1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Driver for Motorola/Freescale IMX serial ports 4 * 5 * Based on drivers/char/serial.c, by Linus Torvalds, Theodore Ts'o. 6 * 7 * Author: Sascha Hauer <sascha@saschahauer.de> 8 * Copyright (C) 2004 Pengutronix 9 */ 10 11 #if defined(CONFIG_SERIAL_IMX_CONSOLE) && defined(CONFIG_MAGIC_SYSRQ) 12 #define SUPPORT_SYSRQ 13 #endif 14 15 #include <linux/module.h> 16 #include <linux/ioport.h> 17 #include <linux/init.h> 18 #include <linux/console.h> 19 #include <linux/sysrq.h> 20 #include <linux/platform_device.h> 21 #include <linux/tty.h> 22 #include <linux/tty_flip.h> 23 #include <linux/serial_core.h> 24 #include <linux/serial.h> 25 #include <linux/clk.h> 26 #include <linux/delay.h> 27 #include <linux/pinctrl/consumer.h> 28 #include <linux/rational.h> 29 #include <linux/slab.h> 30 #include <linux/of.h> 31 #include <linux/of_device.h> 32 #include <linux/io.h> 33 #include <linux/dma-mapping.h> 34 35 #include <asm/irq.h> 36 #include <linux/platform_data/serial-imx.h> 37 #include <linux/platform_data/dma-imx.h> 38 39 #include "serial_mctrl_gpio.h" 40 41 /* Register definitions */ 42 #define URXD0 0x0 /* Receiver Register */ 43 #define URTX0 0x40 /* Transmitter Register */ 44 #define UCR1 0x80 /* Control Register 1 */ 45 #define UCR2 0x84 /* Control Register 2 */ 46 #define UCR3 0x88 /* Control Register 3 */ 47 #define UCR4 0x8c /* Control Register 4 */ 48 #define UFCR 0x90 /* FIFO Control Register */ 49 #define USR1 0x94 /* Status Register 1 */ 50 #define USR2 0x98 /* Status Register 2 */ 51 #define UESC 0x9c /* Escape Character Register */ 52 #define UTIM 0xa0 /* Escape Timer Register */ 53 #define UBIR 0xa4 /* BRM Incremental Register */ 54 #define UBMR 0xa8 /* BRM Modulator Register */ 55 #define UBRC 0xac /* Baud Rate Count Register */ 56 #define IMX21_ONEMS 0xb0 /* One Millisecond register */ 57 #define IMX1_UTS 0xd0 /* UART Test Register on i.mx1 */ 58 #define IMX21_UTS 0xb4 /* UART Test Register on all other i.mx*/ 59 60 /* UART Control Register Bit Fields.*/ 61 #define URXD_DUMMY_READ (1<<16) 62 #define URXD_CHARRDY (1<<15) 63 #define URXD_ERR (1<<14) 64 #define URXD_OVRRUN (1<<13) 65 #define URXD_FRMERR (1<<12) 66 #define URXD_BRK (1<<11) 67 #define URXD_PRERR (1<<10) 68 #define URXD_RX_DATA (0xFF<<0) 69 #define UCR1_ADEN (1<<15) /* Auto detect interrupt */ 70 #define UCR1_ADBR (1<<14) /* Auto detect baud rate */ 71 #define UCR1_TRDYEN (1<<13) /* Transmitter ready interrupt enable */ 72 #define UCR1_IDEN (1<<12) /* Idle condition interrupt */ 73 #define UCR1_ICD_REG(x) (((x) & 3) << 10) /* idle condition detect */ 74 #define UCR1_RRDYEN (1<<9) /* Recv ready interrupt enable */ 75 #define UCR1_RXDMAEN (1<<8) /* Recv ready DMA enable */ 76 #define UCR1_IREN (1<<7) /* Infrared interface enable */ 77 #define UCR1_TXMPTYEN (1<<6) /* Transimitter empty interrupt enable */ 78 #define UCR1_RTSDEN (1<<5) /* RTS delta interrupt enable */ 79 #define UCR1_SNDBRK (1<<4) /* Send break */ 80 #define UCR1_TXDMAEN (1<<3) /* Transmitter ready DMA enable */ 81 #define IMX1_UCR1_UARTCLKEN (1<<2) /* UART clock enabled, i.mx1 only */ 82 #define UCR1_ATDMAEN (1<<2) /* Aging DMA Timer Enable */ 83 #define UCR1_DOZE (1<<1) /* Doze */ 84 #define UCR1_UARTEN (1<<0) /* UART enabled */ 85 #define UCR2_ESCI (1<<15) /* Escape seq interrupt enable */ 86 #define UCR2_IRTS (1<<14) /* Ignore RTS pin */ 87 #define UCR2_CTSC (1<<13) /* CTS pin control */ 88 #define UCR2_CTS (1<<12) /* Clear to send */ 89 #define UCR2_ESCEN (1<<11) /* Escape enable */ 90 #define UCR2_PREN (1<<8) /* Parity enable */ 91 #define UCR2_PROE (1<<7) /* Parity odd/even */ 92 #define UCR2_STPB (1<<6) /* Stop */ 93 #define UCR2_WS (1<<5) /* Word size */ 94 #define UCR2_RTSEN (1<<4) /* Request to send interrupt enable */ 95 #define UCR2_ATEN (1<<3) /* Aging Timer Enable */ 96 #define UCR2_TXEN (1<<2) /* Transmitter enabled */ 97 #define UCR2_RXEN (1<<1) /* Receiver enabled */ 98 #define UCR2_SRST (1<<0) /* SW reset */ 99 #define UCR3_DTREN (1<<13) /* DTR interrupt enable */ 100 #define UCR3_PARERREN (1<<12) /* Parity enable */ 101 #define UCR3_FRAERREN (1<<11) /* Frame error interrupt enable */ 102 #define UCR3_DSR (1<<10) /* Data set ready */ 103 #define UCR3_DCD (1<<9) /* Data carrier detect */ 104 #define UCR3_RI (1<<8) /* Ring indicator */ 105 #define UCR3_ADNIMP (1<<7) /* Autobaud Detection Not Improved */ 106 #define UCR3_RXDSEN (1<<6) /* Receive status interrupt enable */ 107 #define UCR3_AIRINTEN (1<<5) /* Async IR wake interrupt enable */ 108 #define UCR3_AWAKEN (1<<4) /* Async wake interrupt enable */ 109 #define UCR3_DTRDEN (1<<3) /* Data Terminal Ready Delta Enable. */ 110 #define IMX21_UCR3_RXDMUXSEL (1<<2) /* RXD Muxed Input Select */ 111 #define UCR3_INVT (1<<1) /* Inverted Infrared transmission */ 112 #define UCR3_BPEN (1<<0) /* Preset registers enable */ 113 #define UCR4_CTSTL_SHF 10 /* CTS trigger level shift */ 114 #define UCR4_CTSTL_MASK 0x3F /* CTS trigger is 6 bits wide */ 115 #define UCR4_INVR (1<<9) /* Inverted infrared reception */ 116 #define UCR4_ENIRI (1<<8) /* Serial infrared interrupt enable */ 117 #define UCR4_WKEN (1<<7) /* Wake interrupt enable */ 118 #define UCR4_REF16 (1<<6) /* Ref freq 16 MHz */ 119 #define UCR4_IDDMAEN (1<<6) /* DMA IDLE Condition Detected */ 120 #define UCR4_IRSC (1<<5) /* IR special case */ 121 #define UCR4_TCEN (1<<3) /* Transmit complete interrupt enable */ 122 #define UCR4_BKEN (1<<2) /* Break condition interrupt enable */ 123 #define UCR4_OREN (1<<1) /* Receiver overrun interrupt enable */ 124 #define UCR4_DREN (1<<0) /* Recv data ready interrupt enable */ 125 #define UFCR_RXTL_SHF 0 /* Receiver trigger level shift */ 126 #define UFCR_DCEDTE (1<<6) /* DCE/DTE mode select */ 127 #define UFCR_RFDIV (7<<7) /* Reference freq divider mask */ 128 #define UFCR_RFDIV_REG(x) (((x) < 7 ? 6 - (x) : 6) << 7) 129 #define UFCR_TXTL_SHF 10 /* Transmitter trigger level shift */ 130 #define USR1_PARITYERR (1<<15) /* Parity error interrupt flag */ 131 #define USR1_RTSS (1<<14) /* RTS pin status */ 132 #define USR1_TRDY (1<<13) /* Transmitter ready interrupt/dma flag */ 133 #define USR1_RTSD (1<<12) /* RTS delta */ 134 #define USR1_ESCF (1<<11) /* Escape seq interrupt flag */ 135 #define USR1_FRAMERR (1<<10) /* Frame error interrupt flag */ 136 #define USR1_RRDY (1<<9) /* Receiver ready interrupt/dma flag */ 137 #define USR1_AGTIM (1<<8) /* Ageing timer interrupt flag */ 138 #define USR1_DTRD (1<<7) /* DTR Delta */ 139 #define USR1_RXDS (1<<6) /* Receiver idle interrupt flag */ 140 #define USR1_AIRINT (1<<5) /* Async IR wake interrupt flag */ 141 #define USR1_AWAKE (1<<4) /* Aysnc wake interrupt flag */ 142 #define USR2_ADET (1<<15) /* Auto baud rate detect complete */ 143 #define USR2_TXFE (1<<14) /* Transmit buffer FIFO empty */ 144 #define USR2_DTRF (1<<13) /* DTR edge interrupt flag */ 145 #define USR2_IDLE (1<<12) /* Idle condition */ 146 #define USR2_RIDELT (1<<10) /* Ring Interrupt Delta */ 147 #define USR2_RIIN (1<<9) /* Ring Indicator Input */ 148 #define USR2_IRINT (1<<8) /* Serial infrared interrupt flag */ 149 #define USR2_WAKE (1<<7) /* Wake */ 150 #define USR2_DCDIN (1<<5) /* Data Carrier Detect Input */ 151 #define USR2_RTSF (1<<4) /* RTS edge interrupt flag */ 152 #define USR2_TXDC (1<<3) /* Transmitter complete */ 153 #define USR2_BRCD (1<<2) /* Break condition */ 154 #define USR2_ORE (1<<1) /* Overrun error */ 155 #define USR2_RDR (1<<0) /* Recv data ready */ 156 #define UTS_FRCPERR (1<<13) /* Force parity error */ 157 #define UTS_LOOP (1<<12) /* Loop tx and rx */ 158 #define UTS_TXEMPTY (1<<6) /* TxFIFO empty */ 159 #define UTS_RXEMPTY (1<<5) /* RxFIFO empty */ 160 #define UTS_TXFULL (1<<4) /* TxFIFO full */ 161 #define UTS_RXFULL (1<<3) /* RxFIFO full */ 162 #define UTS_SOFTRST (1<<0) /* Software reset */ 163 164 /* We've been assigned a range on the "Low-density serial ports" major */ 165 #define SERIAL_IMX_MAJOR 207 166 #define MINOR_START 16 167 #define DEV_NAME "ttymxc" 168 169 /* 170 * This determines how often we check the modem status signals 171 * for any change. They generally aren't connected to an IRQ 172 * so we have to poll them. We also check immediately before 173 * filling the TX fifo incase CTS has been dropped. 174 */ 175 #define MCTRL_TIMEOUT (250*HZ/1000) 176 177 #define DRIVER_NAME "IMX-uart" 178 179 #define UART_NR 8 180 181 /* i.MX21 type uart runs on all i.mx except i.MX1 and i.MX6q */ 182 enum imx_uart_type { 183 IMX1_UART, 184 IMX21_UART, 185 IMX53_UART, 186 IMX6Q_UART, 187 }; 188 189 /* device type dependent stuff */ 190 struct imx_uart_data { 191 unsigned uts_reg; 192 enum imx_uart_type devtype; 193 }; 194 195 struct imx_port { 196 struct uart_port port; 197 struct timer_list timer; 198 unsigned int old_status; 199 unsigned int have_rtscts:1; 200 unsigned int have_rtsgpio:1; 201 unsigned int dte_mode:1; 202 struct clk *clk_ipg; 203 struct clk *clk_per; 204 const struct imx_uart_data *devdata; 205 206 struct mctrl_gpios *gpios; 207 208 /* shadow registers */ 209 unsigned int ucr1; 210 unsigned int ucr2; 211 unsigned int ucr3; 212 unsigned int ucr4; 213 unsigned int ufcr; 214 215 /* DMA fields */ 216 unsigned int dma_is_enabled:1; 217 unsigned int dma_is_rxing:1; 218 unsigned int dma_is_txing:1; 219 struct dma_chan *dma_chan_rx, *dma_chan_tx; 220 struct scatterlist rx_sgl, tx_sgl[2]; 221 void *rx_buf; 222 struct circ_buf rx_ring; 223 unsigned int rx_periods; 224 dma_cookie_t rx_cookie; 225 unsigned int tx_bytes; 226 unsigned int dma_tx_nents; 227 unsigned int saved_reg[10]; 228 bool context_saved; 229 }; 230 231 struct imx_port_ucrs { 232 unsigned int ucr1; 233 unsigned int ucr2; 234 unsigned int ucr3; 235 }; 236 237 static struct imx_uart_data imx_uart_devdata[] = { 238 [IMX1_UART] = { 239 .uts_reg = IMX1_UTS, 240 .devtype = IMX1_UART, 241 }, 242 [IMX21_UART] = { 243 .uts_reg = IMX21_UTS, 244 .devtype = IMX21_UART, 245 }, 246 [IMX53_UART] = { 247 .uts_reg = IMX21_UTS, 248 .devtype = IMX53_UART, 249 }, 250 [IMX6Q_UART] = { 251 .uts_reg = IMX21_UTS, 252 .devtype = IMX6Q_UART, 253 }, 254 }; 255 256 static const struct platform_device_id imx_uart_devtype[] = { 257 { 258 .name = "imx1-uart", 259 .driver_data = (kernel_ulong_t) &imx_uart_devdata[IMX1_UART], 260 }, { 261 .name = "imx21-uart", 262 .driver_data = (kernel_ulong_t) &imx_uart_devdata[IMX21_UART], 263 }, { 264 .name = "imx53-uart", 265 .driver_data = (kernel_ulong_t) &imx_uart_devdata[IMX53_UART], 266 }, { 267 .name = "imx6q-uart", 268 .driver_data = (kernel_ulong_t) &imx_uart_devdata[IMX6Q_UART], 269 }, { 270 /* sentinel */ 271 } 272 }; 273 MODULE_DEVICE_TABLE(platform, imx_uart_devtype); 274 275 static const struct of_device_id imx_uart_dt_ids[] = { 276 { .compatible = "fsl,imx6q-uart", .data = &imx_uart_devdata[IMX6Q_UART], }, 277 { .compatible = "fsl,imx53-uart", .data = &imx_uart_devdata[IMX53_UART], }, 278 { .compatible = "fsl,imx1-uart", .data = &imx_uart_devdata[IMX1_UART], }, 279 { .compatible = "fsl,imx21-uart", .data = &imx_uart_devdata[IMX21_UART], }, 280 { /* sentinel */ } 281 }; 282 MODULE_DEVICE_TABLE(of, imx_uart_dt_ids); 283 284 static void imx_uart_writel(struct imx_port *sport, u32 val, u32 offset) 285 { 286 switch (offset) { 287 case UCR1: 288 sport->ucr1 = val; 289 break; 290 case UCR2: 291 sport->ucr2 = val; 292 break; 293 case UCR3: 294 sport->ucr3 = val; 295 break; 296 case UCR4: 297 sport->ucr4 = val; 298 break; 299 case UFCR: 300 sport->ufcr = val; 301 break; 302 default: 303 break; 304 } 305 writel(val, sport->port.membase + offset); 306 } 307 308 static u32 imx_uart_readl(struct imx_port *sport, u32 offset) 309 { 310 switch (offset) { 311 case UCR1: 312 return sport->ucr1; 313 break; 314 case UCR2: 315 /* 316 * UCR2_SRST is the only bit in the cached registers that might 317 * differ from the value that was last written. As it only 318 * automatically becomes one after being cleared, reread 319 * conditionally. 320 */ 321 if (!(sport->ucr2 & UCR2_SRST)) 322 sport->ucr2 = readl(sport->port.membase + offset); 323 return sport->ucr2; 324 break; 325 case UCR3: 326 return sport->ucr3; 327 break; 328 case UCR4: 329 return sport->ucr4; 330 break; 331 case UFCR: 332 return sport->ufcr; 333 break; 334 default: 335 return readl(sport->port.membase + offset); 336 } 337 } 338 339 static inline unsigned imx_uart_uts_reg(struct imx_port *sport) 340 { 341 return sport->devdata->uts_reg; 342 } 343 344 static inline int imx_uart_is_imx1(struct imx_port *sport) 345 { 346 return sport->devdata->devtype == IMX1_UART; 347 } 348 349 static inline int imx_uart_is_imx21(struct imx_port *sport) 350 { 351 return sport->devdata->devtype == IMX21_UART; 352 } 353 354 static inline int imx_uart_is_imx53(struct imx_port *sport) 355 { 356 return sport->devdata->devtype == IMX53_UART; 357 } 358 359 static inline int imx_uart_is_imx6q(struct imx_port *sport) 360 { 361 return sport->devdata->devtype == IMX6Q_UART; 362 } 363 /* 364 * Save and restore functions for UCR1, UCR2 and UCR3 registers 365 */ 366 #if defined(CONFIG_SERIAL_IMX_CONSOLE) 367 static void imx_uart_ucrs_save(struct imx_port *sport, 368 struct imx_port_ucrs *ucr) 369 { 370 /* save control registers */ 371 ucr->ucr1 = imx_uart_readl(sport, UCR1); 372 ucr->ucr2 = imx_uart_readl(sport, UCR2); 373 ucr->ucr3 = imx_uart_readl(sport, UCR3); 374 } 375 376 static void imx_uart_ucrs_restore(struct imx_port *sport, 377 struct imx_port_ucrs *ucr) 378 { 379 /* restore control registers */ 380 imx_uart_writel(sport, ucr->ucr1, UCR1); 381 imx_uart_writel(sport, ucr->ucr2, UCR2); 382 imx_uart_writel(sport, ucr->ucr3, UCR3); 383 } 384 #endif 385 386 /* called with port.lock taken and irqs caller dependent */ 387 static void imx_uart_rts_active(struct imx_port *sport, u32 *ucr2) 388 { 389 *ucr2 &= ~(UCR2_CTSC | UCR2_CTS); 390 391 sport->port.mctrl |= TIOCM_RTS; 392 mctrl_gpio_set(sport->gpios, sport->port.mctrl); 393 } 394 395 /* called with port.lock taken and irqs caller dependent */ 396 static void imx_uart_rts_inactive(struct imx_port *sport, u32 *ucr2) 397 { 398 *ucr2 &= ~UCR2_CTSC; 399 *ucr2 |= UCR2_CTS; 400 401 sport->port.mctrl &= ~TIOCM_RTS; 402 mctrl_gpio_set(sport->gpios, sport->port.mctrl); 403 } 404 405 /* called with port.lock taken and irqs off */ 406 static void imx_uart_start_rx(struct uart_port *port) 407 { 408 struct imx_port *sport = (struct imx_port *)port; 409 unsigned int ucr1, ucr2; 410 411 ucr1 = imx_uart_readl(sport, UCR1); 412 ucr2 = imx_uart_readl(sport, UCR2); 413 414 ucr2 |= UCR2_RXEN; 415 416 if (sport->dma_is_enabled) { 417 ucr1 |= UCR1_RXDMAEN | UCR1_ATDMAEN; 418 } else { 419 ucr1 |= UCR1_RRDYEN; 420 ucr2 |= UCR2_ATEN; 421 } 422 423 /* Write UCR2 first as it includes RXEN */ 424 imx_uart_writel(sport, ucr2, UCR2); 425 imx_uart_writel(sport, ucr1, UCR1); 426 } 427 428 /* called with port.lock taken and irqs off */ 429 static void imx_uart_stop_tx(struct uart_port *port) 430 { 431 struct imx_port *sport = (struct imx_port *)port; 432 u32 ucr1; 433 434 /* 435 * We are maybe in the SMP context, so if the DMA TX thread is running 436 * on other cpu, we have to wait for it to finish. 437 */ 438 if (sport->dma_is_txing) 439 return; 440 441 ucr1 = imx_uart_readl(sport, UCR1); 442 imx_uart_writel(sport, ucr1 & ~UCR1_TRDYEN, UCR1); 443 444 /* in rs485 mode disable transmitter if shifter is empty */ 445 if (port->rs485.flags & SER_RS485_ENABLED && 446 imx_uart_readl(sport, USR2) & USR2_TXDC) { 447 u32 ucr2 = imx_uart_readl(sport, UCR2), ucr4; 448 if (port->rs485.flags & SER_RS485_RTS_AFTER_SEND) 449 imx_uart_rts_active(sport, &ucr2); 450 else 451 imx_uart_rts_inactive(sport, &ucr2); 452 imx_uart_writel(sport, ucr2, UCR2); 453 454 imx_uart_start_rx(port); 455 456 ucr4 = imx_uart_readl(sport, UCR4); 457 ucr4 &= ~UCR4_TCEN; 458 imx_uart_writel(sport, ucr4, UCR4); 459 } 460 } 461 462 /* called with port.lock taken and irqs off */ 463 static void imx_uart_stop_rx(struct uart_port *port) 464 { 465 struct imx_port *sport = (struct imx_port *)port; 466 u32 ucr1, ucr2; 467 468 ucr1 = imx_uart_readl(sport, UCR1); 469 ucr2 = imx_uart_readl(sport, UCR2); 470 471 if (sport->dma_is_enabled) { 472 ucr1 &= ~(UCR1_RXDMAEN | UCR1_ATDMAEN); 473 } else { 474 ucr1 &= ~UCR1_RRDYEN; 475 ucr2 &= ~UCR2_ATEN; 476 } 477 imx_uart_writel(sport, ucr1, UCR1); 478 479 ucr2 &= ~UCR2_RXEN; 480 imx_uart_writel(sport, ucr2, UCR2); 481 } 482 483 /* called with port.lock taken and irqs off */ 484 static void imx_uart_enable_ms(struct uart_port *port) 485 { 486 struct imx_port *sport = (struct imx_port *)port; 487 488 mod_timer(&sport->timer, jiffies); 489 490 mctrl_gpio_enable_ms(sport->gpios); 491 } 492 493 static void imx_uart_dma_tx(struct imx_port *sport); 494 495 /* called with port.lock taken and irqs off */ 496 static inline void imx_uart_transmit_buffer(struct imx_port *sport) 497 { 498 struct circ_buf *xmit = &sport->port.state->xmit; 499 500 if (sport->port.x_char) { 501 /* Send next char */ 502 imx_uart_writel(sport, sport->port.x_char, URTX0); 503 sport->port.icount.tx++; 504 sport->port.x_char = 0; 505 return; 506 } 507 508 if (uart_circ_empty(xmit) || uart_tx_stopped(&sport->port)) { 509 imx_uart_stop_tx(&sport->port); 510 return; 511 } 512 513 if (sport->dma_is_enabled) { 514 u32 ucr1; 515 /* 516 * We've just sent a X-char Ensure the TX DMA is enabled 517 * and the TX IRQ is disabled. 518 **/ 519 ucr1 = imx_uart_readl(sport, UCR1); 520 ucr1 &= ~UCR1_TRDYEN; 521 if (sport->dma_is_txing) { 522 ucr1 |= UCR1_TXDMAEN; 523 imx_uart_writel(sport, ucr1, UCR1); 524 } else { 525 imx_uart_writel(sport, ucr1, UCR1); 526 imx_uart_dma_tx(sport); 527 } 528 529 return; 530 } 531 532 while (!uart_circ_empty(xmit) && 533 !(imx_uart_readl(sport, imx_uart_uts_reg(sport)) & UTS_TXFULL)) { 534 /* send xmit->buf[xmit->tail] 535 * out the port here */ 536 imx_uart_writel(sport, xmit->buf[xmit->tail], URTX0); 537 xmit->tail = (xmit->tail + 1) & (UART_XMIT_SIZE - 1); 538 sport->port.icount.tx++; 539 } 540 541 if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS) 542 uart_write_wakeup(&sport->port); 543 544 if (uart_circ_empty(xmit)) 545 imx_uart_stop_tx(&sport->port); 546 } 547 548 static void imx_uart_dma_tx_callback(void *data) 549 { 550 struct imx_port *sport = data; 551 struct scatterlist *sgl = &sport->tx_sgl[0]; 552 struct circ_buf *xmit = &sport->port.state->xmit; 553 unsigned long flags; 554 u32 ucr1; 555 556 spin_lock_irqsave(&sport->port.lock, flags); 557 558 dma_unmap_sg(sport->port.dev, sgl, sport->dma_tx_nents, DMA_TO_DEVICE); 559 560 ucr1 = imx_uart_readl(sport, UCR1); 561 ucr1 &= ~UCR1_TXDMAEN; 562 imx_uart_writel(sport, ucr1, UCR1); 563 564 /* update the stat */ 565 xmit->tail = (xmit->tail + sport->tx_bytes) & (UART_XMIT_SIZE - 1); 566 sport->port.icount.tx += sport->tx_bytes; 567 568 dev_dbg(sport->port.dev, "we finish the TX DMA.\n"); 569 570 sport->dma_is_txing = 0; 571 572 if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS) 573 uart_write_wakeup(&sport->port); 574 575 if (!uart_circ_empty(xmit) && !uart_tx_stopped(&sport->port)) 576 imx_uart_dma_tx(sport); 577 else if (sport->port.rs485.flags & SER_RS485_ENABLED) { 578 u32 ucr4 = imx_uart_readl(sport, UCR4); 579 ucr4 |= UCR4_TCEN; 580 imx_uart_writel(sport, ucr4, UCR4); 581 } 582 583 spin_unlock_irqrestore(&sport->port.lock, flags); 584 } 585 586 /* called with port.lock taken and irqs off */ 587 static void imx_uart_dma_tx(struct imx_port *sport) 588 { 589 struct circ_buf *xmit = &sport->port.state->xmit; 590 struct scatterlist *sgl = sport->tx_sgl; 591 struct dma_async_tx_descriptor *desc; 592 struct dma_chan *chan = sport->dma_chan_tx; 593 struct device *dev = sport->port.dev; 594 u32 ucr1, ucr4; 595 int ret; 596 597 if (sport->dma_is_txing) 598 return; 599 600 ucr4 = imx_uart_readl(sport, UCR4); 601 ucr4 &= ~UCR4_TCEN; 602 imx_uart_writel(sport, ucr4, UCR4); 603 604 sport->tx_bytes = uart_circ_chars_pending(xmit); 605 606 if (xmit->tail < xmit->head) { 607 sport->dma_tx_nents = 1; 608 sg_init_one(sgl, xmit->buf + xmit->tail, sport->tx_bytes); 609 } else { 610 sport->dma_tx_nents = 2; 611 sg_init_table(sgl, 2); 612 sg_set_buf(sgl, xmit->buf + xmit->tail, 613 UART_XMIT_SIZE - xmit->tail); 614 sg_set_buf(sgl + 1, xmit->buf, xmit->head); 615 } 616 617 ret = dma_map_sg(dev, sgl, sport->dma_tx_nents, DMA_TO_DEVICE); 618 if (ret == 0) { 619 dev_err(dev, "DMA mapping error for TX.\n"); 620 return; 621 } 622 desc = dmaengine_prep_slave_sg(chan, sgl, ret, 623 DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT); 624 if (!desc) { 625 dma_unmap_sg(dev, sgl, sport->dma_tx_nents, 626 DMA_TO_DEVICE); 627 dev_err(dev, "We cannot prepare for the TX slave dma!\n"); 628 return; 629 } 630 desc->callback = imx_uart_dma_tx_callback; 631 desc->callback_param = sport; 632 633 dev_dbg(dev, "TX: prepare to send %lu bytes by DMA.\n", 634 uart_circ_chars_pending(xmit)); 635 636 ucr1 = imx_uart_readl(sport, UCR1); 637 ucr1 |= UCR1_TXDMAEN; 638 imx_uart_writel(sport, ucr1, UCR1); 639 640 /* fire it */ 641 sport->dma_is_txing = 1; 642 dmaengine_submit(desc); 643 dma_async_issue_pending(chan); 644 return; 645 } 646 647 /* called with port.lock taken and irqs off */ 648 static void imx_uart_start_tx(struct uart_port *port) 649 { 650 struct imx_port *sport = (struct imx_port *)port; 651 u32 ucr1; 652 653 if (!sport->port.x_char && uart_circ_empty(&port->state->xmit)) 654 return; 655 656 if (port->rs485.flags & SER_RS485_ENABLED) { 657 u32 ucr2; 658 659 ucr2 = imx_uart_readl(sport, UCR2); 660 if (port->rs485.flags & SER_RS485_RTS_ON_SEND) 661 imx_uart_rts_active(sport, &ucr2); 662 else 663 imx_uart_rts_inactive(sport, &ucr2); 664 imx_uart_writel(sport, ucr2, UCR2); 665 666 if (!(port->rs485.flags & SER_RS485_RX_DURING_TX)) 667 imx_uart_stop_rx(port); 668 669 /* 670 * Enable transmitter and shifter empty irq only if DMA is off. 671 * In the DMA case this is done in the tx-callback. 672 */ 673 if (!sport->dma_is_enabled) { 674 u32 ucr4 = imx_uart_readl(sport, UCR4); 675 ucr4 |= UCR4_TCEN; 676 imx_uart_writel(sport, ucr4, UCR4); 677 } 678 } 679 680 if (!sport->dma_is_enabled) { 681 ucr1 = imx_uart_readl(sport, UCR1); 682 imx_uart_writel(sport, ucr1 | UCR1_TRDYEN, UCR1); 683 } 684 685 if (sport->dma_is_enabled) { 686 if (sport->port.x_char) { 687 /* We have X-char to send, so enable TX IRQ and 688 * disable TX DMA to let TX interrupt to send X-char */ 689 ucr1 = imx_uart_readl(sport, UCR1); 690 ucr1 &= ~UCR1_TXDMAEN; 691 ucr1 |= UCR1_TRDYEN; 692 imx_uart_writel(sport, ucr1, UCR1); 693 return; 694 } 695 696 if (!uart_circ_empty(&port->state->xmit) && 697 !uart_tx_stopped(port)) 698 imx_uart_dma_tx(sport); 699 return; 700 } 701 } 702 703 static irqreturn_t imx_uart_rtsint(int irq, void *dev_id) 704 { 705 struct imx_port *sport = dev_id; 706 u32 usr1; 707 708 spin_lock(&sport->port.lock); 709 710 imx_uart_writel(sport, USR1_RTSD, USR1); 711 usr1 = imx_uart_readl(sport, USR1) & USR1_RTSS; 712 uart_handle_cts_change(&sport->port, !!usr1); 713 wake_up_interruptible(&sport->port.state->port.delta_msr_wait); 714 715 spin_unlock(&sport->port.lock); 716 return IRQ_HANDLED; 717 } 718 719 static irqreturn_t imx_uart_txint(int irq, void *dev_id) 720 { 721 struct imx_port *sport = dev_id; 722 723 spin_lock(&sport->port.lock); 724 imx_uart_transmit_buffer(sport); 725 spin_unlock(&sport->port.lock); 726 return IRQ_HANDLED; 727 } 728 729 static irqreturn_t imx_uart_rxint(int irq, void *dev_id) 730 { 731 struct imx_port *sport = dev_id; 732 unsigned int rx, flg, ignored = 0; 733 struct tty_port *port = &sport->port.state->port; 734 735 spin_lock(&sport->port.lock); 736 737 while (imx_uart_readl(sport, USR2) & USR2_RDR) { 738 u32 usr2; 739 740 flg = TTY_NORMAL; 741 sport->port.icount.rx++; 742 743 rx = imx_uart_readl(sport, URXD0); 744 745 usr2 = imx_uart_readl(sport, USR2); 746 if (usr2 & USR2_BRCD) { 747 imx_uart_writel(sport, USR2_BRCD, USR2); 748 if (uart_handle_break(&sport->port)) 749 continue; 750 } 751 752 if (uart_handle_sysrq_char(&sport->port, (unsigned char)rx)) 753 continue; 754 755 if (unlikely(rx & URXD_ERR)) { 756 if (rx & URXD_BRK) 757 sport->port.icount.brk++; 758 else if (rx & URXD_PRERR) 759 sport->port.icount.parity++; 760 else if (rx & URXD_FRMERR) 761 sport->port.icount.frame++; 762 if (rx & URXD_OVRRUN) 763 sport->port.icount.overrun++; 764 765 if (rx & sport->port.ignore_status_mask) { 766 if (++ignored > 100) 767 goto out; 768 continue; 769 } 770 771 rx &= (sport->port.read_status_mask | 0xFF); 772 773 if (rx & URXD_BRK) 774 flg = TTY_BREAK; 775 else if (rx & URXD_PRERR) 776 flg = TTY_PARITY; 777 else if (rx & URXD_FRMERR) 778 flg = TTY_FRAME; 779 if (rx & URXD_OVRRUN) 780 flg = TTY_OVERRUN; 781 782 #ifdef SUPPORT_SYSRQ 783 sport->port.sysrq = 0; 784 #endif 785 } 786 787 if (sport->port.ignore_status_mask & URXD_DUMMY_READ) 788 goto out; 789 790 if (tty_insert_flip_char(port, rx, flg) == 0) 791 sport->port.icount.buf_overrun++; 792 } 793 794 out: 795 spin_unlock(&sport->port.lock); 796 tty_flip_buffer_push(port); 797 return IRQ_HANDLED; 798 } 799 800 static void imx_uart_clear_rx_errors(struct imx_port *sport); 801 802 /* 803 * We have a modem side uart, so the meanings of RTS and CTS are inverted. 804 */ 805 static unsigned int imx_uart_get_hwmctrl(struct imx_port *sport) 806 { 807 unsigned int tmp = TIOCM_DSR; 808 unsigned usr1 = imx_uart_readl(sport, USR1); 809 unsigned usr2 = imx_uart_readl(sport, USR2); 810 811 if (usr1 & USR1_RTSS) 812 tmp |= TIOCM_CTS; 813 814 /* in DCE mode DCDIN is always 0 */ 815 if (!(usr2 & USR2_DCDIN)) 816 tmp |= TIOCM_CAR; 817 818 if (sport->dte_mode) 819 if (!(imx_uart_readl(sport, USR2) & USR2_RIIN)) 820 tmp |= TIOCM_RI; 821 822 return tmp; 823 } 824 825 /* 826 * Handle any change of modem status signal since we were last called. 827 */ 828 static void imx_uart_mctrl_check(struct imx_port *sport) 829 { 830 unsigned int status, changed; 831 832 status = imx_uart_get_hwmctrl(sport); 833 changed = status ^ sport->old_status; 834 835 if (changed == 0) 836 return; 837 838 sport->old_status = status; 839 840 if (changed & TIOCM_RI && status & TIOCM_RI) 841 sport->port.icount.rng++; 842 if (changed & TIOCM_DSR) 843 sport->port.icount.dsr++; 844 if (changed & TIOCM_CAR) 845 uart_handle_dcd_change(&sport->port, status & TIOCM_CAR); 846 if (changed & TIOCM_CTS) 847 uart_handle_cts_change(&sport->port, status & TIOCM_CTS); 848 849 wake_up_interruptible(&sport->port.state->port.delta_msr_wait); 850 } 851 852 static irqreturn_t imx_uart_int(int irq, void *dev_id) 853 { 854 struct imx_port *sport = dev_id; 855 unsigned int usr1, usr2, ucr1, ucr2, ucr3, ucr4; 856 irqreturn_t ret = IRQ_NONE; 857 858 usr1 = imx_uart_readl(sport, USR1); 859 usr2 = imx_uart_readl(sport, USR2); 860 ucr1 = imx_uart_readl(sport, UCR1); 861 ucr2 = imx_uart_readl(sport, UCR2); 862 ucr3 = imx_uart_readl(sport, UCR3); 863 ucr4 = imx_uart_readl(sport, UCR4); 864 865 /* 866 * Even if a condition is true that can trigger an irq only handle it if 867 * the respective irq source is enabled. This prevents some undesired 868 * actions, for example if a character that sits in the RX FIFO and that 869 * should be fetched via DMA is tried to be fetched using PIO. Or the 870 * receiver is currently off and so reading from URXD0 results in an 871 * exception. So just mask the (raw) status bits for disabled irqs. 872 */ 873 if ((ucr1 & UCR1_RRDYEN) == 0) 874 usr1 &= ~USR1_RRDY; 875 if ((ucr2 & UCR2_ATEN) == 0) 876 usr1 &= ~USR1_AGTIM; 877 if ((ucr1 & UCR1_TRDYEN) == 0) 878 usr1 &= ~USR1_TRDY; 879 if ((ucr4 & UCR4_TCEN) == 0) 880 usr2 &= ~USR2_TXDC; 881 if ((ucr3 & UCR3_DTRDEN) == 0) 882 usr1 &= ~USR1_DTRD; 883 if ((ucr1 & UCR1_RTSDEN) == 0) 884 usr1 &= ~USR1_RTSD; 885 if ((ucr3 & UCR3_AWAKEN) == 0) 886 usr1 &= ~USR1_AWAKE; 887 if ((ucr4 & UCR4_OREN) == 0) 888 usr2 &= ~USR2_ORE; 889 890 if (usr1 & (USR1_RRDY | USR1_AGTIM)) { 891 imx_uart_rxint(irq, dev_id); 892 ret = IRQ_HANDLED; 893 } 894 895 if ((usr1 & USR1_TRDY) || (usr2 & USR2_TXDC)) { 896 imx_uart_txint(irq, dev_id); 897 ret = IRQ_HANDLED; 898 } 899 900 if (usr1 & USR1_DTRD) { 901 imx_uart_writel(sport, USR1_DTRD, USR1); 902 903 spin_lock(&sport->port.lock); 904 imx_uart_mctrl_check(sport); 905 spin_unlock(&sport->port.lock); 906 907 ret = IRQ_HANDLED; 908 } 909 910 if (usr1 & USR1_RTSD) { 911 imx_uart_rtsint(irq, dev_id); 912 ret = IRQ_HANDLED; 913 } 914 915 if (usr1 & USR1_AWAKE) { 916 imx_uart_writel(sport, USR1_AWAKE, USR1); 917 ret = IRQ_HANDLED; 918 } 919 920 if (usr2 & USR2_ORE) { 921 sport->port.icount.overrun++; 922 imx_uart_writel(sport, USR2_ORE, USR2); 923 ret = IRQ_HANDLED; 924 } 925 926 return ret; 927 } 928 929 /* 930 * Return TIOCSER_TEMT when transmitter is not busy. 931 */ 932 static unsigned int imx_uart_tx_empty(struct uart_port *port) 933 { 934 struct imx_port *sport = (struct imx_port *)port; 935 unsigned int ret; 936 937 ret = (imx_uart_readl(sport, USR2) & USR2_TXDC) ? TIOCSER_TEMT : 0; 938 939 /* If the TX DMA is working, return 0. */ 940 if (sport->dma_is_txing) 941 ret = 0; 942 943 return ret; 944 } 945 946 /* called with port.lock taken and irqs off */ 947 static unsigned int imx_uart_get_mctrl(struct uart_port *port) 948 { 949 struct imx_port *sport = (struct imx_port *)port; 950 unsigned int ret = imx_uart_get_hwmctrl(sport); 951 952 mctrl_gpio_get(sport->gpios, &ret); 953 954 return ret; 955 } 956 957 /* called with port.lock taken and irqs off */ 958 static void imx_uart_set_mctrl(struct uart_port *port, unsigned int mctrl) 959 { 960 struct imx_port *sport = (struct imx_port *)port; 961 u32 ucr3, uts; 962 963 if (!(port->rs485.flags & SER_RS485_ENABLED)) { 964 u32 ucr2; 965 966 /* 967 * Turn off autoRTS if RTS is lowered and restore autoRTS 968 * setting if RTS is raised. 969 */ 970 ucr2 = imx_uart_readl(sport, UCR2); 971 ucr2 &= ~(UCR2_CTS | UCR2_CTSC); 972 if (mctrl & TIOCM_RTS) { 973 ucr2 |= UCR2_CTS; 974 /* 975 * UCR2_IRTS is unset if and only if the port is 976 * configured for CRTSCTS, so we use inverted UCR2_IRTS 977 * to get the state to restore to. 978 */ 979 if (!(ucr2 & UCR2_IRTS)) 980 ucr2 |= UCR2_CTSC; 981 } 982 imx_uart_writel(sport, ucr2, UCR2); 983 } 984 985 ucr3 = imx_uart_readl(sport, UCR3) & ~UCR3_DSR; 986 if (!(mctrl & TIOCM_DTR)) 987 ucr3 |= UCR3_DSR; 988 imx_uart_writel(sport, ucr3, UCR3); 989 990 uts = imx_uart_readl(sport, imx_uart_uts_reg(sport)) & ~UTS_LOOP; 991 if (mctrl & TIOCM_LOOP) 992 uts |= UTS_LOOP; 993 imx_uart_writel(sport, uts, imx_uart_uts_reg(sport)); 994 995 mctrl_gpio_set(sport->gpios, mctrl); 996 } 997 998 /* 999 * Interrupts always disabled. 1000 */ 1001 static void imx_uart_break_ctl(struct uart_port *port, int break_state) 1002 { 1003 struct imx_port *sport = (struct imx_port *)port; 1004 unsigned long flags; 1005 u32 ucr1; 1006 1007 spin_lock_irqsave(&sport->port.lock, flags); 1008 1009 ucr1 = imx_uart_readl(sport, UCR1) & ~UCR1_SNDBRK; 1010 1011 if (break_state != 0) 1012 ucr1 |= UCR1_SNDBRK; 1013 1014 imx_uart_writel(sport, ucr1, UCR1); 1015 1016 spin_unlock_irqrestore(&sport->port.lock, flags); 1017 } 1018 1019 /* 1020 * This is our per-port timeout handler, for checking the 1021 * modem status signals. 1022 */ 1023 static void imx_uart_timeout(struct timer_list *t) 1024 { 1025 struct imx_port *sport = from_timer(sport, t, timer); 1026 unsigned long flags; 1027 1028 if (sport->port.state) { 1029 spin_lock_irqsave(&sport->port.lock, flags); 1030 imx_uart_mctrl_check(sport); 1031 spin_unlock_irqrestore(&sport->port.lock, flags); 1032 1033 mod_timer(&sport->timer, jiffies + MCTRL_TIMEOUT); 1034 } 1035 } 1036 1037 /* 1038 * There are two kinds of RX DMA interrupts(such as in the MX6Q): 1039 * [1] the RX DMA buffer is full. 1040 * [2] the aging timer expires 1041 * 1042 * Condition [2] is triggered when a character has been sitting in the FIFO 1043 * for at least 8 byte durations. 1044 */ 1045 static void imx_uart_dma_rx_callback(void *data) 1046 { 1047 struct imx_port *sport = data; 1048 struct dma_chan *chan = sport->dma_chan_rx; 1049 struct scatterlist *sgl = &sport->rx_sgl; 1050 struct tty_port *port = &sport->port.state->port; 1051 struct dma_tx_state state; 1052 struct circ_buf *rx_ring = &sport->rx_ring; 1053 enum dma_status status; 1054 unsigned int w_bytes = 0; 1055 unsigned int r_bytes; 1056 unsigned int bd_size; 1057 1058 status = dmaengine_tx_status(chan, sport->rx_cookie, &state); 1059 1060 if (status == DMA_ERROR) { 1061 imx_uart_clear_rx_errors(sport); 1062 return; 1063 } 1064 1065 if (!(sport->port.ignore_status_mask & URXD_DUMMY_READ)) { 1066 1067 /* 1068 * The state-residue variable represents the empty space 1069 * relative to the entire buffer. Taking this in consideration 1070 * the head is always calculated base on the buffer total 1071 * length - DMA transaction residue. The UART script from the 1072 * SDMA firmware will jump to the next buffer descriptor, 1073 * once a DMA transaction if finalized (IMX53 RM - A.4.1.2.4). 1074 * Taking this in consideration the tail is always at the 1075 * beginning of the buffer descriptor that contains the head. 1076 */ 1077 1078 /* Calculate the head */ 1079 rx_ring->head = sg_dma_len(sgl) - state.residue; 1080 1081 /* Calculate the tail. */ 1082 bd_size = sg_dma_len(sgl) / sport->rx_periods; 1083 rx_ring->tail = ((rx_ring->head-1) / bd_size) * bd_size; 1084 1085 if (rx_ring->head <= sg_dma_len(sgl) && 1086 rx_ring->head > rx_ring->tail) { 1087 1088 /* Move data from tail to head */ 1089 r_bytes = rx_ring->head - rx_ring->tail; 1090 1091 /* CPU claims ownership of RX DMA buffer */ 1092 dma_sync_sg_for_cpu(sport->port.dev, sgl, 1, 1093 DMA_FROM_DEVICE); 1094 1095 w_bytes = tty_insert_flip_string(port, 1096 sport->rx_buf + rx_ring->tail, r_bytes); 1097 1098 /* UART retrieves ownership of RX DMA buffer */ 1099 dma_sync_sg_for_device(sport->port.dev, sgl, 1, 1100 DMA_FROM_DEVICE); 1101 1102 if (w_bytes != r_bytes) 1103 sport->port.icount.buf_overrun++; 1104 1105 sport->port.icount.rx += w_bytes; 1106 } else { 1107 WARN_ON(rx_ring->head > sg_dma_len(sgl)); 1108 WARN_ON(rx_ring->head <= rx_ring->tail); 1109 } 1110 } 1111 1112 if (w_bytes) { 1113 tty_flip_buffer_push(port); 1114 dev_dbg(sport->port.dev, "We get %d bytes.\n", w_bytes); 1115 } 1116 } 1117 1118 /* RX DMA buffer periods */ 1119 #define RX_DMA_PERIODS 16 1120 #define RX_BUF_SIZE (RX_DMA_PERIODS * PAGE_SIZE / 4) 1121 1122 static int imx_uart_start_rx_dma(struct imx_port *sport) 1123 { 1124 struct scatterlist *sgl = &sport->rx_sgl; 1125 struct dma_chan *chan = sport->dma_chan_rx; 1126 struct device *dev = sport->port.dev; 1127 struct dma_async_tx_descriptor *desc; 1128 int ret; 1129 1130 sport->rx_ring.head = 0; 1131 sport->rx_ring.tail = 0; 1132 sport->rx_periods = RX_DMA_PERIODS; 1133 1134 sg_init_one(sgl, sport->rx_buf, RX_BUF_SIZE); 1135 ret = dma_map_sg(dev, sgl, 1, DMA_FROM_DEVICE); 1136 if (ret == 0) { 1137 dev_err(dev, "DMA mapping error for RX.\n"); 1138 return -EINVAL; 1139 } 1140 1141 desc = dmaengine_prep_dma_cyclic(chan, sg_dma_address(sgl), 1142 sg_dma_len(sgl), sg_dma_len(sgl) / sport->rx_periods, 1143 DMA_DEV_TO_MEM, DMA_PREP_INTERRUPT); 1144 1145 if (!desc) { 1146 dma_unmap_sg(dev, sgl, 1, DMA_FROM_DEVICE); 1147 dev_err(dev, "We cannot prepare for the RX slave dma!\n"); 1148 return -EINVAL; 1149 } 1150 desc->callback = imx_uart_dma_rx_callback; 1151 desc->callback_param = sport; 1152 1153 dev_dbg(dev, "RX: prepare for the DMA.\n"); 1154 sport->dma_is_rxing = 1; 1155 sport->rx_cookie = dmaengine_submit(desc); 1156 dma_async_issue_pending(chan); 1157 return 0; 1158 } 1159 1160 static void imx_uart_clear_rx_errors(struct imx_port *sport) 1161 { 1162 struct tty_port *port = &sport->port.state->port; 1163 u32 usr1, usr2; 1164 1165 usr1 = imx_uart_readl(sport, USR1); 1166 usr2 = imx_uart_readl(sport, USR2); 1167 1168 if (usr2 & USR2_BRCD) { 1169 sport->port.icount.brk++; 1170 imx_uart_writel(sport, USR2_BRCD, USR2); 1171 uart_handle_break(&sport->port); 1172 if (tty_insert_flip_char(port, 0, TTY_BREAK) == 0) 1173 sport->port.icount.buf_overrun++; 1174 tty_flip_buffer_push(port); 1175 } else { 1176 if (usr1 & USR1_FRAMERR) { 1177 sport->port.icount.frame++; 1178 imx_uart_writel(sport, USR1_FRAMERR, USR1); 1179 } else if (usr1 & USR1_PARITYERR) { 1180 sport->port.icount.parity++; 1181 imx_uart_writel(sport, USR1_PARITYERR, USR1); 1182 } 1183 } 1184 1185 if (usr2 & USR2_ORE) { 1186 sport->port.icount.overrun++; 1187 imx_uart_writel(sport, USR2_ORE, USR2); 1188 } 1189 1190 } 1191 1192 #define TXTL_DEFAULT 2 /* reset default */ 1193 #define RXTL_DEFAULT 1 /* reset default */ 1194 #define TXTL_DMA 8 /* DMA burst setting */ 1195 #define RXTL_DMA 9 /* DMA burst setting */ 1196 1197 static void imx_uart_setup_ufcr(struct imx_port *sport, 1198 unsigned char txwl, unsigned char rxwl) 1199 { 1200 unsigned int val; 1201 1202 /* set receiver / transmitter trigger level */ 1203 val = imx_uart_readl(sport, UFCR) & (UFCR_RFDIV | UFCR_DCEDTE); 1204 val |= txwl << UFCR_TXTL_SHF | rxwl; 1205 imx_uart_writel(sport, val, UFCR); 1206 } 1207 1208 static void imx_uart_dma_exit(struct imx_port *sport) 1209 { 1210 if (sport->dma_chan_rx) { 1211 dmaengine_terminate_sync(sport->dma_chan_rx); 1212 dma_release_channel(sport->dma_chan_rx); 1213 sport->dma_chan_rx = NULL; 1214 sport->rx_cookie = -EINVAL; 1215 kfree(sport->rx_buf); 1216 sport->rx_buf = NULL; 1217 } 1218 1219 if (sport->dma_chan_tx) { 1220 dmaengine_terminate_sync(sport->dma_chan_tx); 1221 dma_release_channel(sport->dma_chan_tx); 1222 sport->dma_chan_tx = NULL; 1223 } 1224 } 1225 1226 static int imx_uart_dma_init(struct imx_port *sport) 1227 { 1228 struct dma_slave_config slave_config = {}; 1229 struct device *dev = sport->port.dev; 1230 int ret; 1231 1232 /* Prepare for RX : */ 1233 sport->dma_chan_rx = dma_request_slave_channel(dev, "rx"); 1234 if (!sport->dma_chan_rx) { 1235 dev_dbg(dev, "cannot get the DMA channel.\n"); 1236 ret = -EINVAL; 1237 goto err; 1238 } 1239 1240 slave_config.direction = DMA_DEV_TO_MEM; 1241 slave_config.src_addr = sport->port.mapbase + URXD0; 1242 slave_config.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE; 1243 /* one byte less than the watermark level to enable the aging timer */ 1244 slave_config.src_maxburst = RXTL_DMA - 1; 1245 ret = dmaengine_slave_config(sport->dma_chan_rx, &slave_config); 1246 if (ret) { 1247 dev_err(dev, "error in RX dma configuration.\n"); 1248 goto err; 1249 } 1250 1251 sport->rx_buf = kzalloc(RX_BUF_SIZE, GFP_KERNEL); 1252 if (!sport->rx_buf) { 1253 ret = -ENOMEM; 1254 goto err; 1255 } 1256 sport->rx_ring.buf = sport->rx_buf; 1257 1258 /* Prepare for TX : */ 1259 sport->dma_chan_tx = dma_request_slave_channel(dev, "tx"); 1260 if (!sport->dma_chan_tx) { 1261 dev_err(dev, "cannot get the TX DMA channel!\n"); 1262 ret = -EINVAL; 1263 goto err; 1264 } 1265 1266 slave_config.direction = DMA_MEM_TO_DEV; 1267 slave_config.dst_addr = sport->port.mapbase + URTX0; 1268 slave_config.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE; 1269 slave_config.dst_maxburst = TXTL_DMA; 1270 ret = dmaengine_slave_config(sport->dma_chan_tx, &slave_config); 1271 if (ret) { 1272 dev_err(dev, "error in TX dma configuration."); 1273 goto err; 1274 } 1275 1276 return 0; 1277 err: 1278 imx_uart_dma_exit(sport); 1279 return ret; 1280 } 1281 1282 static void imx_uart_enable_dma(struct imx_port *sport) 1283 { 1284 u32 ucr1; 1285 1286 imx_uart_setup_ufcr(sport, TXTL_DMA, RXTL_DMA); 1287 1288 /* set UCR1 */ 1289 ucr1 = imx_uart_readl(sport, UCR1); 1290 ucr1 |= UCR1_RXDMAEN | UCR1_TXDMAEN | UCR1_ATDMAEN; 1291 imx_uart_writel(sport, ucr1, UCR1); 1292 1293 sport->dma_is_enabled = 1; 1294 } 1295 1296 static void imx_uart_disable_dma(struct imx_port *sport) 1297 { 1298 u32 ucr1; 1299 1300 /* clear UCR1 */ 1301 ucr1 = imx_uart_readl(sport, UCR1); 1302 ucr1 &= ~(UCR1_RXDMAEN | UCR1_TXDMAEN | UCR1_ATDMAEN); 1303 imx_uart_writel(sport, ucr1, UCR1); 1304 1305 imx_uart_setup_ufcr(sport, TXTL_DEFAULT, RXTL_DEFAULT); 1306 1307 sport->dma_is_enabled = 0; 1308 } 1309 1310 /* half the RX buffer size */ 1311 #define CTSTL 16 1312 1313 static int imx_uart_startup(struct uart_port *port) 1314 { 1315 struct imx_port *sport = (struct imx_port *)port; 1316 int retval, i; 1317 unsigned long flags; 1318 int dma_is_inited = 0; 1319 u32 ucr1, ucr2, ucr4; 1320 1321 retval = clk_prepare_enable(sport->clk_per); 1322 if (retval) 1323 return retval; 1324 retval = clk_prepare_enable(sport->clk_ipg); 1325 if (retval) { 1326 clk_disable_unprepare(sport->clk_per); 1327 return retval; 1328 } 1329 1330 imx_uart_setup_ufcr(sport, TXTL_DEFAULT, RXTL_DEFAULT); 1331 1332 /* disable the DREN bit (Data Ready interrupt enable) before 1333 * requesting IRQs 1334 */ 1335 ucr4 = imx_uart_readl(sport, UCR4); 1336 1337 /* set the trigger level for CTS */ 1338 ucr4 &= ~(UCR4_CTSTL_MASK << UCR4_CTSTL_SHF); 1339 ucr4 |= CTSTL << UCR4_CTSTL_SHF; 1340 1341 imx_uart_writel(sport, ucr4 & ~UCR4_DREN, UCR4); 1342 1343 /* Can we enable the DMA support? */ 1344 if (!uart_console(port) && imx_uart_dma_init(sport) == 0) 1345 dma_is_inited = 1; 1346 1347 spin_lock_irqsave(&sport->port.lock, flags); 1348 /* Reset fifo's and state machines */ 1349 i = 100; 1350 1351 ucr2 = imx_uart_readl(sport, UCR2); 1352 ucr2 &= ~UCR2_SRST; 1353 imx_uart_writel(sport, ucr2, UCR2); 1354 1355 while (!(imx_uart_readl(sport, UCR2) & UCR2_SRST) && (--i > 0)) 1356 udelay(1); 1357 1358 /* 1359 * Finally, clear and enable interrupts 1360 */ 1361 imx_uart_writel(sport, USR1_RTSD | USR1_DTRD, USR1); 1362 imx_uart_writel(sport, USR2_ORE, USR2); 1363 1364 ucr1 = imx_uart_readl(sport, UCR1) & ~UCR1_RRDYEN; 1365 ucr1 |= UCR1_UARTEN; 1366 if (sport->have_rtscts) 1367 ucr1 |= UCR1_RTSDEN; 1368 1369 imx_uart_writel(sport, ucr1, UCR1); 1370 1371 ucr4 = imx_uart_readl(sport, UCR4) & ~UCR4_OREN; 1372 if (!sport->dma_is_enabled) 1373 ucr4 |= UCR4_OREN; 1374 imx_uart_writel(sport, ucr4, UCR4); 1375 1376 ucr2 = imx_uart_readl(sport, UCR2) & ~UCR2_ATEN; 1377 ucr2 |= (UCR2_RXEN | UCR2_TXEN); 1378 if (!sport->have_rtscts) 1379 ucr2 |= UCR2_IRTS; 1380 /* 1381 * make sure the edge sensitive RTS-irq is disabled, 1382 * we're using RTSD instead. 1383 */ 1384 if (!imx_uart_is_imx1(sport)) 1385 ucr2 &= ~UCR2_RTSEN; 1386 imx_uart_writel(sport, ucr2, UCR2); 1387 1388 if (!imx_uart_is_imx1(sport)) { 1389 u32 ucr3; 1390 1391 ucr3 = imx_uart_readl(sport, UCR3); 1392 1393 ucr3 |= UCR3_DTRDEN | UCR3_RI | UCR3_DCD; 1394 1395 if (sport->dte_mode) 1396 /* disable broken interrupts */ 1397 ucr3 &= ~(UCR3_RI | UCR3_DCD); 1398 1399 imx_uart_writel(sport, ucr3, UCR3); 1400 } 1401 1402 /* 1403 * Enable modem status interrupts 1404 */ 1405 imx_uart_enable_ms(&sport->port); 1406 1407 if (dma_is_inited) { 1408 imx_uart_enable_dma(sport); 1409 imx_uart_start_rx_dma(sport); 1410 } else { 1411 ucr1 = imx_uart_readl(sport, UCR1); 1412 ucr1 |= UCR1_RRDYEN; 1413 imx_uart_writel(sport, ucr1, UCR1); 1414 1415 ucr2 = imx_uart_readl(sport, UCR2); 1416 ucr2 |= UCR2_ATEN; 1417 imx_uart_writel(sport, ucr2, UCR2); 1418 } 1419 1420 spin_unlock_irqrestore(&sport->port.lock, flags); 1421 1422 return 0; 1423 } 1424 1425 static void imx_uart_shutdown(struct uart_port *port) 1426 { 1427 struct imx_port *sport = (struct imx_port *)port; 1428 unsigned long flags; 1429 u32 ucr1, ucr2, ucr4; 1430 1431 if (sport->dma_is_enabled) { 1432 dmaengine_terminate_sync(sport->dma_chan_tx); 1433 if (sport->dma_is_txing) { 1434 dma_unmap_sg(sport->port.dev, &sport->tx_sgl[0], 1435 sport->dma_tx_nents, DMA_TO_DEVICE); 1436 sport->dma_is_txing = 0; 1437 } 1438 dmaengine_terminate_sync(sport->dma_chan_rx); 1439 if (sport->dma_is_rxing) { 1440 dma_unmap_sg(sport->port.dev, &sport->rx_sgl, 1441 1, DMA_FROM_DEVICE); 1442 sport->dma_is_rxing = 0; 1443 } 1444 1445 spin_lock_irqsave(&sport->port.lock, flags); 1446 imx_uart_stop_tx(port); 1447 imx_uart_stop_rx(port); 1448 imx_uart_disable_dma(sport); 1449 spin_unlock_irqrestore(&sport->port.lock, flags); 1450 imx_uart_dma_exit(sport); 1451 } 1452 1453 mctrl_gpio_disable_ms(sport->gpios); 1454 1455 spin_lock_irqsave(&sport->port.lock, flags); 1456 ucr2 = imx_uart_readl(sport, UCR2); 1457 ucr2 &= ~(UCR2_TXEN | UCR2_ATEN); 1458 imx_uart_writel(sport, ucr2, UCR2); 1459 1460 ucr4 = imx_uart_readl(sport, UCR4); 1461 ucr4 &= ~UCR4_OREN; 1462 imx_uart_writel(sport, ucr4, UCR4); 1463 spin_unlock_irqrestore(&sport->port.lock, flags); 1464 1465 /* 1466 * Stop our timer. 1467 */ 1468 del_timer_sync(&sport->timer); 1469 1470 /* 1471 * Disable all interrupts, port and break condition. 1472 */ 1473 1474 spin_lock_irqsave(&sport->port.lock, flags); 1475 ucr1 = imx_uart_readl(sport, UCR1); 1476 ucr1 &= ~(UCR1_TRDYEN | UCR1_RRDYEN | UCR1_RTSDEN | UCR1_UARTEN | UCR1_RXDMAEN | UCR1_ATDMAEN); 1477 1478 imx_uart_writel(sport, ucr1, UCR1); 1479 spin_unlock_irqrestore(&sport->port.lock, flags); 1480 1481 clk_disable_unprepare(sport->clk_per); 1482 clk_disable_unprepare(sport->clk_ipg); 1483 } 1484 1485 /* called with port.lock taken and irqs off */ 1486 static void imx_uart_flush_buffer(struct uart_port *port) 1487 { 1488 struct imx_port *sport = (struct imx_port *)port; 1489 struct scatterlist *sgl = &sport->tx_sgl[0]; 1490 u32 ucr2; 1491 int i = 100, ubir, ubmr, uts; 1492 1493 if (!sport->dma_chan_tx) 1494 return; 1495 1496 sport->tx_bytes = 0; 1497 dmaengine_terminate_all(sport->dma_chan_tx); 1498 if (sport->dma_is_txing) { 1499 u32 ucr1; 1500 1501 dma_unmap_sg(sport->port.dev, sgl, sport->dma_tx_nents, 1502 DMA_TO_DEVICE); 1503 ucr1 = imx_uart_readl(sport, UCR1); 1504 ucr1 &= ~UCR1_TXDMAEN; 1505 imx_uart_writel(sport, ucr1, UCR1); 1506 sport->dma_is_txing = 0; 1507 } 1508 1509 /* 1510 * According to the Reference Manual description of the UART SRST bit: 1511 * 1512 * "Reset the transmit and receive state machines, 1513 * all FIFOs and register USR1, USR2, UBIR, UBMR, UBRC, URXD, UTXD 1514 * and UTS[6-3]". 1515 * 1516 * We don't need to restore the old values from USR1, USR2, URXD and 1517 * UTXD. UBRC is read only, so only save/restore the other three 1518 * registers. 1519 */ 1520 ubir = imx_uart_readl(sport, UBIR); 1521 ubmr = imx_uart_readl(sport, UBMR); 1522 uts = imx_uart_readl(sport, IMX21_UTS); 1523 1524 ucr2 = imx_uart_readl(sport, UCR2); 1525 ucr2 &= ~UCR2_SRST; 1526 imx_uart_writel(sport, ucr2, UCR2); 1527 1528 while (!(imx_uart_readl(sport, UCR2) & UCR2_SRST) && (--i > 0)) 1529 udelay(1); 1530 1531 /* Restore the registers */ 1532 imx_uart_writel(sport, ubir, UBIR); 1533 imx_uart_writel(sport, ubmr, UBMR); 1534 imx_uart_writel(sport, uts, IMX21_UTS); 1535 } 1536 1537 static void 1538 imx_uart_set_termios(struct uart_port *port, struct ktermios *termios, 1539 struct ktermios *old) 1540 { 1541 struct imx_port *sport = (struct imx_port *)port; 1542 unsigned long flags; 1543 u32 ucr2, old_ucr2, ufcr; 1544 unsigned int baud, quot; 1545 unsigned int old_csize = old ? old->c_cflag & CSIZE : CS8; 1546 unsigned long div; 1547 unsigned long num, denom, old_ubir, old_ubmr; 1548 uint64_t tdiv64; 1549 1550 /* 1551 * We only support CS7 and CS8. 1552 */ 1553 while ((termios->c_cflag & CSIZE) != CS7 && 1554 (termios->c_cflag & CSIZE) != CS8) { 1555 termios->c_cflag &= ~CSIZE; 1556 termios->c_cflag |= old_csize; 1557 old_csize = CS8; 1558 } 1559 1560 del_timer_sync(&sport->timer); 1561 1562 /* 1563 * Ask the core to calculate the divisor for us. 1564 */ 1565 baud = uart_get_baud_rate(port, termios, old, 50, port->uartclk / 16); 1566 quot = uart_get_divisor(port, baud); 1567 1568 spin_lock_irqsave(&sport->port.lock, flags); 1569 1570 /* 1571 * Read current UCR2 and save it for future use, then clear all the bits 1572 * except those we will or may need to preserve. 1573 */ 1574 old_ucr2 = imx_uart_readl(sport, UCR2); 1575 ucr2 = old_ucr2 & (UCR2_TXEN | UCR2_RXEN | UCR2_ATEN | UCR2_CTS); 1576 1577 ucr2 |= UCR2_SRST | UCR2_IRTS; 1578 if ((termios->c_cflag & CSIZE) == CS8) 1579 ucr2 |= UCR2_WS; 1580 1581 if (!sport->have_rtscts) 1582 termios->c_cflag &= ~CRTSCTS; 1583 1584 if (port->rs485.flags & SER_RS485_ENABLED) { 1585 /* 1586 * RTS is mandatory for rs485 operation, so keep 1587 * it under manual control and keep transmitter 1588 * disabled. 1589 */ 1590 if (port->rs485.flags & SER_RS485_RTS_AFTER_SEND) 1591 imx_uart_rts_active(sport, &ucr2); 1592 else 1593 imx_uart_rts_inactive(sport, &ucr2); 1594 1595 } else if (termios->c_cflag & CRTSCTS) { 1596 /* 1597 * Only let receiver control RTS output if we were not requested 1598 * to have RTS inactive (which then should take precedence). 1599 */ 1600 if (ucr2 & UCR2_CTS) 1601 ucr2 |= UCR2_CTSC; 1602 } 1603 1604 if (termios->c_cflag & CRTSCTS) 1605 ucr2 &= ~UCR2_IRTS; 1606 1607 if (termios->c_cflag & CSTOPB) 1608 ucr2 |= UCR2_STPB; 1609 if (termios->c_cflag & PARENB) { 1610 ucr2 |= UCR2_PREN; 1611 if (termios->c_cflag & PARODD) 1612 ucr2 |= UCR2_PROE; 1613 } 1614 1615 sport->port.read_status_mask = 0; 1616 if (termios->c_iflag & INPCK) 1617 sport->port.read_status_mask |= (URXD_FRMERR | URXD_PRERR); 1618 if (termios->c_iflag & (BRKINT | PARMRK)) 1619 sport->port.read_status_mask |= URXD_BRK; 1620 1621 /* 1622 * Characters to ignore 1623 */ 1624 sport->port.ignore_status_mask = 0; 1625 if (termios->c_iflag & IGNPAR) 1626 sport->port.ignore_status_mask |= URXD_PRERR | URXD_FRMERR; 1627 if (termios->c_iflag & IGNBRK) { 1628 sport->port.ignore_status_mask |= URXD_BRK; 1629 /* 1630 * If we're ignoring parity and break indicators, 1631 * ignore overruns too (for real raw support). 1632 */ 1633 if (termios->c_iflag & IGNPAR) 1634 sport->port.ignore_status_mask |= URXD_OVRRUN; 1635 } 1636 1637 if ((termios->c_cflag & CREAD) == 0) 1638 sport->port.ignore_status_mask |= URXD_DUMMY_READ; 1639 1640 /* 1641 * Update the per-port timeout. 1642 */ 1643 uart_update_timeout(port, termios->c_cflag, baud); 1644 1645 /* custom-baudrate handling */ 1646 div = sport->port.uartclk / (baud * 16); 1647 if (baud == 38400 && quot != div) 1648 baud = sport->port.uartclk / (quot * 16); 1649 1650 div = sport->port.uartclk / (baud * 16); 1651 if (div > 7) 1652 div = 7; 1653 if (!div) 1654 div = 1; 1655 1656 rational_best_approximation(16 * div * baud, sport->port.uartclk, 1657 1 << 16, 1 << 16, &num, &denom); 1658 1659 tdiv64 = sport->port.uartclk; 1660 tdiv64 *= num; 1661 do_div(tdiv64, denom * 16 * div); 1662 tty_termios_encode_baud_rate(termios, 1663 (speed_t)tdiv64, (speed_t)tdiv64); 1664 1665 num -= 1; 1666 denom -= 1; 1667 1668 ufcr = imx_uart_readl(sport, UFCR); 1669 ufcr = (ufcr & (~UFCR_RFDIV)) | UFCR_RFDIV_REG(div); 1670 imx_uart_writel(sport, ufcr, UFCR); 1671 1672 /* 1673 * Two registers below should always be written both and in this 1674 * particular order. One consequence is that we need to check if any of 1675 * them changes and then update both. We do need the check for change 1676 * as even writing the same values seem to "restart" 1677 * transmission/receiving logic in the hardware, that leads to data 1678 * breakage even when rate doesn't in fact change. E.g., user switches 1679 * RTS/CTS handshake and suddenly gets broken bytes. 1680 */ 1681 old_ubir = imx_uart_readl(sport, UBIR); 1682 old_ubmr = imx_uart_readl(sport, UBMR); 1683 if (old_ubir != num || old_ubmr != denom) { 1684 imx_uart_writel(sport, num, UBIR); 1685 imx_uart_writel(sport, denom, UBMR); 1686 } 1687 1688 if (!imx_uart_is_imx1(sport)) 1689 imx_uart_writel(sport, sport->port.uartclk / div / 1000, 1690 IMX21_ONEMS); 1691 1692 imx_uart_writel(sport, ucr2, UCR2); 1693 1694 if (UART_ENABLE_MS(&sport->port, termios->c_cflag)) 1695 imx_uart_enable_ms(&sport->port); 1696 1697 spin_unlock_irqrestore(&sport->port.lock, flags); 1698 } 1699 1700 static const char *imx_uart_type(struct uart_port *port) 1701 { 1702 struct imx_port *sport = (struct imx_port *)port; 1703 1704 return sport->port.type == PORT_IMX ? "IMX" : NULL; 1705 } 1706 1707 /* 1708 * Configure/autoconfigure the port. 1709 */ 1710 static void imx_uart_config_port(struct uart_port *port, int flags) 1711 { 1712 struct imx_port *sport = (struct imx_port *)port; 1713 1714 if (flags & UART_CONFIG_TYPE) 1715 sport->port.type = PORT_IMX; 1716 } 1717 1718 /* 1719 * Verify the new serial_struct (for TIOCSSERIAL). 1720 * The only change we allow are to the flags and type, and 1721 * even then only between PORT_IMX and PORT_UNKNOWN 1722 */ 1723 static int 1724 imx_uart_verify_port(struct uart_port *port, struct serial_struct *ser) 1725 { 1726 struct imx_port *sport = (struct imx_port *)port; 1727 int ret = 0; 1728 1729 if (ser->type != PORT_UNKNOWN && ser->type != PORT_IMX) 1730 ret = -EINVAL; 1731 if (sport->port.irq != ser->irq) 1732 ret = -EINVAL; 1733 if (ser->io_type != UPIO_MEM) 1734 ret = -EINVAL; 1735 if (sport->port.uartclk / 16 != ser->baud_base) 1736 ret = -EINVAL; 1737 if (sport->port.mapbase != (unsigned long)ser->iomem_base) 1738 ret = -EINVAL; 1739 if (sport->port.iobase != ser->port) 1740 ret = -EINVAL; 1741 if (ser->hub6 != 0) 1742 ret = -EINVAL; 1743 return ret; 1744 } 1745 1746 #if defined(CONFIG_CONSOLE_POLL) 1747 1748 static int imx_uart_poll_init(struct uart_port *port) 1749 { 1750 struct imx_port *sport = (struct imx_port *)port; 1751 unsigned long flags; 1752 u32 ucr1, ucr2; 1753 int retval; 1754 1755 retval = clk_prepare_enable(sport->clk_ipg); 1756 if (retval) 1757 return retval; 1758 retval = clk_prepare_enable(sport->clk_per); 1759 if (retval) 1760 clk_disable_unprepare(sport->clk_ipg); 1761 1762 imx_uart_setup_ufcr(sport, TXTL_DEFAULT, RXTL_DEFAULT); 1763 1764 spin_lock_irqsave(&sport->port.lock, flags); 1765 1766 /* 1767 * Be careful about the order of enabling bits here. First enable the 1768 * receiver (UARTEN + RXEN) and only then the corresponding irqs. 1769 * This prevents that a character that already sits in the RX fifo is 1770 * triggering an irq but the try to fetch it from there results in an 1771 * exception because UARTEN or RXEN is still off. 1772 */ 1773 ucr1 = imx_uart_readl(sport, UCR1); 1774 ucr2 = imx_uart_readl(sport, UCR2); 1775 1776 if (imx_uart_is_imx1(sport)) 1777 ucr1 |= IMX1_UCR1_UARTCLKEN; 1778 1779 ucr1 |= UCR1_UARTEN; 1780 ucr1 &= ~(UCR1_TRDYEN | UCR1_RTSDEN | UCR1_RRDYEN); 1781 1782 ucr2 |= UCR2_RXEN; 1783 ucr2 &= ~UCR2_ATEN; 1784 1785 imx_uart_writel(sport, ucr1, UCR1); 1786 imx_uart_writel(sport, ucr2, UCR2); 1787 1788 /* now enable irqs */ 1789 imx_uart_writel(sport, ucr1 | UCR1_RRDYEN, UCR1); 1790 imx_uart_writel(sport, ucr2 | UCR2_ATEN, UCR2); 1791 1792 spin_unlock_irqrestore(&sport->port.lock, flags); 1793 1794 return 0; 1795 } 1796 1797 static int imx_uart_poll_get_char(struct uart_port *port) 1798 { 1799 struct imx_port *sport = (struct imx_port *)port; 1800 if (!(imx_uart_readl(sport, USR2) & USR2_RDR)) 1801 return NO_POLL_CHAR; 1802 1803 return imx_uart_readl(sport, URXD0) & URXD_RX_DATA; 1804 } 1805 1806 static void imx_uart_poll_put_char(struct uart_port *port, unsigned char c) 1807 { 1808 struct imx_port *sport = (struct imx_port *)port; 1809 unsigned int status; 1810 1811 /* drain */ 1812 do { 1813 status = imx_uart_readl(sport, USR1); 1814 } while (~status & USR1_TRDY); 1815 1816 /* write */ 1817 imx_uart_writel(sport, c, URTX0); 1818 1819 /* flush */ 1820 do { 1821 status = imx_uart_readl(sport, USR2); 1822 } while (~status & USR2_TXDC); 1823 } 1824 #endif 1825 1826 /* called with port.lock taken and irqs off or from .probe without locking */ 1827 static int imx_uart_rs485_config(struct uart_port *port, 1828 struct serial_rs485 *rs485conf) 1829 { 1830 struct imx_port *sport = (struct imx_port *)port; 1831 u32 ucr2; 1832 1833 /* unimplemented */ 1834 rs485conf->delay_rts_before_send = 0; 1835 rs485conf->delay_rts_after_send = 0; 1836 1837 /* RTS is required to control the transmitter */ 1838 if (!sport->have_rtscts && !sport->have_rtsgpio) 1839 rs485conf->flags &= ~SER_RS485_ENABLED; 1840 1841 if (rs485conf->flags & SER_RS485_ENABLED) { 1842 /* Enable receiver if low-active RTS signal is requested */ 1843 if (sport->have_rtscts && !sport->have_rtsgpio && 1844 !(rs485conf->flags & SER_RS485_RTS_ON_SEND)) 1845 rs485conf->flags |= SER_RS485_RX_DURING_TX; 1846 1847 /* disable transmitter */ 1848 ucr2 = imx_uart_readl(sport, UCR2); 1849 if (rs485conf->flags & SER_RS485_RTS_AFTER_SEND) 1850 imx_uart_rts_active(sport, &ucr2); 1851 else 1852 imx_uart_rts_inactive(sport, &ucr2); 1853 imx_uart_writel(sport, ucr2, UCR2); 1854 } 1855 1856 /* Make sure Rx is enabled in case Tx is active with Rx disabled */ 1857 if (!(rs485conf->flags & SER_RS485_ENABLED) || 1858 rs485conf->flags & SER_RS485_RX_DURING_TX) 1859 imx_uart_start_rx(port); 1860 1861 port->rs485 = *rs485conf; 1862 1863 return 0; 1864 } 1865 1866 static const struct uart_ops imx_uart_pops = { 1867 .tx_empty = imx_uart_tx_empty, 1868 .set_mctrl = imx_uart_set_mctrl, 1869 .get_mctrl = imx_uart_get_mctrl, 1870 .stop_tx = imx_uart_stop_tx, 1871 .start_tx = imx_uart_start_tx, 1872 .stop_rx = imx_uart_stop_rx, 1873 .enable_ms = imx_uart_enable_ms, 1874 .break_ctl = imx_uart_break_ctl, 1875 .startup = imx_uart_startup, 1876 .shutdown = imx_uart_shutdown, 1877 .flush_buffer = imx_uart_flush_buffer, 1878 .set_termios = imx_uart_set_termios, 1879 .type = imx_uart_type, 1880 .config_port = imx_uart_config_port, 1881 .verify_port = imx_uart_verify_port, 1882 #if defined(CONFIG_CONSOLE_POLL) 1883 .poll_init = imx_uart_poll_init, 1884 .poll_get_char = imx_uart_poll_get_char, 1885 .poll_put_char = imx_uart_poll_put_char, 1886 #endif 1887 }; 1888 1889 static struct imx_port *imx_uart_ports[UART_NR]; 1890 1891 #ifdef CONFIG_SERIAL_IMX_CONSOLE 1892 static void imx_uart_console_putchar(struct uart_port *port, int ch) 1893 { 1894 struct imx_port *sport = (struct imx_port *)port; 1895 1896 while (imx_uart_readl(sport, imx_uart_uts_reg(sport)) & UTS_TXFULL) 1897 barrier(); 1898 1899 imx_uart_writel(sport, ch, URTX0); 1900 } 1901 1902 /* 1903 * Interrupts are disabled on entering 1904 */ 1905 static void 1906 imx_uart_console_write(struct console *co, const char *s, unsigned int count) 1907 { 1908 struct imx_port *sport = imx_uart_ports[co->index]; 1909 struct imx_port_ucrs old_ucr; 1910 unsigned int ucr1; 1911 unsigned long flags = 0; 1912 int locked = 1; 1913 int retval; 1914 1915 retval = clk_enable(sport->clk_per); 1916 if (retval) 1917 return; 1918 retval = clk_enable(sport->clk_ipg); 1919 if (retval) { 1920 clk_disable(sport->clk_per); 1921 return; 1922 } 1923 1924 if (sport->port.sysrq) 1925 locked = 0; 1926 else if (oops_in_progress) 1927 locked = spin_trylock_irqsave(&sport->port.lock, flags); 1928 else 1929 spin_lock_irqsave(&sport->port.lock, flags); 1930 1931 /* 1932 * First, save UCR1/2/3 and then disable interrupts 1933 */ 1934 imx_uart_ucrs_save(sport, &old_ucr); 1935 ucr1 = old_ucr.ucr1; 1936 1937 if (imx_uart_is_imx1(sport)) 1938 ucr1 |= IMX1_UCR1_UARTCLKEN; 1939 ucr1 |= UCR1_UARTEN; 1940 ucr1 &= ~(UCR1_TRDYEN | UCR1_RRDYEN | UCR1_RTSDEN); 1941 1942 imx_uart_writel(sport, ucr1, UCR1); 1943 1944 imx_uart_writel(sport, old_ucr.ucr2 | UCR2_TXEN, UCR2); 1945 1946 uart_console_write(&sport->port, s, count, imx_uart_console_putchar); 1947 1948 /* 1949 * Finally, wait for transmitter to become empty 1950 * and restore UCR1/2/3 1951 */ 1952 while (!(imx_uart_readl(sport, USR2) & USR2_TXDC)); 1953 1954 imx_uart_ucrs_restore(sport, &old_ucr); 1955 1956 if (locked) 1957 spin_unlock_irqrestore(&sport->port.lock, flags); 1958 1959 clk_disable(sport->clk_ipg); 1960 clk_disable(sport->clk_per); 1961 } 1962 1963 /* 1964 * If the port was already initialised (eg, by a boot loader), 1965 * try to determine the current setup. 1966 */ 1967 static void __init 1968 imx_uart_console_get_options(struct imx_port *sport, int *baud, 1969 int *parity, int *bits) 1970 { 1971 1972 if (imx_uart_readl(sport, UCR1) & UCR1_UARTEN) { 1973 /* ok, the port was enabled */ 1974 unsigned int ucr2, ubir, ubmr, uartclk; 1975 unsigned int baud_raw; 1976 unsigned int ucfr_rfdiv; 1977 1978 ucr2 = imx_uart_readl(sport, UCR2); 1979 1980 *parity = 'n'; 1981 if (ucr2 & UCR2_PREN) { 1982 if (ucr2 & UCR2_PROE) 1983 *parity = 'o'; 1984 else 1985 *parity = 'e'; 1986 } 1987 1988 if (ucr2 & UCR2_WS) 1989 *bits = 8; 1990 else 1991 *bits = 7; 1992 1993 ubir = imx_uart_readl(sport, UBIR) & 0xffff; 1994 ubmr = imx_uart_readl(sport, UBMR) & 0xffff; 1995 1996 ucfr_rfdiv = (imx_uart_readl(sport, UFCR) & UFCR_RFDIV) >> 7; 1997 if (ucfr_rfdiv == 6) 1998 ucfr_rfdiv = 7; 1999 else 2000 ucfr_rfdiv = 6 - ucfr_rfdiv; 2001 2002 uartclk = clk_get_rate(sport->clk_per); 2003 uartclk /= ucfr_rfdiv; 2004 2005 { /* 2006 * The next code provides exact computation of 2007 * baud_raw = round(((uartclk/16) * (ubir + 1)) / (ubmr + 1)) 2008 * without need of float support or long long division, 2009 * which would be required to prevent 32bit arithmetic overflow 2010 */ 2011 unsigned int mul = ubir + 1; 2012 unsigned int div = 16 * (ubmr + 1); 2013 unsigned int rem = uartclk % div; 2014 2015 baud_raw = (uartclk / div) * mul; 2016 baud_raw += (rem * mul + div / 2) / div; 2017 *baud = (baud_raw + 50) / 100 * 100; 2018 } 2019 2020 if (*baud != baud_raw) 2021 dev_info(sport->port.dev, "Console IMX rounded baud rate from %d to %d\n", 2022 baud_raw, *baud); 2023 } 2024 } 2025 2026 static int __init 2027 imx_uart_console_setup(struct console *co, char *options) 2028 { 2029 struct imx_port *sport; 2030 int baud = 9600; 2031 int bits = 8; 2032 int parity = 'n'; 2033 int flow = 'n'; 2034 int retval; 2035 2036 /* 2037 * Check whether an invalid uart number has been specified, and 2038 * if so, search for the first available port that does have 2039 * console support. 2040 */ 2041 if (co->index == -1 || co->index >= ARRAY_SIZE(imx_uart_ports)) 2042 co->index = 0; 2043 sport = imx_uart_ports[co->index]; 2044 if (sport == NULL) 2045 return -ENODEV; 2046 2047 /* For setting the registers, we only need to enable the ipg clock. */ 2048 retval = clk_prepare_enable(sport->clk_ipg); 2049 if (retval) 2050 goto error_console; 2051 2052 if (options) 2053 uart_parse_options(options, &baud, &parity, &bits, &flow); 2054 else 2055 imx_uart_console_get_options(sport, &baud, &parity, &bits); 2056 2057 imx_uart_setup_ufcr(sport, TXTL_DEFAULT, RXTL_DEFAULT); 2058 2059 retval = uart_set_options(&sport->port, co, baud, parity, bits, flow); 2060 2061 clk_disable(sport->clk_ipg); 2062 if (retval) { 2063 clk_unprepare(sport->clk_ipg); 2064 goto error_console; 2065 } 2066 2067 retval = clk_prepare(sport->clk_per); 2068 if (retval) 2069 clk_unprepare(sport->clk_ipg); 2070 2071 error_console: 2072 return retval; 2073 } 2074 2075 static struct uart_driver imx_uart_uart_driver; 2076 static struct console imx_uart_console = { 2077 .name = DEV_NAME, 2078 .write = imx_uart_console_write, 2079 .device = uart_console_device, 2080 .setup = imx_uart_console_setup, 2081 .flags = CON_PRINTBUFFER, 2082 .index = -1, 2083 .data = &imx_uart_uart_driver, 2084 }; 2085 2086 #define IMX_CONSOLE &imx_uart_console 2087 2088 #ifdef CONFIG_OF 2089 static void imx_uart_console_early_putchar(struct uart_port *port, int ch) 2090 { 2091 struct imx_port *sport = (struct imx_port *)port; 2092 2093 while (imx_uart_readl(sport, IMX21_UTS) & UTS_TXFULL) 2094 cpu_relax(); 2095 2096 imx_uart_writel(sport, ch, URTX0); 2097 } 2098 2099 static void imx_uart_console_early_write(struct console *con, const char *s, 2100 unsigned count) 2101 { 2102 struct earlycon_device *dev = con->data; 2103 2104 uart_console_write(&dev->port, s, count, imx_uart_console_early_putchar); 2105 } 2106 2107 static int __init 2108 imx_console_early_setup(struct earlycon_device *dev, const char *opt) 2109 { 2110 if (!dev->port.membase) 2111 return -ENODEV; 2112 2113 dev->con->write = imx_uart_console_early_write; 2114 2115 return 0; 2116 } 2117 OF_EARLYCON_DECLARE(ec_imx6q, "fsl,imx6q-uart", imx_console_early_setup); 2118 OF_EARLYCON_DECLARE(ec_imx21, "fsl,imx21-uart", imx_console_early_setup); 2119 #endif 2120 2121 #else 2122 #define IMX_CONSOLE NULL 2123 #endif 2124 2125 static struct uart_driver imx_uart_uart_driver = { 2126 .owner = THIS_MODULE, 2127 .driver_name = DRIVER_NAME, 2128 .dev_name = DEV_NAME, 2129 .major = SERIAL_IMX_MAJOR, 2130 .minor = MINOR_START, 2131 .nr = ARRAY_SIZE(imx_uart_ports), 2132 .cons = IMX_CONSOLE, 2133 }; 2134 2135 #ifdef CONFIG_OF 2136 /* 2137 * This function returns 1 iff pdev isn't a device instatiated by dt, 0 iff it 2138 * could successfully get all information from dt or a negative errno. 2139 */ 2140 static int imx_uart_probe_dt(struct imx_port *sport, 2141 struct platform_device *pdev) 2142 { 2143 struct device_node *np = pdev->dev.of_node; 2144 int ret; 2145 2146 sport->devdata = of_device_get_match_data(&pdev->dev); 2147 if (!sport->devdata) 2148 /* no device tree device */ 2149 return 1; 2150 2151 ret = of_alias_get_id(np, "serial"); 2152 if (ret < 0) { 2153 dev_err(&pdev->dev, "failed to get alias id, errno %d\n", ret); 2154 return ret; 2155 } 2156 sport->port.line = ret; 2157 2158 if (of_get_property(np, "uart-has-rtscts", NULL) || 2159 of_get_property(np, "fsl,uart-has-rtscts", NULL) /* deprecated */) 2160 sport->have_rtscts = 1; 2161 2162 if (of_get_property(np, "fsl,dte-mode", NULL)) 2163 sport->dte_mode = 1; 2164 2165 if (of_get_property(np, "rts-gpios", NULL)) 2166 sport->have_rtsgpio = 1; 2167 2168 return 0; 2169 } 2170 #else 2171 static inline int imx_uart_probe_dt(struct imx_port *sport, 2172 struct platform_device *pdev) 2173 { 2174 return 1; 2175 } 2176 #endif 2177 2178 static void imx_uart_probe_pdata(struct imx_port *sport, 2179 struct platform_device *pdev) 2180 { 2181 struct imxuart_platform_data *pdata = dev_get_platdata(&pdev->dev); 2182 2183 sport->port.line = pdev->id; 2184 sport->devdata = (struct imx_uart_data *) pdev->id_entry->driver_data; 2185 2186 if (!pdata) 2187 return; 2188 2189 if (pdata->flags & IMXUART_HAVE_RTSCTS) 2190 sport->have_rtscts = 1; 2191 } 2192 2193 static int imx_uart_probe(struct platform_device *pdev) 2194 { 2195 struct imx_port *sport; 2196 void __iomem *base; 2197 int ret = 0; 2198 u32 ucr1; 2199 struct resource *res; 2200 int txirq, rxirq, rtsirq; 2201 2202 sport = devm_kzalloc(&pdev->dev, sizeof(*sport), GFP_KERNEL); 2203 if (!sport) 2204 return -ENOMEM; 2205 2206 ret = imx_uart_probe_dt(sport, pdev); 2207 if (ret > 0) 2208 imx_uart_probe_pdata(sport, pdev); 2209 else if (ret < 0) 2210 return ret; 2211 2212 if (sport->port.line >= ARRAY_SIZE(imx_uart_ports)) { 2213 dev_err(&pdev->dev, "serial%d out of range\n", 2214 sport->port.line); 2215 return -EINVAL; 2216 } 2217 2218 res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 2219 base = devm_ioremap_resource(&pdev->dev, res); 2220 if (IS_ERR(base)) 2221 return PTR_ERR(base); 2222 2223 rxirq = platform_get_irq(pdev, 0); 2224 txirq = platform_get_irq_optional(pdev, 1); 2225 rtsirq = platform_get_irq_optional(pdev, 2); 2226 2227 sport->port.dev = &pdev->dev; 2228 sport->port.mapbase = res->start; 2229 sport->port.membase = base; 2230 sport->port.type = PORT_IMX, 2231 sport->port.iotype = UPIO_MEM; 2232 sport->port.irq = rxirq; 2233 sport->port.fifosize = 32; 2234 sport->port.ops = &imx_uart_pops; 2235 sport->port.rs485_config = imx_uart_rs485_config; 2236 sport->port.flags = UPF_BOOT_AUTOCONF; 2237 timer_setup(&sport->timer, imx_uart_timeout, 0); 2238 2239 sport->gpios = mctrl_gpio_init(&sport->port, 0); 2240 if (IS_ERR(sport->gpios)) 2241 return PTR_ERR(sport->gpios); 2242 2243 sport->clk_ipg = devm_clk_get(&pdev->dev, "ipg"); 2244 if (IS_ERR(sport->clk_ipg)) { 2245 ret = PTR_ERR(sport->clk_ipg); 2246 dev_err(&pdev->dev, "failed to get ipg clk: %d\n", ret); 2247 return ret; 2248 } 2249 2250 sport->clk_per = devm_clk_get(&pdev->dev, "per"); 2251 if (IS_ERR(sport->clk_per)) { 2252 ret = PTR_ERR(sport->clk_per); 2253 dev_err(&pdev->dev, "failed to get per clk: %d\n", ret); 2254 return ret; 2255 } 2256 2257 sport->port.uartclk = clk_get_rate(sport->clk_per); 2258 2259 /* For register access, we only need to enable the ipg clock. */ 2260 ret = clk_prepare_enable(sport->clk_ipg); 2261 if (ret) { 2262 dev_err(&pdev->dev, "failed to enable per clk: %d\n", ret); 2263 return ret; 2264 } 2265 2266 /* initialize shadow register values */ 2267 sport->ucr1 = readl(sport->port.membase + UCR1); 2268 sport->ucr2 = readl(sport->port.membase + UCR2); 2269 sport->ucr3 = readl(sport->port.membase + UCR3); 2270 sport->ucr4 = readl(sport->port.membase + UCR4); 2271 sport->ufcr = readl(sport->port.membase + UFCR); 2272 2273 uart_get_rs485_mode(&pdev->dev, &sport->port.rs485); 2274 2275 if (sport->port.rs485.flags & SER_RS485_ENABLED && 2276 (!sport->have_rtscts && !sport->have_rtsgpio)) 2277 dev_err(&pdev->dev, "no RTS control, disabling rs485\n"); 2278 2279 /* 2280 * If using the i.MX UART RTS/CTS control then the RTS (CTS_B) 2281 * signal cannot be set low during transmission in case the 2282 * receiver is off (limitation of the i.MX UART IP). 2283 */ 2284 if (sport->port.rs485.flags & SER_RS485_ENABLED && 2285 sport->have_rtscts && !sport->have_rtsgpio && 2286 (!(sport->port.rs485.flags & SER_RS485_RTS_ON_SEND) && 2287 !(sport->port.rs485.flags & SER_RS485_RX_DURING_TX))) 2288 dev_err(&pdev->dev, 2289 "low-active RTS not possible when receiver is off, enabling receiver\n"); 2290 2291 imx_uart_rs485_config(&sport->port, &sport->port.rs485); 2292 2293 /* Disable interrupts before requesting them */ 2294 ucr1 = imx_uart_readl(sport, UCR1); 2295 ucr1 &= ~(UCR1_ADEN | UCR1_TRDYEN | UCR1_IDEN | UCR1_RRDYEN | 2296 UCR1_TRDYEN | UCR1_RTSDEN); 2297 imx_uart_writel(sport, ucr1, UCR1); 2298 2299 if (!imx_uart_is_imx1(sport) && sport->dte_mode) { 2300 /* 2301 * The DCEDTE bit changes the direction of DSR, DCD, DTR and RI 2302 * and influences if UCR3_RI and UCR3_DCD changes the level of RI 2303 * and DCD (when they are outputs) or enables the respective 2304 * irqs. So set this bit early, i.e. before requesting irqs. 2305 */ 2306 u32 ufcr = imx_uart_readl(sport, UFCR); 2307 if (!(ufcr & UFCR_DCEDTE)) 2308 imx_uart_writel(sport, ufcr | UFCR_DCEDTE, UFCR); 2309 2310 /* 2311 * Disable UCR3_RI and UCR3_DCD irqs. They are also not 2312 * enabled later because they cannot be cleared 2313 * (confirmed on i.MX25) which makes them unusable. 2314 */ 2315 imx_uart_writel(sport, 2316 IMX21_UCR3_RXDMUXSEL | UCR3_ADNIMP | UCR3_DSR, 2317 UCR3); 2318 2319 } else { 2320 u32 ucr3 = UCR3_DSR; 2321 u32 ufcr = imx_uart_readl(sport, UFCR); 2322 if (ufcr & UFCR_DCEDTE) 2323 imx_uart_writel(sport, ufcr & ~UFCR_DCEDTE, UFCR); 2324 2325 if (!imx_uart_is_imx1(sport)) 2326 ucr3 |= IMX21_UCR3_RXDMUXSEL | UCR3_ADNIMP; 2327 imx_uart_writel(sport, ucr3, UCR3); 2328 } 2329 2330 clk_disable_unprepare(sport->clk_ipg); 2331 2332 /* 2333 * Allocate the IRQ(s) i.MX1 has three interrupts whereas later 2334 * chips only have one interrupt. 2335 */ 2336 if (txirq > 0) { 2337 ret = devm_request_irq(&pdev->dev, rxirq, imx_uart_rxint, 0, 2338 dev_name(&pdev->dev), sport); 2339 if (ret) { 2340 dev_err(&pdev->dev, "failed to request rx irq: %d\n", 2341 ret); 2342 return ret; 2343 } 2344 2345 ret = devm_request_irq(&pdev->dev, txirq, imx_uart_txint, 0, 2346 dev_name(&pdev->dev), sport); 2347 if (ret) { 2348 dev_err(&pdev->dev, "failed to request tx irq: %d\n", 2349 ret); 2350 return ret; 2351 } 2352 2353 ret = devm_request_irq(&pdev->dev, rtsirq, imx_uart_rtsint, 0, 2354 dev_name(&pdev->dev), sport); 2355 if (ret) { 2356 dev_err(&pdev->dev, "failed to request rts irq: %d\n", 2357 ret); 2358 return ret; 2359 } 2360 } else { 2361 ret = devm_request_irq(&pdev->dev, rxirq, imx_uart_int, 0, 2362 dev_name(&pdev->dev), sport); 2363 if (ret) { 2364 dev_err(&pdev->dev, "failed to request irq: %d\n", ret); 2365 return ret; 2366 } 2367 } 2368 2369 imx_uart_ports[sport->port.line] = sport; 2370 2371 platform_set_drvdata(pdev, sport); 2372 2373 return uart_add_one_port(&imx_uart_uart_driver, &sport->port); 2374 } 2375 2376 static int imx_uart_remove(struct platform_device *pdev) 2377 { 2378 struct imx_port *sport = platform_get_drvdata(pdev); 2379 2380 return uart_remove_one_port(&imx_uart_uart_driver, &sport->port); 2381 } 2382 2383 static void imx_uart_restore_context(struct imx_port *sport) 2384 { 2385 unsigned long flags; 2386 2387 spin_lock_irqsave(&sport->port.lock, flags); 2388 if (!sport->context_saved) { 2389 spin_unlock_irqrestore(&sport->port.lock, flags); 2390 return; 2391 } 2392 2393 imx_uart_writel(sport, sport->saved_reg[4], UFCR); 2394 imx_uart_writel(sport, sport->saved_reg[5], UESC); 2395 imx_uart_writel(sport, sport->saved_reg[6], UTIM); 2396 imx_uart_writel(sport, sport->saved_reg[7], UBIR); 2397 imx_uart_writel(sport, sport->saved_reg[8], UBMR); 2398 imx_uart_writel(sport, sport->saved_reg[9], IMX21_UTS); 2399 imx_uart_writel(sport, sport->saved_reg[0], UCR1); 2400 imx_uart_writel(sport, sport->saved_reg[1] | UCR2_SRST, UCR2); 2401 imx_uart_writel(sport, sport->saved_reg[2], UCR3); 2402 imx_uart_writel(sport, sport->saved_reg[3], UCR4); 2403 sport->context_saved = false; 2404 spin_unlock_irqrestore(&sport->port.lock, flags); 2405 } 2406 2407 static void imx_uart_save_context(struct imx_port *sport) 2408 { 2409 unsigned long flags; 2410 2411 /* Save necessary regs */ 2412 spin_lock_irqsave(&sport->port.lock, flags); 2413 sport->saved_reg[0] = imx_uart_readl(sport, UCR1); 2414 sport->saved_reg[1] = imx_uart_readl(sport, UCR2); 2415 sport->saved_reg[2] = imx_uart_readl(sport, UCR3); 2416 sport->saved_reg[3] = imx_uart_readl(sport, UCR4); 2417 sport->saved_reg[4] = imx_uart_readl(sport, UFCR); 2418 sport->saved_reg[5] = imx_uart_readl(sport, UESC); 2419 sport->saved_reg[6] = imx_uart_readl(sport, UTIM); 2420 sport->saved_reg[7] = imx_uart_readl(sport, UBIR); 2421 sport->saved_reg[8] = imx_uart_readl(sport, UBMR); 2422 sport->saved_reg[9] = imx_uart_readl(sport, IMX21_UTS); 2423 sport->context_saved = true; 2424 spin_unlock_irqrestore(&sport->port.lock, flags); 2425 } 2426 2427 static void imx_uart_enable_wakeup(struct imx_port *sport, bool on) 2428 { 2429 u32 ucr3; 2430 2431 ucr3 = imx_uart_readl(sport, UCR3); 2432 if (on) { 2433 imx_uart_writel(sport, USR1_AWAKE, USR1); 2434 ucr3 |= UCR3_AWAKEN; 2435 } else { 2436 ucr3 &= ~UCR3_AWAKEN; 2437 } 2438 imx_uart_writel(sport, ucr3, UCR3); 2439 2440 if (sport->have_rtscts) { 2441 u32 ucr1 = imx_uart_readl(sport, UCR1); 2442 if (on) 2443 ucr1 |= UCR1_RTSDEN; 2444 else 2445 ucr1 &= ~UCR1_RTSDEN; 2446 imx_uart_writel(sport, ucr1, UCR1); 2447 } 2448 } 2449 2450 static int imx_uart_suspend_noirq(struct device *dev) 2451 { 2452 struct imx_port *sport = dev_get_drvdata(dev); 2453 2454 imx_uart_save_context(sport); 2455 2456 clk_disable(sport->clk_ipg); 2457 2458 pinctrl_pm_select_sleep_state(dev); 2459 2460 return 0; 2461 } 2462 2463 static int imx_uart_resume_noirq(struct device *dev) 2464 { 2465 struct imx_port *sport = dev_get_drvdata(dev); 2466 int ret; 2467 2468 pinctrl_pm_select_default_state(dev); 2469 2470 ret = clk_enable(sport->clk_ipg); 2471 if (ret) 2472 return ret; 2473 2474 imx_uart_restore_context(sport); 2475 2476 return 0; 2477 } 2478 2479 static int imx_uart_suspend(struct device *dev) 2480 { 2481 struct imx_port *sport = dev_get_drvdata(dev); 2482 int ret; 2483 2484 uart_suspend_port(&imx_uart_uart_driver, &sport->port); 2485 disable_irq(sport->port.irq); 2486 2487 ret = clk_prepare_enable(sport->clk_ipg); 2488 if (ret) 2489 return ret; 2490 2491 /* enable wakeup from i.MX UART */ 2492 imx_uart_enable_wakeup(sport, true); 2493 2494 return 0; 2495 } 2496 2497 static int imx_uart_resume(struct device *dev) 2498 { 2499 struct imx_port *sport = dev_get_drvdata(dev); 2500 2501 /* disable wakeup from i.MX UART */ 2502 imx_uart_enable_wakeup(sport, false); 2503 2504 uart_resume_port(&imx_uart_uart_driver, &sport->port); 2505 enable_irq(sport->port.irq); 2506 2507 clk_disable_unprepare(sport->clk_ipg); 2508 2509 return 0; 2510 } 2511 2512 static int imx_uart_freeze(struct device *dev) 2513 { 2514 struct imx_port *sport = dev_get_drvdata(dev); 2515 2516 uart_suspend_port(&imx_uart_uart_driver, &sport->port); 2517 2518 return clk_prepare_enable(sport->clk_ipg); 2519 } 2520 2521 static int imx_uart_thaw(struct device *dev) 2522 { 2523 struct imx_port *sport = dev_get_drvdata(dev); 2524 2525 uart_resume_port(&imx_uart_uart_driver, &sport->port); 2526 2527 clk_disable_unprepare(sport->clk_ipg); 2528 2529 return 0; 2530 } 2531 2532 static const struct dev_pm_ops imx_uart_pm_ops = { 2533 .suspend_noirq = imx_uart_suspend_noirq, 2534 .resume_noirq = imx_uart_resume_noirq, 2535 .freeze_noirq = imx_uart_suspend_noirq, 2536 .restore_noirq = imx_uart_resume_noirq, 2537 .suspend = imx_uart_suspend, 2538 .resume = imx_uart_resume, 2539 .freeze = imx_uart_freeze, 2540 .thaw = imx_uart_thaw, 2541 .restore = imx_uart_thaw, 2542 }; 2543 2544 static struct platform_driver imx_uart_platform_driver = { 2545 .probe = imx_uart_probe, 2546 .remove = imx_uart_remove, 2547 2548 .id_table = imx_uart_devtype, 2549 .driver = { 2550 .name = "imx-uart", 2551 .of_match_table = imx_uart_dt_ids, 2552 .pm = &imx_uart_pm_ops, 2553 }, 2554 }; 2555 2556 static int __init imx_uart_init(void) 2557 { 2558 int ret = uart_register_driver(&imx_uart_uart_driver); 2559 2560 if (ret) 2561 return ret; 2562 2563 ret = platform_driver_register(&imx_uart_platform_driver); 2564 if (ret != 0) 2565 uart_unregister_driver(&imx_uart_uart_driver); 2566 2567 return ret; 2568 } 2569 2570 static void __exit imx_uart_exit(void) 2571 { 2572 platform_driver_unregister(&imx_uart_platform_driver); 2573 uart_unregister_driver(&imx_uart_uart_driver); 2574 } 2575 2576 module_init(imx_uart_init); 2577 module_exit(imx_uart_exit); 2578 2579 MODULE_AUTHOR("Sascha Hauer"); 2580 MODULE_DESCRIPTION("IMX generic serial port driver"); 2581 MODULE_LICENSE("GPL"); 2582 MODULE_ALIAS("platform:imx-uart"); 2583