1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Driver for Motorola/Freescale IMX serial ports 4 * 5 * Based on drivers/char/serial.c, by Linus Torvalds, Theodore Ts'o. 6 * 7 * Author: Sascha Hauer <sascha@saschahauer.de> 8 * Copyright (C) 2004 Pengutronix 9 */ 10 11 #include <linux/module.h> 12 #include <linux/ioport.h> 13 #include <linux/init.h> 14 #include <linux/console.h> 15 #include <linux/sysrq.h> 16 #include <linux/platform_device.h> 17 #include <linux/tty.h> 18 #include <linux/tty_flip.h> 19 #include <linux/serial_core.h> 20 #include <linux/serial.h> 21 #include <linux/clk.h> 22 #include <linux/delay.h> 23 #include <linux/pinctrl/consumer.h> 24 #include <linux/rational.h> 25 #include <linux/slab.h> 26 #include <linux/of.h> 27 #include <linux/of_device.h> 28 #include <linux/io.h> 29 #include <linux/dma-mapping.h> 30 31 #include <asm/irq.h> 32 #include <linux/platform_data/serial-imx.h> 33 #include <linux/platform_data/dma-imx.h> 34 35 #include "serial_mctrl_gpio.h" 36 37 /* Register definitions */ 38 #define URXD0 0x0 /* Receiver Register */ 39 #define URTX0 0x40 /* Transmitter Register */ 40 #define UCR1 0x80 /* Control Register 1 */ 41 #define UCR2 0x84 /* Control Register 2 */ 42 #define UCR3 0x88 /* Control Register 3 */ 43 #define UCR4 0x8c /* Control Register 4 */ 44 #define UFCR 0x90 /* FIFO Control Register */ 45 #define USR1 0x94 /* Status Register 1 */ 46 #define USR2 0x98 /* Status Register 2 */ 47 #define UESC 0x9c /* Escape Character Register */ 48 #define UTIM 0xa0 /* Escape Timer Register */ 49 #define UBIR 0xa4 /* BRM Incremental Register */ 50 #define UBMR 0xa8 /* BRM Modulator Register */ 51 #define UBRC 0xac /* Baud Rate Count Register */ 52 #define IMX21_ONEMS 0xb0 /* One Millisecond register */ 53 #define IMX1_UTS 0xd0 /* UART Test Register on i.mx1 */ 54 #define IMX21_UTS 0xb4 /* UART Test Register on all other i.mx*/ 55 56 /* UART Control Register Bit Fields.*/ 57 #define URXD_DUMMY_READ (1<<16) 58 #define URXD_CHARRDY (1<<15) 59 #define URXD_ERR (1<<14) 60 #define URXD_OVRRUN (1<<13) 61 #define URXD_FRMERR (1<<12) 62 #define URXD_BRK (1<<11) 63 #define URXD_PRERR (1<<10) 64 #define URXD_RX_DATA (0xFF<<0) 65 #define UCR1_ADEN (1<<15) /* Auto detect interrupt */ 66 #define UCR1_ADBR (1<<14) /* Auto detect baud rate */ 67 #define UCR1_TRDYEN (1<<13) /* Transmitter ready interrupt enable */ 68 #define UCR1_IDEN (1<<12) /* Idle condition interrupt */ 69 #define UCR1_ICD_REG(x) (((x) & 3) << 10) /* idle condition detect */ 70 #define UCR1_RRDYEN (1<<9) /* Recv ready interrupt enable */ 71 #define UCR1_RXDMAEN (1<<8) /* Recv ready DMA enable */ 72 #define UCR1_IREN (1<<7) /* Infrared interface enable */ 73 #define UCR1_TXMPTYEN (1<<6) /* Transimitter empty interrupt enable */ 74 #define UCR1_RTSDEN (1<<5) /* RTS delta interrupt enable */ 75 #define UCR1_SNDBRK (1<<4) /* Send break */ 76 #define UCR1_TXDMAEN (1<<3) /* Transmitter ready DMA enable */ 77 #define IMX1_UCR1_UARTCLKEN (1<<2) /* UART clock enabled, i.mx1 only */ 78 #define UCR1_ATDMAEN (1<<2) /* Aging DMA Timer Enable */ 79 #define UCR1_DOZE (1<<1) /* Doze */ 80 #define UCR1_UARTEN (1<<0) /* UART enabled */ 81 #define UCR2_ESCI (1<<15) /* Escape seq interrupt enable */ 82 #define UCR2_IRTS (1<<14) /* Ignore RTS pin */ 83 #define UCR2_CTSC (1<<13) /* CTS pin control */ 84 #define UCR2_CTS (1<<12) /* Clear to send */ 85 #define UCR2_ESCEN (1<<11) /* Escape enable */ 86 #define UCR2_PREN (1<<8) /* Parity enable */ 87 #define UCR2_PROE (1<<7) /* Parity odd/even */ 88 #define UCR2_STPB (1<<6) /* Stop */ 89 #define UCR2_WS (1<<5) /* Word size */ 90 #define UCR2_RTSEN (1<<4) /* Request to send interrupt enable */ 91 #define UCR2_ATEN (1<<3) /* Aging Timer Enable */ 92 #define UCR2_TXEN (1<<2) /* Transmitter enabled */ 93 #define UCR2_RXEN (1<<1) /* Receiver enabled */ 94 #define UCR2_SRST (1<<0) /* SW reset */ 95 #define UCR3_DTREN (1<<13) /* DTR interrupt enable */ 96 #define UCR3_PARERREN (1<<12) /* Parity enable */ 97 #define UCR3_FRAERREN (1<<11) /* Frame error interrupt enable */ 98 #define UCR3_DSR (1<<10) /* Data set ready */ 99 #define UCR3_DCD (1<<9) /* Data carrier detect */ 100 #define UCR3_RI (1<<8) /* Ring indicator */ 101 #define UCR3_ADNIMP (1<<7) /* Autobaud Detection Not Improved */ 102 #define UCR3_RXDSEN (1<<6) /* Receive status interrupt enable */ 103 #define UCR3_AIRINTEN (1<<5) /* Async IR wake interrupt enable */ 104 #define UCR3_AWAKEN (1<<4) /* Async wake interrupt enable */ 105 #define UCR3_DTRDEN (1<<3) /* Data Terminal Ready Delta Enable. */ 106 #define IMX21_UCR3_RXDMUXSEL (1<<2) /* RXD Muxed Input Select */ 107 #define UCR3_INVT (1<<1) /* Inverted Infrared transmission */ 108 #define UCR3_BPEN (1<<0) /* Preset registers enable */ 109 #define UCR4_CTSTL_SHF 10 /* CTS trigger level shift */ 110 #define UCR4_CTSTL_MASK 0x3F /* CTS trigger is 6 bits wide */ 111 #define UCR4_INVR (1<<9) /* Inverted infrared reception */ 112 #define UCR4_ENIRI (1<<8) /* Serial infrared interrupt enable */ 113 #define UCR4_WKEN (1<<7) /* Wake interrupt enable */ 114 #define UCR4_REF16 (1<<6) /* Ref freq 16 MHz */ 115 #define UCR4_IDDMAEN (1<<6) /* DMA IDLE Condition Detected */ 116 #define UCR4_IRSC (1<<5) /* IR special case */ 117 #define UCR4_TCEN (1<<3) /* Transmit complete interrupt enable */ 118 #define UCR4_BKEN (1<<2) /* Break condition interrupt enable */ 119 #define UCR4_OREN (1<<1) /* Receiver overrun interrupt enable */ 120 #define UCR4_DREN (1<<0) /* Recv data ready interrupt enable */ 121 #define UFCR_RXTL_SHF 0 /* Receiver trigger level shift */ 122 #define UFCR_DCEDTE (1<<6) /* DCE/DTE mode select */ 123 #define UFCR_RFDIV (7<<7) /* Reference freq divider mask */ 124 #define UFCR_RFDIV_REG(x) (((x) < 7 ? 6 - (x) : 6) << 7) 125 #define UFCR_TXTL_SHF 10 /* Transmitter trigger level shift */ 126 #define USR1_PARITYERR (1<<15) /* Parity error interrupt flag */ 127 #define USR1_RTSS (1<<14) /* RTS pin status */ 128 #define USR1_TRDY (1<<13) /* Transmitter ready interrupt/dma flag */ 129 #define USR1_RTSD (1<<12) /* RTS delta */ 130 #define USR1_ESCF (1<<11) /* Escape seq interrupt flag */ 131 #define USR1_FRAMERR (1<<10) /* Frame error interrupt flag */ 132 #define USR1_RRDY (1<<9) /* Receiver ready interrupt/dma flag */ 133 #define USR1_AGTIM (1<<8) /* Ageing timer interrupt flag */ 134 #define USR1_DTRD (1<<7) /* DTR Delta */ 135 #define USR1_RXDS (1<<6) /* Receiver idle interrupt flag */ 136 #define USR1_AIRINT (1<<5) /* Async IR wake interrupt flag */ 137 #define USR1_AWAKE (1<<4) /* Aysnc wake interrupt flag */ 138 #define USR2_ADET (1<<15) /* Auto baud rate detect complete */ 139 #define USR2_TXFE (1<<14) /* Transmit buffer FIFO empty */ 140 #define USR2_DTRF (1<<13) /* DTR edge interrupt flag */ 141 #define USR2_IDLE (1<<12) /* Idle condition */ 142 #define USR2_RIDELT (1<<10) /* Ring Interrupt Delta */ 143 #define USR2_RIIN (1<<9) /* Ring Indicator Input */ 144 #define USR2_IRINT (1<<8) /* Serial infrared interrupt flag */ 145 #define USR2_WAKE (1<<7) /* Wake */ 146 #define USR2_DCDIN (1<<5) /* Data Carrier Detect Input */ 147 #define USR2_RTSF (1<<4) /* RTS edge interrupt flag */ 148 #define USR2_TXDC (1<<3) /* Transmitter complete */ 149 #define USR2_BRCD (1<<2) /* Break condition */ 150 #define USR2_ORE (1<<1) /* Overrun error */ 151 #define USR2_RDR (1<<0) /* Recv data ready */ 152 #define UTS_FRCPERR (1<<13) /* Force parity error */ 153 #define UTS_LOOP (1<<12) /* Loop tx and rx */ 154 #define UTS_TXEMPTY (1<<6) /* TxFIFO empty */ 155 #define UTS_RXEMPTY (1<<5) /* RxFIFO empty */ 156 #define UTS_TXFULL (1<<4) /* TxFIFO full */ 157 #define UTS_RXFULL (1<<3) /* RxFIFO full */ 158 #define UTS_SOFTRST (1<<0) /* Software reset */ 159 160 /* We've been assigned a range on the "Low-density serial ports" major */ 161 #define SERIAL_IMX_MAJOR 207 162 #define MINOR_START 16 163 #define DEV_NAME "ttymxc" 164 165 /* 166 * This determines how often we check the modem status signals 167 * for any change. They generally aren't connected to an IRQ 168 * so we have to poll them. We also check immediately before 169 * filling the TX fifo incase CTS has been dropped. 170 */ 171 #define MCTRL_TIMEOUT (250*HZ/1000) 172 173 #define DRIVER_NAME "IMX-uart" 174 175 #define UART_NR 8 176 177 /* i.MX21 type uart runs on all i.mx except i.MX1 and i.MX6q */ 178 enum imx_uart_type { 179 IMX1_UART, 180 IMX21_UART, 181 IMX53_UART, 182 IMX6Q_UART, 183 }; 184 185 /* device type dependent stuff */ 186 struct imx_uart_data { 187 unsigned uts_reg; 188 enum imx_uart_type devtype; 189 }; 190 191 struct imx_port { 192 struct uart_port port; 193 struct timer_list timer; 194 unsigned int old_status; 195 unsigned int have_rtscts:1; 196 unsigned int have_rtsgpio:1; 197 unsigned int dte_mode:1; 198 unsigned int inverted_tx:1; 199 unsigned int inverted_rx:1; 200 struct clk *clk_ipg; 201 struct clk *clk_per; 202 const struct imx_uart_data *devdata; 203 204 struct mctrl_gpios *gpios; 205 206 /* shadow registers */ 207 unsigned int ucr1; 208 unsigned int ucr2; 209 unsigned int ucr3; 210 unsigned int ucr4; 211 unsigned int ufcr; 212 213 /* DMA fields */ 214 unsigned int dma_is_enabled:1; 215 unsigned int dma_is_rxing:1; 216 unsigned int dma_is_txing:1; 217 struct dma_chan *dma_chan_rx, *dma_chan_tx; 218 struct scatterlist rx_sgl, tx_sgl[2]; 219 void *rx_buf; 220 struct circ_buf rx_ring; 221 unsigned int rx_periods; 222 dma_cookie_t rx_cookie; 223 unsigned int tx_bytes; 224 unsigned int dma_tx_nents; 225 unsigned int saved_reg[10]; 226 bool context_saved; 227 }; 228 229 struct imx_port_ucrs { 230 unsigned int ucr1; 231 unsigned int ucr2; 232 unsigned int ucr3; 233 }; 234 235 static struct imx_uart_data imx_uart_devdata[] = { 236 [IMX1_UART] = { 237 .uts_reg = IMX1_UTS, 238 .devtype = IMX1_UART, 239 }, 240 [IMX21_UART] = { 241 .uts_reg = IMX21_UTS, 242 .devtype = IMX21_UART, 243 }, 244 [IMX53_UART] = { 245 .uts_reg = IMX21_UTS, 246 .devtype = IMX53_UART, 247 }, 248 [IMX6Q_UART] = { 249 .uts_reg = IMX21_UTS, 250 .devtype = IMX6Q_UART, 251 }, 252 }; 253 254 static const struct platform_device_id imx_uart_devtype[] = { 255 { 256 .name = "imx1-uart", 257 .driver_data = (kernel_ulong_t) &imx_uart_devdata[IMX1_UART], 258 }, { 259 .name = "imx21-uart", 260 .driver_data = (kernel_ulong_t) &imx_uart_devdata[IMX21_UART], 261 }, { 262 .name = "imx53-uart", 263 .driver_data = (kernel_ulong_t) &imx_uart_devdata[IMX53_UART], 264 }, { 265 .name = "imx6q-uart", 266 .driver_data = (kernel_ulong_t) &imx_uart_devdata[IMX6Q_UART], 267 }, { 268 /* sentinel */ 269 } 270 }; 271 MODULE_DEVICE_TABLE(platform, imx_uart_devtype); 272 273 static const struct of_device_id imx_uart_dt_ids[] = { 274 { .compatible = "fsl,imx6q-uart", .data = &imx_uart_devdata[IMX6Q_UART], }, 275 { .compatible = "fsl,imx53-uart", .data = &imx_uart_devdata[IMX53_UART], }, 276 { .compatible = "fsl,imx1-uart", .data = &imx_uart_devdata[IMX1_UART], }, 277 { .compatible = "fsl,imx21-uart", .data = &imx_uart_devdata[IMX21_UART], }, 278 { /* sentinel */ } 279 }; 280 MODULE_DEVICE_TABLE(of, imx_uart_dt_ids); 281 282 static void imx_uart_writel(struct imx_port *sport, u32 val, u32 offset) 283 { 284 switch (offset) { 285 case UCR1: 286 sport->ucr1 = val; 287 break; 288 case UCR2: 289 sport->ucr2 = val; 290 break; 291 case UCR3: 292 sport->ucr3 = val; 293 break; 294 case UCR4: 295 sport->ucr4 = val; 296 break; 297 case UFCR: 298 sport->ufcr = val; 299 break; 300 default: 301 break; 302 } 303 writel(val, sport->port.membase + offset); 304 } 305 306 static u32 imx_uart_readl(struct imx_port *sport, u32 offset) 307 { 308 switch (offset) { 309 case UCR1: 310 return sport->ucr1; 311 break; 312 case UCR2: 313 /* 314 * UCR2_SRST is the only bit in the cached registers that might 315 * differ from the value that was last written. As it only 316 * automatically becomes one after being cleared, reread 317 * conditionally. 318 */ 319 if (!(sport->ucr2 & UCR2_SRST)) 320 sport->ucr2 = readl(sport->port.membase + offset); 321 return sport->ucr2; 322 break; 323 case UCR3: 324 return sport->ucr3; 325 break; 326 case UCR4: 327 return sport->ucr4; 328 break; 329 case UFCR: 330 return sport->ufcr; 331 break; 332 default: 333 return readl(sport->port.membase + offset); 334 } 335 } 336 337 static inline unsigned imx_uart_uts_reg(struct imx_port *sport) 338 { 339 return sport->devdata->uts_reg; 340 } 341 342 static inline int imx_uart_is_imx1(struct imx_port *sport) 343 { 344 return sport->devdata->devtype == IMX1_UART; 345 } 346 347 static inline int imx_uart_is_imx21(struct imx_port *sport) 348 { 349 return sport->devdata->devtype == IMX21_UART; 350 } 351 352 static inline int imx_uart_is_imx53(struct imx_port *sport) 353 { 354 return sport->devdata->devtype == IMX53_UART; 355 } 356 357 static inline int imx_uart_is_imx6q(struct imx_port *sport) 358 { 359 return sport->devdata->devtype == IMX6Q_UART; 360 } 361 /* 362 * Save and restore functions for UCR1, UCR2 and UCR3 registers 363 */ 364 #if defined(CONFIG_SERIAL_IMX_CONSOLE) 365 static void imx_uart_ucrs_save(struct imx_port *sport, 366 struct imx_port_ucrs *ucr) 367 { 368 /* save control registers */ 369 ucr->ucr1 = imx_uart_readl(sport, UCR1); 370 ucr->ucr2 = imx_uart_readl(sport, UCR2); 371 ucr->ucr3 = imx_uart_readl(sport, UCR3); 372 } 373 374 static void imx_uart_ucrs_restore(struct imx_port *sport, 375 struct imx_port_ucrs *ucr) 376 { 377 /* restore control registers */ 378 imx_uart_writel(sport, ucr->ucr1, UCR1); 379 imx_uart_writel(sport, ucr->ucr2, UCR2); 380 imx_uart_writel(sport, ucr->ucr3, UCR3); 381 } 382 #endif 383 384 /* called with port.lock taken and irqs caller dependent */ 385 static void imx_uart_rts_active(struct imx_port *sport, u32 *ucr2) 386 { 387 *ucr2 &= ~(UCR2_CTSC | UCR2_CTS); 388 389 sport->port.mctrl |= TIOCM_RTS; 390 mctrl_gpio_set(sport->gpios, sport->port.mctrl); 391 } 392 393 /* called with port.lock taken and irqs caller dependent */ 394 static void imx_uart_rts_inactive(struct imx_port *sport, u32 *ucr2) 395 { 396 *ucr2 &= ~UCR2_CTSC; 397 *ucr2 |= UCR2_CTS; 398 399 sport->port.mctrl &= ~TIOCM_RTS; 400 mctrl_gpio_set(sport->gpios, sport->port.mctrl); 401 } 402 403 /* called with port.lock taken and irqs off */ 404 static void imx_uart_start_rx(struct uart_port *port) 405 { 406 struct imx_port *sport = (struct imx_port *)port; 407 unsigned int ucr1, ucr2; 408 409 ucr1 = imx_uart_readl(sport, UCR1); 410 ucr2 = imx_uart_readl(sport, UCR2); 411 412 ucr2 |= UCR2_RXEN; 413 414 if (sport->dma_is_enabled) { 415 ucr1 |= UCR1_RXDMAEN | UCR1_ATDMAEN; 416 } else { 417 ucr1 |= UCR1_RRDYEN; 418 ucr2 |= UCR2_ATEN; 419 } 420 421 /* Write UCR2 first as it includes RXEN */ 422 imx_uart_writel(sport, ucr2, UCR2); 423 imx_uart_writel(sport, ucr1, UCR1); 424 } 425 426 /* called with port.lock taken and irqs off */ 427 static void imx_uart_stop_tx(struct uart_port *port) 428 { 429 struct imx_port *sport = (struct imx_port *)port; 430 u32 ucr1; 431 432 /* 433 * We are maybe in the SMP context, so if the DMA TX thread is running 434 * on other cpu, we have to wait for it to finish. 435 */ 436 if (sport->dma_is_txing) 437 return; 438 439 ucr1 = imx_uart_readl(sport, UCR1); 440 imx_uart_writel(sport, ucr1 & ~UCR1_TRDYEN, UCR1); 441 442 /* in rs485 mode disable transmitter if shifter is empty */ 443 if (port->rs485.flags & SER_RS485_ENABLED && 444 imx_uart_readl(sport, USR2) & USR2_TXDC) { 445 u32 ucr2 = imx_uart_readl(sport, UCR2), ucr4; 446 if (port->rs485.flags & SER_RS485_RTS_AFTER_SEND) 447 imx_uart_rts_active(sport, &ucr2); 448 else 449 imx_uart_rts_inactive(sport, &ucr2); 450 imx_uart_writel(sport, ucr2, UCR2); 451 452 imx_uart_start_rx(port); 453 454 ucr4 = imx_uart_readl(sport, UCR4); 455 ucr4 &= ~UCR4_TCEN; 456 imx_uart_writel(sport, ucr4, UCR4); 457 } 458 } 459 460 /* called with port.lock taken and irqs off */ 461 static void imx_uart_stop_rx(struct uart_port *port) 462 { 463 struct imx_port *sport = (struct imx_port *)port; 464 u32 ucr1, ucr2; 465 466 ucr1 = imx_uart_readl(sport, UCR1); 467 ucr2 = imx_uart_readl(sport, UCR2); 468 469 if (sport->dma_is_enabled) { 470 ucr1 &= ~(UCR1_RXDMAEN | UCR1_ATDMAEN); 471 } else { 472 ucr1 &= ~UCR1_RRDYEN; 473 ucr2 &= ~UCR2_ATEN; 474 } 475 imx_uart_writel(sport, ucr1, UCR1); 476 477 ucr2 &= ~UCR2_RXEN; 478 imx_uart_writel(sport, ucr2, UCR2); 479 } 480 481 /* called with port.lock taken and irqs off */ 482 static void imx_uart_enable_ms(struct uart_port *port) 483 { 484 struct imx_port *sport = (struct imx_port *)port; 485 486 mod_timer(&sport->timer, jiffies); 487 488 mctrl_gpio_enable_ms(sport->gpios); 489 } 490 491 static void imx_uart_dma_tx(struct imx_port *sport); 492 493 /* called with port.lock taken and irqs off */ 494 static inline void imx_uart_transmit_buffer(struct imx_port *sport) 495 { 496 struct circ_buf *xmit = &sport->port.state->xmit; 497 498 if (sport->port.x_char) { 499 /* Send next char */ 500 imx_uart_writel(sport, sport->port.x_char, URTX0); 501 sport->port.icount.tx++; 502 sport->port.x_char = 0; 503 return; 504 } 505 506 if (uart_circ_empty(xmit) || uart_tx_stopped(&sport->port)) { 507 imx_uart_stop_tx(&sport->port); 508 return; 509 } 510 511 if (sport->dma_is_enabled) { 512 u32 ucr1; 513 /* 514 * We've just sent a X-char Ensure the TX DMA is enabled 515 * and the TX IRQ is disabled. 516 **/ 517 ucr1 = imx_uart_readl(sport, UCR1); 518 ucr1 &= ~UCR1_TRDYEN; 519 if (sport->dma_is_txing) { 520 ucr1 |= UCR1_TXDMAEN; 521 imx_uart_writel(sport, ucr1, UCR1); 522 } else { 523 imx_uart_writel(sport, ucr1, UCR1); 524 imx_uart_dma_tx(sport); 525 } 526 527 return; 528 } 529 530 while (!uart_circ_empty(xmit) && 531 !(imx_uart_readl(sport, imx_uart_uts_reg(sport)) & UTS_TXFULL)) { 532 /* send xmit->buf[xmit->tail] 533 * out the port here */ 534 imx_uart_writel(sport, xmit->buf[xmit->tail], URTX0); 535 xmit->tail = (xmit->tail + 1) & (UART_XMIT_SIZE - 1); 536 sport->port.icount.tx++; 537 } 538 539 if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS) 540 uart_write_wakeup(&sport->port); 541 542 if (uart_circ_empty(xmit)) 543 imx_uart_stop_tx(&sport->port); 544 } 545 546 static void imx_uart_dma_tx_callback(void *data) 547 { 548 struct imx_port *sport = data; 549 struct scatterlist *sgl = &sport->tx_sgl[0]; 550 struct circ_buf *xmit = &sport->port.state->xmit; 551 unsigned long flags; 552 u32 ucr1; 553 554 spin_lock_irqsave(&sport->port.lock, flags); 555 556 dma_unmap_sg(sport->port.dev, sgl, sport->dma_tx_nents, DMA_TO_DEVICE); 557 558 ucr1 = imx_uart_readl(sport, UCR1); 559 ucr1 &= ~UCR1_TXDMAEN; 560 imx_uart_writel(sport, ucr1, UCR1); 561 562 /* update the stat */ 563 xmit->tail = (xmit->tail + sport->tx_bytes) & (UART_XMIT_SIZE - 1); 564 sport->port.icount.tx += sport->tx_bytes; 565 566 dev_dbg(sport->port.dev, "we finish the TX DMA.\n"); 567 568 sport->dma_is_txing = 0; 569 570 if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS) 571 uart_write_wakeup(&sport->port); 572 573 if (!uart_circ_empty(xmit) && !uart_tx_stopped(&sport->port)) 574 imx_uart_dma_tx(sport); 575 else if (sport->port.rs485.flags & SER_RS485_ENABLED) { 576 u32 ucr4 = imx_uart_readl(sport, UCR4); 577 ucr4 |= UCR4_TCEN; 578 imx_uart_writel(sport, ucr4, UCR4); 579 } 580 581 spin_unlock_irqrestore(&sport->port.lock, flags); 582 } 583 584 /* called with port.lock taken and irqs off */ 585 static void imx_uart_dma_tx(struct imx_port *sport) 586 { 587 struct circ_buf *xmit = &sport->port.state->xmit; 588 struct scatterlist *sgl = sport->tx_sgl; 589 struct dma_async_tx_descriptor *desc; 590 struct dma_chan *chan = sport->dma_chan_tx; 591 struct device *dev = sport->port.dev; 592 u32 ucr1, ucr4; 593 int ret; 594 595 if (sport->dma_is_txing) 596 return; 597 598 ucr4 = imx_uart_readl(sport, UCR4); 599 ucr4 &= ~UCR4_TCEN; 600 imx_uart_writel(sport, ucr4, UCR4); 601 602 sport->tx_bytes = uart_circ_chars_pending(xmit); 603 604 if (xmit->tail < xmit->head || xmit->head == 0) { 605 sport->dma_tx_nents = 1; 606 sg_init_one(sgl, xmit->buf + xmit->tail, sport->tx_bytes); 607 } else { 608 sport->dma_tx_nents = 2; 609 sg_init_table(sgl, 2); 610 sg_set_buf(sgl, xmit->buf + xmit->tail, 611 UART_XMIT_SIZE - xmit->tail); 612 sg_set_buf(sgl + 1, xmit->buf, xmit->head); 613 } 614 615 ret = dma_map_sg(dev, sgl, sport->dma_tx_nents, DMA_TO_DEVICE); 616 if (ret == 0) { 617 dev_err(dev, "DMA mapping error for TX.\n"); 618 return; 619 } 620 desc = dmaengine_prep_slave_sg(chan, sgl, ret, 621 DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT); 622 if (!desc) { 623 dma_unmap_sg(dev, sgl, sport->dma_tx_nents, 624 DMA_TO_DEVICE); 625 dev_err(dev, "We cannot prepare for the TX slave dma!\n"); 626 return; 627 } 628 desc->callback = imx_uart_dma_tx_callback; 629 desc->callback_param = sport; 630 631 dev_dbg(dev, "TX: prepare to send %lu bytes by DMA.\n", 632 uart_circ_chars_pending(xmit)); 633 634 ucr1 = imx_uart_readl(sport, UCR1); 635 ucr1 |= UCR1_TXDMAEN; 636 imx_uart_writel(sport, ucr1, UCR1); 637 638 /* fire it */ 639 sport->dma_is_txing = 1; 640 dmaengine_submit(desc); 641 dma_async_issue_pending(chan); 642 return; 643 } 644 645 /* called with port.lock taken and irqs off */ 646 static void imx_uart_start_tx(struct uart_port *port) 647 { 648 struct imx_port *sport = (struct imx_port *)port; 649 u32 ucr1; 650 651 if (!sport->port.x_char && uart_circ_empty(&port->state->xmit)) 652 return; 653 654 if (port->rs485.flags & SER_RS485_ENABLED) { 655 u32 ucr2; 656 657 ucr2 = imx_uart_readl(sport, UCR2); 658 if (port->rs485.flags & SER_RS485_RTS_ON_SEND) 659 imx_uart_rts_active(sport, &ucr2); 660 else 661 imx_uart_rts_inactive(sport, &ucr2); 662 imx_uart_writel(sport, ucr2, UCR2); 663 664 if (!(port->rs485.flags & SER_RS485_RX_DURING_TX)) 665 imx_uart_stop_rx(port); 666 667 /* 668 * Enable transmitter and shifter empty irq only if DMA is off. 669 * In the DMA case this is done in the tx-callback. 670 */ 671 if (!sport->dma_is_enabled) { 672 u32 ucr4 = imx_uart_readl(sport, UCR4); 673 ucr4 |= UCR4_TCEN; 674 imx_uart_writel(sport, ucr4, UCR4); 675 } 676 } 677 678 if (!sport->dma_is_enabled) { 679 ucr1 = imx_uart_readl(sport, UCR1); 680 imx_uart_writel(sport, ucr1 | UCR1_TRDYEN, UCR1); 681 } 682 683 if (sport->dma_is_enabled) { 684 if (sport->port.x_char) { 685 /* We have X-char to send, so enable TX IRQ and 686 * disable TX DMA to let TX interrupt to send X-char */ 687 ucr1 = imx_uart_readl(sport, UCR1); 688 ucr1 &= ~UCR1_TXDMAEN; 689 ucr1 |= UCR1_TRDYEN; 690 imx_uart_writel(sport, ucr1, UCR1); 691 return; 692 } 693 694 if (!uart_circ_empty(&port->state->xmit) && 695 !uart_tx_stopped(port)) 696 imx_uart_dma_tx(sport); 697 return; 698 } 699 } 700 701 static irqreturn_t __imx_uart_rtsint(int irq, void *dev_id) 702 { 703 struct imx_port *sport = dev_id; 704 u32 usr1; 705 706 imx_uart_writel(sport, USR1_RTSD, USR1); 707 usr1 = imx_uart_readl(sport, USR1) & USR1_RTSS; 708 uart_handle_cts_change(&sport->port, !!usr1); 709 wake_up_interruptible(&sport->port.state->port.delta_msr_wait); 710 711 return IRQ_HANDLED; 712 } 713 714 static irqreturn_t imx_uart_rtsint(int irq, void *dev_id) 715 { 716 struct imx_port *sport = dev_id; 717 irqreturn_t ret; 718 719 spin_lock(&sport->port.lock); 720 721 ret = __imx_uart_rtsint(irq, dev_id); 722 723 spin_unlock(&sport->port.lock); 724 725 return ret; 726 } 727 728 static irqreturn_t imx_uart_txint(int irq, void *dev_id) 729 { 730 struct imx_port *sport = dev_id; 731 732 spin_lock(&sport->port.lock); 733 imx_uart_transmit_buffer(sport); 734 spin_unlock(&sport->port.lock); 735 return IRQ_HANDLED; 736 } 737 738 static irqreturn_t __imx_uart_rxint(int irq, void *dev_id) 739 { 740 struct imx_port *sport = dev_id; 741 unsigned int rx, flg, ignored = 0; 742 struct tty_port *port = &sport->port.state->port; 743 744 while (imx_uart_readl(sport, USR2) & USR2_RDR) { 745 u32 usr2; 746 747 flg = TTY_NORMAL; 748 sport->port.icount.rx++; 749 750 rx = imx_uart_readl(sport, URXD0); 751 752 usr2 = imx_uart_readl(sport, USR2); 753 if (usr2 & USR2_BRCD) { 754 imx_uart_writel(sport, USR2_BRCD, USR2); 755 if (uart_handle_break(&sport->port)) 756 continue; 757 } 758 759 if (uart_handle_sysrq_char(&sport->port, (unsigned char)rx)) 760 continue; 761 762 if (unlikely(rx & URXD_ERR)) { 763 if (rx & URXD_BRK) 764 sport->port.icount.brk++; 765 else if (rx & URXD_PRERR) 766 sport->port.icount.parity++; 767 else if (rx & URXD_FRMERR) 768 sport->port.icount.frame++; 769 if (rx & URXD_OVRRUN) 770 sport->port.icount.overrun++; 771 772 if (rx & sport->port.ignore_status_mask) { 773 if (++ignored > 100) 774 goto out; 775 continue; 776 } 777 778 rx &= (sport->port.read_status_mask | 0xFF); 779 780 if (rx & URXD_BRK) 781 flg = TTY_BREAK; 782 else if (rx & URXD_PRERR) 783 flg = TTY_PARITY; 784 else if (rx & URXD_FRMERR) 785 flg = TTY_FRAME; 786 if (rx & URXD_OVRRUN) 787 flg = TTY_OVERRUN; 788 789 sport->port.sysrq = 0; 790 } 791 792 if (sport->port.ignore_status_mask & URXD_DUMMY_READ) 793 goto out; 794 795 if (tty_insert_flip_char(port, rx, flg) == 0) 796 sport->port.icount.buf_overrun++; 797 } 798 799 out: 800 tty_flip_buffer_push(port); 801 802 return IRQ_HANDLED; 803 } 804 805 static irqreturn_t imx_uart_rxint(int irq, void *dev_id) 806 { 807 struct imx_port *sport = dev_id; 808 irqreturn_t ret; 809 810 spin_lock(&sport->port.lock); 811 812 ret = __imx_uart_rxint(irq, dev_id); 813 814 spin_unlock(&sport->port.lock); 815 816 return ret; 817 } 818 819 static void imx_uart_clear_rx_errors(struct imx_port *sport); 820 821 /* 822 * We have a modem side uart, so the meanings of RTS and CTS are inverted. 823 */ 824 static unsigned int imx_uart_get_hwmctrl(struct imx_port *sport) 825 { 826 unsigned int tmp = TIOCM_DSR; 827 unsigned usr1 = imx_uart_readl(sport, USR1); 828 unsigned usr2 = imx_uart_readl(sport, USR2); 829 830 if (usr1 & USR1_RTSS) 831 tmp |= TIOCM_CTS; 832 833 /* in DCE mode DCDIN is always 0 */ 834 if (!(usr2 & USR2_DCDIN)) 835 tmp |= TIOCM_CAR; 836 837 if (sport->dte_mode) 838 if (!(imx_uart_readl(sport, USR2) & USR2_RIIN)) 839 tmp |= TIOCM_RI; 840 841 return tmp; 842 } 843 844 /* 845 * Handle any change of modem status signal since we were last called. 846 */ 847 static void imx_uart_mctrl_check(struct imx_port *sport) 848 { 849 unsigned int status, changed; 850 851 status = imx_uart_get_hwmctrl(sport); 852 changed = status ^ sport->old_status; 853 854 if (changed == 0) 855 return; 856 857 sport->old_status = status; 858 859 if (changed & TIOCM_RI && status & TIOCM_RI) 860 sport->port.icount.rng++; 861 if (changed & TIOCM_DSR) 862 sport->port.icount.dsr++; 863 if (changed & TIOCM_CAR) 864 uart_handle_dcd_change(&sport->port, status & TIOCM_CAR); 865 if (changed & TIOCM_CTS) 866 uart_handle_cts_change(&sport->port, status & TIOCM_CTS); 867 868 wake_up_interruptible(&sport->port.state->port.delta_msr_wait); 869 } 870 871 static irqreturn_t imx_uart_int(int irq, void *dev_id) 872 { 873 struct imx_port *sport = dev_id; 874 unsigned int usr1, usr2, ucr1, ucr2, ucr3, ucr4; 875 irqreturn_t ret = IRQ_NONE; 876 877 spin_lock(&sport->port.lock); 878 879 usr1 = imx_uart_readl(sport, USR1); 880 usr2 = imx_uart_readl(sport, USR2); 881 ucr1 = imx_uart_readl(sport, UCR1); 882 ucr2 = imx_uart_readl(sport, UCR2); 883 ucr3 = imx_uart_readl(sport, UCR3); 884 ucr4 = imx_uart_readl(sport, UCR4); 885 886 /* 887 * Even if a condition is true that can trigger an irq only handle it if 888 * the respective irq source is enabled. This prevents some undesired 889 * actions, for example if a character that sits in the RX FIFO and that 890 * should be fetched via DMA is tried to be fetched using PIO. Or the 891 * receiver is currently off and so reading from URXD0 results in an 892 * exception. So just mask the (raw) status bits for disabled irqs. 893 */ 894 if ((ucr1 & UCR1_RRDYEN) == 0) 895 usr1 &= ~USR1_RRDY; 896 if ((ucr2 & UCR2_ATEN) == 0) 897 usr1 &= ~USR1_AGTIM; 898 if ((ucr1 & UCR1_TRDYEN) == 0) 899 usr1 &= ~USR1_TRDY; 900 if ((ucr4 & UCR4_TCEN) == 0) 901 usr2 &= ~USR2_TXDC; 902 if ((ucr3 & UCR3_DTRDEN) == 0) 903 usr1 &= ~USR1_DTRD; 904 if ((ucr1 & UCR1_RTSDEN) == 0) 905 usr1 &= ~USR1_RTSD; 906 if ((ucr3 & UCR3_AWAKEN) == 0) 907 usr1 &= ~USR1_AWAKE; 908 if ((ucr4 & UCR4_OREN) == 0) 909 usr2 &= ~USR2_ORE; 910 911 if (usr1 & (USR1_RRDY | USR1_AGTIM)) { 912 __imx_uart_rxint(irq, dev_id); 913 ret = IRQ_HANDLED; 914 } 915 916 if ((usr1 & USR1_TRDY) || (usr2 & USR2_TXDC)) { 917 imx_uart_transmit_buffer(sport); 918 ret = IRQ_HANDLED; 919 } 920 921 if (usr1 & USR1_DTRD) { 922 imx_uart_writel(sport, USR1_DTRD, USR1); 923 924 imx_uart_mctrl_check(sport); 925 926 ret = IRQ_HANDLED; 927 } 928 929 if (usr1 & USR1_RTSD) { 930 __imx_uart_rtsint(irq, dev_id); 931 ret = IRQ_HANDLED; 932 } 933 934 if (usr1 & USR1_AWAKE) { 935 imx_uart_writel(sport, USR1_AWAKE, USR1); 936 ret = IRQ_HANDLED; 937 } 938 939 if (usr2 & USR2_ORE) { 940 sport->port.icount.overrun++; 941 imx_uart_writel(sport, USR2_ORE, USR2); 942 ret = IRQ_HANDLED; 943 } 944 945 spin_unlock(&sport->port.lock); 946 947 return ret; 948 } 949 950 /* 951 * Return TIOCSER_TEMT when transmitter is not busy. 952 */ 953 static unsigned int imx_uart_tx_empty(struct uart_port *port) 954 { 955 struct imx_port *sport = (struct imx_port *)port; 956 unsigned int ret; 957 958 ret = (imx_uart_readl(sport, USR2) & USR2_TXDC) ? TIOCSER_TEMT : 0; 959 960 /* If the TX DMA is working, return 0. */ 961 if (sport->dma_is_txing) 962 ret = 0; 963 964 return ret; 965 } 966 967 /* called with port.lock taken and irqs off */ 968 static unsigned int imx_uart_get_mctrl(struct uart_port *port) 969 { 970 struct imx_port *sport = (struct imx_port *)port; 971 unsigned int ret = imx_uart_get_hwmctrl(sport); 972 973 mctrl_gpio_get(sport->gpios, &ret); 974 975 return ret; 976 } 977 978 /* called with port.lock taken and irqs off */ 979 static void imx_uart_set_mctrl(struct uart_port *port, unsigned int mctrl) 980 { 981 struct imx_port *sport = (struct imx_port *)port; 982 u32 ucr3, uts; 983 984 if (!(port->rs485.flags & SER_RS485_ENABLED)) { 985 u32 ucr2; 986 987 /* 988 * Turn off autoRTS if RTS is lowered and restore autoRTS 989 * setting if RTS is raised. 990 */ 991 ucr2 = imx_uart_readl(sport, UCR2); 992 ucr2 &= ~(UCR2_CTS | UCR2_CTSC); 993 if (mctrl & TIOCM_RTS) { 994 ucr2 |= UCR2_CTS; 995 /* 996 * UCR2_IRTS is unset if and only if the port is 997 * configured for CRTSCTS, so we use inverted UCR2_IRTS 998 * to get the state to restore to. 999 */ 1000 if (!(ucr2 & UCR2_IRTS)) 1001 ucr2 |= UCR2_CTSC; 1002 } 1003 imx_uart_writel(sport, ucr2, UCR2); 1004 } 1005 1006 ucr3 = imx_uart_readl(sport, UCR3) & ~UCR3_DSR; 1007 if (!(mctrl & TIOCM_DTR)) 1008 ucr3 |= UCR3_DSR; 1009 imx_uart_writel(sport, ucr3, UCR3); 1010 1011 uts = imx_uart_readl(sport, imx_uart_uts_reg(sport)) & ~UTS_LOOP; 1012 if (mctrl & TIOCM_LOOP) 1013 uts |= UTS_LOOP; 1014 imx_uart_writel(sport, uts, imx_uart_uts_reg(sport)); 1015 1016 mctrl_gpio_set(sport->gpios, mctrl); 1017 } 1018 1019 /* 1020 * Interrupts always disabled. 1021 */ 1022 static void imx_uart_break_ctl(struct uart_port *port, int break_state) 1023 { 1024 struct imx_port *sport = (struct imx_port *)port; 1025 unsigned long flags; 1026 u32 ucr1; 1027 1028 spin_lock_irqsave(&sport->port.lock, flags); 1029 1030 ucr1 = imx_uart_readl(sport, UCR1) & ~UCR1_SNDBRK; 1031 1032 if (break_state != 0) 1033 ucr1 |= UCR1_SNDBRK; 1034 1035 imx_uart_writel(sport, ucr1, UCR1); 1036 1037 spin_unlock_irqrestore(&sport->port.lock, flags); 1038 } 1039 1040 /* 1041 * This is our per-port timeout handler, for checking the 1042 * modem status signals. 1043 */ 1044 static void imx_uart_timeout(struct timer_list *t) 1045 { 1046 struct imx_port *sport = from_timer(sport, t, timer); 1047 unsigned long flags; 1048 1049 if (sport->port.state) { 1050 spin_lock_irqsave(&sport->port.lock, flags); 1051 imx_uart_mctrl_check(sport); 1052 spin_unlock_irqrestore(&sport->port.lock, flags); 1053 1054 mod_timer(&sport->timer, jiffies + MCTRL_TIMEOUT); 1055 } 1056 } 1057 1058 /* 1059 * There are two kinds of RX DMA interrupts(such as in the MX6Q): 1060 * [1] the RX DMA buffer is full. 1061 * [2] the aging timer expires 1062 * 1063 * Condition [2] is triggered when a character has been sitting in the FIFO 1064 * for at least 8 byte durations. 1065 */ 1066 static void imx_uart_dma_rx_callback(void *data) 1067 { 1068 struct imx_port *sport = data; 1069 struct dma_chan *chan = sport->dma_chan_rx; 1070 struct scatterlist *sgl = &sport->rx_sgl; 1071 struct tty_port *port = &sport->port.state->port; 1072 struct dma_tx_state state; 1073 struct circ_buf *rx_ring = &sport->rx_ring; 1074 enum dma_status status; 1075 unsigned int w_bytes = 0; 1076 unsigned int r_bytes; 1077 unsigned int bd_size; 1078 1079 status = dmaengine_tx_status(chan, sport->rx_cookie, &state); 1080 1081 if (status == DMA_ERROR) { 1082 imx_uart_clear_rx_errors(sport); 1083 return; 1084 } 1085 1086 if (!(sport->port.ignore_status_mask & URXD_DUMMY_READ)) { 1087 1088 /* 1089 * The state-residue variable represents the empty space 1090 * relative to the entire buffer. Taking this in consideration 1091 * the head is always calculated base on the buffer total 1092 * length - DMA transaction residue. The UART script from the 1093 * SDMA firmware will jump to the next buffer descriptor, 1094 * once a DMA transaction if finalized (IMX53 RM - A.4.1.2.4). 1095 * Taking this in consideration the tail is always at the 1096 * beginning of the buffer descriptor that contains the head. 1097 */ 1098 1099 /* Calculate the head */ 1100 rx_ring->head = sg_dma_len(sgl) - state.residue; 1101 1102 /* Calculate the tail. */ 1103 bd_size = sg_dma_len(sgl) / sport->rx_periods; 1104 rx_ring->tail = ((rx_ring->head-1) / bd_size) * bd_size; 1105 1106 if (rx_ring->head <= sg_dma_len(sgl) && 1107 rx_ring->head > rx_ring->tail) { 1108 1109 /* Move data from tail to head */ 1110 r_bytes = rx_ring->head - rx_ring->tail; 1111 1112 /* CPU claims ownership of RX DMA buffer */ 1113 dma_sync_sg_for_cpu(sport->port.dev, sgl, 1, 1114 DMA_FROM_DEVICE); 1115 1116 w_bytes = tty_insert_flip_string(port, 1117 sport->rx_buf + rx_ring->tail, r_bytes); 1118 1119 /* UART retrieves ownership of RX DMA buffer */ 1120 dma_sync_sg_for_device(sport->port.dev, sgl, 1, 1121 DMA_FROM_DEVICE); 1122 1123 if (w_bytes != r_bytes) 1124 sport->port.icount.buf_overrun++; 1125 1126 sport->port.icount.rx += w_bytes; 1127 } else { 1128 WARN_ON(rx_ring->head > sg_dma_len(sgl)); 1129 WARN_ON(rx_ring->head <= rx_ring->tail); 1130 } 1131 } 1132 1133 if (w_bytes) { 1134 tty_flip_buffer_push(port); 1135 dev_dbg(sport->port.dev, "We get %d bytes.\n", w_bytes); 1136 } 1137 } 1138 1139 /* RX DMA buffer periods */ 1140 #define RX_DMA_PERIODS 16 1141 #define RX_BUF_SIZE (RX_DMA_PERIODS * PAGE_SIZE / 4) 1142 1143 static int imx_uart_start_rx_dma(struct imx_port *sport) 1144 { 1145 struct scatterlist *sgl = &sport->rx_sgl; 1146 struct dma_chan *chan = sport->dma_chan_rx; 1147 struct device *dev = sport->port.dev; 1148 struct dma_async_tx_descriptor *desc; 1149 int ret; 1150 1151 sport->rx_ring.head = 0; 1152 sport->rx_ring.tail = 0; 1153 sport->rx_periods = RX_DMA_PERIODS; 1154 1155 sg_init_one(sgl, sport->rx_buf, RX_BUF_SIZE); 1156 ret = dma_map_sg(dev, sgl, 1, DMA_FROM_DEVICE); 1157 if (ret == 0) { 1158 dev_err(dev, "DMA mapping error for RX.\n"); 1159 return -EINVAL; 1160 } 1161 1162 desc = dmaengine_prep_dma_cyclic(chan, sg_dma_address(sgl), 1163 sg_dma_len(sgl), sg_dma_len(sgl) / sport->rx_periods, 1164 DMA_DEV_TO_MEM, DMA_PREP_INTERRUPT); 1165 1166 if (!desc) { 1167 dma_unmap_sg(dev, sgl, 1, DMA_FROM_DEVICE); 1168 dev_err(dev, "We cannot prepare for the RX slave dma!\n"); 1169 return -EINVAL; 1170 } 1171 desc->callback = imx_uart_dma_rx_callback; 1172 desc->callback_param = sport; 1173 1174 dev_dbg(dev, "RX: prepare for the DMA.\n"); 1175 sport->dma_is_rxing = 1; 1176 sport->rx_cookie = dmaengine_submit(desc); 1177 dma_async_issue_pending(chan); 1178 return 0; 1179 } 1180 1181 static void imx_uart_clear_rx_errors(struct imx_port *sport) 1182 { 1183 struct tty_port *port = &sport->port.state->port; 1184 u32 usr1, usr2; 1185 1186 usr1 = imx_uart_readl(sport, USR1); 1187 usr2 = imx_uart_readl(sport, USR2); 1188 1189 if (usr2 & USR2_BRCD) { 1190 sport->port.icount.brk++; 1191 imx_uart_writel(sport, USR2_BRCD, USR2); 1192 uart_handle_break(&sport->port); 1193 if (tty_insert_flip_char(port, 0, TTY_BREAK) == 0) 1194 sport->port.icount.buf_overrun++; 1195 tty_flip_buffer_push(port); 1196 } else { 1197 if (usr1 & USR1_FRAMERR) { 1198 sport->port.icount.frame++; 1199 imx_uart_writel(sport, USR1_FRAMERR, USR1); 1200 } else if (usr1 & USR1_PARITYERR) { 1201 sport->port.icount.parity++; 1202 imx_uart_writel(sport, USR1_PARITYERR, USR1); 1203 } 1204 } 1205 1206 if (usr2 & USR2_ORE) { 1207 sport->port.icount.overrun++; 1208 imx_uart_writel(sport, USR2_ORE, USR2); 1209 } 1210 1211 } 1212 1213 #define TXTL_DEFAULT 2 /* reset default */ 1214 #define RXTL_DEFAULT 1 /* reset default */ 1215 #define TXTL_DMA 8 /* DMA burst setting */ 1216 #define RXTL_DMA 9 /* DMA burst setting */ 1217 1218 static void imx_uart_setup_ufcr(struct imx_port *sport, 1219 unsigned char txwl, unsigned char rxwl) 1220 { 1221 unsigned int val; 1222 1223 /* set receiver / transmitter trigger level */ 1224 val = imx_uart_readl(sport, UFCR) & (UFCR_RFDIV | UFCR_DCEDTE); 1225 val |= txwl << UFCR_TXTL_SHF | rxwl; 1226 imx_uart_writel(sport, val, UFCR); 1227 } 1228 1229 static void imx_uart_dma_exit(struct imx_port *sport) 1230 { 1231 if (sport->dma_chan_rx) { 1232 dmaengine_terminate_sync(sport->dma_chan_rx); 1233 dma_release_channel(sport->dma_chan_rx); 1234 sport->dma_chan_rx = NULL; 1235 sport->rx_cookie = -EINVAL; 1236 kfree(sport->rx_buf); 1237 sport->rx_buf = NULL; 1238 } 1239 1240 if (sport->dma_chan_tx) { 1241 dmaengine_terminate_sync(sport->dma_chan_tx); 1242 dma_release_channel(sport->dma_chan_tx); 1243 sport->dma_chan_tx = NULL; 1244 } 1245 } 1246 1247 static int imx_uart_dma_init(struct imx_port *sport) 1248 { 1249 struct dma_slave_config slave_config = {}; 1250 struct device *dev = sport->port.dev; 1251 int ret; 1252 1253 /* Prepare for RX : */ 1254 sport->dma_chan_rx = dma_request_slave_channel(dev, "rx"); 1255 if (!sport->dma_chan_rx) { 1256 dev_dbg(dev, "cannot get the DMA channel.\n"); 1257 ret = -EINVAL; 1258 goto err; 1259 } 1260 1261 slave_config.direction = DMA_DEV_TO_MEM; 1262 slave_config.src_addr = sport->port.mapbase + URXD0; 1263 slave_config.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE; 1264 /* one byte less than the watermark level to enable the aging timer */ 1265 slave_config.src_maxburst = RXTL_DMA - 1; 1266 ret = dmaengine_slave_config(sport->dma_chan_rx, &slave_config); 1267 if (ret) { 1268 dev_err(dev, "error in RX dma configuration.\n"); 1269 goto err; 1270 } 1271 1272 sport->rx_buf = kzalloc(RX_BUF_SIZE, GFP_KERNEL); 1273 if (!sport->rx_buf) { 1274 ret = -ENOMEM; 1275 goto err; 1276 } 1277 sport->rx_ring.buf = sport->rx_buf; 1278 1279 /* Prepare for TX : */ 1280 sport->dma_chan_tx = dma_request_slave_channel(dev, "tx"); 1281 if (!sport->dma_chan_tx) { 1282 dev_err(dev, "cannot get the TX DMA channel!\n"); 1283 ret = -EINVAL; 1284 goto err; 1285 } 1286 1287 slave_config.direction = DMA_MEM_TO_DEV; 1288 slave_config.dst_addr = sport->port.mapbase + URTX0; 1289 slave_config.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE; 1290 slave_config.dst_maxburst = TXTL_DMA; 1291 ret = dmaengine_slave_config(sport->dma_chan_tx, &slave_config); 1292 if (ret) { 1293 dev_err(dev, "error in TX dma configuration."); 1294 goto err; 1295 } 1296 1297 return 0; 1298 err: 1299 imx_uart_dma_exit(sport); 1300 return ret; 1301 } 1302 1303 static void imx_uart_enable_dma(struct imx_port *sport) 1304 { 1305 u32 ucr1; 1306 1307 imx_uart_setup_ufcr(sport, TXTL_DMA, RXTL_DMA); 1308 1309 /* set UCR1 */ 1310 ucr1 = imx_uart_readl(sport, UCR1); 1311 ucr1 |= UCR1_RXDMAEN | UCR1_TXDMAEN | UCR1_ATDMAEN; 1312 imx_uart_writel(sport, ucr1, UCR1); 1313 1314 sport->dma_is_enabled = 1; 1315 } 1316 1317 static void imx_uart_disable_dma(struct imx_port *sport) 1318 { 1319 u32 ucr1; 1320 1321 /* clear UCR1 */ 1322 ucr1 = imx_uart_readl(sport, UCR1); 1323 ucr1 &= ~(UCR1_RXDMAEN | UCR1_TXDMAEN | UCR1_ATDMAEN); 1324 imx_uart_writel(sport, ucr1, UCR1); 1325 1326 imx_uart_setup_ufcr(sport, TXTL_DEFAULT, RXTL_DEFAULT); 1327 1328 sport->dma_is_enabled = 0; 1329 } 1330 1331 /* half the RX buffer size */ 1332 #define CTSTL 16 1333 1334 static int imx_uart_startup(struct uart_port *port) 1335 { 1336 struct imx_port *sport = (struct imx_port *)port; 1337 int retval, i; 1338 unsigned long flags; 1339 int dma_is_inited = 0; 1340 u32 ucr1, ucr2, ucr3, ucr4; 1341 1342 retval = clk_prepare_enable(sport->clk_per); 1343 if (retval) 1344 return retval; 1345 retval = clk_prepare_enable(sport->clk_ipg); 1346 if (retval) { 1347 clk_disable_unprepare(sport->clk_per); 1348 return retval; 1349 } 1350 1351 imx_uart_setup_ufcr(sport, TXTL_DEFAULT, RXTL_DEFAULT); 1352 1353 /* disable the DREN bit (Data Ready interrupt enable) before 1354 * requesting IRQs 1355 */ 1356 ucr4 = imx_uart_readl(sport, UCR4); 1357 1358 /* set the trigger level for CTS */ 1359 ucr4 &= ~(UCR4_CTSTL_MASK << UCR4_CTSTL_SHF); 1360 ucr4 |= CTSTL << UCR4_CTSTL_SHF; 1361 1362 imx_uart_writel(sport, ucr4 & ~UCR4_DREN, UCR4); 1363 1364 /* Can we enable the DMA support? */ 1365 if (!uart_console(port) && imx_uart_dma_init(sport) == 0) 1366 dma_is_inited = 1; 1367 1368 spin_lock_irqsave(&sport->port.lock, flags); 1369 /* Reset fifo's and state machines */ 1370 i = 100; 1371 1372 ucr2 = imx_uart_readl(sport, UCR2); 1373 ucr2 &= ~UCR2_SRST; 1374 imx_uart_writel(sport, ucr2, UCR2); 1375 1376 while (!(imx_uart_readl(sport, UCR2) & UCR2_SRST) && (--i > 0)) 1377 udelay(1); 1378 1379 /* 1380 * Finally, clear and enable interrupts 1381 */ 1382 imx_uart_writel(sport, USR1_RTSD | USR1_DTRD, USR1); 1383 imx_uart_writel(sport, USR2_ORE, USR2); 1384 1385 ucr1 = imx_uart_readl(sport, UCR1) & ~UCR1_RRDYEN; 1386 ucr1 |= UCR1_UARTEN; 1387 if (sport->have_rtscts) 1388 ucr1 |= UCR1_RTSDEN; 1389 1390 imx_uart_writel(sport, ucr1, UCR1); 1391 1392 ucr4 = imx_uart_readl(sport, UCR4) & ~(UCR4_OREN | UCR4_INVR); 1393 if (!sport->dma_is_enabled) 1394 ucr4 |= UCR4_OREN; 1395 if (sport->inverted_rx) 1396 ucr4 |= UCR4_INVR; 1397 imx_uart_writel(sport, ucr4, UCR4); 1398 1399 ucr3 = imx_uart_readl(sport, UCR3) & ~UCR3_INVT; 1400 /* 1401 * configure tx polarity before enabling tx 1402 */ 1403 if (sport->inverted_tx) 1404 ucr3 |= UCR3_INVT; 1405 1406 if (!imx_uart_is_imx1(sport)) { 1407 ucr3 |= UCR3_DTRDEN | UCR3_RI | UCR3_DCD; 1408 1409 if (sport->dte_mode) 1410 /* disable broken interrupts */ 1411 ucr3 &= ~(UCR3_RI | UCR3_DCD); 1412 } 1413 imx_uart_writel(sport, ucr3, UCR3); 1414 1415 ucr2 = imx_uart_readl(sport, UCR2) & ~UCR2_ATEN; 1416 ucr2 |= (UCR2_RXEN | UCR2_TXEN); 1417 if (!sport->have_rtscts) 1418 ucr2 |= UCR2_IRTS; 1419 /* 1420 * make sure the edge sensitive RTS-irq is disabled, 1421 * we're using RTSD instead. 1422 */ 1423 if (!imx_uart_is_imx1(sport)) 1424 ucr2 &= ~UCR2_RTSEN; 1425 imx_uart_writel(sport, ucr2, UCR2); 1426 1427 /* 1428 * Enable modem status interrupts 1429 */ 1430 imx_uart_enable_ms(&sport->port); 1431 1432 if (dma_is_inited) { 1433 imx_uart_enable_dma(sport); 1434 imx_uart_start_rx_dma(sport); 1435 } else { 1436 ucr1 = imx_uart_readl(sport, UCR1); 1437 ucr1 |= UCR1_RRDYEN; 1438 imx_uart_writel(sport, ucr1, UCR1); 1439 1440 ucr2 = imx_uart_readl(sport, UCR2); 1441 ucr2 |= UCR2_ATEN; 1442 imx_uart_writel(sport, ucr2, UCR2); 1443 } 1444 1445 spin_unlock_irqrestore(&sport->port.lock, flags); 1446 1447 return 0; 1448 } 1449 1450 static void imx_uart_shutdown(struct uart_port *port) 1451 { 1452 struct imx_port *sport = (struct imx_port *)port; 1453 unsigned long flags; 1454 u32 ucr1, ucr2, ucr4; 1455 1456 if (sport->dma_is_enabled) { 1457 dmaengine_terminate_sync(sport->dma_chan_tx); 1458 if (sport->dma_is_txing) { 1459 dma_unmap_sg(sport->port.dev, &sport->tx_sgl[0], 1460 sport->dma_tx_nents, DMA_TO_DEVICE); 1461 sport->dma_is_txing = 0; 1462 } 1463 dmaengine_terminate_sync(sport->dma_chan_rx); 1464 if (sport->dma_is_rxing) { 1465 dma_unmap_sg(sport->port.dev, &sport->rx_sgl, 1466 1, DMA_FROM_DEVICE); 1467 sport->dma_is_rxing = 0; 1468 } 1469 1470 spin_lock_irqsave(&sport->port.lock, flags); 1471 imx_uart_stop_tx(port); 1472 imx_uart_stop_rx(port); 1473 imx_uart_disable_dma(sport); 1474 spin_unlock_irqrestore(&sport->port.lock, flags); 1475 imx_uart_dma_exit(sport); 1476 } 1477 1478 mctrl_gpio_disable_ms(sport->gpios); 1479 1480 spin_lock_irqsave(&sport->port.lock, flags); 1481 ucr2 = imx_uart_readl(sport, UCR2); 1482 ucr2 &= ~(UCR2_TXEN | UCR2_ATEN); 1483 imx_uart_writel(sport, ucr2, UCR2); 1484 1485 ucr4 = imx_uart_readl(sport, UCR4); 1486 ucr4 &= ~UCR4_OREN; 1487 imx_uart_writel(sport, ucr4, UCR4); 1488 spin_unlock_irqrestore(&sport->port.lock, flags); 1489 1490 /* 1491 * Stop our timer. 1492 */ 1493 del_timer_sync(&sport->timer); 1494 1495 /* 1496 * Disable all interrupts, port and break condition. 1497 */ 1498 1499 spin_lock_irqsave(&sport->port.lock, flags); 1500 ucr1 = imx_uart_readl(sport, UCR1); 1501 ucr1 &= ~(UCR1_TRDYEN | UCR1_RRDYEN | UCR1_RTSDEN | UCR1_UARTEN | UCR1_RXDMAEN | UCR1_ATDMAEN); 1502 1503 imx_uart_writel(sport, ucr1, UCR1); 1504 spin_unlock_irqrestore(&sport->port.lock, flags); 1505 1506 clk_disable_unprepare(sport->clk_per); 1507 clk_disable_unprepare(sport->clk_ipg); 1508 } 1509 1510 /* called with port.lock taken and irqs off */ 1511 static void imx_uart_flush_buffer(struct uart_port *port) 1512 { 1513 struct imx_port *sport = (struct imx_port *)port; 1514 struct scatterlist *sgl = &sport->tx_sgl[0]; 1515 u32 ucr2; 1516 int i = 100, ubir, ubmr, uts; 1517 1518 if (!sport->dma_chan_tx) 1519 return; 1520 1521 sport->tx_bytes = 0; 1522 dmaengine_terminate_all(sport->dma_chan_tx); 1523 if (sport->dma_is_txing) { 1524 u32 ucr1; 1525 1526 dma_unmap_sg(sport->port.dev, sgl, sport->dma_tx_nents, 1527 DMA_TO_DEVICE); 1528 ucr1 = imx_uart_readl(sport, UCR1); 1529 ucr1 &= ~UCR1_TXDMAEN; 1530 imx_uart_writel(sport, ucr1, UCR1); 1531 sport->dma_is_txing = 0; 1532 } 1533 1534 /* 1535 * According to the Reference Manual description of the UART SRST bit: 1536 * 1537 * "Reset the transmit and receive state machines, 1538 * all FIFOs and register USR1, USR2, UBIR, UBMR, UBRC, URXD, UTXD 1539 * and UTS[6-3]". 1540 * 1541 * We don't need to restore the old values from USR1, USR2, URXD and 1542 * UTXD. UBRC is read only, so only save/restore the other three 1543 * registers. 1544 */ 1545 ubir = imx_uart_readl(sport, UBIR); 1546 ubmr = imx_uart_readl(sport, UBMR); 1547 uts = imx_uart_readl(sport, IMX21_UTS); 1548 1549 ucr2 = imx_uart_readl(sport, UCR2); 1550 ucr2 &= ~UCR2_SRST; 1551 imx_uart_writel(sport, ucr2, UCR2); 1552 1553 while (!(imx_uart_readl(sport, UCR2) & UCR2_SRST) && (--i > 0)) 1554 udelay(1); 1555 1556 /* Restore the registers */ 1557 imx_uart_writel(sport, ubir, UBIR); 1558 imx_uart_writel(sport, ubmr, UBMR); 1559 imx_uart_writel(sport, uts, IMX21_UTS); 1560 } 1561 1562 static void 1563 imx_uart_set_termios(struct uart_port *port, struct ktermios *termios, 1564 struct ktermios *old) 1565 { 1566 struct imx_port *sport = (struct imx_port *)port; 1567 unsigned long flags; 1568 u32 ucr2, old_ucr2, ufcr; 1569 unsigned int baud, quot; 1570 unsigned int old_csize = old ? old->c_cflag & CSIZE : CS8; 1571 unsigned long div; 1572 unsigned long num, denom, old_ubir, old_ubmr; 1573 uint64_t tdiv64; 1574 1575 /* 1576 * We only support CS7 and CS8. 1577 */ 1578 while ((termios->c_cflag & CSIZE) != CS7 && 1579 (termios->c_cflag & CSIZE) != CS8) { 1580 termios->c_cflag &= ~CSIZE; 1581 termios->c_cflag |= old_csize; 1582 old_csize = CS8; 1583 } 1584 1585 del_timer_sync(&sport->timer); 1586 1587 /* 1588 * Ask the core to calculate the divisor for us. 1589 */ 1590 baud = uart_get_baud_rate(port, termios, old, 50, port->uartclk / 16); 1591 quot = uart_get_divisor(port, baud); 1592 1593 spin_lock_irqsave(&sport->port.lock, flags); 1594 1595 /* 1596 * Read current UCR2 and save it for future use, then clear all the bits 1597 * except those we will or may need to preserve. 1598 */ 1599 old_ucr2 = imx_uart_readl(sport, UCR2); 1600 ucr2 = old_ucr2 & (UCR2_TXEN | UCR2_RXEN | UCR2_ATEN | UCR2_CTS); 1601 1602 ucr2 |= UCR2_SRST | UCR2_IRTS; 1603 if ((termios->c_cflag & CSIZE) == CS8) 1604 ucr2 |= UCR2_WS; 1605 1606 if (!sport->have_rtscts) 1607 termios->c_cflag &= ~CRTSCTS; 1608 1609 if (port->rs485.flags & SER_RS485_ENABLED) { 1610 /* 1611 * RTS is mandatory for rs485 operation, so keep 1612 * it under manual control and keep transmitter 1613 * disabled. 1614 */ 1615 if (port->rs485.flags & SER_RS485_RTS_AFTER_SEND) 1616 imx_uart_rts_active(sport, &ucr2); 1617 else 1618 imx_uart_rts_inactive(sport, &ucr2); 1619 1620 } else if (termios->c_cflag & CRTSCTS) { 1621 /* 1622 * Only let receiver control RTS output if we were not requested 1623 * to have RTS inactive (which then should take precedence). 1624 */ 1625 if (ucr2 & UCR2_CTS) 1626 ucr2 |= UCR2_CTSC; 1627 } 1628 1629 if (termios->c_cflag & CRTSCTS) 1630 ucr2 &= ~UCR2_IRTS; 1631 1632 if (termios->c_cflag & CSTOPB) 1633 ucr2 |= UCR2_STPB; 1634 if (termios->c_cflag & PARENB) { 1635 ucr2 |= UCR2_PREN; 1636 if (termios->c_cflag & PARODD) 1637 ucr2 |= UCR2_PROE; 1638 } 1639 1640 sport->port.read_status_mask = 0; 1641 if (termios->c_iflag & INPCK) 1642 sport->port.read_status_mask |= (URXD_FRMERR | URXD_PRERR); 1643 if (termios->c_iflag & (BRKINT | PARMRK)) 1644 sport->port.read_status_mask |= URXD_BRK; 1645 1646 /* 1647 * Characters to ignore 1648 */ 1649 sport->port.ignore_status_mask = 0; 1650 if (termios->c_iflag & IGNPAR) 1651 sport->port.ignore_status_mask |= URXD_PRERR | URXD_FRMERR; 1652 if (termios->c_iflag & IGNBRK) { 1653 sport->port.ignore_status_mask |= URXD_BRK; 1654 /* 1655 * If we're ignoring parity and break indicators, 1656 * ignore overruns too (for real raw support). 1657 */ 1658 if (termios->c_iflag & IGNPAR) 1659 sport->port.ignore_status_mask |= URXD_OVRRUN; 1660 } 1661 1662 if ((termios->c_cflag & CREAD) == 0) 1663 sport->port.ignore_status_mask |= URXD_DUMMY_READ; 1664 1665 /* 1666 * Update the per-port timeout. 1667 */ 1668 uart_update_timeout(port, termios->c_cflag, baud); 1669 1670 /* custom-baudrate handling */ 1671 div = sport->port.uartclk / (baud * 16); 1672 if (baud == 38400 && quot != div) 1673 baud = sport->port.uartclk / (quot * 16); 1674 1675 div = sport->port.uartclk / (baud * 16); 1676 if (div > 7) 1677 div = 7; 1678 if (!div) 1679 div = 1; 1680 1681 rational_best_approximation(16 * div * baud, sport->port.uartclk, 1682 1 << 16, 1 << 16, &num, &denom); 1683 1684 tdiv64 = sport->port.uartclk; 1685 tdiv64 *= num; 1686 do_div(tdiv64, denom * 16 * div); 1687 tty_termios_encode_baud_rate(termios, 1688 (speed_t)tdiv64, (speed_t)tdiv64); 1689 1690 num -= 1; 1691 denom -= 1; 1692 1693 ufcr = imx_uart_readl(sport, UFCR); 1694 ufcr = (ufcr & (~UFCR_RFDIV)) | UFCR_RFDIV_REG(div); 1695 imx_uart_writel(sport, ufcr, UFCR); 1696 1697 /* 1698 * Two registers below should always be written both and in this 1699 * particular order. One consequence is that we need to check if any of 1700 * them changes and then update both. We do need the check for change 1701 * as even writing the same values seem to "restart" 1702 * transmission/receiving logic in the hardware, that leads to data 1703 * breakage even when rate doesn't in fact change. E.g., user switches 1704 * RTS/CTS handshake and suddenly gets broken bytes. 1705 */ 1706 old_ubir = imx_uart_readl(sport, UBIR); 1707 old_ubmr = imx_uart_readl(sport, UBMR); 1708 if (old_ubir != num || old_ubmr != denom) { 1709 imx_uart_writel(sport, num, UBIR); 1710 imx_uart_writel(sport, denom, UBMR); 1711 } 1712 1713 if (!imx_uart_is_imx1(sport)) 1714 imx_uart_writel(sport, sport->port.uartclk / div / 1000, 1715 IMX21_ONEMS); 1716 1717 imx_uart_writel(sport, ucr2, UCR2); 1718 1719 if (UART_ENABLE_MS(&sport->port, termios->c_cflag)) 1720 imx_uart_enable_ms(&sport->port); 1721 1722 spin_unlock_irqrestore(&sport->port.lock, flags); 1723 } 1724 1725 static const char *imx_uart_type(struct uart_port *port) 1726 { 1727 struct imx_port *sport = (struct imx_port *)port; 1728 1729 return sport->port.type == PORT_IMX ? "IMX" : NULL; 1730 } 1731 1732 /* 1733 * Configure/autoconfigure the port. 1734 */ 1735 static void imx_uart_config_port(struct uart_port *port, int flags) 1736 { 1737 struct imx_port *sport = (struct imx_port *)port; 1738 1739 if (flags & UART_CONFIG_TYPE) 1740 sport->port.type = PORT_IMX; 1741 } 1742 1743 /* 1744 * Verify the new serial_struct (for TIOCSSERIAL). 1745 * The only change we allow are to the flags and type, and 1746 * even then only between PORT_IMX and PORT_UNKNOWN 1747 */ 1748 static int 1749 imx_uart_verify_port(struct uart_port *port, struct serial_struct *ser) 1750 { 1751 struct imx_port *sport = (struct imx_port *)port; 1752 int ret = 0; 1753 1754 if (ser->type != PORT_UNKNOWN && ser->type != PORT_IMX) 1755 ret = -EINVAL; 1756 if (sport->port.irq != ser->irq) 1757 ret = -EINVAL; 1758 if (ser->io_type != UPIO_MEM) 1759 ret = -EINVAL; 1760 if (sport->port.uartclk / 16 != ser->baud_base) 1761 ret = -EINVAL; 1762 if (sport->port.mapbase != (unsigned long)ser->iomem_base) 1763 ret = -EINVAL; 1764 if (sport->port.iobase != ser->port) 1765 ret = -EINVAL; 1766 if (ser->hub6 != 0) 1767 ret = -EINVAL; 1768 return ret; 1769 } 1770 1771 #if defined(CONFIG_CONSOLE_POLL) 1772 1773 static int imx_uart_poll_init(struct uart_port *port) 1774 { 1775 struct imx_port *sport = (struct imx_port *)port; 1776 unsigned long flags; 1777 u32 ucr1, ucr2; 1778 int retval; 1779 1780 retval = clk_prepare_enable(sport->clk_ipg); 1781 if (retval) 1782 return retval; 1783 retval = clk_prepare_enable(sport->clk_per); 1784 if (retval) 1785 clk_disable_unprepare(sport->clk_ipg); 1786 1787 imx_uart_setup_ufcr(sport, TXTL_DEFAULT, RXTL_DEFAULT); 1788 1789 spin_lock_irqsave(&sport->port.lock, flags); 1790 1791 /* 1792 * Be careful about the order of enabling bits here. First enable the 1793 * receiver (UARTEN + RXEN) and only then the corresponding irqs. 1794 * This prevents that a character that already sits in the RX fifo is 1795 * triggering an irq but the try to fetch it from there results in an 1796 * exception because UARTEN or RXEN is still off. 1797 */ 1798 ucr1 = imx_uart_readl(sport, UCR1); 1799 ucr2 = imx_uart_readl(sport, UCR2); 1800 1801 if (imx_uart_is_imx1(sport)) 1802 ucr1 |= IMX1_UCR1_UARTCLKEN; 1803 1804 ucr1 |= UCR1_UARTEN; 1805 ucr1 &= ~(UCR1_TRDYEN | UCR1_RTSDEN | UCR1_RRDYEN); 1806 1807 ucr2 |= UCR2_RXEN; 1808 ucr2 &= ~UCR2_ATEN; 1809 1810 imx_uart_writel(sport, ucr1, UCR1); 1811 imx_uart_writel(sport, ucr2, UCR2); 1812 1813 /* now enable irqs */ 1814 imx_uart_writel(sport, ucr1 | UCR1_RRDYEN, UCR1); 1815 imx_uart_writel(sport, ucr2 | UCR2_ATEN, UCR2); 1816 1817 spin_unlock_irqrestore(&sport->port.lock, flags); 1818 1819 return 0; 1820 } 1821 1822 static int imx_uart_poll_get_char(struct uart_port *port) 1823 { 1824 struct imx_port *sport = (struct imx_port *)port; 1825 if (!(imx_uart_readl(sport, USR2) & USR2_RDR)) 1826 return NO_POLL_CHAR; 1827 1828 return imx_uart_readl(sport, URXD0) & URXD_RX_DATA; 1829 } 1830 1831 static void imx_uart_poll_put_char(struct uart_port *port, unsigned char c) 1832 { 1833 struct imx_port *sport = (struct imx_port *)port; 1834 unsigned int status; 1835 1836 /* drain */ 1837 do { 1838 status = imx_uart_readl(sport, USR1); 1839 } while (~status & USR1_TRDY); 1840 1841 /* write */ 1842 imx_uart_writel(sport, c, URTX0); 1843 1844 /* flush */ 1845 do { 1846 status = imx_uart_readl(sport, USR2); 1847 } while (~status & USR2_TXDC); 1848 } 1849 #endif 1850 1851 /* called with port.lock taken and irqs off or from .probe without locking */ 1852 static int imx_uart_rs485_config(struct uart_port *port, 1853 struct serial_rs485 *rs485conf) 1854 { 1855 struct imx_port *sport = (struct imx_port *)port; 1856 u32 ucr2; 1857 1858 /* unimplemented */ 1859 rs485conf->delay_rts_before_send = 0; 1860 rs485conf->delay_rts_after_send = 0; 1861 1862 /* RTS is required to control the transmitter */ 1863 if (!sport->have_rtscts && !sport->have_rtsgpio) 1864 rs485conf->flags &= ~SER_RS485_ENABLED; 1865 1866 if (rs485conf->flags & SER_RS485_ENABLED) { 1867 /* Enable receiver if low-active RTS signal is requested */ 1868 if (sport->have_rtscts && !sport->have_rtsgpio && 1869 !(rs485conf->flags & SER_RS485_RTS_ON_SEND)) 1870 rs485conf->flags |= SER_RS485_RX_DURING_TX; 1871 1872 /* disable transmitter */ 1873 ucr2 = imx_uart_readl(sport, UCR2); 1874 if (rs485conf->flags & SER_RS485_RTS_AFTER_SEND) 1875 imx_uart_rts_active(sport, &ucr2); 1876 else 1877 imx_uart_rts_inactive(sport, &ucr2); 1878 imx_uart_writel(sport, ucr2, UCR2); 1879 } 1880 1881 /* Make sure Rx is enabled in case Tx is active with Rx disabled */ 1882 if (!(rs485conf->flags & SER_RS485_ENABLED) || 1883 rs485conf->flags & SER_RS485_RX_DURING_TX) 1884 imx_uart_start_rx(port); 1885 1886 port->rs485 = *rs485conf; 1887 1888 return 0; 1889 } 1890 1891 static const struct uart_ops imx_uart_pops = { 1892 .tx_empty = imx_uart_tx_empty, 1893 .set_mctrl = imx_uart_set_mctrl, 1894 .get_mctrl = imx_uart_get_mctrl, 1895 .stop_tx = imx_uart_stop_tx, 1896 .start_tx = imx_uart_start_tx, 1897 .stop_rx = imx_uart_stop_rx, 1898 .enable_ms = imx_uart_enable_ms, 1899 .break_ctl = imx_uart_break_ctl, 1900 .startup = imx_uart_startup, 1901 .shutdown = imx_uart_shutdown, 1902 .flush_buffer = imx_uart_flush_buffer, 1903 .set_termios = imx_uart_set_termios, 1904 .type = imx_uart_type, 1905 .config_port = imx_uart_config_port, 1906 .verify_port = imx_uart_verify_port, 1907 #if defined(CONFIG_CONSOLE_POLL) 1908 .poll_init = imx_uart_poll_init, 1909 .poll_get_char = imx_uart_poll_get_char, 1910 .poll_put_char = imx_uart_poll_put_char, 1911 #endif 1912 }; 1913 1914 static struct imx_port *imx_uart_ports[UART_NR]; 1915 1916 #ifdef CONFIG_SERIAL_IMX_CONSOLE 1917 static void imx_uart_console_putchar(struct uart_port *port, int ch) 1918 { 1919 struct imx_port *sport = (struct imx_port *)port; 1920 1921 while (imx_uart_readl(sport, imx_uart_uts_reg(sport)) & UTS_TXFULL) 1922 barrier(); 1923 1924 imx_uart_writel(sport, ch, URTX0); 1925 } 1926 1927 /* 1928 * Interrupts are disabled on entering 1929 */ 1930 static void 1931 imx_uart_console_write(struct console *co, const char *s, unsigned int count) 1932 { 1933 struct imx_port *sport = imx_uart_ports[co->index]; 1934 struct imx_port_ucrs old_ucr; 1935 unsigned int ucr1; 1936 unsigned long flags = 0; 1937 int locked = 1; 1938 int retval; 1939 1940 retval = clk_enable(sport->clk_per); 1941 if (retval) 1942 return; 1943 retval = clk_enable(sport->clk_ipg); 1944 if (retval) { 1945 clk_disable(sport->clk_per); 1946 return; 1947 } 1948 1949 if (sport->port.sysrq) 1950 locked = 0; 1951 else if (oops_in_progress) 1952 locked = spin_trylock_irqsave(&sport->port.lock, flags); 1953 else 1954 spin_lock_irqsave(&sport->port.lock, flags); 1955 1956 /* 1957 * First, save UCR1/2/3 and then disable interrupts 1958 */ 1959 imx_uart_ucrs_save(sport, &old_ucr); 1960 ucr1 = old_ucr.ucr1; 1961 1962 if (imx_uart_is_imx1(sport)) 1963 ucr1 |= IMX1_UCR1_UARTCLKEN; 1964 ucr1 |= UCR1_UARTEN; 1965 ucr1 &= ~(UCR1_TRDYEN | UCR1_RRDYEN | UCR1_RTSDEN); 1966 1967 imx_uart_writel(sport, ucr1, UCR1); 1968 1969 imx_uart_writel(sport, old_ucr.ucr2 | UCR2_TXEN, UCR2); 1970 1971 uart_console_write(&sport->port, s, count, imx_uart_console_putchar); 1972 1973 /* 1974 * Finally, wait for transmitter to become empty 1975 * and restore UCR1/2/3 1976 */ 1977 while (!(imx_uart_readl(sport, USR2) & USR2_TXDC)); 1978 1979 imx_uart_ucrs_restore(sport, &old_ucr); 1980 1981 if (locked) 1982 spin_unlock_irqrestore(&sport->port.lock, flags); 1983 1984 clk_disable(sport->clk_ipg); 1985 clk_disable(sport->clk_per); 1986 } 1987 1988 /* 1989 * If the port was already initialised (eg, by a boot loader), 1990 * try to determine the current setup. 1991 */ 1992 static void __init 1993 imx_uart_console_get_options(struct imx_port *sport, int *baud, 1994 int *parity, int *bits) 1995 { 1996 1997 if (imx_uart_readl(sport, UCR1) & UCR1_UARTEN) { 1998 /* ok, the port was enabled */ 1999 unsigned int ucr2, ubir, ubmr, uartclk; 2000 unsigned int baud_raw; 2001 unsigned int ucfr_rfdiv; 2002 2003 ucr2 = imx_uart_readl(sport, UCR2); 2004 2005 *parity = 'n'; 2006 if (ucr2 & UCR2_PREN) { 2007 if (ucr2 & UCR2_PROE) 2008 *parity = 'o'; 2009 else 2010 *parity = 'e'; 2011 } 2012 2013 if (ucr2 & UCR2_WS) 2014 *bits = 8; 2015 else 2016 *bits = 7; 2017 2018 ubir = imx_uart_readl(sport, UBIR) & 0xffff; 2019 ubmr = imx_uart_readl(sport, UBMR) & 0xffff; 2020 2021 ucfr_rfdiv = (imx_uart_readl(sport, UFCR) & UFCR_RFDIV) >> 7; 2022 if (ucfr_rfdiv == 6) 2023 ucfr_rfdiv = 7; 2024 else 2025 ucfr_rfdiv = 6 - ucfr_rfdiv; 2026 2027 uartclk = clk_get_rate(sport->clk_per); 2028 uartclk /= ucfr_rfdiv; 2029 2030 { /* 2031 * The next code provides exact computation of 2032 * baud_raw = round(((uartclk/16) * (ubir + 1)) / (ubmr + 1)) 2033 * without need of float support or long long division, 2034 * which would be required to prevent 32bit arithmetic overflow 2035 */ 2036 unsigned int mul = ubir + 1; 2037 unsigned int div = 16 * (ubmr + 1); 2038 unsigned int rem = uartclk % div; 2039 2040 baud_raw = (uartclk / div) * mul; 2041 baud_raw += (rem * mul + div / 2) / div; 2042 *baud = (baud_raw + 50) / 100 * 100; 2043 } 2044 2045 if (*baud != baud_raw) 2046 dev_info(sport->port.dev, "Console IMX rounded baud rate from %d to %d\n", 2047 baud_raw, *baud); 2048 } 2049 } 2050 2051 static int __init 2052 imx_uart_console_setup(struct console *co, char *options) 2053 { 2054 struct imx_port *sport; 2055 int baud = 9600; 2056 int bits = 8; 2057 int parity = 'n'; 2058 int flow = 'n'; 2059 int retval; 2060 2061 /* 2062 * Check whether an invalid uart number has been specified, and 2063 * if so, search for the first available port that does have 2064 * console support. 2065 */ 2066 if (co->index == -1 || co->index >= ARRAY_SIZE(imx_uart_ports)) 2067 co->index = 0; 2068 sport = imx_uart_ports[co->index]; 2069 if (sport == NULL) 2070 return -ENODEV; 2071 2072 /* For setting the registers, we only need to enable the ipg clock. */ 2073 retval = clk_prepare_enable(sport->clk_ipg); 2074 if (retval) 2075 goto error_console; 2076 2077 if (options) 2078 uart_parse_options(options, &baud, &parity, &bits, &flow); 2079 else 2080 imx_uart_console_get_options(sport, &baud, &parity, &bits); 2081 2082 imx_uart_setup_ufcr(sport, TXTL_DEFAULT, RXTL_DEFAULT); 2083 2084 retval = uart_set_options(&sport->port, co, baud, parity, bits, flow); 2085 2086 clk_disable(sport->clk_ipg); 2087 if (retval) { 2088 clk_unprepare(sport->clk_ipg); 2089 goto error_console; 2090 } 2091 2092 retval = clk_prepare(sport->clk_per); 2093 if (retval) 2094 clk_unprepare(sport->clk_ipg); 2095 2096 error_console: 2097 return retval; 2098 } 2099 2100 static struct uart_driver imx_uart_uart_driver; 2101 static struct console imx_uart_console = { 2102 .name = DEV_NAME, 2103 .write = imx_uart_console_write, 2104 .device = uart_console_device, 2105 .setup = imx_uart_console_setup, 2106 .flags = CON_PRINTBUFFER, 2107 .index = -1, 2108 .data = &imx_uart_uart_driver, 2109 }; 2110 2111 #define IMX_CONSOLE &imx_uart_console 2112 2113 #ifdef CONFIG_OF 2114 static void imx_uart_console_early_putchar(struct uart_port *port, int ch) 2115 { 2116 struct imx_port *sport = (struct imx_port *)port; 2117 2118 while (imx_uart_readl(sport, IMX21_UTS) & UTS_TXFULL) 2119 cpu_relax(); 2120 2121 imx_uart_writel(sport, ch, URTX0); 2122 } 2123 2124 static void imx_uart_console_early_write(struct console *con, const char *s, 2125 unsigned count) 2126 { 2127 struct earlycon_device *dev = con->data; 2128 2129 uart_console_write(&dev->port, s, count, imx_uart_console_early_putchar); 2130 } 2131 2132 static int __init 2133 imx_console_early_setup(struct earlycon_device *dev, const char *opt) 2134 { 2135 if (!dev->port.membase) 2136 return -ENODEV; 2137 2138 dev->con->write = imx_uart_console_early_write; 2139 2140 return 0; 2141 } 2142 OF_EARLYCON_DECLARE(ec_imx6q, "fsl,imx6q-uart", imx_console_early_setup); 2143 OF_EARLYCON_DECLARE(ec_imx21, "fsl,imx21-uart", imx_console_early_setup); 2144 #endif 2145 2146 #else 2147 #define IMX_CONSOLE NULL 2148 #endif 2149 2150 static struct uart_driver imx_uart_uart_driver = { 2151 .owner = THIS_MODULE, 2152 .driver_name = DRIVER_NAME, 2153 .dev_name = DEV_NAME, 2154 .major = SERIAL_IMX_MAJOR, 2155 .minor = MINOR_START, 2156 .nr = ARRAY_SIZE(imx_uart_ports), 2157 .cons = IMX_CONSOLE, 2158 }; 2159 2160 #ifdef CONFIG_OF 2161 /* 2162 * This function returns 1 iff pdev isn't a device instatiated by dt, 0 iff it 2163 * could successfully get all information from dt or a negative errno. 2164 */ 2165 static int imx_uart_probe_dt(struct imx_port *sport, 2166 struct platform_device *pdev) 2167 { 2168 struct device_node *np = pdev->dev.of_node; 2169 int ret; 2170 2171 sport->devdata = of_device_get_match_data(&pdev->dev); 2172 if (!sport->devdata) 2173 /* no device tree device */ 2174 return 1; 2175 2176 ret = of_alias_get_id(np, "serial"); 2177 if (ret < 0) { 2178 dev_err(&pdev->dev, "failed to get alias id, errno %d\n", ret); 2179 return ret; 2180 } 2181 sport->port.line = ret; 2182 2183 if (of_get_property(np, "uart-has-rtscts", NULL) || 2184 of_get_property(np, "fsl,uart-has-rtscts", NULL) /* deprecated */) 2185 sport->have_rtscts = 1; 2186 2187 if (of_get_property(np, "fsl,dte-mode", NULL)) 2188 sport->dte_mode = 1; 2189 2190 if (of_get_property(np, "rts-gpios", NULL)) 2191 sport->have_rtsgpio = 1; 2192 2193 if (of_get_property(np, "fsl,inverted-tx", NULL)) 2194 sport->inverted_tx = 1; 2195 2196 if (of_get_property(np, "fsl,inverted-rx", NULL)) 2197 sport->inverted_rx = 1; 2198 2199 return 0; 2200 } 2201 #else 2202 static inline int imx_uart_probe_dt(struct imx_port *sport, 2203 struct platform_device *pdev) 2204 { 2205 return 1; 2206 } 2207 #endif 2208 2209 static void imx_uart_probe_pdata(struct imx_port *sport, 2210 struct platform_device *pdev) 2211 { 2212 struct imxuart_platform_data *pdata = dev_get_platdata(&pdev->dev); 2213 2214 sport->port.line = pdev->id; 2215 sport->devdata = (struct imx_uart_data *) pdev->id_entry->driver_data; 2216 2217 if (!pdata) 2218 return; 2219 2220 if (pdata->flags & IMXUART_HAVE_RTSCTS) 2221 sport->have_rtscts = 1; 2222 } 2223 2224 static int imx_uart_probe(struct platform_device *pdev) 2225 { 2226 struct imx_port *sport; 2227 void __iomem *base; 2228 int ret = 0; 2229 u32 ucr1; 2230 struct resource *res; 2231 int txirq, rxirq, rtsirq; 2232 2233 sport = devm_kzalloc(&pdev->dev, sizeof(*sport), GFP_KERNEL); 2234 if (!sport) 2235 return -ENOMEM; 2236 2237 ret = imx_uart_probe_dt(sport, pdev); 2238 if (ret > 0) 2239 imx_uart_probe_pdata(sport, pdev); 2240 else if (ret < 0) 2241 return ret; 2242 2243 if (sport->port.line >= ARRAY_SIZE(imx_uart_ports)) { 2244 dev_err(&pdev->dev, "serial%d out of range\n", 2245 sport->port.line); 2246 return -EINVAL; 2247 } 2248 2249 res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 2250 base = devm_ioremap_resource(&pdev->dev, res); 2251 if (IS_ERR(base)) 2252 return PTR_ERR(base); 2253 2254 rxirq = platform_get_irq(pdev, 0); 2255 txirq = platform_get_irq_optional(pdev, 1); 2256 rtsirq = platform_get_irq_optional(pdev, 2); 2257 2258 sport->port.dev = &pdev->dev; 2259 sport->port.mapbase = res->start; 2260 sport->port.membase = base; 2261 sport->port.type = PORT_IMX, 2262 sport->port.iotype = UPIO_MEM; 2263 sport->port.irq = rxirq; 2264 sport->port.fifosize = 32; 2265 sport->port.has_sysrq = IS_ENABLED(CONFIG_SERIAL_IMX_CONSOLE); 2266 sport->port.ops = &imx_uart_pops; 2267 sport->port.rs485_config = imx_uart_rs485_config; 2268 sport->port.flags = UPF_BOOT_AUTOCONF; 2269 timer_setup(&sport->timer, imx_uart_timeout, 0); 2270 2271 sport->gpios = mctrl_gpio_init(&sport->port, 0); 2272 if (IS_ERR(sport->gpios)) 2273 return PTR_ERR(sport->gpios); 2274 2275 sport->clk_ipg = devm_clk_get(&pdev->dev, "ipg"); 2276 if (IS_ERR(sport->clk_ipg)) { 2277 ret = PTR_ERR(sport->clk_ipg); 2278 dev_err(&pdev->dev, "failed to get ipg clk: %d\n", ret); 2279 return ret; 2280 } 2281 2282 sport->clk_per = devm_clk_get(&pdev->dev, "per"); 2283 if (IS_ERR(sport->clk_per)) { 2284 ret = PTR_ERR(sport->clk_per); 2285 dev_err(&pdev->dev, "failed to get per clk: %d\n", ret); 2286 return ret; 2287 } 2288 2289 sport->port.uartclk = clk_get_rate(sport->clk_per); 2290 2291 /* For register access, we only need to enable the ipg clock. */ 2292 ret = clk_prepare_enable(sport->clk_ipg); 2293 if (ret) { 2294 dev_err(&pdev->dev, "failed to enable per clk: %d\n", ret); 2295 return ret; 2296 } 2297 2298 /* initialize shadow register values */ 2299 sport->ucr1 = readl(sport->port.membase + UCR1); 2300 sport->ucr2 = readl(sport->port.membase + UCR2); 2301 sport->ucr3 = readl(sport->port.membase + UCR3); 2302 sport->ucr4 = readl(sport->port.membase + UCR4); 2303 sport->ufcr = readl(sport->port.membase + UFCR); 2304 2305 uart_get_rs485_mode(&pdev->dev, &sport->port.rs485); 2306 2307 if (sport->port.rs485.flags & SER_RS485_ENABLED && 2308 (!sport->have_rtscts && !sport->have_rtsgpio)) 2309 dev_err(&pdev->dev, "no RTS control, disabling rs485\n"); 2310 2311 /* 2312 * If using the i.MX UART RTS/CTS control then the RTS (CTS_B) 2313 * signal cannot be set low during transmission in case the 2314 * receiver is off (limitation of the i.MX UART IP). 2315 */ 2316 if (sport->port.rs485.flags & SER_RS485_ENABLED && 2317 sport->have_rtscts && !sport->have_rtsgpio && 2318 (!(sport->port.rs485.flags & SER_RS485_RTS_ON_SEND) && 2319 !(sport->port.rs485.flags & SER_RS485_RX_DURING_TX))) 2320 dev_err(&pdev->dev, 2321 "low-active RTS not possible when receiver is off, enabling receiver\n"); 2322 2323 imx_uart_rs485_config(&sport->port, &sport->port.rs485); 2324 2325 /* Disable interrupts before requesting them */ 2326 ucr1 = imx_uart_readl(sport, UCR1); 2327 ucr1 &= ~(UCR1_ADEN | UCR1_TRDYEN | UCR1_IDEN | UCR1_RRDYEN | 2328 UCR1_TRDYEN | UCR1_RTSDEN); 2329 imx_uart_writel(sport, ucr1, UCR1); 2330 2331 if (!imx_uart_is_imx1(sport) && sport->dte_mode) { 2332 /* 2333 * The DCEDTE bit changes the direction of DSR, DCD, DTR and RI 2334 * and influences if UCR3_RI and UCR3_DCD changes the level of RI 2335 * and DCD (when they are outputs) or enables the respective 2336 * irqs. So set this bit early, i.e. before requesting irqs. 2337 */ 2338 u32 ufcr = imx_uart_readl(sport, UFCR); 2339 if (!(ufcr & UFCR_DCEDTE)) 2340 imx_uart_writel(sport, ufcr | UFCR_DCEDTE, UFCR); 2341 2342 /* 2343 * Disable UCR3_RI and UCR3_DCD irqs. They are also not 2344 * enabled later because they cannot be cleared 2345 * (confirmed on i.MX25) which makes them unusable. 2346 */ 2347 imx_uart_writel(sport, 2348 IMX21_UCR3_RXDMUXSEL | UCR3_ADNIMP | UCR3_DSR, 2349 UCR3); 2350 2351 } else { 2352 u32 ucr3 = UCR3_DSR; 2353 u32 ufcr = imx_uart_readl(sport, UFCR); 2354 if (ufcr & UFCR_DCEDTE) 2355 imx_uart_writel(sport, ufcr & ~UFCR_DCEDTE, UFCR); 2356 2357 if (!imx_uart_is_imx1(sport)) 2358 ucr3 |= IMX21_UCR3_RXDMUXSEL | UCR3_ADNIMP; 2359 imx_uart_writel(sport, ucr3, UCR3); 2360 } 2361 2362 clk_disable_unprepare(sport->clk_ipg); 2363 2364 /* 2365 * Allocate the IRQ(s) i.MX1 has three interrupts whereas later 2366 * chips only have one interrupt. 2367 */ 2368 if (txirq > 0) { 2369 ret = devm_request_irq(&pdev->dev, rxirq, imx_uart_rxint, 0, 2370 dev_name(&pdev->dev), sport); 2371 if (ret) { 2372 dev_err(&pdev->dev, "failed to request rx irq: %d\n", 2373 ret); 2374 return ret; 2375 } 2376 2377 ret = devm_request_irq(&pdev->dev, txirq, imx_uart_txint, 0, 2378 dev_name(&pdev->dev), sport); 2379 if (ret) { 2380 dev_err(&pdev->dev, "failed to request tx irq: %d\n", 2381 ret); 2382 return ret; 2383 } 2384 2385 ret = devm_request_irq(&pdev->dev, rtsirq, imx_uart_rtsint, 0, 2386 dev_name(&pdev->dev), sport); 2387 if (ret) { 2388 dev_err(&pdev->dev, "failed to request rts irq: %d\n", 2389 ret); 2390 return ret; 2391 } 2392 } else { 2393 ret = devm_request_irq(&pdev->dev, rxirq, imx_uart_int, 0, 2394 dev_name(&pdev->dev), sport); 2395 if (ret) { 2396 dev_err(&pdev->dev, "failed to request irq: %d\n", ret); 2397 return ret; 2398 } 2399 } 2400 2401 imx_uart_ports[sport->port.line] = sport; 2402 2403 platform_set_drvdata(pdev, sport); 2404 2405 return uart_add_one_port(&imx_uart_uart_driver, &sport->port); 2406 } 2407 2408 static int imx_uart_remove(struct platform_device *pdev) 2409 { 2410 struct imx_port *sport = platform_get_drvdata(pdev); 2411 2412 return uart_remove_one_port(&imx_uart_uart_driver, &sport->port); 2413 } 2414 2415 static void imx_uart_restore_context(struct imx_port *sport) 2416 { 2417 unsigned long flags; 2418 2419 spin_lock_irqsave(&sport->port.lock, flags); 2420 if (!sport->context_saved) { 2421 spin_unlock_irqrestore(&sport->port.lock, flags); 2422 return; 2423 } 2424 2425 imx_uart_writel(sport, sport->saved_reg[4], UFCR); 2426 imx_uart_writel(sport, sport->saved_reg[5], UESC); 2427 imx_uart_writel(sport, sport->saved_reg[6], UTIM); 2428 imx_uart_writel(sport, sport->saved_reg[7], UBIR); 2429 imx_uart_writel(sport, sport->saved_reg[8], UBMR); 2430 imx_uart_writel(sport, sport->saved_reg[9], IMX21_UTS); 2431 imx_uart_writel(sport, sport->saved_reg[0], UCR1); 2432 imx_uart_writel(sport, sport->saved_reg[1] | UCR2_SRST, UCR2); 2433 imx_uart_writel(sport, sport->saved_reg[2], UCR3); 2434 imx_uart_writel(sport, sport->saved_reg[3], UCR4); 2435 sport->context_saved = false; 2436 spin_unlock_irqrestore(&sport->port.lock, flags); 2437 } 2438 2439 static void imx_uart_save_context(struct imx_port *sport) 2440 { 2441 unsigned long flags; 2442 2443 /* Save necessary regs */ 2444 spin_lock_irqsave(&sport->port.lock, flags); 2445 sport->saved_reg[0] = imx_uart_readl(sport, UCR1); 2446 sport->saved_reg[1] = imx_uart_readl(sport, UCR2); 2447 sport->saved_reg[2] = imx_uart_readl(sport, UCR3); 2448 sport->saved_reg[3] = imx_uart_readl(sport, UCR4); 2449 sport->saved_reg[4] = imx_uart_readl(sport, UFCR); 2450 sport->saved_reg[5] = imx_uart_readl(sport, UESC); 2451 sport->saved_reg[6] = imx_uart_readl(sport, UTIM); 2452 sport->saved_reg[7] = imx_uart_readl(sport, UBIR); 2453 sport->saved_reg[8] = imx_uart_readl(sport, UBMR); 2454 sport->saved_reg[9] = imx_uart_readl(sport, IMX21_UTS); 2455 sport->context_saved = true; 2456 spin_unlock_irqrestore(&sport->port.lock, flags); 2457 } 2458 2459 static void imx_uart_enable_wakeup(struct imx_port *sport, bool on) 2460 { 2461 u32 ucr3; 2462 2463 ucr3 = imx_uart_readl(sport, UCR3); 2464 if (on) { 2465 imx_uart_writel(sport, USR1_AWAKE, USR1); 2466 ucr3 |= UCR3_AWAKEN; 2467 } else { 2468 ucr3 &= ~UCR3_AWAKEN; 2469 } 2470 imx_uart_writel(sport, ucr3, UCR3); 2471 2472 if (sport->have_rtscts) { 2473 u32 ucr1 = imx_uart_readl(sport, UCR1); 2474 if (on) 2475 ucr1 |= UCR1_RTSDEN; 2476 else 2477 ucr1 &= ~UCR1_RTSDEN; 2478 imx_uart_writel(sport, ucr1, UCR1); 2479 } 2480 } 2481 2482 static int imx_uart_suspend_noirq(struct device *dev) 2483 { 2484 struct imx_port *sport = dev_get_drvdata(dev); 2485 2486 imx_uart_save_context(sport); 2487 2488 clk_disable(sport->clk_ipg); 2489 2490 pinctrl_pm_select_sleep_state(dev); 2491 2492 return 0; 2493 } 2494 2495 static int imx_uart_resume_noirq(struct device *dev) 2496 { 2497 struct imx_port *sport = dev_get_drvdata(dev); 2498 int ret; 2499 2500 pinctrl_pm_select_default_state(dev); 2501 2502 ret = clk_enable(sport->clk_ipg); 2503 if (ret) 2504 return ret; 2505 2506 imx_uart_restore_context(sport); 2507 2508 return 0; 2509 } 2510 2511 static int imx_uart_suspend(struct device *dev) 2512 { 2513 struct imx_port *sport = dev_get_drvdata(dev); 2514 int ret; 2515 2516 uart_suspend_port(&imx_uart_uart_driver, &sport->port); 2517 disable_irq(sport->port.irq); 2518 2519 ret = clk_prepare_enable(sport->clk_ipg); 2520 if (ret) 2521 return ret; 2522 2523 /* enable wakeup from i.MX UART */ 2524 imx_uart_enable_wakeup(sport, true); 2525 2526 return 0; 2527 } 2528 2529 static int imx_uart_resume(struct device *dev) 2530 { 2531 struct imx_port *sport = dev_get_drvdata(dev); 2532 2533 /* disable wakeup from i.MX UART */ 2534 imx_uart_enable_wakeup(sport, false); 2535 2536 uart_resume_port(&imx_uart_uart_driver, &sport->port); 2537 enable_irq(sport->port.irq); 2538 2539 clk_disable_unprepare(sport->clk_ipg); 2540 2541 return 0; 2542 } 2543 2544 static int imx_uart_freeze(struct device *dev) 2545 { 2546 struct imx_port *sport = dev_get_drvdata(dev); 2547 2548 uart_suspend_port(&imx_uart_uart_driver, &sport->port); 2549 2550 return clk_prepare_enable(sport->clk_ipg); 2551 } 2552 2553 static int imx_uart_thaw(struct device *dev) 2554 { 2555 struct imx_port *sport = dev_get_drvdata(dev); 2556 2557 uart_resume_port(&imx_uart_uart_driver, &sport->port); 2558 2559 clk_disable_unprepare(sport->clk_ipg); 2560 2561 return 0; 2562 } 2563 2564 static const struct dev_pm_ops imx_uart_pm_ops = { 2565 .suspend_noirq = imx_uart_suspend_noirq, 2566 .resume_noirq = imx_uart_resume_noirq, 2567 .freeze_noirq = imx_uart_suspend_noirq, 2568 .restore_noirq = imx_uart_resume_noirq, 2569 .suspend = imx_uart_suspend, 2570 .resume = imx_uart_resume, 2571 .freeze = imx_uart_freeze, 2572 .thaw = imx_uart_thaw, 2573 .restore = imx_uart_thaw, 2574 }; 2575 2576 static struct platform_driver imx_uart_platform_driver = { 2577 .probe = imx_uart_probe, 2578 .remove = imx_uart_remove, 2579 2580 .id_table = imx_uart_devtype, 2581 .driver = { 2582 .name = "imx-uart", 2583 .of_match_table = imx_uart_dt_ids, 2584 .pm = &imx_uart_pm_ops, 2585 }, 2586 }; 2587 2588 static int __init imx_uart_init(void) 2589 { 2590 int ret = uart_register_driver(&imx_uart_uart_driver); 2591 2592 if (ret) 2593 return ret; 2594 2595 ret = platform_driver_register(&imx_uart_platform_driver); 2596 if (ret != 0) 2597 uart_unregister_driver(&imx_uart_uart_driver); 2598 2599 return ret; 2600 } 2601 2602 static void __exit imx_uart_exit(void) 2603 { 2604 platform_driver_unregister(&imx_uart_platform_driver); 2605 uart_unregister_driver(&imx_uart_uart_driver); 2606 } 2607 2608 module_init(imx_uart_init); 2609 module_exit(imx_uart_exit); 2610 2611 MODULE_AUTHOR("Sascha Hauer"); 2612 MODULE_DESCRIPTION("IMX generic serial port driver"); 2613 MODULE_LICENSE("GPL"); 2614 MODULE_ALIAS("platform:imx-uart"); 2615