xref: /openbmc/linux/drivers/tty/serial/imx.c (revision 4bce6fce)
1 /*
2  * Driver for Motorola/Freescale IMX serial ports
3  *
4  * Based on drivers/char/serial.c, by Linus Torvalds, Theodore Ts'o.
5  *
6  * Author: Sascha Hauer <sascha@saschahauer.de>
7  * Copyright (C) 2004 Pengutronix
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License as published by
11  * the Free Software Foundation; either version 2 of the License, or
12  * (at your option) any later version.
13  *
14  * This program is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  * GNU General Public License for more details.
18  */
19 
20 #if defined(CONFIG_SERIAL_IMX_CONSOLE) && defined(CONFIG_MAGIC_SYSRQ)
21 #define SUPPORT_SYSRQ
22 #endif
23 
24 #include <linux/module.h>
25 #include <linux/ioport.h>
26 #include <linux/init.h>
27 #include <linux/console.h>
28 #include <linux/sysrq.h>
29 #include <linux/platform_device.h>
30 #include <linux/tty.h>
31 #include <linux/tty_flip.h>
32 #include <linux/serial_core.h>
33 #include <linux/serial.h>
34 #include <linux/clk.h>
35 #include <linux/delay.h>
36 #include <linux/rational.h>
37 #include <linux/slab.h>
38 #include <linux/of.h>
39 #include <linux/of_device.h>
40 #include <linux/io.h>
41 #include <linux/dma-mapping.h>
42 
43 #include <asm/irq.h>
44 #include <linux/platform_data/serial-imx.h>
45 #include <linux/platform_data/dma-imx.h>
46 
47 /* Register definitions */
48 #define URXD0 0x0  /* Receiver Register */
49 #define URTX0 0x40 /* Transmitter Register */
50 #define UCR1  0x80 /* Control Register 1 */
51 #define UCR2  0x84 /* Control Register 2 */
52 #define UCR3  0x88 /* Control Register 3 */
53 #define UCR4  0x8c /* Control Register 4 */
54 #define UFCR  0x90 /* FIFO Control Register */
55 #define USR1  0x94 /* Status Register 1 */
56 #define USR2  0x98 /* Status Register 2 */
57 #define UESC  0x9c /* Escape Character Register */
58 #define UTIM  0xa0 /* Escape Timer Register */
59 #define UBIR  0xa4 /* BRM Incremental Register */
60 #define UBMR  0xa8 /* BRM Modulator Register */
61 #define UBRC  0xac /* Baud Rate Count Register */
62 #define IMX21_ONEMS 0xb0 /* One Millisecond register */
63 #define IMX1_UTS 0xd0 /* UART Test Register on i.mx1 */
64 #define IMX21_UTS 0xb4 /* UART Test Register on all other i.mx*/
65 
66 /* UART Control Register Bit Fields.*/
67 #define URXD_DUMMY_READ (1<<16)
68 #define URXD_CHARRDY	(1<<15)
69 #define URXD_ERR	(1<<14)
70 #define URXD_OVRRUN	(1<<13)
71 #define URXD_FRMERR	(1<<12)
72 #define URXD_BRK	(1<<11)
73 #define URXD_PRERR	(1<<10)
74 #define URXD_RX_DATA	(0xFF<<0)
75 #define UCR1_ADEN	(1<<15) /* Auto detect interrupt */
76 #define UCR1_ADBR	(1<<14) /* Auto detect baud rate */
77 #define UCR1_TRDYEN	(1<<13) /* Transmitter ready interrupt enable */
78 #define UCR1_IDEN	(1<<12) /* Idle condition interrupt */
79 #define UCR1_ICD_REG(x) (((x) & 3) << 10) /* idle condition detect */
80 #define UCR1_RRDYEN	(1<<9)	/* Recv ready interrupt enable */
81 #define UCR1_RDMAEN	(1<<8)	/* Recv ready DMA enable */
82 #define UCR1_IREN	(1<<7)	/* Infrared interface enable */
83 #define UCR1_TXMPTYEN	(1<<6)	/* Transimitter empty interrupt enable */
84 #define UCR1_RTSDEN	(1<<5)	/* RTS delta interrupt enable */
85 #define UCR1_SNDBRK	(1<<4)	/* Send break */
86 #define UCR1_TDMAEN	(1<<3)	/* Transmitter ready DMA enable */
87 #define IMX1_UCR1_UARTCLKEN (1<<2) /* UART clock enabled, i.mx1 only */
88 #define UCR1_ATDMAEN    (1<<2)  /* Aging DMA Timer Enable */
89 #define UCR1_DOZE	(1<<1)	/* Doze */
90 #define UCR1_UARTEN	(1<<0)	/* UART enabled */
91 #define UCR2_ESCI	(1<<15)	/* Escape seq interrupt enable */
92 #define UCR2_IRTS	(1<<14)	/* Ignore RTS pin */
93 #define UCR2_CTSC	(1<<13)	/* CTS pin control */
94 #define UCR2_CTS	(1<<12)	/* Clear to send */
95 #define UCR2_ESCEN	(1<<11)	/* Escape enable */
96 #define UCR2_PREN	(1<<8)	/* Parity enable */
97 #define UCR2_PROE	(1<<7)	/* Parity odd/even */
98 #define UCR2_STPB	(1<<6)	/* Stop */
99 #define UCR2_WS		(1<<5)	/* Word size */
100 #define UCR2_RTSEN	(1<<4)	/* Request to send interrupt enable */
101 #define UCR2_ATEN	(1<<3)	/* Aging Timer Enable */
102 #define UCR2_TXEN	(1<<2)	/* Transmitter enabled */
103 #define UCR2_RXEN	(1<<1)	/* Receiver enabled */
104 #define UCR2_SRST	(1<<0)	/* SW reset */
105 #define UCR3_DTREN	(1<<13) /* DTR interrupt enable */
106 #define UCR3_PARERREN	(1<<12) /* Parity enable */
107 #define UCR3_FRAERREN	(1<<11) /* Frame error interrupt enable */
108 #define UCR3_DSR	(1<<10) /* Data set ready */
109 #define UCR3_DCD	(1<<9)	/* Data carrier detect */
110 #define UCR3_RI		(1<<8)	/* Ring indicator */
111 #define UCR3_ADNIMP	(1<<7)	/* Autobaud Detection Not Improved */
112 #define UCR3_RXDSEN	(1<<6)	/* Receive status interrupt enable */
113 #define UCR3_AIRINTEN	(1<<5)	/* Async IR wake interrupt enable */
114 #define UCR3_AWAKEN	(1<<4)	/* Async wake interrupt enable */
115 #define IMX21_UCR3_RXDMUXSEL	(1<<2)	/* RXD Muxed Input Select */
116 #define UCR3_INVT	(1<<1)	/* Inverted Infrared transmission */
117 #define UCR3_BPEN	(1<<0)	/* Preset registers enable */
118 #define UCR4_CTSTL_SHF	10	/* CTS trigger level shift */
119 #define UCR4_CTSTL_MASK	0x3F	/* CTS trigger is 6 bits wide */
120 #define UCR4_INVR	(1<<9)	/* Inverted infrared reception */
121 #define UCR4_ENIRI	(1<<8)	/* Serial infrared interrupt enable */
122 #define UCR4_WKEN	(1<<7)	/* Wake interrupt enable */
123 #define UCR4_REF16	(1<<6)	/* Ref freq 16 MHz */
124 #define UCR4_IDDMAEN    (1<<6)  /* DMA IDLE Condition Detected */
125 #define UCR4_IRSC	(1<<5)	/* IR special case */
126 #define UCR4_TCEN	(1<<3)	/* Transmit complete interrupt enable */
127 #define UCR4_BKEN	(1<<2)	/* Break condition interrupt enable */
128 #define UCR4_OREN	(1<<1)	/* Receiver overrun interrupt enable */
129 #define UCR4_DREN	(1<<0)	/* Recv data ready interrupt enable */
130 #define UFCR_RXTL_SHF	0	/* Receiver trigger level shift */
131 #define UFCR_DCEDTE	(1<<6)	/* DCE/DTE mode select */
132 #define UFCR_RFDIV	(7<<7)	/* Reference freq divider mask */
133 #define UFCR_RFDIV_REG(x)	(((x) < 7 ? 6 - (x) : 6) << 7)
134 #define UFCR_TXTL_SHF	10	/* Transmitter trigger level shift */
135 #define USR1_PARITYERR	(1<<15) /* Parity error interrupt flag */
136 #define USR1_RTSS	(1<<14) /* RTS pin status */
137 #define USR1_TRDY	(1<<13) /* Transmitter ready interrupt/dma flag */
138 #define USR1_RTSD	(1<<12) /* RTS delta */
139 #define USR1_ESCF	(1<<11) /* Escape seq interrupt flag */
140 #define USR1_FRAMERR	(1<<10) /* Frame error interrupt flag */
141 #define USR1_RRDY	(1<<9)	 /* Receiver ready interrupt/dma flag */
142 #define USR1_TIMEOUT	(1<<7)	 /* Receive timeout interrupt status */
143 #define USR1_RXDS	 (1<<6)	 /* Receiver idle interrupt flag */
144 #define USR1_AIRINT	 (1<<5)	 /* Async IR wake interrupt flag */
145 #define USR1_AWAKE	 (1<<4)	 /* Aysnc wake interrupt flag */
146 #define USR2_ADET	 (1<<15) /* Auto baud rate detect complete */
147 #define USR2_TXFE	 (1<<14) /* Transmit buffer FIFO empty */
148 #define USR2_DTRF	 (1<<13) /* DTR edge interrupt flag */
149 #define USR2_IDLE	 (1<<12) /* Idle condition */
150 #define USR2_IRINT	 (1<<8)	 /* Serial infrared interrupt flag */
151 #define USR2_WAKE	 (1<<7)	 /* Wake */
152 #define USR2_RTSF	 (1<<4)	 /* RTS edge interrupt flag */
153 #define USR2_TXDC	 (1<<3)	 /* Transmitter complete */
154 #define USR2_BRCD	 (1<<2)	 /* Break condition */
155 #define USR2_ORE	(1<<1)	 /* Overrun error */
156 #define USR2_RDR	(1<<0)	 /* Recv data ready */
157 #define UTS_FRCPERR	(1<<13) /* Force parity error */
158 #define UTS_LOOP	(1<<12)	 /* Loop tx and rx */
159 #define UTS_TXEMPTY	 (1<<6)	 /* TxFIFO empty */
160 #define UTS_RXEMPTY	 (1<<5)	 /* RxFIFO empty */
161 #define UTS_TXFULL	 (1<<4)	 /* TxFIFO full */
162 #define UTS_RXFULL	 (1<<3)	 /* RxFIFO full */
163 #define UTS_SOFTRST	 (1<<0)	 /* Software reset */
164 
165 /* We've been assigned a range on the "Low-density serial ports" major */
166 #define SERIAL_IMX_MAJOR	207
167 #define MINOR_START		16
168 #define DEV_NAME		"ttymxc"
169 
170 /*
171  * This determines how often we check the modem status signals
172  * for any change.  They generally aren't connected to an IRQ
173  * so we have to poll them.  We also check immediately before
174  * filling the TX fifo incase CTS has been dropped.
175  */
176 #define MCTRL_TIMEOUT	(250*HZ/1000)
177 
178 #define DRIVER_NAME "IMX-uart"
179 
180 #define UART_NR 8
181 
182 /* i.MX21 type uart runs on all i.mx except i.MX1 and i.MX6q */
183 enum imx_uart_type {
184 	IMX1_UART,
185 	IMX21_UART,
186 	IMX6Q_UART,
187 };
188 
189 /* device type dependent stuff */
190 struct imx_uart_data {
191 	unsigned uts_reg;
192 	enum imx_uart_type devtype;
193 };
194 
195 struct imx_port {
196 	struct uart_port	port;
197 	struct timer_list	timer;
198 	unsigned int		old_status;
199 	unsigned int		have_rtscts:1;
200 	unsigned int		dte_mode:1;
201 	unsigned int		irda_inv_rx:1;
202 	unsigned int		irda_inv_tx:1;
203 	unsigned short		trcv_delay; /* transceiver delay */
204 	struct clk		*clk_ipg;
205 	struct clk		*clk_per;
206 	const struct imx_uart_data *devdata;
207 
208 	/* DMA fields */
209 	unsigned int		dma_is_inited:1;
210 	unsigned int		dma_is_enabled:1;
211 	unsigned int		dma_is_rxing:1;
212 	unsigned int		dma_is_txing:1;
213 	struct dma_chan		*dma_chan_rx, *dma_chan_tx;
214 	struct scatterlist	rx_sgl, tx_sgl[2];
215 	void			*rx_buf;
216 	unsigned int		tx_bytes;
217 	unsigned int		dma_tx_nents;
218 	wait_queue_head_t	dma_wait;
219 };
220 
221 struct imx_port_ucrs {
222 	unsigned int	ucr1;
223 	unsigned int	ucr2;
224 	unsigned int	ucr3;
225 };
226 
227 static struct imx_uart_data imx_uart_devdata[] = {
228 	[IMX1_UART] = {
229 		.uts_reg = IMX1_UTS,
230 		.devtype = IMX1_UART,
231 	},
232 	[IMX21_UART] = {
233 		.uts_reg = IMX21_UTS,
234 		.devtype = IMX21_UART,
235 	},
236 	[IMX6Q_UART] = {
237 		.uts_reg = IMX21_UTS,
238 		.devtype = IMX6Q_UART,
239 	},
240 };
241 
242 static struct platform_device_id imx_uart_devtype[] = {
243 	{
244 		.name = "imx1-uart",
245 		.driver_data = (kernel_ulong_t) &imx_uart_devdata[IMX1_UART],
246 	}, {
247 		.name = "imx21-uart",
248 		.driver_data = (kernel_ulong_t) &imx_uart_devdata[IMX21_UART],
249 	}, {
250 		.name = "imx6q-uart",
251 		.driver_data = (kernel_ulong_t) &imx_uart_devdata[IMX6Q_UART],
252 	}, {
253 		/* sentinel */
254 	}
255 };
256 MODULE_DEVICE_TABLE(platform, imx_uart_devtype);
257 
258 static const struct of_device_id imx_uart_dt_ids[] = {
259 	{ .compatible = "fsl,imx6q-uart", .data = &imx_uart_devdata[IMX6Q_UART], },
260 	{ .compatible = "fsl,imx1-uart", .data = &imx_uart_devdata[IMX1_UART], },
261 	{ .compatible = "fsl,imx21-uart", .data = &imx_uart_devdata[IMX21_UART], },
262 	{ /* sentinel */ }
263 };
264 MODULE_DEVICE_TABLE(of, imx_uart_dt_ids);
265 
266 static inline unsigned uts_reg(struct imx_port *sport)
267 {
268 	return sport->devdata->uts_reg;
269 }
270 
271 static inline int is_imx1_uart(struct imx_port *sport)
272 {
273 	return sport->devdata->devtype == IMX1_UART;
274 }
275 
276 static inline int is_imx21_uart(struct imx_port *sport)
277 {
278 	return sport->devdata->devtype == IMX21_UART;
279 }
280 
281 static inline int is_imx6q_uart(struct imx_port *sport)
282 {
283 	return sport->devdata->devtype == IMX6Q_UART;
284 }
285 /*
286  * Save and restore functions for UCR1, UCR2 and UCR3 registers
287  */
288 #if defined(CONFIG_SERIAL_IMX_CONSOLE)
289 static void imx_port_ucrs_save(struct uart_port *port,
290 			       struct imx_port_ucrs *ucr)
291 {
292 	/* save control registers */
293 	ucr->ucr1 = readl(port->membase + UCR1);
294 	ucr->ucr2 = readl(port->membase + UCR2);
295 	ucr->ucr3 = readl(port->membase + UCR3);
296 }
297 
298 static void imx_port_ucrs_restore(struct uart_port *port,
299 				  struct imx_port_ucrs *ucr)
300 {
301 	/* restore control registers */
302 	writel(ucr->ucr1, port->membase + UCR1);
303 	writel(ucr->ucr2, port->membase + UCR2);
304 	writel(ucr->ucr3, port->membase + UCR3);
305 }
306 #endif
307 
308 /*
309  * Handle any change of modem status signal since we were last called.
310  */
311 static void imx_mctrl_check(struct imx_port *sport)
312 {
313 	unsigned int status, changed;
314 
315 	status = sport->port.ops->get_mctrl(&sport->port);
316 	changed = status ^ sport->old_status;
317 
318 	if (changed == 0)
319 		return;
320 
321 	sport->old_status = status;
322 
323 	if (changed & TIOCM_RI)
324 		sport->port.icount.rng++;
325 	if (changed & TIOCM_DSR)
326 		sport->port.icount.dsr++;
327 	if (changed & TIOCM_CAR)
328 		uart_handle_dcd_change(&sport->port, status & TIOCM_CAR);
329 	if (changed & TIOCM_CTS)
330 		uart_handle_cts_change(&sport->port, status & TIOCM_CTS);
331 
332 	wake_up_interruptible(&sport->port.state->port.delta_msr_wait);
333 }
334 
335 /*
336  * This is our per-port timeout handler, for checking the
337  * modem status signals.
338  */
339 static void imx_timeout(unsigned long data)
340 {
341 	struct imx_port *sport = (struct imx_port *)data;
342 	unsigned long flags;
343 
344 	if (sport->port.state) {
345 		spin_lock_irqsave(&sport->port.lock, flags);
346 		imx_mctrl_check(sport);
347 		spin_unlock_irqrestore(&sport->port.lock, flags);
348 
349 		mod_timer(&sport->timer, jiffies + MCTRL_TIMEOUT);
350 	}
351 }
352 
353 /*
354  * interrupts disabled on entry
355  */
356 static void imx_stop_tx(struct uart_port *port)
357 {
358 	struct imx_port *sport = (struct imx_port *)port;
359 	unsigned long temp;
360 
361 	/*
362 	 * We are maybe in the SMP context, so if the DMA TX thread is running
363 	 * on other cpu, we have to wait for it to finish.
364 	 */
365 	if (sport->dma_is_enabled && sport->dma_is_txing)
366 		return;
367 
368 	temp = readl(port->membase + UCR1);
369 	writel(temp & ~UCR1_TXMPTYEN, port->membase + UCR1);
370 
371 	/* in rs485 mode disable transmitter if shifter is empty */
372 	if (port->rs485.flags & SER_RS485_ENABLED &&
373 	    readl(port->membase + USR2) & USR2_TXDC) {
374 		temp = readl(port->membase + UCR2);
375 		if (port->rs485.flags & SER_RS485_RTS_AFTER_SEND)
376 			temp &= ~UCR2_CTS;
377 		else
378 			temp |= UCR2_CTS;
379 		writel(temp, port->membase + UCR2);
380 
381 		temp = readl(port->membase + UCR4);
382 		temp &= ~UCR4_TCEN;
383 		writel(temp, port->membase + UCR4);
384 	}
385 }
386 
387 /*
388  * interrupts disabled on entry
389  */
390 static void imx_stop_rx(struct uart_port *port)
391 {
392 	struct imx_port *sport = (struct imx_port *)port;
393 	unsigned long temp;
394 
395 	if (sport->dma_is_enabled && sport->dma_is_rxing) {
396 		if (sport->port.suspended) {
397 			dmaengine_terminate_all(sport->dma_chan_rx);
398 			sport->dma_is_rxing = 0;
399 		} else {
400 			return;
401 		}
402 	}
403 
404 	temp = readl(sport->port.membase + UCR2);
405 	writel(temp & ~UCR2_RXEN, sport->port.membase + UCR2);
406 
407 	/* disable the `Receiver Ready Interrrupt` */
408 	temp = readl(sport->port.membase + UCR1);
409 	writel(temp & ~UCR1_RRDYEN, sport->port.membase + UCR1);
410 }
411 
412 /*
413  * Set the modem control timer to fire immediately.
414  */
415 static void imx_enable_ms(struct uart_port *port)
416 {
417 	struct imx_port *sport = (struct imx_port *)port;
418 
419 	mod_timer(&sport->timer, jiffies);
420 }
421 
422 static void imx_dma_tx(struct imx_port *sport);
423 static inline void imx_transmit_buffer(struct imx_port *sport)
424 {
425 	struct circ_buf *xmit = &sport->port.state->xmit;
426 	unsigned long temp;
427 
428 	if (sport->port.x_char) {
429 		/* Send next char */
430 		writel(sport->port.x_char, sport->port.membase + URTX0);
431 		sport->port.icount.tx++;
432 		sport->port.x_char = 0;
433 		return;
434 	}
435 
436 	if (uart_circ_empty(xmit) || uart_tx_stopped(&sport->port)) {
437 		imx_stop_tx(&sport->port);
438 		return;
439 	}
440 
441 	if (sport->dma_is_enabled) {
442 		/*
443 		 * We've just sent a X-char Ensure the TX DMA is enabled
444 		 * and the TX IRQ is disabled.
445 		 **/
446 		temp = readl(sport->port.membase + UCR1);
447 		temp &= ~UCR1_TXMPTYEN;
448 		if (sport->dma_is_txing) {
449 			temp |= UCR1_TDMAEN;
450 			writel(temp, sport->port.membase + UCR1);
451 		} else {
452 			writel(temp, sport->port.membase + UCR1);
453 			imx_dma_tx(sport);
454 		}
455 	}
456 
457 	while (!uart_circ_empty(xmit) &&
458 	       !(readl(sport->port.membase + uts_reg(sport)) & UTS_TXFULL)) {
459 		/* send xmit->buf[xmit->tail]
460 		 * out the port here */
461 		writel(xmit->buf[xmit->tail], sport->port.membase + URTX0);
462 		xmit->tail = (xmit->tail + 1) & (UART_XMIT_SIZE - 1);
463 		sport->port.icount.tx++;
464 	}
465 
466 	if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
467 		uart_write_wakeup(&sport->port);
468 
469 	if (uart_circ_empty(xmit))
470 		imx_stop_tx(&sport->port);
471 }
472 
473 static void dma_tx_callback(void *data)
474 {
475 	struct imx_port *sport = data;
476 	struct scatterlist *sgl = &sport->tx_sgl[0];
477 	struct circ_buf *xmit = &sport->port.state->xmit;
478 	unsigned long flags;
479 	unsigned long temp;
480 
481 	spin_lock_irqsave(&sport->port.lock, flags);
482 
483 	dma_unmap_sg(sport->port.dev, sgl, sport->dma_tx_nents, DMA_TO_DEVICE);
484 
485 	temp = readl(sport->port.membase + UCR1);
486 	temp &= ~UCR1_TDMAEN;
487 	writel(temp, sport->port.membase + UCR1);
488 
489 	/* update the stat */
490 	xmit->tail = (xmit->tail + sport->tx_bytes) & (UART_XMIT_SIZE - 1);
491 	sport->port.icount.tx += sport->tx_bytes;
492 
493 	dev_dbg(sport->port.dev, "we finish the TX DMA.\n");
494 
495 	sport->dma_is_txing = 0;
496 
497 	spin_unlock_irqrestore(&sport->port.lock, flags);
498 
499 	if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
500 		uart_write_wakeup(&sport->port);
501 
502 	if (waitqueue_active(&sport->dma_wait)) {
503 		wake_up(&sport->dma_wait);
504 		dev_dbg(sport->port.dev, "exit in %s.\n", __func__);
505 		return;
506 	}
507 
508 	spin_lock_irqsave(&sport->port.lock, flags);
509 	if (!uart_circ_empty(xmit) && !uart_tx_stopped(&sport->port))
510 		imx_dma_tx(sport);
511 	spin_unlock_irqrestore(&sport->port.lock, flags);
512 }
513 
514 static void imx_dma_tx(struct imx_port *sport)
515 {
516 	struct circ_buf *xmit = &sport->port.state->xmit;
517 	struct scatterlist *sgl = sport->tx_sgl;
518 	struct dma_async_tx_descriptor *desc;
519 	struct dma_chan	*chan = sport->dma_chan_tx;
520 	struct device *dev = sport->port.dev;
521 	unsigned long temp;
522 	int ret;
523 
524 	if (sport->dma_is_txing)
525 		return;
526 
527 	sport->tx_bytes = uart_circ_chars_pending(xmit);
528 
529 	if (xmit->tail < xmit->head) {
530 		sport->dma_tx_nents = 1;
531 		sg_init_one(sgl, xmit->buf + xmit->tail, sport->tx_bytes);
532 	} else {
533 		sport->dma_tx_nents = 2;
534 		sg_init_table(sgl, 2);
535 		sg_set_buf(sgl, xmit->buf + xmit->tail,
536 				UART_XMIT_SIZE - xmit->tail);
537 		sg_set_buf(sgl + 1, xmit->buf, xmit->head);
538 	}
539 
540 	ret = dma_map_sg(dev, sgl, sport->dma_tx_nents, DMA_TO_DEVICE);
541 	if (ret == 0) {
542 		dev_err(dev, "DMA mapping error for TX.\n");
543 		return;
544 	}
545 	desc = dmaengine_prep_slave_sg(chan, sgl, sport->dma_tx_nents,
546 					DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT);
547 	if (!desc) {
548 		dma_unmap_sg(dev, sgl, sport->dma_tx_nents,
549 			     DMA_TO_DEVICE);
550 		dev_err(dev, "We cannot prepare for the TX slave dma!\n");
551 		return;
552 	}
553 	desc->callback = dma_tx_callback;
554 	desc->callback_param = sport;
555 
556 	dev_dbg(dev, "TX: prepare to send %lu bytes by DMA.\n",
557 			uart_circ_chars_pending(xmit));
558 
559 	temp = readl(sport->port.membase + UCR1);
560 	temp |= UCR1_TDMAEN;
561 	writel(temp, sport->port.membase + UCR1);
562 
563 	/* fire it */
564 	sport->dma_is_txing = 1;
565 	dmaengine_submit(desc);
566 	dma_async_issue_pending(chan);
567 	return;
568 }
569 
570 /*
571  * interrupts disabled on entry
572  */
573 static void imx_start_tx(struct uart_port *port)
574 {
575 	struct imx_port *sport = (struct imx_port *)port;
576 	unsigned long temp;
577 
578 	if (port->rs485.flags & SER_RS485_ENABLED) {
579 		/* enable transmitter and shifter empty irq */
580 		temp = readl(port->membase + UCR2);
581 		if (port->rs485.flags & SER_RS485_RTS_ON_SEND)
582 			temp &= ~UCR2_CTS;
583 		else
584 			temp |= UCR2_CTS;
585 		writel(temp, port->membase + UCR2);
586 
587 		temp = readl(port->membase + UCR4);
588 		temp |= UCR4_TCEN;
589 		writel(temp, port->membase + UCR4);
590 	}
591 
592 	if (!sport->dma_is_enabled) {
593 		temp = readl(sport->port.membase + UCR1);
594 		writel(temp | UCR1_TXMPTYEN, sport->port.membase + UCR1);
595 	}
596 
597 	if (sport->dma_is_enabled) {
598 		if (sport->port.x_char) {
599 			/* We have X-char to send, so enable TX IRQ and
600 			 * disable TX DMA to let TX interrupt to send X-char */
601 			temp = readl(sport->port.membase + UCR1);
602 			temp &= ~UCR1_TDMAEN;
603 			temp |= UCR1_TXMPTYEN;
604 			writel(temp, sport->port.membase + UCR1);
605 			return;
606 		}
607 
608 		if (!uart_circ_empty(&port->state->xmit) &&
609 		    !uart_tx_stopped(port))
610 			imx_dma_tx(sport);
611 		return;
612 	}
613 }
614 
615 static irqreturn_t imx_rtsint(int irq, void *dev_id)
616 {
617 	struct imx_port *sport = dev_id;
618 	unsigned int val;
619 	unsigned long flags;
620 
621 	spin_lock_irqsave(&sport->port.lock, flags);
622 
623 	writel(USR1_RTSD, sport->port.membase + USR1);
624 	val = readl(sport->port.membase + USR1) & USR1_RTSS;
625 	uart_handle_cts_change(&sport->port, !!val);
626 	wake_up_interruptible(&sport->port.state->port.delta_msr_wait);
627 
628 	spin_unlock_irqrestore(&sport->port.lock, flags);
629 	return IRQ_HANDLED;
630 }
631 
632 static irqreturn_t imx_txint(int irq, void *dev_id)
633 {
634 	struct imx_port *sport = dev_id;
635 	unsigned long flags;
636 
637 	spin_lock_irqsave(&sport->port.lock, flags);
638 	imx_transmit_buffer(sport);
639 	spin_unlock_irqrestore(&sport->port.lock, flags);
640 	return IRQ_HANDLED;
641 }
642 
643 static irqreturn_t imx_rxint(int irq, void *dev_id)
644 {
645 	struct imx_port *sport = dev_id;
646 	unsigned int rx, flg, ignored = 0;
647 	struct tty_port *port = &sport->port.state->port;
648 	unsigned long flags, temp;
649 
650 	spin_lock_irqsave(&sport->port.lock, flags);
651 
652 	while (readl(sport->port.membase + USR2) & USR2_RDR) {
653 		flg = TTY_NORMAL;
654 		sport->port.icount.rx++;
655 
656 		rx = readl(sport->port.membase + URXD0);
657 
658 		temp = readl(sport->port.membase + USR2);
659 		if (temp & USR2_BRCD) {
660 			writel(USR2_BRCD, sport->port.membase + USR2);
661 			if (uart_handle_break(&sport->port))
662 				continue;
663 		}
664 
665 		if (uart_handle_sysrq_char(&sport->port, (unsigned char)rx))
666 			continue;
667 
668 		if (unlikely(rx & URXD_ERR)) {
669 			if (rx & URXD_BRK)
670 				sport->port.icount.brk++;
671 			else if (rx & URXD_PRERR)
672 				sport->port.icount.parity++;
673 			else if (rx & URXD_FRMERR)
674 				sport->port.icount.frame++;
675 			if (rx & URXD_OVRRUN)
676 				sport->port.icount.overrun++;
677 
678 			if (rx & sport->port.ignore_status_mask) {
679 				if (++ignored > 100)
680 					goto out;
681 				continue;
682 			}
683 
684 			rx &= (sport->port.read_status_mask | 0xFF);
685 
686 			if (rx & URXD_BRK)
687 				flg = TTY_BREAK;
688 			else if (rx & URXD_PRERR)
689 				flg = TTY_PARITY;
690 			else if (rx & URXD_FRMERR)
691 				flg = TTY_FRAME;
692 			if (rx & URXD_OVRRUN)
693 				flg = TTY_OVERRUN;
694 
695 #ifdef SUPPORT_SYSRQ
696 			sport->port.sysrq = 0;
697 #endif
698 		}
699 
700 		if (sport->port.ignore_status_mask & URXD_DUMMY_READ)
701 			goto out;
702 
703 		tty_insert_flip_char(port, rx, flg);
704 	}
705 
706 out:
707 	spin_unlock_irqrestore(&sport->port.lock, flags);
708 	tty_flip_buffer_push(port);
709 	return IRQ_HANDLED;
710 }
711 
712 static int start_rx_dma(struct imx_port *sport);
713 /*
714  * If the RXFIFO is filled with some data, and then we
715  * arise a DMA operation to receive them.
716  */
717 static void imx_dma_rxint(struct imx_port *sport)
718 {
719 	unsigned long temp;
720 	unsigned long flags;
721 
722 	spin_lock_irqsave(&sport->port.lock, flags);
723 
724 	temp = readl(sport->port.membase + USR2);
725 	if ((temp & USR2_RDR) && !sport->dma_is_rxing) {
726 		sport->dma_is_rxing = 1;
727 
728 		/* disable the `Recerver Ready Interrrupt` */
729 		temp = readl(sport->port.membase + UCR1);
730 		temp &= ~(UCR1_RRDYEN);
731 		writel(temp, sport->port.membase + UCR1);
732 
733 		/* tell the DMA to receive the data. */
734 		start_rx_dma(sport);
735 	}
736 
737 	spin_unlock_irqrestore(&sport->port.lock, flags);
738 }
739 
740 static irqreturn_t imx_int(int irq, void *dev_id)
741 {
742 	struct imx_port *sport = dev_id;
743 	unsigned int sts;
744 	unsigned int sts2;
745 
746 	sts = readl(sport->port.membase + USR1);
747 	sts2 = readl(sport->port.membase + USR2);
748 
749 	if (sts & USR1_RRDY) {
750 		if (sport->dma_is_enabled)
751 			imx_dma_rxint(sport);
752 		else
753 			imx_rxint(irq, dev_id);
754 	}
755 
756 	if ((sts & USR1_TRDY &&
757 	     readl(sport->port.membase + UCR1) & UCR1_TXMPTYEN) ||
758 	    (sts2 & USR2_TXDC &&
759 	     readl(sport->port.membase + UCR4) & UCR4_TCEN))
760 		imx_txint(irq, dev_id);
761 
762 	if (sts & USR1_RTSD)
763 		imx_rtsint(irq, dev_id);
764 
765 	if (sts & USR1_AWAKE)
766 		writel(USR1_AWAKE, sport->port.membase + USR1);
767 
768 	if (sts2 & USR2_ORE) {
769 		dev_err(sport->port.dev, "Rx FIFO overrun\n");
770 		sport->port.icount.overrun++;
771 		writel(USR2_ORE, sport->port.membase + USR2);
772 	}
773 
774 	return IRQ_HANDLED;
775 }
776 
777 /*
778  * Return TIOCSER_TEMT when transmitter is not busy.
779  */
780 static unsigned int imx_tx_empty(struct uart_port *port)
781 {
782 	struct imx_port *sport = (struct imx_port *)port;
783 	unsigned int ret;
784 
785 	ret = (readl(sport->port.membase + USR2) & USR2_TXDC) ?  TIOCSER_TEMT : 0;
786 
787 	/* If the TX DMA is working, return 0. */
788 	if (sport->dma_is_enabled && sport->dma_is_txing)
789 		ret = 0;
790 
791 	return ret;
792 }
793 
794 /*
795  * We have a modem side uart, so the meanings of RTS and CTS are inverted.
796  */
797 static unsigned int imx_get_mctrl(struct uart_port *port)
798 {
799 	struct imx_port *sport = (struct imx_port *)port;
800 	unsigned int tmp = TIOCM_DSR | TIOCM_CAR;
801 
802 	if (readl(sport->port.membase + USR1) & USR1_RTSS)
803 		tmp |= TIOCM_CTS;
804 
805 	if (readl(sport->port.membase + UCR2) & UCR2_CTS)
806 		tmp |= TIOCM_RTS;
807 
808 	if (readl(sport->port.membase + uts_reg(sport)) & UTS_LOOP)
809 		tmp |= TIOCM_LOOP;
810 
811 	return tmp;
812 }
813 
814 static void imx_set_mctrl(struct uart_port *port, unsigned int mctrl)
815 {
816 	struct imx_port *sport = (struct imx_port *)port;
817 	unsigned long temp;
818 
819 	if (!(port->rs485.flags & SER_RS485_ENABLED)) {
820 		temp = readl(sport->port.membase + UCR2);
821 		temp &= ~(UCR2_CTS | UCR2_CTSC);
822 		if (mctrl & TIOCM_RTS)
823 			temp |= UCR2_CTS | UCR2_CTSC;
824 		writel(temp, sport->port.membase + UCR2);
825 	}
826 
827 	temp = readl(sport->port.membase + uts_reg(sport)) & ~UTS_LOOP;
828 	if (mctrl & TIOCM_LOOP)
829 		temp |= UTS_LOOP;
830 	writel(temp, sport->port.membase + uts_reg(sport));
831 }
832 
833 /*
834  * Interrupts always disabled.
835  */
836 static void imx_break_ctl(struct uart_port *port, int break_state)
837 {
838 	struct imx_port *sport = (struct imx_port *)port;
839 	unsigned long flags, temp;
840 
841 	spin_lock_irqsave(&sport->port.lock, flags);
842 
843 	temp = readl(sport->port.membase + UCR1) & ~UCR1_SNDBRK;
844 
845 	if (break_state != 0)
846 		temp |= UCR1_SNDBRK;
847 
848 	writel(temp, sport->port.membase + UCR1);
849 
850 	spin_unlock_irqrestore(&sport->port.lock, flags);
851 }
852 
853 #define TXTL 2 /* reset default */
854 #define RXTL 1 /* reset default */
855 
856 static int imx_setup_ufcr(struct imx_port *sport, unsigned int mode)
857 {
858 	unsigned int val;
859 
860 	/* set receiver / transmitter trigger level */
861 	val = readl(sport->port.membase + UFCR) & (UFCR_RFDIV | UFCR_DCEDTE);
862 	val |= TXTL << UFCR_TXTL_SHF | RXTL;
863 	writel(val, sport->port.membase + UFCR);
864 	return 0;
865 }
866 
867 #define RX_BUF_SIZE	(PAGE_SIZE)
868 static void imx_rx_dma_done(struct imx_port *sport)
869 {
870 	unsigned long temp;
871 	unsigned long flags;
872 
873 	spin_lock_irqsave(&sport->port.lock, flags);
874 
875 	/* Enable this interrupt when the RXFIFO is empty. */
876 	temp = readl(sport->port.membase + UCR1);
877 	temp |= UCR1_RRDYEN;
878 	writel(temp, sport->port.membase + UCR1);
879 
880 	sport->dma_is_rxing = 0;
881 
882 	/* Is the shutdown waiting for us? */
883 	if (waitqueue_active(&sport->dma_wait))
884 		wake_up(&sport->dma_wait);
885 
886 	spin_unlock_irqrestore(&sport->port.lock, flags);
887 }
888 
889 /*
890  * There are three kinds of RX DMA interrupts(such as in the MX6Q):
891  *   [1] the RX DMA buffer is full.
892  *   [2] the Aging timer expires(wait for 8 bytes long)
893  *   [3] the Idle Condition Detect(enabled the UCR4_IDDMAEN).
894  *
895  * The [2] is trigger when a character was been sitting in the FIFO
896  * meanwhile [3] can wait for 32 bytes long when the RX line is
897  * on IDLE state and RxFIFO is empty.
898  */
899 static void dma_rx_callback(void *data)
900 {
901 	struct imx_port *sport = data;
902 	struct dma_chan	*chan = sport->dma_chan_rx;
903 	struct scatterlist *sgl = &sport->rx_sgl;
904 	struct tty_port *port = &sport->port.state->port;
905 	struct dma_tx_state state;
906 	enum dma_status status;
907 	unsigned int count;
908 
909 	/* unmap it first */
910 	dma_unmap_sg(sport->port.dev, sgl, 1, DMA_FROM_DEVICE);
911 
912 	status = dmaengine_tx_status(chan, (dma_cookie_t)0, &state);
913 	count = RX_BUF_SIZE - state.residue;
914 	dev_dbg(sport->port.dev, "We get %d bytes.\n", count);
915 
916 	if (count) {
917 		if (!(sport->port.ignore_status_mask & URXD_DUMMY_READ))
918 			tty_insert_flip_string(port, sport->rx_buf, count);
919 		tty_flip_buffer_push(port);
920 
921 		start_rx_dma(sport);
922 	} else if (readl(sport->port.membase + USR2) & USR2_RDR) {
923 		/*
924 		 * start rx_dma directly once data in RXFIFO, more efficient
925 		 * than before:
926 		 *	1. call imx_rx_dma_done to stop dma if no data received
927 		 *	2. wait next  RDR interrupt to start dma transfer.
928 		 */
929 		start_rx_dma(sport);
930 	} else {
931 		/*
932 		 * stop dma to prevent too many IDLE event trigged if no data
933 		 * in RXFIFO
934 		 */
935 		imx_rx_dma_done(sport);
936 	}
937 }
938 
939 static int start_rx_dma(struct imx_port *sport)
940 {
941 	struct scatterlist *sgl = &sport->rx_sgl;
942 	struct dma_chan	*chan = sport->dma_chan_rx;
943 	struct device *dev = sport->port.dev;
944 	struct dma_async_tx_descriptor *desc;
945 	int ret;
946 
947 	sg_init_one(sgl, sport->rx_buf, RX_BUF_SIZE);
948 	ret = dma_map_sg(dev, sgl, 1, DMA_FROM_DEVICE);
949 	if (ret == 0) {
950 		dev_err(dev, "DMA mapping error for RX.\n");
951 		return -EINVAL;
952 	}
953 	desc = dmaengine_prep_slave_sg(chan, sgl, 1, DMA_DEV_TO_MEM,
954 					DMA_PREP_INTERRUPT);
955 	if (!desc) {
956 		dma_unmap_sg(dev, sgl, 1, DMA_FROM_DEVICE);
957 		dev_err(dev, "We cannot prepare for the RX slave dma!\n");
958 		return -EINVAL;
959 	}
960 	desc->callback = dma_rx_callback;
961 	desc->callback_param = sport;
962 
963 	dev_dbg(dev, "RX: prepare for the DMA.\n");
964 	dmaengine_submit(desc);
965 	dma_async_issue_pending(chan);
966 	return 0;
967 }
968 
969 static void imx_uart_dma_exit(struct imx_port *sport)
970 {
971 	if (sport->dma_chan_rx) {
972 		dma_release_channel(sport->dma_chan_rx);
973 		sport->dma_chan_rx = NULL;
974 
975 		kfree(sport->rx_buf);
976 		sport->rx_buf = NULL;
977 	}
978 
979 	if (sport->dma_chan_tx) {
980 		dma_release_channel(sport->dma_chan_tx);
981 		sport->dma_chan_tx = NULL;
982 	}
983 
984 	sport->dma_is_inited = 0;
985 }
986 
987 static int imx_uart_dma_init(struct imx_port *sport)
988 {
989 	struct dma_slave_config slave_config = {};
990 	struct device *dev = sport->port.dev;
991 	int ret;
992 
993 	/* Prepare for RX : */
994 	sport->dma_chan_rx = dma_request_slave_channel(dev, "rx");
995 	if (!sport->dma_chan_rx) {
996 		dev_dbg(dev, "cannot get the DMA channel.\n");
997 		ret = -EINVAL;
998 		goto err;
999 	}
1000 
1001 	slave_config.direction = DMA_DEV_TO_MEM;
1002 	slave_config.src_addr = sport->port.mapbase + URXD0;
1003 	slave_config.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
1004 	slave_config.src_maxburst = RXTL;
1005 	ret = dmaengine_slave_config(sport->dma_chan_rx, &slave_config);
1006 	if (ret) {
1007 		dev_err(dev, "error in RX dma configuration.\n");
1008 		goto err;
1009 	}
1010 
1011 	sport->rx_buf = kzalloc(PAGE_SIZE, GFP_KERNEL);
1012 	if (!sport->rx_buf) {
1013 		ret = -ENOMEM;
1014 		goto err;
1015 	}
1016 
1017 	/* Prepare for TX : */
1018 	sport->dma_chan_tx = dma_request_slave_channel(dev, "tx");
1019 	if (!sport->dma_chan_tx) {
1020 		dev_err(dev, "cannot get the TX DMA channel!\n");
1021 		ret = -EINVAL;
1022 		goto err;
1023 	}
1024 
1025 	slave_config.direction = DMA_MEM_TO_DEV;
1026 	slave_config.dst_addr = sport->port.mapbase + URTX0;
1027 	slave_config.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
1028 	slave_config.dst_maxburst = TXTL;
1029 	ret = dmaengine_slave_config(sport->dma_chan_tx, &slave_config);
1030 	if (ret) {
1031 		dev_err(dev, "error in TX dma configuration.");
1032 		goto err;
1033 	}
1034 
1035 	sport->dma_is_inited = 1;
1036 
1037 	return 0;
1038 err:
1039 	imx_uart_dma_exit(sport);
1040 	return ret;
1041 }
1042 
1043 static void imx_enable_dma(struct imx_port *sport)
1044 {
1045 	unsigned long temp;
1046 
1047 	init_waitqueue_head(&sport->dma_wait);
1048 
1049 	/* set UCR1 */
1050 	temp = readl(sport->port.membase + UCR1);
1051 	temp |= UCR1_RDMAEN | UCR1_TDMAEN | UCR1_ATDMAEN |
1052 		/* wait for 32 idle frames for IDDMA interrupt */
1053 		UCR1_ICD_REG(3);
1054 	writel(temp, sport->port.membase + UCR1);
1055 
1056 	/* set UCR4 */
1057 	temp = readl(sport->port.membase + UCR4);
1058 	temp |= UCR4_IDDMAEN;
1059 	writel(temp, sport->port.membase + UCR4);
1060 
1061 	sport->dma_is_enabled = 1;
1062 }
1063 
1064 static void imx_disable_dma(struct imx_port *sport)
1065 {
1066 	unsigned long temp;
1067 
1068 	/* clear UCR1 */
1069 	temp = readl(sport->port.membase + UCR1);
1070 	temp &= ~(UCR1_RDMAEN | UCR1_TDMAEN | UCR1_ATDMAEN);
1071 	writel(temp, sport->port.membase + UCR1);
1072 
1073 	/* clear UCR2 */
1074 	temp = readl(sport->port.membase + UCR2);
1075 	temp &= ~(UCR2_CTSC | UCR2_CTS);
1076 	writel(temp, sport->port.membase + UCR2);
1077 
1078 	/* clear UCR4 */
1079 	temp = readl(sport->port.membase + UCR4);
1080 	temp &= ~UCR4_IDDMAEN;
1081 	writel(temp, sport->port.membase + UCR4);
1082 
1083 	sport->dma_is_enabled = 0;
1084 }
1085 
1086 /* half the RX buffer size */
1087 #define CTSTL 16
1088 
1089 static int imx_startup(struct uart_port *port)
1090 {
1091 	struct imx_port *sport = (struct imx_port *)port;
1092 	int retval, i;
1093 	unsigned long flags, temp;
1094 
1095 	retval = clk_prepare_enable(sport->clk_per);
1096 	if (retval)
1097 		return retval;
1098 	retval = clk_prepare_enable(sport->clk_ipg);
1099 	if (retval) {
1100 		clk_disable_unprepare(sport->clk_per);
1101 		return retval;
1102 	}
1103 
1104 	imx_setup_ufcr(sport, 0);
1105 
1106 	/* disable the DREN bit (Data Ready interrupt enable) before
1107 	 * requesting IRQs
1108 	 */
1109 	temp = readl(sport->port.membase + UCR4);
1110 
1111 	/* set the trigger level for CTS */
1112 	temp &= ~(UCR4_CTSTL_MASK << UCR4_CTSTL_SHF);
1113 	temp |= CTSTL << UCR4_CTSTL_SHF;
1114 
1115 	writel(temp & ~UCR4_DREN, sport->port.membase + UCR4);
1116 
1117 	/* Reset fifo's and state machines */
1118 	i = 100;
1119 
1120 	temp = readl(sport->port.membase + UCR2);
1121 	temp &= ~UCR2_SRST;
1122 	writel(temp, sport->port.membase + UCR2);
1123 
1124 	while (!(readl(sport->port.membase + UCR2) & UCR2_SRST) && (--i > 0))
1125 		udelay(1);
1126 
1127 	/* Can we enable the DMA support? */
1128 	if (is_imx6q_uart(sport) && !uart_console(port) &&
1129 	    !sport->dma_is_inited)
1130 		imx_uart_dma_init(sport);
1131 
1132 	spin_lock_irqsave(&sport->port.lock, flags);
1133 
1134 	/*
1135 	 * Finally, clear and enable interrupts
1136 	 */
1137 	writel(USR1_RTSD, sport->port.membase + USR1);
1138 	writel(USR2_ORE, sport->port.membase + USR2);
1139 
1140 	if (sport->dma_is_inited && !sport->dma_is_enabled)
1141 		imx_enable_dma(sport);
1142 
1143 	temp = readl(sport->port.membase + UCR1);
1144 	temp |= UCR1_RRDYEN | UCR1_RTSDEN | UCR1_UARTEN;
1145 
1146 	writel(temp, sport->port.membase + UCR1);
1147 
1148 	temp = readl(sport->port.membase + UCR4);
1149 	temp |= UCR4_OREN;
1150 	writel(temp, sport->port.membase + UCR4);
1151 
1152 	temp = readl(sport->port.membase + UCR2);
1153 	temp |= (UCR2_RXEN | UCR2_TXEN);
1154 	if (!sport->have_rtscts)
1155 		temp |= UCR2_IRTS;
1156 	writel(temp, sport->port.membase + UCR2);
1157 
1158 	if (!is_imx1_uart(sport)) {
1159 		temp = readl(sport->port.membase + UCR3);
1160 		temp |= IMX21_UCR3_RXDMUXSEL | UCR3_ADNIMP;
1161 		writel(temp, sport->port.membase + UCR3);
1162 	}
1163 
1164 	/*
1165 	 * Enable modem status interrupts
1166 	 */
1167 	imx_enable_ms(&sport->port);
1168 	spin_unlock_irqrestore(&sport->port.lock, flags);
1169 
1170 	return 0;
1171 }
1172 
1173 static void imx_shutdown(struct uart_port *port)
1174 {
1175 	struct imx_port *sport = (struct imx_port *)port;
1176 	unsigned long temp;
1177 	unsigned long flags;
1178 
1179 	if (sport->dma_is_enabled) {
1180 		int ret;
1181 
1182 		/* We have to wait for the DMA to finish. */
1183 		ret = wait_event_interruptible(sport->dma_wait,
1184 			!sport->dma_is_rxing && !sport->dma_is_txing);
1185 		if (ret != 0) {
1186 			sport->dma_is_rxing = 0;
1187 			sport->dma_is_txing = 0;
1188 			dmaengine_terminate_all(sport->dma_chan_tx);
1189 			dmaengine_terminate_all(sport->dma_chan_rx);
1190 		}
1191 		spin_lock_irqsave(&sport->port.lock, flags);
1192 		imx_stop_tx(port);
1193 		imx_stop_rx(port);
1194 		imx_disable_dma(sport);
1195 		spin_unlock_irqrestore(&sport->port.lock, flags);
1196 		imx_uart_dma_exit(sport);
1197 	}
1198 
1199 	spin_lock_irqsave(&sport->port.lock, flags);
1200 	temp = readl(sport->port.membase + UCR2);
1201 	temp &= ~(UCR2_TXEN);
1202 	writel(temp, sport->port.membase + UCR2);
1203 	spin_unlock_irqrestore(&sport->port.lock, flags);
1204 
1205 	/*
1206 	 * Stop our timer.
1207 	 */
1208 	del_timer_sync(&sport->timer);
1209 
1210 	/*
1211 	 * Disable all interrupts, port and break condition.
1212 	 */
1213 
1214 	spin_lock_irqsave(&sport->port.lock, flags);
1215 	temp = readl(sport->port.membase + UCR1);
1216 	temp &= ~(UCR1_TXMPTYEN | UCR1_RRDYEN | UCR1_RTSDEN | UCR1_UARTEN);
1217 
1218 	writel(temp, sport->port.membase + UCR1);
1219 	spin_unlock_irqrestore(&sport->port.lock, flags);
1220 
1221 	clk_disable_unprepare(sport->clk_per);
1222 	clk_disable_unprepare(sport->clk_ipg);
1223 }
1224 
1225 static void imx_flush_buffer(struct uart_port *port)
1226 {
1227 	struct imx_port *sport = (struct imx_port *)port;
1228 	struct scatterlist *sgl = &sport->tx_sgl[0];
1229 	unsigned long temp;
1230 	int i = 100, ubir, ubmr, uts;
1231 
1232 	if (!sport->dma_chan_tx)
1233 		return;
1234 
1235 	sport->tx_bytes = 0;
1236 	dmaengine_terminate_all(sport->dma_chan_tx);
1237 	if (sport->dma_is_txing) {
1238 		dma_unmap_sg(sport->port.dev, sgl, sport->dma_tx_nents,
1239 			     DMA_TO_DEVICE);
1240 		temp = readl(sport->port.membase + UCR1);
1241 		temp &= ~UCR1_TDMAEN;
1242 		writel(temp, sport->port.membase + UCR1);
1243 		sport->dma_is_txing = false;
1244 	}
1245 
1246 	/*
1247 	 * According to the Reference Manual description of the UART SRST bit:
1248 	 * "Reset the transmit and receive state machines,
1249 	 * all FIFOs and register USR1, USR2, UBIR, UBMR, UBRC, URXD, UTXD
1250 	 * and UTS[6-3]". As we don't need to restore the old values from
1251 	 * USR1, USR2, URXD, UTXD, only save/restore the other four registers
1252 	 */
1253 	ubir = readl(sport->port.membase + UBIR);
1254 	ubmr = readl(sport->port.membase + UBMR);
1255 	uts = readl(sport->port.membase + IMX21_UTS);
1256 
1257 	temp = readl(sport->port.membase + UCR2);
1258 	temp &= ~UCR2_SRST;
1259 	writel(temp, sport->port.membase + UCR2);
1260 
1261 	while (!(readl(sport->port.membase + UCR2) & UCR2_SRST) && (--i > 0))
1262 		udelay(1);
1263 
1264 	/* Restore the registers */
1265 	writel(ubir, sport->port.membase + UBIR);
1266 	writel(ubmr, sport->port.membase + UBMR);
1267 	writel(uts, sport->port.membase + IMX21_UTS);
1268 }
1269 
1270 static void
1271 imx_set_termios(struct uart_port *port, struct ktermios *termios,
1272 		   struct ktermios *old)
1273 {
1274 	struct imx_port *sport = (struct imx_port *)port;
1275 	unsigned long flags;
1276 	unsigned int ucr2, old_ucr1, old_txrxen, baud, quot;
1277 	unsigned int old_csize = old ? old->c_cflag & CSIZE : CS8;
1278 	unsigned int div, ufcr;
1279 	unsigned long num, denom;
1280 	uint64_t tdiv64;
1281 
1282 	/*
1283 	 * We only support CS7 and CS8.
1284 	 */
1285 	while ((termios->c_cflag & CSIZE) != CS7 &&
1286 	       (termios->c_cflag & CSIZE) != CS8) {
1287 		termios->c_cflag &= ~CSIZE;
1288 		termios->c_cflag |= old_csize;
1289 		old_csize = CS8;
1290 	}
1291 
1292 	if ((termios->c_cflag & CSIZE) == CS8)
1293 		ucr2 = UCR2_WS | UCR2_SRST | UCR2_IRTS;
1294 	else
1295 		ucr2 = UCR2_SRST | UCR2_IRTS;
1296 
1297 	if (termios->c_cflag & CRTSCTS) {
1298 		if (sport->have_rtscts) {
1299 			ucr2 &= ~UCR2_IRTS;
1300 
1301 			if (port->rs485.flags & SER_RS485_ENABLED) {
1302 				/*
1303 				 * RTS is mandatory for rs485 operation, so keep
1304 				 * it under manual control and keep transmitter
1305 				 * disabled.
1306 				 */
1307 				if (!(port->rs485.flags &
1308 				      SER_RS485_RTS_AFTER_SEND))
1309 					ucr2 |= UCR2_CTS;
1310 			} else {
1311 				ucr2 |= UCR2_CTSC;
1312 			}
1313 		} else {
1314 			termios->c_cflag &= ~CRTSCTS;
1315 		}
1316 	} else if (port->rs485.flags & SER_RS485_ENABLED)
1317 		/* disable transmitter */
1318 		if (!(port->rs485.flags & SER_RS485_RTS_AFTER_SEND))
1319 			ucr2 |= UCR2_CTS;
1320 
1321 	if (termios->c_cflag & CSTOPB)
1322 		ucr2 |= UCR2_STPB;
1323 	if (termios->c_cflag & PARENB) {
1324 		ucr2 |= UCR2_PREN;
1325 		if (termios->c_cflag & PARODD)
1326 			ucr2 |= UCR2_PROE;
1327 	}
1328 
1329 	del_timer_sync(&sport->timer);
1330 
1331 	/*
1332 	 * Ask the core to calculate the divisor for us.
1333 	 */
1334 	baud = uart_get_baud_rate(port, termios, old, 50, port->uartclk / 16);
1335 	quot = uart_get_divisor(port, baud);
1336 
1337 	spin_lock_irqsave(&sport->port.lock, flags);
1338 
1339 	sport->port.read_status_mask = 0;
1340 	if (termios->c_iflag & INPCK)
1341 		sport->port.read_status_mask |= (URXD_FRMERR | URXD_PRERR);
1342 	if (termios->c_iflag & (BRKINT | PARMRK))
1343 		sport->port.read_status_mask |= URXD_BRK;
1344 
1345 	/*
1346 	 * Characters to ignore
1347 	 */
1348 	sport->port.ignore_status_mask = 0;
1349 	if (termios->c_iflag & IGNPAR)
1350 		sport->port.ignore_status_mask |= URXD_PRERR | URXD_FRMERR;
1351 	if (termios->c_iflag & IGNBRK) {
1352 		sport->port.ignore_status_mask |= URXD_BRK;
1353 		/*
1354 		 * If we're ignoring parity and break indicators,
1355 		 * ignore overruns too (for real raw support).
1356 		 */
1357 		if (termios->c_iflag & IGNPAR)
1358 			sport->port.ignore_status_mask |= URXD_OVRRUN;
1359 	}
1360 
1361 	if ((termios->c_cflag & CREAD) == 0)
1362 		sport->port.ignore_status_mask |= URXD_DUMMY_READ;
1363 
1364 	/*
1365 	 * Update the per-port timeout.
1366 	 */
1367 	uart_update_timeout(port, termios->c_cflag, baud);
1368 
1369 	/*
1370 	 * disable interrupts and drain transmitter
1371 	 */
1372 	old_ucr1 = readl(sport->port.membase + UCR1);
1373 	writel(old_ucr1 & ~(UCR1_TXMPTYEN | UCR1_RRDYEN | UCR1_RTSDEN),
1374 			sport->port.membase + UCR1);
1375 
1376 	while (!(readl(sport->port.membase + USR2) & USR2_TXDC))
1377 		barrier();
1378 
1379 	/* then, disable everything */
1380 	old_txrxen = readl(sport->port.membase + UCR2);
1381 	writel(old_txrxen & ~(UCR2_TXEN | UCR2_RXEN),
1382 			sport->port.membase + UCR2);
1383 	old_txrxen &= (UCR2_TXEN | UCR2_RXEN);
1384 
1385 	/* custom-baudrate handling */
1386 	div = sport->port.uartclk / (baud * 16);
1387 	if (baud == 38400 && quot != div)
1388 		baud = sport->port.uartclk / (quot * 16);
1389 
1390 	div = sport->port.uartclk / (baud * 16);
1391 	if (div > 7)
1392 		div = 7;
1393 	if (!div)
1394 		div = 1;
1395 
1396 	rational_best_approximation(16 * div * baud, sport->port.uartclk,
1397 		1 << 16, 1 << 16, &num, &denom);
1398 
1399 	tdiv64 = sport->port.uartclk;
1400 	tdiv64 *= num;
1401 	do_div(tdiv64, denom * 16 * div);
1402 	tty_termios_encode_baud_rate(termios,
1403 				(speed_t)tdiv64, (speed_t)tdiv64);
1404 
1405 	num -= 1;
1406 	denom -= 1;
1407 
1408 	ufcr = readl(sport->port.membase + UFCR);
1409 	ufcr = (ufcr & (~UFCR_RFDIV)) | UFCR_RFDIV_REG(div);
1410 	if (sport->dte_mode)
1411 		ufcr |= UFCR_DCEDTE;
1412 	writel(ufcr, sport->port.membase + UFCR);
1413 
1414 	writel(num, sport->port.membase + UBIR);
1415 	writel(denom, sport->port.membase + UBMR);
1416 
1417 	if (!is_imx1_uart(sport))
1418 		writel(sport->port.uartclk / div / 1000,
1419 				sport->port.membase + IMX21_ONEMS);
1420 
1421 	writel(old_ucr1, sport->port.membase + UCR1);
1422 
1423 	/* set the parity, stop bits and data size */
1424 	writel(ucr2 | old_txrxen, sport->port.membase + UCR2);
1425 
1426 	if (UART_ENABLE_MS(&sport->port, termios->c_cflag))
1427 		imx_enable_ms(&sport->port);
1428 
1429 	spin_unlock_irqrestore(&sport->port.lock, flags);
1430 }
1431 
1432 static const char *imx_type(struct uart_port *port)
1433 {
1434 	struct imx_port *sport = (struct imx_port *)port;
1435 
1436 	return sport->port.type == PORT_IMX ? "IMX" : NULL;
1437 }
1438 
1439 /*
1440  * Configure/autoconfigure the port.
1441  */
1442 static void imx_config_port(struct uart_port *port, int flags)
1443 {
1444 	struct imx_port *sport = (struct imx_port *)port;
1445 
1446 	if (flags & UART_CONFIG_TYPE)
1447 		sport->port.type = PORT_IMX;
1448 }
1449 
1450 /*
1451  * Verify the new serial_struct (for TIOCSSERIAL).
1452  * The only change we allow are to the flags and type, and
1453  * even then only between PORT_IMX and PORT_UNKNOWN
1454  */
1455 static int
1456 imx_verify_port(struct uart_port *port, struct serial_struct *ser)
1457 {
1458 	struct imx_port *sport = (struct imx_port *)port;
1459 	int ret = 0;
1460 
1461 	if (ser->type != PORT_UNKNOWN && ser->type != PORT_IMX)
1462 		ret = -EINVAL;
1463 	if (sport->port.irq != ser->irq)
1464 		ret = -EINVAL;
1465 	if (ser->io_type != UPIO_MEM)
1466 		ret = -EINVAL;
1467 	if (sport->port.uartclk / 16 != ser->baud_base)
1468 		ret = -EINVAL;
1469 	if (sport->port.mapbase != (unsigned long)ser->iomem_base)
1470 		ret = -EINVAL;
1471 	if (sport->port.iobase != ser->port)
1472 		ret = -EINVAL;
1473 	if (ser->hub6 != 0)
1474 		ret = -EINVAL;
1475 	return ret;
1476 }
1477 
1478 #if defined(CONFIG_CONSOLE_POLL)
1479 
1480 static int imx_poll_init(struct uart_port *port)
1481 {
1482 	struct imx_port *sport = (struct imx_port *)port;
1483 	unsigned long flags;
1484 	unsigned long temp;
1485 	int retval;
1486 
1487 	retval = clk_prepare_enable(sport->clk_ipg);
1488 	if (retval)
1489 		return retval;
1490 	retval = clk_prepare_enable(sport->clk_per);
1491 	if (retval)
1492 		clk_disable_unprepare(sport->clk_ipg);
1493 
1494 	imx_setup_ufcr(sport, 0);
1495 
1496 	spin_lock_irqsave(&sport->port.lock, flags);
1497 
1498 	temp = readl(sport->port.membase + UCR1);
1499 	if (is_imx1_uart(sport))
1500 		temp |= IMX1_UCR1_UARTCLKEN;
1501 	temp |= UCR1_UARTEN | UCR1_RRDYEN;
1502 	temp &= ~(UCR1_TXMPTYEN | UCR1_RTSDEN);
1503 	writel(temp, sport->port.membase + UCR1);
1504 
1505 	temp = readl(sport->port.membase + UCR2);
1506 	temp |= UCR2_RXEN;
1507 	writel(temp, sport->port.membase + UCR2);
1508 
1509 	spin_unlock_irqrestore(&sport->port.lock, flags);
1510 
1511 	return 0;
1512 }
1513 
1514 static int imx_poll_get_char(struct uart_port *port)
1515 {
1516 	if (!(readl_relaxed(port->membase + USR2) & USR2_RDR))
1517 		return NO_POLL_CHAR;
1518 
1519 	return readl_relaxed(port->membase + URXD0) & URXD_RX_DATA;
1520 }
1521 
1522 static void imx_poll_put_char(struct uart_port *port, unsigned char c)
1523 {
1524 	unsigned int status;
1525 
1526 	/* drain */
1527 	do {
1528 		status = readl_relaxed(port->membase + USR1);
1529 	} while (~status & USR1_TRDY);
1530 
1531 	/* write */
1532 	writel_relaxed(c, port->membase + URTX0);
1533 
1534 	/* flush */
1535 	do {
1536 		status = readl_relaxed(port->membase + USR2);
1537 	} while (~status & USR2_TXDC);
1538 }
1539 #endif
1540 
1541 static int imx_rs485_config(struct uart_port *port,
1542 			    struct serial_rs485 *rs485conf)
1543 {
1544 	struct imx_port *sport = (struct imx_port *)port;
1545 
1546 	/* unimplemented */
1547 	rs485conf->delay_rts_before_send = 0;
1548 	rs485conf->delay_rts_after_send = 0;
1549 	rs485conf->flags |= SER_RS485_RX_DURING_TX;
1550 
1551 	/* RTS is required to control the transmitter */
1552 	if (!sport->have_rtscts)
1553 		rs485conf->flags &= ~SER_RS485_ENABLED;
1554 
1555 	if (rs485conf->flags & SER_RS485_ENABLED) {
1556 		unsigned long temp;
1557 
1558 		/* disable transmitter */
1559 		temp = readl(sport->port.membase + UCR2);
1560 		temp &= ~UCR2_CTSC;
1561 		if (rs485conf->flags & SER_RS485_RTS_AFTER_SEND)
1562 			temp &= ~UCR2_CTS;
1563 		else
1564 			temp |= UCR2_CTS;
1565 		writel(temp, sport->port.membase + UCR2);
1566 	}
1567 
1568 	port->rs485 = *rs485conf;
1569 
1570 	return 0;
1571 }
1572 
1573 static struct uart_ops imx_pops = {
1574 	.tx_empty	= imx_tx_empty,
1575 	.set_mctrl	= imx_set_mctrl,
1576 	.get_mctrl	= imx_get_mctrl,
1577 	.stop_tx	= imx_stop_tx,
1578 	.start_tx	= imx_start_tx,
1579 	.stop_rx	= imx_stop_rx,
1580 	.enable_ms	= imx_enable_ms,
1581 	.break_ctl	= imx_break_ctl,
1582 	.startup	= imx_startup,
1583 	.shutdown	= imx_shutdown,
1584 	.flush_buffer	= imx_flush_buffer,
1585 	.set_termios	= imx_set_termios,
1586 	.type		= imx_type,
1587 	.config_port	= imx_config_port,
1588 	.verify_port	= imx_verify_port,
1589 #if defined(CONFIG_CONSOLE_POLL)
1590 	.poll_init      = imx_poll_init,
1591 	.poll_get_char  = imx_poll_get_char,
1592 	.poll_put_char  = imx_poll_put_char,
1593 #endif
1594 };
1595 
1596 static struct imx_port *imx_ports[UART_NR];
1597 
1598 #ifdef CONFIG_SERIAL_IMX_CONSOLE
1599 static void imx_console_putchar(struct uart_port *port, int ch)
1600 {
1601 	struct imx_port *sport = (struct imx_port *)port;
1602 
1603 	while (readl(sport->port.membase + uts_reg(sport)) & UTS_TXFULL)
1604 		barrier();
1605 
1606 	writel(ch, sport->port.membase + URTX0);
1607 }
1608 
1609 /*
1610  * Interrupts are disabled on entering
1611  */
1612 static void
1613 imx_console_write(struct console *co, const char *s, unsigned int count)
1614 {
1615 	struct imx_port *sport = imx_ports[co->index];
1616 	struct imx_port_ucrs old_ucr;
1617 	unsigned int ucr1;
1618 	unsigned long flags = 0;
1619 	int locked = 1;
1620 	int retval;
1621 
1622 	retval = clk_enable(sport->clk_per);
1623 	if (retval)
1624 		return;
1625 	retval = clk_enable(sport->clk_ipg);
1626 	if (retval) {
1627 		clk_disable(sport->clk_per);
1628 		return;
1629 	}
1630 
1631 	if (sport->port.sysrq)
1632 		locked = 0;
1633 	else if (oops_in_progress)
1634 		locked = spin_trylock_irqsave(&sport->port.lock, flags);
1635 	else
1636 		spin_lock_irqsave(&sport->port.lock, flags);
1637 
1638 	/*
1639 	 *	First, save UCR1/2/3 and then disable interrupts
1640 	 */
1641 	imx_port_ucrs_save(&sport->port, &old_ucr);
1642 	ucr1 = old_ucr.ucr1;
1643 
1644 	if (is_imx1_uart(sport))
1645 		ucr1 |= IMX1_UCR1_UARTCLKEN;
1646 	ucr1 |= UCR1_UARTEN;
1647 	ucr1 &= ~(UCR1_TXMPTYEN | UCR1_RRDYEN | UCR1_RTSDEN);
1648 
1649 	writel(ucr1, sport->port.membase + UCR1);
1650 
1651 	writel(old_ucr.ucr2 | UCR2_TXEN, sport->port.membase + UCR2);
1652 
1653 	uart_console_write(&sport->port, s, count, imx_console_putchar);
1654 
1655 	/*
1656 	 *	Finally, wait for transmitter to become empty
1657 	 *	and restore UCR1/2/3
1658 	 */
1659 	while (!(readl(sport->port.membase + USR2) & USR2_TXDC));
1660 
1661 	imx_port_ucrs_restore(&sport->port, &old_ucr);
1662 
1663 	if (locked)
1664 		spin_unlock_irqrestore(&sport->port.lock, flags);
1665 
1666 	clk_disable(sport->clk_ipg);
1667 	clk_disable(sport->clk_per);
1668 }
1669 
1670 /*
1671  * If the port was already initialised (eg, by a boot loader),
1672  * try to determine the current setup.
1673  */
1674 static void __init
1675 imx_console_get_options(struct imx_port *sport, int *baud,
1676 			   int *parity, int *bits)
1677 {
1678 
1679 	if (readl(sport->port.membase + UCR1) & UCR1_UARTEN) {
1680 		/* ok, the port was enabled */
1681 		unsigned int ucr2, ubir, ubmr, uartclk;
1682 		unsigned int baud_raw;
1683 		unsigned int ucfr_rfdiv;
1684 
1685 		ucr2 = readl(sport->port.membase + UCR2);
1686 
1687 		*parity = 'n';
1688 		if (ucr2 & UCR2_PREN) {
1689 			if (ucr2 & UCR2_PROE)
1690 				*parity = 'o';
1691 			else
1692 				*parity = 'e';
1693 		}
1694 
1695 		if (ucr2 & UCR2_WS)
1696 			*bits = 8;
1697 		else
1698 			*bits = 7;
1699 
1700 		ubir = readl(sport->port.membase + UBIR) & 0xffff;
1701 		ubmr = readl(sport->port.membase + UBMR) & 0xffff;
1702 
1703 		ucfr_rfdiv = (readl(sport->port.membase + UFCR) & UFCR_RFDIV) >> 7;
1704 		if (ucfr_rfdiv == 6)
1705 			ucfr_rfdiv = 7;
1706 		else
1707 			ucfr_rfdiv = 6 - ucfr_rfdiv;
1708 
1709 		uartclk = clk_get_rate(sport->clk_per);
1710 		uartclk /= ucfr_rfdiv;
1711 
1712 		{	/*
1713 			 * The next code provides exact computation of
1714 			 *   baud_raw = round(((uartclk/16) * (ubir + 1)) / (ubmr + 1))
1715 			 * without need of float support or long long division,
1716 			 * which would be required to prevent 32bit arithmetic overflow
1717 			 */
1718 			unsigned int mul = ubir + 1;
1719 			unsigned int div = 16 * (ubmr + 1);
1720 			unsigned int rem = uartclk % div;
1721 
1722 			baud_raw = (uartclk / div) * mul;
1723 			baud_raw += (rem * mul + div / 2) / div;
1724 			*baud = (baud_raw + 50) / 100 * 100;
1725 		}
1726 
1727 		if (*baud != baud_raw)
1728 			pr_info("Console IMX rounded baud rate from %d to %d\n",
1729 				baud_raw, *baud);
1730 	}
1731 }
1732 
1733 static int __init
1734 imx_console_setup(struct console *co, char *options)
1735 {
1736 	struct imx_port *sport;
1737 	int baud = 9600;
1738 	int bits = 8;
1739 	int parity = 'n';
1740 	int flow = 'n';
1741 	int retval;
1742 
1743 	/*
1744 	 * Check whether an invalid uart number has been specified, and
1745 	 * if so, search for the first available port that does have
1746 	 * console support.
1747 	 */
1748 	if (co->index == -1 || co->index >= ARRAY_SIZE(imx_ports))
1749 		co->index = 0;
1750 	sport = imx_ports[co->index];
1751 	if (sport == NULL)
1752 		return -ENODEV;
1753 
1754 	/* For setting the registers, we only need to enable the ipg clock. */
1755 	retval = clk_prepare_enable(sport->clk_ipg);
1756 	if (retval)
1757 		goto error_console;
1758 
1759 	if (options)
1760 		uart_parse_options(options, &baud, &parity, &bits, &flow);
1761 	else
1762 		imx_console_get_options(sport, &baud, &parity, &bits);
1763 
1764 	imx_setup_ufcr(sport, 0);
1765 
1766 	retval = uart_set_options(&sport->port, co, baud, parity, bits, flow);
1767 
1768 	clk_disable(sport->clk_ipg);
1769 	if (retval) {
1770 		clk_unprepare(sport->clk_ipg);
1771 		goto error_console;
1772 	}
1773 
1774 	retval = clk_prepare(sport->clk_per);
1775 	if (retval)
1776 		clk_disable_unprepare(sport->clk_ipg);
1777 
1778 error_console:
1779 	return retval;
1780 }
1781 
1782 static struct uart_driver imx_reg;
1783 static struct console imx_console = {
1784 	.name		= DEV_NAME,
1785 	.write		= imx_console_write,
1786 	.device		= uart_console_device,
1787 	.setup		= imx_console_setup,
1788 	.flags		= CON_PRINTBUFFER,
1789 	.index		= -1,
1790 	.data		= &imx_reg,
1791 };
1792 
1793 #define IMX_CONSOLE	&imx_console
1794 #else
1795 #define IMX_CONSOLE	NULL
1796 #endif
1797 
1798 static struct uart_driver imx_reg = {
1799 	.owner          = THIS_MODULE,
1800 	.driver_name    = DRIVER_NAME,
1801 	.dev_name       = DEV_NAME,
1802 	.major          = SERIAL_IMX_MAJOR,
1803 	.minor          = MINOR_START,
1804 	.nr             = ARRAY_SIZE(imx_ports),
1805 	.cons           = IMX_CONSOLE,
1806 };
1807 
1808 static int serial_imx_suspend(struct platform_device *dev, pm_message_t state)
1809 {
1810 	struct imx_port *sport = platform_get_drvdata(dev);
1811 	unsigned int val;
1812 
1813 	/* enable wakeup from i.MX UART */
1814 	val = readl(sport->port.membase + UCR3);
1815 	val |= UCR3_AWAKEN;
1816 	writel(val, sport->port.membase + UCR3);
1817 
1818 	uart_suspend_port(&imx_reg, &sport->port);
1819 
1820 	return 0;
1821 }
1822 
1823 static int serial_imx_resume(struct platform_device *dev)
1824 {
1825 	struct imx_port *sport = platform_get_drvdata(dev);
1826 	unsigned int val;
1827 
1828 	/* disable wakeup from i.MX UART */
1829 	val = readl(sport->port.membase + UCR3);
1830 	val &= ~UCR3_AWAKEN;
1831 	writel(val, sport->port.membase + UCR3);
1832 
1833 	uart_resume_port(&imx_reg, &sport->port);
1834 
1835 	return 0;
1836 }
1837 
1838 #ifdef CONFIG_OF
1839 /*
1840  * This function returns 1 iff pdev isn't a device instatiated by dt, 0 iff it
1841  * could successfully get all information from dt or a negative errno.
1842  */
1843 static int serial_imx_probe_dt(struct imx_port *sport,
1844 		struct platform_device *pdev)
1845 {
1846 	struct device_node *np = pdev->dev.of_node;
1847 	const struct of_device_id *of_id =
1848 			of_match_device(imx_uart_dt_ids, &pdev->dev);
1849 	int ret;
1850 
1851 	if (!np)
1852 		/* no device tree device */
1853 		return 1;
1854 
1855 	ret = of_alias_get_id(np, "serial");
1856 	if (ret < 0) {
1857 		dev_err(&pdev->dev, "failed to get alias id, errno %d\n", ret);
1858 		return ret;
1859 	}
1860 	sport->port.line = ret;
1861 
1862 	if (of_get_property(np, "fsl,uart-has-rtscts", NULL))
1863 		sport->have_rtscts = 1;
1864 
1865 	if (of_get_property(np, "fsl,dte-mode", NULL))
1866 		sport->dte_mode = 1;
1867 
1868 	sport->devdata = of_id->data;
1869 
1870 	return 0;
1871 }
1872 #else
1873 static inline int serial_imx_probe_dt(struct imx_port *sport,
1874 		struct platform_device *pdev)
1875 {
1876 	return 1;
1877 }
1878 #endif
1879 
1880 static void serial_imx_probe_pdata(struct imx_port *sport,
1881 		struct platform_device *pdev)
1882 {
1883 	struct imxuart_platform_data *pdata = dev_get_platdata(&pdev->dev);
1884 
1885 	sport->port.line = pdev->id;
1886 	sport->devdata = (struct imx_uart_data	*) pdev->id_entry->driver_data;
1887 
1888 	if (!pdata)
1889 		return;
1890 
1891 	if (pdata->flags & IMXUART_HAVE_RTSCTS)
1892 		sport->have_rtscts = 1;
1893 }
1894 
1895 static int serial_imx_probe(struct platform_device *pdev)
1896 {
1897 	struct imx_port *sport;
1898 	void __iomem *base;
1899 	int ret = 0;
1900 	struct resource *res;
1901 	int txirq, rxirq, rtsirq;
1902 
1903 	sport = devm_kzalloc(&pdev->dev, sizeof(*sport), GFP_KERNEL);
1904 	if (!sport)
1905 		return -ENOMEM;
1906 
1907 	ret = serial_imx_probe_dt(sport, pdev);
1908 	if (ret > 0)
1909 		serial_imx_probe_pdata(sport, pdev);
1910 	else if (ret < 0)
1911 		return ret;
1912 
1913 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1914 	base = devm_ioremap_resource(&pdev->dev, res);
1915 	if (IS_ERR(base))
1916 		return PTR_ERR(base);
1917 
1918 	rxirq = platform_get_irq(pdev, 0);
1919 	txirq = platform_get_irq(pdev, 1);
1920 	rtsirq = platform_get_irq(pdev, 2);
1921 
1922 	sport->port.dev = &pdev->dev;
1923 	sport->port.mapbase = res->start;
1924 	sport->port.membase = base;
1925 	sport->port.type = PORT_IMX,
1926 	sport->port.iotype = UPIO_MEM;
1927 	sport->port.irq = rxirq;
1928 	sport->port.fifosize = 32;
1929 	sport->port.ops = &imx_pops;
1930 	sport->port.rs485_config = imx_rs485_config;
1931 	sport->port.rs485.flags =
1932 		SER_RS485_RTS_ON_SEND | SER_RS485_RX_DURING_TX;
1933 	sport->port.flags = UPF_BOOT_AUTOCONF;
1934 	init_timer(&sport->timer);
1935 	sport->timer.function = imx_timeout;
1936 	sport->timer.data     = (unsigned long)sport;
1937 
1938 	sport->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
1939 	if (IS_ERR(sport->clk_ipg)) {
1940 		ret = PTR_ERR(sport->clk_ipg);
1941 		dev_err(&pdev->dev, "failed to get ipg clk: %d\n", ret);
1942 		return ret;
1943 	}
1944 
1945 	sport->clk_per = devm_clk_get(&pdev->dev, "per");
1946 	if (IS_ERR(sport->clk_per)) {
1947 		ret = PTR_ERR(sport->clk_per);
1948 		dev_err(&pdev->dev, "failed to get per clk: %d\n", ret);
1949 		return ret;
1950 	}
1951 
1952 	sport->port.uartclk = clk_get_rate(sport->clk_per);
1953 
1954 	/*
1955 	 * Allocate the IRQ(s) i.MX1 has three interrupts whereas later
1956 	 * chips only have one interrupt.
1957 	 */
1958 	if (txirq > 0) {
1959 		ret = devm_request_irq(&pdev->dev, rxirq, imx_rxint, 0,
1960 				       dev_name(&pdev->dev), sport);
1961 		if (ret)
1962 			return ret;
1963 
1964 		ret = devm_request_irq(&pdev->dev, txirq, imx_txint, 0,
1965 				       dev_name(&pdev->dev), sport);
1966 		if (ret)
1967 			return ret;
1968 	} else {
1969 		ret = devm_request_irq(&pdev->dev, rxirq, imx_int, 0,
1970 				       dev_name(&pdev->dev), sport);
1971 		if (ret)
1972 			return ret;
1973 	}
1974 
1975 	imx_ports[sport->port.line] = sport;
1976 
1977 	platform_set_drvdata(pdev, sport);
1978 
1979 	return uart_add_one_port(&imx_reg, &sport->port);
1980 }
1981 
1982 static int serial_imx_remove(struct platform_device *pdev)
1983 {
1984 	struct imx_port *sport = platform_get_drvdata(pdev);
1985 
1986 	return uart_remove_one_port(&imx_reg, &sport->port);
1987 }
1988 
1989 static struct platform_driver serial_imx_driver = {
1990 	.probe		= serial_imx_probe,
1991 	.remove		= serial_imx_remove,
1992 
1993 	.suspend	= serial_imx_suspend,
1994 	.resume		= serial_imx_resume,
1995 	.id_table	= imx_uart_devtype,
1996 	.driver		= {
1997 		.name	= "imx-uart",
1998 		.of_match_table = imx_uart_dt_ids,
1999 	},
2000 };
2001 
2002 static int __init imx_serial_init(void)
2003 {
2004 	int ret = uart_register_driver(&imx_reg);
2005 
2006 	if (ret)
2007 		return ret;
2008 
2009 	ret = platform_driver_register(&serial_imx_driver);
2010 	if (ret != 0)
2011 		uart_unregister_driver(&imx_reg);
2012 
2013 	return ret;
2014 }
2015 
2016 static void __exit imx_serial_exit(void)
2017 {
2018 	platform_driver_unregister(&serial_imx_driver);
2019 	uart_unregister_driver(&imx_reg);
2020 }
2021 
2022 module_init(imx_serial_init);
2023 module_exit(imx_serial_exit);
2024 
2025 MODULE_AUTHOR("Sascha Hauer");
2026 MODULE_DESCRIPTION("IMX generic serial port driver");
2027 MODULE_LICENSE("GPL");
2028 MODULE_ALIAS("platform:imx-uart");
2029