xref: /openbmc/linux/drivers/tty/serial/imx.c (revision 249592bf)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Driver for Motorola/Freescale IMX serial ports
4  *
5  * Based on drivers/char/serial.c, by Linus Torvalds, Theodore Ts'o.
6  *
7  * Author: Sascha Hauer <sascha@saschahauer.de>
8  * Copyright (C) 2004 Pengutronix
9  */
10 
11 #include <linux/module.h>
12 #include <linux/ioport.h>
13 #include <linux/init.h>
14 #include <linux/console.h>
15 #include <linux/sysrq.h>
16 #include <linux/platform_device.h>
17 #include <linux/tty.h>
18 #include <linux/tty_flip.h>
19 #include <linux/serial_core.h>
20 #include <linux/serial.h>
21 #include <linux/clk.h>
22 #include <linux/delay.h>
23 #include <linux/ktime.h>
24 #include <linux/pinctrl/consumer.h>
25 #include <linux/rational.h>
26 #include <linux/slab.h>
27 #include <linux/of.h>
28 #include <linux/of_device.h>
29 #include <linux/io.h>
30 #include <linux/dma-mapping.h>
31 
32 #include <asm/irq.h>
33 #include <linux/platform_data/dma-imx.h>
34 
35 #include "serial_mctrl_gpio.h"
36 
37 /* Register definitions */
38 #define URXD0 0x0  /* Receiver Register */
39 #define URTX0 0x40 /* Transmitter Register */
40 #define UCR1  0x80 /* Control Register 1 */
41 #define UCR2  0x84 /* Control Register 2 */
42 #define UCR3  0x88 /* Control Register 3 */
43 #define UCR4  0x8c /* Control Register 4 */
44 #define UFCR  0x90 /* FIFO Control Register */
45 #define USR1  0x94 /* Status Register 1 */
46 #define USR2  0x98 /* Status Register 2 */
47 #define UESC  0x9c /* Escape Character Register */
48 #define UTIM  0xa0 /* Escape Timer Register */
49 #define UBIR  0xa4 /* BRM Incremental Register */
50 #define UBMR  0xa8 /* BRM Modulator Register */
51 #define UBRC  0xac /* Baud Rate Count Register */
52 #define IMX21_ONEMS 0xb0 /* One Millisecond register */
53 #define IMX1_UTS 0xd0 /* UART Test Register on i.mx1 */
54 #define IMX21_UTS 0xb4 /* UART Test Register on all other i.mx*/
55 
56 /* UART Control Register Bit Fields.*/
57 #define URXD_DUMMY_READ (1<<16)
58 #define URXD_CHARRDY	(1<<15)
59 #define URXD_ERR	(1<<14)
60 #define URXD_OVRRUN	(1<<13)
61 #define URXD_FRMERR	(1<<12)
62 #define URXD_BRK	(1<<11)
63 #define URXD_PRERR	(1<<10)
64 #define URXD_RX_DATA	(0xFF<<0)
65 #define UCR1_ADEN	(1<<15) /* Auto detect interrupt */
66 #define UCR1_ADBR	(1<<14) /* Auto detect baud rate */
67 #define UCR1_TRDYEN	(1<<13) /* Transmitter ready interrupt enable */
68 #define UCR1_IDEN	(1<<12) /* Idle condition interrupt */
69 #define UCR1_ICD_REG(x) (((x) & 3) << 10) /* idle condition detect */
70 #define UCR1_RRDYEN	(1<<9)	/* Recv ready interrupt enable */
71 #define UCR1_RXDMAEN	(1<<8)	/* Recv ready DMA enable */
72 #define UCR1_IREN	(1<<7)	/* Infrared interface enable */
73 #define UCR1_TXMPTYEN	(1<<6)	/* Transimitter empty interrupt enable */
74 #define UCR1_RTSDEN	(1<<5)	/* RTS delta interrupt enable */
75 #define UCR1_SNDBRK	(1<<4)	/* Send break */
76 #define UCR1_TXDMAEN	(1<<3)	/* Transmitter ready DMA enable */
77 #define IMX1_UCR1_UARTCLKEN (1<<2) /* UART clock enabled, i.mx1 only */
78 #define UCR1_ATDMAEN    (1<<2)  /* Aging DMA Timer Enable */
79 #define UCR1_DOZE	(1<<1)	/* Doze */
80 #define UCR1_UARTEN	(1<<0)	/* UART enabled */
81 #define UCR2_ESCI	(1<<15)	/* Escape seq interrupt enable */
82 #define UCR2_IRTS	(1<<14)	/* Ignore RTS pin */
83 #define UCR2_CTSC	(1<<13)	/* CTS pin control */
84 #define UCR2_CTS	(1<<12)	/* Clear to send */
85 #define UCR2_ESCEN	(1<<11)	/* Escape enable */
86 #define UCR2_PREN	(1<<8)	/* Parity enable */
87 #define UCR2_PROE	(1<<7)	/* Parity odd/even */
88 #define UCR2_STPB	(1<<6)	/* Stop */
89 #define UCR2_WS		(1<<5)	/* Word size */
90 #define UCR2_RTSEN	(1<<4)	/* Request to send interrupt enable */
91 #define UCR2_ATEN	(1<<3)	/* Aging Timer Enable */
92 #define UCR2_TXEN	(1<<2)	/* Transmitter enabled */
93 #define UCR2_RXEN	(1<<1)	/* Receiver enabled */
94 #define UCR2_SRST	(1<<0)	/* SW reset */
95 #define UCR3_DTREN	(1<<13) /* DTR interrupt enable */
96 #define UCR3_PARERREN	(1<<12) /* Parity enable */
97 #define UCR3_FRAERREN	(1<<11) /* Frame error interrupt enable */
98 #define UCR3_DSR	(1<<10) /* Data set ready */
99 #define UCR3_DCD	(1<<9)	/* Data carrier detect */
100 #define UCR3_RI		(1<<8)	/* Ring indicator */
101 #define UCR3_ADNIMP	(1<<7)	/* Autobaud Detection Not Improved */
102 #define UCR3_RXDSEN	(1<<6)	/* Receive status interrupt enable */
103 #define UCR3_AIRINTEN	(1<<5)	/* Async IR wake interrupt enable */
104 #define UCR3_AWAKEN	(1<<4)	/* Async wake interrupt enable */
105 #define UCR3_DTRDEN	(1<<3)	/* Data Terminal Ready Delta Enable. */
106 #define IMX21_UCR3_RXDMUXSEL	(1<<2)	/* RXD Muxed Input Select */
107 #define UCR3_INVT	(1<<1)	/* Inverted Infrared transmission */
108 #define UCR3_BPEN	(1<<0)	/* Preset registers enable */
109 #define UCR4_CTSTL_SHF	10	/* CTS trigger level shift */
110 #define UCR4_CTSTL_MASK	0x3F	/* CTS trigger is 6 bits wide */
111 #define UCR4_INVR	(1<<9)	/* Inverted infrared reception */
112 #define UCR4_ENIRI	(1<<8)	/* Serial infrared interrupt enable */
113 #define UCR4_WKEN	(1<<7)	/* Wake interrupt enable */
114 #define UCR4_REF16	(1<<6)	/* Ref freq 16 MHz */
115 #define UCR4_IDDMAEN    (1<<6)  /* DMA IDLE Condition Detected */
116 #define UCR4_IRSC	(1<<5)	/* IR special case */
117 #define UCR4_TCEN	(1<<3)	/* Transmit complete interrupt enable */
118 #define UCR4_BKEN	(1<<2)	/* Break condition interrupt enable */
119 #define UCR4_OREN	(1<<1)	/* Receiver overrun interrupt enable */
120 #define UCR4_DREN	(1<<0)	/* Recv data ready interrupt enable */
121 #define UFCR_RXTL_SHF	0	/* Receiver trigger level shift */
122 #define UFCR_DCEDTE	(1<<6)	/* DCE/DTE mode select */
123 #define UFCR_RFDIV	(7<<7)	/* Reference freq divider mask */
124 #define UFCR_RFDIV_REG(x)	(((x) < 7 ? 6 - (x) : 6) << 7)
125 #define UFCR_TXTL_SHF	10	/* Transmitter trigger level shift */
126 #define USR1_PARITYERR	(1<<15) /* Parity error interrupt flag */
127 #define USR1_RTSS	(1<<14) /* RTS pin status */
128 #define USR1_TRDY	(1<<13) /* Transmitter ready interrupt/dma flag */
129 #define USR1_RTSD	(1<<12) /* RTS delta */
130 #define USR1_ESCF	(1<<11) /* Escape seq interrupt flag */
131 #define USR1_FRAMERR	(1<<10) /* Frame error interrupt flag */
132 #define USR1_RRDY	(1<<9)	 /* Receiver ready interrupt/dma flag */
133 #define USR1_AGTIM	(1<<8)	 /* Ageing timer interrupt flag */
134 #define USR1_DTRD	(1<<7)	 /* DTR Delta */
135 #define USR1_RXDS	 (1<<6)	 /* Receiver idle interrupt flag */
136 #define USR1_AIRINT	 (1<<5)	 /* Async IR wake interrupt flag */
137 #define USR1_AWAKE	 (1<<4)	 /* Aysnc wake interrupt flag */
138 #define USR2_ADET	 (1<<15) /* Auto baud rate detect complete */
139 #define USR2_TXFE	 (1<<14) /* Transmit buffer FIFO empty */
140 #define USR2_DTRF	 (1<<13) /* DTR edge interrupt flag */
141 #define USR2_IDLE	 (1<<12) /* Idle condition */
142 #define USR2_RIDELT	 (1<<10) /* Ring Interrupt Delta */
143 #define USR2_RIIN	 (1<<9)	 /* Ring Indicator Input */
144 #define USR2_IRINT	 (1<<8)	 /* Serial infrared interrupt flag */
145 #define USR2_WAKE	 (1<<7)	 /* Wake */
146 #define USR2_DCDIN	 (1<<5)	 /* Data Carrier Detect Input */
147 #define USR2_RTSF	 (1<<4)	 /* RTS edge interrupt flag */
148 #define USR2_TXDC	 (1<<3)	 /* Transmitter complete */
149 #define USR2_BRCD	 (1<<2)	 /* Break condition */
150 #define USR2_ORE	(1<<1)	 /* Overrun error */
151 #define USR2_RDR	(1<<0)	 /* Recv data ready */
152 #define UTS_FRCPERR	(1<<13) /* Force parity error */
153 #define UTS_LOOP	(1<<12)	 /* Loop tx and rx */
154 #define UTS_TXEMPTY	 (1<<6)	 /* TxFIFO empty */
155 #define UTS_RXEMPTY	 (1<<5)	 /* RxFIFO empty */
156 #define UTS_TXFULL	 (1<<4)	 /* TxFIFO full */
157 #define UTS_RXFULL	 (1<<3)	 /* RxFIFO full */
158 #define UTS_SOFTRST	 (1<<0)	 /* Software reset */
159 
160 /* We've been assigned a range on the "Low-density serial ports" major */
161 #define SERIAL_IMX_MAJOR	207
162 #define MINOR_START		16
163 #define DEV_NAME		"ttymxc"
164 
165 /*
166  * This determines how often we check the modem status signals
167  * for any change.  They generally aren't connected to an IRQ
168  * so we have to poll them.  We also check immediately before
169  * filling the TX fifo incase CTS has been dropped.
170  */
171 #define MCTRL_TIMEOUT	(250*HZ/1000)
172 
173 #define DRIVER_NAME "IMX-uart"
174 
175 #define UART_NR 8
176 
177 /* i.MX21 type uart runs on all i.mx except i.MX1 and i.MX6q */
178 enum imx_uart_type {
179 	IMX1_UART,
180 	IMX21_UART,
181 	IMX53_UART,
182 	IMX6Q_UART,
183 };
184 
185 /* device type dependent stuff */
186 struct imx_uart_data {
187 	unsigned uts_reg;
188 	enum imx_uart_type devtype;
189 };
190 
191 enum imx_tx_state {
192 	OFF,
193 	WAIT_AFTER_RTS,
194 	SEND,
195 	WAIT_AFTER_SEND,
196 };
197 
198 struct imx_port {
199 	struct uart_port	port;
200 	struct timer_list	timer;
201 	unsigned int		old_status;
202 	unsigned int		have_rtscts:1;
203 	unsigned int		have_rtsgpio:1;
204 	unsigned int		dte_mode:1;
205 	unsigned int		inverted_tx:1;
206 	unsigned int		inverted_rx:1;
207 	struct clk		*clk_ipg;
208 	struct clk		*clk_per;
209 	const struct imx_uart_data *devdata;
210 
211 	struct mctrl_gpios *gpios;
212 
213 	/* shadow registers */
214 	unsigned int ucr1;
215 	unsigned int ucr2;
216 	unsigned int ucr3;
217 	unsigned int ucr4;
218 	unsigned int ufcr;
219 
220 	/* DMA fields */
221 	unsigned int		dma_is_enabled:1;
222 	unsigned int		dma_is_rxing:1;
223 	unsigned int		dma_is_txing:1;
224 	struct dma_chan		*dma_chan_rx, *dma_chan_tx;
225 	struct scatterlist	rx_sgl, tx_sgl[2];
226 	void			*rx_buf;
227 	struct circ_buf		rx_ring;
228 	unsigned int		rx_periods;
229 	dma_cookie_t		rx_cookie;
230 	unsigned int		tx_bytes;
231 	unsigned int		dma_tx_nents;
232 	unsigned int            saved_reg[10];
233 	bool			context_saved;
234 
235 	enum imx_tx_state	tx_state;
236 	struct hrtimer		trigger_start_tx;
237 	struct hrtimer		trigger_stop_tx;
238 };
239 
240 struct imx_port_ucrs {
241 	unsigned int	ucr1;
242 	unsigned int	ucr2;
243 	unsigned int	ucr3;
244 };
245 
246 static struct imx_uart_data imx_uart_devdata[] = {
247 	[IMX1_UART] = {
248 		.uts_reg = IMX1_UTS,
249 		.devtype = IMX1_UART,
250 	},
251 	[IMX21_UART] = {
252 		.uts_reg = IMX21_UTS,
253 		.devtype = IMX21_UART,
254 	},
255 	[IMX53_UART] = {
256 		.uts_reg = IMX21_UTS,
257 		.devtype = IMX53_UART,
258 	},
259 	[IMX6Q_UART] = {
260 		.uts_reg = IMX21_UTS,
261 		.devtype = IMX6Q_UART,
262 	},
263 };
264 
265 static const struct of_device_id imx_uart_dt_ids[] = {
266 	{ .compatible = "fsl,imx6q-uart", .data = &imx_uart_devdata[IMX6Q_UART], },
267 	{ .compatible = "fsl,imx53-uart", .data = &imx_uart_devdata[IMX53_UART], },
268 	{ .compatible = "fsl,imx1-uart", .data = &imx_uart_devdata[IMX1_UART], },
269 	{ .compatible = "fsl,imx21-uart", .data = &imx_uart_devdata[IMX21_UART], },
270 	{ /* sentinel */ }
271 };
272 MODULE_DEVICE_TABLE(of, imx_uart_dt_ids);
273 
274 static void imx_uart_writel(struct imx_port *sport, u32 val, u32 offset)
275 {
276 	switch (offset) {
277 	case UCR1:
278 		sport->ucr1 = val;
279 		break;
280 	case UCR2:
281 		sport->ucr2 = val;
282 		break;
283 	case UCR3:
284 		sport->ucr3 = val;
285 		break;
286 	case UCR4:
287 		sport->ucr4 = val;
288 		break;
289 	case UFCR:
290 		sport->ufcr = val;
291 		break;
292 	default:
293 		break;
294 	}
295 	writel(val, sport->port.membase + offset);
296 }
297 
298 static u32 imx_uart_readl(struct imx_port *sport, u32 offset)
299 {
300 	switch (offset) {
301 	case UCR1:
302 		return sport->ucr1;
303 		break;
304 	case UCR2:
305 		/*
306 		 * UCR2_SRST is the only bit in the cached registers that might
307 		 * differ from the value that was last written. As it only
308 		 * automatically becomes one after being cleared, reread
309 		 * conditionally.
310 		 */
311 		if (!(sport->ucr2 & UCR2_SRST))
312 			sport->ucr2 = readl(sport->port.membase + offset);
313 		return sport->ucr2;
314 		break;
315 	case UCR3:
316 		return sport->ucr3;
317 		break;
318 	case UCR4:
319 		return sport->ucr4;
320 		break;
321 	case UFCR:
322 		return sport->ufcr;
323 		break;
324 	default:
325 		return readl(sport->port.membase + offset);
326 	}
327 }
328 
329 static inline unsigned imx_uart_uts_reg(struct imx_port *sport)
330 {
331 	return sport->devdata->uts_reg;
332 }
333 
334 static inline int imx_uart_is_imx1(struct imx_port *sport)
335 {
336 	return sport->devdata->devtype == IMX1_UART;
337 }
338 
339 static inline int imx_uart_is_imx21(struct imx_port *sport)
340 {
341 	return sport->devdata->devtype == IMX21_UART;
342 }
343 
344 static inline int imx_uart_is_imx53(struct imx_port *sport)
345 {
346 	return sport->devdata->devtype == IMX53_UART;
347 }
348 
349 static inline int imx_uart_is_imx6q(struct imx_port *sport)
350 {
351 	return sport->devdata->devtype == IMX6Q_UART;
352 }
353 /*
354  * Save and restore functions for UCR1, UCR2 and UCR3 registers
355  */
356 #if IS_ENABLED(CONFIG_SERIAL_IMX_CONSOLE)
357 static void imx_uart_ucrs_save(struct imx_port *sport,
358 			       struct imx_port_ucrs *ucr)
359 {
360 	/* save control registers */
361 	ucr->ucr1 = imx_uart_readl(sport, UCR1);
362 	ucr->ucr2 = imx_uart_readl(sport, UCR2);
363 	ucr->ucr3 = imx_uart_readl(sport, UCR3);
364 }
365 
366 static void imx_uart_ucrs_restore(struct imx_port *sport,
367 				  struct imx_port_ucrs *ucr)
368 {
369 	/* restore control registers */
370 	imx_uart_writel(sport, ucr->ucr1, UCR1);
371 	imx_uart_writel(sport, ucr->ucr2, UCR2);
372 	imx_uart_writel(sport, ucr->ucr3, UCR3);
373 }
374 #endif
375 
376 /* called with port.lock taken and irqs caller dependent */
377 static void imx_uart_rts_active(struct imx_port *sport, u32 *ucr2)
378 {
379 	*ucr2 &= ~(UCR2_CTSC | UCR2_CTS);
380 
381 	sport->port.mctrl |= TIOCM_RTS;
382 	mctrl_gpio_set(sport->gpios, sport->port.mctrl);
383 }
384 
385 /* called with port.lock taken and irqs caller dependent */
386 static void imx_uart_rts_inactive(struct imx_port *sport, u32 *ucr2)
387 {
388 	*ucr2 &= ~UCR2_CTSC;
389 	*ucr2 |= UCR2_CTS;
390 
391 	sport->port.mctrl &= ~TIOCM_RTS;
392 	mctrl_gpio_set(sport->gpios, sport->port.mctrl);
393 }
394 
395 static void start_hrtimer_ms(struct hrtimer *hrt, unsigned long msec)
396 {
397        hrtimer_start(hrt, ms_to_ktime(msec), HRTIMER_MODE_REL);
398 }
399 
400 /* called with port.lock taken and irqs off */
401 static void imx_uart_start_rx(struct uart_port *port)
402 {
403 	struct imx_port *sport = (struct imx_port *)port;
404 	unsigned int ucr1, ucr2;
405 
406 	ucr1 = imx_uart_readl(sport, UCR1);
407 	ucr2 = imx_uart_readl(sport, UCR2);
408 
409 	ucr2 |= UCR2_RXEN;
410 
411 	if (sport->dma_is_enabled) {
412 		ucr1 |= UCR1_RXDMAEN | UCR1_ATDMAEN;
413 	} else {
414 		ucr1 |= UCR1_RRDYEN;
415 		ucr2 |= UCR2_ATEN;
416 	}
417 
418 	/* Write UCR2 first as it includes RXEN */
419 	imx_uart_writel(sport, ucr2, UCR2);
420 	imx_uart_writel(sport, ucr1, UCR1);
421 }
422 
423 /* called with port.lock taken and irqs off */
424 static void imx_uart_stop_tx(struct uart_port *port)
425 {
426 	struct imx_port *sport = (struct imx_port *)port;
427 	u32 ucr1, ucr4, usr2;
428 
429 	if (sport->tx_state == OFF)
430 		return;
431 
432 	/*
433 	 * We are maybe in the SMP context, so if the DMA TX thread is running
434 	 * on other cpu, we have to wait for it to finish.
435 	 */
436 	if (sport->dma_is_txing)
437 		return;
438 
439 	ucr1 = imx_uart_readl(sport, UCR1);
440 	imx_uart_writel(sport, ucr1 & ~UCR1_TRDYEN, UCR1);
441 
442 	usr2 = imx_uart_readl(sport, USR2);
443 	if (!(usr2 & USR2_TXDC)) {
444 		/* The shifter is still busy, so retry once TC triggers */
445 		return;
446 	}
447 
448 	ucr4 = imx_uart_readl(sport, UCR4);
449 	ucr4 &= ~UCR4_TCEN;
450 	imx_uart_writel(sport, ucr4, UCR4);
451 
452 	/* in rs485 mode disable transmitter */
453 	if (port->rs485.flags & SER_RS485_ENABLED) {
454 		if (sport->tx_state == SEND) {
455 			sport->tx_state = WAIT_AFTER_SEND;
456 			start_hrtimer_ms(&sport->trigger_stop_tx,
457 					 port->rs485.delay_rts_after_send);
458 			return;
459 		}
460 
461 		if (sport->tx_state == WAIT_AFTER_RTS ||
462 		    sport->tx_state == WAIT_AFTER_SEND) {
463 			u32 ucr2;
464 
465 			hrtimer_try_to_cancel(&sport->trigger_start_tx);
466 
467 			ucr2 = imx_uart_readl(sport, UCR2);
468 			if (port->rs485.flags & SER_RS485_RTS_AFTER_SEND)
469 				imx_uart_rts_active(sport, &ucr2);
470 			else
471 				imx_uart_rts_inactive(sport, &ucr2);
472 			imx_uart_writel(sport, ucr2, UCR2);
473 
474 			imx_uart_start_rx(port);
475 
476 			sport->tx_state = OFF;
477 		}
478 	} else {
479 		sport->tx_state = OFF;
480 	}
481 }
482 
483 /* called with port.lock taken and irqs off */
484 static void imx_uart_stop_rx(struct uart_port *port)
485 {
486 	struct imx_port *sport = (struct imx_port *)port;
487 	u32 ucr1, ucr2;
488 
489 	ucr1 = imx_uart_readl(sport, UCR1);
490 	ucr2 = imx_uart_readl(sport, UCR2);
491 
492 	if (sport->dma_is_enabled) {
493 		ucr1 &= ~(UCR1_RXDMAEN | UCR1_ATDMAEN);
494 	} else {
495 		ucr1 &= ~UCR1_RRDYEN;
496 		ucr2 &= ~UCR2_ATEN;
497 	}
498 	imx_uart_writel(sport, ucr1, UCR1);
499 
500 	ucr2 &= ~UCR2_RXEN;
501 	imx_uart_writel(sport, ucr2, UCR2);
502 }
503 
504 /* called with port.lock taken and irqs off */
505 static void imx_uart_enable_ms(struct uart_port *port)
506 {
507 	struct imx_port *sport = (struct imx_port *)port;
508 
509 	mod_timer(&sport->timer, jiffies);
510 
511 	mctrl_gpio_enable_ms(sport->gpios);
512 }
513 
514 static void imx_uart_dma_tx(struct imx_port *sport);
515 
516 /* called with port.lock taken and irqs off */
517 static inline void imx_uart_transmit_buffer(struct imx_port *sport)
518 {
519 	struct circ_buf *xmit = &sport->port.state->xmit;
520 
521 	if (sport->port.x_char) {
522 		/* Send next char */
523 		imx_uart_writel(sport, sport->port.x_char, URTX0);
524 		sport->port.icount.tx++;
525 		sport->port.x_char = 0;
526 		return;
527 	}
528 
529 	if (uart_circ_empty(xmit) || uart_tx_stopped(&sport->port)) {
530 		imx_uart_stop_tx(&sport->port);
531 		return;
532 	}
533 
534 	if (sport->dma_is_enabled) {
535 		u32 ucr1;
536 		/*
537 		 * We've just sent a X-char Ensure the TX DMA is enabled
538 		 * and the TX IRQ is disabled.
539 		 **/
540 		ucr1 = imx_uart_readl(sport, UCR1);
541 		ucr1 &= ~UCR1_TRDYEN;
542 		if (sport->dma_is_txing) {
543 			ucr1 |= UCR1_TXDMAEN;
544 			imx_uart_writel(sport, ucr1, UCR1);
545 		} else {
546 			imx_uart_writel(sport, ucr1, UCR1);
547 			imx_uart_dma_tx(sport);
548 		}
549 
550 		return;
551 	}
552 
553 	while (!uart_circ_empty(xmit) &&
554 	       !(imx_uart_readl(sport, imx_uart_uts_reg(sport)) & UTS_TXFULL)) {
555 		/* send xmit->buf[xmit->tail]
556 		 * out the port here */
557 		imx_uart_writel(sport, xmit->buf[xmit->tail], URTX0);
558 		xmit->tail = (xmit->tail + 1) & (UART_XMIT_SIZE - 1);
559 		sport->port.icount.tx++;
560 	}
561 
562 	if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
563 		uart_write_wakeup(&sport->port);
564 
565 	if (uart_circ_empty(xmit))
566 		imx_uart_stop_tx(&sport->port);
567 }
568 
569 static void imx_uart_dma_tx_callback(void *data)
570 {
571 	struct imx_port *sport = data;
572 	struct scatterlist *sgl = &sport->tx_sgl[0];
573 	struct circ_buf *xmit = &sport->port.state->xmit;
574 	unsigned long flags;
575 	u32 ucr1;
576 
577 	spin_lock_irqsave(&sport->port.lock, flags);
578 
579 	dma_unmap_sg(sport->port.dev, sgl, sport->dma_tx_nents, DMA_TO_DEVICE);
580 
581 	ucr1 = imx_uart_readl(sport, UCR1);
582 	ucr1 &= ~UCR1_TXDMAEN;
583 	imx_uart_writel(sport, ucr1, UCR1);
584 
585 	/* update the stat */
586 	xmit->tail = (xmit->tail + sport->tx_bytes) & (UART_XMIT_SIZE - 1);
587 	sport->port.icount.tx += sport->tx_bytes;
588 
589 	dev_dbg(sport->port.dev, "we finish the TX DMA.\n");
590 
591 	sport->dma_is_txing = 0;
592 
593 	if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
594 		uart_write_wakeup(&sport->port);
595 
596 	if (!uart_circ_empty(xmit) && !uart_tx_stopped(&sport->port))
597 		imx_uart_dma_tx(sport);
598 	else if (sport->port.rs485.flags & SER_RS485_ENABLED) {
599 		u32 ucr4 = imx_uart_readl(sport, UCR4);
600 		ucr4 |= UCR4_TCEN;
601 		imx_uart_writel(sport, ucr4, UCR4);
602 	}
603 
604 	spin_unlock_irqrestore(&sport->port.lock, flags);
605 }
606 
607 /* called with port.lock taken and irqs off */
608 static void imx_uart_dma_tx(struct imx_port *sport)
609 {
610 	struct circ_buf *xmit = &sport->port.state->xmit;
611 	struct scatterlist *sgl = sport->tx_sgl;
612 	struct dma_async_tx_descriptor *desc;
613 	struct dma_chan	*chan = sport->dma_chan_tx;
614 	struct device *dev = sport->port.dev;
615 	u32 ucr1, ucr4;
616 	int ret;
617 
618 	if (sport->dma_is_txing)
619 		return;
620 
621 	ucr4 = imx_uart_readl(sport, UCR4);
622 	ucr4 &= ~UCR4_TCEN;
623 	imx_uart_writel(sport, ucr4, UCR4);
624 
625 	sport->tx_bytes = uart_circ_chars_pending(xmit);
626 
627 	if (xmit->tail < xmit->head || xmit->head == 0) {
628 		sport->dma_tx_nents = 1;
629 		sg_init_one(sgl, xmit->buf + xmit->tail, sport->tx_bytes);
630 	} else {
631 		sport->dma_tx_nents = 2;
632 		sg_init_table(sgl, 2);
633 		sg_set_buf(sgl, xmit->buf + xmit->tail,
634 				UART_XMIT_SIZE - xmit->tail);
635 		sg_set_buf(sgl + 1, xmit->buf, xmit->head);
636 	}
637 
638 	ret = dma_map_sg(dev, sgl, sport->dma_tx_nents, DMA_TO_DEVICE);
639 	if (ret == 0) {
640 		dev_err(dev, "DMA mapping error for TX.\n");
641 		return;
642 	}
643 	desc = dmaengine_prep_slave_sg(chan, sgl, ret,
644 					DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT);
645 	if (!desc) {
646 		dma_unmap_sg(dev, sgl, sport->dma_tx_nents,
647 			     DMA_TO_DEVICE);
648 		dev_err(dev, "We cannot prepare for the TX slave dma!\n");
649 		return;
650 	}
651 	desc->callback = imx_uart_dma_tx_callback;
652 	desc->callback_param = sport;
653 
654 	dev_dbg(dev, "TX: prepare to send %lu bytes by DMA.\n",
655 			uart_circ_chars_pending(xmit));
656 
657 	ucr1 = imx_uart_readl(sport, UCR1);
658 	ucr1 |= UCR1_TXDMAEN;
659 	imx_uart_writel(sport, ucr1, UCR1);
660 
661 	/* fire it */
662 	sport->dma_is_txing = 1;
663 	dmaengine_submit(desc);
664 	dma_async_issue_pending(chan);
665 	return;
666 }
667 
668 /* called with port.lock taken and irqs off */
669 static void imx_uart_start_tx(struct uart_port *port)
670 {
671 	struct imx_port *sport = (struct imx_port *)port;
672 	u32 ucr1;
673 
674 	if (!sport->port.x_char && uart_circ_empty(&port->state->xmit))
675 		return;
676 
677 	/*
678 	 * We cannot simply do nothing here if sport->tx_state == SEND already
679 	 * because UCR1_TXMPTYEN might already have been cleared in
680 	 * imx_uart_stop_tx(), but tx_state is still SEND.
681 	 */
682 
683 	if (port->rs485.flags & SER_RS485_ENABLED) {
684 		if (sport->tx_state == OFF) {
685 			u32 ucr2 = imx_uart_readl(sport, UCR2);
686 			if (port->rs485.flags & SER_RS485_RTS_ON_SEND)
687 				imx_uart_rts_active(sport, &ucr2);
688 			else
689 				imx_uart_rts_inactive(sport, &ucr2);
690 			imx_uart_writel(sport, ucr2, UCR2);
691 
692 			if (!(port->rs485.flags & SER_RS485_RX_DURING_TX))
693 				imx_uart_stop_rx(port);
694 
695 			sport->tx_state = WAIT_AFTER_RTS;
696 			start_hrtimer_ms(&sport->trigger_start_tx,
697 					 port->rs485.delay_rts_before_send);
698 			return;
699 		}
700 
701 		if (sport->tx_state == WAIT_AFTER_SEND
702 		    || sport->tx_state == WAIT_AFTER_RTS) {
703 
704 			hrtimer_try_to_cancel(&sport->trigger_stop_tx);
705 
706 			/*
707 			 * Enable transmitter and shifter empty irq only if DMA
708 			 * is off.  In the DMA case this is done in the
709 			 * tx-callback.
710 			 */
711 			if (!sport->dma_is_enabled) {
712 				u32 ucr4 = imx_uart_readl(sport, UCR4);
713 				ucr4 |= UCR4_TCEN;
714 				imx_uart_writel(sport, ucr4, UCR4);
715 			}
716 
717 			sport->tx_state = SEND;
718 		}
719 	} else {
720 		sport->tx_state = SEND;
721 	}
722 
723 	if (!sport->dma_is_enabled) {
724 		ucr1 = imx_uart_readl(sport, UCR1);
725 		imx_uart_writel(sport, ucr1 | UCR1_TRDYEN, UCR1);
726 	}
727 
728 	if (sport->dma_is_enabled) {
729 		if (sport->port.x_char) {
730 			/* We have X-char to send, so enable TX IRQ and
731 			 * disable TX DMA to let TX interrupt to send X-char */
732 			ucr1 = imx_uart_readl(sport, UCR1);
733 			ucr1 &= ~UCR1_TXDMAEN;
734 			ucr1 |= UCR1_TRDYEN;
735 			imx_uart_writel(sport, ucr1, UCR1);
736 			return;
737 		}
738 
739 		if (!uart_circ_empty(&port->state->xmit) &&
740 		    !uart_tx_stopped(port))
741 			imx_uart_dma_tx(sport);
742 		return;
743 	}
744 }
745 
746 static irqreturn_t __imx_uart_rtsint(int irq, void *dev_id)
747 {
748 	struct imx_port *sport = dev_id;
749 	u32 usr1;
750 
751 	imx_uart_writel(sport, USR1_RTSD, USR1);
752 	usr1 = imx_uart_readl(sport, USR1) & USR1_RTSS;
753 	uart_handle_cts_change(&sport->port, !!usr1);
754 	wake_up_interruptible(&sport->port.state->port.delta_msr_wait);
755 
756 	return IRQ_HANDLED;
757 }
758 
759 static irqreturn_t imx_uart_rtsint(int irq, void *dev_id)
760 {
761 	struct imx_port *sport = dev_id;
762 	irqreturn_t ret;
763 
764 	spin_lock(&sport->port.lock);
765 
766 	ret = __imx_uart_rtsint(irq, dev_id);
767 
768 	spin_unlock(&sport->port.lock);
769 
770 	return ret;
771 }
772 
773 static irqreturn_t imx_uart_txint(int irq, void *dev_id)
774 {
775 	struct imx_port *sport = dev_id;
776 
777 	spin_lock(&sport->port.lock);
778 	imx_uart_transmit_buffer(sport);
779 	spin_unlock(&sport->port.lock);
780 	return IRQ_HANDLED;
781 }
782 
783 static irqreturn_t __imx_uart_rxint(int irq, void *dev_id)
784 {
785 	struct imx_port *sport = dev_id;
786 	unsigned int rx, flg, ignored = 0;
787 	struct tty_port *port = &sport->port.state->port;
788 
789 	while (imx_uart_readl(sport, USR2) & USR2_RDR) {
790 		u32 usr2;
791 
792 		flg = TTY_NORMAL;
793 		sport->port.icount.rx++;
794 
795 		rx = imx_uart_readl(sport, URXD0);
796 
797 		usr2 = imx_uart_readl(sport, USR2);
798 		if (usr2 & USR2_BRCD) {
799 			imx_uart_writel(sport, USR2_BRCD, USR2);
800 			if (uart_handle_break(&sport->port))
801 				continue;
802 		}
803 
804 		if (uart_handle_sysrq_char(&sport->port, (unsigned char)rx))
805 			continue;
806 
807 		if (unlikely(rx & URXD_ERR)) {
808 			if (rx & URXD_BRK)
809 				sport->port.icount.brk++;
810 			else if (rx & URXD_PRERR)
811 				sport->port.icount.parity++;
812 			else if (rx & URXD_FRMERR)
813 				sport->port.icount.frame++;
814 			if (rx & URXD_OVRRUN)
815 				sport->port.icount.overrun++;
816 
817 			if (rx & sport->port.ignore_status_mask) {
818 				if (++ignored > 100)
819 					goto out;
820 				continue;
821 			}
822 
823 			rx &= (sport->port.read_status_mask | 0xFF);
824 
825 			if (rx & URXD_BRK)
826 				flg = TTY_BREAK;
827 			else if (rx & URXD_PRERR)
828 				flg = TTY_PARITY;
829 			else if (rx & URXD_FRMERR)
830 				flg = TTY_FRAME;
831 			if (rx & URXD_OVRRUN)
832 				flg = TTY_OVERRUN;
833 
834 			sport->port.sysrq = 0;
835 		}
836 
837 		if (sport->port.ignore_status_mask & URXD_DUMMY_READ)
838 			goto out;
839 
840 		if (tty_insert_flip_char(port, rx, flg) == 0)
841 			sport->port.icount.buf_overrun++;
842 	}
843 
844 out:
845 	tty_flip_buffer_push(port);
846 
847 	return IRQ_HANDLED;
848 }
849 
850 static irqreturn_t imx_uart_rxint(int irq, void *dev_id)
851 {
852 	struct imx_port *sport = dev_id;
853 	irqreturn_t ret;
854 
855 	spin_lock(&sport->port.lock);
856 
857 	ret = __imx_uart_rxint(irq, dev_id);
858 
859 	spin_unlock(&sport->port.lock);
860 
861 	return ret;
862 }
863 
864 static void imx_uart_clear_rx_errors(struct imx_port *sport);
865 
866 /*
867  * We have a modem side uart, so the meanings of RTS and CTS are inverted.
868  */
869 static unsigned int imx_uart_get_hwmctrl(struct imx_port *sport)
870 {
871 	unsigned int tmp = TIOCM_DSR;
872 	unsigned usr1 = imx_uart_readl(sport, USR1);
873 	unsigned usr2 = imx_uart_readl(sport, USR2);
874 
875 	if (usr1 & USR1_RTSS)
876 		tmp |= TIOCM_CTS;
877 
878 	/* in DCE mode DCDIN is always 0 */
879 	if (!(usr2 & USR2_DCDIN))
880 		tmp |= TIOCM_CAR;
881 
882 	if (sport->dte_mode)
883 		if (!(imx_uart_readl(sport, USR2) & USR2_RIIN))
884 			tmp |= TIOCM_RI;
885 
886 	return tmp;
887 }
888 
889 /*
890  * Handle any change of modem status signal since we were last called.
891  */
892 static void imx_uart_mctrl_check(struct imx_port *sport)
893 {
894 	unsigned int status, changed;
895 
896 	status = imx_uart_get_hwmctrl(sport);
897 	changed = status ^ sport->old_status;
898 
899 	if (changed == 0)
900 		return;
901 
902 	sport->old_status = status;
903 
904 	if (changed & TIOCM_RI && status & TIOCM_RI)
905 		sport->port.icount.rng++;
906 	if (changed & TIOCM_DSR)
907 		sport->port.icount.dsr++;
908 	if (changed & TIOCM_CAR)
909 		uart_handle_dcd_change(&sport->port, status & TIOCM_CAR);
910 	if (changed & TIOCM_CTS)
911 		uart_handle_cts_change(&sport->port, status & TIOCM_CTS);
912 
913 	wake_up_interruptible(&sport->port.state->port.delta_msr_wait);
914 }
915 
916 static irqreturn_t imx_uart_int(int irq, void *dev_id)
917 {
918 	struct imx_port *sport = dev_id;
919 	unsigned int usr1, usr2, ucr1, ucr2, ucr3, ucr4;
920 	irqreturn_t ret = IRQ_NONE;
921 
922 	spin_lock(&sport->port.lock);
923 
924 	usr1 = imx_uart_readl(sport, USR1);
925 	usr2 = imx_uart_readl(sport, USR2);
926 	ucr1 = imx_uart_readl(sport, UCR1);
927 	ucr2 = imx_uart_readl(sport, UCR2);
928 	ucr3 = imx_uart_readl(sport, UCR3);
929 	ucr4 = imx_uart_readl(sport, UCR4);
930 
931 	/*
932 	 * Even if a condition is true that can trigger an irq only handle it if
933 	 * the respective irq source is enabled. This prevents some undesired
934 	 * actions, for example if a character that sits in the RX FIFO and that
935 	 * should be fetched via DMA is tried to be fetched using PIO. Or the
936 	 * receiver is currently off and so reading from URXD0 results in an
937 	 * exception. So just mask the (raw) status bits for disabled irqs.
938 	 */
939 	if ((ucr1 & UCR1_RRDYEN) == 0)
940 		usr1 &= ~USR1_RRDY;
941 	if ((ucr2 & UCR2_ATEN) == 0)
942 		usr1 &= ~USR1_AGTIM;
943 	if ((ucr1 & UCR1_TRDYEN) == 0)
944 		usr1 &= ~USR1_TRDY;
945 	if ((ucr4 & UCR4_TCEN) == 0)
946 		usr2 &= ~USR2_TXDC;
947 	if ((ucr3 & UCR3_DTRDEN) == 0)
948 		usr1 &= ~USR1_DTRD;
949 	if ((ucr1 & UCR1_RTSDEN) == 0)
950 		usr1 &= ~USR1_RTSD;
951 	if ((ucr3 & UCR3_AWAKEN) == 0)
952 		usr1 &= ~USR1_AWAKE;
953 	if ((ucr4 & UCR4_OREN) == 0)
954 		usr2 &= ~USR2_ORE;
955 
956 	if (usr1 & (USR1_RRDY | USR1_AGTIM)) {
957 		imx_uart_writel(sport, USR1_AGTIM, USR1);
958 
959 		__imx_uart_rxint(irq, dev_id);
960 		ret = IRQ_HANDLED;
961 	}
962 
963 	if ((usr1 & USR1_TRDY) || (usr2 & USR2_TXDC)) {
964 		imx_uart_transmit_buffer(sport);
965 		ret = IRQ_HANDLED;
966 	}
967 
968 	if (usr1 & USR1_DTRD) {
969 		imx_uart_writel(sport, USR1_DTRD, USR1);
970 
971 		imx_uart_mctrl_check(sport);
972 
973 		ret = IRQ_HANDLED;
974 	}
975 
976 	if (usr1 & USR1_RTSD) {
977 		__imx_uart_rtsint(irq, dev_id);
978 		ret = IRQ_HANDLED;
979 	}
980 
981 	if (usr1 & USR1_AWAKE) {
982 		imx_uart_writel(sport, USR1_AWAKE, USR1);
983 		ret = IRQ_HANDLED;
984 	}
985 
986 	if (usr2 & USR2_ORE) {
987 		sport->port.icount.overrun++;
988 		imx_uart_writel(sport, USR2_ORE, USR2);
989 		ret = IRQ_HANDLED;
990 	}
991 
992 	spin_unlock(&sport->port.lock);
993 
994 	return ret;
995 }
996 
997 /*
998  * Return TIOCSER_TEMT when transmitter is not busy.
999  */
1000 static unsigned int imx_uart_tx_empty(struct uart_port *port)
1001 {
1002 	struct imx_port *sport = (struct imx_port *)port;
1003 	unsigned int ret;
1004 
1005 	ret = (imx_uart_readl(sport, USR2) & USR2_TXDC) ?  TIOCSER_TEMT : 0;
1006 
1007 	/* If the TX DMA is working, return 0. */
1008 	if (sport->dma_is_txing)
1009 		ret = 0;
1010 
1011 	return ret;
1012 }
1013 
1014 /* called with port.lock taken and irqs off */
1015 static unsigned int imx_uart_get_mctrl(struct uart_port *port)
1016 {
1017 	struct imx_port *sport = (struct imx_port *)port;
1018 	unsigned int ret = imx_uart_get_hwmctrl(sport);
1019 
1020 	mctrl_gpio_get(sport->gpios, &ret);
1021 
1022 	return ret;
1023 }
1024 
1025 /* called with port.lock taken and irqs off */
1026 static void imx_uart_set_mctrl(struct uart_port *port, unsigned int mctrl)
1027 {
1028 	struct imx_port *sport = (struct imx_port *)port;
1029 	u32 ucr3, uts;
1030 
1031 	if (!(port->rs485.flags & SER_RS485_ENABLED)) {
1032 		u32 ucr2;
1033 
1034 		/*
1035 		 * Turn off autoRTS if RTS is lowered and restore autoRTS
1036 		 * setting if RTS is raised.
1037 		 */
1038 		ucr2 = imx_uart_readl(sport, UCR2);
1039 		ucr2 &= ~(UCR2_CTS | UCR2_CTSC);
1040 		if (mctrl & TIOCM_RTS) {
1041 			ucr2 |= UCR2_CTS;
1042 			/*
1043 			 * UCR2_IRTS is unset if and only if the port is
1044 			 * configured for CRTSCTS, so we use inverted UCR2_IRTS
1045 			 * to get the state to restore to.
1046 			 */
1047 			if (!(ucr2 & UCR2_IRTS))
1048 				ucr2 |= UCR2_CTSC;
1049 		}
1050 		imx_uart_writel(sport, ucr2, UCR2);
1051 	}
1052 
1053 	ucr3 = imx_uart_readl(sport, UCR3) & ~UCR3_DSR;
1054 	if (!(mctrl & TIOCM_DTR))
1055 		ucr3 |= UCR3_DSR;
1056 	imx_uart_writel(sport, ucr3, UCR3);
1057 
1058 	uts = imx_uart_readl(sport, imx_uart_uts_reg(sport)) & ~UTS_LOOP;
1059 	if (mctrl & TIOCM_LOOP)
1060 		uts |= UTS_LOOP;
1061 	imx_uart_writel(sport, uts, imx_uart_uts_reg(sport));
1062 
1063 	mctrl_gpio_set(sport->gpios, mctrl);
1064 }
1065 
1066 /*
1067  * Interrupts always disabled.
1068  */
1069 static void imx_uart_break_ctl(struct uart_port *port, int break_state)
1070 {
1071 	struct imx_port *sport = (struct imx_port *)port;
1072 	unsigned long flags;
1073 	u32 ucr1;
1074 
1075 	spin_lock_irqsave(&sport->port.lock, flags);
1076 
1077 	ucr1 = imx_uart_readl(sport, UCR1) & ~UCR1_SNDBRK;
1078 
1079 	if (break_state != 0)
1080 		ucr1 |= UCR1_SNDBRK;
1081 
1082 	imx_uart_writel(sport, ucr1, UCR1);
1083 
1084 	spin_unlock_irqrestore(&sport->port.lock, flags);
1085 }
1086 
1087 /*
1088  * This is our per-port timeout handler, for checking the
1089  * modem status signals.
1090  */
1091 static void imx_uart_timeout(struct timer_list *t)
1092 {
1093 	struct imx_port *sport = from_timer(sport, t, timer);
1094 	unsigned long flags;
1095 
1096 	if (sport->port.state) {
1097 		spin_lock_irqsave(&sport->port.lock, flags);
1098 		imx_uart_mctrl_check(sport);
1099 		spin_unlock_irqrestore(&sport->port.lock, flags);
1100 
1101 		mod_timer(&sport->timer, jiffies + MCTRL_TIMEOUT);
1102 	}
1103 }
1104 
1105 /*
1106  * There are two kinds of RX DMA interrupts(such as in the MX6Q):
1107  *   [1] the RX DMA buffer is full.
1108  *   [2] the aging timer expires
1109  *
1110  * Condition [2] is triggered when a character has been sitting in the FIFO
1111  * for at least 8 byte durations.
1112  */
1113 static void imx_uart_dma_rx_callback(void *data)
1114 {
1115 	struct imx_port *sport = data;
1116 	struct dma_chan	*chan = sport->dma_chan_rx;
1117 	struct scatterlist *sgl = &sport->rx_sgl;
1118 	struct tty_port *port = &sport->port.state->port;
1119 	struct dma_tx_state state;
1120 	struct circ_buf *rx_ring = &sport->rx_ring;
1121 	enum dma_status status;
1122 	unsigned int w_bytes = 0;
1123 	unsigned int r_bytes;
1124 	unsigned int bd_size;
1125 
1126 	status = dmaengine_tx_status(chan, sport->rx_cookie, &state);
1127 
1128 	if (status == DMA_ERROR) {
1129 		imx_uart_clear_rx_errors(sport);
1130 		return;
1131 	}
1132 
1133 	if (!(sport->port.ignore_status_mask & URXD_DUMMY_READ)) {
1134 
1135 		/*
1136 		 * The state-residue variable represents the empty space
1137 		 * relative to the entire buffer. Taking this in consideration
1138 		 * the head is always calculated base on the buffer total
1139 		 * length - DMA transaction residue. The UART script from the
1140 		 * SDMA firmware will jump to the next buffer descriptor,
1141 		 * once a DMA transaction if finalized (IMX53 RM - A.4.1.2.4).
1142 		 * Taking this in consideration the tail is always at the
1143 		 * beginning of the buffer descriptor that contains the head.
1144 		 */
1145 
1146 		/* Calculate the head */
1147 		rx_ring->head = sg_dma_len(sgl) - state.residue;
1148 
1149 		/* Calculate the tail. */
1150 		bd_size = sg_dma_len(sgl) / sport->rx_periods;
1151 		rx_ring->tail = ((rx_ring->head-1) / bd_size) * bd_size;
1152 
1153 		if (rx_ring->head <= sg_dma_len(sgl) &&
1154 		    rx_ring->head > rx_ring->tail) {
1155 
1156 			/* Move data from tail to head */
1157 			r_bytes = rx_ring->head - rx_ring->tail;
1158 
1159 			/* CPU claims ownership of RX DMA buffer */
1160 			dma_sync_sg_for_cpu(sport->port.dev, sgl, 1,
1161 				DMA_FROM_DEVICE);
1162 
1163 			w_bytes = tty_insert_flip_string(port,
1164 				sport->rx_buf + rx_ring->tail, r_bytes);
1165 
1166 			/* UART retrieves ownership of RX DMA buffer */
1167 			dma_sync_sg_for_device(sport->port.dev, sgl, 1,
1168 				DMA_FROM_DEVICE);
1169 
1170 			if (w_bytes != r_bytes)
1171 				sport->port.icount.buf_overrun++;
1172 
1173 			sport->port.icount.rx += w_bytes;
1174 		} else	{
1175 			WARN_ON(rx_ring->head > sg_dma_len(sgl));
1176 			WARN_ON(rx_ring->head <= rx_ring->tail);
1177 		}
1178 	}
1179 
1180 	if (w_bytes) {
1181 		tty_flip_buffer_push(port);
1182 		dev_dbg(sport->port.dev, "We get %d bytes.\n", w_bytes);
1183 	}
1184 }
1185 
1186 /* RX DMA buffer periods */
1187 #define RX_DMA_PERIODS	16
1188 #define RX_BUF_SIZE	(RX_DMA_PERIODS * PAGE_SIZE / 4)
1189 
1190 static int imx_uart_start_rx_dma(struct imx_port *sport)
1191 {
1192 	struct scatterlist *sgl = &sport->rx_sgl;
1193 	struct dma_chan	*chan = sport->dma_chan_rx;
1194 	struct device *dev = sport->port.dev;
1195 	struct dma_async_tx_descriptor *desc;
1196 	int ret;
1197 
1198 	sport->rx_ring.head = 0;
1199 	sport->rx_ring.tail = 0;
1200 	sport->rx_periods = RX_DMA_PERIODS;
1201 
1202 	sg_init_one(sgl, sport->rx_buf, RX_BUF_SIZE);
1203 	ret = dma_map_sg(dev, sgl, 1, DMA_FROM_DEVICE);
1204 	if (ret == 0) {
1205 		dev_err(dev, "DMA mapping error for RX.\n");
1206 		return -EINVAL;
1207 	}
1208 
1209 	desc = dmaengine_prep_dma_cyclic(chan, sg_dma_address(sgl),
1210 		sg_dma_len(sgl), sg_dma_len(sgl) / sport->rx_periods,
1211 		DMA_DEV_TO_MEM, DMA_PREP_INTERRUPT);
1212 
1213 	if (!desc) {
1214 		dma_unmap_sg(dev, sgl, 1, DMA_FROM_DEVICE);
1215 		dev_err(dev, "We cannot prepare for the RX slave dma!\n");
1216 		return -EINVAL;
1217 	}
1218 	desc->callback = imx_uart_dma_rx_callback;
1219 	desc->callback_param = sport;
1220 
1221 	dev_dbg(dev, "RX: prepare for the DMA.\n");
1222 	sport->dma_is_rxing = 1;
1223 	sport->rx_cookie = dmaengine_submit(desc);
1224 	dma_async_issue_pending(chan);
1225 	return 0;
1226 }
1227 
1228 static void imx_uart_clear_rx_errors(struct imx_port *sport)
1229 {
1230 	struct tty_port *port = &sport->port.state->port;
1231 	u32 usr1, usr2;
1232 
1233 	usr1 = imx_uart_readl(sport, USR1);
1234 	usr2 = imx_uart_readl(sport, USR2);
1235 
1236 	if (usr2 & USR2_BRCD) {
1237 		sport->port.icount.brk++;
1238 		imx_uart_writel(sport, USR2_BRCD, USR2);
1239 		uart_handle_break(&sport->port);
1240 		if (tty_insert_flip_char(port, 0, TTY_BREAK) == 0)
1241 			sport->port.icount.buf_overrun++;
1242 		tty_flip_buffer_push(port);
1243 	} else {
1244 		if (usr1 & USR1_FRAMERR) {
1245 			sport->port.icount.frame++;
1246 			imx_uart_writel(sport, USR1_FRAMERR, USR1);
1247 		} else if (usr1 & USR1_PARITYERR) {
1248 			sport->port.icount.parity++;
1249 			imx_uart_writel(sport, USR1_PARITYERR, USR1);
1250 		}
1251 	}
1252 
1253 	if (usr2 & USR2_ORE) {
1254 		sport->port.icount.overrun++;
1255 		imx_uart_writel(sport, USR2_ORE, USR2);
1256 	}
1257 
1258 }
1259 
1260 #define TXTL_DEFAULT 2 /* reset default */
1261 #define RXTL_DEFAULT 1 /* reset default */
1262 #define TXTL_DMA 8 /* DMA burst setting */
1263 #define RXTL_DMA 9 /* DMA burst setting */
1264 
1265 static void imx_uart_setup_ufcr(struct imx_port *sport,
1266 				unsigned char txwl, unsigned char rxwl)
1267 {
1268 	unsigned int val;
1269 
1270 	/* set receiver / transmitter trigger level */
1271 	val = imx_uart_readl(sport, UFCR) & (UFCR_RFDIV | UFCR_DCEDTE);
1272 	val |= txwl << UFCR_TXTL_SHF | rxwl;
1273 	imx_uart_writel(sport, val, UFCR);
1274 }
1275 
1276 static void imx_uart_dma_exit(struct imx_port *sport)
1277 {
1278 	if (sport->dma_chan_rx) {
1279 		dmaengine_terminate_sync(sport->dma_chan_rx);
1280 		dma_release_channel(sport->dma_chan_rx);
1281 		sport->dma_chan_rx = NULL;
1282 		sport->rx_cookie = -EINVAL;
1283 		kfree(sport->rx_buf);
1284 		sport->rx_buf = NULL;
1285 	}
1286 
1287 	if (sport->dma_chan_tx) {
1288 		dmaengine_terminate_sync(sport->dma_chan_tx);
1289 		dma_release_channel(sport->dma_chan_tx);
1290 		sport->dma_chan_tx = NULL;
1291 	}
1292 }
1293 
1294 static int imx_uart_dma_init(struct imx_port *sport)
1295 {
1296 	struct dma_slave_config slave_config = {};
1297 	struct device *dev = sport->port.dev;
1298 	int ret;
1299 
1300 	/* Prepare for RX : */
1301 	sport->dma_chan_rx = dma_request_slave_channel(dev, "rx");
1302 	if (!sport->dma_chan_rx) {
1303 		dev_dbg(dev, "cannot get the DMA channel.\n");
1304 		ret = -EINVAL;
1305 		goto err;
1306 	}
1307 
1308 	slave_config.direction = DMA_DEV_TO_MEM;
1309 	slave_config.src_addr = sport->port.mapbase + URXD0;
1310 	slave_config.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
1311 	/* one byte less than the watermark level to enable the aging timer */
1312 	slave_config.src_maxburst = RXTL_DMA - 1;
1313 	ret = dmaengine_slave_config(sport->dma_chan_rx, &slave_config);
1314 	if (ret) {
1315 		dev_err(dev, "error in RX dma configuration.\n");
1316 		goto err;
1317 	}
1318 
1319 	sport->rx_buf = kzalloc(RX_BUF_SIZE, GFP_KERNEL);
1320 	if (!sport->rx_buf) {
1321 		ret = -ENOMEM;
1322 		goto err;
1323 	}
1324 	sport->rx_ring.buf = sport->rx_buf;
1325 
1326 	/* Prepare for TX : */
1327 	sport->dma_chan_tx = dma_request_slave_channel(dev, "tx");
1328 	if (!sport->dma_chan_tx) {
1329 		dev_err(dev, "cannot get the TX DMA channel!\n");
1330 		ret = -EINVAL;
1331 		goto err;
1332 	}
1333 
1334 	slave_config.direction = DMA_MEM_TO_DEV;
1335 	slave_config.dst_addr = sport->port.mapbase + URTX0;
1336 	slave_config.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
1337 	slave_config.dst_maxburst = TXTL_DMA;
1338 	ret = dmaengine_slave_config(sport->dma_chan_tx, &slave_config);
1339 	if (ret) {
1340 		dev_err(dev, "error in TX dma configuration.");
1341 		goto err;
1342 	}
1343 
1344 	return 0;
1345 err:
1346 	imx_uart_dma_exit(sport);
1347 	return ret;
1348 }
1349 
1350 static void imx_uart_enable_dma(struct imx_port *sport)
1351 {
1352 	u32 ucr1;
1353 
1354 	imx_uart_setup_ufcr(sport, TXTL_DMA, RXTL_DMA);
1355 
1356 	/* set UCR1 */
1357 	ucr1 = imx_uart_readl(sport, UCR1);
1358 	ucr1 |= UCR1_RXDMAEN | UCR1_TXDMAEN | UCR1_ATDMAEN;
1359 	imx_uart_writel(sport, ucr1, UCR1);
1360 
1361 	sport->dma_is_enabled = 1;
1362 }
1363 
1364 static void imx_uart_disable_dma(struct imx_port *sport)
1365 {
1366 	u32 ucr1;
1367 
1368 	/* clear UCR1 */
1369 	ucr1 = imx_uart_readl(sport, UCR1);
1370 	ucr1 &= ~(UCR1_RXDMAEN | UCR1_TXDMAEN | UCR1_ATDMAEN);
1371 	imx_uart_writel(sport, ucr1, UCR1);
1372 
1373 	imx_uart_setup_ufcr(sport, TXTL_DEFAULT, RXTL_DEFAULT);
1374 
1375 	sport->dma_is_enabled = 0;
1376 }
1377 
1378 /* half the RX buffer size */
1379 #define CTSTL 16
1380 
1381 static int imx_uart_startup(struct uart_port *port)
1382 {
1383 	struct imx_port *sport = (struct imx_port *)port;
1384 	int retval, i;
1385 	unsigned long flags;
1386 	int dma_is_inited = 0;
1387 	u32 ucr1, ucr2, ucr3, ucr4;
1388 
1389 	retval = clk_prepare_enable(sport->clk_per);
1390 	if (retval)
1391 		return retval;
1392 	retval = clk_prepare_enable(sport->clk_ipg);
1393 	if (retval) {
1394 		clk_disable_unprepare(sport->clk_per);
1395 		return retval;
1396 	}
1397 
1398 	imx_uart_setup_ufcr(sport, TXTL_DEFAULT, RXTL_DEFAULT);
1399 
1400 	/* disable the DREN bit (Data Ready interrupt enable) before
1401 	 * requesting IRQs
1402 	 */
1403 	ucr4 = imx_uart_readl(sport, UCR4);
1404 
1405 	/* set the trigger level for CTS */
1406 	ucr4 &= ~(UCR4_CTSTL_MASK << UCR4_CTSTL_SHF);
1407 	ucr4 |= CTSTL << UCR4_CTSTL_SHF;
1408 
1409 	imx_uart_writel(sport, ucr4 & ~UCR4_DREN, UCR4);
1410 
1411 	/* Can we enable the DMA support? */
1412 	if (!uart_console(port) && imx_uart_dma_init(sport) == 0)
1413 		dma_is_inited = 1;
1414 
1415 	spin_lock_irqsave(&sport->port.lock, flags);
1416 	/* Reset fifo's and state machines */
1417 	i = 100;
1418 
1419 	ucr2 = imx_uart_readl(sport, UCR2);
1420 	ucr2 &= ~UCR2_SRST;
1421 	imx_uart_writel(sport, ucr2, UCR2);
1422 
1423 	while (!(imx_uart_readl(sport, UCR2) & UCR2_SRST) && (--i > 0))
1424 		udelay(1);
1425 
1426 	/*
1427 	 * Finally, clear and enable interrupts
1428 	 */
1429 	imx_uart_writel(sport, USR1_RTSD | USR1_DTRD, USR1);
1430 	imx_uart_writel(sport, USR2_ORE, USR2);
1431 
1432 	ucr1 = imx_uart_readl(sport, UCR1) & ~UCR1_RRDYEN;
1433 	ucr1 |= UCR1_UARTEN;
1434 	if (sport->have_rtscts)
1435 		ucr1 |= UCR1_RTSDEN;
1436 
1437 	imx_uart_writel(sport, ucr1, UCR1);
1438 
1439 	ucr4 = imx_uart_readl(sport, UCR4) & ~(UCR4_OREN | UCR4_INVR);
1440 	if (!sport->dma_is_enabled)
1441 		ucr4 |= UCR4_OREN;
1442 	if (sport->inverted_rx)
1443 		ucr4 |= UCR4_INVR;
1444 	imx_uart_writel(sport, ucr4, UCR4);
1445 
1446 	ucr3 = imx_uart_readl(sport, UCR3) & ~UCR3_INVT;
1447 	/*
1448 	 * configure tx polarity before enabling tx
1449 	 */
1450 	if (sport->inverted_tx)
1451 		ucr3 |= UCR3_INVT;
1452 
1453 	if (!imx_uart_is_imx1(sport)) {
1454 		ucr3 |= UCR3_DTRDEN | UCR3_RI | UCR3_DCD;
1455 
1456 		if (sport->dte_mode)
1457 			/* disable broken interrupts */
1458 			ucr3 &= ~(UCR3_RI | UCR3_DCD);
1459 	}
1460 	imx_uart_writel(sport, ucr3, UCR3);
1461 
1462 	ucr2 = imx_uart_readl(sport, UCR2) & ~UCR2_ATEN;
1463 	ucr2 |= (UCR2_RXEN | UCR2_TXEN);
1464 	if (!sport->have_rtscts)
1465 		ucr2 |= UCR2_IRTS;
1466 	/*
1467 	 * make sure the edge sensitive RTS-irq is disabled,
1468 	 * we're using RTSD instead.
1469 	 */
1470 	if (!imx_uart_is_imx1(sport))
1471 		ucr2 &= ~UCR2_RTSEN;
1472 	imx_uart_writel(sport, ucr2, UCR2);
1473 
1474 	/*
1475 	 * Enable modem status interrupts
1476 	 */
1477 	imx_uart_enable_ms(&sport->port);
1478 
1479 	if (dma_is_inited) {
1480 		imx_uart_enable_dma(sport);
1481 		imx_uart_start_rx_dma(sport);
1482 	} else {
1483 		ucr1 = imx_uart_readl(sport, UCR1);
1484 		ucr1 |= UCR1_RRDYEN;
1485 		imx_uart_writel(sport, ucr1, UCR1);
1486 
1487 		ucr2 = imx_uart_readl(sport, UCR2);
1488 		ucr2 |= UCR2_ATEN;
1489 		imx_uart_writel(sport, ucr2, UCR2);
1490 	}
1491 
1492 	spin_unlock_irqrestore(&sport->port.lock, flags);
1493 
1494 	return 0;
1495 }
1496 
1497 static void imx_uart_shutdown(struct uart_port *port)
1498 {
1499 	struct imx_port *sport = (struct imx_port *)port;
1500 	unsigned long flags;
1501 	u32 ucr1, ucr2, ucr4;
1502 
1503 	if (sport->dma_is_enabled) {
1504 		dmaengine_terminate_sync(sport->dma_chan_tx);
1505 		if (sport->dma_is_txing) {
1506 			dma_unmap_sg(sport->port.dev, &sport->tx_sgl[0],
1507 				     sport->dma_tx_nents, DMA_TO_DEVICE);
1508 			sport->dma_is_txing = 0;
1509 		}
1510 		dmaengine_terminate_sync(sport->dma_chan_rx);
1511 		if (sport->dma_is_rxing) {
1512 			dma_unmap_sg(sport->port.dev, &sport->rx_sgl,
1513 				     1, DMA_FROM_DEVICE);
1514 			sport->dma_is_rxing = 0;
1515 		}
1516 
1517 		spin_lock_irqsave(&sport->port.lock, flags);
1518 		imx_uart_stop_tx(port);
1519 		imx_uart_stop_rx(port);
1520 		imx_uart_disable_dma(sport);
1521 		spin_unlock_irqrestore(&sport->port.lock, flags);
1522 		imx_uart_dma_exit(sport);
1523 	}
1524 
1525 	mctrl_gpio_disable_ms(sport->gpios);
1526 
1527 	spin_lock_irqsave(&sport->port.lock, flags);
1528 	ucr2 = imx_uart_readl(sport, UCR2);
1529 	ucr2 &= ~(UCR2_TXEN | UCR2_ATEN);
1530 	imx_uart_writel(sport, ucr2, UCR2);
1531 	spin_unlock_irqrestore(&sport->port.lock, flags);
1532 
1533 	/*
1534 	 * Stop our timer.
1535 	 */
1536 	del_timer_sync(&sport->timer);
1537 
1538 	/*
1539 	 * Disable all interrupts, port and break condition.
1540 	 */
1541 
1542 	spin_lock_irqsave(&sport->port.lock, flags);
1543 
1544 	ucr1 = imx_uart_readl(sport, UCR1);
1545 	ucr1 &= ~(UCR1_TRDYEN | UCR1_RRDYEN | UCR1_RTSDEN | UCR1_UARTEN | UCR1_RXDMAEN | UCR1_ATDMAEN);
1546 	imx_uart_writel(sport, ucr1, UCR1);
1547 
1548 	ucr4 = imx_uart_readl(sport, UCR4);
1549 	ucr4 &= ~(UCR4_OREN | UCR4_TCEN);
1550 	imx_uart_writel(sport, ucr4, UCR4);
1551 
1552 	spin_unlock_irqrestore(&sport->port.lock, flags);
1553 
1554 	clk_disable_unprepare(sport->clk_per);
1555 	clk_disable_unprepare(sport->clk_ipg);
1556 }
1557 
1558 /* called with port.lock taken and irqs off */
1559 static void imx_uart_flush_buffer(struct uart_port *port)
1560 {
1561 	struct imx_port *sport = (struct imx_port *)port;
1562 	struct scatterlist *sgl = &sport->tx_sgl[0];
1563 	u32 ucr2;
1564 	int i = 100, ubir, ubmr, uts;
1565 
1566 	if (!sport->dma_chan_tx)
1567 		return;
1568 
1569 	sport->tx_bytes = 0;
1570 	dmaengine_terminate_all(sport->dma_chan_tx);
1571 	if (sport->dma_is_txing) {
1572 		u32 ucr1;
1573 
1574 		dma_unmap_sg(sport->port.dev, sgl, sport->dma_tx_nents,
1575 			     DMA_TO_DEVICE);
1576 		ucr1 = imx_uart_readl(sport, UCR1);
1577 		ucr1 &= ~UCR1_TXDMAEN;
1578 		imx_uart_writel(sport, ucr1, UCR1);
1579 		sport->dma_is_txing = 0;
1580 	}
1581 
1582 	/*
1583 	 * According to the Reference Manual description of the UART SRST bit:
1584 	 *
1585 	 * "Reset the transmit and receive state machines,
1586 	 * all FIFOs and register USR1, USR2, UBIR, UBMR, UBRC, URXD, UTXD
1587 	 * and UTS[6-3]".
1588 	 *
1589 	 * We don't need to restore the old values from USR1, USR2, URXD and
1590 	 * UTXD. UBRC is read only, so only save/restore the other three
1591 	 * registers.
1592 	 */
1593 	ubir = imx_uart_readl(sport, UBIR);
1594 	ubmr = imx_uart_readl(sport, UBMR);
1595 	uts = imx_uart_readl(sport, IMX21_UTS);
1596 
1597 	ucr2 = imx_uart_readl(sport, UCR2);
1598 	ucr2 &= ~UCR2_SRST;
1599 	imx_uart_writel(sport, ucr2, UCR2);
1600 
1601 	while (!(imx_uart_readl(sport, UCR2) & UCR2_SRST) && (--i > 0))
1602 		udelay(1);
1603 
1604 	/* Restore the registers */
1605 	imx_uart_writel(sport, ubir, UBIR);
1606 	imx_uart_writel(sport, ubmr, UBMR);
1607 	imx_uart_writel(sport, uts, IMX21_UTS);
1608 }
1609 
1610 static void
1611 imx_uart_set_termios(struct uart_port *port, struct ktermios *termios,
1612 		     struct ktermios *old)
1613 {
1614 	struct imx_port *sport = (struct imx_port *)port;
1615 	unsigned long flags;
1616 	u32 ucr2, old_ucr2, ufcr;
1617 	unsigned int baud, quot;
1618 	unsigned int old_csize = old ? old->c_cflag & CSIZE : CS8;
1619 	unsigned long div;
1620 	unsigned long num, denom, old_ubir, old_ubmr;
1621 	uint64_t tdiv64;
1622 
1623 	/*
1624 	 * We only support CS7 and CS8.
1625 	 */
1626 	while ((termios->c_cflag & CSIZE) != CS7 &&
1627 	       (termios->c_cflag & CSIZE) != CS8) {
1628 		termios->c_cflag &= ~CSIZE;
1629 		termios->c_cflag |= old_csize;
1630 		old_csize = CS8;
1631 	}
1632 
1633 	del_timer_sync(&sport->timer);
1634 
1635 	/*
1636 	 * Ask the core to calculate the divisor for us.
1637 	 */
1638 	baud = uart_get_baud_rate(port, termios, old, 50, port->uartclk / 16);
1639 	quot = uart_get_divisor(port, baud);
1640 
1641 	spin_lock_irqsave(&sport->port.lock, flags);
1642 
1643 	/*
1644 	 * Read current UCR2 and save it for future use, then clear all the bits
1645 	 * except those we will or may need to preserve.
1646 	 */
1647 	old_ucr2 = imx_uart_readl(sport, UCR2);
1648 	ucr2 = old_ucr2 & (UCR2_TXEN | UCR2_RXEN | UCR2_ATEN | UCR2_CTS);
1649 
1650 	ucr2 |= UCR2_SRST | UCR2_IRTS;
1651 	if ((termios->c_cflag & CSIZE) == CS8)
1652 		ucr2 |= UCR2_WS;
1653 
1654 	if (!sport->have_rtscts)
1655 		termios->c_cflag &= ~CRTSCTS;
1656 
1657 	if (port->rs485.flags & SER_RS485_ENABLED) {
1658 		/*
1659 		 * RTS is mandatory for rs485 operation, so keep
1660 		 * it under manual control and keep transmitter
1661 		 * disabled.
1662 		 */
1663 		if (port->rs485.flags & SER_RS485_RTS_AFTER_SEND)
1664 			imx_uart_rts_active(sport, &ucr2);
1665 		else
1666 			imx_uart_rts_inactive(sport, &ucr2);
1667 
1668 	} else if (termios->c_cflag & CRTSCTS) {
1669 		/*
1670 		 * Only let receiver control RTS output if we were not requested
1671 		 * to have RTS inactive (which then should take precedence).
1672 		 */
1673 		if (ucr2 & UCR2_CTS)
1674 			ucr2 |= UCR2_CTSC;
1675 	}
1676 
1677 	if (termios->c_cflag & CRTSCTS)
1678 		ucr2 &= ~UCR2_IRTS;
1679 	if (termios->c_cflag & CSTOPB)
1680 		ucr2 |= UCR2_STPB;
1681 	if (termios->c_cflag & PARENB) {
1682 		ucr2 |= UCR2_PREN;
1683 		if (termios->c_cflag & PARODD)
1684 			ucr2 |= UCR2_PROE;
1685 	}
1686 
1687 	sport->port.read_status_mask = 0;
1688 	if (termios->c_iflag & INPCK)
1689 		sport->port.read_status_mask |= (URXD_FRMERR | URXD_PRERR);
1690 	if (termios->c_iflag & (BRKINT | PARMRK))
1691 		sport->port.read_status_mask |= URXD_BRK;
1692 
1693 	/*
1694 	 * Characters to ignore
1695 	 */
1696 	sport->port.ignore_status_mask = 0;
1697 	if (termios->c_iflag & IGNPAR)
1698 		sport->port.ignore_status_mask |= URXD_PRERR | URXD_FRMERR;
1699 	if (termios->c_iflag & IGNBRK) {
1700 		sport->port.ignore_status_mask |= URXD_BRK;
1701 		/*
1702 		 * If we're ignoring parity and break indicators,
1703 		 * ignore overruns too (for real raw support).
1704 		 */
1705 		if (termios->c_iflag & IGNPAR)
1706 			sport->port.ignore_status_mask |= URXD_OVRRUN;
1707 	}
1708 
1709 	if ((termios->c_cflag & CREAD) == 0)
1710 		sport->port.ignore_status_mask |= URXD_DUMMY_READ;
1711 
1712 	/*
1713 	 * Update the per-port timeout.
1714 	 */
1715 	uart_update_timeout(port, termios->c_cflag, baud);
1716 
1717 	/* custom-baudrate handling */
1718 	div = sport->port.uartclk / (baud * 16);
1719 	if (baud == 38400 && quot != div)
1720 		baud = sport->port.uartclk / (quot * 16);
1721 
1722 	div = sport->port.uartclk / (baud * 16);
1723 	if (div > 7)
1724 		div = 7;
1725 	if (!div)
1726 		div = 1;
1727 
1728 	rational_best_approximation(16 * div * baud, sport->port.uartclk,
1729 		1 << 16, 1 << 16, &num, &denom);
1730 
1731 	tdiv64 = sport->port.uartclk;
1732 	tdiv64 *= num;
1733 	do_div(tdiv64, denom * 16 * div);
1734 	tty_termios_encode_baud_rate(termios,
1735 				(speed_t)tdiv64, (speed_t)tdiv64);
1736 
1737 	num -= 1;
1738 	denom -= 1;
1739 
1740 	ufcr = imx_uart_readl(sport, UFCR);
1741 	ufcr = (ufcr & (~UFCR_RFDIV)) | UFCR_RFDIV_REG(div);
1742 	imx_uart_writel(sport, ufcr, UFCR);
1743 
1744 	/*
1745 	 *  Two registers below should always be written both and in this
1746 	 *  particular order. One consequence is that we need to check if any of
1747 	 *  them changes and then update both. We do need the check for change
1748 	 *  as even writing the same values seem to "restart"
1749 	 *  transmission/receiving logic in the hardware, that leads to data
1750 	 *  breakage even when rate doesn't in fact change. E.g., user switches
1751 	 *  RTS/CTS handshake and suddenly gets broken bytes.
1752 	 */
1753 	old_ubir = imx_uart_readl(sport, UBIR);
1754 	old_ubmr = imx_uart_readl(sport, UBMR);
1755 	if (old_ubir != num || old_ubmr != denom) {
1756 		imx_uart_writel(sport, num, UBIR);
1757 		imx_uart_writel(sport, denom, UBMR);
1758 	}
1759 
1760 	if (!imx_uart_is_imx1(sport))
1761 		imx_uart_writel(sport, sport->port.uartclk / div / 1000,
1762 				IMX21_ONEMS);
1763 
1764 	imx_uart_writel(sport, ucr2, UCR2);
1765 
1766 	if (UART_ENABLE_MS(&sport->port, termios->c_cflag))
1767 		imx_uart_enable_ms(&sport->port);
1768 
1769 	spin_unlock_irqrestore(&sport->port.lock, flags);
1770 }
1771 
1772 static const char *imx_uart_type(struct uart_port *port)
1773 {
1774 	struct imx_port *sport = (struct imx_port *)port;
1775 
1776 	return sport->port.type == PORT_IMX ? "IMX" : NULL;
1777 }
1778 
1779 /*
1780  * Configure/autoconfigure the port.
1781  */
1782 static void imx_uart_config_port(struct uart_port *port, int flags)
1783 {
1784 	struct imx_port *sport = (struct imx_port *)port;
1785 
1786 	if (flags & UART_CONFIG_TYPE)
1787 		sport->port.type = PORT_IMX;
1788 }
1789 
1790 /*
1791  * Verify the new serial_struct (for TIOCSSERIAL).
1792  * The only change we allow are to the flags and type, and
1793  * even then only between PORT_IMX and PORT_UNKNOWN
1794  */
1795 static int
1796 imx_uart_verify_port(struct uart_port *port, struct serial_struct *ser)
1797 {
1798 	struct imx_port *sport = (struct imx_port *)port;
1799 	int ret = 0;
1800 
1801 	if (ser->type != PORT_UNKNOWN && ser->type != PORT_IMX)
1802 		ret = -EINVAL;
1803 	if (sport->port.irq != ser->irq)
1804 		ret = -EINVAL;
1805 	if (ser->io_type != UPIO_MEM)
1806 		ret = -EINVAL;
1807 	if (sport->port.uartclk / 16 != ser->baud_base)
1808 		ret = -EINVAL;
1809 	if (sport->port.mapbase != (unsigned long)ser->iomem_base)
1810 		ret = -EINVAL;
1811 	if (sport->port.iobase != ser->port)
1812 		ret = -EINVAL;
1813 	if (ser->hub6 != 0)
1814 		ret = -EINVAL;
1815 	return ret;
1816 }
1817 
1818 #if defined(CONFIG_CONSOLE_POLL)
1819 
1820 static int imx_uart_poll_init(struct uart_port *port)
1821 {
1822 	struct imx_port *sport = (struct imx_port *)port;
1823 	unsigned long flags;
1824 	u32 ucr1, ucr2;
1825 	int retval;
1826 
1827 	retval = clk_prepare_enable(sport->clk_ipg);
1828 	if (retval)
1829 		return retval;
1830 	retval = clk_prepare_enable(sport->clk_per);
1831 	if (retval)
1832 		clk_disable_unprepare(sport->clk_ipg);
1833 
1834 	imx_uart_setup_ufcr(sport, TXTL_DEFAULT, RXTL_DEFAULT);
1835 
1836 	spin_lock_irqsave(&sport->port.lock, flags);
1837 
1838 	/*
1839 	 * Be careful about the order of enabling bits here. First enable the
1840 	 * receiver (UARTEN + RXEN) and only then the corresponding irqs.
1841 	 * This prevents that a character that already sits in the RX fifo is
1842 	 * triggering an irq but the try to fetch it from there results in an
1843 	 * exception because UARTEN or RXEN is still off.
1844 	 */
1845 	ucr1 = imx_uart_readl(sport, UCR1);
1846 	ucr2 = imx_uart_readl(sport, UCR2);
1847 
1848 	if (imx_uart_is_imx1(sport))
1849 		ucr1 |= IMX1_UCR1_UARTCLKEN;
1850 
1851 	ucr1 |= UCR1_UARTEN;
1852 	ucr1 &= ~(UCR1_TRDYEN | UCR1_RTSDEN | UCR1_RRDYEN);
1853 
1854 	ucr2 |= UCR2_RXEN | UCR2_TXEN;
1855 	ucr2 &= ~UCR2_ATEN;
1856 
1857 	imx_uart_writel(sport, ucr1, UCR1);
1858 	imx_uart_writel(sport, ucr2, UCR2);
1859 
1860 	/* now enable irqs */
1861 	imx_uart_writel(sport, ucr1 | UCR1_RRDYEN, UCR1);
1862 	imx_uart_writel(sport, ucr2 | UCR2_ATEN, UCR2);
1863 
1864 	spin_unlock_irqrestore(&sport->port.lock, flags);
1865 
1866 	return 0;
1867 }
1868 
1869 static int imx_uart_poll_get_char(struct uart_port *port)
1870 {
1871 	struct imx_port *sport = (struct imx_port *)port;
1872 	if (!(imx_uart_readl(sport, USR2) & USR2_RDR))
1873 		return NO_POLL_CHAR;
1874 
1875 	return imx_uart_readl(sport, URXD0) & URXD_RX_DATA;
1876 }
1877 
1878 static void imx_uart_poll_put_char(struct uart_port *port, unsigned char c)
1879 {
1880 	struct imx_port *sport = (struct imx_port *)port;
1881 	unsigned int status;
1882 
1883 	/* drain */
1884 	do {
1885 		status = imx_uart_readl(sport, USR1);
1886 	} while (~status & USR1_TRDY);
1887 
1888 	/* write */
1889 	imx_uart_writel(sport, c, URTX0);
1890 
1891 	/* flush */
1892 	do {
1893 		status = imx_uart_readl(sport, USR2);
1894 	} while (~status & USR2_TXDC);
1895 }
1896 #endif
1897 
1898 /* called with port.lock taken and irqs off or from .probe without locking */
1899 static int imx_uart_rs485_config(struct uart_port *port,
1900 				 struct serial_rs485 *rs485conf)
1901 {
1902 	struct imx_port *sport = (struct imx_port *)port;
1903 	u32 ucr2;
1904 
1905 	/* RTS is required to control the transmitter */
1906 	if (!sport->have_rtscts && !sport->have_rtsgpio)
1907 		rs485conf->flags &= ~SER_RS485_ENABLED;
1908 
1909 	if (rs485conf->flags & SER_RS485_ENABLED) {
1910 		/* Enable receiver if low-active RTS signal is requested */
1911 		if (sport->have_rtscts &&  !sport->have_rtsgpio &&
1912 		    !(rs485conf->flags & SER_RS485_RTS_ON_SEND))
1913 			rs485conf->flags |= SER_RS485_RX_DURING_TX;
1914 
1915 		/* disable transmitter */
1916 		ucr2 = imx_uart_readl(sport, UCR2);
1917 		if (rs485conf->flags & SER_RS485_RTS_AFTER_SEND)
1918 			imx_uart_rts_active(sport, &ucr2);
1919 		else
1920 			imx_uart_rts_inactive(sport, &ucr2);
1921 		imx_uart_writel(sport, ucr2, UCR2);
1922 	}
1923 
1924 	/* Make sure Rx is enabled in case Tx is active with Rx disabled */
1925 	if (!(rs485conf->flags & SER_RS485_ENABLED) ||
1926 	    rs485conf->flags & SER_RS485_RX_DURING_TX)
1927 		imx_uart_start_rx(port);
1928 
1929 	port->rs485 = *rs485conf;
1930 
1931 	return 0;
1932 }
1933 
1934 static const struct uart_ops imx_uart_pops = {
1935 	.tx_empty	= imx_uart_tx_empty,
1936 	.set_mctrl	= imx_uart_set_mctrl,
1937 	.get_mctrl	= imx_uart_get_mctrl,
1938 	.stop_tx	= imx_uart_stop_tx,
1939 	.start_tx	= imx_uart_start_tx,
1940 	.stop_rx	= imx_uart_stop_rx,
1941 	.enable_ms	= imx_uart_enable_ms,
1942 	.break_ctl	= imx_uart_break_ctl,
1943 	.startup	= imx_uart_startup,
1944 	.shutdown	= imx_uart_shutdown,
1945 	.flush_buffer	= imx_uart_flush_buffer,
1946 	.set_termios	= imx_uart_set_termios,
1947 	.type		= imx_uart_type,
1948 	.config_port	= imx_uart_config_port,
1949 	.verify_port	= imx_uart_verify_port,
1950 #if defined(CONFIG_CONSOLE_POLL)
1951 	.poll_init      = imx_uart_poll_init,
1952 	.poll_get_char  = imx_uart_poll_get_char,
1953 	.poll_put_char  = imx_uart_poll_put_char,
1954 #endif
1955 };
1956 
1957 static struct imx_port *imx_uart_ports[UART_NR];
1958 
1959 #if IS_ENABLED(CONFIG_SERIAL_IMX_CONSOLE)
1960 static void imx_uart_console_putchar(struct uart_port *port, int ch)
1961 {
1962 	struct imx_port *sport = (struct imx_port *)port;
1963 
1964 	while (imx_uart_readl(sport, imx_uart_uts_reg(sport)) & UTS_TXFULL)
1965 		barrier();
1966 
1967 	imx_uart_writel(sport, ch, URTX0);
1968 }
1969 
1970 /*
1971  * Interrupts are disabled on entering
1972  */
1973 static void
1974 imx_uart_console_write(struct console *co, const char *s, unsigned int count)
1975 {
1976 	struct imx_port *sport = imx_uart_ports[co->index];
1977 	struct imx_port_ucrs old_ucr;
1978 	unsigned int ucr1;
1979 	unsigned long flags = 0;
1980 	int locked = 1;
1981 
1982 	if (sport->port.sysrq)
1983 		locked = 0;
1984 	else if (oops_in_progress)
1985 		locked = spin_trylock_irqsave(&sport->port.lock, flags);
1986 	else
1987 		spin_lock_irqsave(&sport->port.lock, flags);
1988 
1989 	/*
1990 	 *	First, save UCR1/2/3 and then disable interrupts
1991 	 */
1992 	imx_uart_ucrs_save(sport, &old_ucr);
1993 	ucr1 = old_ucr.ucr1;
1994 
1995 	if (imx_uart_is_imx1(sport))
1996 		ucr1 |= IMX1_UCR1_UARTCLKEN;
1997 	ucr1 |= UCR1_UARTEN;
1998 	ucr1 &= ~(UCR1_TRDYEN | UCR1_RRDYEN | UCR1_RTSDEN);
1999 
2000 	imx_uart_writel(sport, ucr1, UCR1);
2001 
2002 	imx_uart_writel(sport, old_ucr.ucr2 | UCR2_TXEN, UCR2);
2003 
2004 	uart_console_write(&sport->port, s, count, imx_uart_console_putchar);
2005 
2006 	/*
2007 	 *	Finally, wait for transmitter to become empty
2008 	 *	and restore UCR1/2/3
2009 	 */
2010 	while (!(imx_uart_readl(sport, USR2) & USR2_TXDC));
2011 
2012 	imx_uart_ucrs_restore(sport, &old_ucr);
2013 
2014 	if (locked)
2015 		spin_unlock_irqrestore(&sport->port.lock, flags);
2016 }
2017 
2018 /*
2019  * If the port was already initialised (eg, by a boot loader),
2020  * try to determine the current setup.
2021  */
2022 static void __init
2023 imx_uart_console_get_options(struct imx_port *sport, int *baud,
2024 			     int *parity, int *bits)
2025 {
2026 
2027 	if (imx_uart_readl(sport, UCR1) & UCR1_UARTEN) {
2028 		/* ok, the port was enabled */
2029 		unsigned int ucr2, ubir, ubmr, uartclk;
2030 		unsigned int baud_raw;
2031 		unsigned int ucfr_rfdiv;
2032 
2033 		ucr2 = imx_uart_readl(sport, UCR2);
2034 
2035 		*parity = 'n';
2036 		if (ucr2 & UCR2_PREN) {
2037 			if (ucr2 & UCR2_PROE)
2038 				*parity = 'o';
2039 			else
2040 				*parity = 'e';
2041 		}
2042 
2043 		if (ucr2 & UCR2_WS)
2044 			*bits = 8;
2045 		else
2046 			*bits = 7;
2047 
2048 		ubir = imx_uart_readl(sport, UBIR) & 0xffff;
2049 		ubmr = imx_uart_readl(sport, UBMR) & 0xffff;
2050 
2051 		ucfr_rfdiv = (imx_uart_readl(sport, UFCR) & UFCR_RFDIV) >> 7;
2052 		if (ucfr_rfdiv == 6)
2053 			ucfr_rfdiv = 7;
2054 		else
2055 			ucfr_rfdiv = 6 - ucfr_rfdiv;
2056 
2057 		uartclk = clk_get_rate(sport->clk_per);
2058 		uartclk /= ucfr_rfdiv;
2059 
2060 		{	/*
2061 			 * The next code provides exact computation of
2062 			 *   baud_raw = round(((uartclk/16) * (ubir + 1)) / (ubmr + 1))
2063 			 * without need of float support or long long division,
2064 			 * which would be required to prevent 32bit arithmetic overflow
2065 			 */
2066 			unsigned int mul = ubir + 1;
2067 			unsigned int div = 16 * (ubmr + 1);
2068 			unsigned int rem = uartclk % div;
2069 
2070 			baud_raw = (uartclk / div) * mul;
2071 			baud_raw += (rem * mul + div / 2) / div;
2072 			*baud = (baud_raw + 50) / 100 * 100;
2073 		}
2074 
2075 		if (*baud != baud_raw)
2076 			dev_info(sport->port.dev, "Console IMX rounded baud rate from %d to %d\n",
2077 				baud_raw, *baud);
2078 	}
2079 }
2080 
2081 static int __init
2082 imx_uart_console_setup(struct console *co, char *options)
2083 {
2084 	struct imx_port *sport;
2085 	int baud = 9600;
2086 	int bits = 8;
2087 	int parity = 'n';
2088 	int flow = 'n';
2089 	int retval;
2090 
2091 	/*
2092 	 * Check whether an invalid uart number has been specified, and
2093 	 * if so, search for the first available port that does have
2094 	 * console support.
2095 	 */
2096 	if (co->index == -1 || co->index >= ARRAY_SIZE(imx_uart_ports))
2097 		co->index = 0;
2098 	sport = imx_uart_ports[co->index];
2099 	if (sport == NULL)
2100 		return -ENODEV;
2101 
2102 	/* For setting the registers, we only need to enable the ipg clock. */
2103 	retval = clk_prepare_enable(sport->clk_ipg);
2104 	if (retval)
2105 		goto error_console;
2106 
2107 	if (options)
2108 		uart_parse_options(options, &baud, &parity, &bits, &flow);
2109 	else
2110 		imx_uart_console_get_options(sport, &baud, &parity, &bits);
2111 
2112 	imx_uart_setup_ufcr(sport, TXTL_DEFAULT, RXTL_DEFAULT);
2113 
2114 	retval = uart_set_options(&sport->port, co, baud, parity, bits, flow);
2115 
2116 	if (retval) {
2117 		clk_disable_unprepare(sport->clk_ipg);
2118 		goto error_console;
2119 	}
2120 
2121 	retval = clk_prepare_enable(sport->clk_per);
2122 	if (retval)
2123 		clk_disable_unprepare(sport->clk_ipg);
2124 
2125 error_console:
2126 	return retval;
2127 }
2128 
2129 static struct uart_driver imx_uart_uart_driver;
2130 static struct console imx_uart_console = {
2131 	.name		= DEV_NAME,
2132 	.write		= imx_uart_console_write,
2133 	.device		= uart_console_device,
2134 	.setup		= imx_uart_console_setup,
2135 	.flags		= CON_PRINTBUFFER,
2136 	.index		= -1,
2137 	.data		= &imx_uart_uart_driver,
2138 };
2139 
2140 #define IMX_CONSOLE	&imx_uart_console
2141 
2142 #else
2143 #define IMX_CONSOLE	NULL
2144 #endif
2145 
2146 static struct uart_driver imx_uart_uart_driver = {
2147 	.owner          = THIS_MODULE,
2148 	.driver_name    = DRIVER_NAME,
2149 	.dev_name       = DEV_NAME,
2150 	.major          = SERIAL_IMX_MAJOR,
2151 	.minor          = MINOR_START,
2152 	.nr             = ARRAY_SIZE(imx_uart_ports),
2153 	.cons           = IMX_CONSOLE,
2154 };
2155 
2156 static enum hrtimer_restart imx_trigger_start_tx(struct hrtimer *t)
2157 {
2158 	struct imx_port *sport = container_of(t, struct imx_port, trigger_start_tx);
2159 	unsigned long flags;
2160 
2161 	spin_lock_irqsave(&sport->port.lock, flags);
2162 	if (sport->tx_state == WAIT_AFTER_RTS)
2163 		imx_uart_start_tx(&sport->port);
2164 	spin_unlock_irqrestore(&sport->port.lock, flags);
2165 
2166 	return HRTIMER_NORESTART;
2167 }
2168 
2169 static enum hrtimer_restart imx_trigger_stop_tx(struct hrtimer *t)
2170 {
2171 	struct imx_port *sport = container_of(t, struct imx_port, trigger_stop_tx);
2172 	unsigned long flags;
2173 
2174 	spin_lock_irqsave(&sport->port.lock, flags);
2175 	if (sport->tx_state == WAIT_AFTER_SEND)
2176 		imx_uart_stop_tx(&sport->port);
2177 	spin_unlock_irqrestore(&sport->port.lock, flags);
2178 
2179 	return HRTIMER_NORESTART;
2180 }
2181 
2182 static int imx_uart_probe(struct platform_device *pdev)
2183 {
2184 	struct device_node *np = pdev->dev.of_node;
2185 	struct imx_port *sport;
2186 	void __iomem *base;
2187 	int ret = 0;
2188 	u32 ucr1;
2189 	struct resource *res;
2190 	int txirq, rxirq, rtsirq;
2191 
2192 	sport = devm_kzalloc(&pdev->dev, sizeof(*sport), GFP_KERNEL);
2193 	if (!sport)
2194 		return -ENOMEM;
2195 
2196 	sport->devdata = of_device_get_match_data(&pdev->dev);
2197 
2198 	ret = of_alias_get_id(np, "serial");
2199 	if (ret < 0) {
2200 		dev_err(&pdev->dev, "failed to get alias id, errno %d\n", ret);
2201 		return ret;
2202 	}
2203 	sport->port.line = ret;
2204 
2205 	if (of_get_property(np, "uart-has-rtscts", NULL) ||
2206 	    of_get_property(np, "fsl,uart-has-rtscts", NULL) /* deprecated */)
2207 		sport->have_rtscts = 1;
2208 
2209 	if (of_get_property(np, "fsl,dte-mode", NULL))
2210 		sport->dte_mode = 1;
2211 
2212 	if (of_get_property(np, "rts-gpios", NULL))
2213 		sport->have_rtsgpio = 1;
2214 
2215 	if (of_get_property(np, "fsl,inverted-tx", NULL))
2216 		sport->inverted_tx = 1;
2217 
2218 	if (of_get_property(np, "fsl,inverted-rx", NULL))
2219 		sport->inverted_rx = 1;
2220 
2221 	if (sport->port.line >= ARRAY_SIZE(imx_uart_ports)) {
2222 		dev_err(&pdev->dev, "serial%d out of range\n",
2223 			sport->port.line);
2224 		return -EINVAL;
2225 	}
2226 
2227 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2228 	base = devm_ioremap_resource(&pdev->dev, res);
2229 	if (IS_ERR(base))
2230 		return PTR_ERR(base);
2231 
2232 	rxirq = platform_get_irq(pdev, 0);
2233 	if (rxirq < 0)
2234 		return rxirq;
2235 	txirq = platform_get_irq_optional(pdev, 1);
2236 	rtsirq = platform_get_irq_optional(pdev, 2);
2237 
2238 	sport->port.dev = &pdev->dev;
2239 	sport->port.mapbase = res->start;
2240 	sport->port.membase = base;
2241 	sport->port.type = PORT_IMX;
2242 	sport->port.iotype = UPIO_MEM;
2243 	sport->port.irq = rxirq;
2244 	sport->port.fifosize = 32;
2245 	sport->port.has_sysrq = IS_ENABLED(CONFIG_SERIAL_IMX_CONSOLE);
2246 	sport->port.ops = &imx_uart_pops;
2247 	sport->port.rs485_config = imx_uart_rs485_config;
2248 	sport->port.flags = UPF_BOOT_AUTOCONF;
2249 	timer_setup(&sport->timer, imx_uart_timeout, 0);
2250 
2251 	sport->gpios = mctrl_gpio_init(&sport->port, 0);
2252 	if (IS_ERR(sport->gpios))
2253 		return PTR_ERR(sport->gpios);
2254 
2255 	sport->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
2256 	if (IS_ERR(sport->clk_ipg)) {
2257 		ret = PTR_ERR(sport->clk_ipg);
2258 		dev_err(&pdev->dev, "failed to get ipg clk: %d\n", ret);
2259 		return ret;
2260 	}
2261 
2262 	sport->clk_per = devm_clk_get(&pdev->dev, "per");
2263 	if (IS_ERR(sport->clk_per)) {
2264 		ret = PTR_ERR(sport->clk_per);
2265 		dev_err(&pdev->dev, "failed to get per clk: %d\n", ret);
2266 		return ret;
2267 	}
2268 
2269 	sport->port.uartclk = clk_get_rate(sport->clk_per);
2270 
2271 	/* For register access, we only need to enable the ipg clock. */
2272 	ret = clk_prepare_enable(sport->clk_ipg);
2273 	if (ret) {
2274 		dev_err(&pdev->dev, "failed to enable per clk: %d\n", ret);
2275 		return ret;
2276 	}
2277 
2278 	/* initialize shadow register values */
2279 	sport->ucr1 = readl(sport->port.membase + UCR1);
2280 	sport->ucr2 = readl(sport->port.membase + UCR2);
2281 	sport->ucr3 = readl(sport->port.membase + UCR3);
2282 	sport->ucr4 = readl(sport->port.membase + UCR4);
2283 	sport->ufcr = readl(sport->port.membase + UFCR);
2284 
2285 	ret = uart_get_rs485_mode(&sport->port);
2286 	if (ret) {
2287 		clk_disable_unprepare(sport->clk_ipg);
2288 		return ret;
2289 	}
2290 
2291 	if (sport->port.rs485.flags & SER_RS485_ENABLED &&
2292 	    (!sport->have_rtscts && !sport->have_rtsgpio))
2293 		dev_err(&pdev->dev, "no RTS control, disabling rs485\n");
2294 
2295 	/*
2296 	 * If using the i.MX UART RTS/CTS control then the RTS (CTS_B)
2297 	 * signal cannot be set low during transmission in case the
2298 	 * receiver is off (limitation of the i.MX UART IP).
2299 	 */
2300 	if (sport->port.rs485.flags & SER_RS485_ENABLED &&
2301 	    sport->have_rtscts && !sport->have_rtsgpio &&
2302 	    (!(sport->port.rs485.flags & SER_RS485_RTS_ON_SEND) &&
2303 	     !(sport->port.rs485.flags & SER_RS485_RX_DURING_TX)))
2304 		dev_err(&pdev->dev,
2305 			"low-active RTS not possible when receiver is off, enabling receiver\n");
2306 
2307 	imx_uart_rs485_config(&sport->port, &sport->port.rs485);
2308 
2309 	/* Disable interrupts before requesting them */
2310 	ucr1 = imx_uart_readl(sport, UCR1);
2311 	ucr1 &= ~(UCR1_ADEN | UCR1_TRDYEN | UCR1_IDEN | UCR1_RRDYEN | UCR1_RTSDEN);
2312 	imx_uart_writel(sport, ucr1, UCR1);
2313 
2314 	if (!imx_uart_is_imx1(sport) && sport->dte_mode) {
2315 		/*
2316 		 * The DCEDTE bit changes the direction of DSR, DCD, DTR and RI
2317 		 * and influences if UCR3_RI and UCR3_DCD changes the level of RI
2318 		 * and DCD (when they are outputs) or enables the respective
2319 		 * irqs. So set this bit early, i.e. before requesting irqs.
2320 		 */
2321 		u32 ufcr = imx_uart_readl(sport, UFCR);
2322 		if (!(ufcr & UFCR_DCEDTE))
2323 			imx_uart_writel(sport, ufcr | UFCR_DCEDTE, UFCR);
2324 
2325 		/*
2326 		 * Disable UCR3_RI and UCR3_DCD irqs. They are also not
2327 		 * enabled later because they cannot be cleared
2328 		 * (confirmed on i.MX25) which makes them unusable.
2329 		 */
2330 		imx_uart_writel(sport,
2331 				IMX21_UCR3_RXDMUXSEL | UCR3_ADNIMP | UCR3_DSR,
2332 				UCR3);
2333 
2334 	} else {
2335 		u32 ucr3 = UCR3_DSR;
2336 		u32 ufcr = imx_uart_readl(sport, UFCR);
2337 		if (ufcr & UFCR_DCEDTE)
2338 			imx_uart_writel(sport, ufcr & ~UFCR_DCEDTE, UFCR);
2339 
2340 		if (!imx_uart_is_imx1(sport))
2341 			ucr3 |= IMX21_UCR3_RXDMUXSEL | UCR3_ADNIMP;
2342 		imx_uart_writel(sport, ucr3, UCR3);
2343 	}
2344 
2345 	clk_disable_unprepare(sport->clk_ipg);
2346 
2347 	hrtimer_init(&sport->trigger_start_tx, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2348 	hrtimer_init(&sport->trigger_stop_tx, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2349 	sport->trigger_start_tx.function = imx_trigger_start_tx;
2350 	sport->trigger_stop_tx.function = imx_trigger_stop_tx;
2351 
2352 	/*
2353 	 * Allocate the IRQ(s) i.MX1 has three interrupts whereas later
2354 	 * chips only have one interrupt.
2355 	 */
2356 	if (txirq > 0) {
2357 		ret = devm_request_irq(&pdev->dev, rxirq, imx_uart_rxint, 0,
2358 				       dev_name(&pdev->dev), sport);
2359 		if (ret) {
2360 			dev_err(&pdev->dev, "failed to request rx irq: %d\n",
2361 				ret);
2362 			return ret;
2363 		}
2364 
2365 		ret = devm_request_irq(&pdev->dev, txirq, imx_uart_txint, 0,
2366 				       dev_name(&pdev->dev), sport);
2367 		if (ret) {
2368 			dev_err(&pdev->dev, "failed to request tx irq: %d\n",
2369 				ret);
2370 			return ret;
2371 		}
2372 
2373 		ret = devm_request_irq(&pdev->dev, rtsirq, imx_uart_rtsint, 0,
2374 				       dev_name(&pdev->dev), sport);
2375 		if (ret) {
2376 			dev_err(&pdev->dev, "failed to request rts irq: %d\n",
2377 				ret);
2378 			return ret;
2379 		}
2380 	} else {
2381 		ret = devm_request_irq(&pdev->dev, rxirq, imx_uart_int, 0,
2382 				       dev_name(&pdev->dev), sport);
2383 		if (ret) {
2384 			dev_err(&pdev->dev, "failed to request irq: %d\n", ret);
2385 			return ret;
2386 		}
2387 	}
2388 
2389 	imx_uart_ports[sport->port.line] = sport;
2390 
2391 	platform_set_drvdata(pdev, sport);
2392 
2393 	return uart_add_one_port(&imx_uart_uart_driver, &sport->port);
2394 }
2395 
2396 static int imx_uart_remove(struct platform_device *pdev)
2397 {
2398 	struct imx_port *sport = platform_get_drvdata(pdev);
2399 
2400 	return uart_remove_one_port(&imx_uart_uart_driver, &sport->port);
2401 }
2402 
2403 static void imx_uart_restore_context(struct imx_port *sport)
2404 {
2405 	unsigned long flags;
2406 
2407 	spin_lock_irqsave(&sport->port.lock, flags);
2408 	if (!sport->context_saved) {
2409 		spin_unlock_irqrestore(&sport->port.lock, flags);
2410 		return;
2411 	}
2412 
2413 	imx_uart_writel(sport, sport->saved_reg[4], UFCR);
2414 	imx_uart_writel(sport, sport->saved_reg[5], UESC);
2415 	imx_uart_writel(sport, sport->saved_reg[6], UTIM);
2416 	imx_uart_writel(sport, sport->saved_reg[7], UBIR);
2417 	imx_uart_writel(sport, sport->saved_reg[8], UBMR);
2418 	imx_uart_writel(sport, sport->saved_reg[9], IMX21_UTS);
2419 	imx_uart_writel(sport, sport->saved_reg[0], UCR1);
2420 	imx_uart_writel(sport, sport->saved_reg[1] | UCR2_SRST, UCR2);
2421 	imx_uart_writel(sport, sport->saved_reg[2], UCR3);
2422 	imx_uart_writel(sport, sport->saved_reg[3], UCR4);
2423 	sport->context_saved = false;
2424 	spin_unlock_irqrestore(&sport->port.lock, flags);
2425 }
2426 
2427 static void imx_uart_save_context(struct imx_port *sport)
2428 {
2429 	unsigned long flags;
2430 
2431 	/* Save necessary regs */
2432 	spin_lock_irqsave(&sport->port.lock, flags);
2433 	sport->saved_reg[0] = imx_uart_readl(sport, UCR1);
2434 	sport->saved_reg[1] = imx_uart_readl(sport, UCR2);
2435 	sport->saved_reg[2] = imx_uart_readl(sport, UCR3);
2436 	sport->saved_reg[3] = imx_uart_readl(sport, UCR4);
2437 	sport->saved_reg[4] = imx_uart_readl(sport, UFCR);
2438 	sport->saved_reg[5] = imx_uart_readl(sport, UESC);
2439 	sport->saved_reg[6] = imx_uart_readl(sport, UTIM);
2440 	sport->saved_reg[7] = imx_uart_readl(sport, UBIR);
2441 	sport->saved_reg[8] = imx_uart_readl(sport, UBMR);
2442 	sport->saved_reg[9] = imx_uart_readl(sport, IMX21_UTS);
2443 	sport->context_saved = true;
2444 	spin_unlock_irqrestore(&sport->port.lock, flags);
2445 }
2446 
2447 static void imx_uart_enable_wakeup(struct imx_port *sport, bool on)
2448 {
2449 	u32 ucr3;
2450 
2451 	ucr3 = imx_uart_readl(sport, UCR3);
2452 	if (on) {
2453 		imx_uart_writel(sport, USR1_AWAKE, USR1);
2454 		ucr3 |= UCR3_AWAKEN;
2455 	} else {
2456 		ucr3 &= ~UCR3_AWAKEN;
2457 	}
2458 	imx_uart_writel(sport, ucr3, UCR3);
2459 
2460 	if (sport->have_rtscts) {
2461 		u32 ucr1 = imx_uart_readl(sport, UCR1);
2462 		if (on)
2463 			ucr1 |= UCR1_RTSDEN;
2464 		else
2465 			ucr1 &= ~UCR1_RTSDEN;
2466 		imx_uart_writel(sport, ucr1, UCR1);
2467 	}
2468 }
2469 
2470 static int imx_uart_suspend_noirq(struct device *dev)
2471 {
2472 	struct imx_port *sport = dev_get_drvdata(dev);
2473 
2474 	imx_uart_save_context(sport);
2475 
2476 	clk_disable(sport->clk_ipg);
2477 
2478 	pinctrl_pm_select_sleep_state(dev);
2479 
2480 	return 0;
2481 }
2482 
2483 static int imx_uart_resume_noirq(struct device *dev)
2484 {
2485 	struct imx_port *sport = dev_get_drvdata(dev);
2486 	int ret;
2487 
2488 	pinctrl_pm_select_default_state(dev);
2489 
2490 	ret = clk_enable(sport->clk_ipg);
2491 	if (ret)
2492 		return ret;
2493 
2494 	imx_uart_restore_context(sport);
2495 
2496 	return 0;
2497 }
2498 
2499 static int imx_uart_suspend(struct device *dev)
2500 {
2501 	struct imx_port *sport = dev_get_drvdata(dev);
2502 	int ret;
2503 
2504 	uart_suspend_port(&imx_uart_uart_driver, &sport->port);
2505 	disable_irq(sport->port.irq);
2506 
2507 	ret = clk_prepare_enable(sport->clk_ipg);
2508 	if (ret)
2509 		return ret;
2510 
2511 	/* enable wakeup from i.MX UART */
2512 	imx_uart_enable_wakeup(sport, true);
2513 
2514 	return 0;
2515 }
2516 
2517 static int imx_uart_resume(struct device *dev)
2518 {
2519 	struct imx_port *sport = dev_get_drvdata(dev);
2520 
2521 	/* disable wakeup from i.MX UART */
2522 	imx_uart_enable_wakeup(sport, false);
2523 
2524 	uart_resume_port(&imx_uart_uart_driver, &sport->port);
2525 	enable_irq(sport->port.irq);
2526 
2527 	clk_disable_unprepare(sport->clk_ipg);
2528 
2529 	return 0;
2530 }
2531 
2532 static int imx_uart_freeze(struct device *dev)
2533 {
2534 	struct imx_port *sport = dev_get_drvdata(dev);
2535 
2536 	uart_suspend_port(&imx_uart_uart_driver, &sport->port);
2537 
2538 	return clk_prepare_enable(sport->clk_ipg);
2539 }
2540 
2541 static int imx_uart_thaw(struct device *dev)
2542 {
2543 	struct imx_port *sport = dev_get_drvdata(dev);
2544 
2545 	uart_resume_port(&imx_uart_uart_driver, &sport->port);
2546 
2547 	clk_disable_unprepare(sport->clk_ipg);
2548 
2549 	return 0;
2550 }
2551 
2552 static const struct dev_pm_ops imx_uart_pm_ops = {
2553 	.suspend_noirq = imx_uart_suspend_noirq,
2554 	.resume_noirq = imx_uart_resume_noirq,
2555 	.freeze_noirq = imx_uart_suspend_noirq,
2556 	.restore_noirq = imx_uart_resume_noirq,
2557 	.suspend = imx_uart_suspend,
2558 	.resume = imx_uart_resume,
2559 	.freeze = imx_uart_freeze,
2560 	.thaw = imx_uart_thaw,
2561 	.restore = imx_uart_thaw,
2562 };
2563 
2564 static struct platform_driver imx_uart_platform_driver = {
2565 	.probe = imx_uart_probe,
2566 	.remove = imx_uart_remove,
2567 
2568 	.driver = {
2569 		.name = "imx-uart",
2570 		.of_match_table = imx_uart_dt_ids,
2571 		.pm = &imx_uart_pm_ops,
2572 	},
2573 };
2574 
2575 static int __init imx_uart_init(void)
2576 {
2577 	int ret = uart_register_driver(&imx_uart_uart_driver);
2578 
2579 	if (ret)
2580 		return ret;
2581 
2582 	ret = platform_driver_register(&imx_uart_platform_driver);
2583 	if (ret != 0)
2584 		uart_unregister_driver(&imx_uart_uart_driver);
2585 
2586 	return ret;
2587 }
2588 
2589 static void __exit imx_uart_exit(void)
2590 {
2591 	platform_driver_unregister(&imx_uart_platform_driver);
2592 	uart_unregister_driver(&imx_uart_uart_driver);
2593 }
2594 
2595 module_init(imx_uart_init);
2596 module_exit(imx_uart_exit);
2597 
2598 MODULE_AUTHOR("Sascha Hauer");
2599 MODULE_DESCRIPTION("IMX generic serial port driver");
2600 MODULE_LICENSE("GPL");
2601 MODULE_ALIAS("platform:imx-uart");
2602