xref: /openbmc/linux/drivers/tty/serial/imx.c (revision 19dc81b4017baffd6e919fd71cfc8dcbd5442e15)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Driver for Motorola/Freescale IMX serial ports
4  *
5  * Based on drivers/char/serial.c, by Linus Torvalds, Theodore Ts'o.
6  *
7  * Author: Sascha Hauer <sascha@saschahauer.de>
8  * Copyright (C) 2004 Pengutronix
9  */
10 
11 #include <linux/module.h>
12 #include <linux/ioport.h>
13 #include <linux/init.h>
14 #include <linux/console.h>
15 #include <linux/sysrq.h>
16 #include <linux/platform_device.h>
17 #include <linux/tty.h>
18 #include <linux/tty_flip.h>
19 #include <linux/serial_core.h>
20 #include <linux/serial.h>
21 #include <linux/clk.h>
22 #include <linux/delay.h>
23 #include <linux/ktime.h>
24 #include <linux/pinctrl/consumer.h>
25 #include <linux/rational.h>
26 #include <linux/slab.h>
27 #include <linux/of.h>
28 #include <linux/of_device.h>
29 #include <linux/io.h>
30 #include <linux/dma-mapping.h>
31 
32 #include <asm/irq.h>
33 #include <linux/platform_data/dma-imx.h>
34 
35 #include "serial_mctrl_gpio.h"
36 
37 /* Register definitions */
38 #define URXD0 0x0  /* Receiver Register */
39 #define URTX0 0x40 /* Transmitter Register */
40 #define UCR1  0x80 /* Control Register 1 */
41 #define UCR2  0x84 /* Control Register 2 */
42 #define UCR3  0x88 /* Control Register 3 */
43 #define UCR4  0x8c /* Control Register 4 */
44 #define UFCR  0x90 /* FIFO Control Register */
45 #define USR1  0x94 /* Status Register 1 */
46 #define USR2  0x98 /* Status Register 2 */
47 #define UESC  0x9c /* Escape Character Register */
48 #define UTIM  0xa0 /* Escape Timer Register */
49 #define UBIR  0xa4 /* BRM Incremental Register */
50 #define UBMR  0xa8 /* BRM Modulator Register */
51 #define UBRC  0xac /* Baud Rate Count Register */
52 #define IMX21_ONEMS 0xb0 /* One Millisecond register */
53 #define IMX1_UTS 0xd0 /* UART Test Register on i.mx1 */
54 #define IMX21_UTS 0xb4 /* UART Test Register on all other i.mx*/
55 
56 /* UART Control Register Bit Fields.*/
57 #define URXD_DUMMY_READ (1<<16)
58 #define URXD_CHARRDY	(1<<15)
59 #define URXD_ERR	(1<<14)
60 #define URXD_OVRRUN	(1<<13)
61 #define URXD_FRMERR	(1<<12)
62 #define URXD_BRK	(1<<11)
63 #define URXD_PRERR	(1<<10)
64 #define URXD_RX_DATA	(0xFF<<0)
65 #define UCR1_ADEN	(1<<15) /* Auto detect interrupt */
66 #define UCR1_ADBR	(1<<14) /* Auto detect baud rate */
67 #define UCR1_TRDYEN	(1<<13) /* Transmitter ready interrupt enable */
68 #define UCR1_IDEN	(1<<12) /* Idle condition interrupt */
69 #define UCR1_ICD_REG(x) (((x) & 3) << 10) /* idle condition detect */
70 #define UCR1_RRDYEN	(1<<9)	/* Recv ready interrupt enable */
71 #define UCR1_RXDMAEN	(1<<8)	/* Recv ready DMA enable */
72 #define UCR1_IREN	(1<<7)	/* Infrared interface enable */
73 #define UCR1_TXMPTYEN	(1<<6)	/* Transimitter empty interrupt enable */
74 #define UCR1_RTSDEN	(1<<5)	/* RTS delta interrupt enable */
75 #define UCR1_SNDBRK	(1<<4)	/* Send break */
76 #define UCR1_TXDMAEN	(1<<3)	/* Transmitter ready DMA enable */
77 #define IMX1_UCR1_UARTCLKEN (1<<2) /* UART clock enabled, i.mx1 only */
78 #define UCR1_ATDMAEN    (1<<2)  /* Aging DMA Timer Enable */
79 #define UCR1_DOZE	(1<<1)	/* Doze */
80 #define UCR1_UARTEN	(1<<0)	/* UART enabled */
81 #define UCR2_ESCI	(1<<15)	/* Escape seq interrupt enable */
82 #define UCR2_IRTS	(1<<14)	/* Ignore RTS pin */
83 #define UCR2_CTSC	(1<<13)	/* CTS pin control */
84 #define UCR2_CTS	(1<<12)	/* Clear to send */
85 #define UCR2_ESCEN	(1<<11)	/* Escape enable */
86 #define UCR2_PREN	(1<<8)	/* Parity enable */
87 #define UCR2_PROE	(1<<7)	/* Parity odd/even */
88 #define UCR2_STPB	(1<<6)	/* Stop */
89 #define UCR2_WS		(1<<5)	/* Word size */
90 #define UCR2_RTSEN	(1<<4)	/* Request to send interrupt enable */
91 #define UCR2_ATEN	(1<<3)	/* Aging Timer Enable */
92 #define UCR2_TXEN	(1<<2)	/* Transmitter enabled */
93 #define UCR2_RXEN	(1<<1)	/* Receiver enabled */
94 #define UCR2_SRST	(1<<0)	/* SW reset */
95 #define UCR3_DTREN	(1<<13) /* DTR interrupt enable */
96 #define UCR3_PARERREN	(1<<12) /* Parity enable */
97 #define UCR3_FRAERREN	(1<<11) /* Frame error interrupt enable */
98 #define UCR3_DSR	(1<<10) /* Data set ready */
99 #define UCR3_DCD	(1<<9)	/* Data carrier detect */
100 #define UCR3_RI		(1<<8)	/* Ring indicator */
101 #define UCR3_ADNIMP	(1<<7)	/* Autobaud Detection Not Improved */
102 #define UCR3_RXDSEN	(1<<6)	/* Receive status interrupt enable */
103 #define UCR3_AIRINTEN	(1<<5)	/* Async IR wake interrupt enable */
104 #define UCR3_AWAKEN	(1<<4)	/* Async wake interrupt enable */
105 #define UCR3_DTRDEN	(1<<3)	/* Data Terminal Ready Delta Enable. */
106 #define IMX21_UCR3_RXDMUXSEL	(1<<2)	/* RXD Muxed Input Select */
107 #define UCR3_INVT	(1<<1)	/* Inverted Infrared transmission */
108 #define UCR3_BPEN	(1<<0)	/* Preset registers enable */
109 #define UCR4_CTSTL_SHF	10	/* CTS trigger level shift */
110 #define UCR4_CTSTL_MASK	0x3F	/* CTS trigger is 6 bits wide */
111 #define UCR4_INVR	(1<<9)	/* Inverted infrared reception */
112 #define UCR4_ENIRI	(1<<8)	/* Serial infrared interrupt enable */
113 #define UCR4_WKEN	(1<<7)	/* Wake interrupt enable */
114 #define UCR4_REF16	(1<<6)	/* Ref freq 16 MHz */
115 #define UCR4_IDDMAEN    (1<<6)  /* DMA IDLE Condition Detected */
116 #define UCR4_IRSC	(1<<5)	/* IR special case */
117 #define UCR4_TCEN	(1<<3)	/* Transmit complete interrupt enable */
118 #define UCR4_BKEN	(1<<2)	/* Break condition interrupt enable */
119 #define UCR4_OREN	(1<<1)	/* Receiver overrun interrupt enable */
120 #define UCR4_DREN	(1<<0)	/* Recv data ready interrupt enable */
121 #define UFCR_RXTL_SHF	0	/* Receiver trigger level shift */
122 #define UFCR_DCEDTE	(1<<6)	/* DCE/DTE mode select */
123 #define UFCR_RFDIV	(7<<7)	/* Reference freq divider mask */
124 #define UFCR_RFDIV_REG(x)	(((x) < 7 ? 6 - (x) : 6) << 7)
125 #define UFCR_TXTL_SHF	10	/* Transmitter trigger level shift */
126 #define USR1_PARITYERR	(1<<15) /* Parity error interrupt flag */
127 #define USR1_RTSS	(1<<14) /* RTS pin status */
128 #define USR1_TRDY	(1<<13) /* Transmitter ready interrupt/dma flag */
129 #define USR1_RTSD	(1<<12) /* RTS delta */
130 #define USR1_ESCF	(1<<11) /* Escape seq interrupt flag */
131 #define USR1_FRAMERR	(1<<10) /* Frame error interrupt flag */
132 #define USR1_RRDY	(1<<9)	 /* Receiver ready interrupt/dma flag */
133 #define USR1_AGTIM	(1<<8)	 /* Ageing timer interrupt flag */
134 #define USR1_DTRD	(1<<7)	 /* DTR Delta */
135 #define USR1_RXDS	 (1<<6)	 /* Receiver idle interrupt flag */
136 #define USR1_AIRINT	 (1<<5)	 /* Async IR wake interrupt flag */
137 #define USR1_AWAKE	 (1<<4)	 /* Aysnc wake interrupt flag */
138 #define USR2_ADET	 (1<<15) /* Auto baud rate detect complete */
139 #define USR2_TXFE	 (1<<14) /* Transmit buffer FIFO empty */
140 #define USR2_DTRF	 (1<<13) /* DTR edge interrupt flag */
141 #define USR2_IDLE	 (1<<12) /* Idle condition */
142 #define USR2_RIDELT	 (1<<10) /* Ring Interrupt Delta */
143 #define USR2_RIIN	 (1<<9)	 /* Ring Indicator Input */
144 #define USR2_IRINT	 (1<<8)	 /* Serial infrared interrupt flag */
145 #define USR2_WAKE	 (1<<7)	 /* Wake */
146 #define USR2_DCDIN	 (1<<5)	 /* Data Carrier Detect Input */
147 #define USR2_RTSF	 (1<<4)	 /* RTS edge interrupt flag */
148 #define USR2_TXDC	 (1<<3)	 /* Transmitter complete */
149 #define USR2_BRCD	 (1<<2)	 /* Break condition */
150 #define USR2_ORE	(1<<1)	 /* Overrun error */
151 #define USR2_RDR	(1<<0)	 /* Recv data ready */
152 #define UTS_FRCPERR	(1<<13) /* Force parity error */
153 #define UTS_LOOP	(1<<12)	 /* Loop tx and rx */
154 #define UTS_TXEMPTY	 (1<<6)	 /* TxFIFO empty */
155 #define UTS_RXEMPTY	 (1<<5)	 /* RxFIFO empty */
156 #define UTS_TXFULL	 (1<<4)	 /* TxFIFO full */
157 #define UTS_RXFULL	 (1<<3)	 /* RxFIFO full */
158 #define UTS_SOFTRST	 (1<<0)	 /* Software reset */
159 
160 /* We've been assigned a range on the "Low-density serial ports" major */
161 #define SERIAL_IMX_MAJOR	207
162 #define MINOR_START		16
163 #define DEV_NAME		"ttymxc"
164 
165 /*
166  * This determines how often we check the modem status signals
167  * for any change.  They generally aren't connected to an IRQ
168  * so we have to poll them.  We also check immediately before
169  * filling the TX fifo incase CTS has been dropped.
170  */
171 #define MCTRL_TIMEOUT	(250*HZ/1000)
172 
173 #define DRIVER_NAME "IMX-uart"
174 
175 #define UART_NR 8
176 
177 /* i.MX21 type uart runs on all i.mx except i.MX1 and i.MX6q */
178 enum imx_uart_type {
179 	IMX1_UART,
180 	IMX21_UART,
181 	IMX53_UART,
182 	IMX6Q_UART,
183 };
184 
185 /* device type dependent stuff */
186 struct imx_uart_data {
187 	unsigned uts_reg;
188 	enum imx_uart_type devtype;
189 };
190 
191 enum imx_tx_state {
192 	OFF,
193 	WAIT_AFTER_RTS,
194 	SEND,
195 	WAIT_AFTER_SEND,
196 };
197 
198 struct imx_port {
199 	struct uart_port	port;
200 	struct timer_list	timer;
201 	unsigned int		old_status;
202 	unsigned int		have_rtscts:1;
203 	unsigned int		have_rtsgpio:1;
204 	unsigned int		dte_mode:1;
205 	unsigned int		inverted_tx:1;
206 	unsigned int		inverted_rx:1;
207 	struct clk		*clk_ipg;
208 	struct clk		*clk_per;
209 	const struct imx_uart_data *devdata;
210 
211 	struct mctrl_gpios *gpios;
212 
213 	/* shadow registers */
214 	unsigned int ucr1;
215 	unsigned int ucr2;
216 	unsigned int ucr3;
217 	unsigned int ucr4;
218 	unsigned int ufcr;
219 
220 	/* DMA fields */
221 	unsigned int		dma_is_enabled:1;
222 	unsigned int		dma_is_rxing:1;
223 	unsigned int		dma_is_txing:1;
224 	struct dma_chan		*dma_chan_rx, *dma_chan_tx;
225 	struct scatterlist	rx_sgl, tx_sgl[2];
226 	void			*rx_buf;
227 	struct circ_buf		rx_ring;
228 	unsigned int		rx_buf_size;
229 	unsigned int		rx_period_length;
230 	unsigned int		rx_periods;
231 	dma_cookie_t		rx_cookie;
232 	unsigned int		tx_bytes;
233 	unsigned int		dma_tx_nents;
234 	unsigned int            saved_reg[10];
235 	bool			context_saved;
236 
237 	enum imx_tx_state	tx_state;
238 	struct hrtimer		trigger_start_tx;
239 	struct hrtimer		trigger_stop_tx;
240 };
241 
242 struct imx_port_ucrs {
243 	unsigned int	ucr1;
244 	unsigned int	ucr2;
245 	unsigned int	ucr3;
246 };
247 
248 static struct imx_uart_data imx_uart_devdata[] = {
249 	[IMX1_UART] = {
250 		.uts_reg = IMX1_UTS,
251 		.devtype = IMX1_UART,
252 	},
253 	[IMX21_UART] = {
254 		.uts_reg = IMX21_UTS,
255 		.devtype = IMX21_UART,
256 	},
257 	[IMX53_UART] = {
258 		.uts_reg = IMX21_UTS,
259 		.devtype = IMX53_UART,
260 	},
261 	[IMX6Q_UART] = {
262 		.uts_reg = IMX21_UTS,
263 		.devtype = IMX6Q_UART,
264 	},
265 };
266 
267 static const struct of_device_id imx_uart_dt_ids[] = {
268 	{ .compatible = "fsl,imx6q-uart", .data = &imx_uart_devdata[IMX6Q_UART], },
269 	{ .compatible = "fsl,imx53-uart", .data = &imx_uart_devdata[IMX53_UART], },
270 	{ .compatible = "fsl,imx1-uart", .data = &imx_uart_devdata[IMX1_UART], },
271 	{ .compatible = "fsl,imx21-uart", .data = &imx_uart_devdata[IMX21_UART], },
272 	{ /* sentinel */ }
273 };
274 MODULE_DEVICE_TABLE(of, imx_uart_dt_ids);
275 
276 static void imx_uart_writel(struct imx_port *sport, u32 val, u32 offset)
277 {
278 	switch (offset) {
279 	case UCR1:
280 		sport->ucr1 = val;
281 		break;
282 	case UCR2:
283 		sport->ucr2 = val;
284 		break;
285 	case UCR3:
286 		sport->ucr3 = val;
287 		break;
288 	case UCR4:
289 		sport->ucr4 = val;
290 		break;
291 	case UFCR:
292 		sport->ufcr = val;
293 		break;
294 	default:
295 		break;
296 	}
297 	writel(val, sport->port.membase + offset);
298 }
299 
300 static u32 imx_uart_readl(struct imx_port *sport, u32 offset)
301 {
302 	switch (offset) {
303 	case UCR1:
304 		return sport->ucr1;
305 		break;
306 	case UCR2:
307 		/*
308 		 * UCR2_SRST is the only bit in the cached registers that might
309 		 * differ from the value that was last written. As it only
310 		 * automatically becomes one after being cleared, reread
311 		 * conditionally.
312 		 */
313 		if (!(sport->ucr2 & UCR2_SRST))
314 			sport->ucr2 = readl(sport->port.membase + offset);
315 		return sport->ucr2;
316 		break;
317 	case UCR3:
318 		return sport->ucr3;
319 		break;
320 	case UCR4:
321 		return sport->ucr4;
322 		break;
323 	case UFCR:
324 		return sport->ufcr;
325 		break;
326 	default:
327 		return readl(sport->port.membase + offset);
328 	}
329 }
330 
331 static inline unsigned imx_uart_uts_reg(struct imx_port *sport)
332 {
333 	return sport->devdata->uts_reg;
334 }
335 
336 static inline int imx_uart_is_imx1(struct imx_port *sport)
337 {
338 	return sport->devdata->devtype == IMX1_UART;
339 }
340 
341 static inline int imx_uart_is_imx21(struct imx_port *sport)
342 {
343 	return sport->devdata->devtype == IMX21_UART;
344 }
345 
346 static inline int imx_uart_is_imx53(struct imx_port *sport)
347 {
348 	return sport->devdata->devtype == IMX53_UART;
349 }
350 
351 static inline int imx_uart_is_imx6q(struct imx_port *sport)
352 {
353 	return sport->devdata->devtype == IMX6Q_UART;
354 }
355 /*
356  * Save and restore functions for UCR1, UCR2 and UCR3 registers
357  */
358 #if IS_ENABLED(CONFIG_SERIAL_IMX_CONSOLE)
359 static void imx_uart_ucrs_save(struct imx_port *sport,
360 			       struct imx_port_ucrs *ucr)
361 {
362 	/* save control registers */
363 	ucr->ucr1 = imx_uart_readl(sport, UCR1);
364 	ucr->ucr2 = imx_uart_readl(sport, UCR2);
365 	ucr->ucr3 = imx_uart_readl(sport, UCR3);
366 }
367 
368 static void imx_uart_ucrs_restore(struct imx_port *sport,
369 				  struct imx_port_ucrs *ucr)
370 {
371 	/* restore control registers */
372 	imx_uart_writel(sport, ucr->ucr1, UCR1);
373 	imx_uart_writel(sport, ucr->ucr2, UCR2);
374 	imx_uart_writel(sport, ucr->ucr3, UCR3);
375 }
376 #endif
377 
378 /* called with port.lock taken and irqs caller dependent */
379 static void imx_uart_rts_active(struct imx_port *sport, u32 *ucr2)
380 {
381 	*ucr2 &= ~(UCR2_CTSC | UCR2_CTS);
382 
383 	sport->port.mctrl |= TIOCM_RTS;
384 	mctrl_gpio_set(sport->gpios, sport->port.mctrl);
385 }
386 
387 /* called with port.lock taken and irqs caller dependent */
388 static void imx_uart_rts_inactive(struct imx_port *sport, u32 *ucr2)
389 {
390 	*ucr2 &= ~UCR2_CTSC;
391 	*ucr2 |= UCR2_CTS;
392 
393 	sport->port.mctrl &= ~TIOCM_RTS;
394 	mctrl_gpio_set(sport->gpios, sport->port.mctrl);
395 }
396 
397 static void start_hrtimer_ms(struct hrtimer *hrt, unsigned long msec)
398 {
399        hrtimer_start(hrt, ms_to_ktime(msec), HRTIMER_MODE_REL);
400 }
401 
402 /* called with port.lock taken and irqs off */
403 static void imx_uart_start_rx(struct uart_port *port)
404 {
405 	struct imx_port *sport = (struct imx_port *)port;
406 	unsigned int ucr1, ucr2;
407 
408 	ucr1 = imx_uart_readl(sport, UCR1);
409 	ucr2 = imx_uart_readl(sport, UCR2);
410 
411 	ucr2 |= UCR2_RXEN;
412 
413 	if (sport->dma_is_enabled) {
414 		ucr1 |= UCR1_RXDMAEN | UCR1_ATDMAEN;
415 	} else {
416 		ucr1 |= UCR1_RRDYEN;
417 		ucr2 |= UCR2_ATEN;
418 	}
419 
420 	/* Write UCR2 first as it includes RXEN */
421 	imx_uart_writel(sport, ucr2, UCR2);
422 	imx_uart_writel(sport, ucr1, UCR1);
423 }
424 
425 /* called with port.lock taken and irqs off */
426 static void imx_uart_stop_tx(struct uart_port *port)
427 {
428 	struct imx_port *sport = (struct imx_port *)port;
429 	u32 ucr1, ucr4, usr2;
430 
431 	if (sport->tx_state == OFF)
432 		return;
433 
434 	/*
435 	 * We are maybe in the SMP context, so if the DMA TX thread is running
436 	 * on other cpu, we have to wait for it to finish.
437 	 */
438 	if (sport->dma_is_txing)
439 		return;
440 
441 	ucr1 = imx_uart_readl(sport, UCR1);
442 	imx_uart_writel(sport, ucr1 & ~UCR1_TRDYEN, UCR1);
443 
444 	usr2 = imx_uart_readl(sport, USR2);
445 	if (!(usr2 & USR2_TXDC)) {
446 		/* The shifter is still busy, so retry once TC triggers */
447 		return;
448 	}
449 
450 	ucr4 = imx_uart_readl(sport, UCR4);
451 	ucr4 &= ~UCR4_TCEN;
452 	imx_uart_writel(sport, ucr4, UCR4);
453 
454 	/* in rs485 mode disable transmitter */
455 	if (port->rs485.flags & SER_RS485_ENABLED) {
456 		if (sport->tx_state == SEND) {
457 			sport->tx_state = WAIT_AFTER_SEND;
458 			start_hrtimer_ms(&sport->trigger_stop_tx,
459 					 port->rs485.delay_rts_after_send);
460 			return;
461 		}
462 
463 		if (sport->tx_state == WAIT_AFTER_RTS ||
464 		    sport->tx_state == WAIT_AFTER_SEND) {
465 			u32 ucr2;
466 
467 			hrtimer_try_to_cancel(&sport->trigger_start_tx);
468 
469 			ucr2 = imx_uart_readl(sport, UCR2);
470 			if (port->rs485.flags & SER_RS485_RTS_AFTER_SEND)
471 				imx_uart_rts_active(sport, &ucr2);
472 			else
473 				imx_uart_rts_inactive(sport, &ucr2);
474 			imx_uart_writel(sport, ucr2, UCR2);
475 
476 			imx_uart_start_rx(port);
477 
478 			sport->tx_state = OFF;
479 		}
480 	} else {
481 		sport->tx_state = OFF;
482 	}
483 }
484 
485 /* called with port.lock taken and irqs off */
486 static void imx_uart_stop_rx(struct uart_port *port)
487 {
488 	struct imx_port *sport = (struct imx_port *)port;
489 	u32 ucr1, ucr2, ucr4;
490 
491 	ucr1 = imx_uart_readl(sport, UCR1);
492 	ucr2 = imx_uart_readl(sport, UCR2);
493 	ucr4 = imx_uart_readl(sport, UCR4);
494 
495 	if (sport->dma_is_enabled) {
496 		ucr1 &= ~(UCR1_RXDMAEN | UCR1_ATDMAEN);
497 	} else {
498 		ucr1 &= ~UCR1_RRDYEN;
499 		ucr2 &= ~UCR2_ATEN;
500 		ucr4 &= ~UCR4_OREN;
501 	}
502 	imx_uart_writel(sport, ucr1, UCR1);
503 	imx_uart_writel(sport, ucr4, UCR4);
504 
505 	ucr2 &= ~UCR2_RXEN;
506 	imx_uart_writel(sport, ucr2, UCR2);
507 }
508 
509 /* called with port.lock taken and irqs off */
510 static void imx_uart_enable_ms(struct uart_port *port)
511 {
512 	struct imx_port *sport = (struct imx_port *)port;
513 
514 	mod_timer(&sport->timer, jiffies);
515 
516 	mctrl_gpio_enable_ms(sport->gpios);
517 }
518 
519 static void imx_uart_dma_tx(struct imx_port *sport);
520 
521 /* called with port.lock taken and irqs off */
522 static inline void imx_uart_transmit_buffer(struct imx_port *sport)
523 {
524 	struct circ_buf *xmit = &sport->port.state->xmit;
525 
526 	if (sport->port.x_char) {
527 		/* Send next char */
528 		imx_uart_writel(sport, sport->port.x_char, URTX0);
529 		sport->port.icount.tx++;
530 		sport->port.x_char = 0;
531 		return;
532 	}
533 
534 	if (uart_circ_empty(xmit) || uart_tx_stopped(&sport->port)) {
535 		imx_uart_stop_tx(&sport->port);
536 		return;
537 	}
538 
539 	if (sport->dma_is_enabled) {
540 		u32 ucr1;
541 		/*
542 		 * We've just sent a X-char Ensure the TX DMA is enabled
543 		 * and the TX IRQ is disabled.
544 		 **/
545 		ucr1 = imx_uart_readl(sport, UCR1);
546 		ucr1 &= ~UCR1_TRDYEN;
547 		if (sport->dma_is_txing) {
548 			ucr1 |= UCR1_TXDMAEN;
549 			imx_uart_writel(sport, ucr1, UCR1);
550 		} else {
551 			imx_uart_writel(sport, ucr1, UCR1);
552 			imx_uart_dma_tx(sport);
553 		}
554 
555 		return;
556 	}
557 
558 	while (!uart_circ_empty(xmit) &&
559 	       !(imx_uart_readl(sport, imx_uart_uts_reg(sport)) & UTS_TXFULL)) {
560 		/* send xmit->buf[xmit->tail]
561 		 * out the port here */
562 		imx_uart_writel(sport, xmit->buf[xmit->tail], URTX0);
563 		xmit->tail = (xmit->tail + 1) & (UART_XMIT_SIZE - 1);
564 		sport->port.icount.tx++;
565 	}
566 
567 	if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
568 		uart_write_wakeup(&sport->port);
569 
570 	if (uart_circ_empty(xmit))
571 		imx_uart_stop_tx(&sport->port);
572 }
573 
574 static void imx_uart_dma_tx_callback(void *data)
575 {
576 	struct imx_port *sport = data;
577 	struct scatterlist *sgl = &sport->tx_sgl[0];
578 	struct circ_buf *xmit = &sport->port.state->xmit;
579 	unsigned long flags;
580 	u32 ucr1;
581 
582 	spin_lock_irqsave(&sport->port.lock, flags);
583 
584 	dma_unmap_sg(sport->port.dev, sgl, sport->dma_tx_nents, DMA_TO_DEVICE);
585 
586 	ucr1 = imx_uart_readl(sport, UCR1);
587 	ucr1 &= ~UCR1_TXDMAEN;
588 	imx_uart_writel(sport, ucr1, UCR1);
589 
590 	/* update the stat */
591 	xmit->tail = (xmit->tail + sport->tx_bytes) & (UART_XMIT_SIZE - 1);
592 	sport->port.icount.tx += sport->tx_bytes;
593 
594 	dev_dbg(sport->port.dev, "we finish the TX DMA.\n");
595 
596 	sport->dma_is_txing = 0;
597 
598 	if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
599 		uart_write_wakeup(&sport->port);
600 
601 	if (!uart_circ_empty(xmit) && !uart_tx_stopped(&sport->port))
602 		imx_uart_dma_tx(sport);
603 	else if (sport->port.rs485.flags & SER_RS485_ENABLED) {
604 		u32 ucr4 = imx_uart_readl(sport, UCR4);
605 		ucr4 |= UCR4_TCEN;
606 		imx_uart_writel(sport, ucr4, UCR4);
607 	}
608 
609 	spin_unlock_irqrestore(&sport->port.lock, flags);
610 }
611 
612 /* called with port.lock taken and irqs off */
613 static void imx_uart_dma_tx(struct imx_port *sport)
614 {
615 	struct circ_buf *xmit = &sport->port.state->xmit;
616 	struct scatterlist *sgl = sport->tx_sgl;
617 	struct dma_async_tx_descriptor *desc;
618 	struct dma_chan	*chan = sport->dma_chan_tx;
619 	struct device *dev = sport->port.dev;
620 	u32 ucr1, ucr4;
621 	int ret;
622 
623 	if (sport->dma_is_txing)
624 		return;
625 
626 	ucr4 = imx_uart_readl(sport, UCR4);
627 	ucr4 &= ~UCR4_TCEN;
628 	imx_uart_writel(sport, ucr4, UCR4);
629 
630 	sport->tx_bytes = uart_circ_chars_pending(xmit);
631 
632 	if (xmit->tail < xmit->head || xmit->head == 0) {
633 		sport->dma_tx_nents = 1;
634 		sg_init_one(sgl, xmit->buf + xmit->tail, sport->tx_bytes);
635 	} else {
636 		sport->dma_tx_nents = 2;
637 		sg_init_table(sgl, 2);
638 		sg_set_buf(sgl, xmit->buf + xmit->tail,
639 				UART_XMIT_SIZE - xmit->tail);
640 		sg_set_buf(sgl + 1, xmit->buf, xmit->head);
641 	}
642 
643 	ret = dma_map_sg(dev, sgl, sport->dma_tx_nents, DMA_TO_DEVICE);
644 	if (ret == 0) {
645 		dev_err(dev, "DMA mapping error for TX.\n");
646 		return;
647 	}
648 	desc = dmaengine_prep_slave_sg(chan, sgl, ret,
649 					DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT);
650 	if (!desc) {
651 		dma_unmap_sg(dev, sgl, sport->dma_tx_nents,
652 			     DMA_TO_DEVICE);
653 		dev_err(dev, "We cannot prepare for the TX slave dma!\n");
654 		return;
655 	}
656 	desc->callback = imx_uart_dma_tx_callback;
657 	desc->callback_param = sport;
658 
659 	dev_dbg(dev, "TX: prepare to send %lu bytes by DMA.\n",
660 			uart_circ_chars_pending(xmit));
661 
662 	ucr1 = imx_uart_readl(sport, UCR1);
663 	ucr1 |= UCR1_TXDMAEN;
664 	imx_uart_writel(sport, ucr1, UCR1);
665 
666 	/* fire it */
667 	sport->dma_is_txing = 1;
668 	dmaengine_submit(desc);
669 	dma_async_issue_pending(chan);
670 	return;
671 }
672 
673 /* called with port.lock taken and irqs off */
674 static void imx_uart_start_tx(struct uart_port *port)
675 {
676 	struct imx_port *sport = (struct imx_port *)port;
677 	u32 ucr1;
678 
679 	if (!sport->port.x_char && uart_circ_empty(&port->state->xmit))
680 		return;
681 
682 	/*
683 	 * We cannot simply do nothing here if sport->tx_state == SEND already
684 	 * because UCR1_TXMPTYEN might already have been cleared in
685 	 * imx_uart_stop_tx(), but tx_state is still SEND.
686 	 */
687 
688 	if (port->rs485.flags & SER_RS485_ENABLED) {
689 		if (sport->tx_state == OFF) {
690 			u32 ucr2 = imx_uart_readl(sport, UCR2);
691 			if (port->rs485.flags & SER_RS485_RTS_ON_SEND)
692 				imx_uart_rts_active(sport, &ucr2);
693 			else
694 				imx_uart_rts_inactive(sport, &ucr2);
695 			imx_uart_writel(sport, ucr2, UCR2);
696 
697 			if (!(port->rs485.flags & SER_RS485_RX_DURING_TX))
698 				imx_uart_stop_rx(port);
699 
700 			sport->tx_state = WAIT_AFTER_RTS;
701 			start_hrtimer_ms(&sport->trigger_start_tx,
702 					 port->rs485.delay_rts_before_send);
703 			return;
704 		}
705 
706 		if (sport->tx_state == WAIT_AFTER_SEND
707 		    || sport->tx_state == WAIT_AFTER_RTS) {
708 
709 			hrtimer_try_to_cancel(&sport->trigger_stop_tx);
710 
711 			/*
712 			 * Enable transmitter and shifter empty irq only if DMA
713 			 * is off.  In the DMA case this is done in the
714 			 * tx-callback.
715 			 */
716 			if (!sport->dma_is_enabled) {
717 				u32 ucr4 = imx_uart_readl(sport, UCR4);
718 				ucr4 |= UCR4_TCEN;
719 				imx_uart_writel(sport, ucr4, UCR4);
720 			}
721 
722 			sport->tx_state = SEND;
723 		}
724 	} else {
725 		sport->tx_state = SEND;
726 	}
727 
728 	if (!sport->dma_is_enabled) {
729 		ucr1 = imx_uart_readl(sport, UCR1);
730 		imx_uart_writel(sport, ucr1 | UCR1_TRDYEN, UCR1);
731 	}
732 
733 	if (sport->dma_is_enabled) {
734 		if (sport->port.x_char) {
735 			/* We have X-char to send, so enable TX IRQ and
736 			 * disable TX DMA to let TX interrupt to send X-char */
737 			ucr1 = imx_uart_readl(sport, UCR1);
738 			ucr1 &= ~UCR1_TXDMAEN;
739 			ucr1 |= UCR1_TRDYEN;
740 			imx_uart_writel(sport, ucr1, UCR1);
741 			return;
742 		}
743 
744 		if (!uart_circ_empty(&port->state->xmit) &&
745 		    !uart_tx_stopped(port))
746 			imx_uart_dma_tx(sport);
747 		return;
748 	}
749 }
750 
751 static irqreturn_t __imx_uart_rtsint(int irq, void *dev_id)
752 {
753 	struct imx_port *sport = dev_id;
754 	u32 usr1;
755 
756 	imx_uart_writel(sport, USR1_RTSD, USR1);
757 	usr1 = imx_uart_readl(sport, USR1) & USR1_RTSS;
758 	uart_handle_cts_change(&sport->port, !!usr1);
759 	wake_up_interruptible(&sport->port.state->port.delta_msr_wait);
760 
761 	return IRQ_HANDLED;
762 }
763 
764 static irqreturn_t imx_uart_rtsint(int irq, void *dev_id)
765 {
766 	struct imx_port *sport = dev_id;
767 	irqreturn_t ret;
768 
769 	spin_lock(&sport->port.lock);
770 
771 	ret = __imx_uart_rtsint(irq, dev_id);
772 
773 	spin_unlock(&sport->port.lock);
774 
775 	return ret;
776 }
777 
778 static irqreturn_t imx_uart_txint(int irq, void *dev_id)
779 {
780 	struct imx_port *sport = dev_id;
781 
782 	spin_lock(&sport->port.lock);
783 	imx_uart_transmit_buffer(sport);
784 	spin_unlock(&sport->port.lock);
785 	return IRQ_HANDLED;
786 }
787 
788 static irqreturn_t __imx_uart_rxint(int irq, void *dev_id)
789 {
790 	struct imx_port *sport = dev_id;
791 	unsigned int rx, flg, ignored = 0;
792 	struct tty_port *port = &sport->port.state->port;
793 
794 	while (imx_uart_readl(sport, USR2) & USR2_RDR) {
795 		u32 usr2;
796 
797 		flg = TTY_NORMAL;
798 		sport->port.icount.rx++;
799 
800 		rx = imx_uart_readl(sport, URXD0);
801 
802 		usr2 = imx_uart_readl(sport, USR2);
803 		if (usr2 & USR2_BRCD) {
804 			imx_uart_writel(sport, USR2_BRCD, USR2);
805 			if (uart_handle_break(&sport->port))
806 				continue;
807 		}
808 
809 		if (uart_handle_sysrq_char(&sport->port, (unsigned char)rx))
810 			continue;
811 
812 		if (unlikely(rx & URXD_ERR)) {
813 			if (rx & URXD_BRK)
814 				sport->port.icount.brk++;
815 			else if (rx & URXD_PRERR)
816 				sport->port.icount.parity++;
817 			else if (rx & URXD_FRMERR)
818 				sport->port.icount.frame++;
819 			if (rx & URXD_OVRRUN)
820 				sport->port.icount.overrun++;
821 
822 			if (rx & sport->port.ignore_status_mask) {
823 				if (++ignored > 100)
824 					goto out;
825 				continue;
826 			}
827 
828 			rx &= (sport->port.read_status_mask | 0xFF);
829 
830 			if (rx & URXD_BRK)
831 				flg = TTY_BREAK;
832 			else if (rx & URXD_PRERR)
833 				flg = TTY_PARITY;
834 			else if (rx & URXD_FRMERR)
835 				flg = TTY_FRAME;
836 			if (rx & URXD_OVRRUN)
837 				flg = TTY_OVERRUN;
838 
839 			sport->port.sysrq = 0;
840 		}
841 
842 		if (sport->port.ignore_status_mask & URXD_DUMMY_READ)
843 			goto out;
844 
845 		if (tty_insert_flip_char(port, rx, flg) == 0)
846 			sport->port.icount.buf_overrun++;
847 	}
848 
849 out:
850 	tty_flip_buffer_push(port);
851 
852 	return IRQ_HANDLED;
853 }
854 
855 static irqreturn_t imx_uart_rxint(int irq, void *dev_id)
856 {
857 	struct imx_port *sport = dev_id;
858 	irqreturn_t ret;
859 
860 	spin_lock(&sport->port.lock);
861 
862 	ret = __imx_uart_rxint(irq, dev_id);
863 
864 	spin_unlock(&sport->port.lock);
865 
866 	return ret;
867 }
868 
869 static void imx_uart_clear_rx_errors(struct imx_port *sport);
870 
871 /*
872  * We have a modem side uart, so the meanings of RTS and CTS are inverted.
873  */
874 static unsigned int imx_uart_get_hwmctrl(struct imx_port *sport)
875 {
876 	unsigned int tmp = TIOCM_DSR;
877 	unsigned usr1 = imx_uart_readl(sport, USR1);
878 	unsigned usr2 = imx_uart_readl(sport, USR2);
879 
880 	if (usr1 & USR1_RTSS)
881 		tmp |= TIOCM_CTS;
882 
883 	/* in DCE mode DCDIN is always 0 */
884 	if (!(usr2 & USR2_DCDIN))
885 		tmp |= TIOCM_CAR;
886 
887 	if (sport->dte_mode)
888 		if (!(imx_uart_readl(sport, USR2) & USR2_RIIN))
889 			tmp |= TIOCM_RI;
890 
891 	return tmp;
892 }
893 
894 /*
895  * Handle any change of modem status signal since we were last called.
896  */
897 static void imx_uart_mctrl_check(struct imx_port *sport)
898 {
899 	unsigned int status, changed;
900 
901 	status = imx_uart_get_hwmctrl(sport);
902 	changed = status ^ sport->old_status;
903 
904 	if (changed == 0)
905 		return;
906 
907 	sport->old_status = status;
908 
909 	if (changed & TIOCM_RI && status & TIOCM_RI)
910 		sport->port.icount.rng++;
911 	if (changed & TIOCM_DSR)
912 		sport->port.icount.dsr++;
913 	if (changed & TIOCM_CAR)
914 		uart_handle_dcd_change(&sport->port, status & TIOCM_CAR);
915 	if (changed & TIOCM_CTS)
916 		uart_handle_cts_change(&sport->port, status & TIOCM_CTS);
917 
918 	wake_up_interruptible(&sport->port.state->port.delta_msr_wait);
919 }
920 
921 static irqreturn_t imx_uart_int(int irq, void *dev_id)
922 {
923 	struct imx_port *sport = dev_id;
924 	unsigned int usr1, usr2, ucr1, ucr2, ucr3, ucr4;
925 	irqreturn_t ret = IRQ_NONE;
926 
927 	spin_lock(&sport->port.lock);
928 
929 	usr1 = imx_uart_readl(sport, USR1);
930 	usr2 = imx_uart_readl(sport, USR2);
931 	ucr1 = imx_uart_readl(sport, UCR1);
932 	ucr2 = imx_uart_readl(sport, UCR2);
933 	ucr3 = imx_uart_readl(sport, UCR3);
934 	ucr4 = imx_uart_readl(sport, UCR4);
935 
936 	/*
937 	 * Even if a condition is true that can trigger an irq only handle it if
938 	 * the respective irq source is enabled. This prevents some undesired
939 	 * actions, for example if a character that sits in the RX FIFO and that
940 	 * should be fetched via DMA is tried to be fetched using PIO. Or the
941 	 * receiver is currently off and so reading from URXD0 results in an
942 	 * exception. So just mask the (raw) status bits for disabled irqs.
943 	 */
944 	if ((ucr1 & UCR1_RRDYEN) == 0)
945 		usr1 &= ~USR1_RRDY;
946 	if ((ucr2 & UCR2_ATEN) == 0)
947 		usr1 &= ~USR1_AGTIM;
948 	if ((ucr1 & UCR1_TRDYEN) == 0)
949 		usr1 &= ~USR1_TRDY;
950 	if ((ucr4 & UCR4_TCEN) == 0)
951 		usr2 &= ~USR2_TXDC;
952 	if ((ucr3 & UCR3_DTRDEN) == 0)
953 		usr1 &= ~USR1_DTRD;
954 	if ((ucr1 & UCR1_RTSDEN) == 0)
955 		usr1 &= ~USR1_RTSD;
956 	if ((ucr3 & UCR3_AWAKEN) == 0)
957 		usr1 &= ~USR1_AWAKE;
958 	if ((ucr4 & UCR4_OREN) == 0)
959 		usr2 &= ~USR2_ORE;
960 
961 	if (usr1 & (USR1_RRDY | USR1_AGTIM)) {
962 		imx_uart_writel(sport, USR1_AGTIM, USR1);
963 
964 		__imx_uart_rxint(irq, dev_id);
965 		ret = IRQ_HANDLED;
966 	}
967 
968 	if ((usr1 & USR1_TRDY) || (usr2 & USR2_TXDC)) {
969 		imx_uart_transmit_buffer(sport);
970 		ret = IRQ_HANDLED;
971 	}
972 
973 	if (usr1 & USR1_DTRD) {
974 		imx_uart_writel(sport, USR1_DTRD, USR1);
975 
976 		imx_uart_mctrl_check(sport);
977 
978 		ret = IRQ_HANDLED;
979 	}
980 
981 	if (usr1 & USR1_RTSD) {
982 		__imx_uart_rtsint(irq, dev_id);
983 		ret = IRQ_HANDLED;
984 	}
985 
986 	if (usr1 & USR1_AWAKE) {
987 		imx_uart_writel(sport, USR1_AWAKE, USR1);
988 		ret = IRQ_HANDLED;
989 	}
990 
991 	if (usr2 & USR2_ORE) {
992 		sport->port.icount.overrun++;
993 		imx_uart_writel(sport, USR2_ORE, USR2);
994 		ret = IRQ_HANDLED;
995 	}
996 
997 	spin_unlock(&sport->port.lock);
998 
999 	return ret;
1000 }
1001 
1002 /*
1003  * Return TIOCSER_TEMT when transmitter is not busy.
1004  */
1005 static unsigned int imx_uart_tx_empty(struct uart_port *port)
1006 {
1007 	struct imx_port *sport = (struct imx_port *)port;
1008 	unsigned int ret;
1009 
1010 	ret = (imx_uart_readl(sport, USR2) & USR2_TXDC) ?  TIOCSER_TEMT : 0;
1011 
1012 	/* If the TX DMA is working, return 0. */
1013 	if (sport->dma_is_txing)
1014 		ret = 0;
1015 
1016 	return ret;
1017 }
1018 
1019 /* called with port.lock taken and irqs off */
1020 static unsigned int imx_uart_get_mctrl(struct uart_port *port)
1021 {
1022 	struct imx_port *sport = (struct imx_port *)port;
1023 	unsigned int ret = imx_uart_get_hwmctrl(sport);
1024 
1025 	mctrl_gpio_get(sport->gpios, &ret);
1026 
1027 	return ret;
1028 }
1029 
1030 /* called with port.lock taken and irqs off */
1031 static void imx_uart_set_mctrl(struct uart_port *port, unsigned int mctrl)
1032 {
1033 	struct imx_port *sport = (struct imx_port *)port;
1034 	u32 ucr3, uts;
1035 
1036 	if (!(port->rs485.flags & SER_RS485_ENABLED)) {
1037 		u32 ucr2;
1038 
1039 		/*
1040 		 * Turn off autoRTS if RTS is lowered and restore autoRTS
1041 		 * setting if RTS is raised.
1042 		 */
1043 		ucr2 = imx_uart_readl(sport, UCR2);
1044 		ucr2 &= ~(UCR2_CTS | UCR2_CTSC);
1045 		if (mctrl & TIOCM_RTS) {
1046 			ucr2 |= UCR2_CTS;
1047 			/*
1048 			 * UCR2_IRTS is unset if and only if the port is
1049 			 * configured for CRTSCTS, so we use inverted UCR2_IRTS
1050 			 * to get the state to restore to.
1051 			 */
1052 			if (!(ucr2 & UCR2_IRTS))
1053 				ucr2 |= UCR2_CTSC;
1054 		}
1055 		imx_uart_writel(sport, ucr2, UCR2);
1056 	}
1057 
1058 	ucr3 = imx_uart_readl(sport, UCR3) & ~UCR3_DSR;
1059 	if (!(mctrl & TIOCM_DTR))
1060 		ucr3 |= UCR3_DSR;
1061 	imx_uart_writel(sport, ucr3, UCR3);
1062 
1063 	uts = imx_uart_readl(sport, imx_uart_uts_reg(sport)) & ~UTS_LOOP;
1064 	if (mctrl & TIOCM_LOOP)
1065 		uts |= UTS_LOOP;
1066 	imx_uart_writel(sport, uts, imx_uart_uts_reg(sport));
1067 
1068 	mctrl_gpio_set(sport->gpios, mctrl);
1069 }
1070 
1071 /*
1072  * Interrupts always disabled.
1073  */
1074 static void imx_uart_break_ctl(struct uart_port *port, int break_state)
1075 {
1076 	struct imx_port *sport = (struct imx_port *)port;
1077 	unsigned long flags;
1078 	u32 ucr1;
1079 
1080 	spin_lock_irqsave(&sport->port.lock, flags);
1081 
1082 	ucr1 = imx_uart_readl(sport, UCR1) & ~UCR1_SNDBRK;
1083 
1084 	if (break_state != 0)
1085 		ucr1 |= UCR1_SNDBRK;
1086 
1087 	imx_uart_writel(sport, ucr1, UCR1);
1088 
1089 	spin_unlock_irqrestore(&sport->port.lock, flags);
1090 }
1091 
1092 /*
1093  * This is our per-port timeout handler, for checking the
1094  * modem status signals.
1095  */
1096 static void imx_uart_timeout(struct timer_list *t)
1097 {
1098 	struct imx_port *sport = from_timer(sport, t, timer);
1099 	unsigned long flags;
1100 
1101 	if (sport->port.state) {
1102 		spin_lock_irqsave(&sport->port.lock, flags);
1103 		imx_uart_mctrl_check(sport);
1104 		spin_unlock_irqrestore(&sport->port.lock, flags);
1105 
1106 		mod_timer(&sport->timer, jiffies + MCTRL_TIMEOUT);
1107 	}
1108 }
1109 
1110 /*
1111  * There are two kinds of RX DMA interrupts(such as in the MX6Q):
1112  *   [1] the RX DMA buffer is full.
1113  *   [2] the aging timer expires
1114  *
1115  * Condition [2] is triggered when a character has been sitting in the FIFO
1116  * for at least 8 byte durations.
1117  */
1118 static void imx_uart_dma_rx_callback(void *data)
1119 {
1120 	struct imx_port *sport = data;
1121 	struct dma_chan	*chan = sport->dma_chan_rx;
1122 	struct scatterlist *sgl = &sport->rx_sgl;
1123 	struct tty_port *port = &sport->port.state->port;
1124 	struct dma_tx_state state;
1125 	struct circ_buf *rx_ring = &sport->rx_ring;
1126 	enum dma_status status;
1127 	unsigned int w_bytes = 0;
1128 	unsigned int r_bytes;
1129 	unsigned int bd_size;
1130 
1131 	status = dmaengine_tx_status(chan, sport->rx_cookie, &state);
1132 
1133 	if (status == DMA_ERROR) {
1134 		imx_uart_clear_rx_errors(sport);
1135 		return;
1136 	}
1137 
1138 	if (!(sport->port.ignore_status_mask & URXD_DUMMY_READ)) {
1139 
1140 		/*
1141 		 * The state-residue variable represents the empty space
1142 		 * relative to the entire buffer. Taking this in consideration
1143 		 * the head is always calculated base on the buffer total
1144 		 * length - DMA transaction residue. The UART script from the
1145 		 * SDMA firmware will jump to the next buffer descriptor,
1146 		 * once a DMA transaction if finalized (IMX53 RM - A.4.1.2.4).
1147 		 * Taking this in consideration the tail is always at the
1148 		 * beginning of the buffer descriptor that contains the head.
1149 		 */
1150 
1151 		/* Calculate the head */
1152 		rx_ring->head = sg_dma_len(sgl) - state.residue;
1153 
1154 		/* Calculate the tail. */
1155 		bd_size = sg_dma_len(sgl) / sport->rx_periods;
1156 		rx_ring->tail = ((rx_ring->head-1) / bd_size) * bd_size;
1157 
1158 		if (rx_ring->head <= sg_dma_len(sgl) &&
1159 		    rx_ring->head > rx_ring->tail) {
1160 
1161 			/* Move data from tail to head */
1162 			r_bytes = rx_ring->head - rx_ring->tail;
1163 
1164 			/* CPU claims ownership of RX DMA buffer */
1165 			dma_sync_sg_for_cpu(sport->port.dev, sgl, 1,
1166 				DMA_FROM_DEVICE);
1167 
1168 			w_bytes = tty_insert_flip_string(port,
1169 				sport->rx_buf + rx_ring->tail, r_bytes);
1170 
1171 			/* UART retrieves ownership of RX DMA buffer */
1172 			dma_sync_sg_for_device(sport->port.dev, sgl, 1,
1173 				DMA_FROM_DEVICE);
1174 
1175 			if (w_bytes != r_bytes)
1176 				sport->port.icount.buf_overrun++;
1177 
1178 			sport->port.icount.rx += w_bytes;
1179 		} else	{
1180 			WARN_ON(rx_ring->head > sg_dma_len(sgl));
1181 			WARN_ON(rx_ring->head <= rx_ring->tail);
1182 		}
1183 	}
1184 
1185 	if (w_bytes) {
1186 		tty_flip_buffer_push(port);
1187 		dev_dbg(sport->port.dev, "We get %d bytes.\n", w_bytes);
1188 	}
1189 }
1190 
1191 static int imx_uart_start_rx_dma(struct imx_port *sport)
1192 {
1193 	struct scatterlist *sgl = &sport->rx_sgl;
1194 	struct dma_chan	*chan = sport->dma_chan_rx;
1195 	struct device *dev = sport->port.dev;
1196 	struct dma_async_tx_descriptor *desc;
1197 	int ret;
1198 
1199 	sport->rx_ring.head = 0;
1200 	sport->rx_ring.tail = 0;
1201 
1202 	sg_init_one(sgl, sport->rx_buf, sport->rx_buf_size);
1203 	ret = dma_map_sg(dev, sgl, 1, DMA_FROM_DEVICE);
1204 	if (ret == 0) {
1205 		dev_err(dev, "DMA mapping error for RX.\n");
1206 		return -EINVAL;
1207 	}
1208 
1209 	desc = dmaengine_prep_dma_cyclic(chan, sg_dma_address(sgl),
1210 		sg_dma_len(sgl), sg_dma_len(sgl) / sport->rx_periods,
1211 		DMA_DEV_TO_MEM, DMA_PREP_INTERRUPT);
1212 
1213 	if (!desc) {
1214 		dma_unmap_sg(dev, sgl, 1, DMA_FROM_DEVICE);
1215 		dev_err(dev, "We cannot prepare for the RX slave dma!\n");
1216 		return -EINVAL;
1217 	}
1218 	desc->callback = imx_uart_dma_rx_callback;
1219 	desc->callback_param = sport;
1220 
1221 	dev_dbg(dev, "RX: prepare for the DMA.\n");
1222 	sport->dma_is_rxing = 1;
1223 	sport->rx_cookie = dmaengine_submit(desc);
1224 	dma_async_issue_pending(chan);
1225 	return 0;
1226 }
1227 
1228 static void imx_uart_clear_rx_errors(struct imx_port *sport)
1229 {
1230 	struct tty_port *port = &sport->port.state->port;
1231 	u32 usr1, usr2;
1232 
1233 	usr1 = imx_uart_readl(sport, USR1);
1234 	usr2 = imx_uart_readl(sport, USR2);
1235 
1236 	if (usr2 & USR2_BRCD) {
1237 		sport->port.icount.brk++;
1238 		imx_uart_writel(sport, USR2_BRCD, USR2);
1239 		uart_handle_break(&sport->port);
1240 		if (tty_insert_flip_char(port, 0, TTY_BREAK) == 0)
1241 			sport->port.icount.buf_overrun++;
1242 		tty_flip_buffer_push(port);
1243 	} else {
1244 		if (usr1 & USR1_FRAMERR) {
1245 			sport->port.icount.frame++;
1246 			imx_uart_writel(sport, USR1_FRAMERR, USR1);
1247 		} else if (usr1 & USR1_PARITYERR) {
1248 			sport->port.icount.parity++;
1249 			imx_uart_writel(sport, USR1_PARITYERR, USR1);
1250 		}
1251 	}
1252 
1253 	if (usr2 & USR2_ORE) {
1254 		sport->port.icount.overrun++;
1255 		imx_uart_writel(sport, USR2_ORE, USR2);
1256 	}
1257 
1258 }
1259 
1260 #define TXTL_DEFAULT 2 /* reset default */
1261 #define RXTL_DEFAULT 1 /* reset default */
1262 #define TXTL_DMA 8 /* DMA burst setting */
1263 #define RXTL_DMA 9 /* DMA burst setting */
1264 
1265 static void imx_uart_setup_ufcr(struct imx_port *sport,
1266 				unsigned char txwl, unsigned char rxwl)
1267 {
1268 	unsigned int val;
1269 
1270 	/* set receiver / transmitter trigger level */
1271 	val = imx_uart_readl(sport, UFCR) & (UFCR_RFDIV | UFCR_DCEDTE);
1272 	val |= txwl << UFCR_TXTL_SHF | rxwl;
1273 	imx_uart_writel(sport, val, UFCR);
1274 }
1275 
1276 static void imx_uart_dma_exit(struct imx_port *sport)
1277 {
1278 	if (sport->dma_chan_rx) {
1279 		dmaengine_terminate_sync(sport->dma_chan_rx);
1280 		dma_release_channel(sport->dma_chan_rx);
1281 		sport->dma_chan_rx = NULL;
1282 		sport->rx_cookie = -EINVAL;
1283 		kfree(sport->rx_buf);
1284 		sport->rx_buf = NULL;
1285 	}
1286 
1287 	if (sport->dma_chan_tx) {
1288 		dmaengine_terminate_sync(sport->dma_chan_tx);
1289 		dma_release_channel(sport->dma_chan_tx);
1290 		sport->dma_chan_tx = NULL;
1291 	}
1292 }
1293 
1294 static int imx_uart_dma_init(struct imx_port *sport)
1295 {
1296 	struct dma_slave_config slave_config = {};
1297 	struct device *dev = sport->port.dev;
1298 	int ret;
1299 
1300 	/* Prepare for RX : */
1301 	sport->dma_chan_rx = dma_request_slave_channel(dev, "rx");
1302 	if (!sport->dma_chan_rx) {
1303 		dev_dbg(dev, "cannot get the DMA channel.\n");
1304 		ret = -EINVAL;
1305 		goto err;
1306 	}
1307 
1308 	slave_config.direction = DMA_DEV_TO_MEM;
1309 	slave_config.src_addr = sport->port.mapbase + URXD0;
1310 	slave_config.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
1311 	/* one byte less than the watermark level to enable the aging timer */
1312 	slave_config.src_maxburst = RXTL_DMA - 1;
1313 	ret = dmaengine_slave_config(sport->dma_chan_rx, &slave_config);
1314 	if (ret) {
1315 		dev_err(dev, "error in RX dma configuration.\n");
1316 		goto err;
1317 	}
1318 
1319 	sport->rx_buf_size = sport->rx_period_length * sport->rx_periods;
1320 	sport->rx_buf = kzalloc(sport->rx_buf_size, GFP_KERNEL);
1321 	if (!sport->rx_buf) {
1322 		ret = -ENOMEM;
1323 		goto err;
1324 	}
1325 	sport->rx_ring.buf = sport->rx_buf;
1326 
1327 	/* Prepare for TX : */
1328 	sport->dma_chan_tx = dma_request_slave_channel(dev, "tx");
1329 	if (!sport->dma_chan_tx) {
1330 		dev_err(dev, "cannot get the TX DMA channel!\n");
1331 		ret = -EINVAL;
1332 		goto err;
1333 	}
1334 
1335 	slave_config.direction = DMA_MEM_TO_DEV;
1336 	slave_config.dst_addr = sport->port.mapbase + URTX0;
1337 	slave_config.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
1338 	slave_config.dst_maxburst = TXTL_DMA;
1339 	ret = dmaengine_slave_config(sport->dma_chan_tx, &slave_config);
1340 	if (ret) {
1341 		dev_err(dev, "error in TX dma configuration.");
1342 		goto err;
1343 	}
1344 
1345 	return 0;
1346 err:
1347 	imx_uart_dma_exit(sport);
1348 	return ret;
1349 }
1350 
1351 static void imx_uart_enable_dma(struct imx_port *sport)
1352 {
1353 	u32 ucr1;
1354 
1355 	imx_uart_setup_ufcr(sport, TXTL_DMA, RXTL_DMA);
1356 
1357 	/* set UCR1 */
1358 	ucr1 = imx_uart_readl(sport, UCR1);
1359 	ucr1 |= UCR1_RXDMAEN | UCR1_TXDMAEN | UCR1_ATDMAEN;
1360 	imx_uart_writel(sport, ucr1, UCR1);
1361 
1362 	sport->dma_is_enabled = 1;
1363 }
1364 
1365 static void imx_uart_disable_dma(struct imx_port *sport)
1366 {
1367 	u32 ucr1;
1368 
1369 	/* clear UCR1 */
1370 	ucr1 = imx_uart_readl(sport, UCR1);
1371 	ucr1 &= ~(UCR1_RXDMAEN | UCR1_TXDMAEN | UCR1_ATDMAEN);
1372 	imx_uart_writel(sport, ucr1, UCR1);
1373 
1374 	imx_uart_setup_ufcr(sport, TXTL_DEFAULT, RXTL_DEFAULT);
1375 
1376 	sport->dma_is_enabled = 0;
1377 }
1378 
1379 /* half the RX buffer size */
1380 #define CTSTL 16
1381 
1382 static int imx_uart_startup(struct uart_port *port)
1383 {
1384 	struct imx_port *sport = (struct imx_port *)port;
1385 	int retval, i;
1386 	unsigned long flags;
1387 	int dma_is_inited = 0;
1388 	u32 ucr1, ucr2, ucr3, ucr4;
1389 
1390 	retval = clk_prepare_enable(sport->clk_per);
1391 	if (retval)
1392 		return retval;
1393 	retval = clk_prepare_enable(sport->clk_ipg);
1394 	if (retval) {
1395 		clk_disable_unprepare(sport->clk_per);
1396 		return retval;
1397 	}
1398 
1399 	imx_uart_setup_ufcr(sport, TXTL_DEFAULT, RXTL_DEFAULT);
1400 
1401 	/* disable the DREN bit (Data Ready interrupt enable) before
1402 	 * requesting IRQs
1403 	 */
1404 	ucr4 = imx_uart_readl(sport, UCR4);
1405 
1406 	/* set the trigger level for CTS */
1407 	ucr4 &= ~(UCR4_CTSTL_MASK << UCR4_CTSTL_SHF);
1408 	ucr4 |= CTSTL << UCR4_CTSTL_SHF;
1409 
1410 	imx_uart_writel(sport, ucr4 & ~UCR4_DREN, UCR4);
1411 
1412 	/* Can we enable the DMA support? */
1413 	if (!uart_console(port) && imx_uart_dma_init(sport) == 0)
1414 		dma_is_inited = 1;
1415 
1416 	spin_lock_irqsave(&sport->port.lock, flags);
1417 	/* Reset fifo's and state machines */
1418 	i = 100;
1419 
1420 	ucr2 = imx_uart_readl(sport, UCR2);
1421 	ucr2 &= ~UCR2_SRST;
1422 	imx_uart_writel(sport, ucr2, UCR2);
1423 
1424 	while (!(imx_uart_readl(sport, UCR2) & UCR2_SRST) && (--i > 0))
1425 		udelay(1);
1426 
1427 	/*
1428 	 * Finally, clear and enable interrupts
1429 	 */
1430 	imx_uart_writel(sport, USR1_RTSD | USR1_DTRD, USR1);
1431 	imx_uart_writel(sport, USR2_ORE, USR2);
1432 
1433 	ucr1 = imx_uart_readl(sport, UCR1) & ~UCR1_RRDYEN;
1434 	ucr1 |= UCR1_UARTEN;
1435 	if (sport->have_rtscts)
1436 		ucr1 |= UCR1_RTSDEN;
1437 
1438 	imx_uart_writel(sport, ucr1, UCR1);
1439 
1440 	ucr4 = imx_uart_readl(sport, UCR4) & ~(UCR4_OREN | UCR4_INVR);
1441 	if (!sport->dma_is_enabled)
1442 		ucr4 |= UCR4_OREN;
1443 	if (sport->inverted_rx)
1444 		ucr4 |= UCR4_INVR;
1445 	imx_uart_writel(sport, ucr4, UCR4);
1446 
1447 	ucr3 = imx_uart_readl(sport, UCR3) & ~UCR3_INVT;
1448 	/*
1449 	 * configure tx polarity before enabling tx
1450 	 */
1451 	if (sport->inverted_tx)
1452 		ucr3 |= UCR3_INVT;
1453 
1454 	if (!imx_uart_is_imx1(sport)) {
1455 		ucr3 |= UCR3_DTRDEN | UCR3_RI | UCR3_DCD;
1456 
1457 		if (sport->dte_mode)
1458 			/* disable broken interrupts */
1459 			ucr3 &= ~(UCR3_RI | UCR3_DCD);
1460 	}
1461 	imx_uart_writel(sport, ucr3, UCR3);
1462 
1463 	ucr2 = imx_uart_readl(sport, UCR2) & ~UCR2_ATEN;
1464 	ucr2 |= (UCR2_RXEN | UCR2_TXEN);
1465 	if (!sport->have_rtscts)
1466 		ucr2 |= UCR2_IRTS;
1467 	/*
1468 	 * make sure the edge sensitive RTS-irq is disabled,
1469 	 * we're using RTSD instead.
1470 	 */
1471 	if (!imx_uart_is_imx1(sport))
1472 		ucr2 &= ~UCR2_RTSEN;
1473 	imx_uart_writel(sport, ucr2, UCR2);
1474 
1475 	/*
1476 	 * Enable modem status interrupts
1477 	 */
1478 	imx_uart_enable_ms(&sport->port);
1479 
1480 	if (dma_is_inited) {
1481 		imx_uart_enable_dma(sport);
1482 		imx_uart_start_rx_dma(sport);
1483 	} else {
1484 		ucr1 = imx_uart_readl(sport, UCR1);
1485 		ucr1 |= UCR1_RRDYEN;
1486 		imx_uart_writel(sport, ucr1, UCR1);
1487 
1488 		ucr2 = imx_uart_readl(sport, UCR2);
1489 		ucr2 |= UCR2_ATEN;
1490 		imx_uart_writel(sport, ucr2, UCR2);
1491 	}
1492 
1493 	spin_unlock_irqrestore(&sport->port.lock, flags);
1494 
1495 	return 0;
1496 }
1497 
1498 static void imx_uart_shutdown(struct uart_port *port)
1499 {
1500 	struct imx_port *sport = (struct imx_port *)port;
1501 	unsigned long flags;
1502 	u32 ucr1, ucr2, ucr4;
1503 
1504 	if (sport->dma_is_enabled) {
1505 		dmaengine_terminate_sync(sport->dma_chan_tx);
1506 		if (sport->dma_is_txing) {
1507 			dma_unmap_sg(sport->port.dev, &sport->tx_sgl[0],
1508 				     sport->dma_tx_nents, DMA_TO_DEVICE);
1509 			sport->dma_is_txing = 0;
1510 		}
1511 		dmaengine_terminate_sync(sport->dma_chan_rx);
1512 		if (sport->dma_is_rxing) {
1513 			dma_unmap_sg(sport->port.dev, &sport->rx_sgl,
1514 				     1, DMA_FROM_DEVICE);
1515 			sport->dma_is_rxing = 0;
1516 		}
1517 
1518 		spin_lock_irqsave(&sport->port.lock, flags);
1519 		imx_uart_stop_tx(port);
1520 		imx_uart_stop_rx(port);
1521 		imx_uart_disable_dma(sport);
1522 		spin_unlock_irqrestore(&sport->port.lock, flags);
1523 		imx_uart_dma_exit(sport);
1524 	}
1525 
1526 	mctrl_gpio_disable_ms(sport->gpios);
1527 
1528 	spin_lock_irqsave(&sport->port.lock, flags);
1529 	ucr2 = imx_uart_readl(sport, UCR2);
1530 	ucr2 &= ~(UCR2_TXEN | UCR2_ATEN);
1531 	imx_uart_writel(sport, ucr2, UCR2);
1532 	spin_unlock_irqrestore(&sport->port.lock, flags);
1533 
1534 	/*
1535 	 * Stop our timer.
1536 	 */
1537 	del_timer_sync(&sport->timer);
1538 
1539 	/*
1540 	 * Disable all interrupts, port and break condition.
1541 	 */
1542 
1543 	spin_lock_irqsave(&sport->port.lock, flags);
1544 
1545 	ucr1 = imx_uart_readl(sport, UCR1);
1546 	ucr1 &= ~(UCR1_TRDYEN | UCR1_RRDYEN | UCR1_RTSDEN | UCR1_UARTEN | UCR1_RXDMAEN | UCR1_ATDMAEN);
1547 	imx_uart_writel(sport, ucr1, UCR1);
1548 
1549 	ucr4 = imx_uart_readl(sport, UCR4);
1550 	ucr4 &= ~UCR4_TCEN;
1551 	imx_uart_writel(sport, ucr4, UCR4);
1552 
1553 	spin_unlock_irqrestore(&sport->port.lock, flags);
1554 
1555 	clk_disable_unprepare(sport->clk_per);
1556 	clk_disable_unprepare(sport->clk_ipg);
1557 }
1558 
1559 /* called with port.lock taken and irqs off */
1560 static void imx_uart_flush_buffer(struct uart_port *port)
1561 {
1562 	struct imx_port *sport = (struct imx_port *)port;
1563 	struct scatterlist *sgl = &sport->tx_sgl[0];
1564 	u32 ucr2;
1565 	int i = 100, ubir, ubmr, uts;
1566 
1567 	if (!sport->dma_chan_tx)
1568 		return;
1569 
1570 	sport->tx_bytes = 0;
1571 	dmaengine_terminate_all(sport->dma_chan_tx);
1572 	if (sport->dma_is_txing) {
1573 		u32 ucr1;
1574 
1575 		dma_unmap_sg(sport->port.dev, sgl, sport->dma_tx_nents,
1576 			     DMA_TO_DEVICE);
1577 		ucr1 = imx_uart_readl(sport, UCR1);
1578 		ucr1 &= ~UCR1_TXDMAEN;
1579 		imx_uart_writel(sport, ucr1, UCR1);
1580 		sport->dma_is_txing = 0;
1581 	}
1582 
1583 	/*
1584 	 * According to the Reference Manual description of the UART SRST bit:
1585 	 *
1586 	 * "Reset the transmit and receive state machines,
1587 	 * all FIFOs and register USR1, USR2, UBIR, UBMR, UBRC, URXD, UTXD
1588 	 * and UTS[6-3]".
1589 	 *
1590 	 * We don't need to restore the old values from USR1, USR2, URXD and
1591 	 * UTXD. UBRC is read only, so only save/restore the other three
1592 	 * registers.
1593 	 */
1594 	ubir = imx_uart_readl(sport, UBIR);
1595 	ubmr = imx_uart_readl(sport, UBMR);
1596 	uts = imx_uart_readl(sport, IMX21_UTS);
1597 
1598 	ucr2 = imx_uart_readl(sport, UCR2);
1599 	ucr2 &= ~UCR2_SRST;
1600 	imx_uart_writel(sport, ucr2, UCR2);
1601 
1602 	while (!(imx_uart_readl(sport, UCR2) & UCR2_SRST) && (--i > 0))
1603 		udelay(1);
1604 
1605 	/* Restore the registers */
1606 	imx_uart_writel(sport, ubir, UBIR);
1607 	imx_uart_writel(sport, ubmr, UBMR);
1608 	imx_uart_writel(sport, uts, IMX21_UTS);
1609 }
1610 
1611 static void
1612 imx_uart_set_termios(struct uart_port *port, struct ktermios *termios,
1613 		     struct ktermios *old)
1614 {
1615 	struct imx_port *sport = (struct imx_port *)port;
1616 	unsigned long flags;
1617 	u32 ucr2, old_ucr2, ufcr;
1618 	unsigned int baud, quot;
1619 	unsigned int old_csize = old ? old->c_cflag & CSIZE : CS8;
1620 	unsigned long div;
1621 	unsigned long num, denom, old_ubir, old_ubmr;
1622 	uint64_t tdiv64;
1623 
1624 	/*
1625 	 * We only support CS7 and CS8.
1626 	 */
1627 	while ((termios->c_cflag & CSIZE) != CS7 &&
1628 	       (termios->c_cflag & CSIZE) != CS8) {
1629 		termios->c_cflag &= ~CSIZE;
1630 		termios->c_cflag |= old_csize;
1631 		old_csize = CS8;
1632 	}
1633 
1634 	del_timer_sync(&sport->timer);
1635 
1636 	/*
1637 	 * Ask the core to calculate the divisor for us.
1638 	 */
1639 	baud = uart_get_baud_rate(port, termios, old, 50, port->uartclk / 16);
1640 	quot = uart_get_divisor(port, baud);
1641 
1642 	spin_lock_irqsave(&sport->port.lock, flags);
1643 
1644 	/*
1645 	 * Read current UCR2 and save it for future use, then clear all the bits
1646 	 * except those we will or may need to preserve.
1647 	 */
1648 	old_ucr2 = imx_uart_readl(sport, UCR2);
1649 	ucr2 = old_ucr2 & (UCR2_TXEN | UCR2_RXEN | UCR2_ATEN | UCR2_CTS);
1650 
1651 	ucr2 |= UCR2_SRST | UCR2_IRTS;
1652 	if ((termios->c_cflag & CSIZE) == CS8)
1653 		ucr2 |= UCR2_WS;
1654 
1655 	if (!sport->have_rtscts)
1656 		termios->c_cflag &= ~CRTSCTS;
1657 
1658 	if (port->rs485.flags & SER_RS485_ENABLED) {
1659 		/*
1660 		 * RTS is mandatory for rs485 operation, so keep
1661 		 * it under manual control and keep transmitter
1662 		 * disabled.
1663 		 */
1664 		if (port->rs485.flags & SER_RS485_RTS_AFTER_SEND)
1665 			imx_uart_rts_active(sport, &ucr2);
1666 		else
1667 			imx_uart_rts_inactive(sport, &ucr2);
1668 
1669 	} else if (termios->c_cflag & CRTSCTS) {
1670 		/*
1671 		 * Only let receiver control RTS output if we were not requested
1672 		 * to have RTS inactive (which then should take precedence).
1673 		 */
1674 		if (ucr2 & UCR2_CTS)
1675 			ucr2 |= UCR2_CTSC;
1676 	}
1677 
1678 	if (termios->c_cflag & CRTSCTS)
1679 		ucr2 &= ~UCR2_IRTS;
1680 	if (termios->c_cflag & CSTOPB)
1681 		ucr2 |= UCR2_STPB;
1682 	if (termios->c_cflag & PARENB) {
1683 		ucr2 |= UCR2_PREN;
1684 		if (termios->c_cflag & PARODD)
1685 			ucr2 |= UCR2_PROE;
1686 	}
1687 
1688 	sport->port.read_status_mask = 0;
1689 	if (termios->c_iflag & INPCK)
1690 		sport->port.read_status_mask |= (URXD_FRMERR | URXD_PRERR);
1691 	if (termios->c_iflag & (BRKINT | PARMRK))
1692 		sport->port.read_status_mask |= URXD_BRK;
1693 
1694 	/*
1695 	 * Characters to ignore
1696 	 */
1697 	sport->port.ignore_status_mask = 0;
1698 	if (termios->c_iflag & IGNPAR)
1699 		sport->port.ignore_status_mask |= URXD_PRERR | URXD_FRMERR;
1700 	if (termios->c_iflag & IGNBRK) {
1701 		sport->port.ignore_status_mask |= URXD_BRK;
1702 		/*
1703 		 * If we're ignoring parity and break indicators,
1704 		 * ignore overruns too (for real raw support).
1705 		 */
1706 		if (termios->c_iflag & IGNPAR)
1707 			sport->port.ignore_status_mask |= URXD_OVRRUN;
1708 	}
1709 
1710 	if ((termios->c_cflag & CREAD) == 0)
1711 		sport->port.ignore_status_mask |= URXD_DUMMY_READ;
1712 
1713 	/*
1714 	 * Update the per-port timeout.
1715 	 */
1716 	uart_update_timeout(port, termios->c_cflag, baud);
1717 
1718 	/* custom-baudrate handling */
1719 	div = sport->port.uartclk / (baud * 16);
1720 	if (baud == 38400 && quot != div)
1721 		baud = sport->port.uartclk / (quot * 16);
1722 
1723 	div = sport->port.uartclk / (baud * 16);
1724 	if (div > 7)
1725 		div = 7;
1726 	if (!div)
1727 		div = 1;
1728 
1729 	rational_best_approximation(16 * div * baud, sport->port.uartclk,
1730 		1 << 16, 1 << 16, &num, &denom);
1731 
1732 	tdiv64 = sport->port.uartclk;
1733 	tdiv64 *= num;
1734 	do_div(tdiv64, denom * 16 * div);
1735 	tty_termios_encode_baud_rate(termios,
1736 				(speed_t)tdiv64, (speed_t)tdiv64);
1737 
1738 	num -= 1;
1739 	denom -= 1;
1740 
1741 	ufcr = imx_uart_readl(sport, UFCR);
1742 	ufcr = (ufcr & (~UFCR_RFDIV)) | UFCR_RFDIV_REG(div);
1743 	imx_uart_writel(sport, ufcr, UFCR);
1744 
1745 	/*
1746 	 *  Two registers below should always be written both and in this
1747 	 *  particular order. One consequence is that we need to check if any of
1748 	 *  them changes and then update both. We do need the check for change
1749 	 *  as even writing the same values seem to "restart"
1750 	 *  transmission/receiving logic in the hardware, that leads to data
1751 	 *  breakage even when rate doesn't in fact change. E.g., user switches
1752 	 *  RTS/CTS handshake and suddenly gets broken bytes.
1753 	 */
1754 	old_ubir = imx_uart_readl(sport, UBIR);
1755 	old_ubmr = imx_uart_readl(sport, UBMR);
1756 	if (old_ubir != num || old_ubmr != denom) {
1757 		imx_uart_writel(sport, num, UBIR);
1758 		imx_uart_writel(sport, denom, UBMR);
1759 	}
1760 
1761 	if (!imx_uart_is_imx1(sport))
1762 		imx_uart_writel(sport, sport->port.uartclk / div / 1000,
1763 				IMX21_ONEMS);
1764 
1765 	imx_uart_writel(sport, ucr2, UCR2);
1766 
1767 	if (UART_ENABLE_MS(&sport->port, termios->c_cflag))
1768 		imx_uart_enable_ms(&sport->port);
1769 
1770 	spin_unlock_irqrestore(&sport->port.lock, flags);
1771 }
1772 
1773 static const char *imx_uart_type(struct uart_port *port)
1774 {
1775 	struct imx_port *sport = (struct imx_port *)port;
1776 
1777 	return sport->port.type == PORT_IMX ? "IMX" : NULL;
1778 }
1779 
1780 /*
1781  * Configure/autoconfigure the port.
1782  */
1783 static void imx_uart_config_port(struct uart_port *port, int flags)
1784 {
1785 	struct imx_port *sport = (struct imx_port *)port;
1786 
1787 	if (flags & UART_CONFIG_TYPE)
1788 		sport->port.type = PORT_IMX;
1789 }
1790 
1791 /*
1792  * Verify the new serial_struct (for TIOCSSERIAL).
1793  * The only change we allow are to the flags and type, and
1794  * even then only between PORT_IMX and PORT_UNKNOWN
1795  */
1796 static int
1797 imx_uart_verify_port(struct uart_port *port, struct serial_struct *ser)
1798 {
1799 	struct imx_port *sport = (struct imx_port *)port;
1800 	int ret = 0;
1801 
1802 	if (ser->type != PORT_UNKNOWN && ser->type != PORT_IMX)
1803 		ret = -EINVAL;
1804 	if (sport->port.irq != ser->irq)
1805 		ret = -EINVAL;
1806 	if (ser->io_type != UPIO_MEM)
1807 		ret = -EINVAL;
1808 	if (sport->port.uartclk / 16 != ser->baud_base)
1809 		ret = -EINVAL;
1810 	if (sport->port.mapbase != (unsigned long)ser->iomem_base)
1811 		ret = -EINVAL;
1812 	if (sport->port.iobase != ser->port)
1813 		ret = -EINVAL;
1814 	if (ser->hub6 != 0)
1815 		ret = -EINVAL;
1816 	return ret;
1817 }
1818 
1819 #if defined(CONFIG_CONSOLE_POLL)
1820 
1821 static int imx_uart_poll_init(struct uart_port *port)
1822 {
1823 	struct imx_port *sport = (struct imx_port *)port;
1824 	unsigned long flags;
1825 	u32 ucr1, ucr2;
1826 	int retval;
1827 
1828 	retval = clk_prepare_enable(sport->clk_ipg);
1829 	if (retval)
1830 		return retval;
1831 	retval = clk_prepare_enable(sport->clk_per);
1832 	if (retval)
1833 		clk_disable_unprepare(sport->clk_ipg);
1834 
1835 	imx_uart_setup_ufcr(sport, TXTL_DEFAULT, RXTL_DEFAULT);
1836 
1837 	spin_lock_irqsave(&sport->port.lock, flags);
1838 
1839 	/*
1840 	 * Be careful about the order of enabling bits here. First enable the
1841 	 * receiver (UARTEN + RXEN) and only then the corresponding irqs.
1842 	 * This prevents that a character that already sits in the RX fifo is
1843 	 * triggering an irq but the try to fetch it from there results in an
1844 	 * exception because UARTEN or RXEN is still off.
1845 	 */
1846 	ucr1 = imx_uart_readl(sport, UCR1);
1847 	ucr2 = imx_uart_readl(sport, UCR2);
1848 
1849 	if (imx_uart_is_imx1(sport))
1850 		ucr1 |= IMX1_UCR1_UARTCLKEN;
1851 
1852 	ucr1 |= UCR1_UARTEN;
1853 	ucr1 &= ~(UCR1_TRDYEN | UCR1_RTSDEN | UCR1_RRDYEN);
1854 
1855 	ucr2 |= UCR2_RXEN | UCR2_TXEN;
1856 	ucr2 &= ~UCR2_ATEN;
1857 
1858 	imx_uart_writel(sport, ucr1, UCR1);
1859 	imx_uart_writel(sport, ucr2, UCR2);
1860 
1861 	/* now enable irqs */
1862 	imx_uart_writel(sport, ucr1 | UCR1_RRDYEN, UCR1);
1863 	imx_uart_writel(sport, ucr2 | UCR2_ATEN, UCR2);
1864 
1865 	spin_unlock_irqrestore(&sport->port.lock, flags);
1866 
1867 	return 0;
1868 }
1869 
1870 static int imx_uart_poll_get_char(struct uart_port *port)
1871 {
1872 	struct imx_port *sport = (struct imx_port *)port;
1873 	if (!(imx_uart_readl(sport, USR2) & USR2_RDR))
1874 		return NO_POLL_CHAR;
1875 
1876 	return imx_uart_readl(sport, URXD0) & URXD_RX_DATA;
1877 }
1878 
1879 static void imx_uart_poll_put_char(struct uart_port *port, unsigned char c)
1880 {
1881 	struct imx_port *sport = (struct imx_port *)port;
1882 	unsigned int status;
1883 
1884 	/* drain */
1885 	do {
1886 		status = imx_uart_readl(sport, USR1);
1887 	} while (~status & USR1_TRDY);
1888 
1889 	/* write */
1890 	imx_uart_writel(sport, c, URTX0);
1891 
1892 	/* flush */
1893 	do {
1894 		status = imx_uart_readl(sport, USR2);
1895 	} while (~status & USR2_TXDC);
1896 }
1897 #endif
1898 
1899 /* called with port.lock taken and irqs off or from .probe without locking */
1900 static int imx_uart_rs485_config(struct uart_port *port,
1901 				 struct serial_rs485 *rs485conf)
1902 {
1903 	struct imx_port *sport = (struct imx_port *)port;
1904 	u32 ucr2;
1905 
1906 	/* RTS is required to control the transmitter */
1907 	if (!sport->have_rtscts && !sport->have_rtsgpio)
1908 		rs485conf->flags &= ~SER_RS485_ENABLED;
1909 
1910 	if (rs485conf->flags & SER_RS485_ENABLED) {
1911 		/* Enable receiver if low-active RTS signal is requested */
1912 		if (sport->have_rtscts &&  !sport->have_rtsgpio &&
1913 		    !(rs485conf->flags & SER_RS485_RTS_ON_SEND))
1914 			rs485conf->flags |= SER_RS485_RX_DURING_TX;
1915 
1916 		/* disable transmitter */
1917 		ucr2 = imx_uart_readl(sport, UCR2);
1918 		if (rs485conf->flags & SER_RS485_RTS_AFTER_SEND)
1919 			imx_uart_rts_active(sport, &ucr2);
1920 		else
1921 			imx_uart_rts_inactive(sport, &ucr2);
1922 		imx_uart_writel(sport, ucr2, UCR2);
1923 	}
1924 
1925 	/* Make sure Rx is enabled in case Tx is active with Rx disabled */
1926 	if (!(rs485conf->flags & SER_RS485_ENABLED) ||
1927 	    rs485conf->flags & SER_RS485_RX_DURING_TX)
1928 		imx_uart_start_rx(port);
1929 
1930 	port->rs485 = *rs485conf;
1931 
1932 	return 0;
1933 }
1934 
1935 static const struct uart_ops imx_uart_pops = {
1936 	.tx_empty	= imx_uart_tx_empty,
1937 	.set_mctrl	= imx_uart_set_mctrl,
1938 	.get_mctrl	= imx_uart_get_mctrl,
1939 	.stop_tx	= imx_uart_stop_tx,
1940 	.start_tx	= imx_uart_start_tx,
1941 	.stop_rx	= imx_uart_stop_rx,
1942 	.enable_ms	= imx_uart_enable_ms,
1943 	.break_ctl	= imx_uart_break_ctl,
1944 	.startup	= imx_uart_startup,
1945 	.shutdown	= imx_uart_shutdown,
1946 	.flush_buffer	= imx_uart_flush_buffer,
1947 	.set_termios	= imx_uart_set_termios,
1948 	.type		= imx_uart_type,
1949 	.config_port	= imx_uart_config_port,
1950 	.verify_port	= imx_uart_verify_port,
1951 #if defined(CONFIG_CONSOLE_POLL)
1952 	.poll_init      = imx_uart_poll_init,
1953 	.poll_get_char  = imx_uart_poll_get_char,
1954 	.poll_put_char  = imx_uart_poll_put_char,
1955 #endif
1956 };
1957 
1958 static struct imx_port *imx_uart_ports[UART_NR];
1959 
1960 #if IS_ENABLED(CONFIG_SERIAL_IMX_CONSOLE)
1961 static void imx_uart_console_putchar(struct uart_port *port, int ch)
1962 {
1963 	struct imx_port *sport = (struct imx_port *)port;
1964 
1965 	while (imx_uart_readl(sport, imx_uart_uts_reg(sport)) & UTS_TXFULL)
1966 		barrier();
1967 
1968 	imx_uart_writel(sport, ch, URTX0);
1969 }
1970 
1971 /*
1972  * Interrupts are disabled on entering
1973  */
1974 static void
1975 imx_uart_console_write(struct console *co, const char *s, unsigned int count)
1976 {
1977 	struct imx_port *sport = imx_uart_ports[co->index];
1978 	struct imx_port_ucrs old_ucr;
1979 	unsigned long flags;
1980 	unsigned int ucr1;
1981 	int locked = 1;
1982 
1983 	if (sport->port.sysrq)
1984 		locked = 0;
1985 	else if (oops_in_progress)
1986 		locked = spin_trylock_irqsave(&sport->port.lock, flags);
1987 	else
1988 		spin_lock_irqsave(&sport->port.lock, flags);
1989 
1990 	/*
1991 	 *	First, save UCR1/2/3 and then disable interrupts
1992 	 */
1993 	imx_uart_ucrs_save(sport, &old_ucr);
1994 	ucr1 = old_ucr.ucr1;
1995 
1996 	if (imx_uart_is_imx1(sport))
1997 		ucr1 |= IMX1_UCR1_UARTCLKEN;
1998 	ucr1 |= UCR1_UARTEN;
1999 	ucr1 &= ~(UCR1_TRDYEN | UCR1_RRDYEN | UCR1_RTSDEN);
2000 
2001 	imx_uart_writel(sport, ucr1, UCR1);
2002 
2003 	imx_uart_writel(sport, old_ucr.ucr2 | UCR2_TXEN, UCR2);
2004 
2005 	uart_console_write(&sport->port, s, count, imx_uart_console_putchar);
2006 
2007 	/*
2008 	 *	Finally, wait for transmitter to become empty
2009 	 *	and restore UCR1/2/3
2010 	 */
2011 	while (!(imx_uart_readl(sport, USR2) & USR2_TXDC));
2012 
2013 	imx_uart_ucrs_restore(sport, &old_ucr);
2014 
2015 	if (locked)
2016 		spin_unlock_irqrestore(&sport->port.lock, flags);
2017 }
2018 
2019 /*
2020  * If the port was already initialised (eg, by a boot loader),
2021  * try to determine the current setup.
2022  */
2023 static void
2024 imx_uart_console_get_options(struct imx_port *sport, int *baud,
2025 			     int *parity, int *bits)
2026 {
2027 
2028 	if (imx_uart_readl(sport, UCR1) & UCR1_UARTEN) {
2029 		/* ok, the port was enabled */
2030 		unsigned int ucr2, ubir, ubmr, uartclk;
2031 		unsigned int baud_raw;
2032 		unsigned int ucfr_rfdiv;
2033 
2034 		ucr2 = imx_uart_readl(sport, UCR2);
2035 
2036 		*parity = 'n';
2037 		if (ucr2 & UCR2_PREN) {
2038 			if (ucr2 & UCR2_PROE)
2039 				*parity = 'o';
2040 			else
2041 				*parity = 'e';
2042 		}
2043 
2044 		if (ucr2 & UCR2_WS)
2045 			*bits = 8;
2046 		else
2047 			*bits = 7;
2048 
2049 		ubir = imx_uart_readl(sport, UBIR) & 0xffff;
2050 		ubmr = imx_uart_readl(sport, UBMR) & 0xffff;
2051 
2052 		ucfr_rfdiv = (imx_uart_readl(sport, UFCR) & UFCR_RFDIV) >> 7;
2053 		if (ucfr_rfdiv == 6)
2054 			ucfr_rfdiv = 7;
2055 		else
2056 			ucfr_rfdiv = 6 - ucfr_rfdiv;
2057 
2058 		uartclk = clk_get_rate(sport->clk_per);
2059 		uartclk /= ucfr_rfdiv;
2060 
2061 		{	/*
2062 			 * The next code provides exact computation of
2063 			 *   baud_raw = round(((uartclk/16) * (ubir + 1)) / (ubmr + 1))
2064 			 * without need of float support or long long division,
2065 			 * which would be required to prevent 32bit arithmetic overflow
2066 			 */
2067 			unsigned int mul = ubir + 1;
2068 			unsigned int div = 16 * (ubmr + 1);
2069 			unsigned int rem = uartclk % div;
2070 
2071 			baud_raw = (uartclk / div) * mul;
2072 			baud_raw += (rem * mul + div / 2) / div;
2073 			*baud = (baud_raw + 50) / 100 * 100;
2074 		}
2075 
2076 		if (*baud != baud_raw)
2077 			dev_info(sport->port.dev, "Console IMX rounded baud rate from %d to %d\n",
2078 				baud_raw, *baud);
2079 	}
2080 }
2081 
2082 static int
2083 imx_uart_console_setup(struct console *co, char *options)
2084 {
2085 	struct imx_port *sport;
2086 	int baud = 9600;
2087 	int bits = 8;
2088 	int parity = 'n';
2089 	int flow = 'n';
2090 	int retval;
2091 
2092 	/*
2093 	 * Check whether an invalid uart number has been specified, and
2094 	 * if so, search for the first available port that does have
2095 	 * console support.
2096 	 */
2097 	if (co->index == -1 || co->index >= ARRAY_SIZE(imx_uart_ports))
2098 		co->index = 0;
2099 	sport = imx_uart_ports[co->index];
2100 	if (sport == NULL)
2101 		return -ENODEV;
2102 
2103 	/* For setting the registers, we only need to enable the ipg clock. */
2104 	retval = clk_prepare_enable(sport->clk_ipg);
2105 	if (retval)
2106 		goto error_console;
2107 
2108 	if (options)
2109 		uart_parse_options(options, &baud, &parity, &bits, &flow);
2110 	else
2111 		imx_uart_console_get_options(sport, &baud, &parity, &bits);
2112 
2113 	imx_uart_setup_ufcr(sport, TXTL_DEFAULT, RXTL_DEFAULT);
2114 
2115 	retval = uart_set_options(&sport->port, co, baud, parity, bits, flow);
2116 
2117 	if (retval) {
2118 		clk_disable_unprepare(sport->clk_ipg);
2119 		goto error_console;
2120 	}
2121 
2122 	retval = clk_prepare_enable(sport->clk_per);
2123 	if (retval)
2124 		clk_disable_unprepare(sport->clk_ipg);
2125 
2126 error_console:
2127 	return retval;
2128 }
2129 
2130 static int
2131 imx_uart_console_exit(struct console *co)
2132 {
2133 	struct imx_port *sport = imx_uart_ports[co->index];
2134 
2135 	clk_disable_unprepare(sport->clk_per);
2136 	clk_disable_unprepare(sport->clk_ipg);
2137 
2138 	return 0;
2139 }
2140 
2141 static struct uart_driver imx_uart_uart_driver;
2142 static struct console imx_uart_console = {
2143 	.name		= DEV_NAME,
2144 	.write		= imx_uart_console_write,
2145 	.device		= uart_console_device,
2146 	.setup		= imx_uart_console_setup,
2147 	.exit		= imx_uart_console_exit,
2148 	.flags		= CON_PRINTBUFFER,
2149 	.index		= -1,
2150 	.data		= &imx_uart_uart_driver,
2151 };
2152 
2153 #define IMX_CONSOLE	&imx_uart_console
2154 
2155 #else
2156 #define IMX_CONSOLE	NULL
2157 #endif
2158 
2159 static struct uart_driver imx_uart_uart_driver = {
2160 	.owner          = THIS_MODULE,
2161 	.driver_name    = DRIVER_NAME,
2162 	.dev_name       = DEV_NAME,
2163 	.major          = SERIAL_IMX_MAJOR,
2164 	.minor          = MINOR_START,
2165 	.nr             = ARRAY_SIZE(imx_uart_ports),
2166 	.cons           = IMX_CONSOLE,
2167 };
2168 
2169 static enum hrtimer_restart imx_trigger_start_tx(struct hrtimer *t)
2170 {
2171 	struct imx_port *sport = container_of(t, struct imx_port, trigger_start_tx);
2172 	unsigned long flags;
2173 
2174 	spin_lock_irqsave(&sport->port.lock, flags);
2175 	if (sport->tx_state == WAIT_AFTER_RTS)
2176 		imx_uart_start_tx(&sport->port);
2177 	spin_unlock_irqrestore(&sport->port.lock, flags);
2178 
2179 	return HRTIMER_NORESTART;
2180 }
2181 
2182 static enum hrtimer_restart imx_trigger_stop_tx(struct hrtimer *t)
2183 {
2184 	struct imx_port *sport = container_of(t, struct imx_port, trigger_stop_tx);
2185 	unsigned long flags;
2186 
2187 	spin_lock_irqsave(&sport->port.lock, flags);
2188 	if (sport->tx_state == WAIT_AFTER_SEND)
2189 		imx_uart_stop_tx(&sport->port);
2190 	spin_unlock_irqrestore(&sport->port.lock, flags);
2191 
2192 	return HRTIMER_NORESTART;
2193 }
2194 
2195 /* Default RX DMA buffer configuration */
2196 #define RX_DMA_PERIODS		16
2197 #define RX_DMA_PERIOD_LEN	(PAGE_SIZE / 4)
2198 
2199 static int imx_uart_probe(struct platform_device *pdev)
2200 {
2201 	struct device_node *np = pdev->dev.of_node;
2202 	struct imx_port *sport;
2203 	void __iomem *base;
2204 	u32 dma_buf_conf[2];
2205 	int ret = 0;
2206 	u32 ucr1;
2207 	struct resource *res;
2208 	int txirq, rxirq, rtsirq;
2209 
2210 	sport = devm_kzalloc(&pdev->dev, sizeof(*sport), GFP_KERNEL);
2211 	if (!sport)
2212 		return -ENOMEM;
2213 
2214 	sport->devdata = of_device_get_match_data(&pdev->dev);
2215 
2216 	ret = of_alias_get_id(np, "serial");
2217 	if (ret < 0) {
2218 		dev_err(&pdev->dev, "failed to get alias id, errno %d\n", ret);
2219 		return ret;
2220 	}
2221 	sport->port.line = ret;
2222 
2223 	if (of_get_property(np, "uart-has-rtscts", NULL) ||
2224 	    of_get_property(np, "fsl,uart-has-rtscts", NULL) /* deprecated */)
2225 		sport->have_rtscts = 1;
2226 
2227 	if (of_get_property(np, "fsl,dte-mode", NULL))
2228 		sport->dte_mode = 1;
2229 
2230 	if (of_get_property(np, "rts-gpios", NULL))
2231 		sport->have_rtsgpio = 1;
2232 
2233 	if (of_get_property(np, "fsl,inverted-tx", NULL))
2234 		sport->inverted_tx = 1;
2235 
2236 	if (of_get_property(np, "fsl,inverted-rx", NULL))
2237 		sport->inverted_rx = 1;
2238 
2239 	if (!of_property_read_u32_array(np, "fsl,dma-info", dma_buf_conf, 2)) {
2240 		sport->rx_period_length = dma_buf_conf[0];
2241 		sport->rx_periods = dma_buf_conf[1];
2242 	} else {
2243 		sport->rx_period_length = RX_DMA_PERIOD_LEN;
2244 		sport->rx_periods = RX_DMA_PERIODS;
2245 	}
2246 
2247 	if (sport->port.line >= ARRAY_SIZE(imx_uart_ports)) {
2248 		dev_err(&pdev->dev, "serial%d out of range\n",
2249 			sport->port.line);
2250 		return -EINVAL;
2251 	}
2252 
2253 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2254 	base = devm_ioremap_resource(&pdev->dev, res);
2255 	if (IS_ERR(base))
2256 		return PTR_ERR(base);
2257 
2258 	rxirq = platform_get_irq(pdev, 0);
2259 	if (rxirq < 0)
2260 		return rxirq;
2261 	txirq = platform_get_irq_optional(pdev, 1);
2262 	rtsirq = platform_get_irq_optional(pdev, 2);
2263 
2264 	sport->port.dev = &pdev->dev;
2265 	sport->port.mapbase = res->start;
2266 	sport->port.membase = base;
2267 	sport->port.type = PORT_IMX;
2268 	sport->port.iotype = UPIO_MEM;
2269 	sport->port.irq = rxirq;
2270 	sport->port.fifosize = 32;
2271 	sport->port.has_sysrq = IS_ENABLED(CONFIG_SERIAL_IMX_CONSOLE);
2272 	sport->port.ops = &imx_uart_pops;
2273 	sport->port.rs485_config = imx_uart_rs485_config;
2274 	sport->port.flags = UPF_BOOT_AUTOCONF;
2275 	timer_setup(&sport->timer, imx_uart_timeout, 0);
2276 
2277 	sport->gpios = mctrl_gpio_init(&sport->port, 0);
2278 	if (IS_ERR(sport->gpios))
2279 		return PTR_ERR(sport->gpios);
2280 
2281 	sport->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
2282 	if (IS_ERR(sport->clk_ipg)) {
2283 		ret = PTR_ERR(sport->clk_ipg);
2284 		dev_err(&pdev->dev, "failed to get ipg clk: %d\n", ret);
2285 		return ret;
2286 	}
2287 
2288 	sport->clk_per = devm_clk_get(&pdev->dev, "per");
2289 	if (IS_ERR(sport->clk_per)) {
2290 		ret = PTR_ERR(sport->clk_per);
2291 		dev_err(&pdev->dev, "failed to get per clk: %d\n", ret);
2292 		return ret;
2293 	}
2294 
2295 	sport->port.uartclk = clk_get_rate(sport->clk_per);
2296 
2297 	/* For register access, we only need to enable the ipg clock. */
2298 	ret = clk_prepare_enable(sport->clk_ipg);
2299 	if (ret) {
2300 		dev_err(&pdev->dev, "failed to enable per clk: %d\n", ret);
2301 		return ret;
2302 	}
2303 
2304 	/* initialize shadow register values */
2305 	sport->ucr1 = readl(sport->port.membase + UCR1);
2306 	sport->ucr2 = readl(sport->port.membase + UCR2);
2307 	sport->ucr3 = readl(sport->port.membase + UCR3);
2308 	sport->ucr4 = readl(sport->port.membase + UCR4);
2309 	sport->ufcr = readl(sport->port.membase + UFCR);
2310 
2311 	ret = uart_get_rs485_mode(&sport->port);
2312 	if (ret) {
2313 		clk_disable_unprepare(sport->clk_ipg);
2314 		return ret;
2315 	}
2316 
2317 	if (sport->port.rs485.flags & SER_RS485_ENABLED &&
2318 	    (!sport->have_rtscts && !sport->have_rtsgpio))
2319 		dev_err(&pdev->dev, "no RTS control, disabling rs485\n");
2320 
2321 	/*
2322 	 * If using the i.MX UART RTS/CTS control then the RTS (CTS_B)
2323 	 * signal cannot be set low during transmission in case the
2324 	 * receiver is off (limitation of the i.MX UART IP).
2325 	 */
2326 	if (sport->port.rs485.flags & SER_RS485_ENABLED &&
2327 	    sport->have_rtscts && !sport->have_rtsgpio &&
2328 	    (!(sport->port.rs485.flags & SER_RS485_RTS_ON_SEND) &&
2329 	     !(sport->port.rs485.flags & SER_RS485_RX_DURING_TX)))
2330 		dev_err(&pdev->dev,
2331 			"low-active RTS not possible when receiver is off, enabling receiver\n");
2332 
2333 	imx_uart_rs485_config(&sport->port, &sport->port.rs485);
2334 
2335 	/* Disable interrupts before requesting them */
2336 	ucr1 = imx_uart_readl(sport, UCR1);
2337 	ucr1 &= ~(UCR1_ADEN | UCR1_TRDYEN | UCR1_IDEN | UCR1_RRDYEN | UCR1_RTSDEN);
2338 	imx_uart_writel(sport, ucr1, UCR1);
2339 
2340 	if (!imx_uart_is_imx1(sport) && sport->dte_mode) {
2341 		/*
2342 		 * The DCEDTE bit changes the direction of DSR, DCD, DTR and RI
2343 		 * and influences if UCR3_RI and UCR3_DCD changes the level of RI
2344 		 * and DCD (when they are outputs) or enables the respective
2345 		 * irqs. So set this bit early, i.e. before requesting irqs.
2346 		 */
2347 		u32 ufcr = imx_uart_readl(sport, UFCR);
2348 		if (!(ufcr & UFCR_DCEDTE))
2349 			imx_uart_writel(sport, ufcr | UFCR_DCEDTE, UFCR);
2350 
2351 		/*
2352 		 * Disable UCR3_RI and UCR3_DCD irqs. They are also not
2353 		 * enabled later because they cannot be cleared
2354 		 * (confirmed on i.MX25) which makes them unusable.
2355 		 */
2356 		imx_uart_writel(sport,
2357 				IMX21_UCR3_RXDMUXSEL | UCR3_ADNIMP | UCR3_DSR,
2358 				UCR3);
2359 
2360 	} else {
2361 		u32 ucr3 = UCR3_DSR;
2362 		u32 ufcr = imx_uart_readl(sport, UFCR);
2363 		if (ufcr & UFCR_DCEDTE)
2364 			imx_uart_writel(sport, ufcr & ~UFCR_DCEDTE, UFCR);
2365 
2366 		if (!imx_uart_is_imx1(sport))
2367 			ucr3 |= IMX21_UCR3_RXDMUXSEL | UCR3_ADNIMP;
2368 		imx_uart_writel(sport, ucr3, UCR3);
2369 	}
2370 
2371 	clk_disable_unprepare(sport->clk_ipg);
2372 
2373 	hrtimer_init(&sport->trigger_start_tx, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2374 	hrtimer_init(&sport->trigger_stop_tx, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2375 	sport->trigger_start_tx.function = imx_trigger_start_tx;
2376 	sport->trigger_stop_tx.function = imx_trigger_stop_tx;
2377 
2378 	/*
2379 	 * Allocate the IRQ(s) i.MX1 has three interrupts whereas later
2380 	 * chips only have one interrupt.
2381 	 */
2382 	if (txirq > 0) {
2383 		ret = devm_request_irq(&pdev->dev, rxirq, imx_uart_rxint, 0,
2384 				       dev_name(&pdev->dev), sport);
2385 		if (ret) {
2386 			dev_err(&pdev->dev, "failed to request rx irq: %d\n",
2387 				ret);
2388 			return ret;
2389 		}
2390 
2391 		ret = devm_request_irq(&pdev->dev, txirq, imx_uart_txint, 0,
2392 				       dev_name(&pdev->dev), sport);
2393 		if (ret) {
2394 			dev_err(&pdev->dev, "failed to request tx irq: %d\n",
2395 				ret);
2396 			return ret;
2397 		}
2398 
2399 		ret = devm_request_irq(&pdev->dev, rtsirq, imx_uart_rtsint, 0,
2400 				       dev_name(&pdev->dev), sport);
2401 		if (ret) {
2402 			dev_err(&pdev->dev, "failed to request rts irq: %d\n",
2403 				ret);
2404 			return ret;
2405 		}
2406 	} else {
2407 		ret = devm_request_irq(&pdev->dev, rxirq, imx_uart_int, 0,
2408 				       dev_name(&pdev->dev), sport);
2409 		if (ret) {
2410 			dev_err(&pdev->dev, "failed to request irq: %d\n", ret);
2411 			return ret;
2412 		}
2413 	}
2414 
2415 	imx_uart_ports[sport->port.line] = sport;
2416 
2417 	platform_set_drvdata(pdev, sport);
2418 
2419 	return uart_add_one_port(&imx_uart_uart_driver, &sport->port);
2420 }
2421 
2422 static int imx_uart_remove(struct platform_device *pdev)
2423 {
2424 	struct imx_port *sport = platform_get_drvdata(pdev);
2425 
2426 	return uart_remove_one_port(&imx_uart_uart_driver, &sport->port);
2427 }
2428 
2429 static void imx_uart_restore_context(struct imx_port *sport)
2430 {
2431 	unsigned long flags;
2432 
2433 	spin_lock_irqsave(&sport->port.lock, flags);
2434 	if (!sport->context_saved) {
2435 		spin_unlock_irqrestore(&sport->port.lock, flags);
2436 		return;
2437 	}
2438 
2439 	imx_uart_writel(sport, sport->saved_reg[4], UFCR);
2440 	imx_uart_writel(sport, sport->saved_reg[5], UESC);
2441 	imx_uart_writel(sport, sport->saved_reg[6], UTIM);
2442 	imx_uart_writel(sport, sport->saved_reg[7], UBIR);
2443 	imx_uart_writel(sport, sport->saved_reg[8], UBMR);
2444 	imx_uart_writel(sport, sport->saved_reg[9], IMX21_UTS);
2445 	imx_uart_writel(sport, sport->saved_reg[0], UCR1);
2446 	imx_uart_writel(sport, sport->saved_reg[1] | UCR2_SRST, UCR2);
2447 	imx_uart_writel(sport, sport->saved_reg[2], UCR3);
2448 	imx_uart_writel(sport, sport->saved_reg[3], UCR4);
2449 	sport->context_saved = false;
2450 	spin_unlock_irqrestore(&sport->port.lock, flags);
2451 }
2452 
2453 static void imx_uart_save_context(struct imx_port *sport)
2454 {
2455 	unsigned long flags;
2456 
2457 	/* Save necessary regs */
2458 	spin_lock_irqsave(&sport->port.lock, flags);
2459 	sport->saved_reg[0] = imx_uart_readl(sport, UCR1);
2460 	sport->saved_reg[1] = imx_uart_readl(sport, UCR2);
2461 	sport->saved_reg[2] = imx_uart_readl(sport, UCR3);
2462 	sport->saved_reg[3] = imx_uart_readl(sport, UCR4);
2463 	sport->saved_reg[4] = imx_uart_readl(sport, UFCR);
2464 	sport->saved_reg[5] = imx_uart_readl(sport, UESC);
2465 	sport->saved_reg[6] = imx_uart_readl(sport, UTIM);
2466 	sport->saved_reg[7] = imx_uart_readl(sport, UBIR);
2467 	sport->saved_reg[8] = imx_uart_readl(sport, UBMR);
2468 	sport->saved_reg[9] = imx_uart_readl(sport, IMX21_UTS);
2469 	sport->context_saved = true;
2470 	spin_unlock_irqrestore(&sport->port.lock, flags);
2471 }
2472 
2473 static void imx_uart_enable_wakeup(struct imx_port *sport, bool on)
2474 {
2475 	u32 ucr3;
2476 
2477 	ucr3 = imx_uart_readl(sport, UCR3);
2478 	if (on) {
2479 		imx_uart_writel(sport, USR1_AWAKE, USR1);
2480 		ucr3 |= UCR3_AWAKEN;
2481 	} else {
2482 		ucr3 &= ~UCR3_AWAKEN;
2483 	}
2484 	imx_uart_writel(sport, ucr3, UCR3);
2485 
2486 	if (sport->have_rtscts) {
2487 		u32 ucr1 = imx_uart_readl(sport, UCR1);
2488 		if (on) {
2489 			imx_uart_writel(sport, USR1_RTSD, USR1);
2490 			ucr1 |= UCR1_RTSDEN;
2491 		} else {
2492 			ucr1 &= ~UCR1_RTSDEN;
2493 		}
2494 		imx_uart_writel(sport, ucr1, UCR1);
2495 	}
2496 }
2497 
2498 static int imx_uart_suspend_noirq(struct device *dev)
2499 {
2500 	struct imx_port *sport = dev_get_drvdata(dev);
2501 
2502 	imx_uart_save_context(sport);
2503 
2504 	clk_disable(sport->clk_ipg);
2505 
2506 	pinctrl_pm_select_sleep_state(dev);
2507 
2508 	return 0;
2509 }
2510 
2511 static int imx_uart_resume_noirq(struct device *dev)
2512 {
2513 	struct imx_port *sport = dev_get_drvdata(dev);
2514 	int ret;
2515 
2516 	pinctrl_pm_select_default_state(dev);
2517 
2518 	ret = clk_enable(sport->clk_ipg);
2519 	if (ret)
2520 		return ret;
2521 
2522 	imx_uart_restore_context(sport);
2523 
2524 	return 0;
2525 }
2526 
2527 static int imx_uart_suspend(struct device *dev)
2528 {
2529 	struct imx_port *sport = dev_get_drvdata(dev);
2530 	int ret;
2531 
2532 	uart_suspend_port(&imx_uart_uart_driver, &sport->port);
2533 	disable_irq(sport->port.irq);
2534 
2535 	ret = clk_prepare_enable(sport->clk_ipg);
2536 	if (ret)
2537 		return ret;
2538 
2539 	/* enable wakeup from i.MX UART */
2540 	imx_uart_enable_wakeup(sport, true);
2541 
2542 	return 0;
2543 }
2544 
2545 static int imx_uart_resume(struct device *dev)
2546 {
2547 	struct imx_port *sport = dev_get_drvdata(dev);
2548 
2549 	/* disable wakeup from i.MX UART */
2550 	imx_uart_enable_wakeup(sport, false);
2551 
2552 	uart_resume_port(&imx_uart_uart_driver, &sport->port);
2553 	enable_irq(sport->port.irq);
2554 
2555 	clk_disable_unprepare(sport->clk_ipg);
2556 
2557 	return 0;
2558 }
2559 
2560 static int imx_uart_freeze(struct device *dev)
2561 {
2562 	struct imx_port *sport = dev_get_drvdata(dev);
2563 
2564 	uart_suspend_port(&imx_uart_uart_driver, &sport->port);
2565 
2566 	return clk_prepare_enable(sport->clk_ipg);
2567 }
2568 
2569 static int imx_uart_thaw(struct device *dev)
2570 {
2571 	struct imx_port *sport = dev_get_drvdata(dev);
2572 
2573 	uart_resume_port(&imx_uart_uart_driver, &sport->port);
2574 
2575 	clk_disable_unprepare(sport->clk_ipg);
2576 
2577 	return 0;
2578 }
2579 
2580 static const struct dev_pm_ops imx_uart_pm_ops = {
2581 	.suspend_noirq = imx_uart_suspend_noirq,
2582 	.resume_noirq = imx_uart_resume_noirq,
2583 	.freeze_noirq = imx_uart_suspend_noirq,
2584 	.restore_noirq = imx_uart_resume_noirq,
2585 	.suspend = imx_uart_suspend,
2586 	.resume = imx_uart_resume,
2587 	.freeze = imx_uart_freeze,
2588 	.thaw = imx_uart_thaw,
2589 	.restore = imx_uart_thaw,
2590 };
2591 
2592 static struct platform_driver imx_uart_platform_driver = {
2593 	.probe = imx_uart_probe,
2594 	.remove = imx_uart_remove,
2595 
2596 	.driver = {
2597 		.name = "imx-uart",
2598 		.of_match_table = imx_uart_dt_ids,
2599 		.pm = &imx_uart_pm_ops,
2600 	},
2601 };
2602 
2603 static int __init imx_uart_init(void)
2604 {
2605 	int ret = uart_register_driver(&imx_uart_uart_driver);
2606 
2607 	if (ret)
2608 		return ret;
2609 
2610 	ret = platform_driver_register(&imx_uart_platform_driver);
2611 	if (ret != 0)
2612 		uart_unregister_driver(&imx_uart_uart_driver);
2613 
2614 	return ret;
2615 }
2616 
2617 static void __exit imx_uart_exit(void)
2618 {
2619 	platform_driver_unregister(&imx_uart_platform_driver);
2620 	uart_unregister_driver(&imx_uart_uart_driver);
2621 }
2622 
2623 module_init(imx_uart_init);
2624 module_exit(imx_uart_exit);
2625 
2626 MODULE_AUTHOR("Sascha Hauer");
2627 MODULE_DESCRIPTION("IMX generic serial port driver");
2628 MODULE_LICENSE("GPL");
2629 MODULE_ALIAS("platform:imx-uart");
2630