1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Driver for Atmel AT91 Serial ports 4 * Copyright (C) 2003 Rick Bronson 5 * 6 * Based on drivers/char/serial_sa1100.c, by Deep Blue Solutions Ltd. 7 * Based on drivers/char/serial.c, by Linus Torvalds, Theodore Ts'o. 8 * 9 * DMA support added by Chip Coldwell. 10 */ 11 #include <linux/circ_buf.h> 12 #include <linux/tty.h> 13 #include <linux/ioport.h> 14 #include <linux/slab.h> 15 #include <linux/init.h> 16 #include <linux/serial.h> 17 #include <linux/clk.h> 18 #include <linux/clk-provider.h> 19 #include <linux/console.h> 20 #include <linux/sysrq.h> 21 #include <linux/tty_flip.h> 22 #include <linux/platform_device.h> 23 #include <linux/of.h> 24 #include <linux/of_device.h> 25 #include <linux/dma-mapping.h> 26 #include <linux/dmaengine.h> 27 #include <linux/atmel_pdc.h> 28 #include <linux/uaccess.h> 29 #include <linux/platform_data/atmel.h> 30 #include <linux/timer.h> 31 #include <linux/err.h> 32 #include <linux/irq.h> 33 #include <linux/suspend.h> 34 #include <linux/mm.h> 35 #include <linux/io.h> 36 37 #include <asm/div64.h> 38 #include <asm/ioctls.h> 39 40 #define PDC_BUFFER_SIZE 512 41 /* Revisit: We should calculate this based on the actual port settings */ 42 #define PDC_RX_TIMEOUT (3 * 10) /* 3 bytes */ 43 44 /* The minium number of data FIFOs should be able to contain */ 45 #define ATMEL_MIN_FIFO_SIZE 8 46 /* 47 * These two offsets are substracted from the RX FIFO size to define the RTS 48 * high and low thresholds 49 */ 50 #define ATMEL_RTS_HIGH_OFFSET 16 51 #define ATMEL_RTS_LOW_OFFSET 20 52 53 #include <linux/serial_core.h> 54 55 #include "serial_mctrl_gpio.h" 56 #include "atmel_serial.h" 57 58 static void atmel_start_rx(struct uart_port *port); 59 static void atmel_stop_rx(struct uart_port *port); 60 61 #ifdef CONFIG_SERIAL_ATMEL_TTYAT 62 63 /* Use device name ttyAT, major 204 and minor 154-169. This is necessary if we 64 * should coexist with the 8250 driver, such as if we have an external 16C550 65 * UART. */ 66 #define SERIAL_ATMEL_MAJOR 204 67 #define MINOR_START 154 68 #define ATMEL_DEVICENAME "ttyAT" 69 70 #else 71 72 /* Use device name ttyS, major 4, minor 64-68. This is the usual serial port 73 * name, but it is legally reserved for the 8250 driver. */ 74 #define SERIAL_ATMEL_MAJOR TTY_MAJOR 75 #define MINOR_START 64 76 #define ATMEL_DEVICENAME "ttyS" 77 78 #endif 79 80 #define ATMEL_ISR_PASS_LIMIT 256 81 82 struct atmel_dma_buffer { 83 unsigned char *buf; 84 dma_addr_t dma_addr; 85 unsigned int dma_size; 86 unsigned int ofs; 87 }; 88 89 struct atmel_uart_char { 90 u16 status; 91 u16 ch; 92 }; 93 94 /* 95 * Be careful, the real size of the ring buffer is 96 * sizeof(atmel_uart_char) * ATMEL_SERIAL_RINGSIZE. It means that ring buffer 97 * can contain up to 1024 characters in PIO mode and up to 4096 characters in 98 * DMA mode. 99 */ 100 #define ATMEL_SERIAL_RINGSIZE 1024 101 102 /* 103 * at91: 6 USARTs and one DBGU port (SAM9260) 104 * samx7: 3 USARTs and 5 UARTs 105 */ 106 #define ATMEL_MAX_UART 8 107 108 /* 109 * We wrap our port structure around the generic uart_port. 110 */ 111 struct atmel_uart_port { 112 struct uart_port uart; /* uart */ 113 struct clk *clk; /* uart clock */ 114 struct clk *gclk; /* uart generic clock */ 115 int may_wakeup; /* cached value of device_may_wakeup for times we need to disable it */ 116 u32 backup_imr; /* IMR saved during suspend */ 117 int break_active; /* break being received */ 118 119 bool use_dma_rx; /* enable DMA receiver */ 120 bool use_pdc_rx; /* enable PDC receiver */ 121 short pdc_rx_idx; /* current PDC RX buffer */ 122 struct atmel_dma_buffer pdc_rx[2]; /* PDC receier */ 123 124 bool use_dma_tx; /* enable DMA transmitter */ 125 bool use_pdc_tx; /* enable PDC transmitter */ 126 struct atmel_dma_buffer pdc_tx; /* PDC transmitter */ 127 128 spinlock_t lock_tx; /* port lock */ 129 spinlock_t lock_rx; /* port lock */ 130 struct dma_chan *chan_tx; 131 struct dma_chan *chan_rx; 132 struct dma_async_tx_descriptor *desc_tx; 133 struct dma_async_tx_descriptor *desc_rx; 134 dma_cookie_t cookie_tx; 135 dma_cookie_t cookie_rx; 136 struct scatterlist sg_tx; 137 struct scatterlist sg_rx; 138 struct tasklet_struct tasklet_rx; 139 struct tasklet_struct tasklet_tx; 140 atomic_t tasklet_shutdown; 141 unsigned int irq_status_prev; 142 unsigned int tx_len; 143 144 struct circ_buf rx_ring; 145 146 struct mctrl_gpios *gpios; 147 u32 backup_mode; /* MR saved during iso7816 operations */ 148 u32 backup_brgr; /* BRGR saved during iso7816 operations */ 149 unsigned int tx_done_mask; 150 u32 fifo_size; 151 u32 rts_high; 152 u32 rts_low; 153 bool ms_irq_enabled; 154 u32 rtor; /* address of receiver timeout register if it exists */ 155 bool is_usart; 156 bool has_frac_baudrate; 157 bool has_hw_timer; 158 struct timer_list uart_timer; 159 160 bool tx_stopped; 161 bool suspended; 162 unsigned int pending; 163 unsigned int pending_status; 164 spinlock_t lock_suspended; 165 166 bool hd_start_rx; /* can start RX during half-duplex operation */ 167 168 /* ISO7816 */ 169 unsigned int fidi_min; 170 unsigned int fidi_max; 171 172 struct { 173 u32 cr; 174 u32 mr; 175 u32 imr; 176 u32 brgr; 177 u32 rtor; 178 u32 ttgr; 179 u32 fmr; 180 u32 fimr; 181 } cache; 182 183 int (*prepare_rx)(struct uart_port *port); 184 int (*prepare_tx)(struct uart_port *port); 185 void (*schedule_rx)(struct uart_port *port); 186 void (*schedule_tx)(struct uart_port *port); 187 void (*release_rx)(struct uart_port *port); 188 void (*release_tx)(struct uart_port *port); 189 }; 190 191 static struct atmel_uart_port atmel_ports[ATMEL_MAX_UART]; 192 static DECLARE_BITMAP(atmel_ports_in_use, ATMEL_MAX_UART); 193 194 #if defined(CONFIG_OF) 195 static const struct of_device_id atmel_serial_dt_ids[] = { 196 { .compatible = "atmel,at91rm9200-usart-serial" }, 197 { /* sentinel */ } 198 }; 199 #endif 200 201 static inline struct atmel_uart_port * 202 to_atmel_uart_port(struct uart_port *uart) 203 { 204 return container_of(uart, struct atmel_uart_port, uart); 205 } 206 207 static inline u32 atmel_uart_readl(struct uart_port *port, u32 reg) 208 { 209 return __raw_readl(port->membase + reg); 210 } 211 212 static inline void atmel_uart_writel(struct uart_port *port, u32 reg, u32 value) 213 { 214 __raw_writel(value, port->membase + reg); 215 } 216 217 static inline u8 atmel_uart_read_char(struct uart_port *port) 218 { 219 return __raw_readb(port->membase + ATMEL_US_RHR); 220 } 221 222 static inline void atmel_uart_write_char(struct uart_port *port, u8 value) 223 { 224 __raw_writeb(value, port->membase + ATMEL_US_THR); 225 } 226 227 static inline int atmel_uart_is_half_duplex(struct uart_port *port) 228 { 229 return ((port->rs485.flags & SER_RS485_ENABLED) && 230 !(port->rs485.flags & SER_RS485_RX_DURING_TX)) || 231 (port->iso7816.flags & SER_ISO7816_ENABLED); 232 } 233 234 static inline int atmel_error_rate(int desired_value, int actual_value) 235 { 236 return 100 - (desired_value * 100) / actual_value; 237 } 238 239 #ifdef CONFIG_SERIAL_ATMEL_PDC 240 static bool atmel_use_pdc_rx(struct uart_port *port) 241 { 242 struct atmel_uart_port *atmel_port = to_atmel_uart_port(port); 243 244 return atmel_port->use_pdc_rx; 245 } 246 247 static bool atmel_use_pdc_tx(struct uart_port *port) 248 { 249 struct atmel_uart_port *atmel_port = to_atmel_uart_port(port); 250 251 return atmel_port->use_pdc_tx; 252 } 253 #else 254 static bool atmel_use_pdc_rx(struct uart_port *port) 255 { 256 return false; 257 } 258 259 static bool atmel_use_pdc_tx(struct uart_port *port) 260 { 261 return false; 262 } 263 #endif 264 265 static bool atmel_use_dma_tx(struct uart_port *port) 266 { 267 struct atmel_uart_port *atmel_port = to_atmel_uart_port(port); 268 269 return atmel_port->use_dma_tx; 270 } 271 272 static bool atmel_use_dma_rx(struct uart_port *port) 273 { 274 struct atmel_uart_port *atmel_port = to_atmel_uart_port(port); 275 276 return atmel_port->use_dma_rx; 277 } 278 279 static bool atmel_use_fifo(struct uart_port *port) 280 { 281 struct atmel_uart_port *atmel_port = to_atmel_uart_port(port); 282 283 return atmel_port->fifo_size; 284 } 285 286 static void atmel_tasklet_schedule(struct atmel_uart_port *atmel_port, 287 struct tasklet_struct *t) 288 { 289 if (!atomic_read(&atmel_port->tasklet_shutdown)) 290 tasklet_schedule(t); 291 } 292 293 /* Enable or disable the rs485 support */ 294 static int atmel_config_rs485(struct uart_port *port, struct ktermios *termios, 295 struct serial_rs485 *rs485conf) 296 { 297 struct atmel_uart_port *atmel_port = to_atmel_uart_port(port); 298 unsigned int mode; 299 300 /* Disable interrupts */ 301 atmel_uart_writel(port, ATMEL_US_IDR, atmel_port->tx_done_mask); 302 303 mode = atmel_uart_readl(port, ATMEL_US_MR); 304 305 if (rs485conf->flags & SER_RS485_ENABLED) { 306 dev_dbg(port->dev, "Setting UART to RS485\n"); 307 if (rs485conf->flags & SER_RS485_RX_DURING_TX) 308 atmel_port->tx_done_mask = ATMEL_US_TXRDY; 309 else 310 atmel_port->tx_done_mask = ATMEL_US_TXEMPTY; 311 312 atmel_uart_writel(port, ATMEL_US_TTGR, 313 rs485conf->delay_rts_after_send); 314 mode &= ~ATMEL_US_USMODE; 315 mode |= ATMEL_US_USMODE_RS485; 316 } else { 317 dev_dbg(port->dev, "Setting UART to RS232\n"); 318 if (atmel_use_pdc_tx(port)) 319 atmel_port->tx_done_mask = ATMEL_US_ENDTX | 320 ATMEL_US_TXBUFE; 321 else 322 atmel_port->tx_done_mask = ATMEL_US_TXRDY; 323 } 324 atmel_uart_writel(port, ATMEL_US_MR, mode); 325 326 /* Enable interrupts */ 327 atmel_uart_writel(port, ATMEL_US_IER, atmel_port->tx_done_mask); 328 329 return 0; 330 } 331 332 static unsigned int atmel_calc_cd(struct uart_port *port, 333 struct serial_iso7816 *iso7816conf) 334 { 335 struct atmel_uart_port *atmel_port = to_atmel_uart_port(port); 336 unsigned int cd; 337 u64 mck_rate; 338 339 mck_rate = (u64)clk_get_rate(atmel_port->clk); 340 do_div(mck_rate, iso7816conf->clk); 341 cd = mck_rate; 342 return cd; 343 } 344 345 static unsigned int atmel_calc_fidi(struct uart_port *port, 346 struct serial_iso7816 *iso7816conf) 347 { 348 u64 fidi = 0; 349 350 if (iso7816conf->sc_fi && iso7816conf->sc_di) { 351 fidi = (u64)iso7816conf->sc_fi; 352 do_div(fidi, iso7816conf->sc_di); 353 } 354 return (u32)fidi; 355 } 356 357 /* Enable or disable the iso7816 support */ 358 /* Called with interrupts disabled */ 359 static int atmel_config_iso7816(struct uart_port *port, 360 struct serial_iso7816 *iso7816conf) 361 { 362 struct atmel_uart_port *atmel_port = to_atmel_uart_port(port); 363 unsigned int mode; 364 unsigned int cd, fidi; 365 int ret = 0; 366 367 /* Disable interrupts */ 368 atmel_uart_writel(port, ATMEL_US_IDR, atmel_port->tx_done_mask); 369 370 mode = atmel_uart_readl(port, ATMEL_US_MR); 371 372 if (iso7816conf->flags & SER_ISO7816_ENABLED) { 373 mode &= ~ATMEL_US_USMODE; 374 375 if (iso7816conf->tg > 255) { 376 dev_err(port->dev, "ISO7816: Timeguard exceeding 255\n"); 377 memset(iso7816conf, 0, sizeof(struct serial_iso7816)); 378 ret = -EINVAL; 379 goto err_out; 380 } 381 382 if ((iso7816conf->flags & SER_ISO7816_T_PARAM) 383 == SER_ISO7816_T(0)) { 384 mode |= ATMEL_US_USMODE_ISO7816_T0 | ATMEL_US_DSNACK; 385 } else if ((iso7816conf->flags & SER_ISO7816_T_PARAM) 386 == SER_ISO7816_T(1)) { 387 mode |= ATMEL_US_USMODE_ISO7816_T1 | ATMEL_US_INACK; 388 } else { 389 dev_err(port->dev, "ISO7816: Type not supported\n"); 390 memset(iso7816conf, 0, sizeof(struct serial_iso7816)); 391 ret = -EINVAL; 392 goto err_out; 393 } 394 395 mode &= ~(ATMEL_US_USCLKS | ATMEL_US_NBSTOP | ATMEL_US_PAR); 396 397 /* select mck clock, and output */ 398 mode |= ATMEL_US_USCLKS_MCK | ATMEL_US_CLKO; 399 /* set parity for normal/inverse mode + max iterations */ 400 mode |= ATMEL_US_PAR_EVEN | ATMEL_US_NBSTOP_1 | ATMEL_US_MAX_ITER(3); 401 402 cd = atmel_calc_cd(port, iso7816conf); 403 fidi = atmel_calc_fidi(port, iso7816conf); 404 if (fidi == 0) { 405 dev_warn(port->dev, "ISO7816 fidi = 0, Generator generates no signal\n"); 406 } else if (fidi < atmel_port->fidi_min 407 || fidi > atmel_port->fidi_max) { 408 dev_err(port->dev, "ISO7816 fidi = %u, value not supported\n", fidi); 409 memset(iso7816conf, 0, sizeof(struct serial_iso7816)); 410 ret = -EINVAL; 411 goto err_out; 412 } 413 414 if (!(port->iso7816.flags & SER_ISO7816_ENABLED)) { 415 /* port not yet in iso7816 mode: store configuration */ 416 atmel_port->backup_mode = atmel_uart_readl(port, ATMEL_US_MR); 417 atmel_port->backup_brgr = atmel_uart_readl(port, ATMEL_US_BRGR); 418 } 419 420 atmel_uart_writel(port, ATMEL_US_TTGR, iso7816conf->tg); 421 atmel_uart_writel(port, ATMEL_US_BRGR, cd); 422 atmel_uart_writel(port, ATMEL_US_FIDI, fidi); 423 424 atmel_uart_writel(port, ATMEL_US_CR, ATMEL_US_TXDIS | ATMEL_US_RXEN); 425 atmel_port->tx_done_mask = ATMEL_US_TXEMPTY | ATMEL_US_NACK | ATMEL_US_ITERATION; 426 } else { 427 dev_dbg(port->dev, "Setting UART back to RS232\n"); 428 /* back to last RS232 settings */ 429 mode = atmel_port->backup_mode; 430 memset(iso7816conf, 0, sizeof(struct serial_iso7816)); 431 atmel_uart_writel(port, ATMEL_US_TTGR, 0); 432 atmel_uart_writel(port, ATMEL_US_BRGR, atmel_port->backup_brgr); 433 atmel_uart_writel(port, ATMEL_US_FIDI, 0x174); 434 435 if (atmel_use_pdc_tx(port)) 436 atmel_port->tx_done_mask = ATMEL_US_ENDTX | 437 ATMEL_US_TXBUFE; 438 else 439 atmel_port->tx_done_mask = ATMEL_US_TXRDY; 440 } 441 442 port->iso7816 = *iso7816conf; 443 444 atmel_uart_writel(port, ATMEL_US_MR, mode); 445 446 err_out: 447 /* Enable interrupts */ 448 atmel_uart_writel(port, ATMEL_US_IER, atmel_port->tx_done_mask); 449 450 return ret; 451 } 452 453 /* 454 * Return TIOCSER_TEMT when transmitter FIFO and Shift register is empty. 455 */ 456 static u_int atmel_tx_empty(struct uart_port *port) 457 { 458 struct atmel_uart_port *atmel_port = to_atmel_uart_port(port); 459 460 if (atmel_port->tx_stopped) 461 return TIOCSER_TEMT; 462 return (atmel_uart_readl(port, ATMEL_US_CSR) & ATMEL_US_TXEMPTY) ? 463 TIOCSER_TEMT : 464 0; 465 } 466 467 /* 468 * Set state of the modem control output lines 469 */ 470 static void atmel_set_mctrl(struct uart_port *port, u_int mctrl) 471 { 472 unsigned int control = 0; 473 unsigned int mode = atmel_uart_readl(port, ATMEL_US_MR); 474 unsigned int rts_paused, rts_ready; 475 struct atmel_uart_port *atmel_port = to_atmel_uart_port(port); 476 477 /* override mode to RS485 if needed, otherwise keep the current mode */ 478 if (port->rs485.flags & SER_RS485_ENABLED) { 479 atmel_uart_writel(port, ATMEL_US_TTGR, 480 port->rs485.delay_rts_after_send); 481 mode &= ~ATMEL_US_USMODE; 482 mode |= ATMEL_US_USMODE_RS485; 483 } 484 485 /* set the RTS line state according to the mode */ 486 if ((mode & ATMEL_US_USMODE) == ATMEL_US_USMODE_HWHS) { 487 /* force RTS line to high level */ 488 rts_paused = ATMEL_US_RTSEN; 489 490 /* give the control of the RTS line back to the hardware */ 491 rts_ready = ATMEL_US_RTSDIS; 492 } else { 493 /* force RTS line to high level */ 494 rts_paused = ATMEL_US_RTSDIS; 495 496 /* force RTS line to low level */ 497 rts_ready = ATMEL_US_RTSEN; 498 } 499 500 if (mctrl & TIOCM_RTS) 501 control |= rts_ready; 502 else 503 control |= rts_paused; 504 505 if (mctrl & TIOCM_DTR) 506 control |= ATMEL_US_DTREN; 507 else 508 control |= ATMEL_US_DTRDIS; 509 510 atmel_uart_writel(port, ATMEL_US_CR, control); 511 512 mctrl_gpio_set(atmel_port->gpios, mctrl); 513 514 /* Local loopback mode? */ 515 mode &= ~ATMEL_US_CHMODE; 516 if (mctrl & TIOCM_LOOP) 517 mode |= ATMEL_US_CHMODE_LOC_LOOP; 518 else 519 mode |= ATMEL_US_CHMODE_NORMAL; 520 521 atmel_uart_writel(port, ATMEL_US_MR, mode); 522 } 523 524 /* 525 * Get state of the modem control input lines 526 */ 527 static u_int atmel_get_mctrl(struct uart_port *port) 528 { 529 struct atmel_uart_port *atmel_port = to_atmel_uart_port(port); 530 unsigned int ret = 0, status; 531 532 status = atmel_uart_readl(port, ATMEL_US_CSR); 533 534 /* 535 * The control signals are active low. 536 */ 537 if (!(status & ATMEL_US_DCD)) 538 ret |= TIOCM_CD; 539 if (!(status & ATMEL_US_CTS)) 540 ret |= TIOCM_CTS; 541 if (!(status & ATMEL_US_DSR)) 542 ret |= TIOCM_DSR; 543 if (!(status & ATMEL_US_RI)) 544 ret |= TIOCM_RI; 545 546 return mctrl_gpio_get(atmel_port->gpios, &ret); 547 } 548 549 /* 550 * Stop transmitting. 551 */ 552 static void atmel_stop_tx(struct uart_port *port) 553 { 554 struct atmel_uart_port *atmel_port = to_atmel_uart_port(port); 555 bool is_pdc = atmel_use_pdc_tx(port); 556 bool is_dma = is_pdc || atmel_use_dma_tx(port); 557 558 if (is_pdc) { 559 /* disable PDC transmit */ 560 atmel_uart_writel(port, ATMEL_PDC_PTCR, ATMEL_PDC_TXTDIS); 561 } 562 563 if (is_dma) { 564 /* 565 * Disable the transmitter. 566 * This is mandatory when DMA is used, otherwise the DMA buffer 567 * is fully transmitted. 568 */ 569 atmel_uart_writel(port, ATMEL_US_CR, ATMEL_US_TXDIS); 570 atmel_port->tx_stopped = true; 571 } 572 573 /* Disable interrupts */ 574 atmel_uart_writel(port, ATMEL_US_IDR, atmel_port->tx_done_mask); 575 576 if (atmel_uart_is_half_duplex(port)) 577 if (!atomic_read(&atmel_port->tasklet_shutdown)) 578 atmel_start_rx(port); 579 } 580 581 /* 582 * Start transmitting. 583 */ 584 static void atmel_start_tx(struct uart_port *port) 585 { 586 struct atmel_uart_port *atmel_port = to_atmel_uart_port(port); 587 bool is_pdc = atmel_use_pdc_tx(port); 588 bool is_dma = is_pdc || atmel_use_dma_tx(port); 589 590 if (is_pdc && (atmel_uart_readl(port, ATMEL_PDC_PTSR) 591 & ATMEL_PDC_TXTEN)) 592 /* The transmitter is already running. Yes, we 593 really need this.*/ 594 return; 595 596 if (is_dma && atmel_uart_is_half_duplex(port)) 597 atmel_stop_rx(port); 598 599 if (is_pdc) { 600 /* re-enable PDC transmit */ 601 atmel_uart_writel(port, ATMEL_PDC_PTCR, ATMEL_PDC_TXTEN); 602 } 603 604 /* Enable interrupts */ 605 atmel_uart_writel(port, ATMEL_US_IER, atmel_port->tx_done_mask); 606 607 if (is_dma) { 608 /* re-enable the transmitter */ 609 atmel_uart_writel(port, ATMEL_US_CR, ATMEL_US_TXEN); 610 atmel_port->tx_stopped = false; 611 } 612 } 613 614 /* 615 * start receiving - port is in process of being opened. 616 */ 617 static void atmel_start_rx(struct uart_port *port) 618 { 619 /* reset status and receiver */ 620 atmel_uart_writel(port, ATMEL_US_CR, ATMEL_US_RSTSTA); 621 622 atmel_uart_writel(port, ATMEL_US_CR, ATMEL_US_RXEN); 623 624 if (atmel_use_pdc_rx(port)) { 625 /* enable PDC controller */ 626 atmel_uart_writel(port, ATMEL_US_IER, 627 ATMEL_US_ENDRX | ATMEL_US_TIMEOUT | 628 port->read_status_mask); 629 atmel_uart_writel(port, ATMEL_PDC_PTCR, ATMEL_PDC_RXTEN); 630 } else { 631 atmel_uart_writel(port, ATMEL_US_IER, ATMEL_US_RXRDY); 632 } 633 } 634 635 /* 636 * Stop receiving - port is in process of being closed. 637 */ 638 static void atmel_stop_rx(struct uart_port *port) 639 { 640 atmel_uart_writel(port, ATMEL_US_CR, ATMEL_US_RXDIS); 641 642 if (atmel_use_pdc_rx(port)) { 643 /* disable PDC receive */ 644 atmel_uart_writel(port, ATMEL_PDC_PTCR, ATMEL_PDC_RXTDIS); 645 atmel_uart_writel(port, ATMEL_US_IDR, 646 ATMEL_US_ENDRX | ATMEL_US_TIMEOUT | 647 port->read_status_mask); 648 } else { 649 atmel_uart_writel(port, ATMEL_US_IDR, ATMEL_US_RXRDY); 650 } 651 } 652 653 /* 654 * Enable modem status interrupts 655 */ 656 static void atmel_enable_ms(struct uart_port *port) 657 { 658 struct atmel_uart_port *atmel_port = to_atmel_uart_port(port); 659 uint32_t ier = 0; 660 661 /* 662 * Interrupt should not be enabled twice 663 */ 664 if (atmel_port->ms_irq_enabled) 665 return; 666 667 atmel_port->ms_irq_enabled = true; 668 669 if (!mctrl_gpio_to_gpiod(atmel_port->gpios, UART_GPIO_CTS)) 670 ier |= ATMEL_US_CTSIC; 671 672 if (!mctrl_gpio_to_gpiod(atmel_port->gpios, UART_GPIO_DSR)) 673 ier |= ATMEL_US_DSRIC; 674 675 if (!mctrl_gpio_to_gpiod(atmel_port->gpios, UART_GPIO_RI)) 676 ier |= ATMEL_US_RIIC; 677 678 if (!mctrl_gpio_to_gpiod(atmel_port->gpios, UART_GPIO_DCD)) 679 ier |= ATMEL_US_DCDIC; 680 681 atmel_uart_writel(port, ATMEL_US_IER, ier); 682 683 mctrl_gpio_enable_ms(atmel_port->gpios); 684 } 685 686 /* 687 * Disable modem status interrupts 688 */ 689 static void atmel_disable_ms(struct uart_port *port) 690 { 691 struct atmel_uart_port *atmel_port = to_atmel_uart_port(port); 692 uint32_t idr = 0; 693 694 /* 695 * Interrupt should not be disabled twice 696 */ 697 if (!atmel_port->ms_irq_enabled) 698 return; 699 700 atmel_port->ms_irq_enabled = false; 701 702 mctrl_gpio_disable_ms(atmel_port->gpios); 703 704 if (!mctrl_gpio_to_gpiod(atmel_port->gpios, UART_GPIO_CTS)) 705 idr |= ATMEL_US_CTSIC; 706 707 if (!mctrl_gpio_to_gpiod(atmel_port->gpios, UART_GPIO_DSR)) 708 idr |= ATMEL_US_DSRIC; 709 710 if (!mctrl_gpio_to_gpiod(atmel_port->gpios, UART_GPIO_RI)) 711 idr |= ATMEL_US_RIIC; 712 713 if (!mctrl_gpio_to_gpiod(atmel_port->gpios, UART_GPIO_DCD)) 714 idr |= ATMEL_US_DCDIC; 715 716 atmel_uart_writel(port, ATMEL_US_IDR, idr); 717 } 718 719 /* 720 * Control the transmission of a break signal 721 */ 722 static void atmel_break_ctl(struct uart_port *port, int break_state) 723 { 724 if (break_state != 0) 725 /* start break */ 726 atmel_uart_writel(port, ATMEL_US_CR, ATMEL_US_STTBRK); 727 else 728 /* stop break */ 729 atmel_uart_writel(port, ATMEL_US_CR, ATMEL_US_STPBRK); 730 } 731 732 /* 733 * Stores the incoming character in the ring buffer 734 */ 735 static void 736 atmel_buffer_rx_char(struct uart_port *port, unsigned int status, 737 unsigned int ch) 738 { 739 struct atmel_uart_port *atmel_port = to_atmel_uart_port(port); 740 struct circ_buf *ring = &atmel_port->rx_ring; 741 struct atmel_uart_char *c; 742 743 if (!CIRC_SPACE(ring->head, ring->tail, ATMEL_SERIAL_RINGSIZE)) 744 /* Buffer overflow, ignore char */ 745 return; 746 747 c = &((struct atmel_uart_char *)ring->buf)[ring->head]; 748 c->status = status; 749 c->ch = ch; 750 751 /* Make sure the character is stored before we update head. */ 752 smp_wmb(); 753 754 ring->head = (ring->head + 1) & (ATMEL_SERIAL_RINGSIZE - 1); 755 } 756 757 /* 758 * Deal with parity, framing and overrun errors. 759 */ 760 static void atmel_pdc_rxerr(struct uart_port *port, unsigned int status) 761 { 762 /* clear error */ 763 atmel_uart_writel(port, ATMEL_US_CR, ATMEL_US_RSTSTA); 764 765 if (status & ATMEL_US_RXBRK) { 766 /* ignore side-effect */ 767 status &= ~(ATMEL_US_PARE | ATMEL_US_FRAME); 768 port->icount.brk++; 769 } 770 if (status & ATMEL_US_PARE) 771 port->icount.parity++; 772 if (status & ATMEL_US_FRAME) 773 port->icount.frame++; 774 if (status & ATMEL_US_OVRE) 775 port->icount.overrun++; 776 } 777 778 /* 779 * Characters received (called from interrupt handler) 780 */ 781 static void atmel_rx_chars(struct uart_port *port) 782 { 783 struct atmel_uart_port *atmel_port = to_atmel_uart_port(port); 784 unsigned int status, ch; 785 786 status = atmel_uart_readl(port, ATMEL_US_CSR); 787 while (status & ATMEL_US_RXRDY) { 788 ch = atmel_uart_read_char(port); 789 790 /* 791 * note that the error handling code is 792 * out of the main execution path 793 */ 794 if (unlikely(status & (ATMEL_US_PARE | ATMEL_US_FRAME 795 | ATMEL_US_OVRE | ATMEL_US_RXBRK) 796 || atmel_port->break_active)) { 797 798 /* clear error */ 799 atmel_uart_writel(port, ATMEL_US_CR, ATMEL_US_RSTSTA); 800 801 if (status & ATMEL_US_RXBRK 802 && !atmel_port->break_active) { 803 atmel_port->break_active = 1; 804 atmel_uart_writel(port, ATMEL_US_IER, 805 ATMEL_US_RXBRK); 806 } else { 807 /* 808 * This is either the end-of-break 809 * condition or we've received at 810 * least one character without RXBRK 811 * being set. In both cases, the next 812 * RXBRK will indicate start-of-break. 813 */ 814 atmel_uart_writel(port, ATMEL_US_IDR, 815 ATMEL_US_RXBRK); 816 status &= ~ATMEL_US_RXBRK; 817 atmel_port->break_active = 0; 818 } 819 } 820 821 atmel_buffer_rx_char(port, status, ch); 822 status = atmel_uart_readl(port, ATMEL_US_CSR); 823 } 824 825 atmel_tasklet_schedule(atmel_port, &atmel_port->tasklet_rx); 826 } 827 828 /* 829 * Transmit characters (called from tasklet with TXRDY interrupt 830 * disabled) 831 */ 832 static void atmel_tx_chars(struct uart_port *port) 833 { 834 struct atmel_uart_port *atmel_port = to_atmel_uart_port(port); 835 bool pending; 836 u8 ch; 837 838 pending = uart_port_tx(port, ch, 839 atmel_uart_readl(port, ATMEL_US_CSR) & ATMEL_US_TXRDY, 840 atmel_uart_write_char(port, ch)); 841 if (pending) { 842 /* we still have characters to transmit, so we should continue 843 * transmitting them when TX is ready, regardless of 844 * mode or duplexity 845 */ 846 atmel_port->tx_done_mask |= ATMEL_US_TXRDY; 847 848 /* Enable interrupts */ 849 atmel_uart_writel(port, ATMEL_US_IER, 850 atmel_port->tx_done_mask); 851 } else { 852 if (atmel_uart_is_half_duplex(port)) 853 atmel_port->tx_done_mask &= ~ATMEL_US_TXRDY; 854 } 855 } 856 857 static void atmel_complete_tx_dma(void *arg) 858 { 859 struct atmel_uart_port *atmel_port = arg; 860 struct uart_port *port = &atmel_port->uart; 861 struct circ_buf *xmit = &port->state->xmit; 862 struct dma_chan *chan = atmel_port->chan_tx; 863 unsigned long flags; 864 865 spin_lock_irqsave(&port->lock, flags); 866 867 if (chan) 868 dmaengine_terminate_all(chan); 869 uart_xmit_advance(port, atmel_port->tx_len); 870 871 spin_lock_irq(&atmel_port->lock_tx); 872 async_tx_ack(atmel_port->desc_tx); 873 atmel_port->cookie_tx = -EINVAL; 874 atmel_port->desc_tx = NULL; 875 spin_unlock_irq(&atmel_port->lock_tx); 876 877 if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS) 878 uart_write_wakeup(port); 879 880 /* 881 * xmit is a circular buffer so, if we have just send data from 882 * xmit->tail to the end of xmit->buf, now we have to transmit the 883 * remaining data from the beginning of xmit->buf to xmit->head. 884 */ 885 if (!uart_circ_empty(xmit)) 886 atmel_tasklet_schedule(atmel_port, &atmel_port->tasklet_tx); 887 else if (atmel_uart_is_half_duplex(port)) { 888 /* 889 * DMA done, re-enable TXEMPTY and signal that we can stop 890 * TX and start RX for RS485 891 */ 892 atmel_port->hd_start_rx = true; 893 atmel_uart_writel(port, ATMEL_US_IER, 894 atmel_port->tx_done_mask); 895 } 896 897 spin_unlock_irqrestore(&port->lock, flags); 898 } 899 900 static void atmel_release_tx_dma(struct uart_port *port) 901 { 902 struct atmel_uart_port *atmel_port = to_atmel_uart_port(port); 903 struct dma_chan *chan = atmel_port->chan_tx; 904 905 if (chan) { 906 dmaengine_terminate_all(chan); 907 dma_release_channel(chan); 908 dma_unmap_sg(port->dev, &atmel_port->sg_tx, 1, 909 DMA_TO_DEVICE); 910 } 911 912 atmel_port->desc_tx = NULL; 913 atmel_port->chan_tx = NULL; 914 atmel_port->cookie_tx = -EINVAL; 915 } 916 917 /* 918 * Called from tasklet with TXRDY interrupt is disabled. 919 */ 920 static void atmel_tx_dma(struct uart_port *port) 921 { 922 struct atmel_uart_port *atmel_port = to_atmel_uart_port(port); 923 struct circ_buf *xmit = &port->state->xmit; 924 struct dma_chan *chan = atmel_port->chan_tx; 925 struct dma_async_tx_descriptor *desc; 926 struct scatterlist sgl[2], *sg, *sg_tx = &atmel_port->sg_tx; 927 unsigned int tx_len, part1_len, part2_len, sg_len; 928 dma_addr_t phys_addr; 929 930 /* Make sure we have an idle channel */ 931 if (atmel_port->desc_tx != NULL) 932 return; 933 934 if (!uart_circ_empty(xmit) && !uart_tx_stopped(port)) { 935 /* 936 * DMA is idle now. 937 * Port xmit buffer is already mapped, 938 * and it is one page... Just adjust 939 * offsets and lengths. Since it is a circular buffer, 940 * we have to transmit till the end, and then the rest. 941 * Take the port lock to get a 942 * consistent xmit buffer state. 943 */ 944 tx_len = CIRC_CNT_TO_END(xmit->head, 945 xmit->tail, 946 UART_XMIT_SIZE); 947 948 if (atmel_port->fifo_size) { 949 /* multi data mode */ 950 part1_len = (tx_len & ~0x3); /* DWORD access */ 951 part2_len = (tx_len & 0x3); /* BYTE access */ 952 } else { 953 /* single data (legacy) mode */ 954 part1_len = 0; 955 part2_len = tx_len; /* BYTE access only */ 956 } 957 958 sg_init_table(sgl, 2); 959 sg_len = 0; 960 phys_addr = sg_dma_address(sg_tx) + xmit->tail; 961 if (part1_len) { 962 sg = &sgl[sg_len++]; 963 sg_dma_address(sg) = phys_addr; 964 sg_dma_len(sg) = part1_len; 965 966 phys_addr += part1_len; 967 } 968 969 if (part2_len) { 970 sg = &sgl[sg_len++]; 971 sg_dma_address(sg) = phys_addr; 972 sg_dma_len(sg) = part2_len; 973 } 974 975 /* 976 * save tx_len so atmel_complete_tx_dma() will increase 977 * xmit->tail correctly 978 */ 979 atmel_port->tx_len = tx_len; 980 981 desc = dmaengine_prep_slave_sg(chan, 982 sgl, 983 sg_len, 984 DMA_MEM_TO_DEV, 985 DMA_PREP_INTERRUPT | 986 DMA_CTRL_ACK); 987 if (!desc) { 988 dev_err(port->dev, "Failed to send via dma!\n"); 989 return; 990 } 991 992 dma_sync_sg_for_device(port->dev, sg_tx, 1, DMA_TO_DEVICE); 993 994 atmel_port->desc_tx = desc; 995 desc->callback = atmel_complete_tx_dma; 996 desc->callback_param = atmel_port; 997 atmel_port->cookie_tx = dmaengine_submit(desc); 998 if (dma_submit_error(atmel_port->cookie_tx)) { 999 dev_err(port->dev, "dma_submit_error %d\n", 1000 atmel_port->cookie_tx); 1001 return; 1002 } 1003 1004 dma_async_issue_pending(chan); 1005 } 1006 1007 if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS) 1008 uart_write_wakeup(port); 1009 } 1010 1011 static int atmel_prepare_tx_dma(struct uart_port *port) 1012 { 1013 struct atmel_uart_port *atmel_port = to_atmel_uart_port(port); 1014 struct device *mfd_dev = port->dev->parent; 1015 dma_cap_mask_t mask; 1016 struct dma_slave_config config; 1017 int ret, nent; 1018 1019 dma_cap_zero(mask); 1020 dma_cap_set(DMA_SLAVE, mask); 1021 1022 atmel_port->chan_tx = dma_request_slave_channel(mfd_dev, "tx"); 1023 if (atmel_port->chan_tx == NULL) 1024 goto chan_err; 1025 dev_info(port->dev, "using %s for tx DMA transfers\n", 1026 dma_chan_name(atmel_port->chan_tx)); 1027 1028 spin_lock_init(&atmel_port->lock_tx); 1029 sg_init_table(&atmel_port->sg_tx, 1); 1030 /* UART circular tx buffer is an aligned page. */ 1031 BUG_ON(!PAGE_ALIGNED(port->state->xmit.buf)); 1032 sg_set_page(&atmel_port->sg_tx, 1033 virt_to_page(port->state->xmit.buf), 1034 UART_XMIT_SIZE, 1035 offset_in_page(port->state->xmit.buf)); 1036 nent = dma_map_sg(port->dev, 1037 &atmel_port->sg_tx, 1038 1, 1039 DMA_TO_DEVICE); 1040 1041 if (!nent) { 1042 dev_dbg(port->dev, "need to release resource of dma\n"); 1043 goto chan_err; 1044 } else { 1045 dev_dbg(port->dev, "%s: mapped %d@%p to %pad\n", __func__, 1046 sg_dma_len(&atmel_port->sg_tx), 1047 port->state->xmit.buf, 1048 &sg_dma_address(&atmel_port->sg_tx)); 1049 } 1050 1051 /* Configure the slave DMA */ 1052 memset(&config, 0, sizeof(config)); 1053 config.direction = DMA_MEM_TO_DEV; 1054 config.dst_addr_width = (atmel_port->fifo_size) ? 1055 DMA_SLAVE_BUSWIDTH_4_BYTES : 1056 DMA_SLAVE_BUSWIDTH_1_BYTE; 1057 config.dst_addr = port->mapbase + ATMEL_US_THR; 1058 config.dst_maxburst = 1; 1059 1060 ret = dmaengine_slave_config(atmel_port->chan_tx, 1061 &config); 1062 if (ret) { 1063 dev_err(port->dev, "DMA tx slave configuration failed\n"); 1064 goto chan_err; 1065 } 1066 1067 return 0; 1068 1069 chan_err: 1070 dev_err(port->dev, "TX channel not available, switch to pio\n"); 1071 atmel_port->use_dma_tx = false; 1072 if (atmel_port->chan_tx) 1073 atmel_release_tx_dma(port); 1074 return -EINVAL; 1075 } 1076 1077 static void atmel_complete_rx_dma(void *arg) 1078 { 1079 struct uart_port *port = arg; 1080 struct atmel_uart_port *atmel_port = to_atmel_uart_port(port); 1081 1082 atmel_tasklet_schedule(atmel_port, &atmel_port->tasklet_rx); 1083 } 1084 1085 static void atmel_release_rx_dma(struct uart_port *port) 1086 { 1087 struct atmel_uart_port *atmel_port = to_atmel_uart_port(port); 1088 struct dma_chan *chan = atmel_port->chan_rx; 1089 1090 if (chan) { 1091 dmaengine_terminate_all(chan); 1092 dma_release_channel(chan); 1093 dma_unmap_sg(port->dev, &atmel_port->sg_rx, 1, 1094 DMA_FROM_DEVICE); 1095 } 1096 1097 atmel_port->desc_rx = NULL; 1098 atmel_port->chan_rx = NULL; 1099 atmel_port->cookie_rx = -EINVAL; 1100 } 1101 1102 static void atmel_rx_from_dma(struct uart_port *port) 1103 { 1104 struct atmel_uart_port *atmel_port = to_atmel_uart_port(port); 1105 struct tty_port *tport = &port->state->port; 1106 struct circ_buf *ring = &atmel_port->rx_ring; 1107 struct dma_chan *chan = atmel_port->chan_rx; 1108 struct dma_tx_state state; 1109 enum dma_status dmastat; 1110 size_t count; 1111 1112 1113 /* Reset the UART timeout early so that we don't miss one */ 1114 atmel_uart_writel(port, ATMEL_US_CR, ATMEL_US_STTTO); 1115 dmastat = dmaengine_tx_status(chan, 1116 atmel_port->cookie_rx, 1117 &state); 1118 /* Restart a new tasklet if DMA status is error */ 1119 if (dmastat == DMA_ERROR) { 1120 dev_dbg(port->dev, "Get residue error, restart tasklet\n"); 1121 atmel_uart_writel(port, ATMEL_US_IER, ATMEL_US_TIMEOUT); 1122 atmel_tasklet_schedule(atmel_port, &atmel_port->tasklet_rx); 1123 return; 1124 } 1125 1126 /* CPU claims ownership of RX DMA buffer */ 1127 dma_sync_sg_for_cpu(port->dev, 1128 &atmel_port->sg_rx, 1129 1, 1130 DMA_FROM_DEVICE); 1131 1132 /* 1133 * ring->head points to the end of data already written by the DMA. 1134 * ring->tail points to the beginning of data to be read by the 1135 * framework. 1136 * The current transfer size should not be larger than the dma buffer 1137 * length. 1138 */ 1139 ring->head = sg_dma_len(&atmel_port->sg_rx) - state.residue; 1140 BUG_ON(ring->head > sg_dma_len(&atmel_port->sg_rx)); 1141 /* 1142 * At this point ring->head may point to the first byte right after the 1143 * last byte of the dma buffer: 1144 * 0 <= ring->head <= sg_dma_len(&atmel_port->sg_rx) 1145 * 1146 * However ring->tail must always points inside the dma buffer: 1147 * 0 <= ring->tail <= sg_dma_len(&atmel_port->sg_rx) - 1 1148 * 1149 * Since we use a ring buffer, we have to handle the case 1150 * where head is lower than tail. In such a case, we first read from 1151 * tail to the end of the buffer then reset tail. 1152 */ 1153 if (ring->head < ring->tail) { 1154 count = sg_dma_len(&atmel_port->sg_rx) - ring->tail; 1155 1156 tty_insert_flip_string(tport, ring->buf + ring->tail, count); 1157 ring->tail = 0; 1158 port->icount.rx += count; 1159 } 1160 1161 /* Finally we read data from tail to head */ 1162 if (ring->tail < ring->head) { 1163 count = ring->head - ring->tail; 1164 1165 tty_insert_flip_string(tport, ring->buf + ring->tail, count); 1166 /* Wrap ring->head if needed */ 1167 if (ring->head >= sg_dma_len(&atmel_port->sg_rx)) 1168 ring->head = 0; 1169 ring->tail = ring->head; 1170 port->icount.rx += count; 1171 } 1172 1173 /* USART retreives ownership of RX DMA buffer */ 1174 dma_sync_sg_for_device(port->dev, 1175 &atmel_port->sg_rx, 1176 1, 1177 DMA_FROM_DEVICE); 1178 1179 tty_flip_buffer_push(tport); 1180 1181 atmel_uart_writel(port, ATMEL_US_IER, ATMEL_US_TIMEOUT); 1182 } 1183 1184 static int atmel_prepare_rx_dma(struct uart_port *port) 1185 { 1186 struct atmel_uart_port *atmel_port = to_atmel_uart_port(port); 1187 struct device *mfd_dev = port->dev->parent; 1188 struct dma_async_tx_descriptor *desc; 1189 dma_cap_mask_t mask; 1190 struct dma_slave_config config; 1191 struct circ_buf *ring; 1192 int ret, nent; 1193 1194 ring = &atmel_port->rx_ring; 1195 1196 dma_cap_zero(mask); 1197 dma_cap_set(DMA_CYCLIC, mask); 1198 1199 atmel_port->chan_rx = dma_request_slave_channel(mfd_dev, "rx"); 1200 if (atmel_port->chan_rx == NULL) 1201 goto chan_err; 1202 dev_info(port->dev, "using %s for rx DMA transfers\n", 1203 dma_chan_name(atmel_port->chan_rx)); 1204 1205 spin_lock_init(&atmel_port->lock_rx); 1206 sg_init_table(&atmel_port->sg_rx, 1); 1207 /* UART circular rx buffer is an aligned page. */ 1208 BUG_ON(!PAGE_ALIGNED(ring->buf)); 1209 sg_set_page(&atmel_port->sg_rx, 1210 virt_to_page(ring->buf), 1211 sizeof(struct atmel_uart_char) * ATMEL_SERIAL_RINGSIZE, 1212 offset_in_page(ring->buf)); 1213 nent = dma_map_sg(port->dev, 1214 &atmel_port->sg_rx, 1215 1, 1216 DMA_FROM_DEVICE); 1217 1218 if (!nent) { 1219 dev_dbg(port->dev, "need to release resource of dma\n"); 1220 goto chan_err; 1221 } else { 1222 dev_dbg(port->dev, "%s: mapped %d@%p to %pad\n", __func__, 1223 sg_dma_len(&atmel_port->sg_rx), 1224 ring->buf, 1225 &sg_dma_address(&atmel_port->sg_rx)); 1226 } 1227 1228 /* Configure the slave DMA */ 1229 memset(&config, 0, sizeof(config)); 1230 config.direction = DMA_DEV_TO_MEM; 1231 config.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE; 1232 config.src_addr = port->mapbase + ATMEL_US_RHR; 1233 config.src_maxburst = 1; 1234 1235 ret = dmaengine_slave_config(atmel_port->chan_rx, 1236 &config); 1237 if (ret) { 1238 dev_err(port->dev, "DMA rx slave configuration failed\n"); 1239 goto chan_err; 1240 } 1241 /* 1242 * Prepare a cyclic dma transfer, assign 2 descriptors, 1243 * each one is half ring buffer size 1244 */ 1245 desc = dmaengine_prep_dma_cyclic(atmel_port->chan_rx, 1246 sg_dma_address(&atmel_port->sg_rx), 1247 sg_dma_len(&atmel_port->sg_rx), 1248 sg_dma_len(&atmel_port->sg_rx)/2, 1249 DMA_DEV_TO_MEM, 1250 DMA_PREP_INTERRUPT); 1251 if (!desc) { 1252 dev_err(port->dev, "Preparing DMA cyclic failed\n"); 1253 goto chan_err; 1254 } 1255 desc->callback = atmel_complete_rx_dma; 1256 desc->callback_param = port; 1257 atmel_port->desc_rx = desc; 1258 atmel_port->cookie_rx = dmaengine_submit(desc); 1259 if (dma_submit_error(atmel_port->cookie_rx)) { 1260 dev_err(port->dev, "dma_submit_error %d\n", 1261 atmel_port->cookie_rx); 1262 goto chan_err; 1263 } 1264 1265 dma_async_issue_pending(atmel_port->chan_rx); 1266 1267 return 0; 1268 1269 chan_err: 1270 dev_err(port->dev, "RX channel not available, switch to pio\n"); 1271 atmel_port->use_dma_rx = false; 1272 if (atmel_port->chan_rx) 1273 atmel_release_rx_dma(port); 1274 return -EINVAL; 1275 } 1276 1277 static void atmel_uart_timer_callback(struct timer_list *t) 1278 { 1279 struct atmel_uart_port *atmel_port = from_timer(atmel_port, t, 1280 uart_timer); 1281 struct uart_port *port = &atmel_port->uart; 1282 1283 if (!atomic_read(&atmel_port->tasklet_shutdown)) { 1284 tasklet_schedule(&atmel_port->tasklet_rx); 1285 mod_timer(&atmel_port->uart_timer, 1286 jiffies + uart_poll_timeout(port)); 1287 } 1288 } 1289 1290 /* 1291 * receive interrupt handler. 1292 */ 1293 static void 1294 atmel_handle_receive(struct uart_port *port, unsigned int pending) 1295 { 1296 struct atmel_uart_port *atmel_port = to_atmel_uart_port(port); 1297 1298 if (atmel_use_pdc_rx(port)) { 1299 /* 1300 * PDC receive. Just schedule the tasklet and let it 1301 * figure out the details. 1302 * 1303 * TODO: We're not handling error flags correctly at 1304 * the moment. 1305 */ 1306 if (pending & (ATMEL_US_ENDRX | ATMEL_US_TIMEOUT)) { 1307 atmel_uart_writel(port, ATMEL_US_IDR, 1308 (ATMEL_US_ENDRX | ATMEL_US_TIMEOUT)); 1309 atmel_tasklet_schedule(atmel_port, 1310 &atmel_port->tasklet_rx); 1311 } 1312 1313 if (pending & (ATMEL_US_RXBRK | ATMEL_US_OVRE | 1314 ATMEL_US_FRAME | ATMEL_US_PARE)) 1315 atmel_pdc_rxerr(port, pending); 1316 } 1317 1318 if (atmel_use_dma_rx(port)) { 1319 if (pending & ATMEL_US_TIMEOUT) { 1320 atmel_uart_writel(port, ATMEL_US_IDR, 1321 ATMEL_US_TIMEOUT); 1322 atmel_tasklet_schedule(atmel_port, 1323 &atmel_port->tasklet_rx); 1324 } 1325 } 1326 1327 /* Interrupt receive */ 1328 if (pending & ATMEL_US_RXRDY) 1329 atmel_rx_chars(port); 1330 else if (pending & ATMEL_US_RXBRK) { 1331 /* 1332 * End of break detected. If it came along with a 1333 * character, atmel_rx_chars will handle it. 1334 */ 1335 atmel_uart_writel(port, ATMEL_US_CR, ATMEL_US_RSTSTA); 1336 atmel_uart_writel(port, ATMEL_US_IDR, ATMEL_US_RXBRK); 1337 atmel_port->break_active = 0; 1338 } 1339 } 1340 1341 /* 1342 * transmit interrupt handler. (Transmit is IRQF_NODELAY safe) 1343 */ 1344 static void 1345 atmel_handle_transmit(struct uart_port *port, unsigned int pending) 1346 { 1347 struct atmel_uart_port *atmel_port = to_atmel_uart_port(port); 1348 1349 if (pending & atmel_port->tx_done_mask) { 1350 atmel_uart_writel(port, ATMEL_US_IDR, 1351 atmel_port->tx_done_mask); 1352 1353 /* Start RX if flag was set and FIFO is empty */ 1354 if (atmel_port->hd_start_rx) { 1355 if (!(atmel_uart_readl(port, ATMEL_US_CSR) 1356 & ATMEL_US_TXEMPTY)) 1357 dev_warn(port->dev, "Should start RX, but TX fifo is not empty\n"); 1358 1359 atmel_port->hd_start_rx = false; 1360 atmel_start_rx(port); 1361 } 1362 1363 atmel_tasklet_schedule(atmel_port, &atmel_port->tasklet_tx); 1364 } 1365 } 1366 1367 /* 1368 * status flags interrupt handler. 1369 */ 1370 static void 1371 atmel_handle_status(struct uart_port *port, unsigned int pending, 1372 unsigned int status) 1373 { 1374 struct atmel_uart_port *atmel_port = to_atmel_uart_port(port); 1375 unsigned int status_change; 1376 1377 if (pending & (ATMEL_US_RIIC | ATMEL_US_DSRIC | ATMEL_US_DCDIC 1378 | ATMEL_US_CTSIC)) { 1379 status_change = status ^ atmel_port->irq_status_prev; 1380 atmel_port->irq_status_prev = status; 1381 1382 if (status_change & (ATMEL_US_RI | ATMEL_US_DSR 1383 | ATMEL_US_DCD | ATMEL_US_CTS)) { 1384 /* TODO: All reads to CSR will clear these interrupts! */ 1385 if (status_change & ATMEL_US_RI) 1386 port->icount.rng++; 1387 if (status_change & ATMEL_US_DSR) 1388 port->icount.dsr++; 1389 if (status_change & ATMEL_US_DCD) 1390 uart_handle_dcd_change(port, !(status & ATMEL_US_DCD)); 1391 if (status_change & ATMEL_US_CTS) 1392 uart_handle_cts_change(port, !(status & ATMEL_US_CTS)); 1393 1394 wake_up_interruptible(&port->state->port.delta_msr_wait); 1395 } 1396 } 1397 1398 if (pending & (ATMEL_US_NACK | ATMEL_US_ITERATION)) 1399 dev_dbg(port->dev, "ISO7816 ERROR (0x%08x)\n", pending); 1400 } 1401 1402 /* 1403 * Interrupt handler 1404 */ 1405 static irqreturn_t atmel_interrupt(int irq, void *dev_id) 1406 { 1407 struct uart_port *port = dev_id; 1408 struct atmel_uart_port *atmel_port = to_atmel_uart_port(port); 1409 unsigned int status, pending, mask, pass_counter = 0; 1410 1411 spin_lock(&atmel_port->lock_suspended); 1412 1413 do { 1414 status = atmel_uart_readl(port, ATMEL_US_CSR); 1415 mask = atmel_uart_readl(port, ATMEL_US_IMR); 1416 pending = status & mask; 1417 if (!pending) 1418 break; 1419 1420 if (atmel_port->suspended) { 1421 atmel_port->pending |= pending; 1422 atmel_port->pending_status = status; 1423 atmel_uart_writel(port, ATMEL_US_IDR, mask); 1424 pm_system_wakeup(); 1425 break; 1426 } 1427 1428 atmel_handle_receive(port, pending); 1429 atmel_handle_status(port, pending, status); 1430 atmel_handle_transmit(port, pending); 1431 } while (pass_counter++ < ATMEL_ISR_PASS_LIMIT); 1432 1433 spin_unlock(&atmel_port->lock_suspended); 1434 1435 return pass_counter ? IRQ_HANDLED : IRQ_NONE; 1436 } 1437 1438 static void atmel_release_tx_pdc(struct uart_port *port) 1439 { 1440 struct atmel_uart_port *atmel_port = to_atmel_uart_port(port); 1441 struct atmel_dma_buffer *pdc = &atmel_port->pdc_tx; 1442 1443 dma_unmap_single(port->dev, 1444 pdc->dma_addr, 1445 pdc->dma_size, 1446 DMA_TO_DEVICE); 1447 } 1448 1449 /* 1450 * Called from tasklet with ENDTX and TXBUFE interrupts disabled. 1451 */ 1452 static void atmel_tx_pdc(struct uart_port *port) 1453 { 1454 struct atmel_uart_port *atmel_port = to_atmel_uart_port(port); 1455 struct circ_buf *xmit = &port->state->xmit; 1456 struct atmel_dma_buffer *pdc = &atmel_port->pdc_tx; 1457 int count; 1458 1459 /* nothing left to transmit? */ 1460 if (atmel_uart_readl(port, ATMEL_PDC_TCR)) 1461 return; 1462 uart_xmit_advance(port, pdc->ofs); 1463 pdc->ofs = 0; 1464 1465 /* more to transmit - setup next transfer */ 1466 1467 /* disable PDC transmit */ 1468 atmel_uart_writel(port, ATMEL_PDC_PTCR, ATMEL_PDC_TXTDIS); 1469 1470 if (!uart_circ_empty(xmit) && !uart_tx_stopped(port)) { 1471 dma_sync_single_for_device(port->dev, 1472 pdc->dma_addr, 1473 pdc->dma_size, 1474 DMA_TO_DEVICE); 1475 1476 count = CIRC_CNT_TO_END(xmit->head, xmit->tail, UART_XMIT_SIZE); 1477 pdc->ofs = count; 1478 1479 atmel_uart_writel(port, ATMEL_PDC_TPR, 1480 pdc->dma_addr + xmit->tail); 1481 atmel_uart_writel(port, ATMEL_PDC_TCR, count); 1482 /* re-enable PDC transmit */ 1483 atmel_uart_writel(port, ATMEL_PDC_PTCR, ATMEL_PDC_TXTEN); 1484 /* Enable interrupts */ 1485 atmel_uart_writel(port, ATMEL_US_IER, 1486 atmel_port->tx_done_mask); 1487 } else { 1488 if (atmel_uart_is_half_duplex(port)) { 1489 /* DMA done, stop TX, start RX for RS485 */ 1490 atmel_start_rx(port); 1491 } 1492 } 1493 1494 if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS) 1495 uart_write_wakeup(port); 1496 } 1497 1498 static int atmel_prepare_tx_pdc(struct uart_port *port) 1499 { 1500 struct atmel_uart_port *atmel_port = to_atmel_uart_port(port); 1501 struct atmel_dma_buffer *pdc = &atmel_port->pdc_tx; 1502 struct circ_buf *xmit = &port->state->xmit; 1503 1504 pdc->buf = xmit->buf; 1505 pdc->dma_addr = dma_map_single(port->dev, 1506 pdc->buf, 1507 UART_XMIT_SIZE, 1508 DMA_TO_DEVICE); 1509 pdc->dma_size = UART_XMIT_SIZE; 1510 pdc->ofs = 0; 1511 1512 return 0; 1513 } 1514 1515 static void atmel_rx_from_ring(struct uart_port *port) 1516 { 1517 struct atmel_uart_port *atmel_port = to_atmel_uart_port(port); 1518 struct circ_buf *ring = &atmel_port->rx_ring; 1519 unsigned int flg; 1520 unsigned int status; 1521 1522 while (ring->head != ring->tail) { 1523 struct atmel_uart_char c; 1524 1525 /* Make sure c is loaded after head. */ 1526 smp_rmb(); 1527 1528 c = ((struct atmel_uart_char *)ring->buf)[ring->tail]; 1529 1530 ring->tail = (ring->tail + 1) & (ATMEL_SERIAL_RINGSIZE - 1); 1531 1532 port->icount.rx++; 1533 status = c.status; 1534 flg = TTY_NORMAL; 1535 1536 /* 1537 * note that the error handling code is 1538 * out of the main execution path 1539 */ 1540 if (unlikely(status & (ATMEL_US_PARE | ATMEL_US_FRAME 1541 | ATMEL_US_OVRE | ATMEL_US_RXBRK))) { 1542 if (status & ATMEL_US_RXBRK) { 1543 /* ignore side-effect */ 1544 status &= ~(ATMEL_US_PARE | ATMEL_US_FRAME); 1545 1546 port->icount.brk++; 1547 if (uart_handle_break(port)) 1548 continue; 1549 } 1550 if (status & ATMEL_US_PARE) 1551 port->icount.parity++; 1552 if (status & ATMEL_US_FRAME) 1553 port->icount.frame++; 1554 if (status & ATMEL_US_OVRE) 1555 port->icount.overrun++; 1556 1557 status &= port->read_status_mask; 1558 1559 if (status & ATMEL_US_RXBRK) 1560 flg = TTY_BREAK; 1561 else if (status & ATMEL_US_PARE) 1562 flg = TTY_PARITY; 1563 else if (status & ATMEL_US_FRAME) 1564 flg = TTY_FRAME; 1565 } 1566 1567 1568 if (uart_handle_sysrq_char(port, c.ch)) 1569 continue; 1570 1571 uart_insert_char(port, status, ATMEL_US_OVRE, c.ch, flg); 1572 } 1573 1574 tty_flip_buffer_push(&port->state->port); 1575 } 1576 1577 static void atmel_release_rx_pdc(struct uart_port *port) 1578 { 1579 struct atmel_uart_port *atmel_port = to_atmel_uart_port(port); 1580 int i; 1581 1582 for (i = 0; i < 2; i++) { 1583 struct atmel_dma_buffer *pdc = &atmel_port->pdc_rx[i]; 1584 1585 dma_unmap_single(port->dev, 1586 pdc->dma_addr, 1587 pdc->dma_size, 1588 DMA_FROM_DEVICE); 1589 kfree(pdc->buf); 1590 } 1591 } 1592 1593 static void atmel_rx_from_pdc(struct uart_port *port) 1594 { 1595 struct atmel_uart_port *atmel_port = to_atmel_uart_port(port); 1596 struct tty_port *tport = &port->state->port; 1597 struct atmel_dma_buffer *pdc; 1598 int rx_idx = atmel_port->pdc_rx_idx; 1599 unsigned int head; 1600 unsigned int tail; 1601 unsigned int count; 1602 1603 do { 1604 /* Reset the UART timeout early so that we don't miss one */ 1605 atmel_uart_writel(port, ATMEL_US_CR, ATMEL_US_STTTO); 1606 1607 pdc = &atmel_port->pdc_rx[rx_idx]; 1608 head = atmel_uart_readl(port, ATMEL_PDC_RPR) - pdc->dma_addr; 1609 tail = pdc->ofs; 1610 1611 /* If the PDC has switched buffers, RPR won't contain 1612 * any address within the current buffer. Since head 1613 * is unsigned, we just need a one-way comparison to 1614 * find out. 1615 * 1616 * In this case, we just need to consume the entire 1617 * buffer and resubmit it for DMA. This will clear the 1618 * ENDRX bit as well, so that we can safely re-enable 1619 * all interrupts below. 1620 */ 1621 head = min(head, pdc->dma_size); 1622 1623 if (likely(head != tail)) { 1624 dma_sync_single_for_cpu(port->dev, pdc->dma_addr, 1625 pdc->dma_size, DMA_FROM_DEVICE); 1626 1627 /* 1628 * head will only wrap around when we recycle 1629 * the DMA buffer, and when that happens, we 1630 * explicitly set tail to 0. So head will 1631 * always be greater than tail. 1632 */ 1633 count = head - tail; 1634 1635 tty_insert_flip_string(tport, pdc->buf + pdc->ofs, 1636 count); 1637 1638 dma_sync_single_for_device(port->dev, pdc->dma_addr, 1639 pdc->dma_size, DMA_FROM_DEVICE); 1640 1641 port->icount.rx += count; 1642 pdc->ofs = head; 1643 } 1644 1645 /* 1646 * If the current buffer is full, we need to check if 1647 * the next one contains any additional data. 1648 */ 1649 if (head >= pdc->dma_size) { 1650 pdc->ofs = 0; 1651 atmel_uart_writel(port, ATMEL_PDC_RNPR, pdc->dma_addr); 1652 atmel_uart_writel(port, ATMEL_PDC_RNCR, pdc->dma_size); 1653 1654 rx_idx = !rx_idx; 1655 atmel_port->pdc_rx_idx = rx_idx; 1656 } 1657 } while (head >= pdc->dma_size); 1658 1659 tty_flip_buffer_push(tport); 1660 1661 atmel_uart_writel(port, ATMEL_US_IER, 1662 ATMEL_US_ENDRX | ATMEL_US_TIMEOUT); 1663 } 1664 1665 static int atmel_prepare_rx_pdc(struct uart_port *port) 1666 { 1667 struct atmel_uart_port *atmel_port = to_atmel_uart_port(port); 1668 int i; 1669 1670 for (i = 0; i < 2; i++) { 1671 struct atmel_dma_buffer *pdc = &atmel_port->pdc_rx[i]; 1672 1673 pdc->buf = kmalloc(PDC_BUFFER_SIZE, GFP_KERNEL); 1674 if (pdc->buf == NULL) { 1675 if (i != 0) { 1676 dma_unmap_single(port->dev, 1677 atmel_port->pdc_rx[0].dma_addr, 1678 PDC_BUFFER_SIZE, 1679 DMA_FROM_DEVICE); 1680 kfree(atmel_port->pdc_rx[0].buf); 1681 } 1682 atmel_port->use_pdc_rx = false; 1683 return -ENOMEM; 1684 } 1685 pdc->dma_addr = dma_map_single(port->dev, 1686 pdc->buf, 1687 PDC_BUFFER_SIZE, 1688 DMA_FROM_DEVICE); 1689 pdc->dma_size = PDC_BUFFER_SIZE; 1690 pdc->ofs = 0; 1691 } 1692 1693 atmel_port->pdc_rx_idx = 0; 1694 1695 atmel_uart_writel(port, ATMEL_PDC_RPR, atmel_port->pdc_rx[0].dma_addr); 1696 atmel_uart_writel(port, ATMEL_PDC_RCR, PDC_BUFFER_SIZE); 1697 1698 atmel_uart_writel(port, ATMEL_PDC_RNPR, 1699 atmel_port->pdc_rx[1].dma_addr); 1700 atmel_uart_writel(port, ATMEL_PDC_RNCR, PDC_BUFFER_SIZE); 1701 1702 return 0; 1703 } 1704 1705 /* 1706 * tasklet handling tty stuff outside the interrupt handler. 1707 */ 1708 static void atmel_tasklet_rx_func(struct tasklet_struct *t) 1709 { 1710 struct atmel_uart_port *atmel_port = from_tasklet(atmel_port, t, 1711 tasklet_rx); 1712 struct uart_port *port = &atmel_port->uart; 1713 1714 /* The interrupt handler does not take the lock */ 1715 spin_lock(&port->lock); 1716 atmel_port->schedule_rx(port); 1717 spin_unlock(&port->lock); 1718 } 1719 1720 static void atmel_tasklet_tx_func(struct tasklet_struct *t) 1721 { 1722 struct atmel_uart_port *atmel_port = from_tasklet(atmel_port, t, 1723 tasklet_tx); 1724 struct uart_port *port = &atmel_port->uart; 1725 1726 /* The interrupt handler does not take the lock */ 1727 spin_lock(&port->lock); 1728 atmel_port->schedule_tx(port); 1729 spin_unlock(&port->lock); 1730 } 1731 1732 static void atmel_init_property(struct atmel_uart_port *atmel_port, 1733 struct platform_device *pdev) 1734 { 1735 struct device_node *np = pdev->dev.of_node; 1736 1737 /* DMA/PDC usage specification */ 1738 if (of_property_read_bool(np, "atmel,use-dma-rx")) { 1739 if (of_property_read_bool(np, "dmas")) { 1740 atmel_port->use_dma_rx = true; 1741 atmel_port->use_pdc_rx = false; 1742 } else { 1743 atmel_port->use_dma_rx = false; 1744 atmel_port->use_pdc_rx = true; 1745 } 1746 } else { 1747 atmel_port->use_dma_rx = false; 1748 atmel_port->use_pdc_rx = false; 1749 } 1750 1751 if (of_property_read_bool(np, "atmel,use-dma-tx")) { 1752 if (of_property_read_bool(np, "dmas")) { 1753 atmel_port->use_dma_tx = true; 1754 atmel_port->use_pdc_tx = false; 1755 } else { 1756 atmel_port->use_dma_tx = false; 1757 atmel_port->use_pdc_tx = true; 1758 } 1759 } else { 1760 atmel_port->use_dma_tx = false; 1761 atmel_port->use_pdc_tx = false; 1762 } 1763 } 1764 1765 static void atmel_set_ops(struct uart_port *port) 1766 { 1767 struct atmel_uart_port *atmel_port = to_atmel_uart_port(port); 1768 1769 if (atmel_use_dma_rx(port)) { 1770 atmel_port->prepare_rx = &atmel_prepare_rx_dma; 1771 atmel_port->schedule_rx = &atmel_rx_from_dma; 1772 atmel_port->release_rx = &atmel_release_rx_dma; 1773 } else if (atmel_use_pdc_rx(port)) { 1774 atmel_port->prepare_rx = &atmel_prepare_rx_pdc; 1775 atmel_port->schedule_rx = &atmel_rx_from_pdc; 1776 atmel_port->release_rx = &atmel_release_rx_pdc; 1777 } else { 1778 atmel_port->prepare_rx = NULL; 1779 atmel_port->schedule_rx = &atmel_rx_from_ring; 1780 atmel_port->release_rx = NULL; 1781 } 1782 1783 if (atmel_use_dma_tx(port)) { 1784 atmel_port->prepare_tx = &atmel_prepare_tx_dma; 1785 atmel_port->schedule_tx = &atmel_tx_dma; 1786 atmel_port->release_tx = &atmel_release_tx_dma; 1787 } else if (atmel_use_pdc_tx(port)) { 1788 atmel_port->prepare_tx = &atmel_prepare_tx_pdc; 1789 atmel_port->schedule_tx = &atmel_tx_pdc; 1790 atmel_port->release_tx = &atmel_release_tx_pdc; 1791 } else { 1792 atmel_port->prepare_tx = NULL; 1793 atmel_port->schedule_tx = &atmel_tx_chars; 1794 atmel_port->release_tx = NULL; 1795 } 1796 } 1797 1798 /* 1799 * Get ip name usart or uart 1800 */ 1801 static void atmel_get_ip_name(struct uart_port *port) 1802 { 1803 struct atmel_uart_port *atmel_port = to_atmel_uart_port(port); 1804 int name = atmel_uart_readl(port, ATMEL_US_NAME); 1805 u32 version; 1806 u32 usart, dbgu_uart, new_uart; 1807 /* ASCII decoding for IP version */ 1808 usart = 0x55534152; /* USAR(T) */ 1809 dbgu_uart = 0x44424755; /* DBGU */ 1810 new_uart = 0x55415254; /* UART */ 1811 1812 /* 1813 * Only USART devices from at91sam9260 SOC implement fractional 1814 * baudrate. It is available for all asynchronous modes, with the 1815 * following restriction: the sampling clock's duty cycle is not 1816 * constant. 1817 */ 1818 atmel_port->has_frac_baudrate = false; 1819 atmel_port->has_hw_timer = false; 1820 atmel_port->is_usart = false; 1821 1822 if (name == new_uart) { 1823 dev_dbg(port->dev, "Uart with hw timer"); 1824 atmel_port->has_hw_timer = true; 1825 atmel_port->rtor = ATMEL_UA_RTOR; 1826 } else if (name == usart) { 1827 dev_dbg(port->dev, "Usart\n"); 1828 atmel_port->has_frac_baudrate = true; 1829 atmel_port->has_hw_timer = true; 1830 atmel_port->is_usart = true; 1831 atmel_port->rtor = ATMEL_US_RTOR; 1832 version = atmel_uart_readl(port, ATMEL_US_VERSION); 1833 switch (version) { 1834 case 0x814: /* sama5d2 */ 1835 fallthrough; 1836 case 0x701: /* sama5d4 */ 1837 atmel_port->fidi_min = 3; 1838 atmel_port->fidi_max = 65535; 1839 break; 1840 case 0x502: /* sam9x5, sama5d3 */ 1841 atmel_port->fidi_min = 3; 1842 atmel_port->fidi_max = 2047; 1843 break; 1844 default: 1845 atmel_port->fidi_min = 1; 1846 atmel_port->fidi_max = 2047; 1847 } 1848 } else if (name == dbgu_uart) { 1849 dev_dbg(port->dev, "Dbgu or uart without hw timer\n"); 1850 } else { 1851 /* fallback for older SoCs: use version field */ 1852 version = atmel_uart_readl(port, ATMEL_US_VERSION); 1853 switch (version) { 1854 case 0x302: 1855 case 0x10213: 1856 case 0x10302: 1857 dev_dbg(port->dev, "This version is usart\n"); 1858 atmel_port->has_frac_baudrate = true; 1859 atmel_port->has_hw_timer = true; 1860 atmel_port->is_usart = true; 1861 atmel_port->rtor = ATMEL_US_RTOR; 1862 break; 1863 case 0x203: 1864 case 0x10202: 1865 dev_dbg(port->dev, "This version is uart\n"); 1866 break; 1867 default: 1868 dev_err(port->dev, "Not supported ip name nor version, set to uart\n"); 1869 } 1870 } 1871 } 1872 1873 /* 1874 * Perform initialization and enable port for reception 1875 */ 1876 static int atmel_startup(struct uart_port *port) 1877 { 1878 struct platform_device *pdev = to_platform_device(port->dev); 1879 struct atmel_uart_port *atmel_port = to_atmel_uart_port(port); 1880 int retval; 1881 1882 /* 1883 * Ensure that no interrupts are enabled otherwise when 1884 * request_irq() is called we could get stuck trying to 1885 * handle an unexpected interrupt 1886 */ 1887 atmel_uart_writel(port, ATMEL_US_IDR, -1); 1888 atmel_port->ms_irq_enabled = false; 1889 1890 /* 1891 * Allocate the IRQ 1892 */ 1893 retval = request_irq(port->irq, atmel_interrupt, 1894 IRQF_SHARED | IRQF_COND_SUSPEND, 1895 dev_name(&pdev->dev), port); 1896 if (retval) { 1897 dev_err(port->dev, "atmel_startup - Can't get irq\n"); 1898 return retval; 1899 } 1900 1901 atomic_set(&atmel_port->tasklet_shutdown, 0); 1902 tasklet_setup(&atmel_port->tasklet_rx, atmel_tasklet_rx_func); 1903 tasklet_setup(&atmel_port->tasklet_tx, atmel_tasklet_tx_func); 1904 1905 /* 1906 * Initialize DMA (if necessary) 1907 */ 1908 atmel_init_property(atmel_port, pdev); 1909 atmel_set_ops(port); 1910 1911 if (atmel_port->prepare_rx) { 1912 retval = atmel_port->prepare_rx(port); 1913 if (retval < 0) 1914 atmel_set_ops(port); 1915 } 1916 1917 if (atmel_port->prepare_tx) { 1918 retval = atmel_port->prepare_tx(port); 1919 if (retval < 0) 1920 atmel_set_ops(port); 1921 } 1922 1923 /* 1924 * Enable FIFO when available 1925 */ 1926 if (atmel_port->fifo_size) { 1927 unsigned int txrdym = ATMEL_US_ONE_DATA; 1928 unsigned int rxrdym = ATMEL_US_ONE_DATA; 1929 unsigned int fmr; 1930 1931 atmel_uart_writel(port, ATMEL_US_CR, 1932 ATMEL_US_FIFOEN | 1933 ATMEL_US_RXFCLR | 1934 ATMEL_US_TXFLCLR); 1935 1936 if (atmel_use_dma_tx(port)) 1937 txrdym = ATMEL_US_FOUR_DATA; 1938 1939 fmr = ATMEL_US_TXRDYM(txrdym) | ATMEL_US_RXRDYM(rxrdym); 1940 if (atmel_port->rts_high && 1941 atmel_port->rts_low) 1942 fmr |= ATMEL_US_FRTSC | 1943 ATMEL_US_RXFTHRES(atmel_port->rts_high) | 1944 ATMEL_US_RXFTHRES2(atmel_port->rts_low); 1945 1946 atmel_uart_writel(port, ATMEL_US_FMR, fmr); 1947 } 1948 1949 /* Save current CSR for comparison in atmel_tasklet_func() */ 1950 atmel_port->irq_status_prev = atmel_uart_readl(port, ATMEL_US_CSR); 1951 1952 /* 1953 * Finally, enable the serial port 1954 */ 1955 atmel_uart_writel(port, ATMEL_US_CR, ATMEL_US_RSTSTA | ATMEL_US_RSTRX); 1956 /* enable xmit & rcvr */ 1957 atmel_uart_writel(port, ATMEL_US_CR, ATMEL_US_TXEN | ATMEL_US_RXEN); 1958 atmel_port->tx_stopped = false; 1959 1960 timer_setup(&atmel_port->uart_timer, atmel_uart_timer_callback, 0); 1961 1962 if (atmel_use_pdc_rx(port)) { 1963 /* set UART timeout */ 1964 if (!atmel_port->has_hw_timer) { 1965 mod_timer(&atmel_port->uart_timer, 1966 jiffies + uart_poll_timeout(port)); 1967 /* set USART timeout */ 1968 } else { 1969 atmel_uart_writel(port, atmel_port->rtor, 1970 PDC_RX_TIMEOUT); 1971 atmel_uart_writel(port, ATMEL_US_CR, ATMEL_US_STTTO); 1972 1973 atmel_uart_writel(port, ATMEL_US_IER, 1974 ATMEL_US_ENDRX | ATMEL_US_TIMEOUT); 1975 } 1976 /* enable PDC controller */ 1977 atmel_uart_writel(port, ATMEL_PDC_PTCR, ATMEL_PDC_RXTEN); 1978 } else if (atmel_use_dma_rx(port)) { 1979 /* set UART timeout */ 1980 if (!atmel_port->has_hw_timer) { 1981 mod_timer(&atmel_port->uart_timer, 1982 jiffies + uart_poll_timeout(port)); 1983 /* set USART timeout */ 1984 } else { 1985 atmel_uart_writel(port, atmel_port->rtor, 1986 PDC_RX_TIMEOUT); 1987 atmel_uart_writel(port, ATMEL_US_CR, ATMEL_US_STTTO); 1988 1989 atmel_uart_writel(port, ATMEL_US_IER, 1990 ATMEL_US_TIMEOUT); 1991 } 1992 } else { 1993 /* enable receive only */ 1994 atmel_uart_writel(port, ATMEL_US_IER, ATMEL_US_RXRDY); 1995 } 1996 1997 return 0; 1998 } 1999 2000 /* 2001 * Flush any TX data submitted for DMA. Called when the TX circular 2002 * buffer is reset. 2003 */ 2004 static void atmel_flush_buffer(struct uart_port *port) 2005 { 2006 struct atmel_uart_port *atmel_port = to_atmel_uart_port(port); 2007 2008 if (atmel_use_pdc_tx(port)) { 2009 atmel_uart_writel(port, ATMEL_PDC_TCR, 0); 2010 atmel_port->pdc_tx.ofs = 0; 2011 } 2012 /* 2013 * in uart_flush_buffer(), the xmit circular buffer has just 2014 * been cleared, so we have to reset tx_len accordingly. 2015 */ 2016 atmel_port->tx_len = 0; 2017 } 2018 2019 /* 2020 * Disable the port 2021 */ 2022 static void atmel_shutdown(struct uart_port *port) 2023 { 2024 struct atmel_uart_port *atmel_port = to_atmel_uart_port(port); 2025 2026 /* Disable modem control lines interrupts */ 2027 atmel_disable_ms(port); 2028 2029 /* Disable interrupts at device level */ 2030 atmel_uart_writel(port, ATMEL_US_IDR, -1); 2031 2032 /* Prevent spurious interrupts from scheduling the tasklet */ 2033 atomic_inc(&atmel_port->tasklet_shutdown); 2034 2035 /* 2036 * Prevent any tasklets being scheduled during 2037 * cleanup 2038 */ 2039 del_timer_sync(&atmel_port->uart_timer); 2040 2041 /* Make sure that no interrupt is on the fly */ 2042 synchronize_irq(port->irq); 2043 2044 /* 2045 * Clear out any scheduled tasklets before 2046 * we destroy the buffers 2047 */ 2048 tasklet_kill(&atmel_port->tasklet_rx); 2049 tasklet_kill(&atmel_port->tasklet_tx); 2050 2051 /* 2052 * Ensure everything is stopped and 2053 * disable port and break condition. 2054 */ 2055 atmel_stop_rx(port); 2056 atmel_stop_tx(port); 2057 2058 atmel_uart_writel(port, ATMEL_US_CR, ATMEL_US_RSTSTA); 2059 2060 /* 2061 * Shut-down the DMA. 2062 */ 2063 if (atmel_port->release_rx) 2064 atmel_port->release_rx(port); 2065 if (atmel_port->release_tx) 2066 atmel_port->release_tx(port); 2067 2068 /* 2069 * Reset ring buffer pointers 2070 */ 2071 atmel_port->rx_ring.head = 0; 2072 atmel_port->rx_ring.tail = 0; 2073 2074 /* 2075 * Free the interrupts 2076 */ 2077 free_irq(port->irq, port); 2078 2079 atmel_flush_buffer(port); 2080 } 2081 2082 /* 2083 * Power / Clock management. 2084 */ 2085 static void atmel_serial_pm(struct uart_port *port, unsigned int state, 2086 unsigned int oldstate) 2087 { 2088 struct atmel_uart_port *atmel_port = to_atmel_uart_port(port); 2089 2090 switch (state) { 2091 case UART_PM_STATE_ON: 2092 /* 2093 * Enable the peripheral clock for this serial port. 2094 * This is called on uart_open() or a resume event. 2095 */ 2096 clk_prepare_enable(atmel_port->clk); 2097 2098 /* re-enable interrupts if we disabled some on suspend */ 2099 atmel_uart_writel(port, ATMEL_US_IER, atmel_port->backup_imr); 2100 break; 2101 case UART_PM_STATE_OFF: 2102 /* Back up the interrupt mask and disable all interrupts */ 2103 atmel_port->backup_imr = atmel_uart_readl(port, ATMEL_US_IMR); 2104 atmel_uart_writel(port, ATMEL_US_IDR, -1); 2105 2106 /* 2107 * Disable the peripheral clock for this serial port. 2108 * This is called on uart_close() or a suspend event. 2109 */ 2110 clk_disable_unprepare(atmel_port->clk); 2111 if (__clk_is_enabled(atmel_port->gclk)) 2112 clk_disable_unprepare(atmel_port->gclk); 2113 break; 2114 default: 2115 dev_err(port->dev, "atmel_serial: unknown pm %d\n", state); 2116 } 2117 } 2118 2119 /* 2120 * Change the port parameters 2121 */ 2122 static void atmel_set_termios(struct uart_port *port, 2123 struct ktermios *termios, 2124 const struct ktermios *old) 2125 { 2126 struct atmel_uart_port *atmel_port = to_atmel_uart_port(port); 2127 unsigned long flags; 2128 unsigned int old_mode, mode, imr, quot, div, cd, fp = 0; 2129 unsigned int baud, actual_baud, gclk_rate; 2130 int ret; 2131 2132 /* save the current mode register */ 2133 mode = old_mode = atmel_uart_readl(port, ATMEL_US_MR); 2134 2135 /* reset the mode, clock divisor, parity, stop bits and data size */ 2136 if (atmel_port->is_usart) 2137 mode &= ~(ATMEL_US_NBSTOP | ATMEL_US_PAR | ATMEL_US_CHRL | 2138 ATMEL_US_USCLKS | ATMEL_US_USMODE); 2139 else 2140 mode &= ~(ATMEL_UA_BRSRCCK | ATMEL_US_PAR | ATMEL_UA_FILTER); 2141 2142 baud = uart_get_baud_rate(port, termios, old, 0, port->uartclk / 16); 2143 2144 /* byte size */ 2145 switch (termios->c_cflag & CSIZE) { 2146 case CS5: 2147 mode |= ATMEL_US_CHRL_5; 2148 break; 2149 case CS6: 2150 mode |= ATMEL_US_CHRL_6; 2151 break; 2152 case CS7: 2153 mode |= ATMEL_US_CHRL_7; 2154 break; 2155 default: 2156 mode |= ATMEL_US_CHRL_8; 2157 break; 2158 } 2159 2160 /* stop bits */ 2161 if (termios->c_cflag & CSTOPB) 2162 mode |= ATMEL_US_NBSTOP_2; 2163 2164 /* parity */ 2165 if (termios->c_cflag & PARENB) { 2166 /* Mark or Space parity */ 2167 if (termios->c_cflag & CMSPAR) { 2168 if (termios->c_cflag & PARODD) 2169 mode |= ATMEL_US_PAR_MARK; 2170 else 2171 mode |= ATMEL_US_PAR_SPACE; 2172 } else if (termios->c_cflag & PARODD) 2173 mode |= ATMEL_US_PAR_ODD; 2174 else 2175 mode |= ATMEL_US_PAR_EVEN; 2176 } else 2177 mode |= ATMEL_US_PAR_NONE; 2178 2179 spin_lock_irqsave(&port->lock, flags); 2180 2181 port->read_status_mask = ATMEL_US_OVRE; 2182 if (termios->c_iflag & INPCK) 2183 port->read_status_mask |= (ATMEL_US_FRAME | ATMEL_US_PARE); 2184 if (termios->c_iflag & (IGNBRK | BRKINT | PARMRK)) 2185 port->read_status_mask |= ATMEL_US_RXBRK; 2186 2187 if (atmel_use_pdc_rx(port)) 2188 /* need to enable error interrupts */ 2189 atmel_uart_writel(port, ATMEL_US_IER, port->read_status_mask); 2190 2191 /* 2192 * Characters to ignore 2193 */ 2194 port->ignore_status_mask = 0; 2195 if (termios->c_iflag & IGNPAR) 2196 port->ignore_status_mask |= (ATMEL_US_FRAME | ATMEL_US_PARE); 2197 if (termios->c_iflag & IGNBRK) { 2198 port->ignore_status_mask |= ATMEL_US_RXBRK; 2199 /* 2200 * If we're ignoring parity and break indicators, 2201 * ignore overruns too (for real raw support). 2202 */ 2203 if (termios->c_iflag & IGNPAR) 2204 port->ignore_status_mask |= ATMEL_US_OVRE; 2205 } 2206 /* TODO: Ignore all characters if CREAD is set.*/ 2207 2208 /* update the per-port timeout */ 2209 uart_update_timeout(port, termios->c_cflag, baud); 2210 2211 /* 2212 * save/disable interrupts. The tty layer will ensure that the 2213 * transmitter is empty if requested by the caller, so there's 2214 * no need to wait for it here. 2215 */ 2216 imr = atmel_uart_readl(port, ATMEL_US_IMR); 2217 atmel_uart_writel(port, ATMEL_US_IDR, -1); 2218 2219 /* disable receiver and transmitter */ 2220 atmel_uart_writel(port, ATMEL_US_CR, ATMEL_US_TXDIS | ATMEL_US_RXDIS); 2221 atmel_port->tx_stopped = true; 2222 2223 /* mode */ 2224 if (port->rs485.flags & SER_RS485_ENABLED) { 2225 atmel_uart_writel(port, ATMEL_US_TTGR, 2226 port->rs485.delay_rts_after_send); 2227 mode |= ATMEL_US_USMODE_RS485; 2228 } else if (port->iso7816.flags & SER_ISO7816_ENABLED) { 2229 atmel_uart_writel(port, ATMEL_US_TTGR, port->iso7816.tg); 2230 /* select mck clock, and output */ 2231 mode |= ATMEL_US_USCLKS_MCK | ATMEL_US_CLKO; 2232 /* set max iterations */ 2233 mode |= ATMEL_US_MAX_ITER(3); 2234 if ((port->iso7816.flags & SER_ISO7816_T_PARAM) 2235 == SER_ISO7816_T(0)) 2236 mode |= ATMEL_US_USMODE_ISO7816_T0; 2237 else 2238 mode |= ATMEL_US_USMODE_ISO7816_T1; 2239 } else if (termios->c_cflag & CRTSCTS) { 2240 /* RS232 with hardware handshake (RTS/CTS) */ 2241 if (atmel_use_fifo(port) && 2242 !mctrl_gpio_to_gpiod(atmel_port->gpios, UART_GPIO_CTS)) { 2243 /* 2244 * with ATMEL_US_USMODE_HWHS set, the controller will 2245 * be able to drive the RTS pin high/low when the RX 2246 * FIFO is above RXFTHRES/below RXFTHRES2. 2247 * It will also disable the transmitter when the CTS 2248 * pin is high. 2249 * This mode is not activated if CTS pin is a GPIO 2250 * because in this case, the transmitter is always 2251 * disabled (there must be an internal pull-up 2252 * responsible for this behaviour). 2253 * If the RTS pin is a GPIO, the controller won't be 2254 * able to drive it according to the FIFO thresholds, 2255 * but it will be handled by the driver. 2256 */ 2257 mode |= ATMEL_US_USMODE_HWHS; 2258 } else { 2259 /* 2260 * For platforms without FIFO, the flow control is 2261 * handled by the driver. 2262 */ 2263 mode |= ATMEL_US_USMODE_NORMAL; 2264 } 2265 } else { 2266 /* RS232 without hadware handshake */ 2267 mode |= ATMEL_US_USMODE_NORMAL; 2268 } 2269 2270 /* 2271 * Set the baud rate: 2272 * Fractional baudrate allows to setup output frequency more 2273 * accurately. This feature is enabled only when using normal mode. 2274 * baudrate = selected clock / (8 * (2 - OVER) * (CD + FP / 8)) 2275 * Currently, OVER is always set to 0 so we get 2276 * baudrate = selected clock / (16 * (CD + FP / 8)) 2277 * then 2278 * 8 CD + FP = selected clock / (2 * baudrate) 2279 */ 2280 if (atmel_port->has_frac_baudrate) { 2281 div = DIV_ROUND_CLOSEST(port->uartclk, baud * 2); 2282 cd = div >> 3; 2283 fp = div & ATMEL_US_FP_MASK; 2284 } else { 2285 cd = uart_get_divisor(port, baud); 2286 } 2287 2288 /* 2289 * If the current value of the Clock Divisor surpasses the 16 bit 2290 * ATMEL_US_CD mask and the IP is USART, switch to the Peripheral 2291 * Clock implicitly divided by 8. 2292 * If the IP is UART however, keep the highest possible value for 2293 * the CD and avoid needless division of CD, since UART IP's do not 2294 * support implicit division of the Peripheral Clock. 2295 */ 2296 if (atmel_port->is_usart && cd > ATMEL_US_CD) { 2297 cd /= 8; 2298 mode |= ATMEL_US_USCLKS_MCK_DIV8; 2299 } else { 2300 cd = min_t(unsigned int, cd, ATMEL_US_CD); 2301 } 2302 2303 /* 2304 * If there is no Fractional Part, there is a high chance that 2305 * we may be able to generate a baudrate closer to the desired one 2306 * if we use the GCLK as the clock source driving the baudrate 2307 * generator. 2308 */ 2309 if (!atmel_port->has_frac_baudrate) { 2310 if (__clk_is_enabled(atmel_port->gclk)) 2311 clk_disable_unprepare(atmel_port->gclk); 2312 gclk_rate = clk_round_rate(atmel_port->gclk, 16 * baud); 2313 actual_baud = clk_get_rate(atmel_port->clk) / (16 * cd); 2314 if (gclk_rate && abs(atmel_error_rate(baud, actual_baud)) > 2315 abs(atmel_error_rate(baud, gclk_rate / 16))) { 2316 clk_set_rate(atmel_port->gclk, 16 * baud); 2317 ret = clk_prepare_enable(atmel_port->gclk); 2318 if (ret) 2319 goto gclk_fail; 2320 2321 if (atmel_port->is_usart) { 2322 mode &= ~ATMEL_US_USCLKS; 2323 mode |= ATMEL_US_USCLKS_GCLK; 2324 } else { 2325 mode |= ATMEL_UA_BRSRCCK; 2326 } 2327 2328 /* 2329 * Set the Clock Divisor for GCLK to 1. 2330 * Since we were able to generate the smallest 2331 * multiple of the desired baudrate times 16, 2332 * then we surely can generate a bigger multiple 2333 * with the exact error rate for an equally increased 2334 * CD. Thus no need to take into account 2335 * a higher value for CD. 2336 */ 2337 cd = 1; 2338 } 2339 } 2340 2341 gclk_fail: 2342 quot = cd | fp << ATMEL_US_FP_OFFSET; 2343 2344 if (!(port->iso7816.flags & SER_ISO7816_ENABLED)) 2345 atmel_uart_writel(port, ATMEL_US_BRGR, quot); 2346 2347 /* set the mode, clock divisor, parity, stop bits and data size */ 2348 atmel_uart_writel(port, ATMEL_US_MR, mode); 2349 2350 /* 2351 * when switching the mode, set the RTS line state according to the 2352 * new mode, otherwise keep the former state 2353 */ 2354 if ((old_mode & ATMEL_US_USMODE) != (mode & ATMEL_US_USMODE)) { 2355 unsigned int rts_state; 2356 2357 if ((mode & ATMEL_US_USMODE) == ATMEL_US_USMODE_HWHS) { 2358 /* let the hardware control the RTS line */ 2359 rts_state = ATMEL_US_RTSDIS; 2360 } else { 2361 /* force RTS line to low level */ 2362 rts_state = ATMEL_US_RTSEN; 2363 } 2364 2365 atmel_uart_writel(port, ATMEL_US_CR, rts_state); 2366 } 2367 2368 atmel_uart_writel(port, ATMEL_US_CR, ATMEL_US_RSTSTA | ATMEL_US_RSTRX); 2369 atmel_uart_writel(port, ATMEL_US_CR, ATMEL_US_TXEN | ATMEL_US_RXEN); 2370 atmel_port->tx_stopped = false; 2371 2372 /* restore interrupts */ 2373 atmel_uart_writel(port, ATMEL_US_IER, imr); 2374 2375 /* CTS flow-control and modem-status interrupts */ 2376 if (UART_ENABLE_MS(port, termios->c_cflag)) 2377 atmel_enable_ms(port); 2378 else 2379 atmel_disable_ms(port); 2380 2381 spin_unlock_irqrestore(&port->lock, flags); 2382 } 2383 2384 static void atmel_set_ldisc(struct uart_port *port, struct ktermios *termios) 2385 { 2386 if (termios->c_line == N_PPS) { 2387 port->flags |= UPF_HARDPPS_CD; 2388 spin_lock_irq(&port->lock); 2389 atmel_enable_ms(port); 2390 spin_unlock_irq(&port->lock); 2391 } else { 2392 port->flags &= ~UPF_HARDPPS_CD; 2393 if (!UART_ENABLE_MS(port, termios->c_cflag)) { 2394 spin_lock_irq(&port->lock); 2395 atmel_disable_ms(port); 2396 spin_unlock_irq(&port->lock); 2397 } 2398 } 2399 } 2400 2401 /* 2402 * Return string describing the specified port 2403 */ 2404 static const char *atmel_type(struct uart_port *port) 2405 { 2406 return (port->type == PORT_ATMEL) ? "ATMEL_SERIAL" : NULL; 2407 } 2408 2409 /* 2410 * Release the memory region(s) being used by 'port'. 2411 */ 2412 static void atmel_release_port(struct uart_port *port) 2413 { 2414 struct platform_device *mpdev = to_platform_device(port->dev->parent); 2415 int size = resource_size(mpdev->resource); 2416 2417 release_mem_region(port->mapbase, size); 2418 2419 if (port->flags & UPF_IOREMAP) { 2420 iounmap(port->membase); 2421 port->membase = NULL; 2422 } 2423 } 2424 2425 /* 2426 * Request the memory region(s) being used by 'port'. 2427 */ 2428 static int atmel_request_port(struct uart_port *port) 2429 { 2430 struct platform_device *mpdev = to_platform_device(port->dev->parent); 2431 int size = resource_size(mpdev->resource); 2432 2433 if (!request_mem_region(port->mapbase, size, "atmel_serial")) 2434 return -EBUSY; 2435 2436 if (port->flags & UPF_IOREMAP) { 2437 port->membase = ioremap(port->mapbase, size); 2438 if (port->membase == NULL) { 2439 release_mem_region(port->mapbase, size); 2440 return -ENOMEM; 2441 } 2442 } 2443 2444 return 0; 2445 } 2446 2447 /* 2448 * Configure/autoconfigure the port. 2449 */ 2450 static void atmel_config_port(struct uart_port *port, int flags) 2451 { 2452 if (flags & UART_CONFIG_TYPE) { 2453 port->type = PORT_ATMEL; 2454 atmel_request_port(port); 2455 } 2456 } 2457 2458 /* 2459 * Verify the new serial_struct (for TIOCSSERIAL). 2460 */ 2461 static int atmel_verify_port(struct uart_port *port, struct serial_struct *ser) 2462 { 2463 int ret = 0; 2464 if (ser->type != PORT_UNKNOWN && ser->type != PORT_ATMEL) 2465 ret = -EINVAL; 2466 if (port->irq != ser->irq) 2467 ret = -EINVAL; 2468 if (ser->io_type != SERIAL_IO_MEM) 2469 ret = -EINVAL; 2470 if (port->uartclk / 16 != ser->baud_base) 2471 ret = -EINVAL; 2472 if (port->mapbase != (unsigned long)ser->iomem_base) 2473 ret = -EINVAL; 2474 if (port->iobase != ser->port) 2475 ret = -EINVAL; 2476 if (ser->hub6 != 0) 2477 ret = -EINVAL; 2478 return ret; 2479 } 2480 2481 #ifdef CONFIG_CONSOLE_POLL 2482 static int atmel_poll_get_char(struct uart_port *port) 2483 { 2484 while (!(atmel_uart_readl(port, ATMEL_US_CSR) & ATMEL_US_RXRDY)) 2485 cpu_relax(); 2486 2487 return atmel_uart_read_char(port); 2488 } 2489 2490 static void atmel_poll_put_char(struct uart_port *port, unsigned char ch) 2491 { 2492 while (!(atmel_uart_readl(port, ATMEL_US_CSR) & ATMEL_US_TXRDY)) 2493 cpu_relax(); 2494 2495 atmel_uart_write_char(port, ch); 2496 } 2497 #endif 2498 2499 static const struct uart_ops atmel_pops = { 2500 .tx_empty = atmel_tx_empty, 2501 .set_mctrl = atmel_set_mctrl, 2502 .get_mctrl = atmel_get_mctrl, 2503 .stop_tx = atmel_stop_tx, 2504 .start_tx = atmel_start_tx, 2505 .stop_rx = atmel_stop_rx, 2506 .enable_ms = atmel_enable_ms, 2507 .break_ctl = atmel_break_ctl, 2508 .startup = atmel_startup, 2509 .shutdown = atmel_shutdown, 2510 .flush_buffer = atmel_flush_buffer, 2511 .set_termios = atmel_set_termios, 2512 .set_ldisc = atmel_set_ldisc, 2513 .type = atmel_type, 2514 .release_port = atmel_release_port, 2515 .request_port = atmel_request_port, 2516 .config_port = atmel_config_port, 2517 .verify_port = atmel_verify_port, 2518 .pm = atmel_serial_pm, 2519 #ifdef CONFIG_CONSOLE_POLL 2520 .poll_get_char = atmel_poll_get_char, 2521 .poll_put_char = atmel_poll_put_char, 2522 #endif 2523 }; 2524 2525 static const struct serial_rs485 atmel_rs485_supported = { 2526 .flags = SER_RS485_ENABLED | SER_RS485_RTS_AFTER_SEND | SER_RS485_RX_DURING_TX, 2527 .delay_rts_before_send = 1, 2528 .delay_rts_after_send = 1, 2529 }; 2530 2531 /* 2532 * Configure the port from the platform device resource info. 2533 */ 2534 static int atmel_init_port(struct atmel_uart_port *atmel_port, 2535 struct platform_device *pdev) 2536 { 2537 int ret; 2538 struct uart_port *port = &atmel_port->uart; 2539 struct platform_device *mpdev = to_platform_device(pdev->dev.parent); 2540 2541 atmel_init_property(atmel_port, pdev); 2542 atmel_set_ops(port); 2543 2544 port->iotype = UPIO_MEM; 2545 port->flags = UPF_BOOT_AUTOCONF | UPF_IOREMAP; 2546 port->ops = &atmel_pops; 2547 port->fifosize = 1; 2548 port->dev = &pdev->dev; 2549 port->mapbase = mpdev->resource[0].start; 2550 port->irq = platform_get_irq(mpdev, 0); 2551 port->rs485_config = atmel_config_rs485; 2552 port->rs485_supported = atmel_rs485_supported; 2553 port->iso7816_config = atmel_config_iso7816; 2554 port->membase = NULL; 2555 2556 memset(&atmel_port->rx_ring, 0, sizeof(atmel_port->rx_ring)); 2557 2558 ret = uart_get_rs485_mode(port); 2559 if (ret) 2560 return ret; 2561 2562 port->uartclk = clk_get_rate(atmel_port->clk); 2563 2564 /* 2565 * Use TXEMPTY for interrupt when rs485 or ISO7816 else TXRDY or 2566 * ENDTX|TXBUFE 2567 */ 2568 if (atmel_uart_is_half_duplex(port)) 2569 atmel_port->tx_done_mask = ATMEL_US_TXEMPTY; 2570 else if (atmel_use_pdc_tx(port)) { 2571 port->fifosize = PDC_BUFFER_SIZE; 2572 atmel_port->tx_done_mask = ATMEL_US_ENDTX | ATMEL_US_TXBUFE; 2573 } else { 2574 atmel_port->tx_done_mask = ATMEL_US_TXRDY; 2575 } 2576 2577 return 0; 2578 } 2579 2580 #ifdef CONFIG_SERIAL_ATMEL_CONSOLE 2581 static void atmel_console_putchar(struct uart_port *port, unsigned char ch) 2582 { 2583 while (!(atmel_uart_readl(port, ATMEL_US_CSR) & ATMEL_US_TXRDY)) 2584 cpu_relax(); 2585 atmel_uart_write_char(port, ch); 2586 } 2587 2588 /* 2589 * Interrupts are disabled on entering 2590 */ 2591 static void atmel_console_write(struct console *co, const char *s, u_int count) 2592 { 2593 struct uart_port *port = &atmel_ports[co->index].uart; 2594 struct atmel_uart_port *atmel_port = to_atmel_uart_port(port); 2595 unsigned int status, imr; 2596 unsigned int pdc_tx; 2597 2598 /* 2599 * First, save IMR and then disable interrupts 2600 */ 2601 imr = atmel_uart_readl(port, ATMEL_US_IMR); 2602 atmel_uart_writel(port, ATMEL_US_IDR, 2603 ATMEL_US_RXRDY | atmel_port->tx_done_mask); 2604 2605 /* Store PDC transmit status and disable it */ 2606 pdc_tx = atmel_uart_readl(port, ATMEL_PDC_PTSR) & ATMEL_PDC_TXTEN; 2607 atmel_uart_writel(port, ATMEL_PDC_PTCR, ATMEL_PDC_TXTDIS); 2608 2609 /* Make sure that tx path is actually able to send characters */ 2610 atmel_uart_writel(port, ATMEL_US_CR, ATMEL_US_TXEN); 2611 atmel_port->tx_stopped = false; 2612 2613 uart_console_write(port, s, count, atmel_console_putchar); 2614 2615 /* 2616 * Finally, wait for transmitter to become empty 2617 * and restore IMR 2618 */ 2619 do { 2620 status = atmel_uart_readl(port, ATMEL_US_CSR); 2621 } while (!(status & ATMEL_US_TXRDY)); 2622 2623 /* Restore PDC transmit status */ 2624 if (pdc_tx) 2625 atmel_uart_writel(port, ATMEL_PDC_PTCR, ATMEL_PDC_TXTEN); 2626 2627 /* set interrupts back the way they were */ 2628 atmel_uart_writel(port, ATMEL_US_IER, imr); 2629 } 2630 2631 /* 2632 * If the port was already initialised (eg, by a boot loader), 2633 * try to determine the current setup. 2634 */ 2635 static void __init atmel_console_get_options(struct uart_port *port, int *baud, 2636 int *parity, int *bits) 2637 { 2638 unsigned int mr, quot; 2639 2640 /* 2641 * If the baud rate generator isn't running, the port wasn't 2642 * initialized by the boot loader. 2643 */ 2644 quot = atmel_uart_readl(port, ATMEL_US_BRGR) & ATMEL_US_CD; 2645 if (!quot) 2646 return; 2647 2648 mr = atmel_uart_readl(port, ATMEL_US_MR) & ATMEL_US_CHRL; 2649 if (mr == ATMEL_US_CHRL_8) 2650 *bits = 8; 2651 else 2652 *bits = 7; 2653 2654 mr = atmel_uart_readl(port, ATMEL_US_MR) & ATMEL_US_PAR; 2655 if (mr == ATMEL_US_PAR_EVEN) 2656 *parity = 'e'; 2657 else if (mr == ATMEL_US_PAR_ODD) 2658 *parity = 'o'; 2659 2660 *baud = port->uartclk / (16 * quot); 2661 } 2662 2663 static int __init atmel_console_setup(struct console *co, char *options) 2664 { 2665 struct uart_port *port = &atmel_ports[co->index].uart; 2666 struct atmel_uart_port *atmel_port = to_atmel_uart_port(port); 2667 int baud = 115200; 2668 int bits = 8; 2669 int parity = 'n'; 2670 int flow = 'n'; 2671 2672 if (port->membase == NULL) { 2673 /* Port not initialized yet - delay setup */ 2674 return -ENODEV; 2675 } 2676 2677 atmel_uart_writel(port, ATMEL_US_IDR, -1); 2678 atmel_uart_writel(port, ATMEL_US_CR, ATMEL_US_RSTSTA | ATMEL_US_RSTRX); 2679 atmel_uart_writel(port, ATMEL_US_CR, ATMEL_US_TXEN | ATMEL_US_RXEN); 2680 atmel_port->tx_stopped = false; 2681 2682 if (options) 2683 uart_parse_options(options, &baud, &parity, &bits, &flow); 2684 else 2685 atmel_console_get_options(port, &baud, &parity, &bits); 2686 2687 return uart_set_options(port, co, baud, parity, bits, flow); 2688 } 2689 2690 static struct uart_driver atmel_uart; 2691 2692 static struct console atmel_console = { 2693 .name = ATMEL_DEVICENAME, 2694 .write = atmel_console_write, 2695 .device = uart_console_device, 2696 .setup = atmel_console_setup, 2697 .flags = CON_PRINTBUFFER, 2698 .index = -1, 2699 .data = &atmel_uart, 2700 }; 2701 2702 static void atmel_serial_early_write(struct console *con, const char *s, 2703 unsigned int n) 2704 { 2705 struct earlycon_device *dev = con->data; 2706 2707 uart_console_write(&dev->port, s, n, atmel_console_putchar); 2708 } 2709 2710 static int __init atmel_early_console_setup(struct earlycon_device *device, 2711 const char *options) 2712 { 2713 if (!device->port.membase) 2714 return -ENODEV; 2715 2716 device->con->write = atmel_serial_early_write; 2717 2718 return 0; 2719 } 2720 2721 OF_EARLYCON_DECLARE(atmel_serial, "atmel,at91rm9200-usart", 2722 atmel_early_console_setup); 2723 OF_EARLYCON_DECLARE(atmel_serial, "atmel,at91sam9260-usart", 2724 atmel_early_console_setup); 2725 2726 #define ATMEL_CONSOLE_DEVICE (&atmel_console) 2727 2728 #else 2729 #define ATMEL_CONSOLE_DEVICE NULL 2730 #endif 2731 2732 static struct uart_driver atmel_uart = { 2733 .owner = THIS_MODULE, 2734 .driver_name = "atmel_serial", 2735 .dev_name = ATMEL_DEVICENAME, 2736 .major = SERIAL_ATMEL_MAJOR, 2737 .minor = MINOR_START, 2738 .nr = ATMEL_MAX_UART, 2739 .cons = ATMEL_CONSOLE_DEVICE, 2740 }; 2741 2742 static bool atmel_serial_clk_will_stop(void) 2743 { 2744 #ifdef CONFIG_ARCH_AT91 2745 return at91_suspend_entering_slow_clock(); 2746 #else 2747 return false; 2748 #endif 2749 } 2750 2751 static int __maybe_unused atmel_serial_suspend(struct device *dev) 2752 { 2753 struct uart_port *port = dev_get_drvdata(dev); 2754 struct atmel_uart_port *atmel_port = to_atmel_uart_port(port); 2755 2756 if (uart_console(port) && console_suspend_enabled) { 2757 /* Drain the TX shifter */ 2758 while (!(atmel_uart_readl(port, ATMEL_US_CSR) & 2759 ATMEL_US_TXEMPTY)) 2760 cpu_relax(); 2761 } 2762 2763 if (uart_console(port) && !console_suspend_enabled) { 2764 /* Cache register values as we won't get a full shutdown/startup 2765 * cycle 2766 */ 2767 atmel_port->cache.mr = atmel_uart_readl(port, ATMEL_US_MR); 2768 atmel_port->cache.imr = atmel_uart_readl(port, ATMEL_US_IMR); 2769 atmel_port->cache.brgr = atmel_uart_readl(port, ATMEL_US_BRGR); 2770 atmel_port->cache.rtor = atmel_uart_readl(port, 2771 atmel_port->rtor); 2772 atmel_port->cache.ttgr = atmel_uart_readl(port, ATMEL_US_TTGR); 2773 atmel_port->cache.fmr = atmel_uart_readl(port, ATMEL_US_FMR); 2774 atmel_port->cache.fimr = atmel_uart_readl(port, ATMEL_US_FIMR); 2775 } 2776 2777 /* we can not wake up if we're running on slow clock */ 2778 atmel_port->may_wakeup = device_may_wakeup(dev); 2779 if (atmel_serial_clk_will_stop()) { 2780 unsigned long flags; 2781 2782 spin_lock_irqsave(&atmel_port->lock_suspended, flags); 2783 atmel_port->suspended = true; 2784 spin_unlock_irqrestore(&atmel_port->lock_suspended, flags); 2785 device_set_wakeup_enable(dev, 0); 2786 } 2787 2788 uart_suspend_port(&atmel_uart, port); 2789 2790 return 0; 2791 } 2792 2793 static int __maybe_unused atmel_serial_resume(struct device *dev) 2794 { 2795 struct uart_port *port = dev_get_drvdata(dev); 2796 struct atmel_uart_port *atmel_port = to_atmel_uart_port(port); 2797 unsigned long flags; 2798 2799 if (uart_console(port) && !console_suspend_enabled) { 2800 atmel_uart_writel(port, ATMEL_US_MR, atmel_port->cache.mr); 2801 atmel_uart_writel(port, ATMEL_US_IER, atmel_port->cache.imr); 2802 atmel_uart_writel(port, ATMEL_US_BRGR, atmel_port->cache.brgr); 2803 atmel_uart_writel(port, atmel_port->rtor, 2804 atmel_port->cache.rtor); 2805 atmel_uart_writel(port, ATMEL_US_TTGR, atmel_port->cache.ttgr); 2806 2807 if (atmel_port->fifo_size) { 2808 atmel_uart_writel(port, ATMEL_US_CR, ATMEL_US_FIFOEN | 2809 ATMEL_US_RXFCLR | ATMEL_US_TXFLCLR); 2810 atmel_uart_writel(port, ATMEL_US_FMR, 2811 atmel_port->cache.fmr); 2812 atmel_uart_writel(port, ATMEL_US_FIER, 2813 atmel_port->cache.fimr); 2814 } 2815 atmel_start_rx(port); 2816 } 2817 2818 spin_lock_irqsave(&atmel_port->lock_suspended, flags); 2819 if (atmel_port->pending) { 2820 atmel_handle_receive(port, atmel_port->pending); 2821 atmel_handle_status(port, atmel_port->pending, 2822 atmel_port->pending_status); 2823 atmel_handle_transmit(port, atmel_port->pending); 2824 atmel_port->pending = 0; 2825 } 2826 atmel_port->suspended = false; 2827 spin_unlock_irqrestore(&atmel_port->lock_suspended, flags); 2828 2829 uart_resume_port(&atmel_uart, port); 2830 device_set_wakeup_enable(dev, atmel_port->may_wakeup); 2831 2832 return 0; 2833 } 2834 2835 static void atmel_serial_probe_fifos(struct atmel_uart_port *atmel_port, 2836 struct platform_device *pdev) 2837 { 2838 atmel_port->fifo_size = 0; 2839 atmel_port->rts_low = 0; 2840 atmel_port->rts_high = 0; 2841 2842 if (of_property_read_u32(pdev->dev.of_node, 2843 "atmel,fifo-size", 2844 &atmel_port->fifo_size)) 2845 return; 2846 2847 if (!atmel_port->fifo_size) 2848 return; 2849 2850 if (atmel_port->fifo_size < ATMEL_MIN_FIFO_SIZE) { 2851 atmel_port->fifo_size = 0; 2852 dev_err(&pdev->dev, "Invalid FIFO size\n"); 2853 return; 2854 } 2855 2856 /* 2857 * 0 <= rts_low <= rts_high <= fifo_size 2858 * Once their CTS line asserted by the remote peer, some x86 UARTs tend 2859 * to flush their internal TX FIFO, commonly up to 16 data, before 2860 * actually stopping to send new data. So we try to set the RTS High 2861 * Threshold to a reasonably high value respecting this 16 data 2862 * empirical rule when possible. 2863 */ 2864 atmel_port->rts_high = max_t(int, atmel_port->fifo_size >> 1, 2865 atmel_port->fifo_size - ATMEL_RTS_HIGH_OFFSET); 2866 atmel_port->rts_low = max_t(int, atmel_port->fifo_size >> 2, 2867 atmel_port->fifo_size - ATMEL_RTS_LOW_OFFSET); 2868 2869 dev_info(&pdev->dev, "Using FIFO (%u data)\n", 2870 atmel_port->fifo_size); 2871 dev_dbg(&pdev->dev, "RTS High Threshold : %2u data\n", 2872 atmel_port->rts_high); 2873 dev_dbg(&pdev->dev, "RTS Low Threshold : %2u data\n", 2874 atmel_port->rts_low); 2875 } 2876 2877 static int atmel_serial_probe(struct platform_device *pdev) 2878 { 2879 struct atmel_uart_port *atmel_port; 2880 struct device_node *np = pdev->dev.parent->of_node; 2881 void *data; 2882 int ret; 2883 bool rs485_enabled; 2884 2885 BUILD_BUG_ON(ATMEL_SERIAL_RINGSIZE & (ATMEL_SERIAL_RINGSIZE - 1)); 2886 2887 /* 2888 * In device tree there is no node with "atmel,at91rm9200-usart-serial" 2889 * as compatible string. This driver is probed by at91-usart mfd driver 2890 * which is just a wrapper over the atmel_serial driver and 2891 * spi-at91-usart driver. All attributes needed by this driver are 2892 * found in of_node of parent. 2893 */ 2894 pdev->dev.of_node = np; 2895 2896 ret = of_alias_get_id(np, "serial"); 2897 if (ret < 0) 2898 /* port id not found in platform data nor device-tree aliases: 2899 * auto-enumerate it */ 2900 ret = find_first_zero_bit(atmel_ports_in_use, ATMEL_MAX_UART); 2901 2902 if (ret >= ATMEL_MAX_UART) { 2903 ret = -ENODEV; 2904 goto err; 2905 } 2906 2907 if (test_and_set_bit(ret, atmel_ports_in_use)) { 2908 /* port already in use */ 2909 ret = -EBUSY; 2910 goto err; 2911 } 2912 2913 atmel_port = &atmel_ports[ret]; 2914 atmel_port->backup_imr = 0; 2915 atmel_port->uart.line = ret; 2916 atmel_port->uart.has_sysrq = IS_ENABLED(CONFIG_SERIAL_ATMEL_CONSOLE); 2917 atmel_serial_probe_fifos(atmel_port, pdev); 2918 2919 atomic_set(&atmel_port->tasklet_shutdown, 0); 2920 spin_lock_init(&atmel_port->lock_suspended); 2921 2922 atmel_port->clk = devm_clk_get(&pdev->dev, "usart"); 2923 if (IS_ERR(atmel_port->clk)) { 2924 ret = PTR_ERR(atmel_port->clk); 2925 goto err; 2926 } 2927 ret = clk_prepare_enable(atmel_port->clk); 2928 if (ret) 2929 goto err; 2930 2931 atmel_port->gclk = devm_clk_get_optional(&pdev->dev, "gclk"); 2932 if (IS_ERR(atmel_port->gclk)) { 2933 ret = PTR_ERR(atmel_port->gclk); 2934 goto err_clk_disable_unprepare; 2935 } 2936 2937 ret = atmel_init_port(atmel_port, pdev); 2938 if (ret) 2939 goto err_clk_disable_unprepare; 2940 2941 atmel_port->gpios = mctrl_gpio_init(&atmel_port->uart, 0); 2942 if (IS_ERR(atmel_port->gpios)) { 2943 ret = PTR_ERR(atmel_port->gpios); 2944 goto err_clk_disable_unprepare; 2945 } 2946 2947 if (!atmel_use_pdc_rx(&atmel_port->uart)) { 2948 ret = -ENOMEM; 2949 data = kmalloc_array(ATMEL_SERIAL_RINGSIZE, 2950 sizeof(struct atmel_uart_char), 2951 GFP_KERNEL); 2952 if (!data) 2953 goto err_clk_disable_unprepare; 2954 atmel_port->rx_ring.buf = data; 2955 } 2956 2957 rs485_enabled = atmel_port->uart.rs485.flags & SER_RS485_ENABLED; 2958 2959 ret = uart_add_one_port(&atmel_uart, &atmel_port->uart); 2960 if (ret) 2961 goto err_add_port; 2962 2963 device_init_wakeup(&pdev->dev, 1); 2964 platform_set_drvdata(pdev, atmel_port); 2965 2966 if (rs485_enabled) { 2967 atmel_uart_writel(&atmel_port->uart, ATMEL_US_MR, 2968 ATMEL_US_USMODE_NORMAL); 2969 atmel_uart_writel(&atmel_port->uart, ATMEL_US_CR, 2970 ATMEL_US_RTSEN); 2971 } 2972 2973 /* 2974 * Get port name of usart or uart 2975 */ 2976 atmel_get_ip_name(&atmel_port->uart); 2977 2978 /* 2979 * The peripheral clock can now safely be disabled till the port 2980 * is used 2981 */ 2982 clk_disable_unprepare(atmel_port->clk); 2983 2984 return 0; 2985 2986 err_add_port: 2987 kfree(atmel_port->rx_ring.buf); 2988 atmel_port->rx_ring.buf = NULL; 2989 err_clk_disable_unprepare: 2990 clk_disable_unprepare(atmel_port->clk); 2991 clear_bit(atmel_port->uart.line, atmel_ports_in_use); 2992 err: 2993 return ret; 2994 } 2995 2996 /* 2997 * Even if the driver is not modular, it makes sense to be able to 2998 * unbind a device: there can be many bound devices, and there are 2999 * situations where dynamic binding and unbinding can be useful. 3000 * 3001 * For example, a connected device can require a specific firmware update 3002 * protocol that needs bitbanging on IO lines, but use the regular serial 3003 * port in the normal case. 3004 */ 3005 static int atmel_serial_remove(struct platform_device *pdev) 3006 { 3007 struct uart_port *port = platform_get_drvdata(pdev); 3008 struct atmel_uart_port *atmel_port = to_atmel_uart_port(port); 3009 int ret = 0; 3010 3011 tasklet_kill(&atmel_port->tasklet_rx); 3012 tasklet_kill(&atmel_port->tasklet_tx); 3013 3014 device_init_wakeup(&pdev->dev, 0); 3015 3016 ret = uart_remove_one_port(&atmel_uart, port); 3017 3018 kfree(atmel_port->rx_ring.buf); 3019 3020 /* "port" is allocated statically, so we shouldn't free it */ 3021 3022 clear_bit(port->line, atmel_ports_in_use); 3023 3024 pdev->dev.of_node = NULL; 3025 3026 return ret; 3027 } 3028 3029 static SIMPLE_DEV_PM_OPS(atmel_serial_pm_ops, atmel_serial_suspend, 3030 atmel_serial_resume); 3031 3032 static struct platform_driver atmel_serial_driver = { 3033 .probe = atmel_serial_probe, 3034 .remove = atmel_serial_remove, 3035 .driver = { 3036 .name = "atmel_usart_serial", 3037 .of_match_table = of_match_ptr(atmel_serial_dt_ids), 3038 .pm = pm_ptr(&atmel_serial_pm_ops), 3039 }, 3040 }; 3041 3042 static int __init atmel_serial_init(void) 3043 { 3044 int ret; 3045 3046 ret = uart_register_driver(&atmel_uart); 3047 if (ret) 3048 return ret; 3049 3050 ret = platform_driver_register(&atmel_serial_driver); 3051 if (ret) 3052 uart_unregister_driver(&atmel_uart); 3053 3054 return ret; 3055 } 3056 device_initcall(atmel_serial_init); 3057