1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Driver for Motorola/Freescale IMX serial ports 4 * 5 * Based on drivers/char/serial.c, by Linus Torvalds, Theodore Ts'o. 6 * 7 * Author: Sascha Hauer <sascha@saschahauer.de> 8 * Copyright (C) 2004 Pengutronix 9 */ 10 11 #include <linux/module.h> 12 #include <linux/ioport.h> 13 #include <linux/init.h> 14 #include <linux/console.h> 15 #include <linux/sysrq.h> 16 #include <linux/platform_device.h> 17 #include <linux/tty.h> 18 #include <linux/tty_flip.h> 19 #include <linux/serial_core.h> 20 #include <linux/serial.h> 21 #include <linux/clk.h> 22 #include <linux/delay.h> 23 #include <linux/ktime.h> 24 #include <linux/pinctrl/consumer.h> 25 #include <linux/rational.h> 26 #include <linux/slab.h> 27 #include <linux/of.h> 28 #include <linux/io.h> 29 #include <linux/iopoll.h> 30 #include <linux/dma-mapping.h> 31 32 #include <asm/irq.h> 33 #include <linux/dma/imx-dma.h> 34 35 #include "serial_mctrl_gpio.h" 36 37 /* Register definitions */ 38 #define URXD0 0x0 /* Receiver Register */ 39 #define URTX0 0x40 /* Transmitter Register */ 40 #define UCR1 0x80 /* Control Register 1 */ 41 #define UCR2 0x84 /* Control Register 2 */ 42 #define UCR3 0x88 /* Control Register 3 */ 43 #define UCR4 0x8c /* Control Register 4 */ 44 #define UFCR 0x90 /* FIFO Control Register */ 45 #define USR1 0x94 /* Status Register 1 */ 46 #define USR2 0x98 /* Status Register 2 */ 47 #define UESC 0x9c /* Escape Character Register */ 48 #define UTIM 0xa0 /* Escape Timer Register */ 49 #define UBIR 0xa4 /* BRM Incremental Register */ 50 #define UBMR 0xa8 /* BRM Modulator Register */ 51 #define UBRC 0xac /* Baud Rate Count Register */ 52 #define IMX21_ONEMS 0xb0 /* One Millisecond register */ 53 #define IMX1_UTS 0xd0 /* UART Test Register on i.mx1 */ 54 #define IMX21_UTS 0xb4 /* UART Test Register on all other i.mx*/ 55 56 /* UART Control Register Bit Fields.*/ 57 #define URXD_DUMMY_READ (1<<16) 58 #define URXD_CHARRDY (1<<15) 59 #define URXD_ERR (1<<14) 60 #define URXD_OVRRUN (1<<13) 61 #define URXD_FRMERR (1<<12) 62 #define URXD_BRK (1<<11) 63 #define URXD_PRERR (1<<10) 64 #define URXD_RX_DATA (0xFF<<0) 65 #define UCR1_ADEN (1<<15) /* Auto detect interrupt */ 66 #define UCR1_ADBR (1<<14) /* Auto detect baud rate */ 67 #define UCR1_TRDYEN (1<<13) /* Transmitter ready interrupt enable */ 68 #define UCR1_IDEN (1<<12) /* Idle condition interrupt */ 69 #define UCR1_ICD_REG(x) (((x) & 3) << 10) /* idle condition detect */ 70 #define UCR1_RRDYEN (1<<9) /* Recv ready interrupt enable */ 71 #define UCR1_RXDMAEN (1<<8) /* Recv ready DMA enable */ 72 #define UCR1_IREN (1<<7) /* Infrared interface enable */ 73 #define UCR1_TXMPTYEN (1<<6) /* Transimitter empty interrupt enable */ 74 #define UCR1_RTSDEN (1<<5) /* RTS delta interrupt enable */ 75 #define UCR1_SNDBRK (1<<4) /* Send break */ 76 #define UCR1_TXDMAEN (1<<3) /* Transmitter ready DMA enable */ 77 #define IMX1_UCR1_UARTCLKEN (1<<2) /* UART clock enabled, i.mx1 only */ 78 #define UCR1_ATDMAEN (1<<2) /* Aging DMA Timer Enable */ 79 #define UCR1_DOZE (1<<1) /* Doze */ 80 #define UCR1_UARTEN (1<<0) /* UART enabled */ 81 #define UCR2_ESCI (1<<15) /* Escape seq interrupt enable */ 82 #define UCR2_IRTS (1<<14) /* Ignore RTS pin */ 83 #define UCR2_CTSC (1<<13) /* CTS pin control */ 84 #define UCR2_CTS (1<<12) /* Clear to send */ 85 #define UCR2_ESCEN (1<<11) /* Escape enable */ 86 #define UCR2_PREN (1<<8) /* Parity enable */ 87 #define UCR2_PROE (1<<7) /* Parity odd/even */ 88 #define UCR2_STPB (1<<6) /* Stop */ 89 #define UCR2_WS (1<<5) /* Word size */ 90 #define UCR2_RTSEN (1<<4) /* Request to send interrupt enable */ 91 #define UCR2_ATEN (1<<3) /* Aging Timer Enable */ 92 #define UCR2_TXEN (1<<2) /* Transmitter enabled */ 93 #define UCR2_RXEN (1<<1) /* Receiver enabled */ 94 #define UCR2_SRST (1<<0) /* SW reset */ 95 #define UCR3_DTREN (1<<13) /* DTR interrupt enable */ 96 #define UCR3_PARERREN (1<<12) /* Parity enable */ 97 #define UCR3_FRAERREN (1<<11) /* Frame error interrupt enable */ 98 #define UCR3_DSR (1<<10) /* Data set ready */ 99 #define UCR3_DCD (1<<9) /* Data carrier detect */ 100 #define UCR3_RI (1<<8) /* Ring indicator */ 101 #define UCR3_ADNIMP (1<<7) /* Autobaud Detection Not Improved */ 102 #define UCR3_RXDSEN (1<<6) /* Receive status interrupt enable */ 103 #define UCR3_AIRINTEN (1<<5) /* Async IR wake interrupt enable */ 104 #define UCR3_AWAKEN (1<<4) /* Async wake interrupt enable */ 105 #define UCR3_DTRDEN (1<<3) /* Data Terminal Ready Delta Enable. */ 106 #define IMX21_UCR3_RXDMUXSEL (1<<2) /* RXD Muxed Input Select */ 107 #define UCR3_INVT (1<<1) /* Inverted Infrared transmission */ 108 #define UCR3_BPEN (1<<0) /* Preset registers enable */ 109 #define UCR4_CTSTL_SHF 10 /* CTS trigger level shift */ 110 #define UCR4_CTSTL_MASK 0x3F /* CTS trigger is 6 bits wide */ 111 #define UCR4_INVR (1<<9) /* Inverted infrared reception */ 112 #define UCR4_ENIRI (1<<8) /* Serial infrared interrupt enable */ 113 #define UCR4_WKEN (1<<7) /* Wake interrupt enable */ 114 #define UCR4_REF16 (1<<6) /* Ref freq 16 MHz */ 115 #define UCR4_IDDMAEN (1<<6) /* DMA IDLE Condition Detected */ 116 #define UCR4_IRSC (1<<5) /* IR special case */ 117 #define UCR4_TCEN (1<<3) /* Transmit complete interrupt enable */ 118 #define UCR4_BKEN (1<<2) /* Break condition interrupt enable */ 119 #define UCR4_OREN (1<<1) /* Receiver overrun interrupt enable */ 120 #define UCR4_DREN (1<<0) /* Recv data ready interrupt enable */ 121 #define UFCR_RXTL_SHF 0 /* Receiver trigger level shift */ 122 #define UFCR_RXTL_MASK 0x3F /* Receiver trigger 6 bits wide */ 123 #define UFCR_DCEDTE (1<<6) /* DCE/DTE mode select */ 124 #define UFCR_RFDIV (7<<7) /* Reference freq divider mask */ 125 #define UFCR_RFDIV_REG(x) (((x) < 7 ? 6 - (x) : 6) << 7) 126 #define UFCR_TXTL_SHF 10 /* Transmitter trigger level shift */ 127 #define USR1_PARITYERR (1<<15) /* Parity error interrupt flag */ 128 #define USR1_RTSS (1<<14) /* RTS pin status */ 129 #define USR1_TRDY (1<<13) /* Transmitter ready interrupt/dma flag */ 130 #define USR1_RTSD (1<<12) /* RTS delta */ 131 #define USR1_ESCF (1<<11) /* Escape seq interrupt flag */ 132 #define USR1_FRAMERR (1<<10) /* Frame error interrupt flag */ 133 #define USR1_RRDY (1<<9) /* Receiver ready interrupt/dma flag */ 134 #define USR1_AGTIM (1<<8) /* Ageing timer interrupt flag */ 135 #define USR1_DTRD (1<<7) /* DTR Delta */ 136 #define USR1_RXDS (1<<6) /* Receiver idle interrupt flag */ 137 #define USR1_AIRINT (1<<5) /* Async IR wake interrupt flag */ 138 #define USR1_AWAKE (1<<4) /* Aysnc wake interrupt flag */ 139 #define USR2_ADET (1<<15) /* Auto baud rate detect complete */ 140 #define USR2_TXFE (1<<14) /* Transmit buffer FIFO empty */ 141 #define USR2_DTRF (1<<13) /* DTR edge interrupt flag */ 142 #define USR2_IDLE (1<<12) /* Idle condition */ 143 #define USR2_RIDELT (1<<10) /* Ring Interrupt Delta */ 144 #define USR2_RIIN (1<<9) /* Ring Indicator Input */ 145 #define USR2_IRINT (1<<8) /* Serial infrared interrupt flag */ 146 #define USR2_WAKE (1<<7) /* Wake */ 147 #define USR2_DCDIN (1<<5) /* Data Carrier Detect Input */ 148 #define USR2_RTSF (1<<4) /* RTS edge interrupt flag */ 149 #define USR2_TXDC (1<<3) /* Transmitter complete */ 150 #define USR2_BRCD (1<<2) /* Break condition */ 151 #define USR2_ORE (1<<1) /* Overrun error */ 152 #define USR2_RDR (1<<0) /* Recv data ready */ 153 #define UTS_FRCPERR (1<<13) /* Force parity error */ 154 #define UTS_LOOP (1<<12) /* Loop tx and rx */ 155 #define UTS_TXEMPTY (1<<6) /* TxFIFO empty */ 156 #define UTS_RXEMPTY (1<<5) /* RxFIFO empty */ 157 #define UTS_TXFULL (1<<4) /* TxFIFO full */ 158 #define UTS_RXFULL (1<<3) /* RxFIFO full */ 159 #define UTS_SOFTRST (1<<0) /* Software reset */ 160 161 /* We've been assigned a range on the "Low-density serial ports" major */ 162 #define SERIAL_IMX_MAJOR 207 163 #define MINOR_START 16 164 #define DEV_NAME "ttymxc" 165 166 /* 167 * This determines how often we check the modem status signals 168 * for any change. They generally aren't connected to an IRQ 169 * so we have to poll them. We also check immediately before 170 * filling the TX fifo incase CTS has been dropped. 171 */ 172 #define MCTRL_TIMEOUT (250*HZ/1000) 173 174 #define DRIVER_NAME "IMX-uart" 175 176 #define UART_NR 8 177 178 /* i.MX21 type uart runs on all i.mx except i.MX1 and i.MX6q */ 179 enum imx_uart_type { 180 IMX1_UART, 181 IMX21_UART, 182 IMX53_UART, 183 IMX6Q_UART, 184 }; 185 186 /* device type dependent stuff */ 187 struct imx_uart_data { 188 unsigned uts_reg; 189 enum imx_uart_type devtype; 190 }; 191 192 enum imx_tx_state { 193 OFF, 194 WAIT_AFTER_RTS, 195 SEND, 196 WAIT_AFTER_SEND, 197 }; 198 199 struct imx_port { 200 struct uart_port port; 201 struct timer_list timer; 202 unsigned int old_status; 203 unsigned int have_rtscts:1; 204 unsigned int have_rtsgpio:1; 205 unsigned int dte_mode:1; 206 unsigned int inverted_tx:1; 207 unsigned int inverted_rx:1; 208 struct clk *clk_ipg; 209 struct clk *clk_per; 210 const struct imx_uart_data *devdata; 211 212 struct mctrl_gpios *gpios; 213 214 /* counter to stop 0xff flood */ 215 int idle_counter; 216 217 /* DMA fields */ 218 unsigned int dma_is_enabled:1; 219 unsigned int dma_is_rxing:1; 220 unsigned int dma_is_txing:1; 221 struct dma_chan *dma_chan_rx, *dma_chan_tx; 222 struct scatterlist rx_sgl, tx_sgl[2]; 223 void *rx_buf; 224 struct circ_buf rx_ring; 225 unsigned int rx_buf_size; 226 unsigned int rx_period_length; 227 unsigned int rx_periods; 228 dma_cookie_t rx_cookie; 229 unsigned int tx_bytes; 230 unsigned int dma_tx_nents; 231 unsigned int saved_reg[10]; 232 bool context_saved; 233 234 enum imx_tx_state tx_state; 235 struct hrtimer trigger_start_tx; 236 struct hrtimer trigger_stop_tx; 237 }; 238 239 struct imx_port_ucrs { 240 unsigned int ucr1; 241 unsigned int ucr2; 242 unsigned int ucr3; 243 }; 244 245 static struct imx_uart_data imx_uart_devdata[] = { 246 [IMX1_UART] = { 247 .uts_reg = IMX1_UTS, 248 .devtype = IMX1_UART, 249 }, 250 [IMX21_UART] = { 251 .uts_reg = IMX21_UTS, 252 .devtype = IMX21_UART, 253 }, 254 [IMX53_UART] = { 255 .uts_reg = IMX21_UTS, 256 .devtype = IMX53_UART, 257 }, 258 [IMX6Q_UART] = { 259 .uts_reg = IMX21_UTS, 260 .devtype = IMX6Q_UART, 261 }, 262 }; 263 264 static const struct of_device_id imx_uart_dt_ids[] = { 265 { .compatible = "fsl,imx6q-uart", .data = &imx_uart_devdata[IMX6Q_UART], }, 266 { .compatible = "fsl,imx53-uart", .data = &imx_uart_devdata[IMX53_UART], }, 267 { .compatible = "fsl,imx1-uart", .data = &imx_uart_devdata[IMX1_UART], }, 268 { .compatible = "fsl,imx21-uart", .data = &imx_uart_devdata[IMX21_UART], }, 269 { /* sentinel */ } 270 }; 271 MODULE_DEVICE_TABLE(of, imx_uart_dt_ids); 272 273 static inline void imx_uart_writel(struct imx_port *sport, u32 val, u32 offset) 274 { 275 writel(val, sport->port.membase + offset); 276 } 277 278 static inline u32 imx_uart_readl(struct imx_port *sport, u32 offset) 279 { 280 return readl(sport->port.membase + offset); 281 } 282 283 static inline unsigned imx_uart_uts_reg(struct imx_port *sport) 284 { 285 return sport->devdata->uts_reg; 286 } 287 288 static inline int imx_uart_is_imx1(struct imx_port *sport) 289 { 290 return sport->devdata->devtype == IMX1_UART; 291 } 292 293 /* 294 * Save and restore functions for UCR1, UCR2 and UCR3 registers 295 */ 296 #if IS_ENABLED(CONFIG_SERIAL_IMX_CONSOLE) 297 static void imx_uart_ucrs_save(struct imx_port *sport, 298 struct imx_port_ucrs *ucr) 299 { 300 /* save control registers */ 301 ucr->ucr1 = imx_uart_readl(sport, UCR1); 302 ucr->ucr2 = imx_uart_readl(sport, UCR2); 303 ucr->ucr3 = imx_uart_readl(sport, UCR3); 304 } 305 306 static void imx_uart_ucrs_restore(struct imx_port *sport, 307 struct imx_port_ucrs *ucr) 308 { 309 /* restore control registers */ 310 imx_uart_writel(sport, ucr->ucr1, UCR1); 311 imx_uart_writel(sport, ucr->ucr2, UCR2); 312 imx_uart_writel(sport, ucr->ucr3, UCR3); 313 } 314 #endif 315 316 /* called with port.lock taken and irqs caller dependent */ 317 static void imx_uart_rts_active(struct imx_port *sport, u32 *ucr2) 318 { 319 *ucr2 &= ~(UCR2_CTSC | UCR2_CTS); 320 321 mctrl_gpio_set(sport->gpios, sport->port.mctrl | TIOCM_RTS); 322 } 323 324 /* called with port.lock taken and irqs caller dependent */ 325 static void imx_uart_rts_inactive(struct imx_port *sport, u32 *ucr2) 326 { 327 *ucr2 &= ~UCR2_CTSC; 328 *ucr2 |= UCR2_CTS; 329 330 mctrl_gpio_set(sport->gpios, sport->port.mctrl & ~TIOCM_RTS); 331 } 332 333 static void start_hrtimer_ms(struct hrtimer *hrt, unsigned long msec) 334 { 335 hrtimer_start(hrt, ms_to_ktime(msec), HRTIMER_MODE_REL); 336 } 337 338 /* called with port.lock taken and irqs off */ 339 static void imx_uart_soft_reset(struct imx_port *sport) 340 { 341 int i = 10; 342 u32 ucr2, ubir, ubmr, uts; 343 344 /* 345 * According to the Reference Manual description of the UART SRST bit: 346 * 347 * "Reset the transmit and receive state machines, 348 * all FIFOs and register USR1, USR2, UBIR, UBMR, UBRC, URXD, UTXD 349 * and UTS[6-3]". 350 * 351 * We don't need to restore the old values from USR1, USR2, URXD and 352 * UTXD. UBRC is read only, so only save/restore the other three 353 * registers. 354 */ 355 ubir = imx_uart_readl(sport, UBIR); 356 ubmr = imx_uart_readl(sport, UBMR); 357 uts = imx_uart_readl(sport, IMX21_UTS); 358 359 ucr2 = imx_uart_readl(sport, UCR2); 360 imx_uart_writel(sport, ucr2 & ~UCR2_SRST, UCR2); 361 362 while (!(imx_uart_readl(sport, UCR2) & UCR2_SRST) && (--i > 0)) 363 udelay(1); 364 365 /* Restore the registers */ 366 imx_uart_writel(sport, ubir, UBIR); 367 imx_uart_writel(sport, ubmr, UBMR); 368 imx_uart_writel(sport, uts, IMX21_UTS); 369 370 sport->idle_counter = 0; 371 } 372 373 static void imx_uart_disable_loopback_rs485(struct imx_port *sport) 374 { 375 unsigned int uts; 376 377 /* See SER_RS485_ENABLED/UTS_LOOP comment in imx_uart_probe() */ 378 uts = imx_uart_readl(sport, imx_uart_uts_reg(sport)); 379 uts &= ~UTS_LOOP; 380 imx_uart_writel(sport, uts, imx_uart_uts_reg(sport)); 381 } 382 383 /* called with port.lock taken and irqs off */ 384 static void imx_uart_start_rx(struct uart_port *port) 385 { 386 struct imx_port *sport = (struct imx_port *)port; 387 unsigned int ucr1, ucr2; 388 389 ucr1 = imx_uart_readl(sport, UCR1); 390 ucr2 = imx_uart_readl(sport, UCR2); 391 392 ucr2 |= UCR2_RXEN; 393 394 if (sport->dma_is_enabled) { 395 ucr1 |= UCR1_RXDMAEN | UCR1_ATDMAEN; 396 } else { 397 ucr1 |= UCR1_RRDYEN; 398 ucr2 |= UCR2_ATEN; 399 } 400 401 /* Write UCR2 first as it includes RXEN */ 402 imx_uart_writel(sport, ucr2, UCR2); 403 imx_uart_writel(sport, ucr1, UCR1); 404 imx_uart_disable_loopback_rs485(sport); 405 } 406 407 /* called with port.lock taken and irqs off */ 408 static void imx_uart_stop_tx(struct uart_port *port) 409 { 410 struct imx_port *sport = (struct imx_port *)port; 411 u32 ucr1, ucr4, usr2; 412 413 if (sport->tx_state == OFF) 414 return; 415 416 /* 417 * We are maybe in the SMP context, so if the DMA TX thread is running 418 * on other cpu, we have to wait for it to finish. 419 */ 420 if (sport->dma_is_txing) 421 return; 422 423 ucr1 = imx_uart_readl(sport, UCR1); 424 imx_uart_writel(sport, ucr1 & ~UCR1_TRDYEN, UCR1); 425 426 ucr4 = imx_uart_readl(sport, UCR4); 427 usr2 = imx_uart_readl(sport, USR2); 428 if ((!(usr2 & USR2_TXDC)) && (ucr4 & UCR4_TCEN)) { 429 /* The shifter is still busy, so retry once TC triggers */ 430 return; 431 } 432 433 ucr4 &= ~UCR4_TCEN; 434 imx_uart_writel(sport, ucr4, UCR4); 435 436 /* in rs485 mode disable transmitter */ 437 if (port->rs485.flags & SER_RS485_ENABLED) { 438 if (sport->tx_state == SEND) { 439 sport->tx_state = WAIT_AFTER_SEND; 440 441 if (port->rs485.delay_rts_after_send > 0) { 442 start_hrtimer_ms(&sport->trigger_stop_tx, 443 port->rs485.delay_rts_after_send); 444 return; 445 } 446 447 /* continue without any delay */ 448 } 449 450 if (sport->tx_state == WAIT_AFTER_RTS || 451 sport->tx_state == WAIT_AFTER_SEND) { 452 u32 ucr2; 453 454 hrtimer_try_to_cancel(&sport->trigger_start_tx); 455 456 ucr2 = imx_uart_readl(sport, UCR2); 457 if (port->rs485.flags & SER_RS485_RTS_AFTER_SEND) 458 imx_uart_rts_active(sport, &ucr2); 459 else 460 imx_uart_rts_inactive(sport, &ucr2); 461 imx_uart_writel(sport, ucr2, UCR2); 462 463 if (!port->rs485_rx_during_tx_gpio) 464 imx_uart_start_rx(port); 465 466 sport->tx_state = OFF; 467 } 468 } else { 469 sport->tx_state = OFF; 470 } 471 } 472 473 static void imx_uart_stop_rx_with_loopback_ctrl(struct uart_port *port, bool loopback) 474 { 475 struct imx_port *sport = (struct imx_port *)port; 476 u32 ucr1, ucr2, ucr4, uts; 477 478 ucr1 = imx_uart_readl(sport, UCR1); 479 ucr2 = imx_uart_readl(sport, UCR2); 480 ucr4 = imx_uart_readl(sport, UCR4); 481 482 if (sport->dma_is_enabled) { 483 ucr1 &= ~(UCR1_RXDMAEN | UCR1_ATDMAEN); 484 } else { 485 ucr1 &= ~UCR1_RRDYEN; 486 ucr2 &= ~UCR2_ATEN; 487 ucr4 &= ~UCR4_OREN; 488 } 489 imx_uart_writel(sport, ucr1, UCR1); 490 imx_uart_writel(sport, ucr4, UCR4); 491 492 /* See SER_RS485_ENABLED/UTS_LOOP comment in imx_uart_probe() */ 493 if (port->rs485.flags & SER_RS485_ENABLED && 494 port->rs485.flags & SER_RS485_RTS_ON_SEND && 495 sport->have_rtscts && !sport->have_rtsgpio && loopback) { 496 uts = imx_uart_readl(sport, imx_uart_uts_reg(sport)); 497 uts |= UTS_LOOP; 498 imx_uart_writel(sport, uts, imx_uart_uts_reg(sport)); 499 ucr2 |= UCR2_RXEN; 500 } else { 501 ucr2 &= ~UCR2_RXEN; 502 } 503 504 imx_uart_writel(sport, ucr2, UCR2); 505 } 506 507 /* called with port.lock taken and irqs off */ 508 static void imx_uart_stop_rx(struct uart_port *port) 509 { 510 /* 511 * Stop RX and enable loopback in order to make sure RS485 bus 512 * is not blocked. Se comment in imx_uart_probe(). 513 */ 514 imx_uart_stop_rx_with_loopback_ctrl(port, true); 515 } 516 517 /* called with port.lock taken and irqs off */ 518 static void imx_uart_enable_ms(struct uart_port *port) 519 { 520 struct imx_port *sport = (struct imx_port *)port; 521 522 mod_timer(&sport->timer, jiffies); 523 524 mctrl_gpio_enable_ms(sport->gpios); 525 } 526 527 static void imx_uart_dma_tx(struct imx_port *sport); 528 529 /* called with port.lock taken and irqs off */ 530 static inline void imx_uart_transmit_buffer(struct imx_port *sport) 531 { 532 struct circ_buf *xmit = &sport->port.state->xmit; 533 534 if (sport->port.x_char) { 535 /* Send next char */ 536 imx_uart_writel(sport, sport->port.x_char, URTX0); 537 sport->port.icount.tx++; 538 sport->port.x_char = 0; 539 return; 540 } 541 542 if (uart_circ_empty(xmit) || uart_tx_stopped(&sport->port)) { 543 imx_uart_stop_tx(&sport->port); 544 return; 545 } 546 547 if (sport->dma_is_enabled) { 548 u32 ucr1; 549 /* 550 * We've just sent a X-char Ensure the TX DMA is enabled 551 * and the TX IRQ is disabled. 552 **/ 553 ucr1 = imx_uart_readl(sport, UCR1); 554 ucr1 &= ~UCR1_TRDYEN; 555 if (sport->dma_is_txing) { 556 ucr1 |= UCR1_TXDMAEN; 557 imx_uart_writel(sport, ucr1, UCR1); 558 } else { 559 imx_uart_writel(sport, ucr1, UCR1); 560 imx_uart_dma_tx(sport); 561 } 562 563 return; 564 } 565 566 while (!uart_circ_empty(xmit) && 567 !(imx_uart_readl(sport, imx_uart_uts_reg(sport)) & UTS_TXFULL)) { 568 /* send xmit->buf[xmit->tail] 569 * out the port here */ 570 imx_uart_writel(sport, xmit->buf[xmit->tail], URTX0); 571 uart_xmit_advance(&sport->port, 1); 572 } 573 574 if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS) 575 uart_write_wakeup(&sport->port); 576 577 if (uart_circ_empty(xmit)) 578 imx_uart_stop_tx(&sport->port); 579 } 580 581 static void imx_uart_dma_tx_callback(void *data) 582 { 583 struct imx_port *sport = data; 584 struct scatterlist *sgl = &sport->tx_sgl[0]; 585 struct circ_buf *xmit = &sport->port.state->xmit; 586 unsigned long flags; 587 u32 ucr1; 588 589 spin_lock_irqsave(&sport->port.lock, flags); 590 591 dma_unmap_sg(sport->port.dev, sgl, sport->dma_tx_nents, DMA_TO_DEVICE); 592 593 ucr1 = imx_uart_readl(sport, UCR1); 594 ucr1 &= ~UCR1_TXDMAEN; 595 imx_uart_writel(sport, ucr1, UCR1); 596 597 uart_xmit_advance(&sport->port, sport->tx_bytes); 598 599 dev_dbg(sport->port.dev, "we finish the TX DMA.\n"); 600 601 sport->dma_is_txing = 0; 602 603 if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS) 604 uart_write_wakeup(&sport->port); 605 606 if (!uart_circ_empty(xmit) && !uart_tx_stopped(&sport->port)) 607 imx_uart_dma_tx(sport); 608 else if (sport->port.rs485.flags & SER_RS485_ENABLED) { 609 u32 ucr4 = imx_uart_readl(sport, UCR4); 610 ucr4 |= UCR4_TCEN; 611 imx_uart_writel(sport, ucr4, UCR4); 612 } 613 614 spin_unlock_irqrestore(&sport->port.lock, flags); 615 } 616 617 /* called with port.lock taken and irqs off */ 618 static void imx_uart_dma_tx(struct imx_port *sport) 619 { 620 struct circ_buf *xmit = &sport->port.state->xmit; 621 struct scatterlist *sgl = sport->tx_sgl; 622 struct dma_async_tx_descriptor *desc; 623 struct dma_chan *chan = sport->dma_chan_tx; 624 struct device *dev = sport->port.dev; 625 u32 ucr1, ucr4; 626 int ret; 627 628 if (sport->dma_is_txing) 629 return; 630 631 ucr4 = imx_uart_readl(sport, UCR4); 632 ucr4 &= ~UCR4_TCEN; 633 imx_uart_writel(sport, ucr4, UCR4); 634 635 sport->tx_bytes = uart_circ_chars_pending(xmit); 636 637 if (xmit->tail < xmit->head || xmit->head == 0) { 638 sport->dma_tx_nents = 1; 639 sg_init_one(sgl, xmit->buf + xmit->tail, sport->tx_bytes); 640 } else { 641 sport->dma_tx_nents = 2; 642 sg_init_table(sgl, 2); 643 sg_set_buf(sgl, xmit->buf + xmit->tail, 644 UART_XMIT_SIZE - xmit->tail); 645 sg_set_buf(sgl + 1, xmit->buf, xmit->head); 646 } 647 648 ret = dma_map_sg(dev, sgl, sport->dma_tx_nents, DMA_TO_DEVICE); 649 if (ret == 0) { 650 dev_err(dev, "DMA mapping error for TX.\n"); 651 return; 652 } 653 desc = dmaengine_prep_slave_sg(chan, sgl, ret, 654 DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT); 655 if (!desc) { 656 dma_unmap_sg(dev, sgl, sport->dma_tx_nents, 657 DMA_TO_DEVICE); 658 dev_err(dev, "We cannot prepare for the TX slave dma!\n"); 659 return; 660 } 661 desc->callback = imx_uart_dma_tx_callback; 662 desc->callback_param = sport; 663 664 dev_dbg(dev, "TX: prepare to send %lu bytes by DMA.\n", 665 uart_circ_chars_pending(xmit)); 666 667 ucr1 = imx_uart_readl(sport, UCR1); 668 ucr1 |= UCR1_TXDMAEN; 669 imx_uart_writel(sport, ucr1, UCR1); 670 671 /* fire it */ 672 sport->dma_is_txing = 1; 673 dmaengine_submit(desc); 674 dma_async_issue_pending(chan); 675 return; 676 } 677 678 /* called with port.lock taken and irqs off */ 679 static void imx_uart_start_tx(struct uart_port *port) 680 { 681 struct imx_port *sport = (struct imx_port *)port; 682 u32 ucr1; 683 684 if (!sport->port.x_char && uart_circ_empty(&port->state->xmit)) 685 return; 686 687 /* 688 * We cannot simply do nothing here if sport->tx_state == SEND already 689 * because UCR1_TXMPTYEN might already have been cleared in 690 * imx_uart_stop_tx(), but tx_state is still SEND. 691 */ 692 693 if (port->rs485.flags & SER_RS485_ENABLED) { 694 if (sport->tx_state == OFF) { 695 u32 ucr2 = imx_uart_readl(sport, UCR2); 696 if (port->rs485.flags & SER_RS485_RTS_ON_SEND) 697 imx_uart_rts_active(sport, &ucr2); 698 else 699 imx_uart_rts_inactive(sport, &ucr2); 700 imx_uart_writel(sport, ucr2, UCR2); 701 702 /* 703 * Since we are about to transmit we can not stop RX 704 * with loopback enabled because that will make our 705 * transmitted data being just looped to RX. 706 */ 707 if (!(port->rs485.flags & SER_RS485_RX_DURING_TX) && 708 !port->rs485_rx_during_tx_gpio) 709 imx_uart_stop_rx_with_loopback_ctrl(port, false); 710 711 sport->tx_state = WAIT_AFTER_RTS; 712 713 if (port->rs485.delay_rts_before_send > 0) { 714 start_hrtimer_ms(&sport->trigger_start_tx, 715 port->rs485.delay_rts_before_send); 716 return; 717 } 718 719 /* continue without any delay */ 720 } 721 722 if (sport->tx_state == WAIT_AFTER_SEND 723 || sport->tx_state == WAIT_AFTER_RTS) { 724 725 hrtimer_try_to_cancel(&sport->trigger_stop_tx); 726 727 /* 728 * Enable transmitter and shifter empty irq only if DMA 729 * is off. In the DMA case this is done in the 730 * tx-callback. 731 */ 732 if (!sport->dma_is_enabled) { 733 u32 ucr4 = imx_uart_readl(sport, UCR4); 734 ucr4 |= UCR4_TCEN; 735 imx_uart_writel(sport, ucr4, UCR4); 736 } 737 738 sport->tx_state = SEND; 739 } 740 } else { 741 sport->tx_state = SEND; 742 } 743 744 if (!sport->dma_is_enabled) { 745 ucr1 = imx_uart_readl(sport, UCR1); 746 imx_uart_writel(sport, ucr1 | UCR1_TRDYEN, UCR1); 747 } 748 749 if (sport->dma_is_enabled) { 750 if (sport->port.x_char) { 751 /* We have X-char to send, so enable TX IRQ and 752 * disable TX DMA to let TX interrupt to send X-char */ 753 ucr1 = imx_uart_readl(sport, UCR1); 754 ucr1 &= ~UCR1_TXDMAEN; 755 ucr1 |= UCR1_TRDYEN; 756 imx_uart_writel(sport, ucr1, UCR1); 757 return; 758 } 759 760 if (!uart_circ_empty(&port->state->xmit) && 761 !uart_tx_stopped(port)) 762 imx_uart_dma_tx(sport); 763 return; 764 } 765 } 766 767 static irqreturn_t __imx_uart_rtsint(int irq, void *dev_id) 768 { 769 struct imx_port *sport = dev_id; 770 u32 usr1; 771 772 imx_uart_writel(sport, USR1_RTSD, USR1); 773 usr1 = imx_uart_readl(sport, USR1) & USR1_RTSS; 774 uart_handle_cts_change(&sport->port, usr1); 775 wake_up_interruptible(&sport->port.state->port.delta_msr_wait); 776 777 return IRQ_HANDLED; 778 } 779 780 static irqreturn_t imx_uart_rtsint(int irq, void *dev_id) 781 { 782 struct imx_port *sport = dev_id; 783 irqreturn_t ret; 784 785 spin_lock(&sport->port.lock); 786 787 ret = __imx_uart_rtsint(irq, dev_id); 788 789 spin_unlock(&sport->port.lock); 790 791 return ret; 792 } 793 794 static irqreturn_t imx_uart_txint(int irq, void *dev_id) 795 { 796 struct imx_port *sport = dev_id; 797 798 spin_lock(&sport->port.lock); 799 imx_uart_transmit_buffer(sport); 800 spin_unlock(&sport->port.lock); 801 return IRQ_HANDLED; 802 } 803 804 /* Check if hardware Rx flood is in progress, and issue soft reset to stop it. 805 * This is to be called from Rx ISRs only when some bytes were actually 806 * received. 807 * 808 * A way to reproduce the flood (checked on iMX6SX) is: open iMX UART at 9600 809 * 8N1, and from external source send 0xf0 char at 115200 8N1. In about 90% of 810 * cases this starts a flood of "receiving" of 0xff characters by the iMX6 UART 811 * that is terminated by any activity on RxD line, or could be stopped by 812 * issuing soft reset to the UART (just stop/start of RX does not help). Note 813 * that what we do here is sending isolated start bit about 2.4 times shorter 814 * than it is to be on UART configured baud rate. 815 */ 816 static void imx_uart_check_flood(struct imx_port *sport, u32 usr2) 817 { 818 /* To detect hardware 0xff flood we monitor RxD line between RX 819 * interrupts to isolate "receiving" of char(s) with no activity 820 * on RxD line, that'd never happen on actual data transfers. 821 * 822 * We use USR2_WAKE bit to check for activity on RxD line, but we have a 823 * race here if we clear USR2_WAKE when receiving of a char is in 824 * progress, so we might get RX interrupt later with USR2_WAKE bit 825 * cleared. Note though that as we don't try to clear USR2_WAKE when we 826 * detected no activity, this race may hide actual activity only once. 827 * 828 * Yet another case where receive interrupt may occur without RxD 829 * activity is expiration of aging timer, so we consider this as well. 830 * 831 * We use 'idle_counter' to ensure that we got at least so many RX 832 * interrupts without any detected activity on RxD line. 2 cases 833 * described plus 1 to be on the safe side gives us a margin of 3, 834 * below. In practice I was not able to produce a false positive to 835 * induce soft reset at regular data transfers even using 1 as the 836 * margin, so 3 is actually very strong. 837 * 838 * We count interrupts, not chars in 'idle-counter' for simplicity. 839 */ 840 841 if (usr2 & USR2_WAKE) { 842 imx_uart_writel(sport, USR2_WAKE, USR2); 843 sport->idle_counter = 0; 844 } else if (++sport->idle_counter > 3) { 845 dev_warn(sport->port.dev, "RX flood detected: soft reset."); 846 imx_uart_soft_reset(sport); /* also clears 'sport->idle_counter' */ 847 } 848 } 849 850 static irqreturn_t __imx_uart_rxint(int irq, void *dev_id) 851 { 852 struct imx_port *sport = dev_id; 853 struct tty_port *port = &sport->port.state->port; 854 u32 usr2, rx; 855 856 /* If we received something, check for 0xff flood */ 857 usr2 = imx_uart_readl(sport, USR2); 858 if (usr2 & USR2_RDR) 859 imx_uart_check_flood(sport, usr2); 860 861 while ((rx = imx_uart_readl(sport, URXD0)) & URXD_CHARRDY) { 862 unsigned int flg = TTY_NORMAL; 863 sport->port.icount.rx++; 864 865 if (unlikely(rx & URXD_ERR)) { 866 if (rx & URXD_BRK) { 867 sport->port.icount.brk++; 868 if (uart_handle_break(&sport->port)) 869 continue; 870 } 871 else if (rx & URXD_PRERR) 872 sport->port.icount.parity++; 873 else if (rx & URXD_FRMERR) 874 sport->port.icount.frame++; 875 if (rx & URXD_OVRRUN) 876 sport->port.icount.overrun++; 877 878 if (rx & sport->port.ignore_status_mask) 879 continue; 880 881 rx &= (sport->port.read_status_mask | 0xFF); 882 883 if (rx & URXD_BRK) 884 flg = TTY_BREAK; 885 else if (rx & URXD_PRERR) 886 flg = TTY_PARITY; 887 else if (rx & URXD_FRMERR) 888 flg = TTY_FRAME; 889 if (rx & URXD_OVRRUN) 890 flg = TTY_OVERRUN; 891 892 sport->port.sysrq = 0; 893 } else if (uart_handle_sysrq_char(&sport->port, (unsigned char)rx)) { 894 continue; 895 } 896 897 if (sport->port.ignore_status_mask & URXD_DUMMY_READ) 898 continue; 899 900 if (tty_insert_flip_char(port, rx, flg) == 0) 901 sport->port.icount.buf_overrun++; 902 } 903 904 tty_flip_buffer_push(port); 905 906 return IRQ_HANDLED; 907 } 908 909 static irqreturn_t imx_uart_rxint(int irq, void *dev_id) 910 { 911 struct imx_port *sport = dev_id; 912 irqreturn_t ret; 913 914 spin_lock(&sport->port.lock); 915 916 ret = __imx_uart_rxint(irq, dev_id); 917 918 spin_unlock(&sport->port.lock); 919 920 return ret; 921 } 922 923 static void imx_uart_clear_rx_errors(struct imx_port *sport); 924 925 /* 926 * We have a modem side uart, so the meanings of RTS and CTS are inverted. 927 */ 928 static unsigned int imx_uart_get_hwmctrl(struct imx_port *sport) 929 { 930 unsigned int tmp = TIOCM_DSR; 931 unsigned usr1 = imx_uart_readl(sport, USR1); 932 unsigned usr2 = imx_uart_readl(sport, USR2); 933 934 if (usr1 & USR1_RTSS) 935 tmp |= TIOCM_CTS; 936 937 /* in DCE mode DCDIN is always 0 */ 938 if (!(usr2 & USR2_DCDIN)) 939 tmp |= TIOCM_CAR; 940 941 if (sport->dte_mode) 942 if (!(imx_uart_readl(sport, USR2) & USR2_RIIN)) 943 tmp |= TIOCM_RI; 944 945 return tmp; 946 } 947 948 /* 949 * Handle any change of modem status signal since we were last called. 950 */ 951 static void imx_uart_mctrl_check(struct imx_port *sport) 952 { 953 unsigned int status, changed; 954 955 status = imx_uart_get_hwmctrl(sport); 956 changed = status ^ sport->old_status; 957 958 if (changed == 0) 959 return; 960 961 sport->old_status = status; 962 963 if (changed & TIOCM_RI && status & TIOCM_RI) 964 sport->port.icount.rng++; 965 if (changed & TIOCM_DSR) 966 sport->port.icount.dsr++; 967 if (changed & TIOCM_CAR) 968 uart_handle_dcd_change(&sport->port, status & TIOCM_CAR); 969 if (changed & TIOCM_CTS) 970 uart_handle_cts_change(&sport->port, status & TIOCM_CTS); 971 972 wake_up_interruptible(&sport->port.state->port.delta_msr_wait); 973 } 974 975 static irqreturn_t imx_uart_int(int irq, void *dev_id) 976 { 977 struct imx_port *sport = dev_id; 978 unsigned int usr1, usr2, ucr1, ucr2, ucr3, ucr4; 979 irqreturn_t ret = IRQ_NONE; 980 981 spin_lock(&sport->port.lock); 982 983 usr1 = imx_uart_readl(sport, USR1); 984 usr2 = imx_uart_readl(sport, USR2); 985 ucr1 = imx_uart_readl(sport, UCR1); 986 ucr2 = imx_uart_readl(sport, UCR2); 987 ucr3 = imx_uart_readl(sport, UCR3); 988 ucr4 = imx_uart_readl(sport, UCR4); 989 990 /* 991 * Even if a condition is true that can trigger an irq only handle it if 992 * the respective irq source is enabled. This prevents some undesired 993 * actions, for example if a character that sits in the RX FIFO and that 994 * should be fetched via DMA is tried to be fetched using PIO. Or the 995 * receiver is currently off and so reading from URXD0 results in an 996 * exception. So just mask the (raw) status bits for disabled irqs. 997 */ 998 if ((ucr1 & UCR1_RRDYEN) == 0) 999 usr1 &= ~USR1_RRDY; 1000 if ((ucr2 & UCR2_ATEN) == 0) 1001 usr1 &= ~USR1_AGTIM; 1002 if ((ucr1 & UCR1_TRDYEN) == 0) 1003 usr1 &= ~USR1_TRDY; 1004 if ((ucr4 & UCR4_TCEN) == 0) 1005 usr2 &= ~USR2_TXDC; 1006 if ((ucr3 & UCR3_DTRDEN) == 0) 1007 usr1 &= ~USR1_DTRD; 1008 if ((ucr1 & UCR1_RTSDEN) == 0) 1009 usr1 &= ~USR1_RTSD; 1010 if ((ucr3 & UCR3_AWAKEN) == 0) 1011 usr1 &= ~USR1_AWAKE; 1012 if ((ucr4 & UCR4_OREN) == 0) 1013 usr2 &= ~USR2_ORE; 1014 1015 if (usr1 & (USR1_RRDY | USR1_AGTIM)) { 1016 imx_uart_writel(sport, USR1_AGTIM, USR1); 1017 1018 __imx_uart_rxint(irq, dev_id); 1019 ret = IRQ_HANDLED; 1020 } 1021 1022 if ((usr1 & USR1_TRDY) || (usr2 & USR2_TXDC)) { 1023 imx_uart_transmit_buffer(sport); 1024 ret = IRQ_HANDLED; 1025 } 1026 1027 if (usr1 & USR1_DTRD) { 1028 imx_uart_writel(sport, USR1_DTRD, USR1); 1029 1030 imx_uart_mctrl_check(sport); 1031 1032 ret = IRQ_HANDLED; 1033 } 1034 1035 if (usr1 & USR1_RTSD) { 1036 __imx_uart_rtsint(irq, dev_id); 1037 ret = IRQ_HANDLED; 1038 } 1039 1040 if (usr1 & USR1_AWAKE) { 1041 imx_uart_writel(sport, USR1_AWAKE, USR1); 1042 ret = IRQ_HANDLED; 1043 } 1044 1045 if (usr2 & USR2_ORE) { 1046 sport->port.icount.overrun++; 1047 imx_uart_writel(sport, USR2_ORE, USR2); 1048 ret = IRQ_HANDLED; 1049 } 1050 1051 spin_unlock(&sport->port.lock); 1052 1053 return ret; 1054 } 1055 1056 /* 1057 * Return TIOCSER_TEMT when transmitter is not busy. 1058 */ 1059 static unsigned int imx_uart_tx_empty(struct uart_port *port) 1060 { 1061 struct imx_port *sport = (struct imx_port *)port; 1062 unsigned int ret; 1063 1064 ret = (imx_uart_readl(sport, USR2) & USR2_TXDC) ? TIOCSER_TEMT : 0; 1065 1066 /* If the TX DMA is working, return 0. */ 1067 if (sport->dma_is_txing) 1068 ret = 0; 1069 1070 return ret; 1071 } 1072 1073 /* called with port.lock taken and irqs off */ 1074 static unsigned int imx_uart_get_mctrl(struct uart_port *port) 1075 { 1076 struct imx_port *sport = (struct imx_port *)port; 1077 unsigned int ret = imx_uart_get_hwmctrl(sport); 1078 1079 mctrl_gpio_get(sport->gpios, &ret); 1080 1081 return ret; 1082 } 1083 1084 /* called with port.lock taken and irqs off */ 1085 static void imx_uart_set_mctrl(struct uart_port *port, unsigned int mctrl) 1086 { 1087 struct imx_port *sport = (struct imx_port *)port; 1088 u32 ucr3, uts; 1089 1090 if (!(port->rs485.flags & SER_RS485_ENABLED)) { 1091 u32 ucr2; 1092 1093 /* 1094 * Turn off autoRTS if RTS is lowered and restore autoRTS 1095 * setting if RTS is raised. 1096 */ 1097 ucr2 = imx_uart_readl(sport, UCR2); 1098 ucr2 &= ~(UCR2_CTS | UCR2_CTSC); 1099 if (mctrl & TIOCM_RTS) { 1100 ucr2 |= UCR2_CTS; 1101 /* 1102 * UCR2_IRTS is unset if and only if the port is 1103 * configured for CRTSCTS, so we use inverted UCR2_IRTS 1104 * to get the state to restore to. 1105 */ 1106 if (!(ucr2 & UCR2_IRTS)) 1107 ucr2 |= UCR2_CTSC; 1108 } 1109 imx_uart_writel(sport, ucr2, UCR2); 1110 } 1111 1112 ucr3 = imx_uart_readl(sport, UCR3) & ~UCR3_DSR; 1113 if (!(mctrl & TIOCM_DTR)) 1114 ucr3 |= UCR3_DSR; 1115 imx_uart_writel(sport, ucr3, UCR3); 1116 1117 uts = imx_uart_readl(sport, imx_uart_uts_reg(sport)) & ~UTS_LOOP; 1118 if (mctrl & TIOCM_LOOP) 1119 uts |= UTS_LOOP; 1120 imx_uart_writel(sport, uts, imx_uart_uts_reg(sport)); 1121 1122 mctrl_gpio_set(sport->gpios, mctrl); 1123 } 1124 1125 /* 1126 * Interrupts always disabled. 1127 */ 1128 static void imx_uart_break_ctl(struct uart_port *port, int break_state) 1129 { 1130 struct imx_port *sport = (struct imx_port *)port; 1131 unsigned long flags; 1132 u32 ucr1; 1133 1134 spin_lock_irqsave(&sport->port.lock, flags); 1135 1136 ucr1 = imx_uart_readl(sport, UCR1) & ~UCR1_SNDBRK; 1137 1138 if (break_state != 0) 1139 ucr1 |= UCR1_SNDBRK; 1140 1141 imx_uart_writel(sport, ucr1, UCR1); 1142 1143 spin_unlock_irqrestore(&sport->port.lock, flags); 1144 } 1145 1146 /* 1147 * This is our per-port timeout handler, for checking the 1148 * modem status signals. 1149 */ 1150 static void imx_uart_timeout(struct timer_list *t) 1151 { 1152 struct imx_port *sport = from_timer(sport, t, timer); 1153 unsigned long flags; 1154 1155 if (sport->port.state) { 1156 spin_lock_irqsave(&sport->port.lock, flags); 1157 imx_uart_mctrl_check(sport); 1158 spin_unlock_irqrestore(&sport->port.lock, flags); 1159 1160 mod_timer(&sport->timer, jiffies + MCTRL_TIMEOUT); 1161 } 1162 } 1163 1164 /* 1165 * There are two kinds of RX DMA interrupts(such as in the MX6Q): 1166 * [1] the RX DMA buffer is full. 1167 * [2] the aging timer expires 1168 * 1169 * Condition [2] is triggered when a character has been sitting in the FIFO 1170 * for at least 8 byte durations. 1171 */ 1172 static void imx_uart_dma_rx_callback(void *data) 1173 { 1174 struct imx_port *sport = data; 1175 struct dma_chan *chan = sport->dma_chan_rx; 1176 struct scatterlist *sgl = &sport->rx_sgl; 1177 struct tty_port *port = &sport->port.state->port; 1178 struct dma_tx_state state; 1179 struct circ_buf *rx_ring = &sport->rx_ring; 1180 enum dma_status status; 1181 unsigned int w_bytes = 0; 1182 unsigned int r_bytes; 1183 unsigned int bd_size; 1184 1185 status = dmaengine_tx_status(chan, sport->rx_cookie, &state); 1186 1187 if (status == DMA_ERROR) { 1188 spin_lock(&sport->port.lock); 1189 imx_uart_clear_rx_errors(sport); 1190 spin_unlock(&sport->port.lock); 1191 return; 1192 } 1193 1194 /* 1195 * The state-residue variable represents the empty space 1196 * relative to the entire buffer. Taking this in consideration 1197 * the head is always calculated base on the buffer total 1198 * length - DMA transaction residue. The UART script from the 1199 * SDMA firmware will jump to the next buffer descriptor, 1200 * once a DMA transaction if finalized (IMX53 RM - A.4.1.2.4). 1201 * Taking this in consideration the tail is always at the 1202 * beginning of the buffer descriptor that contains the head. 1203 */ 1204 1205 /* Calculate the head */ 1206 rx_ring->head = sg_dma_len(sgl) - state.residue; 1207 1208 /* Calculate the tail. */ 1209 bd_size = sg_dma_len(sgl) / sport->rx_periods; 1210 rx_ring->tail = ((rx_ring->head-1) / bd_size) * bd_size; 1211 1212 if (rx_ring->head <= sg_dma_len(sgl) && 1213 rx_ring->head > rx_ring->tail) { 1214 1215 /* Move data from tail to head */ 1216 r_bytes = rx_ring->head - rx_ring->tail; 1217 1218 /* If we received something, check for 0xff flood */ 1219 spin_lock(&sport->port.lock); 1220 imx_uart_check_flood(sport, imx_uart_readl(sport, USR2)); 1221 spin_unlock(&sport->port.lock); 1222 1223 if (!(sport->port.ignore_status_mask & URXD_DUMMY_READ)) { 1224 1225 /* CPU claims ownership of RX DMA buffer */ 1226 dma_sync_sg_for_cpu(sport->port.dev, sgl, 1, 1227 DMA_FROM_DEVICE); 1228 1229 w_bytes = tty_insert_flip_string(port, 1230 sport->rx_buf + rx_ring->tail, r_bytes); 1231 1232 /* UART retrieves ownership of RX DMA buffer */ 1233 dma_sync_sg_for_device(sport->port.dev, sgl, 1, 1234 DMA_FROM_DEVICE); 1235 1236 if (w_bytes != r_bytes) 1237 sport->port.icount.buf_overrun++; 1238 1239 sport->port.icount.rx += w_bytes; 1240 } 1241 } else { 1242 WARN_ON(rx_ring->head > sg_dma_len(sgl)); 1243 WARN_ON(rx_ring->head <= rx_ring->tail); 1244 } 1245 1246 if (w_bytes) { 1247 tty_flip_buffer_push(port); 1248 dev_dbg(sport->port.dev, "We get %d bytes.\n", w_bytes); 1249 } 1250 } 1251 1252 static int imx_uart_start_rx_dma(struct imx_port *sport) 1253 { 1254 struct scatterlist *sgl = &sport->rx_sgl; 1255 struct dma_chan *chan = sport->dma_chan_rx; 1256 struct device *dev = sport->port.dev; 1257 struct dma_async_tx_descriptor *desc; 1258 int ret; 1259 1260 sport->rx_ring.head = 0; 1261 sport->rx_ring.tail = 0; 1262 1263 sg_init_one(sgl, sport->rx_buf, sport->rx_buf_size); 1264 ret = dma_map_sg(dev, sgl, 1, DMA_FROM_DEVICE); 1265 if (ret == 0) { 1266 dev_err(dev, "DMA mapping error for RX.\n"); 1267 return -EINVAL; 1268 } 1269 1270 desc = dmaengine_prep_dma_cyclic(chan, sg_dma_address(sgl), 1271 sg_dma_len(sgl), sg_dma_len(sgl) / sport->rx_periods, 1272 DMA_DEV_TO_MEM, DMA_PREP_INTERRUPT); 1273 1274 if (!desc) { 1275 dma_unmap_sg(dev, sgl, 1, DMA_FROM_DEVICE); 1276 dev_err(dev, "We cannot prepare for the RX slave dma!\n"); 1277 return -EINVAL; 1278 } 1279 desc->callback = imx_uart_dma_rx_callback; 1280 desc->callback_param = sport; 1281 1282 dev_dbg(dev, "RX: prepare for the DMA.\n"); 1283 sport->dma_is_rxing = 1; 1284 sport->rx_cookie = dmaengine_submit(desc); 1285 dma_async_issue_pending(chan); 1286 return 0; 1287 } 1288 1289 static void imx_uart_clear_rx_errors(struct imx_port *sport) 1290 { 1291 struct tty_port *port = &sport->port.state->port; 1292 u32 usr1, usr2; 1293 1294 usr1 = imx_uart_readl(sport, USR1); 1295 usr2 = imx_uart_readl(sport, USR2); 1296 1297 if (usr2 & USR2_BRCD) { 1298 sport->port.icount.brk++; 1299 imx_uart_writel(sport, USR2_BRCD, USR2); 1300 uart_handle_break(&sport->port); 1301 if (tty_insert_flip_char(port, 0, TTY_BREAK) == 0) 1302 sport->port.icount.buf_overrun++; 1303 tty_flip_buffer_push(port); 1304 } else { 1305 if (usr1 & USR1_FRAMERR) { 1306 sport->port.icount.frame++; 1307 imx_uart_writel(sport, USR1_FRAMERR, USR1); 1308 } else if (usr1 & USR1_PARITYERR) { 1309 sport->port.icount.parity++; 1310 imx_uart_writel(sport, USR1_PARITYERR, USR1); 1311 } 1312 } 1313 1314 if (usr2 & USR2_ORE) { 1315 sport->port.icount.overrun++; 1316 imx_uart_writel(sport, USR2_ORE, USR2); 1317 } 1318 1319 sport->idle_counter = 0; 1320 1321 } 1322 1323 #define TXTL_DEFAULT 2 /* reset default */ 1324 #define RXTL_DEFAULT 8 /* 8 characters or aging timer */ 1325 #define TXTL_DMA 8 /* DMA burst setting */ 1326 #define RXTL_DMA 9 /* DMA burst setting */ 1327 1328 static void imx_uart_setup_ufcr(struct imx_port *sport, 1329 unsigned char txwl, unsigned char rxwl) 1330 { 1331 unsigned int val; 1332 1333 /* set receiver / transmitter trigger level */ 1334 val = imx_uart_readl(sport, UFCR) & (UFCR_RFDIV | UFCR_DCEDTE); 1335 val |= txwl << UFCR_TXTL_SHF | rxwl; 1336 imx_uart_writel(sport, val, UFCR); 1337 } 1338 1339 static void imx_uart_dma_exit(struct imx_port *sport) 1340 { 1341 if (sport->dma_chan_rx) { 1342 dmaengine_terminate_sync(sport->dma_chan_rx); 1343 dma_release_channel(sport->dma_chan_rx); 1344 sport->dma_chan_rx = NULL; 1345 sport->rx_cookie = -EINVAL; 1346 kfree(sport->rx_buf); 1347 sport->rx_buf = NULL; 1348 } 1349 1350 if (sport->dma_chan_tx) { 1351 dmaengine_terminate_sync(sport->dma_chan_tx); 1352 dma_release_channel(sport->dma_chan_tx); 1353 sport->dma_chan_tx = NULL; 1354 } 1355 } 1356 1357 static int imx_uart_dma_init(struct imx_port *sport) 1358 { 1359 struct dma_slave_config slave_config = {}; 1360 struct device *dev = sport->port.dev; 1361 int ret; 1362 1363 /* Prepare for RX : */ 1364 sport->dma_chan_rx = dma_request_slave_channel(dev, "rx"); 1365 if (!sport->dma_chan_rx) { 1366 dev_dbg(dev, "cannot get the DMA channel.\n"); 1367 ret = -EINVAL; 1368 goto err; 1369 } 1370 1371 slave_config.direction = DMA_DEV_TO_MEM; 1372 slave_config.src_addr = sport->port.mapbase + URXD0; 1373 slave_config.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE; 1374 /* one byte less than the watermark level to enable the aging timer */ 1375 slave_config.src_maxburst = RXTL_DMA - 1; 1376 ret = dmaengine_slave_config(sport->dma_chan_rx, &slave_config); 1377 if (ret) { 1378 dev_err(dev, "error in RX dma configuration.\n"); 1379 goto err; 1380 } 1381 1382 sport->rx_buf_size = sport->rx_period_length * sport->rx_periods; 1383 sport->rx_buf = kzalloc(sport->rx_buf_size, GFP_KERNEL); 1384 if (!sport->rx_buf) { 1385 ret = -ENOMEM; 1386 goto err; 1387 } 1388 sport->rx_ring.buf = sport->rx_buf; 1389 1390 /* Prepare for TX : */ 1391 sport->dma_chan_tx = dma_request_slave_channel(dev, "tx"); 1392 if (!sport->dma_chan_tx) { 1393 dev_err(dev, "cannot get the TX DMA channel!\n"); 1394 ret = -EINVAL; 1395 goto err; 1396 } 1397 1398 slave_config.direction = DMA_MEM_TO_DEV; 1399 slave_config.dst_addr = sport->port.mapbase + URTX0; 1400 slave_config.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE; 1401 slave_config.dst_maxburst = TXTL_DMA; 1402 ret = dmaengine_slave_config(sport->dma_chan_tx, &slave_config); 1403 if (ret) { 1404 dev_err(dev, "error in TX dma configuration."); 1405 goto err; 1406 } 1407 1408 return 0; 1409 err: 1410 imx_uart_dma_exit(sport); 1411 return ret; 1412 } 1413 1414 static void imx_uart_enable_dma(struct imx_port *sport) 1415 { 1416 u32 ucr1; 1417 1418 imx_uart_setup_ufcr(sport, TXTL_DMA, RXTL_DMA); 1419 1420 /* set UCR1 */ 1421 ucr1 = imx_uart_readl(sport, UCR1); 1422 ucr1 |= UCR1_RXDMAEN | UCR1_TXDMAEN | UCR1_ATDMAEN; 1423 imx_uart_writel(sport, ucr1, UCR1); 1424 1425 sport->dma_is_enabled = 1; 1426 } 1427 1428 static void imx_uart_disable_dma(struct imx_port *sport) 1429 { 1430 u32 ucr1; 1431 1432 /* clear UCR1 */ 1433 ucr1 = imx_uart_readl(sport, UCR1); 1434 ucr1 &= ~(UCR1_RXDMAEN | UCR1_TXDMAEN | UCR1_ATDMAEN); 1435 imx_uart_writel(sport, ucr1, UCR1); 1436 1437 imx_uart_setup_ufcr(sport, TXTL_DEFAULT, RXTL_DEFAULT); 1438 1439 sport->dma_is_enabled = 0; 1440 } 1441 1442 /* half the RX buffer size */ 1443 #define CTSTL 16 1444 1445 static int imx_uart_startup(struct uart_port *port) 1446 { 1447 struct imx_port *sport = (struct imx_port *)port; 1448 int retval; 1449 unsigned long flags; 1450 int dma_is_inited = 0; 1451 u32 ucr1, ucr2, ucr3, ucr4; 1452 1453 retval = clk_prepare_enable(sport->clk_per); 1454 if (retval) 1455 return retval; 1456 retval = clk_prepare_enable(sport->clk_ipg); 1457 if (retval) { 1458 clk_disable_unprepare(sport->clk_per); 1459 return retval; 1460 } 1461 1462 imx_uart_setup_ufcr(sport, TXTL_DEFAULT, RXTL_DEFAULT); 1463 1464 /* disable the DREN bit (Data Ready interrupt enable) before 1465 * requesting IRQs 1466 */ 1467 ucr4 = imx_uart_readl(sport, UCR4); 1468 1469 /* set the trigger level for CTS */ 1470 ucr4 &= ~(UCR4_CTSTL_MASK << UCR4_CTSTL_SHF); 1471 ucr4 |= CTSTL << UCR4_CTSTL_SHF; 1472 1473 imx_uart_writel(sport, ucr4 & ~UCR4_DREN, UCR4); 1474 1475 /* Can we enable the DMA support? */ 1476 if (!uart_console(port) && imx_uart_dma_init(sport) == 0) 1477 dma_is_inited = 1; 1478 1479 spin_lock_irqsave(&sport->port.lock, flags); 1480 1481 /* Reset fifo's and state machines */ 1482 imx_uart_soft_reset(sport); 1483 1484 /* 1485 * Finally, clear and enable interrupts 1486 */ 1487 imx_uart_writel(sport, USR1_RTSD | USR1_DTRD, USR1); 1488 imx_uart_writel(sport, USR2_ORE, USR2); 1489 1490 ucr1 = imx_uart_readl(sport, UCR1) & ~UCR1_RRDYEN; 1491 ucr1 |= UCR1_UARTEN; 1492 if (sport->have_rtscts) 1493 ucr1 |= UCR1_RTSDEN; 1494 1495 imx_uart_writel(sport, ucr1, UCR1); 1496 1497 ucr4 = imx_uart_readl(sport, UCR4) & ~(UCR4_OREN | UCR4_INVR); 1498 if (!dma_is_inited) 1499 ucr4 |= UCR4_OREN; 1500 if (sport->inverted_rx) 1501 ucr4 |= UCR4_INVR; 1502 imx_uart_writel(sport, ucr4, UCR4); 1503 1504 ucr3 = imx_uart_readl(sport, UCR3) & ~UCR3_INVT; 1505 /* 1506 * configure tx polarity before enabling tx 1507 */ 1508 if (sport->inverted_tx) 1509 ucr3 |= UCR3_INVT; 1510 1511 if (!imx_uart_is_imx1(sport)) { 1512 ucr3 |= UCR3_DTRDEN | UCR3_RI | UCR3_DCD; 1513 1514 if (sport->dte_mode) 1515 /* disable broken interrupts */ 1516 ucr3 &= ~(UCR3_RI | UCR3_DCD); 1517 } 1518 imx_uart_writel(sport, ucr3, UCR3); 1519 1520 ucr2 = imx_uart_readl(sport, UCR2) & ~UCR2_ATEN; 1521 ucr2 |= (UCR2_RXEN | UCR2_TXEN); 1522 if (!sport->have_rtscts) 1523 ucr2 |= UCR2_IRTS; 1524 /* 1525 * make sure the edge sensitive RTS-irq is disabled, 1526 * we're using RTSD instead. 1527 */ 1528 if (!imx_uart_is_imx1(sport)) 1529 ucr2 &= ~UCR2_RTSEN; 1530 imx_uart_writel(sport, ucr2, UCR2); 1531 1532 /* 1533 * Enable modem status interrupts 1534 */ 1535 imx_uart_enable_ms(&sport->port); 1536 1537 if (dma_is_inited) { 1538 imx_uart_enable_dma(sport); 1539 imx_uart_start_rx_dma(sport); 1540 } else { 1541 ucr1 = imx_uart_readl(sport, UCR1); 1542 ucr1 |= UCR1_RRDYEN; 1543 imx_uart_writel(sport, ucr1, UCR1); 1544 1545 ucr2 = imx_uart_readl(sport, UCR2); 1546 ucr2 |= UCR2_ATEN; 1547 imx_uart_writel(sport, ucr2, UCR2); 1548 } 1549 1550 imx_uart_disable_loopback_rs485(sport); 1551 1552 spin_unlock_irqrestore(&sport->port.lock, flags); 1553 1554 return 0; 1555 } 1556 1557 static void imx_uart_shutdown(struct uart_port *port) 1558 { 1559 struct imx_port *sport = (struct imx_port *)port; 1560 unsigned long flags; 1561 u32 ucr1, ucr2, ucr4, uts; 1562 1563 if (sport->dma_is_enabled) { 1564 dmaengine_terminate_sync(sport->dma_chan_tx); 1565 if (sport->dma_is_txing) { 1566 dma_unmap_sg(sport->port.dev, &sport->tx_sgl[0], 1567 sport->dma_tx_nents, DMA_TO_DEVICE); 1568 sport->dma_is_txing = 0; 1569 } 1570 dmaengine_terminate_sync(sport->dma_chan_rx); 1571 if (sport->dma_is_rxing) { 1572 dma_unmap_sg(sport->port.dev, &sport->rx_sgl, 1573 1, DMA_FROM_DEVICE); 1574 sport->dma_is_rxing = 0; 1575 } 1576 1577 spin_lock_irqsave(&sport->port.lock, flags); 1578 imx_uart_stop_tx(port); 1579 imx_uart_stop_rx(port); 1580 imx_uart_disable_dma(sport); 1581 spin_unlock_irqrestore(&sport->port.lock, flags); 1582 imx_uart_dma_exit(sport); 1583 } 1584 1585 mctrl_gpio_disable_ms(sport->gpios); 1586 1587 spin_lock_irqsave(&sport->port.lock, flags); 1588 ucr2 = imx_uart_readl(sport, UCR2); 1589 ucr2 &= ~(UCR2_TXEN | UCR2_ATEN); 1590 imx_uart_writel(sport, ucr2, UCR2); 1591 spin_unlock_irqrestore(&sport->port.lock, flags); 1592 1593 /* 1594 * Stop our timer. 1595 */ 1596 del_timer_sync(&sport->timer); 1597 1598 /* 1599 * Disable all interrupts, port and break condition. 1600 */ 1601 1602 spin_lock_irqsave(&sport->port.lock, flags); 1603 1604 ucr1 = imx_uart_readl(sport, UCR1); 1605 ucr1 &= ~(UCR1_TRDYEN | UCR1_RRDYEN | UCR1_RTSDEN | UCR1_RXDMAEN | 1606 UCR1_ATDMAEN | UCR1_SNDBRK); 1607 /* See SER_RS485_ENABLED/UTS_LOOP comment in imx_uart_probe() */ 1608 if (port->rs485.flags & SER_RS485_ENABLED && 1609 port->rs485.flags & SER_RS485_RTS_ON_SEND && 1610 sport->have_rtscts && !sport->have_rtsgpio) { 1611 uts = imx_uart_readl(sport, imx_uart_uts_reg(sport)); 1612 uts |= UTS_LOOP; 1613 imx_uart_writel(sport, uts, imx_uart_uts_reg(sport)); 1614 ucr1 |= UCR1_UARTEN; 1615 } else { 1616 ucr1 &= ~UCR1_UARTEN; 1617 } 1618 imx_uart_writel(sport, ucr1, UCR1); 1619 1620 ucr4 = imx_uart_readl(sport, UCR4); 1621 ucr4 &= ~UCR4_TCEN; 1622 imx_uart_writel(sport, ucr4, UCR4); 1623 1624 spin_unlock_irqrestore(&sport->port.lock, flags); 1625 1626 clk_disable_unprepare(sport->clk_per); 1627 clk_disable_unprepare(sport->clk_ipg); 1628 } 1629 1630 /* called with port.lock taken and irqs off */ 1631 static void imx_uart_flush_buffer(struct uart_port *port) 1632 { 1633 struct imx_port *sport = (struct imx_port *)port; 1634 struct scatterlist *sgl = &sport->tx_sgl[0]; 1635 1636 if (!sport->dma_chan_tx) 1637 return; 1638 1639 sport->tx_bytes = 0; 1640 dmaengine_terminate_all(sport->dma_chan_tx); 1641 if (sport->dma_is_txing) { 1642 u32 ucr1; 1643 1644 dma_unmap_sg(sport->port.dev, sgl, sport->dma_tx_nents, 1645 DMA_TO_DEVICE); 1646 ucr1 = imx_uart_readl(sport, UCR1); 1647 ucr1 &= ~UCR1_TXDMAEN; 1648 imx_uart_writel(sport, ucr1, UCR1); 1649 sport->dma_is_txing = 0; 1650 } 1651 1652 imx_uart_soft_reset(sport); 1653 1654 } 1655 1656 static void 1657 imx_uart_set_termios(struct uart_port *port, struct ktermios *termios, 1658 const struct ktermios *old) 1659 { 1660 struct imx_port *sport = (struct imx_port *)port; 1661 unsigned long flags; 1662 u32 ucr2, old_ucr2, ufcr; 1663 unsigned int baud, quot; 1664 unsigned int old_csize = old ? old->c_cflag & CSIZE : CS8; 1665 unsigned long div; 1666 unsigned long num, denom, old_ubir, old_ubmr; 1667 uint64_t tdiv64; 1668 1669 /* 1670 * We only support CS7 and CS8. 1671 */ 1672 while ((termios->c_cflag & CSIZE) != CS7 && 1673 (termios->c_cflag & CSIZE) != CS8) { 1674 termios->c_cflag &= ~CSIZE; 1675 termios->c_cflag |= old_csize; 1676 old_csize = CS8; 1677 } 1678 1679 del_timer_sync(&sport->timer); 1680 1681 /* 1682 * Ask the core to calculate the divisor for us. 1683 */ 1684 baud = uart_get_baud_rate(port, termios, old, 50, port->uartclk / 16); 1685 quot = uart_get_divisor(port, baud); 1686 1687 spin_lock_irqsave(&sport->port.lock, flags); 1688 1689 /* 1690 * Read current UCR2 and save it for future use, then clear all the bits 1691 * except those we will or may need to preserve. 1692 */ 1693 old_ucr2 = imx_uart_readl(sport, UCR2); 1694 ucr2 = old_ucr2 & (UCR2_TXEN | UCR2_RXEN | UCR2_ATEN | UCR2_CTS); 1695 1696 ucr2 |= UCR2_SRST | UCR2_IRTS; 1697 if ((termios->c_cflag & CSIZE) == CS8) 1698 ucr2 |= UCR2_WS; 1699 1700 if (!sport->have_rtscts) 1701 termios->c_cflag &= ~CRTSCTS; 1702 1703 if (port->rs485.flags & SER_RS485_ENABLED) { 1704 /* 1705 * RTS is mandatory for rs485 operation, so keep 1706 * it under manual control and keep transmitter 1707 * disabled. 1708 */ 1709 if (port->rs485.flags & SER_RS485_RTS_AFTER_SEND) 1710 imx_uart_rts_active(sport, &ucr2); 1711 else 1712 imx_uart_rts_inactive(sport, &ucr2); 1713 1714 } else if (termios->c_cflag & CRTSCTS) { 1715 /* 1716 * Only let receiver control RTS output if we were not requested 1717 * to have RTS inactive (which then should take precedence). 1718 */ 1719 if (ucr2 & UCR2_CTS) 1720 ucr2 |= UCR2_CTSC; 1721 } 1722 1723 if (termios->c_cflag & CRTSCTS) 1724 ucr2 &= ~UCR2_IRTS; 1725 if (termios->c_cflag & CSTOPB) 1726 ucr2 |= UCR2_STPB; 1727 if (termios->c_cflag & PARENB) { 1728 ucr2 |= UCR2_PREN; 1729 if (termios->c_cflag & PARODD) 1730 ucr2 |= UCR2_PROE; 1731 } 1732 1733 sport->port.read_status_mask = 0; 1734 if (termios->c_iflag & INPCK) 1735 sport->port.read_status_mask |= (URXD_FRMERR | URXD_PRERR); 1736 if (termios->c_iflag & (BRKINT | PARMRK)) 1737 sport->port.read_status_mask |= URXD_BRK; 1738 1739 /* 1740 * Characters to ignore 1741 */ 1742 sport->port.ignore_status_mask = 0; 1743 if (termios->c_iflag & IGNPAR) 1744 sport->port.ignore_status_mask |= URXD_PRERR | URXD_FRMERR; 1745 if (termios->c_iflag & IGNBRK) { 1746 sport->port.ignore_status_mask |= URXD_BRK; 1747 /* 1748 * If we're ignoring parity and break indicators, 1749 * ignore overruns too (for real raw support). 1750 */ 1751 if (termios->c_iflag & IGNPAR) 1752 sport->port.ignore_status_mask |= URXD_OVRRUN; 1753 } 1754 1755 if ((termios->c_cflag & CREAD) == 0) 1756 sport->port.ignore_status_mask |= URXD_DUMMY_READ; 1757 1758 /* 1759 * Update the per-port timeout. 1760 */ 1761 uart_update_timeout(port, termios->c_cflag, baud); 1762 1763 /* custom-baudrate handling */ 1764 div = sport->port.uartclk / (baud * 16); 1765 if (baud == 38400 && quot != div) 1766 baud = sport->port.uartclk / (quot * 16); 1767 1768 div = sport->port.uartclk / (baud * 16); 1769 if (div > 7) 1770 div = 7; 1771 if (!div) 1772 div = 1; 1773 1774 rational_best_approximation(16 * div * baud, sport->port.uartclk, 1775 1 << 16, 1 << 16, &num, &denom); 1776 1777 tdiv64 = sport->port.uartclk; 1778 tdiv64 *= num; 1779 do_div(tdiv64, denom * 16 * div); 1780 tty_termios_encode_baud_rate(termios, 1781 (speed_t)tdiv64, (speed_t)tdiv64); 1782 1783 num -= 1; 1784 denom -= 1; 1785 1786 ufcr = imx_uart_readl(sport, UFCR); 1787 ufcr = (ufcr & (~UFCR_RFDIV)) | UFCR_RFDIV_REG(div); 1788 imx_uart_writel(sport, ufcr, UFCR); 1789 1790 /* 1791 * Two registers below should always be written both and in this 1792 * particular order. One consequence is that we need to check if any of 1793 * them changes and then update both. We do need the check for change 1794 * as even writing the same values seem to "restart" 1795 * transmission/receiving logic in the hardware, that leads to data 1796 * breakage even when rate doesn't in fact change. E.g., user switches 1797 * RTS/CTS handshake and suddenly gets broken bytes. 1798 */ 1799 old_ubir = imx_uart_readl(sport, UBIR); 1800 old_ubmr = imx_uart_readl(sport, UBMR); 1801 if (old_ubir != num || old_ubmr != denom) { 1802 imx_uart_writel(sport, num, UBIR); 1803 imx_uart_writel(sport, denom, UBMR); 1804 } 1805 1806 if (!imx_uart_is_imx1(sport)) 1807 imx_uart_writel(sport, sport->port.uartclk / div / 1000, 1808 IMX21_ONEMS); 1809 1810 imx_uart_writel(sport, ucr2, UCR2); 1811 1812 if (UART_ENABLE_MS(&sport->port, termios->c_cflag)) 1813 imx_uart_enable_ms(&sport->port); 1814 1815 spin_unlock_irqrestore(&sport->port.lock, flags); 1816 } 1817 1818 static const char *imx_uart_type(struct uart_port *port) 1819 { 1820 return port->type == PORT_IMX ? "IMX" : NULL; 1821 } 1822 1823 /* 1824 * Configure/autoconfigure the port. 1825 */ 1826 static void imx_uart_config_port(struct uart_port *port, int flags) 1827 { 1828 if (flags & UART_CONFIG_TYPE) 1829 port->type = PORT_IMX; 1830 } 1831 1832 /* 1833 * Verify the new serial_struct (for TIOCSSERIAL). 1834 * The only change we allow are to the flags and type, and 1835 * even then only between PORT_IMX and PORT_UNKNOWN 1836 */ 1837 static int 1838 imx_uart_verify_port(struct uart_port *port, struct serial_struct *ser) 1839 { 1840 int ret = 0; 1841 1842 if (ser->type != PORT_UNKNOWN && ser->type != PORT_IMX) 1843 ret = -EINVAL; 1844 if (port->irq != ser->irq) 1845 ret = -EINVAL; 1846 if (ser->io_type != UPIO_MEM) 1847 ret = -EINVAL; 1848 if (port->uartclk / 16 != ser->baud_base) 1849 ret = -EINVAL; 1850 if (port->mapbase != (unsigned long)ser->iomem_base) 1851 ret = -EINVAL; 1852 if (port->iobase != ser->port) 1853 ret = -EINVAL; 1854 if (ser->hub6 != 0) 1855 ret = -EINVAL; 1856 return ret; 1857 } 1858 1859 #if defined(CONFIG_CONSOLE_POLL) 1860 1861 static int imx_uart_poll_init(struct uart_port *port) 1862 { 1863 struct imx_port *sport = (struct imx_port *)port; 1864 unsigned long flags; 1865 u32 ucr1, ucr2; 1866 int retval; 1867 1868 retval = clk_prepare_enable(sport->clk_ipg); 1869 if (retval) 1870 return retval; 1871 retval = clk_prepare_enable(sport->clk_per); 1872 if (retval) 1873 clk_disable_unprepare(sport->clk_ipg); 1874 1875 imx_uart_setup_ufcr(sport, TXTL_DEFAULT, RXTL_DEFAULT); 1876 1877 spin_lock_irqsave(&sport->port.lock, flags); 1878 1879 /* 1880 * Be careful about the order of enabling bits here. First enable the 1881 * receiver (UARTEN + RXEN) and only then the corresponding irqs. 1882 * This prevents that a character that already sits in the RX fifo is 1883 * triggering an irq but the try to fetch it from there results in an 1884 * exception because UARTEN or RXEN is still off. 1885 */ 1886 ucr1 = imx_uart_readl(sport, UCR1); 1887 ucr2 = imx_uart_readl(sport, UCR2); 1888 1889 if (imx_uart_is_imx1(sport)) 1890 ucr1 |= IMX1_UCR1_UARTCLKEN; 1891 1892 ucr1 |= UCR1_UARTEN; 1893 ucr1 &= ~(UCR1_TRDYEN | UCR1_RTSDEN | UCR1_RRDYEN); 1894 1895 ucr2 |= UCR2_RXEN | UCR2_TXEN; 1896 ucr2 &= ~UCR2_ATEN; 1897 1898 imx_uart_writel(sport, ucr1, UCR1); 1899 imx_uart_writel(sport, ucr2, UCR2); 1900 1901 /* now enable irqs */ 1902 imx_uart_writel(sport, ucr1 | UCR1_RRDYEN, UCR1); 1903 imx_uart_writel(sport, ucr2 | UCR2_ATEN, UCR2); 1904 1905 spin_unlock_irqrestore(&sport->port.lock, flags); 1906 1907 return 0; 1908 } 1909 1910 static int imx_uart_poll_get_char(struct uart_port *port) 1911 { 1912 struct imx_port *sport = (struct imx_port *)port; 1913 if (!(imx_uart_readl(sport, USR2) & USR2_RDR)) 1914 return NO_POLL_CHAR; 1915 1916 return imx_uart_readl(sport, URXD0) & URXD_RX_DATA; 1917 } 1918 1919 static void imx_uart_poll_put_char(struct uart_port *port, unsigned char c) 1920 { 1921 struct imx_port *sport = (struct imx_port *)port; 1922 unsigned int status; 1923 1924 /* drain */ 1925 do { 1926 status = imx_uart_readl(sport, USR1); 1927 } while (~status & USR1_TRDY); 1928 1929 /* write */ 1930 imx_uart_writel(sport, c, URTX0); 1931 1932 /* flush */ 1933 do { 1934 status = imx_uart_readl(sport, USR2); 1935 } while (~status & USR2_TXDC); 1936 } 1937 #endif 1938 1939 /* called with port.lock taken and irqs off or from .probe without locking */ 1940 static int imx_uart_rs485_config(struct uart_port *port, struct ktermios *termios, 1941 struct serial_rs485 *rs485conf) 1942 { 1943 struct imx_port *sport = (struct imx_port *)port; 1944 u32 ucr2, ufcr; 1945 1946 if (rs485conf->flags & SER_RS485_ENABLED) { 1947 /* Enable receiver if low-active RTS signal is requested */ 1948 if (sport->have_rtscts && !sport->have_rtsgpio && 1949 !(rs485conf->flags & SER_RS485_RTS_ON_SEND)) 1950 rs485conf->flags |= SER_RS485_RX_DURING_TX; 1951 1952 /* disable transmitter */ 1953 ucr2 = imx_uart_readl(sport, UCR2); 1954 if (rs485conf->flags & SER_RS485_RTS_AFTER_SEND) 1955 imx_uart_rts_active(sport, &ucr2); 1956 else 1957 imx_uart_rts_inactive(sport, &ucr2); 1958 imx_uart_writel(sport, ucr2, UCR2); 1959 } 1960 1961 /* Make sure Rx is enabled in case Tx is active with Rx disabled */ 1962 if (!(rs485conf->flags & SER_RS485_ENABLED) || 1963 rs485conf->flags & SER_RS485_RX_DURING_TX) { 1964 /* If the receiver trigger is 0, set it to a default value */ 1965 ufcr = imx_uart_readl(sport, UFCR); 1966 if ((ufcr & UFCR_RXTL_MASK) == 0) 1967 imx_uart_setup_ufcr(sport, TXTL_DEFAULT, RXTL_DEFAULT); 1968 imx_uart_start_rx(port); 1969 } 1970 1971 return 0; 1972 } 1973 1974 static const struct uart_ops imx_uart_pops = { 1975 .tx_empty = imx_uart_tx_empty, 1976 .set_mctrl = imx_uart_set_mctrl, 1977 .get_mctrl = imx_uart_get_mctrl, 1978 .stop_tx = imx_uart_stop_tx, 1979 .start_tx = imx_uart_start_tx, 1980 .stop_rx = imx_uart_stop_rx, 1981 .enable_ms = imx_uart_enable_ms, 1982 .break_ctl = imx_uart_break_ctl, 1983 .startup = imx_uart_startup, 1984 .shutdown = imx_uart_shutdown, 1985 .flush_buffer = imx_uart_flush_buffer, 1986 .set_termios = imx_uart_set_termios, 1987 .type = imx_uart_type, 1988 .config_port = imx_uart_config_port, 1989 .verify_port = imx_uart_verify_port, 1990 #if defined(CONFIG_CONSOLE_POLL) 1991 .poll_init = imx_uart_poll_init, 1992 .poll_get_char = imx_uart_poll_get_char, 1993 .poll_put_char = imx_uart_poll_put_char, 1994 #endif 1995 }; 1996 1997 static struct imx_port *imx_uart_ports[UART_NR]; 1998 1999 #if IS_ENABLED(CONFIG_SERIAL_IMX_CONSOLE) 2000 static void imx_uart_console_putchar(struct uart_port *port, unsigned char ch) 2001 { 2002 struct imx_port *sport = (struct imx_port *)port; 2003 2004 while (imx_uart_readl(sport, imx_uart_uts_reg(sport)) & UTS_TXFULL) 2005 barrier(); 2006 2007 imx_uart_writel(sport, ch, URTX0); 2008 } 2009 2010 /* 2011 * Interrupts are disabled on entering 2012 */ 2013 static void 2014 imx_uart_console_write(struct console *co, const char *s, unsigned int count) 2015 { 2016 struct imx_port *sport = imx_uart_ports[co->index]; 2017 struct imx_port_ucrs old_ucr; 2018 unsigned long flags; 2019 unsigned int ucr1, usr2; 2020 int locked = 1; 2021 2022 if (sport->port.sysrq) 2023 locked = 0; 2024 else if (oops_in_progress) 2025 locked = spin_trylock_irqsave(&sport->port.lock, flags); 2026 else 2027 spin_lock_irqsave(&sport->port.lock, flags); 2028 2029 /* 2030 * First, save UCR1/2/3 and then disable interrupts 2031 */ 2032 imx_uart_ucrs_save(sport, &old_ucr); 2033 ucr1 = old_ucr.ucr1; 2034 2035 if (imx_uart_is_imx1(sport)) 2036 ucr1 |= IMX1_UCR1_UARTCLKEN; 2037 ucr1 |= UCR1_UARTEN; 2038 ucr1 &= ~(UCR1_TRDYEN | UCR1_RRDYEN | UCR1_RTSDEN); 2039 2040 imx_uart_writel(sport, ucr1, UCR1); 2041 2042 imx_uart_writel(sport, old_ucr.ucr2 | UCR2_TXEN, UCR2); 2043 2044 uart_console_write(&sport->port, s, count, imx_uart_console_putchar); 2045 2046 /* 2047 * Finally, wait for transmitter to become empty 2048 * and restore UCR1/2/3 2049 */ 2050 read_poll_timeout_atomic(imx_uart_readl, usr2, usr2 & USR2_TXDC, 2051 0, USEC_PER_SEC, false, sport, USR2); 2052 imx_uart_ucrs_restore(sport, &old_ucr); 2053 2054 if (locked) 2055 spin_unlock_irqrestore(&sport->port.lock, flags); 2056 } 2057 2058 /* 2059 * If the port was already initialised (eg, by a boot loader), 2060 * try to determine the current setup. 2061 */ 2062 static void 2063 imx_uart_console_get_options(struct imx_port *sport, int *baud, 2064 int *parity, int *bits) 2065 { 2066 2067 if (imx_uart_readl(sport, UCR1) & UCR1_UARTEN) { 2068 /* ok, the port was enabled */ 2069 unsigned int ucr2, ubir, ubmr, uartclk; 2070 unsigned int baud_raw; 2071 unsigned int ucfr_rfdiv; 2072 2073 ucr2 = imx_uart_readl(sport, UCR2); 2074 2075 *parity = 'n'; 2076 if (ucr2 & UCR2_PREN) { 2077 if (ucr2 & UCR2_PROE) 2078 *parity = 'o'; 2079 else 2080 *parity = 'e'; 2081 } 2082 2083 if (ucr2 & UCR2_WS) 2084 *bits = 8; 2085 else 2086 *bits = 7; 2087 2088 ubir = imx_uart_readl(sport, UBIR) & 0xffff; 2089 ubmr = imx_uart_readl(sport, UBMR) & 0xffff; 2090 2091 ucfr_rfdiv = (imx_uart_readl(sport, UFCR) & UFCR_RFDIV) >> 7; 2092 if (ucfr_rfdiv == 6) 2093 ucfr_rfdiv = 7; 2094 else 2095 ucfr_rfdiv = 6 - ucfr_rfdiv; 2096 2097 uartclk = clk_get_rate(sport->clk_per); 2098 uartclk /= ucfr_rfdiv; 2099 2100 { /* 2101 * The next code provides exact computation of 2102 * baud_raw = round(((uartclk/16) * (ubir + 1)) / (ubmr + 1)) 2103 * without need of float support or long long division, 2104 * which would be required to prevent 32bit arithmetic overflow 2105 */ 2106 unsigned int mul = ubir + 1; 2107 unsigned int div = 16 * (ubmr + 1); 2108 unsigned int rem = uartclk % div; 2109 2110 baud_raw = (uartclk / div) * mul; 2111 baud_raw += (rem * mul + div / 2) / div; 2112 *baud = (baud_raw + 50) / 100 * 100; 2113 } 2114 2115 if (*baud != baud_raw) 2116 dev_info(sport->port.dev, "Console IMX rounded baud rate from %d to %d\n", 2117 baud_raw, *baud); 2118 } 2119 } 2120 2121 static int 2122 imx_uart_console_setup(struct console *co, char *options) 2123 { 2124 struct imx_port *sport; 2125 int baud = 9600; 2126 int bits = 8; 2127 int parity = 'n'; 2128 int flow = 'n'; 2129 int retval; 2130 2131 /* 2132 * Check whether an invalid uart number has been specified, and 2133 * if so, search for the first available port that does have 2134 * console support. 2135 */ 2136 if (co->index == -1 || co->index >= ARRAY_SIZE(imx_uart_ports)) 2137 co->index = 0; 2138 sport = imx_uart_ports[co->index]; 2139 if (sport == NULL) 2140 return -ENODEV; 2141 2142 /* For setting the registers, we only need to enable the ipg clock. */ 2143 retval = clk_prepare_enable(sport->clk_ipg); 2144 if (retval) 2145 goto error_console; 2146 2147 if (options) 2148 uart_parse_options(options, &baud, &parity, &bits, &flow); 2149 else 2150 imx_uart_console_get_options(sport, &baud, &parity, &bits); 2151 2152 imx_uart_setup_ufcr(sport, TXTL_DEFAULT, RXTL_DEFAULT); 2153 2154 retval = uart_set_options(&sport->port, co, baud, parity, bits, flow); 2155 2156 if (retval) { 2157 clk_disable_unprepare(sport->clk_ipg); 2158 goto error_console; 2159 } 2160 2161 retval = clk_prepare_enable(sport->clk_per); 2162 if (retval) 2163 clk_disable_unprepare(sport->clk_ipg); 2164 2165 error_console: 2166 return retval; 2167 } 2168 2169 static int 2170 imx_uart_console_exit(struct console *co) 2171 { 2172 struct imx_port *sport = imx_uart_ports[co->index]; 2173 2174 clk_disable_unprepare(sport->clk_per); 2175 clk_disable_unprepare(sport->clk_ipg); 2176 2177 return 0; 2178 } 2179 2180 static struct uart_driver imx_uart_uart_driver; 2181 static struct console imx_uart_console = { 2182 .name = DEV_NAME, 2183 .write = imx_uart_console_write, 2184 .device = uart_console_device, 2185 .setup = imx_uart_console_setup, 2186 .exit = imx_uart_console_exit, 2187 .flags = CON_PRINTBUFFER, 2188 .index = -1, 2189 .data = &imx_uart_uart_driver, 2190 }; 2191 2192 #define IMX_CONSOLE &imx_uart_console 2193 2194 #else 2195 #define IMX_CONSOLE NULL 2196 #endif 2197 2198 static struct uart_driver imx_uart_uart_driver = { 2199 .owner = THIS_MODULE, 2200 .driver_name = DRIVER_NAME, 2201 .dev_name = DEV_NAME, 2202 .major = SERIAL_IMX_MAJOR, 2203 .minor = MINOR_START, 2204 .nr = ARRAY_SIZE(imx_uart_ports), 2205 .cons = IMX_CONSOLE, 2206 }; 2207 2208 static enum hrtimer_restart imx_trigger_start_tx(struct hrtimer *t) 2209 { 2210 struct imx_port *sport = container_of(t, struct imx_port, trigger_start_tx); 2211 unsigned long flags; 2212 2213 spin_lock_irqsave(&sport->port.lock, flags); 2214 if (sport->tx_state == WAIT_AFTER_RTS) 2215 imx_uart_start_tx(&sport->port); 2216 spin_unlock_irqrestore(&sport->port.lock, flags); 2217 2218 return HRTIMER_NORESTART; 2219 } 2220 2221 static enum hrtimer_restart imx_trigger_stop_tx(struct hrtimer *t) 2222 { 2223 struct imx_port *sport = container_of(t, struct imx_port, trigger_stop_tx); 2224 unsigned long flags; 2225 2226 spin_lock_irqsave(&sport->port.lock, flags); 2227 if (sport->tx_state == WAIT_AFTER_SEND) 2228 imx_uart_stop_tx(&sport->port); 2229 spin_unlock_irqrestore(&sport->port.lock, flags); 2230 2231 return HRTIMER_NORESTART; 2232 } 2233 2234 static const struct serial_rs485 imx_rs485_supported = { 2235 .flags = SER_RS485_ENABLED | SER_RS485_RTS_ON_SEND | SER_RS485_RTS_AFTER_SEND | 2236 SER_RS485_RX_DURING_TX, 2237 .delay_rts_before_send = 1, 2238 .delay_rts_after_send = 1, 2239 }; 2240 2241 /* Default RX DMA buffer configuration */ 2242 #define RX_DMA_PERIODS 16 2243 #define RX_DMA_PERIOD_LEN (PAGE_SIZE / 4) 2244 2245 static int imx_uart_probe(struct platform_device *pdev) 2246 { 2247 struct device_node *np = pdev->dev.of_node; 2248 struct imx_port *sport; 2249 void __iomem *base; 2250 u32 dma_buf_conf[2]; 2251 int ret = 0; 2252 u32 ucr1, ucr2, uts; 2253 struct resource *res; 2254 int txirq, rxirq, rtsirq; 2255 2256 sport = devm_kzalloc(&pdev->dev, sizeof(*sport), GFP_KERNEL); 2257 if (!sport) 2258 return -ENOMEM; 2259 2260 sport->devdata = of_device_get_match_data(&pdev->dev); 2261 2262 ret = of_alias_get_id(np, "serial"); 2263 if (ret < 0) { 2264 dev_err(&pdev->dev, "failed to get alias id, errno %d\n", ret); 2265 return ret; 2266 } 2267 sport->port.line = ret; 2268 2269 sport->have_rtscts = of_property_read_bool(np, "uart-has-rtscts") || 2270 of_property_read_bool(np, "fsl,uart-has-rtscts"); /* deprecated */ 2271 2272 sport->dte_mode = of_property_read_bool(np, "fsl,dte-mode"); 2273 2274 sport->have_rtsgpio = of_property_present(np, "rts-gpios"); 2275 2276 sport->inverted_tx = of_property_read_bool(np, "fsl,inverted-tx"); 2277 2278 sport->inverted_rx = of_property_read_bool(np, "fsl,inverted-rx"); 2279 2280 if (!of_property_read_u32_array(np, "fsl,dma-info", dma_buf_conf, 2)) { 2281 sport->rx_period_length = dma_buf_conf[0]; 2282 sport->rx_periods = dma_buf_conf[1]; 2283 } else { 2284 sport->rx_period_length = RX_DMA_PERIOD_LEN; 2285 sport->rx_periods = RX_DMA_PERIODS; 2286 } 2287 2288 if (sport->port.line >= ARRAY_SIZE(imx_uart_ports)) { 2289 dev_err(&pdev->dev, "serial%d out of range\n", 2290 sport->port.line); 2291 return -EINVAL; 2292 } 2293 2294 base = devm_platform_get_and_ioremap_resource(pdev, 0, &res); 2295 if (IS_ERR(base)) 2296 return PTR_ERR(base); 2297 2298 rxirq = platform_get_irq(pdev, 0); 2299 if (rxirq < 0) 2300 return rxirq; 2301 txirq = platform_get_irq_optional(pdev, 1); 2302 rtsirq = platform_get_irq_optional(pdev, 2); 2303 2304 sport->port.dev = &pdev->dev; 2305 sport->port.mapbase = res->start; 2306 sport->port.membase = base; 2307 sport->port.type = PORT_IMX; 2308 sport->port.iotype = UPIO_MEM; 2309 sport->port.irq = rxirq; 2310 sport->port.fifosize = 32; 2311 sport->port.has_sysrq = IS_ENABLED(CONFIG_SERIAL_IMX_CONSOLE); 2312 sport->port.ops = &imx_uart_pops; 2313 sport->port.rs485_config = imx_uart_rs485_config; 2314 /* RTS is required to control the RS485 transmitter */ 2315 if (sport->have_rtscts || sport->have_rtsgpio) 2316 sport->port.rs485_supported = imx_rs485_supported; 2317 sport->port.flags = UPF_BOOT_AUTOCONF; 2318 timer_setup(&sport->timer, imx_uart_timeout, 0); 2319 2320 sport->gpios = mctrl_gpio_init(&sport->port, 0); 2321 if (IS_ERR(sport->gpios)) 2322 return PTR_ERR(sport->gpios); 2323 2324 sport->clk_ipg = devm_clk_get(&pdev->dev, "ipg"); 2325 if (IS_ERR(sport->clk_ipg)) { 2326 ret = PTR_ERR(sport->clk_ipg); 2327 dev_err(&pdev->dev, "failed to get ipg clk: %d\n", ret); 2328 return ret; 2329 } 2330 2331 sport->clk_per = devm_clk_get(&pdev->dev, "per"); 2332 if (IS_ERR(sport->clk_per)) { 2333 ret = PTR_ERR(sport->clk_per); 2334 dev_err(&pdev->dev, "failed to get per clk: %d\n", ret); 2335 return ret; 2336 } 2337 2338 sport->port.uartclk = clk_get_rate(sport->clk_per); 2339 2340 /* For register access, we only need to enable the ipg clock. */ 2341 ret = clk_prepare_enable(sport->clk_ipg); 2342 if (ret) { 2343 dev_err(&pdev->dev, "failed to enable ipg clk: %d\n", ret); 2344 return ret; 2345 } 2346 2347 ret = uart_get_rs485_mode(&sport->port); 2348 if (ret) 2349 goto err_clk; 2350 2351 /* 2352 * If using the i.MX UART RTS/CTS control then the RTS (CTS_B) 2353 * signal cannot be set low during transmission in case the 2354 * receiver is off (limitation of the i.MX UART IP). 2355 */ 2356 if (sport->port.rs485.flags & SER_RS485_ENABLED && 2357 sport->have_rtscts && !sport->have_rtsgpio && 2358 (!(sport->port.rs485.flags & SER_RS485_RTS_ON_SEND) && 2359 !(sport->port.rs485.flags & SER_RS485_RX_DURING_TX))) 2360 dev_err(&pdev->dev, 2361 "low-active RTS not possible when receiver is off, enabling receiver\n"); 2362 2363 /* Disable interrupts before requesting them */ 2364 ucr1 = imx_uart_readl(sport, UCR1); 2365 ucr1 &= ~(UCR1_ADEN | UCR1_TRDYEN | UCR1_IDEN | UCR1_RRDYEN | UCR1_RTSDEN); 2366 imx_uart_writel(sport, ucr1, UCR1); 2367 2368 /* Disable Ageing Timer interrupt */ 2369 ucr2 = imx_uart_readl(sport, UCR2); 2370 ucr2 &= ~UCR2_ATEN; 2371 imx_uart_writel(sport, ucr2, UCR2); 2372 2373 /* 2374 * In case RS485 is enabled without GPIO RTS control, the UART IP 2375 * is used to control CTS signal. Keep both the UART and Receiver 2376 * enabled, otherwise the UART IP pulls CTS signal always HIGH no 2377 * matter how the UCR2 CTSC and CTS bits are set. To prevent any 2378 * data from being fed into the RX FIFO, enable loopback mode in 2379 * UTS register, which disconnects the RX path from external RXD 2380 * pin and connects it to the Transceiver, which is disabled, so 2381 * no data can be fed to the RX FIFO that way. 2382 */ 2383 if (sport->port.rs485.flags & SER_RS485_ENABLED && 2384 sport->have_rtscts && !sport->have_rtsgpio) { 2385 uts = imx_uart_readl(sport, imx_uart_uts_reg(sport)); 2386 uts |= UTS_LOOP; 2387 imx_uart_writel(sport, uts, imx_uart_uts_reg(sport)); 2388 2389 ucr1 = imx_uart_readl(sport, UCR1); 2390 ucr1 |= UCR1_UARTEN; 2391 imx_uart_writel(sport, ucr1, UCR1); 2392 2393 ucr2 = imx_uart_readl(sport, UCR2); 2394 ucr2 |= UCR2_RXEN; 2395 imx_uart_writel(sport, ucr2, UCR2); 2396 } 2397 2398 if (!imx_uart_is_imx1(sport) && sport->dte_mode) { 2399 /* 2400 * The DCEDTE bit changes the direction of DSR, DCD, DTR and RI 2401 * and influences if UCR3_RI and UCR3_DCD changes the level of RI 2402 * and DCD (when they are outputs) or enables the respective 2403 * irqs. So set this bit early, i.e. before requesting irqs. 2404 */ 2405 u32 ufcr = imx_uart_readl(sport, UFCR); 2406 if (!(ufcr & UFCR_DCEDTE)) 2407 imx_uart_writel(sport, ufcr | UFCR_DCEDTE, UFCR); 2408 2409 /* 2410 * Disable UCR3_RI and UCR3_DCD irqs. They are also not 2411 * enabled later because they cannot be cleared 2412 * (confirmed on i.MX25) which makes them unusable. 2413 */ 2414 imx_uart_writel(sport, 2415 IMX21_UCR3_RXDMUXSEL | UCR3_ADNIMP | UCR3_DSR, 2416 UCR3); 2417 2418 } else { 2419 u32 ucr3 = UCR3_DSR; 2420 u32 ufcr = imx_uart_readl(sport, UFCR); 2421 if (ufcr & UFCR_DCEDTE) 2422 imx_uart_writel(sport, ufcr & ~UFCR_DCEDTE, UFCR); 2423 2424 if (!imx_uart_is_imx1(sport)) 2425 ucr3 |= IMX21_UCR3_RXDMUXSEL | UCR3_ADNIMP; 2426 imx_uart_writel(sport, ucr3, UCR3); 2427 } 2428 2429 hrtimer_init(&sport->trigger_start_tx, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 2430 hrtimer_init(&sport->trigger_stop_tx, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 2431 sport->trigger_start_tx.function = imx_trigger_start_tx; 2432 sport->trigger_stop_tx.function = imx_trigger_stop_tx; 2433 2434 /* 2435 * Allocate the IRQ(s) i.MX1 has three interrupts whereas later 2436 * chips only have one interrupt. 2437 */ 2438 if (txirq > 0) { 2439 ret = devm_request_irq(&pdev->dev, rxirq, imx_uart_rxint, 0, 2440 dev_name(&pdev->dev), sport); 2441 if (ret) { 2442 dev_err(&pdev->dev, "failed to request rx irq: %d\n", 2443 ret); 2444 goto err_clk; 2445 } 2446 2447 ret = devm_request_irq(&pdev->dev, txirq, imx_uart_txint, 0, 2448 dev_name(&pdev->dev), sport); 2449 if (ret) { 2450 dev_err(&pdev->dev, "failed to request tx irq: %d\n", 2451 ret); 2452 goto err_clk; 2453 } 2454 2455 ret = devm_request_irq(&pdev->dev, rtsirq, imx_uart_rtsint, 0, 2456 dev_name(&pdev->dev), sport); 2457 if (ret) { 2458 dev_err(&pdev->dev, "failed to request rts irq: %d\n", 2459 ret); 2460 goto err_clk; 2461 } 2462 } else { 2463 ret = devm_request_irq(&pdev->dev, rxirq, imx_uart_int, 0, 2464 dev_name(&pdev->dev), sport); 2465 if (ret) { 2466 dev_err(&pdev->dev, "failed to request irq: %d\n", ret); 2467 goto err_clk; 2468 } 2469 } 2470 2471 imx_uart_ports[sport->port.line] = sport; 2472 2473 platform_set_drvdata(pdev, sport); 2474 2475 ret = uart_add_one_port(&imx_uart_uart_driver, &sport->port); 2476 2477 err_clk: 2478 clk_disable_unprepare(sport->clk_ipg); 2479 2480 return ret; 2481 } 2482 2483 static int imx_uart_remove(struct platform_device *pdev) 2484 { 2485 struct imx_port *sport = platform_get_drvdata(pdev); 2486 2487 uart_remove_one_port(&imx_uart_uart_driver, &sport->port); 2488 2489 return 0; 2490 } 2491 2492 static void imx_uart_restore_context(struct imx_port *sport) 2493 { 2494 unsigned long flags; 2495 2496 spin_lock_irqsave(&sport->port.lock, flags); 2497 if (!sport->context_saved) { 2498 spin_unlock_irqrestore(&sport->port.lock, flags); 2499 return; 2500 } 2501 2502 imx_uart_writel(sport, sport->saved_reg[4], UFCR); 2503 imx_uart_writel(sport, sport->saved_reg[5], UESC); 2504 imx_uart_writel(sport, sport->saved_reg[6], UTIM); 2505 imx_uart_writel(sport, sport->saved_reg[7], UBIR); 2506 imx_uart_writel(sport, sport->saved_reg[8], UBMR); 2507 imx_uart_writel(sport, sport->saved_reg[9], IMX21_UTS); 2508 imx_uart_writel(sport, sport->saved_reg[0], UCR1); 2509 imx_uart_writel(sport, sport->saved_reg[1] | UCR2_SRST, UCR2); 2510 imx_uart_writel(sport, sport->saved_reg[2], UCR3); 2511 imx_uart_writel(sport, sport->saved_reg[3], UCR4); 2512 sport->context_saved = false; 2513 spin_unlock_irqrestore(&sport->port.lock, flags); 2514 } 2515 2516 static void imx_uart_save_context(struct imx_port *sport) 2517 { 2518 unsigned long flags; 2519 2520 /* Save necessary regs */ 2521 spin_lock_irqsave(&sport->port.lock, flags); 2522 sport->saved_reg[0] = imx_uart_readl(sport, UCR1); 2523 sport->saved_reg[1] = imx_uart_readl(sport, UCR2); 2524 sport->saved_reg[2] = imx_uart_readl(sport, UCR3); 2525 sport->saved_reg[3] = imx_uart_readl(sport, UCR4); 2526 sport->saved_reg[4] = imx_uart_readl(sport, UFCR); 2527 sport->saved_reg[5] = imx_uart_readl(sport, UESC); 2528 sport->saved_reg[6] = imx_uart_readl(sport, UTIM); 2529 sport->saved_reg[7] = imx_uart_readl(sport, UBIR); 2530 sport->saved_reg[8] = imx_uart_readl(sport, UBMR); 2531 sport->saved_reg[9] = imx_uart_readl(sport, IMX21_UTS); 2532 sport->context_saved = true; 2533 spin_unlock_irqrestore(&sport->port.lock, flags); 2534 } 2535 2536 static void imx_uart_enable_wakeup(struct imx_port *sport, bool on) 2537 { 2538 u32 ucr3; 2539 2540 ucr3 = imx_uart_readl(sport, UCR3); 2541 if (on) { 2542 imx_uart_writel(sport, USR1_AWAKE, USR1); 2543 ucr3 |= UCR3_AWAKEN; 2544 } else { 2545 ucr3 &= ~UCR3_AWAKEN; 2546 } 2547 imx_uart_writel(sport, ucr3, UCR3); 2548 2549 if (sport->have_rtscts) { 2550 u32 ucr1 = imx_uart_readl(sport, UCR1); 2551 if (on) { 2552 imx_uart_writel(sport, USR1_RTSD, USR1); 2553 ucr1 |= UCR1_RTSDEN; 2554 } else { 2555 ucr1 &= ~UCR1_RTSDEN; 2556 } 2557 imx_uart_writel(sport, ucr1, UCR1); 2558 } 2559 } 2560 2561 static int imx_uart_suspend_noirq(struct device *dev) 2562 { 2563 struct imx_port *sport = dev_get_drvdata(dev); 2564 2565 imx_uart_save_context(sport); 2566 2567 clk_disable(sport->clk_ipg); 2568 2569 pinctrl_pm_select_sleep_state(dev); 2570 2571 return 0; 2572 } 2573 2574 static int imx_uart_resume_noirq(struct device *dev) 2575 { 2576 struct imx_port *sport = dev_get_drvdata(dev); 2577 int ret; 2578 2579 pinctrl_pm_select_default_state(dev); 2580 2581 ret = clk_enable(sport->clk_ipg); 2582 if (ret) 2583 return ret; 2584 2585 imx_uart_restore_context(sport); 2586 2587 return 0; 2588 } 2589 2590 static int imx_uart_suspend(struct device *dev) 2591 { 2592 struct imx_port *sport = dev_get_drvdata(dev); 2593 int ret; 2594 2595 uart_suspend_port(&imx_uart_uart_driver, &sport->port); 2596 disable_irq(sport->port.irq); 2597 2598 ret = clk_prepare_enable(sport->clk_ipg); 2599 if (ret) 2600 return ret; 2601 2602 /* enable wakeup from i.MX UART */ 2603 imx_uart_enable_wakeup(sport, true); 2604 2605 return 0; 2606 } 2607 2608 static int imx_uart_resume(struct device *dev) 2609 { 2610 struct imx_port *sport = dev_get_drvdata(dev); 2611 2612 /* disable wakeup from i.MX UART */ 2613 imx_uart_enable_wakeup(sport, false); 2614 2615 uart_resume_port(&imx_uart_uart_driver, &sport->port); 2616 enable_irq(sport->port.irq); 2617 2618 clk_disable_unprepare(sport->clk_ipg); 2619 2620 return 0; 2621 } 2622 2623 static int imx_uart_freeze(struct device *dev) 2624 { 2625 struct imx_port *sport = dev_get_drvdata(dev); 2626 2627 uart_suspend_port(&imx_uart_uart_driver, &sport->port); 2628 2629 return clk_prepare_enable(sport->clk_ipg); 2630 } 2631 2632 static int imx_uart_thaw(struct device *dev) 2633 { 2634 struct imx_port *sport = dev_get_drvdata(dev); 2635 2636 uart_resume_port(&imx_uart_uart_driver, &sport->port); 2637 2638 clk_disable_unprepare(sport->clk_ipg); 2639 2640 return 0; 2641 } 2642 2643 static const struct dev_pm_ops imx_uart_pm_ops = { 2644 .suspend_noirq = imx_uart_suspend_noirq, 2645 .resume_noirq = imx_uart_resume_noirq, 2646 .freeze_noirq = imx_uart_suspend_noirq, 2647 .thaw_noirq = imx_uart_resume_noirq, 2648 .restore_noirq = imx_uart_resume_noirq, 2649 .suspend = imx_uart_suspend, 2650 .resume = imx_uart_resume, 2651 .freeze = imx_uart_freeze, 2652 .thaw = imx_uart_thaw, 2653 .restore = imx_uart_thaw, 2654 }; 2655 2656 static struct platform_driver imx_uart_platform_driver = { 2657 .probe = imx_uart_probe, 2658 .remove = imx_uart_remove, 2659 2660 .driver = { 2661 .name = "imx-uart", 2662 .of_match_table = imx_uart_dt_ids, 2663 .pm = &imx_uart_pm_ops, 2664 }, 2665 }; 2666 2667 static int __init imx_uart_init(void) 2668 { 2669 int ret = uart_register_driver(&imx_uart_uart_driver); 2670 2671 if (ret) 2672 return ret; 2673 2674 ret = platform_driver_register(&imx_uart_platform_driver); 2675 if (ret != 0) 2676 uart_unregister_driver(&imx_uart_uart_driver); 2677 2678 return ret; 2679 } 2680 2681 static void __exit imx_uart_exit(void) 2682 { 2683 platform_driver_unregister(&imx_uart_platform_driver); 2684 uart_unregister_driver(&imx_uart_uart_driver); 2685 } 2686 2687 module_init(imx_uart_init); 2688 module_exit(imx_uart_exit); 2689 2690 MODULE_AUTHOR("Sascha Hauer"); 2691 MODULE_DESCRIPTION("IMX generic serial port driver"); 2692 MODULE_LICENSE("GPL"); 2693 MODULE_ALIAS("platform:imx-uart"); 2694