mode) {
2389 		/*
2390 		 * The DCEDTE bit changes the direction of DSR, DCD, DTR and RI
2391 		 * and influences if UCR3_RI and UCR3_DCD changes the level of RI
2392 		 * and DCD (when they are outputs) or enables the respective
2393 		 * irqs. So set this bit early, i.e. before requesting irqs.
2394 		 */
2395 		u32 ufcr = imx_uart_readl(sport, UFCR);
2396 		if (!(ufcr & UFCR_DCEDTE))
2397 			imx_uart_writel(sport, ufcr | UFCR_DCEDTE, UFCR);
2398 
2399 		/*
2400 		 * Disable UCR3_RI and UCR3_DCD irqs. They are also not
2401 		 * enabled later because they cannot be cleared
2402 		 * (confirmed on i.MX25) which makes them unusable.
2403 		 */
2404 		imx_uart_writel(sport,
2405 				IMX21_UCR3_RXDMUXSEL | UCR3_ADNIMP | UCR3_DSR,
2406 				UCR3);
2407 
2408 	} else {
2409 		u32 ucr3 = UCR3_DSR;
2410 		u32 ufcr = imx_uart_readl(sport, UFCR);
2411 		if (ufcr & UFCR_DCEDTE)
2412 			imx_uart_writel(sport, ufcr & ~UFCR_DCEDTE, UFCR);
2413 
2414 		if (!imx_uart_is_imx1(sport))
2415 			ucr3 |= IMX21_UCR3_RXDMUXSEL | UCR3_ADNIMP;
2416 		imx_uart_writel(sport, ucr3, UCR3);
2417 	}
2418 
2419 	clk_disable_unprepare(sport->clk_ipg);
2420 
2421 	hrtimer_init(&sport->trigger_start_tx, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2422 	hrtimer_init(&sport->trigger_stop_tx, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2423 	sport->trigger_start_tx.function = imx_trigger_start_tx;
2424 	sport->trigger_stop_tx.function = imx_trigger_stop_tx;
2425 
2426 	/*
2427 	 * Allocate the IRQ(s) i.MX1 has three interrupts whereas later
2428 	 * chips only have one interrupt.
2429 	 */
2430 	if (txirq > 0) {
2431 		ret = devm_request_irq(&pdev->dev, rxirq, imx_uart_rxint, 0,
2432 				       dev_name(&pdev->dev), sport);
2433 		if (ret) {
2434 			dev_err(&pdev->dev, "failed to request rx irq: %d\n",
2435 				ret);
2436 			return ret;
2437 		}
2438 
2439 		ret = devm_request_irq(&pdev->dev, txirq, imx_uart_txint, 0,
2440 				       dev_name(&pdev->dev), sport);
2441 		if (ret) {
2442 			dev_err(&pdev->dev, "failed to request tx irq: %d\n",
2443 				ret);
2444 			return ret;
2445 		}
2446 
2447 		ret = devm_request_irq(&pdev->dev, rtsirq, imx_uart_rtsint, 0,
2448 				       dev_name(&pdev->dev), sport);
2449 		if (ret) {
2450 			dev_err(&pdev->dev, "failed to request rts irq: %d\n",
2451 				ret);
2452 			return ret;
2453 		}
2454 	} else {
2455 		ret = devm_request_irq(&pdev->dev, rxirq, imx_uart_int, 0,
2456 				       dev_name(&pdev->dev), sport);
2457 		if (ret) {
2458 			dev_err(&pdev->dev, "failed to request irq: %d\n", ret);
2459 			return ret;
2460 		}
2461 	}
2462 
2463 	imx_uart_ports[sport->port.line] = sport;
2464 
2465 	platform_set_drvdata(pdev, sport);
2466 
2467 	return uart_add_one_port(&imx_uart_uart_driver, &sport->port);
2468 }
2469 
2470 static int imx_uart_remove(struct platform_device *pdev)
2471 {
2472 	struct imx_port *sport = platform_get_drvdata(pdev);
2473 
2474 	return uart_remove_one_port(&imx_uart_uart_driver, &sport->port);
2475 }
2476 
2477 static void imx_uart_restore_context(struct imx_port *sport)
2478 {
2479 	unsigned long flags;
2480 
2481 	spin_lock_irqsave(&sport->port.lock, flags);
2482 	if (!sport->context_saved) {
2483 		spin_unlock_irqrestore(&sport->port.lock, flags);
2484 		return;
2485 	}
2486 
2487 	imx_uart_writel(sport, sport->saved_reg[4], UFCR);
2488 	imx_uart_writel(sport, sport->saved_reg[5], UESC);
2489 	imx_uart_writel(sport, sport->saved_reg[6], UTIM);
2490 	imx_uart_writel(sport, sport->saved_reg[7], UBIR);
2491 	imx_uart_writel(sport, sport->saved_reg[8], UBMR);
2492 	imx_uart_writel(sport, sport->saved_reg[9], IMX21_UTS);
2493 	imx_uart_writel(sport, sport->saved_reg[0], UCR1);
2494 	imx_uart_writel(sport, sport->saved_reg[1] | UCR2_SRST, UCR2);
2495 	imx_uart_writel(sport, sport->saved_reg[2], UCR3);
2496 	imx_uart_writel(sport, sport->saved_reg[3], UCR4);
2497 	sport->context_saved = false;
2498 	spin_unlock_irqrestore(&sport->port.lock, flags);
2499 }
2500 
2501 static void imx_uart_save_context(struct imx_port *sport)
2502 {
2503 	unsigned long flags;
2504 
2505 	/* Save necessary regs */
2506 	spin_lock_irqsave(&sport->port.lock, flags);
2507 	sport->saved_reg[0] = imx_uart_readl(sport, UCR1);
2508 	sport->saved_reg[1] = imx_uart_readl(sport, UCR2);
2509 	sport->saved_reg[2] = imx_uart_readl(sport, UCR3);
2510 	sport->saved_reg[3] = imx_uart_readl(sport, UCR4);
2511 	sport->saved_reg[4] = imx_uart_readl(sport, UFCR);
2512 	sport->saved_reg[5] = imx_uart_readl(sport, UESC);
2513 	sport->saved_reg[6] = imx_uart_readl(sport, UTIM);
2514 	sport->saved_reg[7] = imx_uart_readl(sport, UBIR);
2515 	sport->saved_reg[8] = imx_uart_readl(sport, UBMR);
2516 	sport->saved_reg[9] = imx_uart_readl(sport, IMX21_UTS);
2517 	sport->context_saved = true;
2518 	spin_unlock_irqrestore(&sport->port.lock, flags);
2519 }
2520 
2521 static void imx_uart_enable_wakeup(struct imx_port *sport, bool on)
2522 {
2523 	u32 ucr3;
2524 
2525 	ucr3 = imx_uart_readl(sport, UCR3);
2526 	if (on) {
2527 		imx_uart_writel(sport, USR1_AWAKE, USR1);
2528 		ucr3 |= UCR3_AWAKEN;
2529 	} else {
2530 		ucr3 &= ~UCR3_AWAKEN;
2531 	}
2532 	imx_uart_writel(sport, ucr3, UCR3);
2533 
2534 	if (sport->have_rtscts) {
2535 		u32 ucr1 = imx_uart_readl(sport, UCR1);
2536 		if (on)
2537 			ucr1 |= UCR1_RTSDEN;
2538 		else
2539 			ucr1 &= ~UCR1_RTSDEN;
2540 		imx_uart_writel(sport, ucr1, UCR1);
2541 	}
2542 }
2543 
2544 static int imx_uart_suspend_noirq(struct device *dev)
2545 {
2546 	struct imx_port *sport = dev_get_drvdata(dev);
2547 
2548 	imx_uart_save_context(sport);
2549 
2550 	clk_disable(sport->clk_ipg);
2551 
2552 	pinctrl_pm_select_sleep_state(dev);
2553 
2554 	return 0;
2555 }
2556 
2557 static int imx_uart_resume_noirq(struct device *dev)
2558 {
2559 	struct imx_port *sport = dev_get_drvdata(dev);
2560 	int ret;
2561 
2562 	pinctrl_pm_select_default_state(dev);
2563 
2564 	ret = clk_enable(sport->clk_ipg);
2565 	if (ret)
2566 		return ret;
2567 
2568 	imx_uart_restore_context(sport);
2569 
2570 	return 0;
2571 }
2572 
2573 static int imx_uart_suspend(struct device *dev)
2574 {
2575 	struct imx_port *sport = dev_get_drvdata(dev);
2576 	int ret;
2577 
2578 	uart_suspend_port(&imx_uart_uart_driver, &sport->port);
2579 	disable_irq(sport->port.irq);
2580 
2581 	ret = clk_prepare_enable(sport->clk_ipg);
2582 	if (ret)
2583 		return ret;
2584 
2585 	/* enable wakeup from i.MX UART */
2586 	imx_uart_enable_wakeup(sport, true);
2587 
2588 	return 0;
2589 }
2590 
2591 static int imx_uart_resume(struct device *dev)
2592 {
2593 	struct imx_port *sport = dev_get_drvdata(dev);
2594 
2595 	/* disable wakeup from i.MX UART */
2596 	imx_uart_enable_wakeup(sport, false);
2597 
2598 	uart_resume_port(&imx_uart_uart_driver, &sport->port);
2599 	enable_irq(sport->port.irq);
2600 
2601 	clk_disable_unprepare(sport->clk_ipg);
2602 
2603 	return 0;
2604 }
2605 
2606 static int imx_uart_freeze(struct device *dev)
2607 {
2608 	struct imx_port *sport = dev_get_drvdata(dev);
2609 
2610 	uart_suspend_port(&imx_uart_uart_driver, &sport->port);
2611 
2612 	return clk_prepare_enable(sport->clk_ipg);
2613 }
2614 
2615 static int imx_uart_thaw(struct device *dev)
2616 {
2617 	struct imx_port *sport = dev_get_drvdata(dev);
2618 
2619 	uart_resume_port(&imx_uart_uart_driver, &sport->port);
2620 
2621 	clk_disable_unprepare(sport->clk_ipg);
2622 
2623 	return 0;
2624 }
2625 
2626 static const struct dev_pm_ops imx_uart_pm_ops = {
2627 	.suspend_noirq = imx_uart_suspend_noirq,
2628 	.resume_noirq = imx_uart_resume_noirq,
2629 	.freeze_noirq = imx_uart_suspend_noirq,
2630 	.restore_noirq = imx_uart_resume_noirq,
2631 	.suspend = imx_uart_suspend,
2632 	.resume = imx_uart_resume,
2633 	.freeze = imx_uart_freeze,
2634 	.thaw = imx_uart_thaw,
2635 	.restore = imx_uart_thaw,
2636 };
2637 
2638 static struct platform_driver imx_uart_platform_driver = {
2639 	.probe = imx_uart_probe,
2640 	.remove = imx_uart_remove,
2641 
2642 	.id_table = imx_uart_devtype,
2643 	.driver = {
2644 		.name = "imx-uart",
2645 		.of_match_table = imx_uart_dt_ids,
2646 		.pm = &imx_uart_pm_ops,
2647 	},
2648 };
2649 
2650 static int __init imx_uart_init(void)
2651 {
2652 	int ret = uart_register_driver(&imx_uart_uart_driver);
2653 
2654 	if (ret)
2655 		return ret;
2656 
2657 	ret = platform_driver_register(&imx_uart_platform_driver);
2658 	if (ret != 0)
2659 		uart_unregister_driver(&imx_uart_uart_driver);
2660 
2661 	return ret;
2662 }
2663 
2664 static void __exit imx_uart_exit(void)
2665 {
2666 	platform_driver_unregister(&imx_uart_platform_driver);
2667 	uart_unregister_driver(&imx_uart_uart_driver);
2668 }
2669 
2670 module_init(imx_uart_init);
2671 module_exit(imx_uart_exit);
2672 
2673 MODULE_AUTHOR("Sascha Hauer");
2674 MODULE_DESCRIPTION("IMX generic serial port driver");
2675 MODULE_LICENSE("GPL");
2676 MODULE_ALIAS("platform:imx-uart");
2677