1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Driver for Motorola/Freescale IMX serial ports 4 * 5 * Based on drivers/char/serial.c, by Linus Torvalds, Theodore Ts'o. 6 * 7 * Author: Sascha Hauer <sascha@saschahauer.de> 8 * Copyright (C) 2004 Pengutronix 9 */ 10 11 #include <linux/module.h> 12 #include <linux/ioport.h> 13 #include <linux/init.h> 14 #include <linux/console.h> 15 #include <linux/sysrq.h> 16 #include <linux/platform_device.h> 17 #include <linux/tty.h> 18 #include <linux/tty_flip.h> 19 #include <linux/serial_core.h> 20 #include <linux/serial.h> 21 #include <linux/clk.h> 22 #include <linux/delay.h> 23 #include <linux/ktime.h> 24 #include <linux/pinctrl/consumer.h> 25 #include <linux/rational.h> 26 #include <linux/slab.h> 27 #include <linux/of.h> 28 #include <linux/io.h> 29 #include <linux/dma-mapping.h> 30 31 #include <asm/irq.h> 32 #include <linux/dma/imx-dma.h> 33 34 #include "serial_mctrl_gpio.h" 35 36 /* Register definitions */ 37 #define URXD0 0x0 /* Receiver Register */ 38 #define URTX0 0x40 /* Transmitter Register */ 39 #define UCR1 0x80 /* Control Register 1 */ 40 #define UCR2 0x84 /* Control Register 2 */ 41 #define UCR3 0x88 /* Control Register 3 */ 42 #define UCR4 0x8c /* Control Register 4 */ 43 #define UFCR 0x90 /* FIFO Control Register */ 44 #define USR1 0x94 /* Status Register 1 */ 45 #define USR2 0x98 /* Status Register 2 */ 46 #define UESC 0x9c /* Escape Character Register */ 47 #define UTIM 0xa0 /* Escape Timer Register */ 48 #define UBIR 0xa4 /* BRM Incremental Register */ 49 #define UBMR 0xa8 /* BRM Modulator Register */ 50 #define UBRC 0xac /* Baud Rate Count Register */ 51 #define IMX21_ONEMS 0xb0 /* One Millisecond register */ 52 #define IMX1_UTS 0xd0 /* UART Test Register on i.mx1 */ 53 #define IMX21_UTS 0xb4 /* UART Test Register on all other i.mx*/ 54 55 /* UART Control Register Bit Fields.*/ 56 #define URXD_DUMMY_READ (1<<16) 57 #define URXD_CHARRDY (1<<15) 58 #define URXD_ERR (1<<14) 59 #define URXD_OVRRUN (1<<13) 60 #define URXD_FRMERR (1<<12) 61 #define URXD_BRK (1<<11) 62 #define URXD_PRERR (1<<10) 63 #define URXD_RX_DATA (0xFF<<0) 64 #define UCR1_ADEN (1<<15) /* Auto detect interrupt */ 65 #define UCR1_ADBR (1<<14) /* Auto detect baud rate */ 66 #define UCR1_TRDYEN (1<<13) /* Transmitter ready interrupt enable */ 67 #define UCR1_IDEN (1<<12) /* Idle condition interrupt */ 68 #define UCR1_ICD_REG(x) (((x) & 3) << 10) /* idle condition detect */ 69 #define UCR1_RRDYEN (1<<9) /* Recv ready interrupt enable */ 70 #define UCR1_RXDMAEN (1<<8) /* Recv ready DMA enable */ 71 #define UCR1_IREN (1<<7) /* Infrared interface enable */ 72 #define UCR1_TXMPTYEN (1<<6) /* Transimitter empty interrupt enable */ 73 #define UCR1_RTSDEN (1<<5) /* RTS delta interrupt enable */ 74 #define UCR1_SNDBRK (1<<4) /* Send break */ 75 #define UCR1_TXDMAEN (1<<3) /* Transmitter ready DMA enable */ 76 #define IMX1_UCR1_UARTCLKEN (1<<2) /* UART clock enabled, i.mx1 only */ 77 #define UCR1_ATDMAEN (1<<2) /* Aging DMA Timer Enable */ 78 #define UCR1_DOZE (1<<1) /* Doze */ 79 #define UCR1_UARTEN (1<<0) /* UART enabled */ 80 #define UCR2_ESCI (1<<15) /* Escape seq interrupt enable */ 81 #define UCR2_IRTS (1<<14) /* Ignore RTS pin */ 82 #define UCR2_CTSC (1<<13) /* CTS pin control */ 83 #define UCR2_CTS (1<<12) /* Clear to send */ 84 #define UCR2_ESCEN (1<<11) /* Escape enable */ 85 #define UCR2_PREN (1<<8) /* Parity enable */ 86 #define UCR2_PROE (1<<7) /* Parity odd/even */ 87 #define UCR2_STPB (1<<6) /* Stop */ 88 #define UCR2_WS (1<<5) /* Word size */ 89 #define UCR2_RTSEN (1<<4) /* Request to send interrupt enable */ 90 #define UCR2_ATEN (1<<3) /* Aging Timer Enable */ 91 #define UCR2_TXEN (1<<2) /* Transmitter enabled */ 92 #define UCR2_RXEN (1<<1) /* Receiver enabled */ 93 #define UCR2_SRST (1<<0) /* SW reset */ 94 #define UCR3_DTREN (1<<13) /* DTR interrupt enable */ 95 #define UCR3_PARERREN (1<<12) /* Parity enable */ 96 #define UCR3_FRAERREN (1<<11) /* Frame error interrupt enable */ 97 #define UCR3_DSR (1<<10) /* Data set ready */ 98 #define UCR3_DCD (1<<9) /* Data carrier detect */ 99 #define UCR3_RI (1<<8) /* Ring indicator */ 100 #define UCR3_ADNIMP (1<<7) /* Autobaud Detection Not Improved */ 101 #define UCR3_RXDSEN (1<<6) /* Receive status interrupt enable */ 102 #define UCR3_AIRINTEN (1<<5) /* Async IR wake interrupt enable */ 103 #define UCR3_AWAKEN (1<<4) /* Async wake interrupt enable */ 104 #define UCR3_DTRDEN (1<<3) /* Data Terminal Ready Delta Enable. */ 105 #define IMX21_UCR3_RXDMUXSEL (1<<2) /* RXD Muxed Input Select */ 106 #define UCR3_INVT (1<<1) /* Inverted Infrared transmission */ 107 #define UCR3_BPEN (1<<0) /* Preset registers enable */ 108 #define UCR4_CTSTL_SHF 10 /* CTS trigger level shift */ 109 #define UCR4_CTSTL_MASK 0x3F /* CTS trigger is 6 bits wide */ 110 #define UCR4_INVR (1<<9) /* Inverted infrared reception */ 111 #define UCR4_ENIRI (1<<8) /* Serial infrared interrupt enable */ 112 #define UCR4_WKEN (1<<7) /* Wake interrupt enable */ 113 #define UCR4_REF16 (1<<6) /* Ref freq 16 MHz */ 114 #define UCR4_IDDMAEN (1<<6) /* DMA IDLE Condition Detected */ 115 #define UCR4_IRSC (1<<5) /* IR special case */ 116 #define UCR4_TCEN (1<<3) /* Transmit complete interrupt enable */ 117 #define UCR4_BKEN (1<<2) /* Break condition interrupt enable */ 118 #define UCR4_OREN (1<<1) /* Receiver overrun interrupt enable */ 119 #define UCR4_DREN (1<<0) /* Recv data ready interrupt enable */ 120 #define UFCR_RXTL_SHF 0 /* Receiver trigger level shift */ 121 #define UFCR_DCEDTE (1<<6) /* DCE/DTE mode select */ 122 #define UFCR_RFDIV (7<<7) /* Reference freq divider mask */ 123 #define UFCR_RFDIV_REG(x) (((x) < 7 ? 6 - (x) : 6) << 7) 124 #define UFCR_TXTL_SHF 10 /* Transmitter trigger level shift */ 125 #define USR1_PARITYERR (1<<15) /* Parity error interrupt flag */ 126 #define USR1_RTSS (1<<14) /* RTS pin status */ 127 #define USR1_TRDY (1<<13) /* Transmitter ready interrupt/dma flag */ 128 #define USR1_RTSD (1<<12) /* RTS delta */ 129 #define USR1_ESCF (1<<11) /* Escape seq interrupt flag */ 130 #define USR1_FRAMERR (1<<10) /* Frame error interrupt flag */ 131 #define USR1_RRDY (1<<9) /* Receiver ready interrupt/dma flag */ 132 #define USR1_AGTIM (1<<8) /* Ageing timer interrupt flag */ 133 #define USR1_DTRD (1<<7) /* DTR Delta */ 134 #define USR1_RXDS (1<<6) /* Receiver idle interrupt flag */ 135 #define USR1_AIRINT (1<<5) /* Async IR wake interrupt flag */ 136 #define USR1_AWAKE (1<<4) /* Aysnc wake interrupt flag */ 137 #define USR2_ADET (1<<15) /* Auto baud rate detect complete */ 138 #define USR2_TXFE (1<<14) /* Transmit buffer FIFO empty */ 139 #define USR2_DTRF (1<<13) /* DTR edge interrupt flag */ 140 #define USR2_IDLE (1<<12) /* Idle condition */ 141 #define USR2_RIDELT (1<<10) /* Ring Interrupt Delta */ 142 #define USR2_RIIN (1<<9) /* Ring Indicator Input */ 143 #define USR2_IRINT (1<<8) /* Serial infrared interrupt flag */ 144 #define USR2_WAKE (1<<7) /* Wake */ 145 #define USR2_DCDIN (1<<5) /* Data Carrier Detect Input */ 146 #define USR2_RTSF (1<<4) /* RTS edge interrupt flag */ 147 #define USR2_TXDC (1<<3) /* Transmitter complete */ 148 #define USR2_BRCD (1<<2) /* Break condition */ 149 #define USR2_ORE (1<<1) /* Overrun error */ 150 #define USR2_RDR (1<<0) /* Recv data ready */ 151 #define UTS_FRCPERR (1<<13) /* Force parity error */ 152 #define UTS_LOOP (1<<12) /* Loop tx and rx */ 153 #define UTS_TXEMPTY (1<<6) /* TxFIFO empty */ 154 #define UTS_RXEMPTY (1<<5) /* RxFIFO empty */ 155 #define UTS_TXFULL (1<<4) /* TxFIFO full */ 156 #define UTS_RXFULL (1<<3) /* RxFIFO full */ 157 #define UTS_SOFTRST (1<<0) /* Software reset */ 158 159 /* We've been assigned a range on the "Low-density serial ports" major */ 160 #define SERIAL_IMX_MAJOR 207 161 #define MINOR_START 16 162 #define DEV_NAME "ttymxc" 163 164 /* 165 * This determines how often we check the modem status signals 166 * for any change. They generally aren't connected to an IRQ 167 * so we have to poll them. We also check immediately before 168 * filling the TX fifo incase CTS has been dropped. 169 */ 170 #define MCTRL_TIMEOUT (250*HZ/1000) 171 172 #define DRIVER_NAME "IMX-uart" 173 174 #define UART_NR 8 175 176 /* i.MX21 type uart runs on all i.mx except i.MX1 and i.MX6q */ 177 enum imx_uart_type { 178 IMX1_UART, 179 IMX21_UART, 180 IMX53_UART, 181 IMX6Q_UART, 182 }; 183 184 /* device type dependent stuff */ 185 struct imx_uart_data { 186 unsigned uts_reg; 187 enum imx_uart_type devtype; 188 }; 189 190 enum imx_tx_state { 191 OFF, 192 WAIT_AFTER_RTS, 193 SEND, 194 WAIT_AFTER_SEND, 195 }; 196 197 struct imx_port { 198 struct uart_port port; 199 struct timer_list timer; 200 unsigned int old_status; 201 unsigned int have_rtscts:1; 202 unsigned int have_rtsgpio:1; 203 unsigned int dte_mode:1; 204 unsigned int inverted_tx:1; 205 unsigned int inverted_rx:1; 206 struct clk *clk_ipg; 207 struct clk *clk_per; 208 const struct imx_uart_data *devdata; 209 210 struct mctrl_gpios *gpios; 211 212 /* counter to stop 0xff flood */ 213 int idle_counter; 214 215 /* DMA fields */ 216 unsigned int dma_is_enabled:1; 217 unsigned int dma_is_rxing:1; 218 unsigned int dma_is_txing:1; 219 struct dma_chan *dma_chan_rx, *dma_chan_tx; 220 struct scatterlist rx_sgl, tx_sgl[2]; 221 void *rx_buf; 222 struct circ_buf rx_ring; 223 unsigned int rx_buf_size; 224 unsigned int rx_period_length; 225 unsigned int rx_periods; 226 dma_cookie_t rx_cookie; 227 unsigned int tx_bytes; 228 unsigned int dma_tx_nents; 229 unsigned int saved_reg[10]; 230 bool context_saved; 231 232 enum imx_tx_state tx_state; 233 struct hrtimer trigger_start_tx; 234 struct hrtimer trigger_stop_tx; 235 }; 236 237 struct imx_port_ucrs { 238 unsigned int ucr1; 239 unsigned int ucr2; 240 unsigned int ucr3; 241 }; 242 243 static struct imx_uart_data imx_uart_devdata[] = { 244 [IMX1_UART] = { 245 .uts_reg = IMX1_UTS, 246 .devtype = IMX1_UART, 247 }, 248 [IMX21_UART] = { 249 .uts_reg = IMX21_UTS, 250 .devtype = IMX21_UART, 251 }, 252 [IMX53_UART] = { 253 .uts_reg = IMX21_UTS, 254 .devtype = IMX53_UART, 255 }, 256 [IMX6Q_UART] = { 257 .uts_reg = IMX21_UTS, 258 .devtype = IMX6Q_UART, 259 }, 260 }; 261 262 static const struct of_device_id imx_uart_dt_ids[] = { 263 { .compatible = "fsl,imx6q-uart", .data = &imx_uart_devdata[IMX6Q_UART], }, 264 { .compatible = "fsl,imx53-uart", .data = &imx_uart_devdata[IMX53_UART], }, 265 { .compatible = "fsl,imx1-uart", .data = &imx_uart_devdata[IMX1_UART], }, 266 { .compatible = "fsl,imx21-uart", .data = &imx_uart_devdata[IMX21_UART], }, 267 { /* sentinel */ } 268 }; 269 MODULE_DEVICE_TABLE(of, imx_uart_dt_ids); 270 271 static inline void imx_uart_writel(struct imx_port *sport, u32 val, u32 offset) 272 { 273 writel(val, sport->port.membase + offset); 274 } 275 276 static inline u32 imx_uart_readl(struct imx_port *sport, u32 offset) 277 { 278 return readl(sport->port.membase + offset); 279 } 280 281 static inline unsigned imx_uart_uts_reg(struct imx_port *sport) 282 { 283 return sport->devdata->uts_reg; 284 } 285 286 static inline int imx_uart_is_imx1(struct imx_port *sport) 287 { 288 return sport->devdata->devtype == IMX1_UART; 289 } 290 291 /* 292 * Save and restore functions for UCR1, UCR2 and UCR3 registers 293 */ 294 #if IS_ENABLED(CONFIG_SERIAL_IMX_CONSOLE) 295 static void imx_uart_ucrs_save(struct imx_port *sport, 296 struct imx_port_ucrs *ucr) 297 { 298 /* save control registers */ 299 ucr->ucr1 = imx_uart_readl(sport, UCR1); 300 ucr->ucr2 = imx_uart_readl(sport, UCR2); 301 ucr->ucr3 = imx_uart_readl(sport, UCR3); 302 } 303 304 static void imx_uart_ucrs_restore(struct imx_port *sport, 305 struct imx_port_ucrs *ucr) 306 { 307 /* restore control registers */ 308 imx_uart_writel(sport, ucr->ucr1, UCR1); 309 imx_uart_writel(sport, ucr->ucr2, UCR2); 310 imx_uart_writel(sport, ucr->ucr3, UCR3); 311 } 312 #endif 313 314 /* called with port.lock taken and irqs caller dependent */ 315 static void imx_uart_rts_active(struct imx_port *sport, u32 *ucr2) 316 { 317 *ucr2 &= ~(UCR2_CTSC | UCR2_CTS); 318 319 mctrl_gpio_set(sport->gpios, sport->port.mctrl | TIOCM_RTS); 320 } 321 322 /* called with port.lock taken and irqs caller dependent */ 323 static void imx_uart_rts_inactive(struct imx_port *sport, u32 *ucr2) 324 { 325 *ucr2 &= ~UCR2_CTSC; 326 *ucr2 |= UCR2_CTS; 327 328 mctrl_gpio_set(sport->gpios, sport->port.mctrl & ~TIOCM_RTS); 329 } 330 331 static void start_hrtimer_ms(struct hrtimer *hrt, unsigned long msec) 332 { 333 hrtimer_start(hrt, ms_to_ktime(msec), HRTIMER_MODE_REL); 334 } 335 336 /* called with port.lock taken and irqs off */ 337 static void imx_uart_soft_reset(struct imx_port *sport) 338 { 339 int i = 10; 340 u32 ucr2, ubir, ubmr, uts; 341 342 /* 343 * According to the Reference Manual description of the UART SRST bit: 344 * 345 * "Reset the transmit and receive state machines, 346 * all FIFOs and register USR1, USR2, UBIR, UBMR, UBRC, URXD, UTXD 347 * and UTS[6-3]". 348 * 349 * We don't need to restore the old values from USR1, USR2, URXD and 350 * UTXD. UBRC is read only, so only save/restore the other three 351 * registers. 352 */ 353 ubir = imx_uart_readl(sport, UBIR); 354 ubmr = imx_uart_readl(sport, UBMR); 355 uts = imx_uart_readl(sport, IMX21_UTS); 356 357 ucr2 = imx_uart_readl(sport, UCR2); 358 imx_uart_writel(sport, ucr2 & ~UCR2_SRST, UCR2); 359 360 while (!(imx_uart_readl(sport, UCR2) & UCR2_SRST) && (--i > 0)) 361 udelay(1); 362 363 /* Restore the registers */ 364 imx_uart_writel(sport, ubir, UBIR); 365 imx_uart_writel(sport, ubmr, UBMR); 366 imx_uart_writel(sport, uts, IMX21_UTS); 367 368 sport->idle_counter = 0; 369 } 370 371 static void imx_uart_disable_loopback_rs485(struct imx_port *sport) 372 { 373 unsigned int uts; 374 375 /* See SER_RS485_ENABLED/UTS_LOOP comment in imx_uart_probe() */ 376 uts = imx_uart_readl(sport, imx_uart_uts_reg(sport)); 377 uts &= ~UTS_LOOP; 378 imx_uart_writel(sport, uts, imx_uart_uts_reg(sport)); 379 } 380 381 /* called with port.lock taken and irqs off */ 382 static void imx_uart_start_rx(struct uart_port *port) 383 { 384 struct imx_port *sport = (struct imx_port *)port; 385 unsigned int ucr1, ucr2; 386 387 ucr1 = imx_uart_readl(sport, UCR1); 388 ucr2 = imx_uart_readl(sport, UCR2); 389 390 ucr2 |= UCR2_RXEN; 391 392 if (sport->dma_is_enabled) { 393 ucr1 |= UCR1_RXDMAEN | UCR1_ATDMAEN; 394 } else { 395 ucr1 |= UCR1_RRDYEN; 396 ucr2 |= UCR2_ATEN; 397 } 398 399 /* Write UCR2 first as it includes RXEN */ 400 imx_uart_writel(sport, ucr2, UCR2); 401 imx_uart_writel(sport, ucr1, UCR1); 402 imx_uart_disable_loopback_rs485(sport); 403 } 404 405 /* called with port.lock taken and irqs off */ 406 static void imx_uart_stop_tx(struct uart_port *port) 407 { 408 struct imx_port *sport = (struct imx_port *)port; 409 u32 ucr1, ucr4, usr2; 410 411 if (sport->tx_state == OFF) 412 return; 413 414 /* 415 * We are maybe in the SMP context, so if the DMA TX thread is running 416 * on other cpu, we have to wait for it to finish. 417 */ 418 if (sport->dma_is_txing) 419 return; 420 421 ucr1 = imx_uart_readl(sport, UCR1); 422 imx_uart_writel(sport, ucr1 & ~UCR1_TRDYEN, UCR1); 423 424 ucr4 = imx_uart_readl(sport, UCR4); 425 usr2 = imx_uart_readl(sport, USR2); 426 if ((!(usr2 & USR2_TXDC)) && (ucr4 & UCR4_TCEN)) { 427 /* The shifter is still busy, so retry once TC triggers */ 428 return; 429 } 430 431 ucr4 &= ~UCR4_TCEN; 432 imx_uart_writel(sport, ucr4, UCR4); 433 434 /* in rs485 mode disable transmitter */ 435 if (port->rs485.flags & SER_RS485_ENABLED) { 436 if (sport->tx_state == SEND) { 437 sport->tx_state = WAIT_AFTER_SEND; 438 439 if (port->rs485.delay_rts_after_send > 0) { 440 start_hrtimer_ms(&sport->trigger_stop_tx, 441 port->rs485.delay_rts_after_send); 442 return; 443 } 444 445 /* continue without any delay */ 446 } 447 448 if (sport->tx_state == WAIT_AFTER_RTS || 449 sport->tx_state == WAIT_AFTER_SEND) { 450 u32 ucr2; 451 452 hrtimer_try_to_cancel(&sport->trigger_start_tx); 453 454 ucr2 = imx_uart_readl(sport, UCR2); 455 if (port->rs485.flags & SER_RS485_RTS_AFTER_SEND) 456 imx_uart_rts_active(sport, &ucr2); 457 else 458 imx_uart_rts_inactive(sport, &ucr2); 459 imx_uart_writel(sport, ucr2, UCR2); 460 461 if (!port->rs485_rx_during_tx_gpio) 462 imx_uart_start_rx(port); 463 464 sport->tx_state = OFF; 465 } 466 } else { 467 sport->tx_state = OFF; 468 } 469 } 470 471 static void imx_uart_stop_rx_with_loopback_ctrl(struct uart_port *port, bool loopback) 472 { 473 struct imx_port *sport = (struct imx_port *)port; 474 u32 ucr1, ucr2, ucr4, uts; 475 476 ucr1 = imx_uart_readl(sport, UCR1); 477 ucr2 = imx_uart_readl(sport, UCR2); 478 ucr4 = imx_uart_readl(sport, UCR4); 479 480 if (sport->dma_is_enabled) { 481 ucr1 &= ~(UCR1_RXDMAEN | UCR1_ATDMAEN); 482 } else { 483 ucr1 &= ~UCR1_RRDYEN; 484 ucr2 &= ~UCR2_ATEN; 485 ucr4 &= ~UCR4_OREN; 486 } 487 imx_uart_writel(sport, ucr1, UCR1); 488 imx_uart_writel(sport, ucr4, UCR4); 489 490 /* See SER_RS485_ENABLED/UTS_LOOP comment in imx_uart_probe() */ 491 if (port->rs485.flags & SER_RS485_ENABLED && 492 port->rs485.flags & SER_RS485_RTS_ON_SEND && 493 sport->have_rtscts && !sport->have_rtsgpio && loopback) { 494 uts = imx_uart_readl(sport, imx_uart_uts_reg(sport)); 495 uts |= UTS_LOOP; 496 imx_uart_writel(sport, uts, imx_uart_uts_reg(sport)); 497 ucr2 |= UCR2_RXEN; 498 } else { 499 ucr2 &= ~UCR2_RXEN; 500 } 501 502 imx_uart_writel(sport, ucr2, UCR2); 503 } 504 505 /* called with port.lock taken and irqs off */ 506 static void imx_uart_stop_rx(struct uart_port *port) 507 { 508 /* 509 * Stop RX and enable loopback in order to make sure RS485 bus 510 * is not blocked. Se comment in imx_uart_probe(). 511 */ 512 imx_uart_stop_rx_with_loopback_ctrl(port, true); 513 } 514 515 /* called with port.lock taken and irqs off */ 516 static void imx_uart_enable_ms(struct uart_port *port) 517 { 518 struct imx_port *sport = (struct imx_port *)port; 519 520 mod_timer(&sport->timer, jiffies); 521 522 mctrl_gpio_enable_ms(sport->gpios); 523 } 524 525 static void imx_uart_dma_tx(struct imx_port *sport); 526 527 /* called with port.lock taken and irqs off */ 528 static inline void imx_uart_transmit_buffer(struct imx_port *sport) 529 { 530 struct circ_buf *xmit = &sport->port.state->xmit; 531 532 if (sport->port.x_char) { 533 /* Send next char */ 534 imx_uart_writel(sport, sport->port.x_char, URTX0); 535 sport->port.icount.tx++; 536 sport->port.x_char = 0; 537 return; 538 } 539 540 if (uart_circ_empty(xmit) || uart_tx_stopped(&sport->port)) { 541 imx_uart_stop_tx(&sport->port); 542 return; 543 } 544 545 if (sport->dma_is_enabled) { 546 u32 ucr1; 547 /* 548 * We've just sent a X-char Ensure the TX DMA is enabled 549 * and the TX IRQ is disabled. 550 **/ 551 ucr1 = imx_uart_readl(sport, UCR1); 552 ucr1 &= ~UCR1_TRDYEN; 553 if (sport->dma_is_txing) { 554 ucr1 |= UCR1_TXDMAEN; 555 imx_uart_writel(sport, ucr1, UCR1); 556 } else { 557 imx_uart_writel(sport, ucr1, UCR1); 558 imx_uart_dma_tx(sport); 559 } 560 561 return; 562 } 563 564 while (!uart_circ_empty(xmit) && 565 !(imx_uart_readl(sport, imx_uart_uts_reg(sport)) & UTS_TXFULL)) { 566 /* send xmit->buf[xmit->tail] 567 * out the port here */ 568 imx_uart_writel(sport, xmit->buf[xmit->tail], URTX0); 569 uart_xmit_advance(&sport->port, 1); 570 } 571 572 if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS) 573 uart_write_wakeup(&sport->port); 574 575 if (uart_circ_empty(xmit)) 576 imx_uart_stop_tx(&sport->port); 577 } 578 579 static void imx_uart_dma_tx_callback(void *data) 580 { 581 struct imx_port *sport = data; 582 struct scatterlist *sgl = &sport->tx_sgl[0]; 583 struct circ_buf *xmit = &sport->port.state->xmit; 584 unsigned long flags; 585 u32 ucr1; 586 587 spin_lock_irqsave(&sport->port.lock, flags); 588 589 dma_unmap_sg(sport->port.dev, sgl, sport->dma_tx_nents, DMA_TO_DEVICE); 590 591 ucr1 = imx_uart_readl(sport, UCR1); 592 ucr1 &= ~UCR1_TXDMAEN; 593 imx_uart_writel(sport, ucr1, UCR1); 594 595 uart_xmit_advance(&sport->port, sport->tx_bytes); 596 597 dev_dbg(sport->port.dev, "we finish the TX DMA.\n"); 598 599 sport->dma_is_txing = 0; 600 601 if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS) 602 uart_write_wakeup(&sport->port); 603 604 if (!uart_circ_empty(xmit) && !uart_tx_stopped(&sport->port)) 605 imx_uart_dma_tx(sport); 606 else if (sport->port.rs485.flags & SER_RS485_ENABLED) { 607 u32 ucr4 = imx_uart_readl(sport, UCR4); 608 ucr4 |= UCR4_TCEN; 609 imx_uart_writel(sport, ucr4, UCR4); 610 } 611 612 spin_unlock_irqrestore(&sport->port.lock, flags); 613 } 614 615 /* called with port.lock taken and irqs off */ 616 static void imx_uart_dma_tx(struct imx_port *sport) 617 { 618 struct circ_buf *xmit = &sport->port.state->xmit; 619 struct scatterlist *sgl = sport->tx_sgl; 620 struct dma_async_tx_descriptor *desc; 621 struct dma_chan *chan = sport->dma_chan_tx; 622 struct device *dev = sport->port.dev; 623 u32 ucr1, ucr4; 624 int ret; 625 626 if (sport->dma_is_txing) 627 return; 628 629 ucr4 = imx_uart_readl(sport, UCR4); 630 ucr4 &= ~UCR4_TCEN; 631 imx_uart_writel(sport, ucr4, UCR4); 632 633 sport->tx_bytes = uart_circ_chars_pending(xmit); 634 635 if (xmit->tail < xmit->head || xmit->head == 0) { 636 sport->dma_tx_nents = 1; 637 sg_init_one(sgl, xmit->buf + xmit->tail, sport->tx_bytes); 638 } else { 639 sport->dma_tx_nents = 2; 640 sg_init_table(sgl, 2); 641 sg_set_buf(sgl, xmit->buf + xmit->tail, 642 UART_XMIT_SIZE - xmit->tail); 643 sg_set_buf(sgl + 1, xmit->buf, xmit->head); 644 } 645 646 ret = dma_map_sg(dev, sgl, sport->dma_tx_nents, DMA_TO_DEVICE); 647 if (ret == 0) { 648 dev_err(dev, "DMA mapping error for TX.\n"); 649 return; 650 } 651 desc = dmaengine_prep_slave_sg(chan, sgl, ret, 652 DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT); 653 if (!desc) { 654 dma_unmap_sg(dev, sgl, sport->dma_tx_nents, 655 DMA_TO_DEVICE); 656 dev_err(dev, "We cannot prepare for the TX slave dma!\n"); 657 return; 658 } 659 desc->callback = imx_uart_dma_tx_callback; 660 desc->callback_param = sport; 661 662 dev_dbg(dev, "TX: prepare to send %lu bytes by DMA.\n", 663 uart_circ_chars_pending(xmit)); 664 665 ucr1 = imx_uart_readl(sport, UCR1); 666 ucr1 |= UCR1_TXDMAEN; 667 imx_uart_writel(sport, ucr1, UCR1); 668 669 /* fire it */ 670 sport->dma_is_txing = 1; 671 dmaengine_submit(desc); 672 dma_async_issue_pending(chan); 673 return; 674 } 675 676 /* called with port.lock taken and irqs off */ 677 static void imx_uart_start_tx(struct uart_port *port) 678 { 679 struct imx_port *sport = (struct imx_port *)port; 680 u32 ucr1; 681 682 if (!sport->port.x_char && uart_circ_empty(&port->state->xmit)) 683 return; 684 685 /* 686 * We cannot simply do nothing here if sport->tx_state == SEND already 687 * because UCR1_TXMPTYEN might already have been cleared in 688 * imx_uart_stop_tx(), but tx_state is still SEND. 689 */ 690 691 if (port->rs485.flags & SER_RS485_ENABLED) { 692 if (sport->tx_state == OFF) { 693 u32 ucr2 = imx_uart_readl(sport, UCR2); 694 if (port->rs485.flags & SER_RS485_RTS_ON_SEND) 695 imx_uart_rts_active(sport, &ucr2); 696 else 697 imx_uart_rts_inactive(sport, &ucr2); 698 imx_uart_writel(sport, ucr2, UCR2); 699 700 /* 701 * Since we are about to transmit we can not stop RX 702 * with loopback enabled because that will make our 703 * transmitted data being just looped to RX. 704 */ 705 if (!(port->rs485.flags & SER_RS485_RX_DURING_TX) && 706 !port->rs485_rx_during_tx_gpio) 707 imx_uart_stop_rx_with_loopback_ctrl(port, false); 708 709 sport->tx_state = WAIT_AFTER_RTS; 710 711 if (port->rs485.delay_rts_before_send > 0) { 712 start_hrtimer_ms(&sport->trigger_start_tx, 713 port->rs485.delay_rts_before_send); 714 return; 715 } 716 717 /* continue without any delay */ 718 } 719 720 if (sport->tx_state == WAIT_AFTER_SEND 721 || sport->tx_state == WAIT_AFTER_RTS) { 722 723 hrtimer_try_to_cancel(&sport->trigger_stop_tx); 724 725 /* 726 * Enable transmitter and shifter empty irq only if DMA 727 * is off. In the DMA case this is done in the 728 * tx-callback. 729 */ 730 if (!sport->dma_is_enabled) { 731 u32 ucr4 = imx_uart_readl(sport, UCR4); 732 ucr4 |= UCR4_TCEN; 733 imx_uart_writel(sport, ucr4, UCR4); 734 } 735 736 sport->tx_state = SEND; 737 } 738 } else { 739 sport->tx_state = SEND; 740 } 741 742 if (!sport->dma_is_enabled) { 743 ucr1 = imx_uart_readl(sport, UCR1); 744 imx_uart_writel(sport, ucr1 | UCR1_TRDYEN, UCR1); 745 } 746 747 if (sport->dma_is_enabled) { 748 if (sport->port.x_char) { 749 /* We have X-char to send, so enable TX IRQ and 750 * disable TX DMA to let TX interrupt to send X-char */ 751 ucr1 = imx_uart_readl(sport, UCR1); 752 ucr1 &= ~UCR1_TXDMAEN; 753 ucr1 |= UCR1_TRDYEN; 754 imx_uart_writel(sport, ucr1, UCR1); 755 return; 756 } 757 758 if (!uart_circ_empty(&port->state->xmit) && 759 !uart_tx_stopped(port)) 760 imx_uart_dma_tx(sport); 761 return; 762 } 763 } 764 765 static irqreturn_t __imx_uart_rtsint(int irq, void *dev_id) 766 { 767 struct imx_port *sport = dev_id; 768 u32 usr1; 769 770 imx_uart_writel(sport, USR1_RTSD, USR1); 771 usr1 = imx_uart_readl(sport, USR1) & USR1_RTSS; 772 uart_handle_cts_change(&sport->port, usr1); 773 wake_up_interruptible(&sport->port.state->port.delta_msr_wait); 774 775 return IRQ_HANDLED; 776 } 777 778 static irqreturn_t imx_uart_rtsint(int irq, void *dev_id) 779 { 780 struct imx_port *sport = dev_id; 781 irqreturn_t ret; 782 783 spin_lock(&sport->port.lock); 784 785 ret = __imx_uart_rtsint(irq, dev_id); 786 787 spin_unlock(&sport->port.lock); 788 789 return ret; 790 } 791 792 static irqreturn_t imx_uart_txint(int irq, void *dev_id) 793 { 794 struct imx_port *sport = dev_id; 795 796 spin_lock(&sport->port.lock); 797 imx_uart_transmit_buffer(sport); 798 spin_unlock(&sport->port.lock); 799 return IRQ_HANDLED; 800 } 801 802 /* Check if hardware Rx flood is in progress, and issue soft reset to stop it. 803 * This is to be called from Rx ISRs only when some bytes were actually 804 * received. 805 * 806 * A way to reproduce the flood (checked on iMX6SX) is: open iMX UART at 9600 807 * 8N1, and from external source send 0xf0 char at 115200 8N1. In about 90% of 808 * cases this starts a flood of "receiving" of 0xff characters by the iMX6 UART 809 * that is terminated by any activity on RxD line, or could be stopped by 810 * issuing soft reset to the UART (just stop/start of RX does not help). Note 811 * that what we do here is sending isolated start bit about 2.4 times shorter 812 * than it is to be on UART configured baud rate. 813 */ 814 static void imx_uart_check_flood(struct imx_port *sport, u32 usr2) 815 { 816 /* To detect hardware 0xff flood we monitor RxD line between RX 817 * interrupts to isolate "receiving" of char(s) with no activity 818 * on RxD line, that'd never happen on actual data transfers. 819 * 820 * We use USR2_WAKE bit to check for activity on RxD line, but we have a 821 * race here if we clear USR2_WAKE when receiving of a char is in 822 * progress, so we might get RX interrupt later with USR2_WAKE bit 823 * cleared. Note though that as we don't try to clear USR2_WAKE when we 824 * detected no activity, this race may hide actual activity only once. 825 * 826 * Yet another case where receive interrupt may occur without RxD 827 * activity is expiration of aging timer, so we consider this as well. 828 * 829 * We use 'idle_counter' to ensure that we got at least so many RX 830 * interrupts without any detected activity on RxD line. 2 cases 831 * described plus 1 to be on the safe side gives us a margin of 3, 832 * below. In practice I was not able to produce a false positive to 833 * induce soft reset at regular data transfers even using 1 as the 834 * margin, so 3 is actually very strong. 835 * 836 * We count interrupts, not chars in 'idle-counter' for simplicity. 837 */ 838 839 if (usr2 & USR2_WAKE) { 840 imx_uart_writel(sport, USR2_WAKE, USR2); 841 sport->idle_counter = 0; 842 } else if (++sport->idle_counter > 3) { 843 dev_warn(sport->port.dev, "RX flood detected: soft reset."); 844 imx_uart_soft_reset(sport); /* also clears 'sport->idle_counter' */ 845 } 846 } 847 848 static irqreturn_t __imx_uart_rxint(int irq, void *dev_id) 849 { 850 struct imx_port *sport = dev_id; 851 struct tty_port *port = &sport->port.state->port; 852 u32 usr2, rx; 853 854 /* If we received something, check for 0xff flood */ 855 usr2 = imx_uart_readl(sport, USR2); 856 if (usr2 & USR2_RDR) 857 imx_uart_check_flood(sport, usr2); 858 859 while ((rx = imx_uart_readl(sport, URXD0)) & URXD_CHARRDY) { 860 unsigned int flg = TTY_NORMAL; 861 sport->port.icount.rx++; 862 863 if (unlikely(rx & URXD_ERR)) { 864 if (rx & URXD_BRK) { 865 sport->port.icount.brk++; 866 if (uart_handle_break(&sport->port)) 867 continue; 868 } 869 else if (rx & URXD_PRERR) 870 sport->port.icount.parity++; 871 else if (rx & URXD_FRMERR) 872 sport->port.icount.frame++; 873 if (rx & URXD_OVRRUN) 874 sport->port.icount.overrun++; 875 876 if (rx & sport->port.ignore_status_mask) 877 continue; 878 879 rx &= (sport->port.read_status_mask | 0xFF); 880 881 if (rx & URXD_BRK) 882 flg = TTY_BREAK; 883 else if (rx & URXD_PRERR) 884 flg = TTY_PARITY; 885 else if (rx & URXD_FRMERR) 886 flg = TTY_FRAME; 887 if (rx & URXD_OVRRUN) 888 flg = TTY_OVERRUN; 889 890 sport->port.sysrq = 0; 891 } else if (uart_handle_sysrq_char(&sport->port, (unsigned char)rx)) { 892 continue; 893 } 894 895 if (sport->port.ignore_status_mask & URXD_DUMMY_READ) 896 continue; 897 898 if (tty_insert_flip_char(port, rx, flg) == 0) 899 sport->port.icount.buf_overrun++; 900 } 901 902 tty_flip_buffer_push(port); 903 904 return IRQ_HANDLED; 905 } 906 907 static irqreturn_t imx_uart_rxint(int irq, void *dev_id) 908 { 909 struct imx_port *sport = dev_id; 910 irqreturn_t ret; 911 912 spin_lock(&sport->port.lock); 913 914 ret = __imx_uart_rxint(irq, dev_id); 915 916 spin_unlock(&sport->port.lock); 917 918 return ret; 919 } 920 921 static void imx_uart_clear_rx_errors(struct imx_port *sport); 922 923 /* 924 * We have a modem side uart, so the meanings of RTS and CTS are inverted. 925 */ 926 static unsigned int imx_uart_get_hwmctrl(struct imx_port *sport) 927 { 928 unsigned int tmp = TIOCM_DSR; 929 unsigned usr1 = imx_uart_readl(sport, USR1); 930 unsigned usr2 = imx_uart_readl(sport, USR2); 931 932 if (usr1 & USR1_RTSS) 933 tmp |= TIOCM_CTS; 934 935 /* in DCE mode DCDIN is always 0 */ 936 if (!(usr2 & USR2_DCDIN)) 937 tmp |= TIOCM_CAR; 938 939 if (sport->dte_mode) 940 if (!(imx_uart_readl(sport, USR2) & USR2_RIIN)) 941 tmp |= TIOCM_RI; 942 943 return tmp; 944 } 945 946 /* 947 * Handle any change of modem status signal since we were last called. 948 */ 949 static void imx_uart_mctrl_check(struct imx_port *sport) 950 { 951 unsigned int status, changed; 952 953 status = imx_uart_get_hwmctrl(sport); 954 changed = status ^ sport->old_status; 955 956 if (changed == 0) 957 return; 958 959 sport->old_status = status; 960 961 if (changed & TIOCM_RI && status & TIOCM_RI) 962 sport->port.icount.rng++; 963 if (changed & TIOCM_DSR) 964 sport->port.icount.dsr++; 965 if (changed & TIOCM_CAR) 966 uart_handle_dcd_change(&sport->port, status & TIOCM_CAR); 967 if (changed & TIOCM_CTS) 968 uart_handle_cts_change(&sport->port, status & TIOCM_CTS); 969 970 wake_up_interruptible(&sport->port.state->port.delta_msr_wait); 971 } 972 973 static irqreturn_t imx_uart_int(int irq, void *dev_id) 974 { 975 struct imx_port *sport = dev_id; 976 unsigned int usr1, usr2, ucr1, ucr2, ucr3, ucr4; 977 irqreturn_t ret = IRQ_NONE; 978 979 spin_lock(&sport->port.lock); 980 981 usr1 = imx_uart_readl(sport, USR1); 982 usr2 = imx_uart_readl(sport, USR2); 983 ucr1 = imx_uart_readl(sport, UCR1); 984 ucr2 = imx_uart_readl(sport, UCR2); 985 ucr3 = imx_uart_readl(sport, UCR3); 986 ucr4 = imx_uart_readl(sport, UCR4); 987 988 /* 989 * Even if a condition is true that can trigger an irq only handle it if 990 * the respective irq source is enabled. This prevents some undesired 991 * actions, for example if a character that sits in the RX FIFO and that 992 * should be fetched via DMA is tried to be fetched using PIO. Or the 993 * receiver is currently off and so reading from URXD0 results in an 994 * exception. So just mask the (raw) status bits for disabled irqs. 995 */ 996 if ((ucr1 & UCR1_RRDYEN) == 0) 997 usr1 &= ~USR1_RRDY; 998 if ((ucr2 & UCR2_ATEN) == 0) 999 usr1 &= ~USR1_AGTIM; 1000 if ((ucr1 & UCR1_TRDYEN) == 0) 1001 usr1 &= ~USR1_TRDY; 1002 if ((ucr4 & UCR4_TCEN) == 0) 1003 usr2 &= ~USR2_TXDC; 1004 if ((ucr3 & UCR3_DTRDEN) == 0) 1005 usr1 &= ~USR1_DTRD; 1006 if ((ucr1 & UCR1_RTSDEN) == 0) 1007 usr1 &= ~USR1_RTSD; 1008 if ((ucr3 & UCR3_AWAKEN) == 0) 1009 usr1 &= ~USR1_AWAKE; 1010 if ((ucr4 & UCR4_OREN) == 0) 1011 usr2 &= ~USR2_ORE; 1012 1013 if (usr1 & (USR1_RRDY | USR1_AGTIM)) { 1014 imx_uart_writel(sport, USR1_AGTIM, USR1); 1015 1016 __imx_uart_rxint(irq, dev_id); 1017 ret = IRQ_HANDLED; 1018 } 1019 1020 if ((usr1 & USR1_TRDY) || (usr2 & USR2_TXDC)) { 1021 imx_uart_transmit_buffer(sport); 1022 ret = IRQ_HANDLED; 1023 } 1024 1025 if (usr1 & USR1_DTRD) { 1026 imx_uart_writel(sport, USR1_DTRD, USR1); 1027 1028 imx_uart_mctrl_check(sport); 1029 1030 ret = IRQ_HANDLED; 1031 } 1032 1033 if (usr1 & USR1_RTSD) { 1034 __imx_uart_rtsint(irq, dev_id); 1035 ret = IRQ_HANDLED; 1036 } 1037 1038 if (usr1 & USR1_AWAKE) { 1039 imx_uart_writel(sport, USR1_AWAKE, USR1); 1040 ret = IRQ_HANDLED; 1041 } 1042 1043 if (usr2 & USR2_ORE) { 1044 sport->port.icount.overrun++; 1045 imx_uart_writel(sport, USR2_ORE, USR2); 1046 ret = IRQ_HANDLED; 1047 } 1048 1049 spin_unlock(&sport->port.lock); 1050 1051 return ret; 1052 } 1053 1054 /* 1055 * Return TIOCSER_TEMT when transmitter is not busy. 1056 */ 1057 static unsigned int imx_uart_tx_empty(struct uart_port *port) 1058 { 1059 struct imx_port *sport = (struct imx_port *)port; 1060 unsigned int ret; 1061 1062 ret = (imx_uart_readl(sport, USR2) & USR2_TXDC) ? TIOCSER_TEMT : 0; 1063 1064 /* If the TX DMA is working, return 0. */ 1065 if (sport->dma_is_txing) 1066 ret = 0; 1067 1068 return ret; 1069 } 1070 1071 /* called with port.lock taken and irqs off */ 1072 static unsigned int imx_uart_get_mctrl(struct uart_port *port) 1073 { 1074 struct imx_port *sport = (struct imx_port *)port; 1075 unsigned int ret = imx_uart_get_hwmctrl(sport); 1076 1077 mctrl_gpio_get(sport->gpios, &ret); 1078 1079 return ret; 1080 } 1081 1082 /* called with port.lock taken and irqs off */ 1083 static void imx_uart_set_mctrl(struct uart_port *port, unsigned int mctrl) 1084 { 1085 struct imx_port *sport = (struct imx_port *)port; 1086 u32 ucr3, uts; 1087 1088 if (!(port->rs485.flags & SER_RS485_ENABLED)) { 1089 u32 ucr2; 1090 1091 /* 1092 * Turn off autoRTS if RTS is lowered and restore autoRTS 1093 * setting if RTS is raised. 1094 */ 1095 ucr2 = imx_uart_readl(sport, UCR2); 1096 ucr2 &= ~(UCR2_CTS | UCR2_CTSC); 1097 if (mctrl & TIOCM_RTS) { 1098 ucr2 |= UCR2_CTS; 1099 /* 1100 * UCR2_IRTS is unset if and only if the port is 1101 * configured for CRTSCTS, so we use inverted UCR2_IRTS 1102 * to get the state to restore to. 1103 */ 1104 if (!(ucr2 & UCR2_IRTS)) 1105 ucr2 |= UCR2_CTSC; 1106 } 1107 imx_uart_writel(sport, ucr2, UCR2); 1108 } 1109 1110 ucr3 = imx_uart_readl(sport, UCR3) & ~UCR3_DSR; 1111 if (!(mctrl & TIOCM_DTR)) 1112 ucr3 |= UCR3_DSR; 1113 imx_uart_writel(sport, ucr3, UCR3); 1114 1115 uts = imx_uart_readl(sport, imx_uart_uts_reg(sport)) & ~UTS_LOOP; 1116 if (mctrl & TIOCM_LOOP) 1117 uts |= UTS_LOOP; 1118 imx_uart_writel(sport, uts, imx_uart_uts_reg(sport)); 1119 1120 mctrl_gpio_set(sport->gpios, mctrl); 1121 } 1122 1123 /* 1124 * Interrupts always disabled. 1125 */ 1126 static void imx_uart_break_ctl(struct uart_port *port, int break_state) 1127 { 1128 struct imx_port *sport = (struct imx_port *)port; 1129 unsigned long flags; 1130 u32 ucr1; 1131 1132 spin_lock_irqsave(&sport->port.lock, flags); 1133 1134 ucr1 = imx_uart_readl(sport, UCR1) & ~UCR1_SNDBRK; 1135 1136 if (break_state != 0) 1137 ucr1 |= UCR1_SNDBRK; 1138 1139 imx_uart_writel(sport, ucr1, UCR1); 1140 1141 spin_unlock_irqrestore(&sport->port.lock, flags); 1142 } 1143 1144 /* 1145 * This is our per-port timeout handler, for checking the 1146 * modem status signals. 1147 */ 1148 static void imx_uart_timeout(struct timer_list *t) 1149 { 1150 struct imx_port *sport = from_timer(sport, t, timer); 1151 unsigned long flags; 1152 1153 if (sport->port.state) { 1154 spin_lock_irqsave(&sport->port.lock, flags); 1155 imx_uart_mctrl_check(sport); 1156 spin_unlock_irqrestore(&sport->port.lock, flags); 1157 1158 mod_timer(&sport->timer, jiffies + MCTRL_TIMEOUT); 1159 } 1160 } 1161 1162 /* 1163 * There are two kinds of RX DMA interrupts(such as in the MX6Q): 1164 * [1] the RX DMA buffer is full. 1165 * [2] the aging timer expires 1166 * 1167 * Condition [2] is triggered when a character has been sitting in the FIFO 1168 * for at least 8 byte durations. 1169 */ 1170 static void imx_uart_dma_rx_callback(void *data) 1171 { 1172 struct imx_port *sport = data; 1173 struct dma_chan *chan = sport->dma_chan_rx; 1174 struct scatterlist *sgl = &sport->rx_sgl; 1175 struct tty_port *port = &sport->port.state->port; 1176 struct dma_tx_state state; 1177 struct circ_buf *rx_ring = &sport->rx_ring; 1178 enum dma_status status; 1179 unsigned int w_bytes = 0; 1180 unsigned int r_bytes; 1181 unsigned int bd_size; 1182 1183 status = dmaengine_tx_status(chan, sport->rx_cookie, &state); 1184 1185 if (status == DMA_ERROR) { 1186 spin_lock(&sport->port.lock); 1187 imx_uart_clear_rx_errors(sport); 1188 spin_unlock(&sport->port.lock); 1189 return; 1190 } 1191 1192 /* 1193 * The state-residue variable represents the empty space 1194 * relative to the entire buffer. Taking this in consideration 1195 * the head is always calculated base on the buffer total 1196 * length - DMA transaction residue. The UART script from the 1197 * SDMA firmware will jump to the next buffer descriptor, 1198 * once a DMA transaction if finalized (IMX53 RM - A.4.1.2.4). 1199 * Taking this in consideration the tail is always at the 1200 * beginning of the buffer descriptor that contains the head. 1201 */ 1202 1203 /* Calculate the head */ 1204 rx_ring->head = sg_dma_len(sgl) - state.residue; 1205 1206 /* Calculate the tail. */ 1207 bd_size = sg_dma_len(sgl) / sport->rx_periods; 1208 rx_ring->tail = ((rx_ring->head-1) / bd_size) * bd_size; 1209 1210 if (rx_ring->head <= sg_dma_len(sgl) && 1211 rx_ring->head > rx_ring->tail) { 1212 1213 /* Move data from tail to head */ 1214 r_bytes = rx_ring->head - rx_ring->tail; 1215 1216 /* If we received something, check for 0xff flood */ 1217 spin_lock(&sport->port.lock); 1218 imx_uart_check_flood(sport, imx_uart_readl(sport, USR2)); 1219 spin_unlock(&sport->port.lock); 1220 1221 if (!(sport->port.ignore_status_mask & URXD_DUMMY_READ)) { 1222 1223 /* CPU claims ownership of RX DMA buffer */ 1224 dma_sync_sg_for_cpu(sport->port.dev, sgl, 1, 1225 DMA_FROM_DEVICE); 1226 1227 w_bytes = tty_insert_flip_string(port, 1228 sport->rx_buf + rx_ring->tail, r_bytes); 1229 1230 /* UART retrieves ownership of RX DMA buffer */ 1231 dma_sync_sg_for_device(sport->port.dev, sgl, 1, 1232 DMA_FROM_DEVICE); 1233 1234 if (w_bytes != r_bytes) 1235 sport->port.icount.buf_overrun++; 1236 1237 sport->port.icount.rx += w_bytes; 1238 } 1239 } else { 1240 WARN_ON(rx_ring->head > sg_dma_len(sgl)); 1241 WARN_ON(rx_ring->head <= rx_ring->tail); 1242 } 1243 1244 if (w_bytes) { 1245 tty_flip_buffer_push(port); 1246 dev_dbg(sport->port.dev, "We get %d bytes.\n", w_bytes); 1247 } 1248 } 1249 1250 static int imx_uart_start_rx_dma(struct imx_port *sport) 1251 { 1252 struct scatterlist *sgl = &sport->rx_sgl; 1253 struct dma_chan *chan = sport->dma_chan_rx; 1254 struct device *dev = sport->port.dev; 1255 struct dma_async_tx_descriptor *desc; 1256 int ret; 1257 1258 sport->rx_ring.head = 0; 1259 sport->rx_ring.tail = 0; 1260 1261 sg_init_one(sgl, sport->rx_buf, sport->rx_buf_size); 1262 ret = dma_map_sg(dev, sgl, 1, DMA_FROM_DEVICE); 1263 if (ret == 0) { 1264 dev_err(dev, "DMA mapping error for RX.\n"); 1265 return -EINVAL; 1266 } 1267 1268 desc = dmaengine_prep_dma_cyclic(chan, sg_dma_address(sgl), 1269 sg_dma_len(sgl), sg_dma_len(sgl) / sport->rx_periods, 1270 DMA_DEV_TO_MEM, DMA_PREP_INTERRUPT); 1271 1272 if (!desc) { 1273 dma_unmap_sg(dev, sgl, 1, DMA_FROM_DEVICE); 1274 dev_err(dev, "We cannot prepare for the RX slave dma!\n"); 1275 return -EINVAL; 1276 } 1277 desc->callback = imx_uart_dma_rx_callback; 1278 desc->callback_param = sport; 1279 1280 dev_dbg(dev, "RX: prepare for the DMA.\n"); 1281 sport->dma_is_rxing = 1; 1282 sport->rx_cookie = dmaengine_submit(desc); 1283 dma_async_issue_pending(chan); 1284 return 0; 1285 } 1286 1287 static void imx_uart_clear_rx_errors(struct imx_port *sport) 1288 { 1289 struct tty_port *port = &sport->port.state->port; 1290 u32 usr1, usr2; 1291 1292 usr1 = imx_uart_readl(sport, USR1); 1293 usr2 = imx_uart_readl(sport, USR2); 1294 1295 if (usr2 & USR2_BRCD) { 1296 sport->port.icount.brk++; 1297 imx_uart_writel(sport, USR2_BRCD, USR2); 1298 uart_handle_break(&sport->port); 1299 if (tty_insert_flip_char(port, 0, TTY_BREAK) == 0) 1300 sport->port.icount.buf_overrun++; 1301 tty_flip_buffer_push(port); 1302 } else { 1303 if (usr1 & USR1_FRAMERR) { 1304 sport->port.icount.frame++; 1305 imx_uart_writel(sport, USR1_FRAMERR, USR1); 1306 } else if (usr1 & USR1_PARITYERR) { 1307 sport->port.icount.parity++; 1308 imx_uart_writel(sport, USR1_PARITYERR, USR1); 1309 } 1310 } 1311 1312 if (usr2 & USR2_ORE) { 1313 sport->port.icount.overrun++; 1314 imx_uart_writel(sport, USR2_ORE, USR2); 1315 } 1316 1317 sport->idle_counter = 0; 1318 1319 } 1320 1321 #define TXTL_DEFAULT 2 /* reset default */ 1322 #define RXTL_DEFAULT 8 /* 8 characters or aging timer */ 1323 #define TXTL_DMA 8 /* DMA burst setting */ 1324 #define RXTL_DMA 9 /* DMA burst setting */ 1325 1326 static void imx_uart_setup_ufcr(struct imx_port *sport, 1327 unsigned char txwl, unsigned char rxwl) 1328 { 1329 unsigned int val; 1330 1331 /* set receiver / transmitter trigger level */ 1332 val = imx_uart_readl(sport, UFCR) & (UFCR_RFDIV | UFCR_DCEDTE); 1333 val |= txwl << UFCR_TXTL_SHF | rxwl; 1334 imx_uart_writel(sport, val, UFCR); 1335 } 1336 1337 static void imx_uart_dma_exit(struct imx_port *sport) 1338 { 1339 if (sport->dma_chan_rx) { 1340 dmaengine_terminate_sync(sport->dma_chan_rx); 1341 dma_release_channel(sport->dma_chan_rx); 1342 sport->dma_chan_rx = NULL; 1343 sport->rx_cookie = -EINVAL; 1344 kfree(sport->rx_buf); 1345 sport->rx_buf = NULL; 1346 } 1347 1348 if (sport->dma_chan_tx) { 1349 dmaengine_terminate_sync(sport->dma_chan_tx); 1350 dma_release_channel(sport->dma_chan_tx); 1351 sport->dma_chan_tx = NULL; 1352 } 1353 } 1354 1355 static int imx_uart_dma_init(struct imx_port *sport) 1356 { 1357 struct dma_slave_config slave_config = {}; 1358 struct device *dev = sport->port.dev; 1359 int ret; 1360 1361 /* Prepare for RX : */ 1362 sport->dma_chan_rx = dma_request_slave_channel(dev, "rx"); 1363 if (!sport->dma_chan_rx) { 1364 dev_dbg(dev, "cannot get the DMA channel.\n"); 1365 ret = -EINVAL; 1366 goto err; 1367 } 1368 1369 slave_config.direction = DMA_DEV_TO_MEM; 1370 slave_config.src_addr = sport->port.mapbase + URXD0; 1371 slave_config.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE; 1372 /* one byte less than the watermark level to enable the aging timer */ 1373 slave_config.src_maxburst = RXTL_DMA - 1; 1374 ret = dmaengine_slave_config(sport->dma_chan_rx, &slave_config); 1375 if (ret) { 1376 dev_err(dev, "error in RX dma configuration.\n"); 1377 goto err; 1378 } 1379 1380 sport->rx_buf_size = sport->rx_period_length * sport->rx_periods; 1381 sport->rx_buf = kzalloc(sport->rx_buf_size, GFP_KERNEL); 1382 if (!sport->rx_buf) { 1383 ret = -ENOMEM; 1384 goto err; 1385 } 1386 sport->rx_ring.buf = sport->rx_buf; 1387 1388 /* Prepare for TX : */ 1389 sport->dma_chan_tx = dma_request_slave_channel(dev, "tx"); 1390 if (!sport->dma_chan_tx) { 1391 dev_err(dev, "cannot get the TX DMA channel!\n"); 1392 ret = -EINVAL; 1393 goto err; 1394 } 1395 1396 slave_config.direction = DMA_MEM_TO_DEV; 1397 slave_config.dst_addr = sport->port.mapbase + URTX0; 1398 slave_config.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE; 1399 slave_config.dst_maxburst = TXTL_DMA; 1400 ret = dmaengine_slave_config(sport->dma_chan_tx, &slave_config); 1401 if (ret) { 1402 dev_err(dev, "error in TX dma configuration."); 1403 goto err; 1404 } 1405 1406 return 0; 1407 err: 1408 imx_uart_dma_exit(sport); 1409 return ret; 1410 } 1411 1412 static void imx_uart_enable_dma(struct imx_port *sport) 1413 { 1414 u32 ucr1; 1415 1416 imx_uart_setup_ufcr(sport, TXTL_DMA, RXTL_DMA); 1417 1418 /* set UCR1 */ 1419 ucr1 = imx_uart_readl(sport, UCR1); 1420 ucr1 |= UCR1_RXDMAEN | UCR1_TXDMAEN | UCR1_ATDMAEN; 1421 imx_uart_writel(sport, ucr1, UCR1); 1422 1423 sport->dma_is_enabled = 1; 1424 } 1425 1426 static void imx_uart_disable_dma(struct imx_port *sport) 1427 { 1428 u32 ucr1; 1429 1430 /* clear UCR1 */ 1431 ucr1 = imx_uart_readl(sport, UCR1); 1432 ucr1 &= ~(UCR1_RXDMAEN | UCR1_TXDMAEN | UCR1_ATDMAEN); 1433 imx_uart_writel(sport, ucr1, UCR1); 1434 1435 imx_uart_setup_ufcr(sport, TXTL_DEFAULT, RXTL_DEFAULT); 1436 1437 sport->dma_is_enabled = 0; 1438 } 1439 1440 /* half the RX buffer size */ 1441 #define CTSTL 16 1442 1443 static int imx_uart_startup(struct uart_port *port) 1444 { 1445 struct imx_port *sport = (struct imx_port *)port; 1446 int retval; 1447 unsigned long flags; 1448 int dma_is_inited = 0; 1449 u32 ucr1, ucr2, ucr3, ucr4; 1450 1451 retval = clk_prepare_enable(sport->clk_per); 1452 if (retval) 1453 return retval; 1454 retval = clk_prepare_enable(sport->clk_ipg); 1455 if (retval) { 1456 clk_disable_unprepare(sport->clk_per); 1457 return retval; 1458 } 1459 1460 imx_uart_setup_ufcr(sport, TXTL_DEFAULT, RXTL_DEFAULT); 1461 1462 /* disable the DREN bit (Data Ready interrupt enable) before 1463 * requesting IRQs 1464 */ 1465 ucr4 = imx_uart_readl(sport, UCR4); 1466 1467 /* set the trigger level for CTS */ 1468 ucr4 &= ~(UCR4_CTSTL_MASK << UCR4_CTSTL_SHF); 1469 ucr4 |= CTSTL << UCR4_CTSTL_SHF; 1470 1471 imx_uart_writel(sport, ucr4 & ~UCR4_DREN, UCR4); 1472 1473 /* Can we enable the DMA support? */ 1474 if (!uart_console(port) && imx_uart_dma_init(sport) == 0) 1475 dma_is_inited = 1; 1476 1477 spin_lock_irqsave(&sport->port.lock, flags); 1478 1479 /* Reset fifo's and state machines */ 1480 imx_uart_soft_reset(sport); 1481 1482 /* 1483 * Finally, clear and enable interrupts 1484 */ 1485 imx_uart_writel(sport, USR1_RTSD | USR1_DTRD, USR1); 1486 imx_uart_writel(sport, USR2_ORE, USR2); 1487 1488 ucr1 = imx_uart_readl(sport, UCR1) & ~UCR1_RRDYEN; 1489 ucr1 |= UCR1_UARTEN; 1490 if (sport->have_rtscts) 1491 ucr1 |= UCR1_RTSDEN; 1492 1493 imx_uart_writel(sport, ucr1, UCR1); 1494 1495 ucr4 = imx_uart_readl(sport, UCR4) & ~(UCR4_OREN | UCR4_INVR); 1496 if (!dma_is_inited) 1497 ucr4 |= UCR4_OREN; 1498 if (sport->inverted_rx) 1499 ucr4 |= UCR4_INVR; 1500 imx_uart_writel(sport, ucr4, UCR4); 1501 1502 ucr3 = imx_uart_readl(sport, UCR3) & ~UCR3_INVT; 1503 /* 1504 * configure tx polarity before enabling tx 1505 */ 1506 if (sport->inverted_tx) 1507 ucr3 |= UCR3_INVT; 1508 1509 if (!imx_uart_is_imx1(sport)) { 1510 ucr3 |= UCR3_DTRDEN | UCR3_RI | UCR3_DCD; 1511 1512 if (sport->dte_mode) 1513 /* disable broken interrupts */ 1514 ucr3 &= ~(UCR3_RI | UCR3_DCD); 1515 } 1516 imx_uart_writel(sport, ucr3, UCR3); 1517 1518 ucr2 = imx_uart_readl(sport, UCR2) & ~UCR2_ATEN; 1519 ucr2 |= (UCR2_RXEN | UCR2_TXEN); 1520 if (!sport->have_rtscts) 1521 ucr2 |= UCR2_IRTS; 1522 /* 1523 * make sure the edge sensitive RTS-irq is disabled, 1524 * we're using RTSD instead. 1525 */ 1526 if (!imx_uart_is_imx1(sport)) 1527 ucr2 &= ~UCR2_RTSEN; 1528 imx_uart_writel(sport, ucr2, UCR2); 1529 1530 /* 1531 * Enable modem status interrupts 1532 */ 1533 imx_uart_enable_ms(&sport->port); 1534 1535 if (dma_is_inited) { 1536 imx_uart_enable_dma(sport); 1537 imx_uart_start_rx_dma(sport); 1538 } else { 1539 ucr1 = imx_uart_readl(sport, UCR1); 1540 ucr1 |= UCR1_RRDYEN; 1541 imx_uart_writel(sport, ucr1, UCR1); 1542 1543 ucr2 = imx_uart_readl(sport, UCR2); 1544 ucr2 |= UCR2_ATEN; 1545 imx_uart_writel(sport, ucr2, UCR2); 1546 } 1547 1548 imx_uart_disable_loopback_rs485(sport); 1549 1550 spin_unlock_irqrestore(&sport->port.lock, flags); 1551 1552 return 0; 1553 } 1554 1555 static void imx_uart_shutdown(struct uart_port *port) 1556 { 1557 struct imx_port *sport = (struct imx_port *)port; 1558 unsigned long flags; 1559 u32 ucr1, ucr2, ucr4, uts; 1560 1561 if (sport->dma_is_enabled) { 1562 dmaengine_terminate_sync(sport->dma_chan_tx); 1563 if (sport->dma_is_txing) { 1564 dma_unmap_sg(sport->port.dev, &sport->tx_sgl[0], 1565 sport->dma_tx_nents, DMA_TO_DEVICE); 1566 sport->dma_is_txing = 0; 1567 } 1568 dmaengine_terminate_sync(sport->dma_chan_rx); 1569 if (sport->dma_is_rxing) { 1570 dma_unmap_sg(sport->port.dev, &sport->rx_sgl, 1571 1, DMA_FROM_DEVICE); 1572 sport->dma_is_rxing = 0; 1573 } 1574 1575 spin_lock_irqsave(&sport->port.lock, flags); 1576 imx_uart_stop_tx(port); 1577 imx_uart_stop_rx(port); 1578 imx_uart_disable_dma(sport); 1579 spin_unlock_irqrestore(&sport->port.lock, flags); 1580 imx_uart_dma_exit(sport); 1581 } 1582 1583 mctrl_gpio_disable_ms(sport->gpios); 1584 1585 spin_lock_irqsave(&sport->port.lock, flags); 1586 ucr2 = imx_uart_readl(sport, UCR2); 1587 ucr2 &= ~(UCR2_TXEN | UCR2_ATEN); 1588 imx_uart_writel(sport, ucr2, UCR2); 1589 spin_unlock_irqrestore(&sport->port.lock, flags); 1590 1591 /* 1592 * Stop our timer. 1593 */ 1594 del_timer_sync(&sport->timer); 1595 1596 /* 1597 * Disable all interrupts, port and break condition. 1598 */ 1599 1600 spin_lock_irqsave(&sport->port.lock, flags); 1601 1602 ucr1 = imx_uart_readl(sport, UCR1); 1603 ucr1 &= ~(UCR1_TRDYEN | UCR1_RRDYEN | UCR1_RTSDEN | UCR1_RXDMAEN | 1604 UCR1_ATDMAEN | UCR1_SNDBRK); 1605 /* See SER_RS485_ENABLED/UTS_LOOP comment in imx_uart_probe() */ 1606 if (port->rs485.flags & SER_RS485_ENABLED && 1607 port->rs485.flags & SER_RS485_RTS_ON_SEND && 1608 sport->have_rtscts && !sport->have_rtsgpio) { 1609 uts = imx_uart_readl(sport, imx_uart_uts_reg(sport)); 1610 uts |= UTS_LOOP; 1611 imx_uart_writel(sport, uts, imx_uart_uts_reg(sport)); 1612 ucr1 |= UCR1_UARTEN; 1613 } else { 1614 ucr1 &= ~UCR1_UARTEN; 1615 } 1616 imx_uart_writel(sport, ucr1, UCR1); 1617 1618 ucr4 = imx_uart_readl(sport, UCR4); 1619 ucr4 &= ~UCR4_TCEN; 1620 imx_uart_writel(sport, ucr4, UCR4); 1621 1622 spin_unlock_irqrestore(&sport->port.lock, flags); 1623 1624 clk_disable_unprepare(sport->clk_per); 1625 clk_disable_unprepare(sport->clk_ipg); 1626 } 1627 1628 /* called with port.lock taken and irqs off */ 1629 static void imx_uart_flush_buffer(struct uart_port *port) 1630 { 1631 struct imx_port *sport = (struct imx_port *)port; 1632 struct scatterlist *sgl = &sport->tx_sgl[0]; 1633 1634 if (!sport->dma_chan_tx) 1635 return; 1636 1637 sport->tx_bytes = 0; 1638 dmaengine_terminate_all(sport->dma_chan_tx); 1639 if (sport->dma_is_txing) { 1640 u32 ucr1; 1641 1642 dma_unmap_sg(sport->port.dev, sgl, sport->dma_tx_nents, 1643 DMA_TO_DEVICE); 1644 ucr1 = imx_uart_readl(sport, UCR1); 1645 ucr1 &= ~UCR1_TXDMAEN; 1646 imx_uart_writel(sport, ucr1, UCR1); 1647 sport->dma_is_txing = 0; 1648 } 1649 1650 imx_uart_soft_reset(sport); 1651 1652 } 1653 1654 static void 1655 imx_uart_set_termios(struct uart_port *port, struct ktermios *termios, 1656 const struct ktermios *old) 1657 { 1658 struct imx_port *sport = (struct imx_port *)port; 1659 unsigned long flags; 1660 u32 ucr2, old_ucr2, ufcr; 1661 unsigned int baud, quot; 1662 unsigned int old_csize = old ? old->c_cflag & CSIZE : CS8; 1663 unsigned long div; 1664 unsigned long num, denom, old_ubir, old_ubmr; 1665 uint64_t tdiv64; 1666 1667 /* 1668 * We only support CS7 and CS8. 1669 */ 1670 while ((termios->c_cflag & CSIZE) != CS7 && 1671 (termios->c_cflag & CSIZE) != CS8) { 1672 termios->c_cflag &= ~CSIZE; 1673 termios->c_cflag |= old_csize; 1674 old_csize = CS8; 1675 } 1676 1677 del_timer_sync(&sport->timer); 1678 1679 /* 1680 * Ask the core to calculate the divisor for us. 1681 */ 1682 baud = uart_get_baud_rate(port, termios, old, 50, port->uartclk / 16); 1683 quot = uart_get_divisor(port, baud); 1684 1685 spin_lock_irqsave(&sport->port.lock, flags); 1686 1687 /* 1688 * Read current UCR2 and save it for future use, then clear all the bits 1689 * except those we will or may need to preserve. 1690 */ 1691 old_ucr2 = imx_uart_readl(sport, UCR2); 1692 ucr2 = old_ucr2 & (UCR2_TXEN | UCR2_RXEN | UCR2_ATEN | UCR2_CTS); 1693 1694 ucr2 |= UCR2_SRST | UCR2_IRTS; 1695 if ((termios->c_cflag & CSIZE) == CS8) 1696 ucr2 |= UCR2_WS; 1697 1698 if (!sport->have_rtscts) 1699 termios->c_cflag &= ~CRTSCTS; 1700 1701 if (port->rs485.flags & SER_RS485_ENABLED) { 1702 /* 1703 * RTS is mandatory for rs485 operation, so keep 1704 * it under manual control and keep transmitter 1705 * disabled. 1706 */ 1707 if (port->rs485.flags & SER_RS485_RTS_AFTER_SEND) 1708 imx_uart_rts_active(sport, &ucr2); 1709 else 1710 imx_uart_rts_inactive(sport, &ucr2); 1711 1712 } else if (termios->c_cflag & CRTSCTS) { 1713 /* 1714 * Only let receiver control RTS output if we were not requested 1715 * to have RTS inactive (which then should take precedence). 1716 */ 1717 if (ucr2 & UCR2_CTS) 1718 ucr2 |= UCR2_CTSC; 1719 } 1720 1721 if (termios->c_cflag & CRTSCTS) 1722 ucr2 &= ~UCR2_IRTS; 1723 if (termios->c_cflag & CSTOPB) 1724 ucr2 |= UCR2_STPB; 1725 if (termios->c_cflag & PARENB) { 1726 ucr2 |= UCR2_PREN; 1727 if (termios->c_cflag & PARODD) 1728 ucr2 |= UCR2_PROE; 1729 } 1730 1731 sport->port.read_status_mask = 0; 1732 if (termios->c_iflag & INPCK) 1733 sport->port.read_status_mask |= (URXD_FRMERR | URXD_PRERR); 1734 if (termios->c_iflag & (BRKINT | PARMRK)) 1735 sport->port.read_status_mask |= URXD_BRK; 1736 1737 /* 1738 * Characters to ignore 1739 */ 1740 sport->port.ignore_status_mask = 0; 1741 if (termios->c_iflag & IGNPAR) 1742 sport->port.ignore_status_mask |= URXD_PRERR | URXD_FRMERR; 1743 if (termios->c_iflag & IGNBRK) { 1744 sport->port.ignore_status_mask |= URXD_BRK; 1745 /* 1746 * If we're ignoring parity and break indicators, 1747 * ignore overruns too (for real raw support). 1748 */ 1749 if (termios->c_iflag & IGNPAR) 1750 sport->port.ignore_status_mask |= URXD_OVRRUN; 1751 } 1752 1753 if ((termios->c_cflag & CREAD) == 0) 1754 sport->port.ignore_status_mask |= URXD_DUMMY_READ; 1755 1756 /* 1757 * Update the per-port timeout. 1758 */ 1759 uart_update_timeout(port, termios->c_cflag, baud); 1760 1761 /* custom-baudrate handling */ 1762 div = sport->port.uartclk / (baud * 16); 1763 if (baud == 38400 && quot != div) 1764 baud = sport->port.uartclk / (quot * 16); 1765 1766 div = sport->port.uartclk / (baud * 16); 1767 if (div > 7) 1768 div = 7; 1769 if (!div) 1770 div = 1; 1771 1772 rational_best_approximation(16 * div * baud, sport->port.uartclk, 1773 1 << 16, 1 << 16, &num, &denom); 1774 1775 tdiv64 = sport->port.uartclk; 1776 tdiv64 *= num; 1777 do_div(tdiv64, denom * 16 * div); 1778 tty_termios_encode_baud_rate(termios, 1779 (speed_t)tdiv64, (speed_t)tdiv64); 1780 1781 num -= 1; 1782 denom -= 1; 1783 1784 ufcr = imx_uart_readl(sport, UFCR); 1785 ufcr = (ufcr & (~UFCR_RFDIV)) | UFCR_RFDIV_REG(div); 1786 imx_uart_writel(sport, ufcr, UFCR); 1787 1788 /* 1789 * Two registers below should always be written both and in this 1790 * particular order. One consequence is that we need to check if any of 1791 * them changes and then update both. We do need the check for change 1792 * as even writing the same values seem to "restart" 1793 * transmission/receiving logic in the hardware, that leads to data 1794 * breakage even when rate doesn't in fact change. E.g., user switches 1795 * RTS/CTS handshake and suddenly gets broken bytes. 1796 */ 1797 old_ubir = imx_uart_readl(sport, UBIR); 1798 old_ubmr = imx_uart_readl(sport, UBMR); 1799 if (old_ubir != num || old_ubmr != denom) { 1800 imx_uart_writel(sport, num, UBIR); 1801 imx_uart_writel(sport, denom, UBMR); 1802 } 1803 1804 if (!imx_uart_is_imx1(sport)) 1805 imx_uart_writel(sport, sport->port.uartclk / div / 1000, 1806 IMX21_ONEMS); 1807 1808 imx_uart_writel(sport, ucr2, UCR2); 1809 1810 if (UART_ENABLE_MS(&sport->port, termios->c_cflag)) 1811 imx_uart_enable_ms(&sport->port); 1812 1813 spin_unlock_irqrestore(&sport->port.lock, flags); 1814 } 1815 1816 static const char *imx_uart_type(struct uart_port *port) 1817 { 1818 return port->type == PORT_IMX ? "IMX" : NULL; 1819 } 1820 1821 /* 1822 * Configure/autoconfigure the port. 1823 */ 1824 static void imx_uart_config_port(struct uart_port *port, int flags) 1825 { 1826 if (flags & UART_CONFIG_TYPE) 1827 port->type = PORT_IMX; 1828 } 1829 1830 /* 1831 * Verify the new serial_struct (for TIOCSSERIAL). 1832 * The only change we allow are to the flags and type, and 1833 * even then only between PORT_IMX and PORT_UNKNOWN 1834 */ 1835 static int 1836 imx_uart_verify_port(struct uart_port *port, struct serial_struct *ser) 1837 { 1838 int ret = 0; 1839 1840 if (ser->type != PORT_UNKNOWN && ser->type != PORT_IMX) 1841 ret = -EINVAL; 1842 if (port->irq != ser->irq) 1843 ret = -EINVAL; 1844 if (ser->io_type != UPIO_MEM) 1845 ret = -EINVAL; 1846 if (port->uartclk / 16 != ser->baud_base) 1847 ret = -EINVAL; 1848 if (port->mapbase != (unsigned long)ser->iomem_base) 1849 ret = -EINVAL; 1850 if (port->iobase != ser->port) 1851 ret = -EINVAL; 1852 if (ser->hub6 != 0) 1853 ret = -EINVAL; 1854 return ret; 1855 } 1856 1857 #if defined(CONFIG_CONSOLE_POLL) 1858 1859 static int imx_uart_poll_init(struct uart_port *port) 1860 { 1861 struct imx_port *sport = (struct imx_port *)port; 1862 unsigned long flags; 1863 u32 ucr1, ucr2; 1864 int retval; 1865 1866 retval = clk_prepare_enable(sport->clk_ipg); 1867 if (retval) 1868 return retval; 1869 retval = clk_prepare_enable(sport->clk_per); 1870 if (retval) 1871 clk_disable_unprepare(sport->clk_ipg); 1872 1873 imx_uart_setup_ufcr(sport, TXTL_DEFAULT, RXTL_DEFAULT); 1874 1875 spin_lock_irqsave(&sport->port.lock, flags); 1876 1877 /* 1878 * Be careful about the order of enabling bits here. First enable the 1879 * receiver (UARTEN + RXEN) and only then the corresponding irqs. 1880 * This prevents that a character that already sits in the RX fifo is 1881 * triggering an irq but the try to fetch it from there results in an 1882 * exception because UARTEN or RXEN is still off. 1883 */ 1884 ucr1 = imx_uart_readl(sport, UCR1); 1885 ucr2 = imx_uart_readl(sport, UCR2); 1886 1887 if (imx_uart_is_imx1(sport)) 1888 ucr1 |= IMX1_UCR1_UARTCLKEN; 1889 1890 ucr1 |= UCR1_UARTEN; 1891 ucr1 &= ~(UCR1_TRDYEN | UCR1_RTSDEN | UCR1_RRDYEN); 1892 1893 ucr2 |= UCR2_RXEN | UCR2_TXEN; 1894 ucr2 &= ~UCR2_ATEN; 1895 1896 imx_uart_writel(sport, ucr1, UCR1); 1897 imx_uart_writel(sport, ucr2, UCR2); 1898 1899 /* now enable irqs */ 1900 imx_uart_writel(sport, ucr1 | UCR1_RRDYEN, UCR1); 1901 imx_uart_writel(sport, ucr2 | UCR2_ATEN, UCR2); 1902 1903 spin_unlock_irqrestore(&sport->port.lock, flags); 1904 1905 return 0; 1906 } 1907 1908 static int imx_uart_poll_get_char(struct uart_port *port) 1909 { 1910 struct imx_port *sport = (struct imx_port *)port; 1911 if (!(imx_uart_readl(sport, USR2) & USR2_RDR)) 1912 return NO_POLL_CHAR; 1913 1914 return imx_uart_readl(sport, URXD0) & URXD_RX_DATA; 1915 } 1916 1917 static void imx_uart_poll_put_char(struct uart_port *port, unsigned char c) 1918 { 1919 struct imx_port *sport = (struct imx_port *)port; 1920 unsigned int status; 1921 1922 /* drain */ 1923 do { 1924 status = imx_uart_readl(sport, USR1); 1925 } while (~status & USR1_TRDY); 1926 1927 /* write */ 1928 imx_uart_writel(sport, c, URTX0); 1929 1930 /* flush */ 1931 do { 1932 status = imx_uart_readl(sport, USR2); 1933 } while (~status & USR2_TXDC); 1934 } 1935 #endif 1936 1937 /* called with port.lock taken and irqs off or from .probe without locking */ 1938 static int imx_uart_rs485_config(struct uart_port *port, struct ktermios *termios, 1939 struct serial_rs485 *rs485conf) 1940 { 1941 struct imx_port *sport = (struct imx_port *)port; 1942 u32 ucr2; 1943 1944 if (rs485conf->flags & SER_RS485_ENABLED) { 1945 /* Enable receiver if low-active RTS signal is requested */ 1946 if (sport->have_rtscts && !sport->have_rtsgpio && 1947 !(rs485conf->flags & SER_RS485_RTS_ON_SEND)) 1948 rs485conf->flags |= SER_RS485_RX_DURING_TX; 1949 1950 /* disable transmitter */ 1951 ucr2 = imx_uart_readl(sport, UCR2); 1952 if (rs485conf->flags & SER_RS485_RTS_AFTER_SEND) 1953 imx_uart_rts_active(sport, &ucr2); 1954 else 1955 imx_uart_rts_inactive(sport, &ucr2); 1956 imx_uart_writel(sport, ucr2, UCR2); 1957 } 1958 1959 /* Make sure Rx is enabled in case Tx is active with Rx disabled */ 1960 if (!(rs485conf->flags & SER_RS485_ENABLED) || 1961 rs485conf->flags & SER_RS485_RX_DURING_TX) 1962 imx_uart_start_rx(port); 1963 1964 return 0; 1965 } 1966 1967 static const struct uart_ops imx_uart_pops = { 1968 .tx_empty = imx_uart_tx_empty, 1969 .set_mctrl = imx_uart_set_mctrl, 1970 .get_mctrl = imx_uart_get_mctrl, 1971 .stop_tx = imx_uart_stop_tx, 1972 .start_tx = imx_uart_start_tx, 1973 .stop_rx = imx_uart_stop_rx, 1974 .enable_ms = imx_uart_enable_ms, 1975 .break_ctl = imx_uart_break_ctl, 1976 .startup = imx_uart_startup, 1977 .shutdown = imx_uart_shutdown, 1978 .flush_buffer = imx_uart_flush_buffer, 1979 .set_termios = imx_uart_set_termios, 1980 .type = imx_uart_type, 1981 .config_port = imx_uart_config_port, 1982 .verify_port = imx_uart_verify_port, 1983 #if defined(CONFIG_CONSOLE_POLL) 1984 .poll_init = imx_uart_poll_init, 1985 .poll_get_char = imx_uart_poll_get_char, 1986 .poll_put_char = imx_uart_poll_put_char, 1987 #endif 1988 }; 1989 1990 static struct imx_port *imx_uart_ports[UART_NR]; 1991 1992 #if IS_ENABLED(CONFIG_SERIAL_IMX_CONSOLE) 1993 static void imx_uart_console_putchar(struct uart_port *port, unsigned char ch) 1994 { 1995 struct imx_port *sport = (struct imx_port *)port; 1996 1997 while (imx_uart_readl(sport, imx_uart_uts_reg(sport)) & UTS_TXFULL) 1998 barrier(); 1999 2000 imx_uart_writel(sport, ch, URTX0); 2001 } 2002 2003 /* 2004 * Interrupts are disabled on entering 2005 */ 2006 static void 2007 imx_uart_console_write(struct console *co, const char *s, unsigned int count) 2008 { 2009 struct imx_port *sport = imx_uart_ports[co->index]; 2010 struct imx_port_ucrs old_ucr; 2011 unsigned long flags; 2012 unsigned int ucr1; 2013 int locked = 1; 2014 2015 if (sport->port.sysrq) 2016 locked = 0; 2017 else if (oops_in_progress) 2018 locked = spin_trylock_irqsave(&sport->port.lock, flags); 2019 else 2020 spin_lock_irqsave(&sport->port.lock, flags); 2021 2022 /* 2023 * First, save UCR1/2/3 and then disable interrupts 2024 */ 2025 imx_uart_ucrs_save(sport, &old_ucr); 2026 ucr1 = old_ucr.ucr1; 2027 2028 if (imx_uart_is_imx1(sport)) 2029 ucr1 |= IMX1_UCR1_UARTCLKEN; 2030 ucr1 |= UCR1_UARTEN; 2031 ucr1 &= ~(UCR1_TRDYEN | UCR1_RRDYEN | UCR1_RTSDEN); 2032 2033 imx_uart_writel(sport, ucr1, UCR1); 2034 2035 imx_uart_writel(sport, old_ucr.ucr2 | UCR2_TXEN, UCR2); 2036 2037 uart_console_write(&sport->port, s, count, imx_uart_console_putchar); 2038 2039 /* 2040 * Finally, wait for transmitter to become empty 2041 * and restore UCR1/2/3 2042 */ 2043 while (!(imx_uart_readl(sport, USR2) & USR2_TXDC)); 2044 2045 imx_uart_ucrs_restore(sport, &old_ucr); 2046 2047 if (locked) 2048 spin_unlock_irqrestore(&sport->port.lock, flags); 2049 } 2050 2051 /* 2052 * If the port was already initialised (eg, by a boot loader), 2053 * try to determine the current setup. 2054 */ 2055 static void 2056 imx_uart_console_get_options(struct imx_port *sport, int *baud, 2057 int *parity, int *bits) 2058 { 2059 2060 if (imx_uart_readl(sport, UCR1) & UCR1_UARTEN) { 2061 /* ok, the port was enabled */ 2062 unsigned int ucr2, ubir, ubmr, uartclk; 2063 unsigned int baud_raw; 2064 unsigned int ucfr_rfdiv; 2065 2066 ucr2 = imx_uart_readl(sport, UCR2); 2067 2068 *parity = 'n'; 2069 if (ucr2 & UCR2_PREN) { 2070 if (ucr2 & UCR2_PROE) 2071 *parity = 'o'; 2072 else 2073 *parity = 'e'; 2074 } 2075 2076 if (ucr2 & UCR2_WS) 2077 *bits = 8; 2078 else 2079 *bits = 7; 2080 2081 ubir = imx_uart_readl(sport, UBIR) & 0xffff; 2082 ubmr = imx_uart_readl(sport, UBMR) & 0xffff; 2083 2084 ucfr_rfdiv = (imx_uart_readl(sport, UFCR) & UFCR_RFDIV) >> 7; 2085 if (ucfr_rfdiv == 6) 2086 ucfr_rfdiv = 7; 2087 else 2088 ucfr_rfdiv = 6 - ucfr_rfdiv; 2089 2090 uartclk = clk_get_rate(sport->clk_per); 2091 uartclk /= ucfr_rfdiv; 2092 2093 { /* 2094 * The next code provides exact computation of 2095 * baud_raw = round(((uartclk/16) * (ubir + 1)) / (ubmr + 1)) 2096 * without need of float support or long long division, 2097 * which would be required to prevent 32bit arithmetic overflow 2098 */ 2099 unsigned int mul = ubir + 1; 2100 unsigned int div = 16 * (ubmr + 1); 2101 unsigned int rem = uartclk % div; 2102 2103 baud_raw = (uartclk / div) * mul; 2104 baud_raw += (rem * mul + div / 2) / div; 2105 *baud = (baud_raw + 50) / 100 * 100; 2106 } 2107 2108 if (*baud != baud_raw) 2109 dev_info(sport->port.dev, "Console IMX rounded baud rate from %d to %d\n", 2110 baud_raw, *baud); 2111 } 2112 } 2113 2114 static int 2115 imx_uart_console_setup(struct console *co, char *options) 2116 { 2117 struct imx_port *sport; 2118 int baud = 9600; 2119 int bits = 8; 2120 int parity = 'n'; 2121 int flow = 'n'; 2122 int retval; 2123 2124 /* 2125 * Check whether an invalid uart number has been specified, and 2126 * if so, search for the first available port that does have 2127 * console support. 2128 */ 2129 if (co->index == -1 || co->index >= ARRAY_SIZE(imx_uart_ports)) 2130 co->index = 0; 2131 sport = imx_uart_ports[co->index]; 2132 if (sport == NULL) 2133 return -ENODEV; 2134 2135 /* For setting the registers, we only need to enable the ipg clock. */ 2136 retval = clk_prepare_enable(sport->clk_ipg); 2137 if (retval) 2138 goto error_console; 2139 2140 if (options) 2141 uart_parse_options(options, &baud, &parity, &bits, &flow); 2142 else 2143 imx_uart_console_get_options(sport, &baud, &parity, &bits); 2144 2145 imx_uart_setup_ufcr(sport, TXTL_DEFAULT, RXTL_DEFAULT); 2146 2147 retval = uart_set_options(&sport->port, co, baud, parity, bits, flow); 2148 2149 if (retval) { 2150 clk_disable_unprepare(sport->clk_ipg); 2151 goto error_console; 2152 } 2153 2154 retval = clk_prepare_enable(sport->clk_per); 2155 if (retval) 2156 clk_disable_unprepare(sport->clk_ipg); 2157 2158 error_console: 2159 return retval; 2160 } 2161 2162 static int 2163 imx_uart_console_exit(struct console *co) 2164 { 2165 struct imx_port *sport = imx_uart_ports[co->index]; 2166 2167 clk_disable_unprepare(sport->clk_per); 2168 clk_disable_unprepare(sport->clk_ipg); 2169 2170 return 0; 2171 } 2172 2173 static struct uart_driver imx_uart_uart_driver; 2174 static struct console imx_uart_console = { 2175 .name = DEV_NAME, 2176 .write = imx_uart_console_write, 2177 .device = uart_console_device, 2178 .setup = imx_uart_console_setup, 2179 .exit = imx_uart_console_exit, 2180 .flags = CON_PRINTBUFFER, 2181 .index = -1, 2182 .data = &imx_uart_uart_driver, 2183 }; 2184 2185 #define IMX_CONSOLE &imx_uart_console 2186 2187 #else 2188 #define IMX_CONSOLE NULL 2189 #endif 2190 2191 static struct uart_driver imx_uart_uart_driver = { 2192 .owner = THIS_MODULE, 2193 .driver_name = DRIVER_NAME, 2194 .dev_name = DEV_NAME, 2195 .major = SERIAL_IMX_MAJOR, 2196 .minor = MINOR_START, 2197 .nr = ARRAY_SIZE(imx_uart_ports), 2198 .cons = IMX_CONSOLE, 2199 }; 2200 2201 static enum hrtimer_restart imx_trigger_start_tx(struct hrtimer *t) 2202 { 2203 struct imx_port *sport = container_of(t, struct imx_port, trigger_start_tx); 2204 unsigned long flags; 2205 2206 spin_lock_irqsave(&sport->port.lock, flags); 2207 if (sport->tx_state == WAIT_AFTER_RTS) 2208 imx_uart_start_tx(&sport->port); 2209 spin_unlock_irqrestore(&sport->port.lock, flags); 2210 2211 return HRTIMER_NORESTART; 2212 } 2213 2214 static enum hrtimer_restart imx_trigger_stop_tx(struct hrtimer *t) 2215 { 2216 struct imx_port *sport = container_of(t, struct imx_port, trigger_stop_tx); 2217 unsigned long flags; 2218 2219 spin_lock_irqsave(&sport->port.lock, flags); 2220 if (sport->tx_state == WAIT_AFTER_SEND) 2221 imx_uart_stop_tx(&sport->port); 2222 spin_unlock_irqrestore(&sport->port.lock, flags); 2223 2224 return HRTIMER_NORESTART; 2225 } 2226 2227 static const struct serial_rs485 imx_rs485_supported = { 2228 .flags = SER_RS485_ENABLED | SER_RS485_RTS_ON_SEND | SER_RS485_RTS_AFTER_SEND | 2229 SER_RS485_RX_DURING_TX, 2230 .delay_rts_before_send = 1, 2231 .delay_rts_after_send = 1, 2232 }; 2233 2234 /* Default RX DMA buffer configuration */ 2235 #define RX_DMA_PERIODS 16 2236 #define RX_DMA_PERIOD_LEN (PAGE_SIZE / 4) 2237 2238 static int imx_uart_probe(struct platform_device *pdev) 2239 { 2240 struct device_node *np = pdev->dev.of_node; 2241 struct imx_port *sport; 2242 void __iomem *base; 2243 u32 dma_buf_conf[2]; 2244 int ret = 0; 2245 u32 ucr1, ucr2, uts; 2246 struct resource *res; 2247 int txirq, rxirq, rtsirq; 2248 2249 sport = devm_kzalloc(&pdev->dev, sizeof(*sport), GFP_KERNEL); 2250 if (!sport) 2251 return -ENOMEM; 2252 2253 sport->devdata = of_device_get_match_data(&pdev->dev); 2254 2255 ret = of_alias_get_id(np, "serial"); 2256 if (ret < 0) { 2257 dev_err(&pdev->dev, "failed to get alias id, errno %d\n", ret); 2258 return ret; 2259 } 2260 sport->port.line = ret; 2261 2262 sport->have_rtscts = of_property_read_bool(np, "uart-has-rtscts") || 2263 of_property_read_bool(np, "fsl,uart-has-rtscts"); /* deprecated */ 2264 2265 sport->dte_mode = of_property_read_bool(np, "fsl,dte-mode"); 2266 2267 sport->have_rtsgpio = of_property_present(np, "rts-gpios"); 2268 2269 sport->inverted_tx = of_property_read_bool(np, "fsl,inverted-tx"); 2270 2271 sport->inverted_rx = of_property_read_bool(np, "fsl,inverted-rx"); 2272 2273 if (!of_property_read_u32_array(np, "fsl,dma-info", dma_buf_conf, 2)) { 2274 sport->rx_period_length = dma_buf_conf[0]; 2275 sport->rx_periods = dma_buf_conf[1]; 2276 } else { 2277 sport->rx_period_length = RX_DMA_PERIOD_LEN; 2278 sport->rx_periods = RX_DMA_PERIODS; 2279 } 2280 2281 if (sport->port.line >= ARRAY_SIZE(imx_uart_ports)) { 2282 dev_err(&pdev->dev, "serial%d out of range\n", 2283 sport->port.line); 2284 return -EINVAL; 2285 } 2286 2287 base = devm_platform_get_and_ioremap_resource(pdev, 0, &res); 2288 if (IS_ERR(base)) 2289 return PTR_ERR(base); 2290 2291 rxirq = platform_get_irq(pdev, 0); 2292 if (rxirq < 0) 2293 return rxirq; 2294 txirq = platform_get_irq_optional(pdev, 1); 2295 rtsirq = platform_get_irq_optional(pdev, 2); 2296 2297 sport->port.dev = &pdev->dev; 2298 sport->port.mapbase = res->start; 2299 sport->port.membase = base; 2300 sport->port.type = PORT_IMX; 2301 sport->port.iotype = UPIO_MEM; 2302 sport->port.irq = rxirq; 2303 sport->port.fifosize = 32; 2304 sport->port.has_sysrq = IS_ENABLED(CONFIG_SERIAL_IMX_CONSOLE); 2305 sport->port.ops = &imx_uart_pops; 2306 sport->port.rs485_config = imx_uart_rs485_config; 2307 /* RTS is required to control the RS485 transmitter */ 2308 if (sport->have_rtscts || sport->have_rtsgpio) 2309 sport->port.rs485_supported = imx_rs485_supported; 2310 sport->port.flags = UPF_BOOT_AUTOCONF; 2311 timer_setup(&sport->timer, imx_uart_timeout, 0); 2312 2313 sport->gpios = mctrl_gpio_init(&sport->port, 0); 2314 if (IS_ERR(sport->gpios)) 2315 return PTR_ERR(sport->gpios); 2316 2317 sport->clk_ipg = devm_clk_get(&pdev->dev, "ipg"); 2318 if (IS_ERR(sport->clk_ipg)) { 2319 ret = PTR_ERR(sport->clk_ipg); 2320 dev_err(&pdev->dev, "failed to get ipg clk: %d\n", ret); 2321 return ret; 2322 } 2323 2324 sport->clk_per = devm_clk_get(&pdev->dev, "per"); 2325 if (IS_ERR(sport->clk_per)) { 2326 ret = PTR_ERR(sport->clk_per); 2327 dev_err(&pdev->dev, "failed to get per clk: %d\n", ret); 2328 return ret; 2329 } 2330 2331 sport->port.uartclk = clk_get_rate(sport->clk_per); 2332 2333 /* For register access, we only need to enable the ipg clock. */ 2334 ret = clk_prepare_enable(sport->clk_ipg); 2335 if (ret) { 2336 dev_err(&pdev->dev, "failed to enable ipg clk: %d\n", ret); 2337 return ret; 2338 } 2339 2340 ret = uart_get_rs485_mode(&sport->port); 2341 if (ret) 2342 goto err_clk; 2343 2344 /* 2345 * If using the i.MX UART RTS/CTS control then the RTS (CTS_B) 2346 * signal cannot be set low during transmission in case the 2347 * receiver is off (limitation of the i.MX UART IP). 2348 */ 2349 if (sport->port.rs485.flags & SER_RS485_ENABLED && 2350 sport->have_rtscts && !sport->have_rtsgpio && 2351 (!(sport->port.rs485.flags & SER_RS485_RTS_ON_SEND) && 2352 !(sport->port.rs485.flags & SER_RS485_RX_DURING_TX))) 2353 dev_err(&pdev->dev, 2354 "low-active RTS not possible when receiver is off, enabling receiver\n"); 2355 2356 /* Disable interrupts before requesting them */ 2357 ucr1 = imx_uart_readl(sport, UCR1); 2358 ucr1 &= ~(UCR1_ADEN | UCR1_TRDYEN | UCR1_IDEN | UCR1_RRDYEN | UCR1_RTSDEN); 2359 imx_uart_writel(sport, ucr1, UCR1); 2360 2361 /* Disable Ageing Timer interrupt */ 2362 ucr2 = imx_uart_readl(sport, UCR2); 2363 ucr2 &= ~UCR2_ATEN; 2364 imx_uart_writel(sport, ucr2, UCR2); 2365 2366 /* 2367 * In case RS485 is enabled without GPIO RTS control, the UART IP 2368 * is used to control CTS signal. Keep both the UART and Receiver 2369 * enabled, otherwise the UART IP pulls CTS signal always HIGH no 2370 * matter how the UCR2 CTSC and CTS bits are set. To prevent any 2371 * data from being fed into the RX FIFO, enable loopback mode in 2372 * UTS register, which disconnects the RX path from external RXD 2373 * pin and connects it to the Transceiver, which is disabled, so 2374 * no data can be fed to the RX FIFO that way. 2375 */ 2376 if (sport->port.rs485.flags & SER_RS485_ENABLED && 2377 sport->have_rtscts && !sport->have_rtsgpio) { 2378 uts = imx_uart_readl(sport, imx_uart_uts_reg(sport)); 2379 uts |= UTS_LOOP; 2380 imx_uart_writel(sport, uts, imx_uart_uts_reg(sport)); 2381 2382 ucr1 = imx_uart_readl(sport, UCR1); 2383 ucr1 |= UCR1_UARTEN; 2384 imx_uart_writel(sport, ucr1, UCR1); 2385 2386 ucr2 = imx_uart_readl(sport, UCR2); 2387 ucr2 |= UCR2_RXEN; 2388 imx_uart_writel(sport, ucr2, UCR2); 2389 } 2390 2391 if (!imx_uart_is_imx1(sport) && sport->dte_mode) { 2392 /* 2393 * The DCEDTE bit changes the direction of DSR, DCD, DTR and RI 2394 * and influences if UCR3_RI and UCR3_DCD changes the level of RI 2395 * and DCD (when they are outputs) or enables the respective 2396 * irqs. So set this bit early, i.e. before requesting irqs. 2397 */ 2398 u32 ufcr = imx_uart_readl(sport, UFCR); 2399 if (!(ufcr & UFCR_DCEDTE)) 2400 imx_uart_writel(sport, ufcr | UFCR_DCEDTE, UFCR); 2401 2402 /* 2403 * Disable UCR3_RI and UCR3_DCD irqs. They are also not 2404 * enabled later because they cannot be cleared 2405 * (confirmed on i.MX25) which makes them unusable. 2406 */ 2407 imx_uart_writel(sport, 2408 IMX21_UCR3_RXDMUXSEL | UCR3_ADNIMP | UCR3_DSR, 2409 UCR3); 2410 2411 } else { 2412 u32 ucr3 = UCR3_DSR; 2413 u32 ufcr = imx_uart_readl(sport, UFCR); 2414 if (ufcr & UFCR_DCEDTE) 2415 imx_uart_writel(sport, ufcr & ~UFCR_DCEDTE, UFCR); 2416 2417 if (!imx_uart_is_imx1(sport)) 2418 ucr3 |= IMX21_UCR3_RXDMUXSEL | UCR3_ADNIMP; 2419 imx_uart_writel(sport, ucr3, UCR3); 2420 } 2421 2422 hrtimer_init(&sport->trigger_start_tx, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 2423 hrtimer_init(&sport->trigger_stop_tx, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 2424 sport->trigger_start_tx.function = imx_trigger_start_tx; 2425 sport->trigger_stop_tx.function = imx_trigger_stop_tx; 2426 2427 /* 2428 * Allocate the IRQ(s) i.MX1 has three interrupts whereas later 2429 * chips only have one interrupt. 2430 */ 2431 if (txirq > 0) { 2432 ret = devm_request_irq(&pdev->dev, rxirq, imx_uart_rxint, 0, 2433 dev_name(&pdev->dev), sport); 2434 if (ret) { 2435 dev_err(&pdev->dev, "failed to request rx irq: %d\n", 2436 ret); 2437 goto err_clk; 2438 } 2439 2440 ret = devm_request_irq(&pdev->dev, txirq, imx_uart_txint, 0, 2441 dev_name(&pdev->dev), sport); 2442 if (ret) { 2443 dev_err(&pdev->dev, "failed to request tx irq: %d\n", 2444 ret); 2445 goto err_clk; 2446 } 2447 2448 ret = devm_request_irq(&pdev->dev, rtsirq, imx_uart_rtsint, 0, 2449 dev_name(&pdev->dev), sport); 2450 if (ret) { 2451 dev_err(&pdev->dev, "failed to request rts irq: %d\n", 2452 ret); 2453 goto err_clk; 2454 } 2455 } else { 2456 ret = devm_request_irq(&pdev->dev, rxirq, imx_uart_int, 0, 2457 dev_name(&pdev->dev), sport); 2458 if (ret) { 2459 dev_err(&pdev->dev, "failed to request irq: %d\n", ret); 2460 goto err_clk; 2461 } 2462 } 2463 2464 imx_uart_ports[sport->port.line] = sport; 2465 2466 platform_set_drvdata(pdev, sport); 2467 2468 ret = uart_add_one_port(&imx_uart_uart_driver, &sport->port); 2469 2470 err_clk: 2471 clk_disable_unprepare(sport->clk_ipg); 2472 2473 return ret; 2474 } 2475 2476 static int imx_uart_remove(struct platform_device *pdev) 2477 { 2478 struct imx_port *sport = platform_get_drvdata(pdev); 2479 2480 uart_remove_one_port(&imx_uart_uart_driver, &sport->port); 2481 2482 return 0; 2483 } 2484 2485 static void imx_uart_restore_context(struct imx_port *sport) 2486 { 2487 unsigned long flags; 2488 2489 spin_lock_irqsave(&sport->port.lock, flags); 2490 if (!sport->context_saved) { 2491 spin_unlock_irqrestore(&sport->port.lock, flags); 2492 return; 2493 } 2494 2495 imx_uart_writel(sport, sport->saved_reg[4], UFCR); 2496 imx_uart_writel(sport, sport->saved_reg[5], UESC); 2497 imx_uart_writel(sport, sport->saved_reg[6], UTIM); 2498 imx_uart_writel(sport, sport->saved_reg[7], UBIR); 2499 imx_uart_writel(sport, sport->saved_reg[8], UBMR); 2500 imx_uart_writel(sport, sport->saved_reg[9], IMX21_UTS); 2501 imx_uart_writel(sport, sport->saved_reg[0], UCR1); 2502 imx_uart_writel(sport, sport->saved_reg[1] | UCR2_SRST, UCR2); 2503 imx_uart_writel(sport, sport->saved_reg[2], UCR3); 2504 imx_uart_writel(sport, sport->saved_reg[3], UCR4); 2505 sport->context_saved = false; 2506 spin_unlock_irqrestore(&sport->port.lock, flags); 2507 } 2508 2509 static void imx_uart_save_context(struct imx_port *sport) 2510 { 2511 unsigned long flags; 2512 2513 /* Save necessary regs */ 2514 spin_lock_irqsave(&sport->port.lock, flags); 2515 sport->saved_reg[0] = imx_uart_readl(sport, UCR1); 2516 sport->saved_reg[1] = imx_uart_readl(sport, UCR2); 2517 sport->saved_reg[2] = imx_uart_readl(sport, UCR3); 2518 sport->saved_reg[3] = imx_uart_readl(sport, UCR4); 2519 sport->saved_reg[4] = imx_uart_readl(sport, UFCR); 2520 sport->saved_reg[5] = imx_uart_readl(sport, UESC); 2521 sport->saved_reg[6] = imx_uart_readl(sport, UTIM); 2522 sport->saved_reg[7] = imx_uart_readl(sport, UBIR); 2523 sport->saved_reg[8] = imx_uart_readl(sport, UBMR); 2524 sport->saved_reg[9] = imx_uart_readl(sport, IMX21_UTS); 2525 sport->context_saved = true; 2526 spin_unlock_irqrestore(&sport->port.lock, flags); 2527 } 2528 2529 static void imx_uart_enable_wakeup(struct imx_port *sport, bool on) 2530 { 2531 u32 ucr3; 2532 2533 ucr3 = imx_uart_readl(sport, UCR3); 2534 if (on) { 2535 imx_uart_writel(sport, USR1_AWAKE, USR1); 2536 ucr3 |= UCR3_AWAKEN; 2537 } else { 2538 ucr3 &= ~UCR3_AWAKEN; 2539 } 2540 imx_uart_writel(sport, ucr3, UCR3); 2541 2542 if (sport->have_rtscts) { 2543 u32 ucr1 = imx_uart_readl(sport, UCR1); 2544 if (on) { 2545 imx_uart_writel(sport, USR1_RTSD, USR1); 2546 ucr1 |= UCR1_RTSDEN; 2547 } else { 2548 ucr1 &= ~UCR1_RTSDEN; 2549 } 2550 imx_uart_writel(sport, ucr1, UCR1); 2551 } 2552 } 2553 2554 static int imx_uart_suspend_noirq(struct device *dev) 2555 { 2556 struct imx_port *sport = dev_get_drvdata(dev); 2557 2558 imx_uart_save_context(sport); 2559 2560 clk_disable(sport->clk_ipg); 2561 2562 pinctrl_pm_select_sleep_state(dev); 2563 2564 return 0; 2565 } 2566 2567 static int imx_uart_resume_noirq(struct device *dev) 2568 { 2569 struct imx_port *sport = dev_get_drvdata(dev); 2570 int ret; 2571 2572 pinctrl_pm_select_default_state(dev); 2573 2574 ret = clk_enable(sport->clk_ipg); 2575 if (ret) 2576 return ret; 2577 2578 imx_uart_restore_context(sport); 2579 2580 return 0; 2581 } 2582 2583 static int imx_uart_suspend(struct device *dev) 2584 { 2585 struct imx_port *sport = dev_get_drvdata(dev); 2586 int ret; 2587 2588 uart_suspend_port(&imx_uart_uart_driver, &sport->port); 2589 disable_irq(sport->port.irq); 2590 2591 ret = clk_prepare_enable(sport->clk_ipg); 2592 if (ret) 2593 return ret; 2594 2595 /* enable wakeup from i.MX UART */ 2596 imx_uart_enable_wakeup(sport, true); 2597 2598 return 0; 2599 } 2600 2601 static int imx_uart_resume(struct device *dev) 2602 { 2603 struct imx_port *sport = dev_get_drvdata(dev); 2604 2605 /* disable wakeup from i.MX UART */ 2606 imx_uart_enable_wakeup(sport, false); 2607 2608 uart_resume_port(&imx_uart_uart_driver, &sport->port); 2609 enable_irq(sport->port.irq); 2610 2611 clk_disable_unprepare(sport->clk_ipg); 2612 2613 return 0; 2614 } 2615 2616 static int imx_uart_freeze(struct device *dev) 2617 { 2618 struct imx_port *sport = dev_get_drvdata(dev); 2619 2620 uart_suspend_port(&imx_uart_uart_driver, &sport->port); 2621 2622 return clk_prepare_enable(sport->clk_ipg); 2623 } 2624 2625 static int imx_uart_thaw(struct device *dev) 2626 { 2627 struct imx_port *sport = dev_get_drvdata(dev); 2628 2629 uart_resume_port(&imx_uart_uart_driver, &sport->port); 2630 2631 clk_disable_unprepare(sport->clk_ipg); 2632 2633 return 0; 2634 } 2635 2636 static const struct dev_pm_ops imx_uart_pm_ops = { 2637 .suspend_noirq = imx_uart_suspend_noirq, 2638 .resume_noirq = imx_uart_resume_noirq, 2639 .freeze_noirq = imx_uart_suspend_noirq, 2640 .thaw_noirq = imx_uart_resume_noirq, 2641 .restore_noirq = imx_uart_resume_noirq, 2642 .suspend = imx_uart_suspend, 2643 .resume = imx_uart_resume, 2644 .freeze = imx_uart_freeze, 2645 .thaw = imx_uart_thaw, 2646 .restore = imx_uart_thaw, 2647 }; 2648 2649 static struct platform_driver imx_uart_platform_driver = { 2650 .probe = imx_uart_probe, 2651 .remove = imx_uart_remove, 2652 2653 .driver = { 2654 .name = "imx-uart", 2655 .of_match_table = imx_uart_dt_ids, 2656 .pm = &imx_uart_pm_ops, 2657 }, 2658 }; 2659 2660 static int __init imx_uart_init(void) 2661 { 2662 int ret = uart_register_driver(&imx_uart_uart_driver); 2663 2664 if (ret) 2665 return ret; 2666 2667 ret = platform_driver_register(&imx_uart_platform_driver); 2668 if (ret != 0) 2669 uart_unregister_driver(&imx_uart_uart_driver); 2670 2671 return ret; 2672 } 2673 2674 static void __exit imx_uart_exit(void) 2675 { 2676 platform_driver_unregister(&imx_uart_platform_driver); 2677 uart_unregister_driver(&imx_uart_uart_driver); 2678 } 2679 2680 module_init(imx_uart_init); 2681 module_exit(imx_uart_exit); 2682 2683 MODULE_AUTHOR("Sascha Hauer"); 2684 MODULE_DESCRIPTION("IMX generic serial port driver"); 2685 MODULE_LICENSE("GPL"); 2686 MODULE_ALIAS("platform:imx-uart"); 2687