xref: /openbmc/linux/drivers/tty/serial/imx.c (revision 4b26f9ac)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Driver for Motorola/Freescale IMX serial ports
4  *
5  * Based on drivers/char/serial.c, by Linus Torvalds, Theodore Ts'o.
6  *
7  * Author: Sascha Hauer <sascha@saschahauer.de>
8  * Copyright (C) 2004 Pengutronix
9  */
10 
11 #include <linux/module.h>
12 #include <linux/ioport.h>
13 #include <linux/init.h>
14 #include <linux/console.h>
15 #include <linux/sysrq.h>
16 #include <linux/platform_device.h>
17 #include <linux/tty.h>
18 #include <linux/tty_flip.h>
19 #include <linux/serial_core.h>
20 #include <linux/serial.h>
21 #include <linux/clk.h>
22 #include <linux/delay.h>
23 #include <linux/ktime.h>
24 #include <linux/pinctrl/consumer.h>
25 #include <linux/rational.h>
26 #include <linux/slab.h>
27 #include <linux/of.h>
28 #include <linux/io.h>
29 #include <linux/iopoll.h>
30 #include <linux/dma-mapping.h>
31 
32 #include <asm/irq.h>
33 #include <linux/dma/imx-dma.h>
34 
35 #include "serial_mctrl_gpio.h"
36 
37 /* Register definitions */
38 #define URXD0 0x0  /* Receiver Register */
39 #define URTX0 0x40 /* Transmitter Register */
40 #define UCR1  0x80 /* Control Register 1 */
41 #define UCR2  0x84 /* Control Register 2 */
42 #define UCR3  0x88 /* Control Register 3 */
43 #define UCR4  0x8c /* Control Register 4 */
44 #define UFCR  0x90 /* FIFO Control Register */
45 #define USR1  0x94 /* Status Register 1 */
46 #define USR2  0x98 /* Status Register 2 */
47 #define UESC  0x9c /* Escape Character Register */
48 #define UTIM  0xa0 /* Escape Timer Register */
49 #define UBIR  0xa4 /* BRM Incremental Register */
50 #define UBMR  0xa8 /* BRM Modulator Register */
51 #define UBRC  0xac /* Baud Rate Count Register */
52 #define IMX21_ONEMS 0xb0 /* One Millisecond register */
53 #define IMX1_UTS 0xd0 /* UART Test Register on i.mx1 */
54 #define IMX21_UTS 0xb4 /* UART Test Register on all other i.mx*/
55 
56 /* UART Control Register Bit Fields.*/
57 #define URXD_DUMMY_READ (1<<16)
58 #define URXD_CHARRDY	(1<<15)
59 #define URXD_ERR	(1<<14)
60 #define URXD_OVRRUN	(1<<13)
61 #define URXD_FRMERR	(1<<12)
62 #define URXD_BRK	(1<<11)
63 #define URXD_PRERR	(1<<10)
64 #define URXD_RX_DATA	(0xFF<<0)
65 #define UCR1_ADEN	(1<<15) /* Auto detect interrupt */
66 #define UCR1_ADBR	(1<<14) /* Auto detect baud rate */
67 #define UCR1_TRDYEN	(1<<13) /* Transmitter ready interrupt enable */
68 #define UCR1_IDEN	(1<<12) /* Idle condition interrupt */
69 #define UCR1_ICD_REG(x) (((x) & 3) << 10) /* idle condition detect */
70 #define UCR1_RRDYEN	(1<<9)	/* Recv ready interrupt enable */
71 #define UCR1_RXDMAEN	(1<<8)	/* Recv ready DMA enable */
72 #define UCR1_IREN	(1<<7)	/* Infrared interface enable */
73 #define UCR1_TXMPTYEN	(1<<6)	/* Transimitter empty interrupt enable */
74 #define UCR1_RTSDEN	(1<<5)	/* RTS delta interrupt enable */
75 #define UCR1_SNDBRK	(1<<4)	/* Send break */
76 #define UCR1_TXDMAEN	(1<<3)	/* Transmitter ready DMA enable */
77 #define IMX1_UCR1_UARTCLKEN (1<<2) /* UART clock enabled, i.mx1 only */
78 #define UCR1_ATDMAEN    (1<<2)  /* Aging DMA Timer Enable */
79 #define UCR1_DOZE	(1<<1)	/* Doze */
80 #define UCR1_UARTEN	(1<<0)	/* UART enabled */
81 #define UCR2_ESCI	(1<<15)	/* Escape seq interrupt enable */
82 #define UCR2_IRTS	(1<<14)	/* Ignore RTS pin */
83 #define UCR2_CTSC	(1<<13)	/* CTS pin control */
84 #define UCR2_CTS	(1<<12)	/* Clear to send */
85 #define UCR2_ESCEN	(1<<11)	/* Escape enable */
86 #define UCR2_PREN	(1<<8)	/* Parity enable */
87 #define UCR2_PROE	(1<<7)	/* Parity odd/even */
88 #define UCR2_STPB	(1<<6)	/* Stop */
89 #define UCR2_WS		(1<<5)	/* Word size */
90 #define UCR2_RTSEN	(1<<4)	/* Request to send interrupt enable */
91 #define UCR2_ATEN	(1<<3)	/* Aging Timer Enable */
92 #define UCR2_TXEN	(1<<2)	/* Transmitter enabled */
93 #define UCR2_RXEN	(1<<1)	/* Receiver enabled */
94 #define UCR2_SRST	(1<<0)	/* SW reset */
95 #define UCR3_DTREN	(1<<13) /* DTR interrupt enable */
96 #define UCR3_PARERREN	(1<<12) /* Parity enable */
97 #define UCR3_FRAERREN	(1<<11) /* Frame error interrupt enable */
98 #define UCR3_DSR	(1<<10) /* Data set ready */
99 #define UCR3_DCD	(1<<9)	/* Data carrier detect */
100 #define UCR3_RI		(1<<8)	/* Ring indicator */
101 #define UCR3_ADNIMP	(1<<7)	/* Autobaud Detection Not Improved */
102 #define UCR3_RXDSEN	(1<<6)	/* Receive status interrupt enable */
103 #define UCR3_AIRINTEN	(1<<5)	/* Async IR wake interrupt enable */
104 #define UCR3_AWAKEN	(1<<4)	/* Async wake interrupt enable */
105 #define UCR3_DTRDEN	(1<<3)	/* Data Terminal Ready Delta Enable. */
106 #define IMX21_UCR3_RXDMUXSEL	(1<<2)	/* RXD Muxed Input Select */
107 #define UCR3_INVT	(1<<1)	/* Inverted Infrared transmission */
108 #define UCR3_BPEN	(1<<0)	/* Preset registers enable */
109 #define UCR4_CTSTL_SHF	10	/* CTS trigger level shift */
110 #define UCR4_CTSTL_MASK	0x3F	/* CTS trigger is 6 bits wide */
111 #define UCR4_INVR	(1<<9)	/* Inverted infrared reception */
112 #define UCR4_ENIRI	(1<<8)	/* Serial infrared interrupt enable */
113 #define UCR4_WKEN	(1<<7)	/* Wake interrupt enable */
114 #define UCR4_REF16	(1<<6)	/* Ref freq 16 MHz */
115 #define UCR4_IDDMAEN    (1<<6)  /* DMA IDLE Condition Detected */
116 #define UCR4_IRSC	(1<<5)	/* IR special case */
117 #define UCR4_TCEN	(1<<3)	/* Transmit complete interrupt enable */
118 #define UCR4_BKEN	(1<<2)	/* Break condition interrupt enable */
119 #define UCR4_OREN	(1<<1)	/* Receiver overrun interrupt enable */
120 #define UCR4_DREN	(1<<0)	/* Recv data ready interrupt enable */
121 #define UFCR_RXTL_SHF	0	/* Receiver trigger level shift */
122 #define UFCR_DCEDTE	(1<<6)	/* DCE/DTE mode select */
123 #define UFCR_RFDIV	(7<<7)	/* Reference freq divider mask */
124 #define UFCR_RFDIV_REG(x)	(((x) < 7 ? 6 - (x) : 6) << 7)
125 #define UFCR_TXTL_SHF	10	/* Transmitter trigger level shift */
126 #define USR1_PARITYERR	(1<<15) /* Parity error interrupt flag */
127 #define USR1_RTSS	(1<<14) /* RTS pin status */
128 #define USR1_TRDY	(1<<13) /* Transmitter ready interrupt/dma flag */
129 #define USR1_RTSD	(1<<12) /* RTS delta */
130 #define USR1_ESCF	(1<<11) /* Escape seq interrupt flag */
131 #define USR1_FRAMERR	(1<<10) /* Frame error interrupt flag */
132 #define USR1_RRDY	(1<<9)	 /* Receiver ready interrupt/dma flag */
133 #define USR1_AGTIM	(1<<8)	 /* Ageing timer interrupt flag */
134 #define USR1_DTRD	(1<<7)	 /* DTR Delta */
135 #define USR1_RXDS	 (1<<6)	 /* Receiver idle interrupt flag */
136 #define USR1_AIRINT	 (1<<5)	 /* Async IR wake interrupt flag */
137 #define USR1_AWAKE	 (1<<4)	 /* Aysnc wake interrupt flag */
138 #define USR2_ADET	 (1<<15) /* Auto baud rate detect complete */
139 #define USR2_TXFE	 (1<<14) /* Transmit buffer FIFO empty */
140 #define USR2_DTRF	 (1<<13) /* DTR edge interrupt flag */
141 #define USR2_IDLE	 (1<<12) /* Idle condition */
142 #define USR2_RIDELT	 (1<<10) /* Ring Interrupt Delta */
143 #define USR2_RIIN	 (1<<9)	 /* Ring Indicator Input */
144 #define USR2_IRINT	 (1<<8)	 /* Serial infrared interrupt flag */
145 #define USR2_WAKE	 (1<<7)	 /* Wake */
146 #define USR2_DCDIN	 (1<<5)	 /* Data Carrier Detect Input */
147 #define USR2_RTSF	 (1<<4)	 /* RTS edge interrupt flag */
148 #define USR2_TXDC	 (1<<3)	 /* Transmitter complete */
149 #define USR2_BRCD	 (1<<2)	 /* Break condition */
150 #define USR2_ORE	(1<<1)	 /* Overrun error */
151 #define USR2_RDR	(1<<0)	 /* Recv data ready */
152 #define UTS_FRCPERR	(1<<13) /* Force parity error */
153 #define UTS_LOOP	(1<<12)	 /* Loop tx and rx */
154 #define UTS_TXEMPTY	 (1<<6)	 /* TxFIFO empty */
155 #define UTS_RXEMPTY	 (1<<5)	 /* RxFIFO empty */
156 #define UTS_TXFULL	 (1<<4)	 /* TxFIFO full */
157 #define UTS_RXFULL	 (1<<3)	 /* RxFIFO full */
158 #define UTS_SOFTRST	 (1<<0)	 /* Software reset */
159 
160 /* We've been assigned a range on the "Low-density serial ports" major */
161 #define SERIAL_IMX_MAJOR	207
162 #define MINOR_START		16
163 #define DEV_NAME		"ttymxc"
164 
165 /*
166  * This determines how often we check the modem status signals
167  * for any change.  They generally aren't connected to an IRQ
168  * so we have to poll them.  We also check immediately before
169  * filling the TX fifo incase CTS has been dropped.
170  */
171 #define MCTRL_TIMEOUT	(250*HZ/1000)
172 
173 #define DRIVER_NAME "IMX-uart"
174 
175 #define UART_NR 8
176 
177 /* i.MX21 type uart runs on all i.mx except i.MX1 and i.MX6q */
178 enum imx_uart_type {
179 	IMX1_UART,
180 	IMX21_UART,
181 	IMX53_UART,
182 	IMX6Q_UART,
183 };
184 
185 /* device type dependent stuff */
186 struct imx_uart_data {
187 	unsigned uts_reg;
188 	enum imx_uart_type devtype;
189 };
190 
191 enum imx_tx_state {
192 	OFF,
193 	WAIT_AFTER_RTS,
194 	SEND,
195 	WAIT_AFTER_SEND,
196 };
197 
198 struct imx_port {
199 	struct uart_port	port;
200 	struct timer_list	timer;
201 	unsigned int		old_status;
202 	unsigned int		have_rtscts:1;
203 	unsigned int		have_rtsgpio:1;
204 	unsigned int		dte_mode:1;
205 	unsigned int		inverted_tx:1;
206 	unsigned int		inverted_rx:1;
207 	struct clk		*clk_ipg;
208 	struct clk		*clk_per;
209 	const struct imx_uart_data *devdata;
210 
211 	struct mctrl_gpios *gpios;
212 
213 	/* counter to stop 0xff flood */
214 	int idle_counter;
215 
216 	/* DMA fields */
217 	unsigned int		dma_is_enabled:1;
218 	unsigned int		dma_is_rxing:1;
219 	unsigned int		dma_is_txing:1;
220 	struct dma_chan		*dma_chan_rx, *dma_chan_tx;
221 	struct scatterlist	rx_sgl, tx_sgl[2];
222 	void			*rx_buf;
223 	struct circ_buf		rx_ring;
224 	unsigned int		rx_buf_size;
225 	unsigned int		rx_period_length;
226 	unsigned int		rx_periods;
227 	dma_cookie_t		rx_cookie;
228 	unsigned int		tx_bytes;
229 	unsigned int		dma_tx_nents;
230 	unsigned int            saved_reg[10];
231 	bool			context_saved;
232 
233 	enum imx_tx_state	tx_state;
234 	struct hrtimer		trigger_start_tx;
235 	struct hrtimer		trigger_stop_tx;
236 };
237 
238 struct imx_port_ucrs {
239 	unsigned int	ucr1;
240 	unsigned int	ucr2;
241 	unsigned int	ucr3;
242 };
243 
244 static struct imx_uart_data imx_uart_devdata[] = {
245 	[IMX1_UART] = {
246 		.uts_reg = IMX1_UTS,
247 		.devtype = IMX1_UART,
248 	},
249 	[IMX21_UART] = {
250 		.uts_reg = IMX21_UTS,
251 		.devtype = IMX21_UART,
252 	},
253 	[IMX53_UART] = {
254 		.uts_reg = IMX21_UTS,
255 		.devtype = IMX53_UART,
256 	},
257 	[IMX6Q_UART] = {
258 		.uts_reg = IMX21_UTS,
259 		.devtype = IMX6Q_UART,
260 	},
261 };
262 
263 static const struct of_device_id imx_uart_dt_ids[] = {
264 	{ .compatible = "fsl,imx6q-uart", .data = &imx_uart_devdata[IMX6Q_UART], },
265 	{ .compatible = "fsl,imx53-uart", .data = &imx_uart_devdata[IMX53_UART], },
266 	{ .compatible = "fsl,imx1-uart", .data = &imx_uart_devdata[IMX1_UART], },
267 	{ .compatible = "fsl,imx21-uart", .data = &imx_uart_devdata[IMX21_UART], },
268 	{ /* sentinel */ }
269 };
270 MODULE_DEVICE_TABLE(of, imx_uart_dt_ids);
271 
272 static inline void imx_uart_writel(struct imx_port *sport, u32 val, u32 offset)
273 {
274 	writel(val, sport->port.membase + offset);
275 }
276 
277 static inline u32 imx_uart_readl(struct imx_port *sport, u32 offset)
278 {
279 	return readl(sport->port.membase + offset);
280 }
281 
282 static inline unsigned imx_uart_uts_reg(struct imx_port *sport)
283 {
284 	return sport->devdata->uts_reg;
285 }
286 
287 static inline int imx_uart_is_imx1(struct imx_port *sport)
288 {
289 	return sport->devdata->devtype == IMX1_UART;
290 }
291 
292 /*
293  * Save and restore functions for UCR1, UCR2 and UCR3 registers
294  */
295 #if IS_ENABLED(CONFIG_SERIAL_IMX_CONSOLE)
296 static void imx_uart_ucrs_save(struct imx_port *sport,
297 			       struct imx_port_ucrs *ucr)
298 {
299 	/* save control registers */
300 	ucr->ucr1 = imx_uart_readl(sport, UCR1);
301 	ucr->ucr2 = imx_uart_readl(sport, UCR2);
302 	ucr->ucr3 = imx_uart_readl(sport, UCR3);
303 }
304 
305 static void imx_uart_ucrs_restore(struct imx_port *sport,
306 				  struct imx_port_ucrs *ucr)
307 {
308 	/* restore control registers */
309 	imx_uart_writel(sport, ucr->ucr1, UCR1);
310 	imx_uart_writel(sport, ucr->ucr2, UCR2);
311 	imx_uart_writel(sport, ucr->ucr3, UCR3);
312 }
313 #endif
314 
315 /* called with port.lock taken and irqs caller dependent */
316 static void imx_uart_rts_active(struct imx_port *sport, u32 *ucr2)
317 {
318 	*ucr2 &= ~(UCR2_CTSC | UCR2_CTS);
319 
320 	mctrl_gpio_set(sport->gpios, sport->port.mctrl | TIOCM_RTS);
321 }
322 
323 /* called with port.lock taken and irqs caller dependent */
324 static void imx_uart_rts_inactive(struct imx_port *sport, u32 *ucr2)
325 {
326 	*ucr2 &= ~UCR2_CTSC;
327 	*ucr2 |= UCR2_CTS;
328 
329 	mctrl_gpio_set(sport->gpios, sport->port.mctrl & ~TIOCM_RTS);
330 }
331 
332 static void start_hrtimer_ms(struct hrtimer *hrt, unsigned long msec)
333 {
334        hrtimer_start(hrt, ms_to_ktime(msec), HRTIMER_MODE_REL);
335 }
336 
337 /* called with port.lock taken and irqs off */
338 static void imx_uart_soft_reset(struct imx_port *sport)
339 {
340 	int i = 10;
341 	u32 ucr2, ubir, ubmr, uts;
342 
343 	/*
344 	 * According to the Reference Manual description of the UART SRST bit:
345 	 *
346 	 * "Reset the transmit and receive state machines,
347 	 * all FIFOs and register USR1, USR2, UBIR, UBMR, UBRC, URXD, UTXD
348 	 * and UTS[6-3]".
349 	 *
350 	 * We don't need to restore the old values from USR1, USR2, URXD and
351 	 * UTXD. UBRC is read only, so only save/restore the other three
352 	 * registers.
353 	 */
354 	ubir = imx_uart_readl(sport, UBIR);
355 	ubmr = imx_uart_readl(sport, UBMR);
356 	uts = imx_uart_readl(sport, IMX21_UTS);
357 
358 	ucr2 = imx_uart_readl(sport, UCR2);
359 	imx_uart_writel(sport, ucr2 & ~UCR2_SRST, UCR2);
360 
361 	while (!(imx_uart_readl(sport, UCR2) & UCR2_SRST) && (--i > 0))
362 		udelay(1);
363 
364 	/* Restore the registers */
365 	imx_uart_writel(sport, ubir, UBIR);
366 	imx_uart_writel(sport, ubmr, UBMR);
367 	imx_uart_writel(sport, uts, IMX21_UTS);
368 
369 	sport->idle_counter = 0;
370 }
371 
372 static void imx_uart_disable_loopback_rs485(struct imx_port *sport)
373 {
374 	unsigned int uts;
375 
376 	/* See SER_RS485_ENABLED/UTS_LOOP comment in imx_uart_probe() */
377 	uts = imx_uart_readl(sport, imx_uart_uts_reg(sport));
378 	uts &= ~UTS_LOOP;
379 	imx_uart_writel(sport, uts, imx_uart_uts_reg(sport));
380 }
381 
382 /* called with port.lock taken and irqs off */
383 static void imx_uart_start_rx(struct uart_port *port)
384 {
385 	struct imx_port *sport = (struct imx_port *)port;
386 	unsigned int ucr1, ucr2;
387 
388 	ucr1 = imx_uart_readl(sport, UCR1);
389 	ucr2 = imx_uart_readl(sport, UCR2);
390 
391 	ucr2 |= UCR2_RXEN;
392 
393 	if (sport->dma_is_enabled) {
394 		ucr1 |= UCR1_RXDMAEN | UCR1_ATDMAEN;
395 	} else {
396 		ucr1 |= UCR1_RRDYEN;
397 		ucr2 |= UCR2_ATEN;
398 	}
399 
400 	/* Write UCR2 first as it includes RXEN */
401 	imx_uart_writel(sport, ucr2, UCR2);
402 	imx_uart_writel(sport, ucr1, UCR1);
403 	imx_uart_disable_loopback_rs485(sport);
404 }
405 
406 /* called with port.lock taken and irqs off */
407 static void imx_uart_stop_tx(struct uart_port *port)
408 {
409 	struct imx_port *sport = (struct imx_port *)port;
410 	u32 ucr1, ucr4, usr2;
411 
412 	if (sport->tx_state == OFF)
413 		return;
414 
415 	/*
416 	 * We are maybe in the SMP context, so if the DMA TX thread is running
417 	 * on other cpu, we have to wait for it to finish.
418 	 */
419 	if (sport->dma_is_txing)
420 		return;
421 
422 	ucr1 = imx_uart_readl(sport, UCR1);
423 	imx_uart_writel(sport, ucr1 & ~UCR1_TRDYEN, UCR1);
424 
425 	ucr4 = imx_uart_readl(sport, UCR4);
426 	usr2 = imx_uart_readl(sport, USR2);
427 	if ((!(usr2 & USR2_TXDC)) && (ucr4 & UCR4_TCEN)) {
428 		/* The shifter is still busy, so retry once TC triggers */
429 		return;
430 	}
431 
432 	ucr4 &= ~UCR4_TCEN;
433 	imx_uart_writel(sport, ucr4, UCR4);
434 
435 	/* in rs485 mode disable transmitter */
436 	if (port->rs485.flags & SER_RS485_ENABLED) {
437 		if (sport->tx_state == SEND) {
438 			sport->tx_state = WAIT_AFTER_SEND;
439 
440 			if (port->rs485.delay_rts_after_send > 0) {
441 				start_hrtimer_ms(&sport->trigger_stop_tx,
442 					 port->rs485.delay_rts_after_send);
443 				return;
444 			}
445 
446 			/* continue without any delay */
447 		}
448 
449 		if (sport->tx_state == WAIT_AFTER_RTS ||
450 		    sport->tx_state == WAIT_AFTER_SEND) {
451 			u32 ucr2;
452 
453 			hrtimer_try_to_cancel(&sport->trigger_start_tx);
454 
455 			ucr2 = imx_uart_readl(sport, UCR2);
456 			if (port->rs485.flags & SER_RS485_RTS_AFTER_SEND)
457 				imx_uart_rts_active(sport, &ucr2);
458 			else
459 				imx_uart_rts_inactive(sport, &ucr2);
460 			imx_uart_writel(sport, ucr2, UCR2);
461 
462 			if (!port->rs485_rx_during_tx_gpio)
463 				imx_uart_start_rx(port);
464 
465 			sport->tx_state = OFF;
466 		}
467 	} else {
468 		sport->tx_state = OFF;
469 	}
470 }
471 
472 static void imx_uart_stop_rx_with_loopback_ctrl(struct uart_port *port, bool loopback)
473 {
474 	struct imx_port *sport = (struct imx_port *)port;
475 	u32 ucr1, ucr2, ucr4, uts;
476 
477 	ucr1 = imx_uart_readl(sport, UCR1);
478 	ucr2 = imx_uart_readl(sport, UCR2);
479 	ucr4 = imx_uart_readl(sport, UCR4);
480 
481 	if (sport->dma_is_enabled) {
482 		ucr1 &= ~(UCR1_RXDMAEN | UCR1_ATDMAEN);
483 	} else {
484 		ucr1 &= ~UCR1_RRDYEN;
485 		ucr2 &= ~UCR2_ATEN;
486 		ucr4 &= ~UCR4_OREN;
487 	}
488 	imx_uart_writel(sport, ucr1, UCR1);
489 	imx_uart_writel(sport, ucr4, UCR4);
490 
491 	/* See SER_RS485_ENABLED/UTS_LOOP comment in imx_uart_probe() */
492 	if (port->rs485.flags & SER_RS485_ENABLED &&
493 	    port->rs485.flags & SER_RS485_RTS_ON_SEND &&
494 	    sport->have_rtscts && !sport->have_rtsgpio && loopback) {
495 		uts = imx_uart_readl(sport, imx_uart_uts_reg(sport));
496 		uts |= UTS_LOOP;
497 		imx_uart_writel(sport, uts, imx_uart_uts_reg(sport));
498 		ucr2 |= UCR2_RXEN;
499 	} else {
500 		ucr2 &= ~UCR2_RXEN;
501 	}
502 
503 	imx_uart_writel(sport, ucr2, UCR2);
504 }
505 
506 /* called with port.lock taken and irqs off */
507 static void imx_uart_stop_rx(struct uart_port *port)
508 {
509 	/*
510 	 * Stop RX and enable loopback in order to make sure RS485 bus
511 	 * is not blocked. Se comment in imx_uart_probe().
512 	 */
513 	imx_uart_stop_rx_with_loopback_ctrl(port, true);
514 }
515 
516 /* called with port.lock taken and irqs off */
517 static void imx_uart_enable_ms(struct uart_port *port)
518 {
519 	struct imx_port *sport = (struct imx_port *)port;
520 
521 	mod_timer(&sport->timer, jiffies);
522 
523 	mctrl_gpio_enable_ms(sport->gpios);
524 }
525 
526 static void imx_uart_dma_tx(struct imx_port *sport);
527 
528 /* called with port.lock taken and irqs off */
529 static inline void imx_uart_transmit_buffer(struct imx_port *sport)
530 {
531 	struct circ_buf *xmit = &sport->port.state->xmit;
532 
533 	if (sport->port.x_char) {
534 		/* Send next char */
535 		imx_uart_writel(sport, sport->port.x_char, URTX0);
536 		sport->port.icount.tx++;
537 		sport->port.x_char = 0;
538 		return;
539 	}
540 
541 	if (uart_circ_empty(xmit) || uart_tx_stopped(&sport->port)) {
542 		imx_uart_stop_tx(&sport->port);
543 		return;
544 	}
545 
546 	if (sport->dma_is_enabled) {
547 		u32 ucr1;
548 		/*
549 		 * We've just sent a X-char Ensure the TX DMA is enabled
550 		 * and the TX IRQ is disabled.
551 		 **/
552 		ucr1 = imx_uart_readl(sport, UCR1);
553 		ucr1 &= ~UCR1_TRDYEN;
554 		if (sport->dma_is_txing) {
555 			ucr1 |= UCR1_TXDMAEN;
556 			imx_uart_writel(sport, ucr1, UCR1);
557 		} else {
558 			imx_uart_writel(sport, ucr1, UCR1);
559 			imx_uart_dma_tx(sport);
560 		}
561 
562 		return;
563 	}
564 
565 	while (!uart_circ_empty(xmit) &&
566 	       !(imx_uart_readl(sport, imx_uart_uts_reg(sport)) & UTS_TXFULL)) {
567 		/* send xmit->buf[xmit->tail]
568 		 * out the port here */
569 		imx_uart_writel(sport, xmit->buf[xmit->tail], URTX0);
570 		uart_xmit_advance(&sport->port, 1);
571 	}
572 
573 	if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
574 		uart_write_wakeup(&sport->port);
575 
576 	if (uart_circ_empty(xmit))
577 		imx_uart_stop_tx(&sport->port);
578 }
579 
580 static void imx_uart_dma_tx_callback(void *data)
581 {
582 	struct imx_port *sport = data;
583 	struct scatterlist *sgl = &sport->tx_sgl[0];
584 	struct circ_buf *xmit = &sport->port.state->xmit;
585 	unsigned long flags;
586 	u32 ucr1;
587 
588 	spin_lock_irqsave(&sport->port.lock, flags);
589 
590 	dma_unmap_sg(sport->port.dev, sgl, sport->dma_tx_nents, DMA_TO_DEVICE);
591 
592 	ucr1 = imx_uart_readl(sport, UCR1);
593 	ucr1 &= ~UCR1_TXDMAEN;
594 	imx_uart_writel(sport, ucr1, UCR1);
595 
596 	uart_xmit_advance(&sport->port, sport->tx_bytes);
597 
598 	dev_dbg(sport->port.dev, "we finish the TX DMA.\n");
599 
600 	sport->dma_is_txing = 0;
601 
602 	if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
603 		uart_write_wakeup(&sport->port);
604 
605 	if (!uart_circ_empty(xmit) && !uart_tx_stopped(&sport->port))
606 		imx_uart_dma_tx(sport);
607 	else if (sport->port.rs485.flags & SER_RS485_ENABLED) {
608 		u32 ucr4 = imx_uart_readl(sport, UCR4);
609 		ucr4 |= UCR4_TCEN;
610 		imx_uart_writel(sport, ucr4, UCR4);
611 	}
612 
613 	spin_unlock_irqrestore(&sport->port.lock, flags);
614 }
615 
616 /* called with port.lock taken and irqs off */
617 static void imx_uart_dma_tx(struct imx_port *sport)
618 {
619 	struct circ_buf *xmit = &sport->port.state->xmit;
620 	struct scatterlist *sgl = sport->tx_sgl;
621 	struct dma_async_tx_descriptor *desc;
622 	struct dma_chan	*chan = sport->dma_chan_tx;
623 	struct device *dev = sport->port.dev;
624 	u32 ucr1, ucr4;
625 	int ret;
626 
627 	if (sport->dma_is_txing)
628 		return;
629 
630 	ucr4 = imx_uart_readl(sport, UCR4);
631 	ucr4 &= ~UCR4_TCEN;
632 	imx_uart_writel(sport, ucr4, UCR4);
633 
634 	sport->tx_bytes = uart_circ_chars_pending(xmit);
635 
636 	if (xmit->tail < xmit->head || xmit->head == 0) {
637 		sport->dma_tx_nents = 1;
638 		sg_init_one(sgl, xmit->buf + xmit->tail, sport->tx_bytes);
639 	} else {
640 		sport->dma_tx_nents = 2;
641 		sg_init_table(sgl, 2);
642 		sg_set_buf(sgl, xmit->buf + xmit->tail,
643 				UART_XMIT_SIZE - xmit->tail);
644 		sg_set_buf(sgl + 1, xmit->buf, xmit->head);
645 	}
646 
647 	ret = dma_map_sg(dev, sgl, sport->dma_tx_nents, DMA_TO_DEVICE);
648 	if (ret == 0) {
649 		dev_err(dev, "DMA mapping error for TX.\n");
650 		return;
651 	}
652 	desc = dmaengine_prep_slave_sg(chan, sgl, ret,
653 					DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT);
654 	if (!desc) {
655 		dma_unmap_sg(dev, sgl, sport->dma_tx_nents,
656 			     DMA_TO_DEVICE);
657 		dev_err(dev, "We cannot prepare for the TX slave dma!\n");
658 		return;
659 	}
660 	desc->callback = imx_uart_dma_tx_callback;
661 	desc->callback_param = sport;
662 
663 	dev_dbg(dev, "TX: prepare to send %lu bytes by DMA.\n",
664 			uart_circ_chars_pending(xmit));
665 
666 	ucr1 = imx_uart_readl(sport, UCR1);
667 	ucr1 |= UCR1_TXDMAEN;
668 	imx_uart_writel(sport, ucr1, UCR1);
669 
670 	/* fire it */
671 	sport->dma_is_txing = 1;
672 	dmaengine_submit(desc);
673 	dma_async_issue_pending(chan);
674 	return;
675 }
676 
677 /* called with port.lock taken and irqs off */
678 static void imx_uart_start_tx(struct uart_port *port)
679 {
680 	struct imx_port *sport = (struct imx_port *)port;
681 	u32 ucr1;
682 
683 	if (!sport->port.x_char && uart_circ_empty(&port->state->xmit))
684 		return;
685 
686 	/*
687 	 * We cannot simply do nothing here if sport->tx_state == SEND already
688 	 * because UCR1_TXMPTYEN might already have been cleared in
689 	 * imx_uart_stop_tx(), but tx_state is still SEND.
690 	 */
691 
692 	if (port->rs485.flags & SER_RS485_ENABLED) {
693 		if (sport->tx_state == OFF) {
694 			u32 ucr2 = imx_uart_readl(sport, UCR2);
695 			if (port->rs485.flags & SER_RS485_RTS_ON_SEND)
696 				imx_uart_rts_active(sport, &ucr2);
697 			else
698 				imx_uart_rts_inactive(sport, &ucr2);
699 			imx_uart_writel(sport, ucr2, UCR2);
700 
701 			/*
702 			 * Since we are about to transmit we can not stop RX
703 			 * with loopback enabled because that will make our
704 			 * transmitted data being just looped to RX.
705 			 */
706 			if (!(port->rs485.flags & SER_RS485_RX_DURING_TX) &&
707 			    !port->rs485_rx_during_tx_gpio)
708 				imx_uart_stop_rx_with_loopback_ctrl(port, false);
709 
710 			sport->tx_state = WAIT_AFTER_RTS;
711 
712 			if (port->rs485.delay_rts_before_send > 0) {
713 				start_hrtimer_ms(&sport->trigger_start_tx,
714 					 port->rs485.delay_rts_before_send);
715 				return;
716 			}
717 
718 			/* continue without any delay */
719 		}
720 
721 		if (sport->tx_state == WAIT_AFTER_SEND
722 		    || sport->tx_state == WAIT_AFTER_RTS) {
723 
724 			hrtimer_try_to_cancel(&sport->trigger_stop_tx);
725 
726 			/*
727 			 * Enable transmitter and shifter empty irq only if DMA
728 			 * is off.  In the DMA case this is done in the
729 			 * tx-callback.
730 			 */
731 			if (!sport->dma_is_enabled) {
732 				u32 ucr4 = imx_uart_readl(sport, UCR4);
733 				ucr4 |= UCR4_TCEN;
734 				imx_uart_writel(sport, ucr4, UCR4);
735 			}
736 
737 			sport->tx_state = SEND;
738 		}
739 	} else {
740 		sport->tx_state = SEND;
741 	}
742 
743 	if (!sport->dma_is_enabled) {
744 		ucr1 = imx_uart_readl(sport, UCR1);
745 		imx_uart_writel(sport, ucr1 | UCR1_TRDYEN, UCR1);
746 	}
747 
748 	if (sport->dma_is_enabled) {
749 		if (sport->port.x_char) {
750 			/* We have X-char to send, so enable TX IRQ and
751 			 * disable TX DMA to let TX interrupt to send X-char */
752 			ucr1 = imx_uart_readl(sport, UCR1);
753 			ucr1 &= ~UCR1_TXDMAEN;
754 			ucr1 |= UCR1_TRDYEN;
755 			imx_uart_writel(sport, ucr1, UCR1);
756 			return;
757 		}
758 
759 		if (!uart_circ_empty(&port->state->xmit) &&
760 		    !uart_tx_stopped(port))
761 			imx_uart_dma_tx(sport);
762 		return;
763 	}
764 }
765 
766 static irqreturn_t __imx_uart_rtsint(int irq, void *dev_id)
767 {
768 	struct imx_port *sport = dev_id;
769 	u32 usr1;
770 
771 	imx_uart_writel(sport, USR1_RTSD, USR1);
772 	usr1 = imx_uart_readl(sport, USR1) & USR1_RTSS;
773 	uart_handle_cts_change(&sport->port, usr1);
774 	wake_up_interruptible(&sport->port.state->port.delta_msr_wait);
775 
776 	return IRQ_HANDLED;
777 }
778 
779 static irqreturn_t imx_uart_rtsint(int irq, void *dev_id)
780 {
781 	struct imx_port *sport = dev_id;
782 	irqreturn_t ret;
783 
784 	spin_lock(&sport->port.lock);
785 
786 	ret = __imx_uart_rtsint(irq, dev_id);
787 
788 	spin_unlock(&sport->port.lock);
789 
790 	return ret;
791 }
792 
793 static irqreturn_t imx_uart_txint(int irq, void *dev_id)
794 {
795 	struct imx_port *sport = dev_id;
796 
797 	spin_lock(&sport->port.lock);
798 	imx_uart_transmit_buffer(sport);
799 	spin_unlock(&sport->port.lock);
800 	return IRQ_HANDLED;
801 }
802 
803 /* Check if hardware Rx flood is in progress, and issue soft reset to stop it.
804  * This is to be called from Rx ISRs only when some bytes were actually
805  * received.
806  *
807  * A way to reproduce the flood (checked on iMX6SX) is: open iMX UART at 9600
808  * 8N1, and from external source send 0xf0 char at 115200 8N1. In about 90% of
809  * cases this starts a flood of "receiving" of 0xff characters by the iMX6 UART
810  * that is terminated by any activity on RxD line, or could be stopped by
811  * issuing soft reset to the UART (just stop/start of RX does not help). Note
812  * that what we do here is sending isolated start bit about 2.4 times shorter
813  * than it is to be on UART configured baud rate.
814  */
815 static void imx_uart_check_flood(struct imx_port *sport, u32 usr2)
816 {
817 	/* To detect hardware 0xff flood we monitor RxD line between RX
818 	 * interrupts to isolate "receiving" of char(s) with no activity
819 	 * on RxD line, that'd never happen on actual data transfers.
820 	 *
821 	 * We use USR2_WAKE bit to check for activity on RxD line, but we have a
822 	 * race here if we clear USR2_WAKE when receiving of a char is in
823 	 * progress, so we might get RX interrupt later with USR2_WAKE bit
824 	 * cleared. Note though that as we don't try to clear USR2_WAKE when we
825 	 * detected no activity, this race may hide actual activity only once.
826 	 *
827 	 * Yet another case where receive interrupt may occur without RxD
828 	 * activity is expiration of aging timer, so we consider this as well.
829 	 *
830 	 * We use 'idle_counter' to ensure that we got at least so many RX
831 	 * interrupts without any detected activity on RxD line. 2 cases
832 	 * described plus 1 to be on the safe side gives us a margin of 3,
833 	 * below. In practice I was not able to produce a false positive to
834 	 * induce soft reset at regular data transfers even using 1 as the
835 	 * margin, so 3 is actually very strong.
836 	 *
837 	 * We count interrupts, not chars in 'idle-counter' for simplicity.
838 	 */
839 
840 	if (usr2 & USR2_WAKE) {
841 		imx_uart_writel(sport, USR2_WAKE, USR2);
842 		sport->idle_counter = 0;
843 	} else if (++sport->idle_counter > 3) {
844 		dev_warn(sport->port.dev, "RX flood detected: soft reset.");
845 		imx_uart_soft_reset(sport); /* also clears 'sport->idle_counter' */
846 	}
847 }
848 
849 static irqreturn_t __imx_uart_rxint(int irq, void *dev_id)
850 {
851 	struct imx_port *sport = dev_id;
852 	struct tty_port *port = &sport->port.state->port;
853 	u32 usr2, rx;
854 
855 	/* If we received something, check for 0xff flood */
856 	usr2 = imx_uart_readl(sport, USR2);
857 	if (usr2 & USR2_RDR)
858 		imx_uart_check_flood(sport, usr2);
859 
860 	while ((rx = imx_uart_readl(sport, URXD0)) & URXD_CHARRDY) {
861 		unsigned int flg = TTY_NORMAL;
862 		sport->port.icount.rx++;
863 
864 		if (unlikely(rx & URXD_ERR)) {
865 			if (rx & URXD_BRK) {
866 				sport->port.icount.brk++;
867 				if (uart_handle_break(&sport->port))
868 					continue;
869 			}
870 			else if (rx & URXD_PRERR)
871 				sport->port.icount.parity++;
872 			else if (rx & URXD_FRMERR)
873 				sport->port.icount.frame++;
874 			if (rx & URXD_OVRRUN)
875 				sport->port.icount.overrun++;
876 
877 			if (rx & sport->port.ignore_status_mask)
878 				continue;
879 
880 			rx &= (sport->port.read_status_mask | 0xFF);
881 
882 			if (rx & URXD_BRK)
883 				flg = TTY_BREAK;
884 			else if (rx & URXD_PRERR)
885 				flg = TTY_PARITY;
886 			else if (rx & URXD_FRMERR)
887 				flg = TTY_FRAME;
888 			if (rx & URXD_OVRRUN)
889 				flg = TTY_OVERRUN;
890 
891 			sport->port.sysrq = 0;
892 		} else if (uart_handle_sysrq_char(&sport->port, (unsigned char)rx)) {
893 			continue;
894 		}
895 
896 		if (sport->port.ignore_status_mask & URXD_DUMMY_READ)
897 			continue;
898 
899 		if (tty_insert_flip_char(port, rx, flg) == 0)
900 			sport->port.icount.buf_overrun++;
901 	}
902 
903 	tty_flip_buffer_push(port);
904 
905 	return IRQ_HANDLED;
906 }
907 
908 static irqreturn_t imx_uart_rxint(int irq, void *dev_id)
909 {
910 	struct imx_port *sport = dev_id;
911 	irqreturn_t ret;
912 
913 	spin_lock(&sport->port.lock);
914 
915 	ret = __imx_uart_rxint(irq, dev_id);
916 
917 	spin_unlock(&sport->port.lock);
918 
919 	return ret;
920 }
921 
922 static void imx_uart_clear_rx_errors(struct imx_port *sport);
923 
924 /*
925  * We have a modem side uart, so the meanings of RTS and CTS are inverted.
926  */
927 static unsigned int imx_uart_get_hwmctrl(struct imx_port *sport)
928 {
929 	unsigned int tmp = TIOCM_DSR;
930 	unsigned usr1 = imx_uart_readl(sport, USR1);
931 	unsigned usr2 = imx_uart_readl(sport, USR2);
932 
933 	if (usr1 & USR1_RTSS)
934 		tmp |= TIOCM_CTS;
935 
936 	/* in DCE mode DCDIN is always 0 */
937 	if (!(usr2 & USR2_DCDIN))
938 		tmp |= TIOCM_CAR;
939 
940 	if (sport->dte_mode)
941 		if (!(imx_uart_readl(sport, USR2) & USR2_RIIN))
942 			tmp |= TIOCM_RI;
943 
944 	return tmp;
945 }
946 
947 /*
948  * Handle any change of modem status signal since we were last called.
949  */
950 static void imx_uart_mctrl_check(struct imx_port *sport)
951 {
952 	unsigned int status, changed;
953 
954 	status = imx_uart_get_hwmctrl(sport);
955 	changed = status ^ sport->old_status;
956 
957 	if (changed == 0)
958 		return;
959 
960 	sport->old_status = status;
961 
962 	if (changed & TIOCM_RI && status & TIOCM_RI)
963 		sport->port.icount.rng++;
964 	if (changed & TIOCM_DSR)
965 		sport->port.icount.dsr++;
966 	if (changed & TIOCM_CAR)
967 		uart_handle_dcd_change(&sport->port, status & TIOCM_CAR);
968 	if (changed & TIOCM_CTS)
969 		uart_handle_cts_change(&sport->port, status & TIOCM_CTS);
970 
971 	wake_up_interruptible(&sport->port.state->port.delta_msr_wait);
972 }
973 
974 static irqreturn_t imx_uart_int(int irq, void *dev_id)
975 {
976 	struct imx_port *sport = dev_id;
977 	unsigned int usr1, usr2, ucr1, ucr2, ucr3, ucr4;
978 	irqreturn_t ret = IRQ_NONE;
979 
980 	spin_lock(&sport->port.lock);
981 
982 	usr1 = imx_uart_readl(sport, USR1);
983 	usr2 = imx_uart_readl(sport, USR2);
984 	ucr1 = imx_uart_readl(sport, UCR1);
985 	ucr2 = imx_uart_readl(sport, UCR2);
986 	ucr3 = imx_uart_readl(sport, UCR3);
987 	ucr4 = imx_uart_readl(sport, UCR4);
988 
989 	/*
990 	 * Even if a condition is true that can trigger an irq only handle it if
991 	 * the respective irq source is enabled. This prevents some undesired
992 	 * actions, for example if a character that sits in the RX FIFO and that
993 	 * should be fetched via DMA is tried to be fetched using PIO. Or the
994 	 * receiver is currently off and so reading from URXD0 results in an
995 	 * exception. So just mask the (raw) status bits for disabled irqs.
996 	 */
997 	if ((ucr1 & UCR1_RRDYEN) == 0)
998 		usr1 &= ~USR1_RRDY;
999 	if ((ucr2 & UCR2_ATEN) == 0)
1000 		usr1 &= ~USR1_AGTIM;
1001 	if ((ucr1 & UCR1_TRDYEN) == 0)
1002 		usr1 &= ~USR1_TRDY;
1003 	if ((ucr4 & UCR4_TCEN) == 0)
1004 		usr2 &= ~USR2_TXDC;
1005 	if ((ucr3 & UCR3_DTRDEN) == 0)
1006 		usr1 &= ~USR1_DTRD;
1007 	if ((ucr1 & UCR1_RTSDEN) == 0)
1008 		usr1 &= ~USR1_RTSD;
1009 	if ((ucr3 & UCR3_AWAKEN) == 0)
1010 		usr1 &= ~USR1_AWAKE;
1011 	if ((ucr4 & UCR4_OREN) == 0)
1012 		usr2 &= ~USR2_ORE;
1013 
1014 	if (usr1 & (USR1_RRDY | USR1_AGTIM)) {
1015 		imx_uart_writel(sport, USR1_AGTIM, USR1);
1016 
1017 		__imx_uart_rxint(irq, dev_id);
1018 		ret = IRQ_HANDLED;
1019 	}
1020 
1021 	if ((usr1 & USR1_TRDY) || (usr2 & USR2_TXDC)) {
1022 		imx_uart_transmit_buffer(sport);
1023 		ret = IRQ_HANDLED;
1024 	}
1025 
1026 	if (usr1 & USR1_DTRD) {
1027 		imx_uart_writel(sport, USR1_DTRD, USR1);
1028 
1029 		imx_uart_mctrl_check(sport);
1030 
1031 		ret = IRQ_HANDLED;
1032 	}
1033 
1034 	if (usr1 & USR1_RTSD) {
1035 		__imx_uart_rtsint(irq, dev_id);
1036 		ret = IRQ_HANDLED;
1037 	}
1038 
1039 	if (usr1 & USR1_AWAKE) {
1040 		imx_uart_writel(sport, USR1_AWAKE, USR1);
1041 		ret = IRQ_HANDLED;
1042 	}
1043 
1044 	if (usr2 & USR2_ORE) {
1045 		sport->port.icount.overrun++;
1046 		imx_uart_writel(sport, USR2_ORE, USR2);
1047 		ret = IRQ_HANDLED;
1048 	}
1049 
1050 	spin_unlock(&sport->port.lock);
1051 
1052 	return ret;
1053 }
1054 
1055 /*
1056  * Return TIOCSER_TEMT when transmitter is not busy.
1057  */
1058 static unsigned int imx_uart_tx_empty(struct uart_port *port)
1059 {
1060 	struct imx_port *sport = (struct imx_port *)port;
1061 	unsigned int ret;
1062 
1063 	ret = (imx_uart_readl(sport, USR2) & USR2_TXDC) ?  TIOCSER_TEMT : 0;
1064 
1065 	/* If the TX DMA is working, return 0. */
1066 	if (sport->dma_is_txing)
1067 		ret = 0;
1068 
1069 	return ret;
1070 }
1071 
1072 /* called with port.lock taken and irqs off */
1073 static unsigned int imx_uart_get_mctrl(struct uart_port *port)
1074 {
1075 	struct imx_port *sport = (struct imx_port *)port;
1076 	unsigned int ret = imx_uart_get_hwmctrl(sport);
1077 
1078 	mctrl_gpio_get(sport->gpios, &ret);
1079 
1080 	return ret;
1081 }
1082 
1083 /* called with port.lock taken and irqs off */
1084 static void imx_uart_set_mctrl(struct uart_port *port, unsigned int mctrl)
1085 {
1086 	struct imx_port *sport = (struct imx_port *)port;
1087 	u32 ucr3, uts;
1088 
1089 	if (!(port->rs485.flags & SER_RS485_ENABLED)) {
1090 		u32 ucr2;
1091 
1092 		/*
1093 		 * Turn off autoRTS if RTS is lowered and restore autoRTS
1094 		 * setting if RTS is raised.
1095 		 */
1096 		ucr2 = imx_uart_readl(sport, UCR2);
1097 		ucr2 &= ~(UCR2_CTS | UCR2_CTSC);
1098 		if (mctrl & TIOCM_RTS) {
1099 			ucr2 |= UCR2_CTS;
1100 			/*
1101 			 * UCR2_IRTS is unset if and only if the port is
1102 			 * configured for CRTSCTS, so we use inverted UCR2_IRTS
1103 			 * to get the state to restore to.
1104 			 */
1105 			if (!(ucr2 & UCR2_IRTS))
1106 				ucr2 |= UCR2_CTSC;
1107 		}
1108 		imx_uart_writel(sport, ucr2, UCR2);
1109 	}
1110 
1111 	ucr3 = imx_uart_readl(sport, UCR3) & ~UCR3_DSR;
1112 	if (!(mctrl & TIOCM_DTR))
1113 		ucr3 |= UCR3_DSR;
1114 	imx_uart_writel(sport, ucr3, UCR3);
1115 
1116 	uts = imx_uart_readl(sport, imx_uart_uts_reg(sport)) & ~UTS_LOOP;
1117 	if (mctrl & TIOCM_LOOP)
1118 		uts |= UTS_LOOP;
1119 	imx_uart_writel(sport, uts, imx_uart_uts_reg(sport));
1120 
1121 	mctrl_gpio_set(sport->gpios, mctrl);
1122 }
1123 
1124 /*
1125  * Interrupts always disabled.
1126  */
1127 static void imx_uart_break_ctl(struct uart_port *port, int break_state)
1128 {
1129 	struct imx_port *sport = (struct imx_port *)port;
1130 	unsigned long flags;
1131 	u32 ucr1;
1132 
1133 	spin_lock_irqsave(&sport->port.lock, flags);
1134 
1135 	ucr1 = imx_uart_readl(sport, UCR1) & ~UCR1_SNDBRK;
1136 
1137 	if (break_state != 0)
1138 		ucr1 |= UCR1_SNDBRK;
1139 
1140 	imx_uart_writel(sport, ucr1, UCR1);
1141 
1142 	spin_unlock_irqrestore(&sport->port.lock, flags);
1143 }
1144 
1145 /*
1146  * This is our per-port timeout handler, for checking the
1147  * modem status signals.
1148  */
1149 static void imx_uart_timeout(struct timer_list *t)
1150 {
1151 	struct imx_port *sport = from_timer(sport, t, timer);
1152 	unsigned long flags;
1153 
1154 	if (sport->port.state) {
1155 		spin_lock_irqsave(&sport->port.lock, flags);
1156 		imx_uart_mctrl_check(sport);
1157 		spin_unlock_irqrestore(&sport->port.lock, flags);
1158 
1159 		mod_timer(&sport->timer, jiffies + MCTRL_TIMEOUT);
1160 	}
1161 }
1162 
1163 /*
1164  * There are two kinds of RX DMA interrupts(such as in the MX6Q):
1165  *   [1] the RX DMA buffer is full.
1166  *   [2] the aging timer expires
1167  *
1168  * Condition [2] is triggered when a character has been sitting in the FIFO
1169  * for at least 8 byte durations.
1170  */
1171 static void imx_uart_dma_rx_callback(void *data)
1172 {
1173 	struct imx_port *sport = data;
1174 	struct dma_chan	*chan = sport->dma_chan_rx;
1175 	struct scatterlist *sgl = &sport->rx_sgl;
1176 	struct tty_port *port = &sport->port.state->port;
1177 	struct dma_tx_state state;
1178 	struct circ_buf *rx_ring = &sport->rx_ring;
1179 	enum dma_status status;
1180 	unsigned int w_bytes = 0;
1181 	unsigned int r_bytes;
1182 	unsigned int bd_size;
1183 
1184 	status = dmaengine_tx_status(chan, sport->rx_cookie, &state);
1185 
1186 	if (status == DMA_ERROR) {
1187 		spin_lock(&sport->port.lock);
1188 		imx_uart_clear_rx_errors(sport);
1189 		spin_unlock(&sport->port.lock);
1190 		return;
1191 	}
1192 
1193 	/*
1194 	 * The state-residue variable represents the empty space
1195 	 * relative to the entire buffer. Taking this in consideration
1196 	 * the head is always calculated base on the buffer total
1197 	 * length - DMA transaction residue. The UART script from the
1198 	 * SDMA firmware will jump to the next buffer descriptor,
1199 	 * once a DMA transaction if finalized (IMX53 RM - A.4.1.2.4).
1200 	 * Taking this in consideration the tail is always at the
1201 	 * beginning of the buffer descriptor that contains the head.
1202 	 */
1203 
1204 	/* Calculate the head */
1205 	rx_ring->head = sg_dma_len(sgl) - state.residue;
1206 
1207 	/* Calculate the tail. */
1208 	bd_size = sg_dma_len(sgl) / sport->rx_periods;
1209 	rx_ring->tail = ((rx_ring->head-1) / bd_size) * bd_size;
1210 
1211 	if (rx_ring->head <= sg_dma_len(sgl) &&
1212 	    rx_ring->head > rx_ring->tail) {
1213 
1214 		/* Move data from tail to head */
1215 		r_bytes = rx_ring->head - rx_ring->tail;
1216 
1217 		/* If we received something, check for 0xff flood */
1218 		spin_lock(&sport->port.lock);
1219 		imx_uart_check_flood(sport, imx_uart_readl(sport, USR2));
1220 		spin_unlock(&sport->port.lock);
1221 
1222 		if (!(sport->port.ignore_status_mask & URXD_DUMMY_READ)) {
1223 
1224 			/* CPU claims ownership of RX DMA buffer */
1225 			dma_sync_sg_for_cpu(sport->port.dev, sgl, 1,
1226 					    DMA_FROM_DEVICE);
1227 
1228 			w_bytes = tty_insert_flip_string(port,
1229 							 sport->rx_buf + rx_ring->tail, r_bytes);
1230 
1231 			/* UART retrieves ownership of RX DMA buffer */
1232 			dma_sync_sg_for_device(sport->port.dev, sgl, 1,
1233 					       DMA_FROM_DEVICE);
1234 
1235 			if (w_bytes != r_bytes)
1236 				sport->port.icount.buf_overrun++;
1237 
1238 			sport->port.icount.rx += w_bytes;
1239 		}
1240 	} else	{
1241 		WARN_ON(rx_ring->head > sg_dma_len(sgl));
1242 		WARN_ON(rx_ring->head <= rx_ring->tail);
1243 	}
1244 
1245 	if (w_bytes) {
1246 		tty_flip_buffer_push(port);
1247 		dev_dbg(sport->port.dev, "We get %d bytes.\n", w_bytes);
1248 	}
1249 }
1250 
1251 static int imx_uart_start_rx_dma(struct imx_port *sport)
1252 {
1253 	struct scatterlist *sgl = &sport->rx_sgl;
1254 	struct dma_chan	*chan = sport->dma_chan_rx;
1255 	struct device *dev = sport->port.dev;
1256 	struct dma_async_tx_descriptor *desc;
1257 	int ret;
1258 
1259 	sport->rx_ring.head = 0;
1260 	sport->rx_ring.tail = 0;
1261 
1262 	sg_init_one(sgl, sport->rx_buf, sport->rx_buf_size);
1263 	ret = dma_map_sg(dev, sgl, 1, DMA_FROM_DEVICE);
1264 	if (ret == 0) {
1265 		dev_err(dev, "DMA mapping error for RX.\n");
1266 		return -EINVAL;
1267 	}
1268 
1269 	desc = dmaengine_prep_dma_cyclic(chan, sg_dma_address(sgl),
1270 		sg_dma_len(sgl), sg_dma_len(sgl) / sport->rx_periods,
1271 		DMA_DEV_TO_MEM, DMA_PREP_INTERRUPT);
1272 
1273 	if (!desc) {
1274 		dma_unmap_sg(dev, sgl, 1, DMA_FROM_DEVICE);
1275 		dev_err(dev, "We cannot prepare for the RX slave dma!\n");
1276 		return -EINVAL;
1277 	}
1278 	desc->callback = imx_uart_dma_rx_callback;
1279 	desc->callback_param = sport;
1280 
1281 	dev_dbg(dev, "RX: prepare for the DMA.\n");
1282 	sport->dma_is_rxing = 1;
1283 	sport->rx_cookie = dmaengine_submit(desc);
1284 	dma_async_issue_pending(chan);
1285 	return 0;
1286 }
1287 
1288 static void imx_uart_clear_rx_errors(struct imx_port *sport)
1289 {
1290 	struct tty_port *port = &sport->port.state->port;
1291 	u32 usr1, usr2;
1292 
1293 	usr1 = imx_uart_readl(sport, USR1);
1294 	usr2 = imx_uart_readl(sport, USR2);
1295 
1296 	if (usr2 & USR2_BRCD) {
1297 		sport->port.icount.brk++;
1298 		imx_uart_writel(sport, USR2_BRCD, USR2);
1299 		uart_handle_break(&sport->port);
1300 		if (tty_insert_flip_char(port, 0, TTY_BREAK) == 0)
1301 			sport->port.icount.buf_overrun++;
1302 		tty_flip_buffer_push(port);
1303 	} else {
1304 		if (usr1 & USR1_FRAMERR) {
1305 			sport->port.icount.frame++;
1306 			imx_uart_writel(sport, USR1_FRAMERR, USR1);
1307 		} else if (usr1 & USR1_PARITYERR) {
1308 			sport->port.icount.parity++;
1309 			imx_uart_writel(sport, USR1_PARITYERR, USR1);
1310 		}
1311 	}
1312 
1313 	if (usr2 & USR2_ORE) {
1314 		sport->port.icount.overrun++;
1315 		imx_uart_writel(sport, USR2_ORE, USR2);
1316 	}
1317 
1318 	sport->idle_counter = 0;
1319 
1320 }
1321 
1322 #define TXTL_DEFAULT 2 /* reset default */
1323 #define RXTL_DEFAULT 8 /* 8 characters or aging timer */
1324 #define TXTL_DMA 8 /* DMA burst setting */
1325 #define RXTL_DMA 9 /* DMA burst setting */
1326 
1327 static void imx_uart_setup_ufcr(struct imx_port *sport,
1328 				unsigned char txwl, unsigned char rxwl)
1329 {
1330 	unsigned int val;
1331 
1332 	/* set receiver / transmitter trigger level */
1333 	val = imx_uart_readl(sport, UFCR) & (UFCR_RFDIV | UFCR_DCEDTE);
1334 	val |= txwl << UFCR_TXTL_SHF | rxwl;
1335 	imx_uart_writel(sport, val, UFCR);
1336 }
1337 
1338 static void imx_uart_dma_exit(struct imx_port *sport)
1339 {
1340 	if (sport->dma_chan_rx) {
1341 		dmaengine_terminate_sync(sport->dma_chan_rx);
1342 		dma_release_channel(sport->dma_chan_rx);
1343 		sport->dma_chan_rx = NULL;
1344 		sport->rx_cookie = -EINVAL;
1345 		kfree(sport->rx_buf);
1346 		sport->rx_buf = NULL;
1347 	}
1348 
1349 	if (sport->dma_chan_tx) {
1350 		dmaengine_terminate_sync(sport->dma_chan_tx);
1351 		dma_release_channel(sport->dma_chan_tx);
1352 		sport->dma_chan_tx = NULL;
1353 	}
1354 }
1355 
1356 static int imx_uart_dma_init(struct imx_port *sport)
1357 {
1358 	struct dma_slave_config slave_config = {};
1359 	struct device *dev = sport->port.dev;
1360 	int ret;
1361 
1362 	/* Prepare for RX : */
1363 	sport->dma_chan_rx = dma_request_slave_channel(dev, "rx");
1364 	if (!sport->dma_chan_rx) {
1365 		dev_dbg(dev, "cannot get the DMA channel.\n");
1366 		ret = -EINVAL;
1367 		goto err;
1368 	}
1369 
1370 	slave_config.direction = DMA_DEV_TO_MEM;
1371 	slave_config.src_addr = sport->port.mapbase + URXD0;
1372 	slave_config.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
1373 	/* one byte less than the watermark level to enable the aging timer */
1374 	slave_config.src_maxburst = RXTL_DMA - 1;
1375 	ret = dmaengine_slave_config(sport->dma_chan_rx, &slave_config);
1376 	if (ret) {
1377 		dev_err(dev, "error in RX dma configuration.\n");
1378 		goto err;
1379 	}
1380 
1381 	sport->rx_buf_size = sport->rx_period_length * sport->rx_periods;
1382 	sport->rx_buf = kzalloc(sport->rx_buf_size, GFP_KERNEL);
1383 	if (!sport->rx_buf) {
1384 		ret = -ENOMEM;
1385 		goto err;
1386 	}
1387 	sport->rx_ring.buf = sport->rx_buf;
1388 
1389 	/* Prepare for TX : */
1390 	sport->dma_chan_tx = dma_request_slave_channel(dev, "tx");
1391 	if (!sport->dma_chan_tx) {
1392 		dev_err(dev, "cannot get the TX DMA channel!\n");
1393 		ret = -EINVAL;
1394 		goto err;
1395 	}
1396 
1397 	slave_config.direction = DMA_MEM_TO_DEV;
1398 	slave_config.dst_addr = sport->port.mapbase + URTX0;
1399 	slave_config.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
1400 	slave_config.dst_maxburst = TXTL_DMA;
1401 	ret = dmaengine_slave_config(sport->dma_chan_tx, &slave_config);
1402 	if (ret) {
1403 		dev_err(dev, "error in TX dma configuration.");
1404 		goto err;
1405 	}
1406 
1407 	return 0;
1408 err:
1409 	imx_uart_dma_exit(sport);
1410 	return ret;
1411 }
1412 
1413 static void imx_uart_enable_dma(struct imx_port *sport)
1414 {
1415 	u32 ucr1;
1416 
1417 	imx_uart_setup_ufcr(sport, TXTL_DMA, RXTL_DMA);
1418 
1419 	/* set UCR1 */
1420 	ucr1 = imx_uart_readl(sport, UCR1);
1421 	ucr1 |= UCR1_RXDMAEN | UCR1_TXDMAEN | UCR1_ATDMAEN;
1422 	imx_uart_writel(sport, ucr1, UCR1);
1423 
1424 	sport->dma_is_enabled = 1;
1425 }
1426 
1427 static void imx_uart_disable_dma(struct imx_port *sport)
1428 {
1429 	u32 ucr1;
1430 
1431 	/* clear UCR1 */
1432 	ucr1 = imx_uart_readl(sport, UCR1);
1433 	ucr1 &= ~(UCR1_RXDMAEN | UCR1_TXDMAEN | UCR1_ATDMAEN);
1434 	imx_uart_writel(sport, ucr1, UCR1);
1435 
1436 	imx_uart_setup_ufcr(sport, TXTL_DEFAULT, RXTL_DEFAULT);
1437 
1438 	sport->dma_is_enabled = 0;
1439 }
1440 
1441 /* half the RX buffer size */
1442 #define CTSTL 16
1443 
1444 static int imx_uart_startup(struct uart_port *port)
1445 {
1446 	struct imx_port *sport = (struct imx_port *)port;
1447 	int retval;
1448 	unsigned long flags;
1449 	int dma_is_inited = 0;
1450 	u32 ucr1, ucr2, ucr3, ucr4;
1451 
1452 	retval = clk_prepare_enable(sport->clk_per);
1453 	if (retval)
1454 		return retval;
1455 	retval = clk_prepare_enable(sport->clk_ipg);
1456 	if (retval) {
1457 		clk_disable_unprepare(sport->clk_per);
1458 		return retval;
1459 	}
1460 
1461 	imx_uart_setup_ufcr(sport, TXTL_DEFAULT, RXTL_DEFAULT);
1462 
1463 	/* disable the DREN bit (Data Ready interrupt enable) before
1464 	 * requesting IRQs
1465 	 */
1466 	ucr4 = imx_uart_readl(sport, UCR4);
1467 
1468 	/* set the trigger level for CTS */
1469 	ucr4 &= ~(UCR4_CTSTL_MASK << UCR4_CTSTL_SHF);
1470 	ucr4 |= CTSTL << UCR4_CTSTL_SHF;
1471 
1472 	imx_uart_writel(sport, ucr4 & ~UCR4_DREN, UCR4);
1473 
1474 	/* Can we enable the DMA support? */
1475 	if (!uart_console(port) && imx_uart_dma_init(sport) == 0)
1476 		dma_is_inited = 1;
1477 
1478 	spin_lock_irqsave(&sport->port.lock, flags);
1479 
1480 	/* Reset fifo's and state machines */
1481 	imx_uart_soft_reset(sport);
1482 
1483 	/*
1484 	 * Finally, clear and enable interrupts
1485 	 */
1486 	imx_uart_writel(sport, USR1_RTSD | USR1_DTRD, USR1);
1487 	imx_uart_writel(sport, USR2_ORE, USR2);
1488 
1489 	ucr1 = imx_uart_readl(sport, UCR1) & ~UCR1_RRDYEN;
1490 	ucr1 |= UCR1_UARTEN;
1491 	if (sport->have_rtscts)
1492 		ucr1 |= UCR1_RTSDEN;
1493 
1494 	imx_uart_writel(sport, ucr1, UCR1);
1495 
1496 	ucr4 = imx_uart_readl(sport, UCR4) & ~(UCR4_OREN | UCR4_INVR);
1497 	if (!dma_is_inited)
1498 		ucr4 |= UCR4_OREN;
1499 	if (sport->inverted_rx)
1500 		ucr4 |= UCR4_INVR;
1501 	imx_uart_writel(sport, ucr4, UCR4);
1502 
1503 	ucr3 = imx_uart_readl(sport, UCR3) & ~UCR3_INVT;
1504 	/*
1505 	 * configure tx polarity before enabling tx
1506 	 */
1507 	if (sport->inverted_tx)
1508 		ucr3 |= UCR3_INVT;
1509 
1510 	if (!imx_uart_is_imx1(sport)) {
1511 		ucr3 |= UCR3_DTRDEN | UCR3_RI | UCR3_DCD;
1512 
1513 		if (sport->dte_mode)
1514 			/* disable broken interrupts */
1515 			ucr3 &= ~(UCR3_RI | UCR3_DCD);
1516 	}
1517 	imx_uart_writel(sport, ucr3, UCR3);
1518 
1519 	ucr2 = imx_uart_readl(sport, UCR2) & ~UCR2_ATEN;
1520 	ucr2 |= (UCR2_RXEN | UCR2_TXEN);
1521 	if (!sport->have_rtscts)
1522 		ucr2 |= UCR2_IRTS;
1523 	/*
1524 	 * make sure the edge sensitive RTS-irq is disabled,
1525 	 * we're using RTSD instead.
1526 	 */
1527 	if (!imx_uart_is_imx1(sport))
1528 		ucr2 &= ~UCR2_RTSEN;
1529 	imx_uart_writel(sport, ucr2, UCR2);
1530 
1531 	/*
1532 	 * Enable modem status interrupts
1533 	 */
1534 	imx_uart_enable_ms(&sport->port);
1535 
1536 	if (dma_is_inited) {
1537 		imx_uart_enable_dma(sport);
1538 		imx_uart_start_rx_dma(sport);
1539 	} else {
1540 		ucr1 = imx_uart_readl(sport, UCR1);
1541 		ucr1 |= UCR1_RRDYEN;
1542 		imx_uart_writel(sport, ucr1, UCR1);
1543 
1544 		ucr2 = imx_uart_readl(sport, UCR2);
1545 		ucr2 |= UCR2_ATEN;
1546 		imx_uart_writel(sport, ucr2, UCR2);
1547 	}
1548 
1549 	imx_uart_disable_loopback_rs485(sport);
1550 
1551 	spin_unlock_irqrestore(&sport->port.lock, flags);
1552 
1553 	return 0;
1554 }
1555 
1556 static void imx_uart_shutdown(struct uart_port *port)
1557 {
1558 	struct imx_port *sport = (struct imx_port *)port;
1559 	unsigned long flags;
1560 	u32 ucr1, ucr2, ucr4, uts;
1561 
1562 	if (sport->dma_is_enabled) {
1563 		dmaengine_terminate_sync(sport->dma_chan_tx);
1564 		if (sport->dma_is_txing) {
1565 			dma_unmap_sg(sport->port.dev, &sport->tx_sgl[0],
1566 				     sport->dma_tx_nents, DMA_TO_DEVICE);
1567 			sport->dma_is_txing = 0;
1568 		}
1569 		dmaengine_terminate_sync(sport->dma_chan_rx);
1570 		if (sport->dma_is_rxing) {
1571 			dma_unmap_sg(sport->port.dev, &sport->rx_sgl,
1572 				     1, DMA_FROM_DEVICE);
1573 			sport->dma_is_rxing = 0;
1574 		}
1575 
1576 		spin_lock_irqsave(&sport->port.lock, flags);
1577 		imx_uart_stop_tx(port);
1578 		imx_uart_stop_rx(port);
1579 		imx_uart_disable_dma(sport);
1580 		spin_unlock_irqrestore(&sport->port.lock, flags);
1581 		imx_uart_dma_exit(sport);
1582 	}
1583 
1584 	mctrl_gpio_disable_ms(sport->gpios);
1585 
1586 	spin_lock_irqsave(&sport->port.lock, flags);
1587 	ucr2 = imx_uart_readl(sport, UCR2);
1588 	ucr2 &= ~(UCR2_TXEN | UCR2_ATEN);
1589 	imx_uart_writel(sport, ucr2, UCR2);
1590 	spin_unlock_irqrestore(&sport->port.lock, flags);
1591 
1592 	/*
1593 	 * Stop our timer.
1594 	 */
1595 	del_timer_sync(&sport->timer);
1596 
1597 	/*
1598 	 * Disable all interrupts, port and break condition.
1599 	 */
1600 
1601 	spin_lock_irqsave(&sport->port.lock, flags);
1602 
1603 	ucr1 = imx_uart_readl(sport, UCR1);
1604 	ucr1 &= ~(UCR1_TRDYEN | UCR1_RRDYEN | UCR1_RTSDEN | UCR1_RXDMAEN |
1605 		  UCR1_ATDMAEN | UCR1_SNDBRK);
1606 	/* See SER_RS485_ENABLED/UTS_LOOP comment in imx_uart_probe() */
1607 	if (port->rs485.flags & SER_RS485_ENABLED &&
1608 	    port->rs485.flags & SER_RS485_RTS_ON_SEND &&
1609 	    sport->have_rtscts && !sport->have_rtsgpio) {
1610 		uts = imx_uart_readl(sport, imx_uart_uts_reg(sport));
1611 		uts |= UTS_LOOP;
1612 		imx_uart_writel(sport, uts, imx_uart_uts_reg(sport));
1613 		ucr1 |= UCR1_UARTEN;
1614 	} else {
1615 		ucr1 &= ~UCR1_UARTEN;
1616 	}
1617 	imx_uart_writel(sport, ucr1, UCR1);
1618 
1619 	ucr4 = imx_uart_readl(sport, UCR4);
1620 	ucr4 &= ~UCR4_TCEN;
1621 	imx_uart_writel(sport, ucr4, UCR4);
1622 
1623 	spin_unlock_irqrestore(&sport->port.lock, flags);
1624 
1625 	clk_disable_unprepare(sport->clk_per);
1626 	clk_disable_unprepare(sport->clk_ipg);
1627 }
1628 
1629 /* called with port.lock taken and irqs off */
1630 static void imx_uart_flush_buffer(struct uart_port *port)
1631 {
1632 	struct imx_port *sport = (struct imx_port *)port;
1633 	struct scatterlist *sgl = &sport->tx_sgl[0];
1634 
1635 	if (!sport->dma_chan_tx)
1636 		return;
1637 
1638 	sport->tx_bytes = 0;
1639 	dmaengine_terminate_all(sport->dma_chan_tx);
1640 	if (sport->dma_is_txing) {
1641 		u32 ucr1;
1642 
1643 		dma_unmap_sg(sport->port.dev, sgl, sport->dma_tx_nents,
1644 			     DMA_TO_DEVICE);
1645 		ucr1 = imx_uart_readl(sport, UCR1);
1646 		ucr1 &= ~UCR1_TXDMAEN;
1647 		imx_uart_writel(sport, ucr1, UCR1);
1648 		sport->dma_is_txing = 0;
1649 	}
1650 
1651 	imx_uart_soft_reset(sport);
1652 
1653 }
1654 
1655 static void
1656 imx_uart_set_termios(struct uart_port *port, struct ktermios *termios,
1657 		     const struct ktermios *old)
1658 {
1659 	struct imx_port *sport = (struct imx_port *)port;
1660 	unsigned long flags;
1661 	u32 ucr2, old_ucr2, ufcr;
1662 	unsigned int baud, quot;
1663 	unsigned int old_csize = old ? old->c_cflag & CSIZE : CS8;
1664 	unsigned long div;
1665 	unsigned long num, denom, old_ubir, old_ubmr;
1666 	uint64_t tdiv64;
1667 
1668 	/*
1669 	 * We only support CS7 and CS8.
1670 	 */
1671 	while ((termios->c_cflag & CSIZE) != CS7 &&
1672 	       (termios->c_cflag & CSIZE) != CS8) {
1673 		termios->c_cflag &= ~CSIZE;
1674 		termios->c_cflag |= old_csize;
1675 		old_csize = CS8;
1676 	}
1677 
1678 	del_timer_sync(&sport->timer);
1679 
1680 	/*
1681 	 * Ask the core to calculate the divisor for us.
1682 	 */
1683 	baud = uart_get_baud_rate(port, termios, old, 50, port->uartclk / 16);
1684 	quot = uart_get_divisor(port, baud);
1685 
1686 	spin_lock_irqsave(&sport->port.lock, flags);
1687 
1688 	/*
1689 	 * Read current UCR2 and save it for future use, then clear all the bits
1690 	 * except those we will or may need to preserve.
1691 	 */
1692 	old_ucr2 = imx_uart_readl(sport, UCR2);
1693 	ucr2 = old_ucr2 & (UCR2_TXEN | UCR2_RXEN | UCR2_ATEN | UCR2_CTS);
1694 
1695 	ucr2 |= UCR2_SRST | UCR2_IRTS;
1696 	if ((termios->c_cflag & CSIZE) == CS8)
1697 		ucr2 |= UCR2_WS;
1698 
1699 	if (!sport->have_rtscts)
1700 		termios->c_cflag &= ~CRTSCTS;
1701 
1702 	if (port->rs485.flags & SER_RS485_ENABLED) {
1703 		/*
1704 		 * RTS is mandatory for rs485 operation, so keep
1705 		 * it under manual control and keep transmitter
1706 		 * disabled.
1707 		 */
1708 		if (port->rs485.flags & SER_RS485_RTS_AFTER_SEND)
1709 			imx_uart_rts_active(sport, &ucr2);
1710 		else
1711 			imx_uart_rts_inactive(sport, &ucr2);
1712 
1713 	} else if (termios->c_cflag & CRTSCTS) {
1714 		/*
1715 		 * Only let receiver control RTS output if we were not requested
1716 		 * to have RTS inactive (which then should take precedence).
1717 		 */
1718 		if (ucr2 & UCR2_CTS)
1719 			ucr2 |= UCR2_CTSC;
1720 	}
1721 
1722 	if (termios->c_cflag & CRTSCTS)
1723 		ucr2 &= ~UCR2_IRTS;
1724 	if (termios->c_cflag & CSTOPB)
1725 		ucr2 |= UCR2_STPB;
1726 	if (termios->c_cflag & PARENB) {
1727 		ucr2 |= UCR2_PREN;
1728 		if (termios->c_cflag & PARODD)
1729 			ucr2 |= UCR2_PROE;
1730 	}
1731 
1732 	sport->port.read_status_mask = 0;
1733 	if (termios->c_iflag & INPCK)
1734 		sport->port.read_status_mask |= (URXD_FRMERR | URXD_PRERR);
1735 	if (termios->c_iflag & (BRKINT | PARMRK))
1736 		sport->port.read_status_mask |= URXD_BRK;
1737 
1738 	/*
1739 	 * Characters to ignore
1740 	 */
1741 	sport->port.ignore_status_mask = 0;
1742 	if (termios->c_iflag & IGNPAR)
1743 		sport->port.ignore_status_mask |= URXD_PRERR | URXD_FRMERR;
1744 	if (termios->c_iflag & IGNBRK) {
1745 		sport->port.ignore_status_mask |= URXD_BRK;
1746 		/*
1747 		 * If we're ignoring parity and break indicators,
1748 		 * ignore overruns too (for real raw support).
1749 		 */
1750 		if (termios->c_iflag & IGNPAR)
1751 			sport->port.ignore_status_mask |= URXD_OVRRUN;
1752 	}
1753 
1754 	if ((termios->c_cflag & CREAD) == 0)
1755 		sport->port.ignore_status_mask |= URXD_DUMMY_READ;
1756 
1757 	/*
1758 	 * Update the per-port timeout.
1759 	 */
1760 	uart_update_timeout(port, termios->c_cflag, baud);
1761 
1762 	/* custom-baudrate handling */
1763 	div = sport->port.uartclk / (baud * 16);
1764 	if (baud == 38400 && quot != div)
1765 		baud = sport->port.uartclk / (quot * 16);
1766 
1767 	div = sport->port.uartclk / (baud * 16);
1768 	if (div > 7)
1769 		div = 7;
1770 	if (!div)
1771 		div = 1;
1772 
1773 	rational_best_approximation(16 * div * baud, sport->port.uartclk,
1774 		1 << 16, 1 << 16, &num, &denom);
1775 
1776 	tdiv64 = sport->port.uartclk;
1777 	tdiv64 *= num;
1778 	do_div(tdiv64, denom * 16 * div);
1779 	tty_termios_encode_baud_rate(termios,
1780 				(speed_t)tdiv64, (speed_t)tdiv64);
1781 
1782 	num -= 1;
1783 	denom -= 1;
1784 
1785 	ufcr = imx_uart_readl(sport, UFCR);
1786 	ufcr = (ufcr & (~UFCR_RFDIV)) | UFCR_RFDIV_REG(div);
1787 	imx_uart_writel(sport, ufcr, UFCR);
1788 
1789 	/*
1790 	 *  Two registers below should always be written both and in this
1791 	 *  particular order. One consequence is that we need to check if any of
1792 	 *  them changes and then update both. We do need the check for change
1793 	 *  as even writing the same values seem to "restart"
1794 	 *  transmission/receiving logic in the hardware, that leads to data
1795 	 *  breakage even when rate doesn't in fact change. E.g., user switches
1796 	 *  RTS/CTS handshake and suddenly gets broken bytes.
1797 	 */
1798 	old_ubir = imx_uart_readl(sport, UBIR);
1799 	old_ubmr = imx_uart_readl(sport, UBMR);
1800 	if (old_ubir != num || old_ubmr != denom) {
1801 		imx_uart_writel(sport, num, UBIR);
1802 		imx_uart_writel(sport, denom, UBMR);
1803 	}
1804 
1805 	if (!imx_uart_is_imx1(sport))
1806 		imx_uart_writel(sport, sport->port.uartclk / div / 1000,
1807 				IMX21_ONEMS);
1808 
1809 	imx_uart_writel(sport, ucr2, UCR2);
1810 
1811 	if (UART_ENABLE_MS(&sport->port, termios->c_cflag))
1812 		imx_uart_enable_ms(&sport->port);
1813 
1814 	spin_unlock_irqrestore(&sport->port.lock, flags);
1815 }
1816 
1817 static const char *imx_uart_type(struct uart_port *port)
1818 {
1819 	return port->type == PORT_IMX ? "IMX" : NULL;
1820 }
1821 
1822 /*
1823  * Configure/autoconfigure the port.
1824  */
1825 static void imx_uart_config_port(struct uart_port *port, int flags)
1826 {
1827 	if (flags & UART_CONFIG_TYPE)
1828 		port->type = PORT_IMX;
1829 }
1830 
1831 /*
1832  * Verify the new serial_struct (for TIOCSSERIAL).
1833  * The only change we allow are to the flags and type, and
1834  * even then only between PORT_IMX and PORT_UNKNOWN
1835  */
1836 static int
1837 imx_uart_verify_port(struct uart_port *port, struct serial_struct *ser)
1838 {
1839 	int ret = 0;
1840 
1841 	if (ser->type != PORT_UNKNOWN && ser->type != PORT_IMX)
1842 		ret = -EINVAL;
1843 	if (port->irq != ser->irq)
1844 		ret = -EINVAL;
1845 	if (ser->io_type != UPIO_MEM)
1846 		ret = -EINVAL;
1847 	if (port->uartclk / 16 != ser->baud_base)
1848 		ret = -EINVAL;
1849 	if (port->mapbase != (unsigned long)ser->iomem_base)
1850 		ret = -EINVAL;
1851 	if (port->iobase != ser->port)
1852 		ret = -EINVAL;
1853 	if (ser->hub6 != 0)
1854 		ret = -EINVAL;
1855 	return ret;
1856 }
1857 
1858 #if defined(CONFIG_CONSOLE_POLL)
1859 
1860 static int imx_uart_poll_init(struct uart_port *port)
1861 {
1862 	struct imx_port *sport = (struct imx_port *)port;
1863 	unsigned long flags;
1864 	u32 ucr1, ucr2;
1865 	int retval;
1866 
1867 	retval = clk_prepare_enable(sport->clk_ipg);
1868 	if (retval)
1869 		return retval;
1870 	retval = clk_prepare_enable(sport->clk_per);
1871 	if (retval)
1872 		clk_disable_unprepare(sport->clk_ipg);
1873 
1874 	imx_uart_setup_ufcr(sport, TXTL_DEFAULT, RXTL_DEFAULT);
1875 
1876 	spin_lock_irqsave(&sport->port.lock, flags);
1877 
1878 	/*
1879 	 * Be careful about the order of enabling bits here. First enable the
1880 	 * receiver (UARTEN + RXEN) and only then the corresponding irqs.
1881 	 * This prevents that a character that already sits in the RX fifo is
1882 	 * triggering an irq but the try to fetch it from there results in an
1883 	 * exception because UARTEN or RXEN is still off.
1884 	 */
1885 	ucr1 = imx_uart_readl(sport, UCR1);
1886 	ucr2 = imx_uart_readl(sport, UCR2);
1887 
1888 	if (imx_uart_is_imx1(sport))
1889 		ucr1 |= IMX1_UCR1_UARTCLKEN;
1890 
1891 	ucr1 |= UCR1_UARTEN;
1892 	ucr1 &= ~(UCR1_TRDYEN | UCR1_RTSDEN | UCR1_RRDYEN);
1893 
1894 	ucr2 |= UCR2_RXEN | UCR2_TXEN;
1895 	ucr2 &= ~UCR2_ATEN;
1896 
1897 	imx_uart_writel(sport, ucr1, UCR1);
1898 	imx_uart_writel(sport, ucr2, UCR2);
1899 
1900 	/* now enable irqs */
1901 	imx_uart_writel(sport, ucr1 | UCR1_RRDYEN, UCR1);
1902 	imx_uart_writel(sport, ucr2 | UCR2_ATEN, UCR2);
1903 
1904 	spin_unlock_irqrestore(&sport->port.lock, flags);
1905 
1906 	return 0;
1907 }
1908 
1909 static int imx_uart_poll_get_char(struct uart_port *port)
1910 {
1911 	struct imx_port *sport = (struct imx_port *)port;
1912 	if (!(imx_uart_readl(sport, USR2) & USR2_RDR))
1913 		return NO_POLL_CHAR;
1914 
1915 	return imx_uart_readl(sport, URXD0) & URXD_RX_DATA;
1916 }
1917 
1918 static void imx_uart_poll_put_char(struct uart_port *port, unsigned char c)
1919 {
1920 	struct imx_port *sport = (struct imx_port *)port;
1921 	unsigned int status;
1922 
1923 	/* drain */
1924 	do {
1925 		status = imx_uart_readl(sport, USR1);
1926 	} while (~status & USR1_TRDY);
1927 
1928 	/* write */
1929 	imx_uart_writel(sport, c, URTX0);
1930 
1931 	/* flush */
1932 	do {
1933 		status = imx_uart_readl(sport, USR2);
1934 	} while (~status & USR2_TXDC);
1935 }
1936 #endif
1937 
1938 /* called with port.lock taken and irqs off or from .probe without locking */
1939 static int imx_uart_rs485_config(struct uart_port *port, struct ktermios *termios,
1940 				 struct serial_rs485 *rs485conf)
1941 {
1942 	struct imx_port *sport = (struct imx_port *)port;
1943 	u32 ucr2;
1944 
1945 	if (rs485conf->flags & SER_RS485_ENABLED) {
1946 		/* Enable receiver if low-active RTS signal is requested */
1947 		if (sport->have_rtscts &&  !sport->have_rtsgpio &&
1948 		    !(rs485conf->flags & SER_RS485_RTS_ON_SEND))
1949 			rs485conf->flags |= SER_RS485_RX_DURING_TX;
1950 
1951 		/* disable transmitter */
1952 		ucr2 = imx_uart_readl(sport, UCR2);
1953 		if (rs485conf->flags & SER_RS485_RTS_AFTER_SEND)
1954 			imx_uart_rts_active(sport, &ucr2);
1955 		else
1956 			imx_uart_rts_inactive(sport, &ucr2);
1957 		imx_uart_writel(sport, ucr2, UCR2);
1958 	}
1959 
1960 	/* Make sure Rx is enabled in case Tx is active with Rx disabled */
1961 	if (!(rs485conf->flags & SER_RS485_ENABLED) ||
1962 	    rs485conf->flags & SER_RS485_RX_DURING_TX)
1963 		imx_uart_start_rx(port);
1964 
1965 	return 0;
1966 }
1967 
1968 static const struct uart_ops imx_uart_pops = {
1969 	.tx_empty	= imx_uart_tx_empty,
1970 	.set_mctrl	= imx_uart_set_mctrl,
1971 	.get_mctrl	= imx_uart_get_mctrl,
1972 	.stop_tx	= imx_uart_stop_tx,
1973 	.start_tx	= imx_uart_start_tx,
1974 	.stop_rx	= imx_uart_stop_rx,
1975 	.enable_ms	= imx_uart_enable_ms,
1976 	.break_ctl	= imx_uart_break_ctl,
1977 	.startup	= imx_uart_startup,
1978 	.shutdown	= imx_uart_shutdown,
1979 	.flush_buffer	= imx_uart_flush_buffer,
1980 	.set_termios	= imx_uart_set_termios,
1981 	.type		= imx_uart_type,
1982 	.config_port	= imx_uart_config_port,
1983 	.verify_port	= imx_uart_verify_port,
1984 #if defined(CONFIG_CONSOLE_POLL)
1985 	.poll_init      = imx_uart_poll_init,
1986 	.poll_get_char  = imx_uart_poll_get_char,
1987 	.poll_put_char  = imx_uart_poll_put_char,
1988 #endif
1989 };
1990 
1991 static struct imx_port *imx_uart_ports[UART_NR];
1992 
1993 #if IS_ENABLED(CONFIG_SERIAL_IMX_CONSOLE)
1994 static void imx_uart_console_putchar(struct uart_port *port, unsigned char ch)
1995 {
1996 	struct imx_port *sport = (struct imx_port *)port;
1997 
1998 	while (imx_uart_readl(sport, imx_uart_uts_reg(sport)) & UTS_TXFULL)
1999 		barrier();
2000 
2001 	imx_uart_writel(sport, ch, URTX0);
2002 }
2003 
2004 /*
2005  * Interrupts are disabled on entering
2006  */
2007 static void
2008 imx_uart_console_write(struct console *co, const char *s, unsigned int count)
2009 {
2010 	struct imx_port *sport = imx_uart_ports[co->index];
2011 	struct imx_port_ucrs old_ucr;
2012 	unsigned long flags;
2013 	unsigned int ucr1, usr2;
2014 	int locked = 1;
2015 
2016 	if (sport->port.sysrq)
2017 		locked = 0;
2018 	else if (oops_in_progress)
2019 		locked = spin_trylock_irqsave(&sport->port.lock, flags);
2020 	else
2021 		spin_lock_irqsave(&sport->port.lock, flags);
2022 
2023 	/*
2024 	 *	First, save UCR1/2/3 and then disable interrupts
2025 	 */
2026 	imx_uart_ucrs_save(sport, &old_ucr);
2027 	ucr1 = old_ucr.ucr1;
2028 
2029 	if (imx_uart_is_imx1(sport))
2030 		ucr1 |= IMX1_UCR1_UARTCLKEN;
2031 	ucr1 |= UCR1_UARTEN;
2032 	ucr1 &= ~(UCR1_TRDYEN | UCR1_RRDYEN | UCR1_RTSDEN);
2033 
2034 	imx_uart_writel(sport, ucr1, UCR1);
2035 
2036 	imx_uart_writel(sport, old_ucr.ucr2 | UCR2_TXEN, UCR2);
2037 
2038 	uart_console_write(&sport->port, s, count, imx_uart_console_putchar);
2039 
2040 	/*
2041 	 *	Finally, wait for transmitter to become empty
2042 	 *	and restore UCR1/2/3
2043 	 */
2044 	read_poll_timeout_atomic(imx_uart_readl, usr2, usr2 & USR2_TXDC,
2045 				 0, USEC_PER_SEC, false, sport, USR2);
2046 	imx_uart_ucrs_restore(sport, &old_ucr);
2047 
2048 	if (locked)
2049 		spin_unlock_irqrestore(&sport->port.lock, flags);
2050 }
2051 
2052 /*
2053  * If the port was already initialised (eg, by a boot loader),
2054  * try to determine the current setup.
2055  */
2056 static void
2057 imx_uart_console_get_options(struct imx_port *sport, int *baud,
2058 			     int *parity, int *bits)
2059 {
2060 
2061 	if (imx_uart_readl(sport, UCR1) & UCR1_UARTEN) {
2062 		/* ok, the port was enabled */
2063 		unsigned int ucr2, ubir, ubmr, uartclk;
2064 		unsigned int baud_raw;
2065 		unsigned int ucfr_rfdiv;
2066 
2067 		ucr2 = imx_uart_readl(sport, UCR2);
2068 
2069 		*parity = 'n';
2070 		if (ucr2 & UCR2_PREN) {
2071 			if (ucr2 & UCR2_PROE)
2072 				*parity = 'o';
2073 			else
2074 				*parity = 'e';
2075 		}
2076 
2077 		if (ucr2 & UCR2_WS)
2078 			*bits = 8;
2079 		else
2080 			*bits = 7;
2081 
2082 		ubir = imx_uart_readl(sport, UBIR) & 0xffff;
2083 		ubmr = imx_uart_readl(sport, UBMR) & 0xffff;
2084 
2085 		ucfr_rfdiv = (imx_uart_readl(sport, UFCR) & UFCR_RFDIV) >> 7;
2086 		if (ucfr_rfdiv == 6)
2087 			ucfr_rfdiv = 7;
2088 		else
2089 			ucfr_rfdiv = 6 - ucfr_rfdiv;
2090 
2091 		uartclk = clk_get_rate(sport->clk_per);
2092 		uartclk /= ucfr_rfdiv;
2093 
2094 		{	/*
2095 			 * The next code provides exact computation of
2096 			 *   baud_raw = round(((uartclk/16) * (ubir + 1)) / (ubmr + 1))
2097 			 * without need of float support or long long division,
2098 			 * which would be required to prevent 32bit arithmetic overflow
2099 			 */
2100 			unsigned int mul = ubir + 1;
2101 			unsigned int div = 16 * (ubmr + 1);
2102 			unsigned int rem = uartclk % div;
2103 
2104 			baud_raw = (uartclk / div) * mul;
2105 			baud_raw += (rem * mul + div / 2) / div;
2106 			*baud = (baud_raw + 50) / 100 * 100;
2107 		}
2108 
2109 		if (*baud != baud_raw)
2110 			dev_info(sport->port.dev, "Console IMX rounded baud rate from %d to %d\n",
2111 				baud_raw, *baud);
2112 	}
2113 }
2114 
2115 static int
2116 imx_uart_console_setup(struct console *co, char *options)
2117 {
2118 	struct imx_port *sport;
2119 	int baud = 9600;
2120 	int bits = 8;
2121 	int parity = 'n';
2122 	int flow = 'n';
2123 	int retval;
2124 
2125 	/*
2126 	 * Check whether an invalid uart number has been specified, and
2127 	 * if so, search for the first available port that does have
2128 	 * console support.
2129 	 */
2130 	if (co->index == -1 || co->index >= ARRAY_SIZE(imx_uart_ports))
2131 		co->index = 0;
2132 	sport = imx_uart_ports[co->index];
2133 	if (sport == NULL)
2134 		return -ENODEV;
2135 
2136 	/* For setting the registers, we only need to enable the ipg clock. */
2137 	retval = clk_prepare_enable(sport->clk_ipg);
2138 	if (retval)
2139 		goto error_console;
2140 
2141 	if (options)
2142 		uart_parse_options(options, &baud, &parity, &bits, &flow);
2143 	else
2144 		imx_uart_console_get_options(sport, &baud, &parity, &bits);
2145 
2146 	imx_uart_setup_ufcr(sport, TXTL_DEFAULT, RXTL_DEFAULT);
2147 
2148 	retval = uart_set_options(&sport->port, co, baud, parity, bits, flow);
2149 
2150 	if (retval) {
2151 		clk_disable_unprepare(sport->clk_ipg);
2152 		goto error_console;
2153 	}
2154 
2155 	retval = clk_prepare_enable(sport->clk_per);
2156 	if (retval)
2157 		clk_disable_unprepare(sport->clk_ipg);
2158 
2159 error_console:
2160 	return retval;
2161 }
2162 
2163 static int
2164 imx_uart_console_exit(struct console *co)
2165 {
2166 	struct imx_port *sport = imx_uart_ports[co->index];
2167 
2168 	clk_disable_unprepare(sport->clk_per);
2169 	clk_disable_unprepare(sport->clk_ipg);
2170 
2171 	return 0;
2172 }
2173 
2174 static struct uart_driver imx_uart_uart_driver;
2175 static struct console imx_uart_console = {
2176 	.name		= DEV_NAME,
2177 	.write		= imx_uart_console_write,
2178 	.device		= uart_console_device,
2179 	.setup		= imx_uart_console_setup,
2180 	.exit		= imx_uart_console_exit,
2181 	.flags		= CON_PRINTBUFFER,
2182 	.index		= -1,
2183 	.data		= &imx_uart_uart_driver,
2184 };
2185 
2186 #define IMX_CONSOLE	&imx_uart_console
2187 
2188 #else
2189 #define IMX_CONSOLE	NULL
2190 #endif
2191 
2192 static struct uart_driver imx_uart_uart_driver = {
2193 	.owner          = THIS_MODULE,
2194 	.driver_name    = DRIVER_NAME,
2195 	.dev_name       = DEV_NAME,
2196 	.major          = SERIAL_IMX_MAJOR,
2197 	.minor          = MINOR_START,
2198 	.nr             = ARRAY_SIZE(imx_uart_ports),
2199 	.cons           = IMX_CONSOLE,
2200 };
2201 
2202 static enum hrtimer_restart imx_trigger_start_tx(struct hrtimer *t)
2203 {
2204 	struct imx_port *sport = container_of(t, struct imx_port, trigger_start_tx);
2205 	unsigned long flags;
2206 
2207 	spin_lock_irqsave(&sport->port.lock, flags);
2208 	if (sport->tx_state == WAIT_AFTER_RTS)
2209 		imx_uart_start_tx(&sport->port);
2210 	spin_unlock_irqrestore(&sport->port.lock, flags);
2211 
2212 	return HRTIMER_NORESTART;
2213 }
2214 
2215 static enum hrtimer_restart imx_trigger_stop_tx(struct hrtimer *t)
2216 {
2217 	struct imx_port *sport = container_of(t, struct imx_port, trigger_stop_tx);
2218 	unsigned long flags;
2219 
2220 	spin_lock_irqsave(&sport->port.lock, flags);
2221 	if (sport->tx_state == WAIT_AFTER_SEND)
2222 		imx_uart_stop_tx(&sport->port);
2223 	spin_unlock_irqrestore(&sport->port.lock, flags);
2224 
2225 	return HRTIMER_NORESTART;
2226 }
2227 
2228 static const struct serial_rs485 imx_rs485_supported = {
2229 	.flags = SER_RS485_ENABLED | SER_RS485_RTS_ON_SEND | SER_RS485_RTS_AFTER_SEND |
2230 		 SER_RS485_RX_DURING_TX,
2231 	.delay_rts_before_send = 1,
2232 	.delay_rts_after_send = 1,
2233 };
2234 
2235 /* Default RX DMA buffer configuration */
2236 #define RX_DMA_PERIODS		16
2237 #define RX_DMA_PERIOD_LEN	(PAGE_SIZE / 4)
2238 
2239 static int imx_uart_probe(struct platform_device *pdev)
2240 {
2241 	struct device_node *np = pdev->dev.of_node;
2242 	struct imx_port *sport;
2243 	void __iomem *base;
2244 	u32 dma_buf_conf[2];
2245 	int ret = 0;
2246 	u32 ucr1, ucr2, uts;
2247 	struct resource *res;
2248 	int txirq, rxirq, rtsirq;
2249 
2250 	sport = devm_kzalloc(&pdev->dev, sizeof(*sport), GFP_KERNEL);
2251 	if (!sport)
2252 		return -ENOMEM;
2253 
2254 	sport->devdata = of_device_get_match_data(&pdev->dev);
2255 
2256 	ret = of_alias_get_id(np, "serial");
2257 	if (ret < 0) {
2258 		dev_err(&pdev->dev, "failed to get alias id, errno %d\n", ret);
2259 		return ret;
2260 	}
2261 	sport->port.line = ret;
2262 
2263 	sport->have_rtscts = of_property_read_bool(np, "uart-has-rtscts") ||
2264 		of_property_read_bool(np, "fsl,uart-has-rtscts"); /* deprecated */
2265 
2266 	sport->dte_mode = of_property_read_bool(np, "fsl,dte-mode");
2267 
2268 	sport->have_rtsgpio = of_property_present(np, "rts-gpios");
2269 
2270 	sport->inverted_tx = of_property_read_bool(np, "fsl,inverted-tx");
2271 
2272 	sport->inverted_rx = of_property_read_bool(np, "fsl,inverted-rx");
2273 
2274 	if (!of_property_read_u32_array(np, "fsl,dma-info", dma_buf_conf, 2)) {
2275 		sport->rx_period_length = dma_buf_conf[0];
2276 		sport->rx_periods = dma_buf_conf[1];
2277 	} else {
2278 		sport->rx_period_length = RX_DMA_PERIOD_LEN;
2279 		sport->rx_periods = RX_DMA_PERIODS;
2280 	}
2281 
2282 	if (sport->port.line >= ARRAY_SIZE(imx_uart_ports)) {
2283 		dev_err(&pdev->dev, "serial%d out of range\n",
2284 			sport->port.line);
2285 		return -EINVAL;
2286 	}
2287 
2288 	base = devm_platform_get_and_ioremap_resource(pdev, 0, &res);
2289 	if (IS_ERR(base))
2290 		return PTR_ERR(base);
2291 
2292 	rxirq = platform_get_irq(pdev, 0);
2293 	if (rxirq < 0)
2294 		return rxirq;
2295 	txirq = platform_get_irq_optional(pdev, 1);
2296 	rtsirq = platform_get_irq_optional(pdev, 2);
2297 
2298 	sport->port.dev = &pdev->dev;
2299 	sport->port.mapbase = res->start;
2300 	sport->port.membase = base;
2301 	sport->port.type = PORT_IMX;
2302 	sport->port.iotype = UPIO_MEM;
2303 	sport->port.irq = rxirq;
2304 	sport->port.fifosize = 32;
2305 	sport->port.has_sysrq = IS_ENABLED(CONFIG_SERIAL_IMX_CONSOLE);
2306 	sport->port.ops = &imx_uart_pops;
2307 	sport->port.rs485_config = imx_uart_rs485_config;
2308 	/* RTS is required to control the RS485 transmitter */
2309 	if (sport->have_rtscts || sport->have_rtsgpio)
2310 		sport->port.rs485_supported = imx_rs485_supported;
2311 	sport->port.flags = UPF_BOOT_AUTOCONF;
2312 	timer_setup(&sport->timer, imx_uart_timeout, 0);
2313 
2314 	sport->gpios = mctrl_gpio_init(&sport->port, 0);
2315 	if (IS_ERR(sport->gpios))
2316 		return PTR_ERR(sport->gpios);
2317 
2318 	sport->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
2319 	if (IS_ERR(sport->clk_ipg)) {
2320 		ret = PTR_ERR(sport->clk_ipg);
2321 		dev_err(&pdev->dev, "failed to get ipg clk: %d\n", ret);
2322 		return ret;
2323 	}
2324 
2325 	sport->clk_per = devm_clk_get(&pdev->dev, "per");
2326 	if (IS_ERR(sport->clk_per)) {
2327 		ret = PTR_ERR(sport->clk_per);
2328 		dev_err(&pdev->dev, "failed to get per clk: %d\n", ret);
2329 		return ret;
2330 	}
2331 
2332 	sport->port.uartclk = clk_get_rate(sport->clk_per);
2333 
2334 	/* For register access, we only need to enable the ipg clock. */
2335 	ret = clk_prepare_enable(sport->clk_ipg);
2336 	if (ret) {
2337 		dev_err(&pdev->dev, "failed to enable ipg clk: %d\n", ret);
2338 		return ret;
2339 	}
2340 
2341 	ret = uart_get_rs485_mode(&sport->port);
2342 	if (ret)
2343 		goto err_clk;
2344 
2345 	/*
2346 	 * If using the i.MX UART RTS/CTS control then the RTS (CTS_B)
2347 	 * signal cannot be set low during transmission in case the
2348 	 * receiver is off (limitation of the i.MX UART IP).
2349 	 */
2350 	if (sport->port.rs485.flags & SER_RS485_ENABLED &&
2351 	    sport->have_rtscts && !sport->have_rtsgpio &&
2352 	    (!(sport->port.rs485.flags & SER_RS485_RTS_ON_SEND) &&
2353 	     !(sport->port.rs485.flags & SER_RS485_RX_DURING_TX)))
2354 		dev_err(&pdev->dev,
2355 			"low-active RTS not possible when receiver is off, enabling receiver\n");
2356 
2357 	/* Disable interrupts before requesting them */
2358 	ucr1 = imx_uart_readl(sport, UCR1);
2359 	ucr1 &= ~(UCR1_ADEN | UCR1_TRDYEN | UCR1_IDEN | UCR1_RRDYEN | UCR1_RTSDEN);
2360 	imx_uart_writel(sport, ucr1, UCR1);
2361 
2362 	/* Disable Ageing Timer interrupt */
2363 	ucr2 = imx_uart_readl(sport, UCR2);
2364 	ucr2 &= ~UCR2_ATEN;
2365 	imx_uart_writel(sport, ucr2, UCR2);
2366 
2367 	/*
2368 	 * In case RS485 is enabled without GPIO RTS control, the UART IP
2369 	 * is used to control CTS signal. Keep both the UART and Receiver
2370 	 * enabled, otherwise the UART IP pulls CTS signal always HIGH no
2371 	 * matter how the UCR2 CTSC and CTS bits are set. To prevent any
2372 	 * data from being fed into the RX FIFO, enable loopback mode in
2373 	 * UTS register, which disconnects the RX path from external RXD
2374 	 * pin and connects it to the Transceiver, which is disabled, so
2375 	 * no data can be fed to the RX FIFO that way.
2376 	 */
2377 	if (sport->port.rs485.flags & SER_RS485_ENABLED &&
2378 	    sport->have_rtscts && !sport->have_rtsgpio) {
2379 		uts = imx_uart_readl(sport, imx_uart_uts_reg(sport));
2380 		uts |= UTS_LOOP;
2381 		imx_uart_writel(sport, uts, imx_uart_uts_reg(sport));
2382 
2383 		ucr1 = imx_uart_readl(sport, UCR1);
2384 		ucr1 |= UCR1_UARTEN;
2385 		imx_uart_writel(sport, ucr1, UCR1);
2386 
2387 		ucr2 = imx_uart_readl(sport, UCR2);
2388 		ucr2 |= UCR2_RXEN;
2389 		imx_uart_writel(sport, ucr2, UCR2);
2390 	}
2391 
2392 	if (!imx_uart_is_imx1(sport) && sport->dte_mode) {
2393 		/*
2394 		 * The DCEDTE bit changes the direction of DSR, DCD, DTR and RI
2395 		 * and influences if UCR3_RI and UCR3_DCD changes the level of RI
2396 		 * and DCD (when they are outputs) or enables the respective
2397 		 * irqs. So set this bit early, i.e. before requesting irqs.
2398 		 */
2399 		u32 ufcr = imx_uart_readl(sport, UFCR);
2400 		if (!(ufcr & UFCR_DCEDTE))
2401 			imx_uart_writel(sport, ufcr | UFCR_DCEDTE, UFCR);
2402 
2403 		/*
2404 		 * Disable UCR3_RI and UCR3_DCD irqs. They are also not
2405 		 * enabled later because they cannot be cleared
2406 		 * (confirmed on i.MX25) which makes them unusable.
2407 		 */
2408 		imx_uart_writel(sport,
2409 				IMX21_UCR3_RXDMUXSEL | UCR3_ADNIMP | UCR3_DSR,
2410 				UCR3);
2411 
2412 	} else {
2413 		u32 ucr3 = UCR3_DSR;
2414 		u32 ufcr = imx_uart_readl(sport, UFCR);
2415 		if (ufcr & UFCR_DCEDTE)
2416 			imx_uart_writel(sport, ufcr & ~UFCR_DCEDTE, UFCR);
2417 
2418 		if (!imx_uart_is_imx1(sport))
2419 			ucr3 |= IMX21_UCR3_RXDMUXSEL | UCR3_ADNIMP;
2420 		imx_uart_writel(sport, ucr3, UCR3);
2421 	}
2422 
2423 	hrtimer_init(&sport->trigger_start_tx, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2424 	hrtimer_init(&sport->trigger_stop_tx, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2425 	sport->trigger_start_tx.function = imx_trigger_start_tx;
2426 	sport->trigger_stop_tx.function = imx_trigger_stop_tx;
2427 
2428 	/*
2429 	 * Allocate the IRQ(s) i.MX1 has three interrupts whereas later
2430 	 * chips only have one interrupt.
2431 	 */
2432 	if (txirq > 0) {
2433 		ret = devm_request_irq(&pdev->dev, rxirq, imx_uart_rxint, 0,
2434 				       dev_name(&pdev->dev), sport);
2435 		if (ret) {
2436 			dev_err(&pdev->dev, "failed to request rx irq: %d\n",
2437 				ret);
2438 			goto err_clk;
2439 		}
2440 
2441 		ret = devm_request_irq(&pdev->dev, txirq, imx_uart_txint, 0,
2442 				       dev_name(&pdev->dev), sport);
2443 		if (ret) {
2444 			dev_err(&pdev->dev, "failed to request tx irq: %d\n",
2445 				ret);
2446 			goto err_clk;
2447 		}
2448 
2449 		ret = devm_request_irq(&pdev->dev, rtsirq, imx_uart_rtsint, 0,
2450 				       dev_name(&pdev->dev), sport);
2451 		if (ret) {
2452 			dev_err(&pdev->dev, "failed to request rts irq: %d\n",
2453 				ret);
2454 			goto err_clk;
2455 		}
2456 	} else {
2457 		ret = devm_request_irq(&pdev->dev, rxirq, imx_uart_int, 0,
2458 				       dev_name(&pdev->dev), sport);
2459 		if (ret) {
2460 			dev_err(&pdev->dev, "failed to request irq: %d\n", ret);
2461 			goto err_clk;
2462 		}
2463 	}
2464 
2465 	imx_uart_ports[sport->port.line] = sport;
2466 
2467 	platform_set_drvdata(pdev, sport);
2468 
2469 	ret = uart_add_one_port(&imx_uart_uart_driver, &sport->port);
2470 
2471 err_clk:
2472 	clk_disable_unprepare(sport->clk_ipg);
2473 
2474 	return ret;
2475 }
2476 
2477 static int imx_uart_remove(struct platform_device *pdev)
2478 {
2479 	struct imx_port *sport = platform_get_drvdata(pdev);
2480 
2481 	uart_remove_one_port(&imx_uart_uart_driver, &sport->port);
2482 
2483 	return 0;
2484 }
2485 
2486 static void imx_uart_restore_context(struct imx_port *sport)
2487 {
2488 	unsigned long flags;
2489 
2490 	spin_lock_irqsave(&sport->port.lock, flags);
2491 	if (!sport->context_saved) {
2492 		spin_unlock_irqrestore(&sport->port.lock, flags);
2493 		return;
2494 	}
2495 
2496 	imx_uart_writel(sport, sport->saved_reg[4], UFCR);
2497 	imx_uart_writel(sport, sport->saved_reg[5], UESC);
2498 	imx_uart_writel(sport, sport->saved_reg[6], UTIM);
2499 	imx_uart_writel(sport, sport->saved_reg[7], UBIR);
2500 	imx_uart_writel(sport, sport->saved_reg[8], UBMR);
2501 	imx_uart_writel(sport, sport->saved_reg[9], IMX21_UTS);
2502 	imx_uart_writel(sport, sport->saved_reg[0], UCR1);
2503 	imx_uart_writel(sport, sport->saved_reg[1] | UCR2_SRST, UCR2);
2504 	imx_uart_writel(sport, sport->saved_reg[2], UCR3);
2505 	imx_uart_writel(sport, sport->saved_reg[3], UCR4);
2506 	sport->context_saved = false;
2507 	spin_unlock_irqrestore(&sport->port.lock, flags);
2508 }
2509 
2510 static void imx_uart_save_context(struct imx_port *sport)
2511 {
2512 	unsigned long flags;
2513 
2514 	/* Save necessary regs */
2515 	spin_lock_irqsave(&sport->port.lock, flags);
2516 	sport->saved_reg[0] = imx_uart_readl(sport, UCR1);
2517 	sport->saved_reg[1] = imx_uart_readl(sport, UCR2);
2518 	sport->saved_reg[2] = imx_uart_readl(sport, UCR3);
2519 	sport->saved_reg[3] = imx_uart_readl(sport, UCR4);
2520 	sport->saved_reg[4] = imx_uart_readl(sport, UFCR);
2521 	sport->saved_reg[5] = imx_uart_readl(sport, UESC);
2522 	sport->saved_reg[6] = imx_uart_readl(sport, UTIM);
2523 	sport->saved_reg[7] = imx_uart_readl(sport, UBIR);
2524 	sport->saved_reg[8] = imx_uart_readl(sport, UBMR);
2525 	sport->saved_reg[9] = imx_uart_readl(sport, IMX21_UTS);
2526 	sport->context_saved = true;
2527 	spin_unlock_irqrestore(&sport->port.lock, flags);
2528 }
2529 
2530 static void imx_uart_enable_wakeup(struct imx_port *sport, bool on)
2531 {
2532 	u32 ucr3;
2533 
2534 	ucr3 = imx_uart_readl(sport, UCR3);
2535 	if (on) {
2536 		imx_uart_writel(sport, USR1_AWAKE, USR1);
2537 		ucr3 |= UCR3_AWAKEN;
2538 	} else {
2539 		ucr3 &= ~UCR3_AWAKEN;
2540 	}
2541 	imx_uart_writel(sport, ucr3, UCR3);
2542 
2543 	if (sport->have_rtscts) {
2544 		u32 ucr1 = imx_uart_readl(sport, UCR1);
2545 		if (on) {
2546 			imx_uart_writel(sport, USR1_RTSD, USR1);
2547 			ucr1 |= UCR1_RTSDEN;
2548 		} else {
2549 			ucr1 &= ~UCR1_RTSDEN;
2550 		}
2551 		imx_uart_writel(sport, ucr1, UCR1);
2552 	}
2553 }
2554 
2555 static int imx_uart_suspend_noirq(struct device *dev)
2556 {
2557 	struct imx_port *sport = dev_get_drvdata(dev);
2558 
2559 	imx_uart_save_context(sport);
2560 
2561 	clk_disable(sport->clk_ipg);
2562 
2563 	pinctrl_pm_select_sleep_state(dev);
2564 
2565 	return 0;
2566 }
2567 
2568 static int imx_uart_resume_noirq(struct device *dev)
2569 {
2570 	struct imx_port *sport = dev_get_drvdata(dev);
2571 	int ret;
2572 
2573 	pinctrl_pm_select_default_state(dev);
2574 
2575 	ret = clk_enable(sport->clk_ipg);
2576 	if (ret)
2577 		return ret;
2578 
2579 	imx_uart_restore_context(sport);
2580 
2581 	return 0;
2582 }
2583 
2584 static int imx_uart_suspend(struct device *dev)
2585 {
2586 	struct imx_port *sport = dev_get_drvdata(dev);
2587 	int ret;
2588 
2589 	uart_suspend_port(&imx_uart_uart_driver, &sport->port);
2590 	disable_irq(sport->port.irq);
2591 
2592 	ret = clk_prepare_enable(sport->clk_ipg);
2593 	if (ret)
2594 		return ret;
2595 
2596 	/* enable wakeup from i.MX UART */
2597 	imx_uart_enable_wakeup(sport, true);
2598 
2599 	return 0;
2600 }
2601 
2602 static int imx_uart_resume(struct device *dev)
2603 {
2604 	struct imx_port *sport = dev_get_drvdata(dev);
2605 
2606 	/* disable wakeup from i.MX UART */
2607 	imx_uart_enable_wakeup(sport, false);
2608 
2609 	uart_resume_port(&imx_uart_uart_driver, &sport->port);
2610 	enable_irq(sport->port.irq);
2611 
2612 	clk_disable_unprepare(sport->clk_ipg);
2613 
2614 	return 0;
2615 }
2616 
2617 static int imx_uart_freeze(struct device *dev)
2618 {
2619 	struct imx_port *sport = dev_get_drvdata(dev);
2620 
2621 	uart_suspend_port(&imx_uart_uart_driver, &sport->port);
2622 
2623 	return clk_prepare_enable(sport->clk_ipg);
2624 }
2625 
2626 static int imx_uart_thaw(struct device *dev)
2627 {
2628 	struct imx_port *sport = dev_get_drvdata(dev);
2629 
2630 	uart_resume_port(&imx_uart_uart_driver, &sport->port);
2631 
2632 	clk_disable_unprepare(sport->clk_ipg);
2633 
2634 	return 0;
2635 }
2636 
2637 static const struct dev_pm_ops imx_uart_pm_ops = {
2638 	.suspend_noirq = imx_uart_suspend_noirq,
2639 	.resume_noirq = imx_uart_resume_noirq,
2640 	.freeze_noirq = imx_uart_suspend_noirq,
2641 	.thaw_noirq = imx_uart_resume_noirq,
2642 	.restore_noirq = imx_uart_resume_noirq,
2643 	.suspend = imx_uart_suspend,
2644 	.resume = imx_uart_resume,
2645 	.freeze = imx_uart_freeze,
2646 	.thaw = imx_uart_thaw,
2647 	.restore = imx_uart_thaw,
2648 };
2649 
2650 static struct platform_driver imx_uart_platform_driver = {
2651 	.probe = imx_uart_probe,
2652 	.remove = imx_uart_remove,
2653 
2654 	.driver = {
2655 		.name = "imx-uart",
2656 		.of_match_table = imx_uart_dt_ids,
2657 		.pm = &imx_uart_pm_ops,
2658 	},
2659 };
2660 
2661 static int __init imx_uart_init(void)
2662 {
2663 	int ret = uart_register_driver(&imx_uart_uart_driver);
2664 
2665 	if (ret)
2666 		return ret;
2667 
2668 	ret = platform_driver_register(&imx_uart_platform_driver);
2669 	if (ret != 0)
2670 		uart_unregister_driver(&imx_uart_uart_driver);
2671 
2672 	return ret;
2673 }
2674 
2675 static void __exit imx_uart_exit(void)
2676 {
2677 	platform_driver_unregister(&imx_uart_platform_driver);
2678 	uart_unregister_driver(&imx_uart_uart_driver);
2679 }
2680 
2681 module_init(imx_uart_init);
2682 module_exit(imx_uart_exit);
2683 
2684 MODULE_AUTHOR("Sascha Hauer");
2685 MODULE_DESCRIPTION("IMX generic serial port driver");
2686 MODULE_LICENSE("GPL");
2687 MODULE_ALIAS("platform:imx-uart");
2688