1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Driver for Atmel AT91 Serial ports 4 * Copyright (C) 2003 Rick Bronson 5 * 6 * Based on drivers/char/serial_sa1100.c, by Deep Blue Solutions Ltd. 7 * Based on drivers/char/serial.c, by Linus Torvalds, Theodore Ts'o. 8 * 9 * DMA support added by Chip Coldwell. 10 */ 11 #include <linux/circ_buf.h> 12 #include <linux/tty.h> 13 #include <linux/ioport.h> 14 #include <linux/slab.h> 15 #include <linux/init.h> 16 #include <linux/serial.h> 17 #include <linux/clk.h> 18 #include <linux/clk-provider.h> 19 #include <linux/console.h> 20 #include <linux/sysrq.h> 21 #include <linux/tty_flip.h> 22 #include <linux/platform_device.h> 23 #include <linux/of.h> 24 #include <linux/dma-mapping.h> 25 #include <linux/dmaengine.h> 26 #include <linux/atmel_pdc.h> 27 #include <linux/uaccess.h> 28 #include <linux/platform_data/atmel.h> 29 #include <linux/timer.h> 30 #include <linux/err.h> 31 #include <linux/irq.h> 32 #include <linux/suspend.h> 33 #include <linux/mm.h> 34 #include <linux/io.h> 35 36 #include <asm/div64.h> 37 #include <asm/ioctls.h> 38 39 #define PDC_BUFFER_SIZE 512 40 /* Revisit: We should calculate this based on the actual port settings */ 41 #define PDC_RX_TIMEOUT (3 * 10) /* 3 bytes */ 42 43 /* The minium number of data FIFOs should be able to contain */ 44 #define ATMEL_MIN_FIFO_SIZE 8 45 /* 46 * These two offsets are substracted from the RX FIFO size to define the RTS 47 * high and low thresholds 48 */ 49 #define ATMEL_RTS_HIGH_OFFSET 16 50 #define ATMEL_RTS_LOW_OFFSET 20 51 52 #include <linux/serial_core.h> 53 54 #include "serial_mctrl_gpio.h" 55 #include "atmel_serial.h" 56 57 static void atmel_start_rx(struct uart_port *port); 58 static void atmel_stop_rx(struct uart_port *port); 59 60 #ifdef CONFIG_SERIAL_ATMEL_TTYAT 61 62 /* Use device name ttyAT, major 204 and minor 154-169. This is necessary if we 63 * should coexist with the 8250 driver, such as if we have an external 16C550 64 * UART. */ 65 #define SERIAL_ATMEL_MAJOR 204 66 #define MINOR_START 154 67 #define ATMEL_DEVICENAME "ttyAT" 68 69 #else 70 71 /* Use device name ttyS, major 4, minor 64-68. This is the usual serial port 72 * name, but it is legally reserved for the 8250 driver. */ 73 #define SERIAL_ATMEL_MAJOR TTY_MAJOR 74 #define MINOR_START 64 75 #define ATMEL_DEVICENAME "ttyS" 76 77 #endif 78 79 #define ATMEL_ISR_PASS_LIMIT 256 80 81 struct atmel_dma_buffer { 82 unsigned char *buf; 83 dma_addr_t dma_addr; 84 unsigned int dma_size; 85 unsigned int ofs; 86 }; 87 88 struct atmel_uart_char { 89 u16 status; 90 u16 ch; 91 }; 92 93 /* 94 * Be careful, the real size of the ring buffer is 95 * sizeof(atmel_uart_char) * ATMEL_SERIAL_RINGSIZE. It means that ring buffer 96 * can contain up to 1024 characters in PIO mode and up to 4096 characters in 97 * DMA mode. 98 */ 99 #define ATMEL_SERIAL_RINGSIZE 1024 100 101 /* 102 * at91: 6 USARTs and one DBGU port (SAM9260) 103 * samx7: 3 USARTs and 5 UARTs 104 */ 105 #define ATMEL_MAX_UART 8 106 107 /* 108 * We wrap our port structure around the generic uart_port. 109 */ 110 struct atmel_uart_port { 111 struct uart_port uart; /* uart */ 112 struct clk *clk; /* uart clock */ 113 struct clk *gclk; /* uart generic clock */ 114 int may_wakeup; /* cached value of device_may_wakeup for times we need to disable it */ 115 u32 backup_imr; /* IMR saved during suspend */ 116 int break_active; /* break being received */ 117 118 bool use_dma_rx; /* enable DMA receiver */ 119 bool use_pdc_rx; /* enable PDC receiver */ 120 short pdc_rx_idx; /* current PDC RX buffer */ 121 struct atmel_dma_buffer pdc_rx[2]; /* PDC receier */ 122 123 bool use_dma_tx; /* enable DMA transmitter */ 124 bool use_pdc_tx; /* enable PDC transmitter */ 125 struct atmel_dma_buffer pdc_tx; /* PDC transmitter */ 126 127 spinlock_t lock_tx; /* port lock */ 128 spinlock_t lock_rx; /* port lock */ 129 struct dma_chan *chan_tx; 130 struct dma_chan *chan_rx; 131 struct dma_async_tx_descriptor *desc_tx; 132 struct dma_async_tx_descriptor *desc_rx; 133 dma_cookie_t cookie_tx; 134 dma_cookie_t cookie_rx; 135 struct scatterlist sg_tx; 136 struct scatterlist sg_rx; 137 struct tasklet_struct tasklet_rx; 138 struct tasklet_struct tasklet_tx; 139 atomic_t tasklet_shutdown; 140 unsigned int irq_status_prev; 141 unsigned int tx_len; 142 143 struct circ_buf rx_ring; 144 145 struct mctrl_gpios *gpios; 146 u32 backup_mode; /* MR saved during iso7816 operations */ 147 u32 backup_brgr; /* BRGR saved during iso7816 operations */ 148 unsigned int tx_done_mask; 149 u32 fifo_size; 150 u32 rts_high; 151 u32 rts_low; 152 bool ms_irq_enabled; 153 u32 rtor; /* address of receiver timeout register if it exists */ 154 bool is_usart; 155 bool has_frac_baudrate; 156 bool has_hw_timer; 157 struct timer_list uart_timer; 158 159 bool tx_stopped; 160 bool suspended; 161 unsigned int pending; 162 unsigned int pending_status; 163 spinlock_t lock_suspended; 164 165 bool hd_start_rx; /* can start RX during half-duplex operation */ 166 167 /* ISO7816 */ 168 unsigned int fidi_min; 169 unsigned int fidi_max; 170 171 struct { 172 u32 cr; 173 u32 mr; 174 u32 imr; 175 u32 brgr; 176 u32 rtor; 177 u32 ttgr; 178 u32 fmr; 179 u32 fimr; 180 } cache; 181 182 int (*prepare_rx)(struct uart_port *port); 183 int (*prepare_tx)(struct uart_port *port); 184 void (*schedule_rx)(struct uart_port *port); 185 void (*schedule_tx)(struct uart_port *port); 186 void (*release_rx)(struct uart_port *port); 187 void (*release_tx)(struct uart_port *port); 188 }; 189 190 static struct atmel_uart_port atmel_ports[ATMEL_MAX_UART]; 191 static DECLARE_BITMAP(atmel_ports_in_use, ATMEL_MAX_UART); 192 193 #if defined(CONFIG_OF) 194 static const struct of_device_id atmel_serial_dt_ids[] = { 195 { .compatible = "atmel,at91rm9200-usart-serial" }, 196 { /* sentinel */ } 197 }; 198 #endif 199 200 static inline struct atmel_uart_port * 201 to_atmel_uart_port(struct uart_port *uart) 202 { 203 return container_of(uart, struct atmel_uart_port, uart); 204 } 205 206 static inline u32 atmel_uart_readl(struct uart_port *port, u32 reg) 207 { 208 return __raw_readl(port->membase + reg); 209 } 210 211 static inline void atmel_uart_writel(struct uart_port *port, u32 reg, u32 value) 212 { 213 __raw_writel(value, port->membase + reg); 214 } 215 216 static inline u8 atmel_uart_read_char(struct uart_port *port) 217 { 218 return __raw_readb(port->membase + ATMEL_US_RHR); 219 } 220 221 static inline void atmel_uart_write_char(struct uart_port *port, u8 value) 222 { 223 __raw_writeb(value, port->membase + ATMEL_US_THR); 224 } 225 226 static inline int atmel_uart_is_half_duplex(struct uart_port *port) 227 { 228 return ((port->rs485.flags & SER_RS485_ENABLED) && 229 !(port->rs485.flags & SER_RS485_RX_DURING_TX)) || 230 (port->iso7816.flags & SER_ISO7816_ENABLED); 231 } 232 233 static inline int atmel_error_rate(int desired_value, int actual_value) 234 { 235 return 100 - (desired_value * 100) / actual_value; 236 } 237 238 #ifdef CONFIG_SERIAL_ATMEL_PDC 239 static bool atmel_use_pdc_rx(struct uart_port *port) 240 { 241 struct atmel_uart_port *atmel_port = to_atmel_uart_port(port); 242 243 return atmel_port->use_pdc_rx; 244 } 245 246 static bool atmel_use_pdc_tx(struct uart_port *port) 247 { 248 struct atmel_uart_port *atmel_port = to_atmel_uart_port(port); 249 250 return atmel_port->use_pdc_tx; 251 } 252 #else 253 static bool atmel_use_pdc_rx(struct uart_port *port) 254 { 255 return false; 256 } 257 258 static bool atmel_use_pdc_tx(struct uart_port *port) 259 { 260 return false; 261 } 262 #endif 263 264 static bool atmel_use_dma_tx(struct uart_port *port) 265 { 266 struct atmel_uart_port *atmel_port = to_atmel_uart_port(port); 267 268 return atmel_port->use_dma_tx; 269 } 270 271 static bool atmel_use_dma_rx(struct uart_port *port) 272 { 273 struct atmel_uart_port *atmel_port = to_atmel_uart_port(port); 274 275 return atmel_port->use_dma_rx; 276 } 277 278 static bool atmel_use_fifo(struct uart_port *port) 279 { 280 struct atmel_uart_port *atmel_port = to_atmel_uart_port(port); 281 282 return atmel_port->fifo_size; 283 } 284 285 static void atmel_tasklet_schedule(struct atmel_uart_port *atmel_port, 286 struct tasklet_struct *t) 287 { 288 if (!atomic_read(&atmel_port->tasklet_shutdown)) 289 tasklet_schedule(t); 290 } 291 292 /* Enable or disable the rs485 support */ 293 static int atmel_config_rs485(struct uart_port *port, struct ktermios *termios, 294 struct serial_rs485 *rs485conf) 295 { 296 struct atmel_uart_port *atmel_port = to_atmel_uart_port(port); 297 unsigned int mode; 298 299 /* Disable interrupts */ 300 atmel_uart_writel(port, ATMEL_US_IDR, atmel_port->tx_done_mask); 301 302 mode = atmel_uart_readl(port, ATMEL_US_MR); 303 304 if (rs485conf->flags & SER_RS485_ENABLED) { 305 dev_dbg(port->dev, "Setting UART to RS485\n"); 306 if (rs485conf->flags & SER_RS485_RX_DURING_TX) 307 atmel_port->tx_done_mask = ATMEL_US_TXRDY; 308 else 309 atmel_port->tx_done_mask = ATMEL_US_TXEMPTY; 310 311 atmel_uart_writel(port, ATMEL_US_TTGR, 312 rs485conf->delay_rts_after_send); 313 mode &= ~ATMEL_US_USMODE; 314 mode |= ATMEL_US_USMODE_RS485; 315 } else { 316 dev_dbg(port->dev, "Setting UART to RS232\n"); 317 if (atmel_use_pdc_tx(port)) 318 atmel_port->tx_done_mask = ATMEL_US_ENDTX | 319 ATMEL_US_TXBUFE; 320 else 321 atmel_port->tx_done_mask = ATMEL_US_TXRDY; 322 } 323 atmel_uart_writel(port, ATMEL_US_MR, mode); 324 325 /* Enable interrupts */ 326 atmel_uart_writel(port, ATMEL_US_IER, atmel_port->tx_done_mask); 327 328 return 0; 329 } 330 331 static unsigned int atmel_calc_cd(struct uart_port *port, 332 struct serial_iso7816 *iso7816conf) 333 { 334 struct atmel_uart_port *atmel_port = to_atmel_uart_port(port); 335 unsigned int cd; 336 u64 mck_rate; 337 338 mck_rate = (u64)clk_get_rate(atmel_port->clk); 339 do_div(mck_rate, iso7816conf->clk); 340 cd = mck_rate; 341 return cd; 342 } 343 344 static unsigned int atmel_calc_fidi(struct uart_port *port, 345 struct serial_iso7816 *iso7816conf) 346 { 347 u64 fidi = 0; 348 349 if (iso7816conf->sc_fi && iso7816conf->sc_di) { 350 fidi = (u64)iso7816conf->sc_fi; 351 do_div(fidi, iso7816conf->sc_di); 352 } 353 return (u32)fidi; 354 } 355 356 /* Enable or disable the iso7816 support */ 357 /* Called with interrupts disabled */ 358 static int atmel_config_iso7816(struct uart_port *port, 359 struct serial_iso7816 *iso7816conf) 360 { 361 struct atmel_uart_port *atmel_port = to_atmel_uart_port(port); 362 unsigned int mode; 363 unsigned int cd, fidi; 364 int ret = 0; 365 366 /* Disable interrupts */ 367 atmel_uart_writel(port, ATMEL_US_IDR, atmel_port->tx_done_mask); 368 369 mode = atmel_uart_readl(port, ATMEL_US_MR); 370 371 if (iso7816conf->flags & SER_ISO7816_ENABLED) { 372 mode &= ~ATMEL_US_USMODE; 373 374 if (iso7816conf->tg > 255) { 375 dev_err(port->dev, "ISO7816: Timeguard exceeding 255\n"); 376 memset(iso7816conf, 0, sizeof(struct serial_iso7816)); 377 ret = -EINVAL; 378 goto err_out; 379 } 380 381 if ((iso7816conf->flags & SER_ISO7816_T_PARAM) 382 == SER_ISO7816_T(0)) { 383 mode |= ATMEL_US_USMODE_ISO7816_T0 | ATMEL_US_DSNACK; 384 } else if ((iso7816conf->flags & SER_ISO7816_T_PARAM) 385 == SER_ISO7816_T(1)) { 386 mode |= ATMEL_US_USMODE_ISO7816_T1 | ATMEL_US_INACK; 387 } else { 388 dev_err(port->dev, "ISO7816: Type not supported\n"); 389 memset(iso7816conf, 0, sizeof(struct serial_iso7816)); 390 ret = -EINVAL; 391 goto err_out; 392 } 393 394 mode &= ~(ATMEL_US_USCLKS | ATMEL_US_NBSTOP | ATMEL_US_PAR); 395 396 /* select mck clock, and output */ 397 mode |= ATMEL_US_USCLKS_MCK | ATMEL_US_CLKO; 398 /* set parity for normal/inverse mode + max iterations */ 399 mode |= ATMEL_US_PAR_EVEN | ATMEL_US_NBSTOP_1 | ATMEL_US_MAX_ITER(3); 400 401 cd = atmel_calc_cd(port, iso7816conf); 402 fidi = atmel_calc_fidi(port, iso7816conf); 403 if (fidi == 0) { 404 dev_warn(port->dev, "ISO7816 fidi = 0, Generator generates no signal\n"); 405 } else if (fidi < atmel_port->fidi_min 406 || fidi > atmel_port->fidi_max) { 407 dev_err(port->dev, "ISO7816 fidi = %u, value not supported\n", fidi); 408 memset(iso7816conf, 0, sizeof(struct serial_iso7816)); 409 ret = -EINVAL; 410 goto err_out; 411 } 412 413 if (!(port->iso7816.flags & SER_ISO7816_ENABLED)) { 414 /* port not yet in iso7816 mode: store configuration */ 415 atmel_port->backup_mode = atmel_uart_readl(port, ATMEL_US_MR); 416 atmel_port->backup_brgr = atmel_uart_readl(port, ATMEL_US_BRGR); 417 } 418 419 atmel_uart_writel(port, ATMEL_US_TTGR, iso7816conf->tg); 420 atmel_uart_writel(port, ATMEL_US_BRGR, cd); 421 atmel_uart_writel(port, ATMEL_US_FIDI, fidi); 422 423 atmel_uart_writel(port, ATMEL_US_CR, ATMEL_US_TXDIS | ATMEL_US_RXEN); 424 atmel_port->tx_done_mask = ATMEL_US_TXEMPTY | ATMEL_US_NACK | ATMEL_US_ITERATION; 425 } else { 426 dev_dbg(port->dev, "Setting UART back to RS232\n"); 427 /* back to last RS232 settings */ 428 mode = atmel_port->backup_mode; 429 memset(iso7816conf, 0, sizeof(struct serial_iso7816)); 430 atmel_uart_writel(port, ATMEL_US_TTGR, 0); 431 atmel_uart_writel(port, ATMEL_US_BRGR, atmel_port->backup_brgr); 432 atmel_uart_writel(port, ATMEL_US_FIDI, 0x174); 433 434 if (atmel_use_pdc_tx(port)) 435 atmel_port->tx_done_mask = ATMEL_US_ENDTX | 436 ATMEL_US_TXBUFE; 437 else 438 atmel_port->tx_done_mask = ATMEL_US_TXRDY; 439 } 440 441 port->iso7816 = *iso7816conf; 442 443 atmel_uart_writel(port, ATMEL_US_MR, mode); 444 445 err_out: 446 /* Enable interrupts */ 447 atmel_uart_writel(port, ATMEL_US_IER, atmel_port->tx_done_mask); 448 449 return ret; 450 } 451 452 /* 453 * Return TIOCSER_TEMT when transmitter FIFO and Shift register is empty. 454 */ 455 static u_int atmel_tx_empty(struct uart_port *port) 456 { 457 struct atmel_uart_port *atmel_port = to_atmel_uart_port(port); 458 459 if (atmel_port->tx_stopped) 460 return TIOCSER_TEMT; 461 return (atmel_uart_readl(port, ATMEL_US_CSR) & ATMEL_US_TXEMPTY) ? 462 TIOCSER_TEMT : 463 0; 464 } 465 466 /* 467 * Set state of the modem control output lines 468 */ 469 static void atmel_set_mctrl(struct uart_port *port, u_int mctrl) 470 { 471 unsigned int control = 0; 472 unsigned int mode = atmel_uart_readl(port, ATMEL_US_MR); 473 unsigned int rts_paused, rts_ready; 474 struct atmel_uart_port *atmel_port = to_atmel_uart_port(port); 475 476 /* override mode to RS485 if needed, otherwise keep the current mode */ 477 if (port->rs485.flags & SER_RS485_ENABLED) { 478 atmel_uart_writel(port, ATMEL_US_TTGR, 479 port->rs485.delay_rts_after_send); 480 mode &= ~ATMEL_US_USMODE; 481 mode |= ATMEL_US_USMODE_RS485; 482 } 483 484 /* set the RTS line state according to the mode */ 485 if ((mode & ATMEL_US_USMODE) == ATMEL_US_USMODE_HWHS) { 486 /* force RTS line to high level */ 487 rts_paused = ATMEL_US_RTSEN; 488 489 /* give the control of the RTS line back to the hardware */ 490 rts_ready = ATMEL_US_RTSDIS; 491 } else { 492 /* force RTS line to high level */ 493 rts_paused = ATMEL_US_RTSDIS; 494 495 /* force RTS line to low level */ 496 rts_ready = ATMEL_US_RTSEN; 497 } 498 499 if (mctrl & TIOCM_RTS) 500 control |= rts_ready; 501 else 502 control |= rts_paused; 503 504 if (mctrl & TIOCM_DTR) 505 control |= ATMEL_US_DTREN; 506 else 507 control |= ATMEL_US_DTRDIS; 508 509 atmel_uart_writel(port, ATMEL_US_CR, control); 510 511 mctrl_gpio_set(atmel_port->gpios, mctrl); 512 513 /* Local loopback mode? */ 514 mode &= ~ATMEL_US_CHMODE; 515 if (mctrl & TIOCM_LOOP) 516 mode |= ATMEL_US_CHMODE_LOC_LOOP; 517 else 518 mode |= ATMEL_US_CHMODE_NORMAL; 519 520 atmel_uart_writel(port, ATMEL_US_MR, mode); 521 } 522 523 /* 524 * Get state of the modem control input lines 525 */ 526 static u_int atmel_get_mctrl(struct uart_port *port) 527 { 528 struct atmel_uart_port *atmel_port = to_atmel_uart_port(port); 529 unsigned int ret = 0, status; 530 531 status = atmel_uart_readl(port, ATMEL_US_CSR); 532 533 /* 534 * The control signals are active low. 535 */ 536 if (!(status & ATMEL_US_DCD)) 537 ret |= TIOCM_CD; 538 if (!(status & ATMEL_US_CTS)) 539 ret |= TIOCM_CTS; 540 if (!(status & ATMEL_US_DSR)) 541 ret |= TIOCM_DSR; 542 if (!(status & ATMEL_US_RI)) 543 ret |= TIOCM_RI; 544 545 return mctrl_gpio_get(atmel_port->gpios, &ret); 546 } 547 548 /* 549 * Stop transmitting. 550 */ 551 static void atmel_stop_tx(struct uart_port *port) 552 { 553 struct atmel_uart_port *atmel_port = to_atmel_uart_port(port); 554 bool is_pdc = atmel_use_pdc_tx(port); 555 bool is_dma = is_pdc || atmel_use_dma_tx(port); 556 557 if (is_pdc) { 558 /* disable PDC transmit */ 559 atmel_uart_writel(port, ATMEL_PDC_PTCR, ATMEL_PDC_TXTDIS); 560 } 561 562 if (is_dma) { 563 /* 564 * Disable the transmitter. 565 * This is mandatory when DMA is used, otherwise the DMA buffer 566 * is fully transmitted. 567 */ 568 atmel_uart_writel(port, ATMEL_US_CR, ATMEL_US_TXDIS); 569 atmel_port->tx_stopped = true; 570 } 571 572 /* Disable interrupts */ 573 atmel_uart_writel(port, ATMEL_US_IDR, atmel_port->tx_done_mask); 574 575 if (atmel_uart_is_half_duplex(port)) 576 if (!atomic_read(&atmel_port->tasklet_shutdown)) 577 atmel_start_rx(port); 578 } 579 580 /* 581 * Start transmitting. 582 */ 583 static void atmel_start_tx(struct uart_port *port) 584 { 585 struct atmel_uart_port *atmel_port = to_atmel_uart_port(port); 586 bool is_pdc = atmel_use_pdc_tx(port); 587 bool is_dma = is_pdc || atmel_use_dma_tx(port); 588 589 if (is_pdc && (atmel_uart_readl(port, ATMEL_PDC_PTSR) 590 & ATMEL_PDC_TXTEN)) 591 /* The transmitter is already running. Yes, we 592 really need this.*/ 593 return; 594 595 if (is_dma && atmel_uart_is_half_duplex(port)) 596 atmel_stop_rx(port); 597 598 if (is_pdc) { 599 /* re-enable PDC transmit */ 600 atmel_uart_writel(port, ATMEL_PDC_PTCR, ATMEL_PDC_TXTEN); 601 } 602 603 /* Enable interrupts */ 604 atmel_uart_writel(port, ATMEL_US_IER, atmel_port->tx_done_mask); 605 606 if (is_dma) { 607 /* re-enable the transmitter */ 608 atmel_uart_writel(port, ATMEL_US_CR, ATMEL_US_TXEN); 609 atmel_port->tx_stopped = false; 610 } 611 } 612 613 /* 614 * start receiving - port is in process of being opened. 615 */ 616 static void atmel_start_rx(struct uart_port *port) 617 { 618 /* reset status and receiver */ 619 atmel_uart_writel(port, ATMEL_US_CR, ATMEL_US_RSTSTA); 620 621 atmel_uart_writel(port, ATMEL_US_CR, ATMEL_US_RXEN); 622 623 if (atmel_use_pdc_rx(port)) { 624 /* enable PDC controller */ 625 atmel_uart_writel(port, ATMEL_US_IER, 626 ATMEL_US_ENDRX | ATMEL_US_TIMEOUT | 627 port->read_status_mask); 628 atmel_uart_writel(port, ATMEL_PDC_PTCR, ATMEL_PDC_RXTEN); 629 } else { 630 atmel_uart_writel(port, ATMEL_US_IER, ATMEL_US_RXRDY); 631 } 632 } 633 634 /* 635 * Stop receiving - port is in process of being closed. 636 */ 637 static void atmel_stop_rx(struct uart_port *port) 638 { 639 atmel_uart_writel(port, ATMEL_US_CR, ATMEL_US_RXDIS); 640 641 if (atmel_use_pdc_rx(port)) { 642 /* disable PDC receive */ 643 atmel_uart_writel(port, ATMEL_PDC_PTCR, ATMEL_PDC_RXTDIS); 644 atmel_uart_writel(port, ATMEL_US_IDR, 645 ATMEL_US_ENDRX | ATMEL_US_TIMEOUT | 646 port->read_status_mask); 647 } else { 648 atmel_uart_writel(port, ATMEL_US_IDR, ATMEL_US_RXRDY); 649 } 650 } 651 652 /* 653 * Enable modem status interrupts 654 */ 655 static void atmel_enable_ms(struct uart_port *port) 656 { 657 struct atmel_uart_port *atmel_port = to_atmel_uart_port(port); 658 uint32_t ier = 0; 659 660 /* 661 * Interrupt should not be enabled twice 662 */ 663 if (atmel_port->ms_irq_enabled) 664 return; 665 666 atmel_port->ms_irq_enabled = true; 667 668 if (!mctrl_gpio_to_gpiod(atmel_port->gpios, UART_GPIO_CTS)) 669 ier |= ATMEL_US_CTSIC; 670 671 if (!mctrl_gpio_to_gpiod(atmel_port->gpios, UART_GPIO_DSR)) 672 ier |= ATMEL_US_DSRIC; 673 674 if (!mctrl_gpio_to_gpiod(atmel_port->gpios, UART_GPIO_RI)) 675 ier |= ATMEL_US_RIIC; 676 677 if (!mctrl_gpio_to_gpiod(atmel_port->gpios, UART_GPIO_DCD)) 678 ier |= ATMEL_US_DCDIC; 679 680 atmel_uart_writel(port, ATMEL_US_IER, ier); 681 682 mctrl_gpio_enable_ms(atmel_port->gpios); 683 } 684 685 /* 686 * Disable modem status interrupts 687 */ 688 static void atmel_disable_ms(struct uart_port *port) 689 { 690 struct atmel_uart_port *atmel_port = to_atmel_uart_port(port); 691 uint32_t idr = 0; 692 693 /* 694 * Interrupt should not be disabled twice 695 */ 696 if (!atmel_port->ms_irq_enabled) 697 return; 698 699 atmel_port->ms_irq_enabled = false; 700 701 mctrl_gpio_disable_ms(atmel_port->gpios); 702 703 if (!mctrl_gpio_to_gpiod(atmel_port->gpios, UART_GPIO_CTS)) 704 idr |= ATMEL_US_CTSIC; 705 706 if (!mctrl_gpio_to_gpiod(atmel_port->gpios, UART_GPIO_DSR)) 707 idr |= ATMEL_US_DSRIC; 708 709 if (!mctrl_gpio_to_gpiod(atmel_port->gpios, UART_GPIO_RI)) 710 idr |= ATMEL_US_RIIC; 711 712 if (!mctrl_gpio_to_gpiod(atmel_port->gpios, UART_GPIO_DCD)) 713 idr |= ATMEL_US_DCDIC; 714 715 atmel_uart_writel(port, ATMEL_US_IDR, idr); 716 } 717 718 /* 719 * Control the transmission of a break signal 720 */ 721 static void atmel_break_ctl(struct uart_port *port, int break_state) 722 { 723 if (break_state != 0) 724 /* start break */ 725 atmel_uart_writel(port, ATMEL_US_CR, ATMEL_US_STTBRK); 726 else 727 /* stop break */ 728 atmel_uart_writel(port, ATMEL_US_CR, ATMEL_US_STPBRK); 729 } 730 731 /* 732 * Stores the incoming character in the ring buffer 733 */ 734 static void 735 atmel_buffer_rx_char(struct uart_port *port, unsigned int status, 736 unsigned int ch) 737 { 738 struct atmel_uart_port *atmel_port = to_atmel_uart_port(port); 739 struct circ_buf *ring = &atmel_port->rx_ring; 740 struct atmel_uart_char *c; 741 742 if (!CIRC_SPACE(ring->head, ring->tail, ATMEL_SERIAL_RINGSIZE)) 743 /* Buffer overflow, ignore char */ 744 return; 745 746 c = &((struct atmel_uart_char *)ring->buf)[ring->head]; 747 c->status = status; 748 c->ch = ch; 749 750 /* Make sure the character is stored before we update head. */ 751 smp_wmb(); 752 753 ring->head = (ring->head + 1) & (ATMEL_SERIAL_RINGSIZE - 1); 754 } 755 756 /* 757 * Deal with parity, framing and overrun errors. 758 */ 759 static void atmel_pdc_rxerr(struct uart_port *port, unsigned int status) 760 { 761 /* clear error */ 762 atmel_uart_writel(port, ATMEL_US_CR, ATMEL_US_RSTSTA); 763 764 if (status & ATMEL_US_RXBRK) { 765 /* ignore side-effect */ 766 status &= ~(ATMEL_US_PARE | ATMEL_US_FRAME); 767 port->icount.brk++; 768 } 769 if (status & ATMEL_US_PARE) 770 port->icount.parity++; 771 if (status & ATMEL_US_FRAME) 772 port->icount.frame++; 773 if (status & ATMEL_US_OVRE) 774 port->icount.overrun++; 775 } 776 777 /* 778 * Characters received (called from interrupt handler) 779 */ 780 static void atmel_rx_chars(struct uart_port *port) 781 { 782 struct atmel_uart_port *atmel_port = to_atmel_uart_port(port); 783 unsigned int status, ch; 784 785 status = atmel_uart_readl(port, ATMEL_US_CSR); 786 while (status & ATMEL_US_RXRDY) { 787 ch = atmel_uart_read_char(port); 788 789 /* 790 * note that the error handling code is 791 * out of the main execution path 792 */ 793 if (unlikely(status & (ATMEL_US_PARE | ATMEL_US_FRAME 794 | ATMEL_US_OVRE | ATMEL_US_RXBRK) 795 || atmel_port->break_active)) { 796 797 /* clear error */ 798 atmel_uart_writel(port, ATMEL_US_CR, ATMEL_US_RSTSTA); 799 800 if (status & ATMEL_US_RXBRK 801 && !atmel_port->break_active) { 802 atmel_port->break_active = 1; 803 atmel_uart_writel(port, ATMEL_US_IER, 804 ATMEL_US_RXBRK); 805 } else { 806 /* 807 * This is either the end-of-break 808 * condition or we've received at 809 * least one character without RXBRK 810 * being set. In both cases, the next 811 * RXBRK will indicate start-of-break. 812 */ 813 atmel_uart_writel(port, ATMEL_US_IDR, 814 ATMEL_US_RXBRK); 815 status &= ~ATMEL_US_RXBRK; 816 atmel_port->break_active = 0; 817 } 818 } 819 820 atmel_buffer_rx_char(port, status, ch); 821 status = atmel_uart_readl(port, ATMEL_US_CSR); 822 } 823 824 atmel_tasklet_schedule(atmel_port, &atmel_port->tasklet_rx); 825 } 826 827 /* 828 * Transmit characters (called from tasklet with TXRDY interrupt 829 * disabled) 830 */ 831 static void atmel_tx_chars(struct uart_port *port) 832 { 833 struct atmel_uart_port *atmel_port = to_atmel_uart_port(port); 834 bool pending; 835 u8 ch; 836 837 pending = uart_port_tx(port, ch, 838 atmel_uart_readl(port, ATMEL_US_CSR) & ATMEL_US_TXRDY, 839 atmel_uart_write_char(port, ch)); 840 if (pending) { 841 /* we still have characters to transmit, so we should continue 842 * transmitting them when TX is ready, regardless of 843 * mode or duplexity 844 */ 845 atmel_port->tx_done_mask |= ATMEL_US_TXRDY; 846 847 /* Enable interrupts */ 848 atmel_uart_writel(port, ATMEL_US_IER, 849 atmel_port->tx_done_mask); 850 } else { 851 if (atmel_uart_is_half_duplex(port)) 852 atmel_port->tx_done_mask &= ~ATMEL_US_TXRDY; 853 } 854 } 855 856 static void atmel_complete_tx_dma(void *arg) 857 { 858 struct atmel_uart_port *atmel_port = arg; 859 struct uart_port *port = &atmel_port->uart; 860 struct circ_buf *xmit = &port->state->xmit; 861 struct dma_chan *chan = atmel_port->chan_tx; 862 unsigned long flags; 863 864 spin_lock_irqsave(&port->lock, flags); 865 866 if (chan) 867 dmaengine_terminate_all(chan); 868 uart_xmit_advance(port, atmel_port->tx_len); 869 870 spin_lock(&atmel_port->lock_tx); 871 async_tx_ack(atmel_port->desc_tx); 872 atmel_port->cookie_tx = -EINVAL; 873 atmel_port->desc_tx = NULL; 874 spin_unlock(&atmel_port->lock_tx); 875 876 if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS) 877 uart_write_wakeup(port); 878 879 /* 880 * xmit is a circular buffer so, if we have just send data from 881 * xmit->tail to the end of xmit->buf, now we have to transmit the 882 * remaining data from the beginning of xmit->buf to xmit->head. 883 */ 884 if (!uart_circ_empty(xmit)) 885 atmel_tasklet_schedule(atmel_port, &atmel_port->tasklet_tx); 886 else if (atmel_uart_is_half_duplex(port)) { 887 /* 888 * DMA done, re-enable TXEMPTY and signal that we can stop 889 * TX and start RX for RS485 890 */ 891 atmel_port->hd_start_rx = true; 892 atmel_uart_writel(port, ATMEL_US_IER, 893 atmel_port->tx_done_mask); 894 } 895 896 spin_unlock_irqrestore(&port->lock, flags); 897 } 898 899 static void atmel_release_tx_dma(struct uart_port *port) 900 { 901 struct atmel_uart_port *atmel_port = to_atmel_uart_port(port); 902 struct dma_chan *chan = atmel_port->chan_tx; 903 904 if (chan) { 905 dmaengine_terminate_all(chan); 906 dma_release_channel(chan); 907 dma_unmap_sg(port->dev, &atmel_port->sg_tx, 1, 908 DMA_TO_DEVICE); 909 } 910 911 atmel_port->desc_tx = NULL; 912 atmel_port->chan_tx = NULL; 913 atmel_port->cookie_tx = -EINVAL; 914 } 915 916 /* 917 * Called from tasklet with TXRDY interrupt is disabled. 918 */ 919 static void atmel_tx_dma(struct uart_port *port) 920 { 921 struct atmel_uart_port *atmel_port = to_atmel_uart_port(port); 922 struct circ_buf *xmit = &port->state->xmit; 923 struct dma_chan *chan = atmel_port->chan_tx; 924 struct dma_async_tx_descriptor *desc; 925 struct scatterlist sgl[2], *sg, *sg_tx = &atmel_port->sg_tx; 926 unsigned int tx_len, part1_len, part2_len, sg_len; 927 dma_addr_t phys_addr; 928 929 /* Make sure we have an idle channel */ 930 if (atmel_port->desc_tx != NULL) 931 return; 932 933 if (!uart_circ_empty(xmit) && !uart_tx_stopped(port)) { 934 /* 935 * DMA is idle now. 936 * Port xmit buffer is already mapped, 937 * and it is one page... Just adjust 938 * offsets and lengths. Since it is a circular buffer, 939 * we have to transmit till the end, and then the rest. 940 * Take the port lock to get a 941 * consistent xmit buffer state. 942 */ 943 tx_len = CIRC_CNT_TO_END(xmit->head, 944 xmit->tail, 945 UART_XMIT_SIZE); 946 947 if (atmel_port->fifo_size) { 948 /* multi data mode */ 949 part1_len = (tx_len & ~0x3); /* DWORD access */ 950 part2_len = (tx_len & 0x3); /* BYTE access */ 951 } else { 952 /* single data (legacy) mode */ 953 part1_len = 0; 954 part2_len = tx_len; /* BYTE access only */ 955 } 956 957 sg_init_table(sgl, 2); 958 sg_len = 0; 959 phys_addr = sg_dma_address(sg_tx) + xmit->tail; 960 if (part1_len) { 961 sg = &sgl[sg_len++]; 962 sg_dma_address(sg) = phys_addr; 963 sg_dma_len(sg) = part1_len; 964 965 phys_addr += part1_len; 966 } 967 968 if (part2_len) { 969 sg = &sgl[sg_len++]; 970 sg_dma_address(sg) = phys_addr; 971 sg_dma_len(sg) = part2_len; 972 } 973 974 /* 975 * save tx_len so atmel_complete_tx_dma() will increase 976 * xmit->tail correctly 977 */ 978 atmel_port->tx_len = tx_len; 979 980 desc = dmaengine_prep_slave_sg(chan, 981 sgl, 982 sg_len, 983 DMA_MEM_TO_DEV, 984 DMA_PREP_INTERRUPT | 985 DMA_CTRL_ACK); 986 if (!desc) { 987 dev_err(port->dev, "Failed to send via dma!\n"); 988 return; 989 } 990 991 dma_sync_sg_for_device(port->dev, sg_tx, 1, DMA_TO_DEVICE); 992 993 atmel_port->desc_tx = desc; 994 desc->callback = atmel_complete_tx_dma; 995 desc->callback_param = atmel_port; 996 atmel_port->cookie_tx = dmaengine_submit(desc); 997 if (dma_submit_error(atmel_port->cookie_tx)) { 998 dev_err(port->dev, "dma_submit_error %d\n", 999 atmel_port->cookie_tx); 1000 return; 1001 } 1002 1003 dma_async_issue_pending(chan); 1004 } 1005 1006 if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS) 1007 uart_write_wakeup(port); 1008 } 1009 1010 static int atmel_prepare_tx_dma(struct uart_port *port) 1011 { 1012 struct atmel_uart_port *atmel_port = to_atmel_uart_port(port); 1013 struct device *mfd_dev = port->dev->parent; 1014 dma_cap_mask_t mask; 1015 struct dma_slave_config config; 1016 int ret, nent; 1017 1018 dma_cap_zero(mask); 1019 dma_cap_set(DMA_SLAVE, mask); 1020 1021 atmel_port->chan_tx = dma_request_slave_channel(mfd_dev, "tx"); 1022 if (atmel_port->chan_tx == NULL) 1023 goto chan_err; 1024 dev_info(port->dev, "using %s for tx DMA transfers\n", 1025 dma_chan_name(atmel_port->chan_tx)); 1026 1027 spin_lock_init(&atmel_port->lock_tx); 1028 sg_init_table(&atmel_port->sg_tx, 1); 1029 /* UART circular tx buffer is an aligned page. */ 1030 BUG_ON(!PAGE_ALIGNED(port->state->xmit.buf)); 1031 sg_set_page(&atmel_port->sg_tx, 1032 virt_to_page(port->state->xmit.buf), 1033 UART_XMIT_SIZE, 1034 offset_in_page(port->state->xmit.buf)); 1035 nent = dma_map_sg(port->dev, 1036 &atmel_port->sg_tx, 1037 1, 1038 DMA_TO_DEVICE); 1039 1040 if (!nent) { 1041 dev_dbg(port->dev, "need to release resource of dma\n"); 1042 goto chan_err; 1043 } else { 1044 dev_dbg(port->dev, "%s: mapped %d@%p to %pad\n", __func__, 1045 sg_dma_len(&atmel_port->sg_tx), 1046 port->state->xmit.buf, 1047 &sg_dma_address(&atmel_port->sg_tx)); 1048 } 1049 1050 /* Configure the slave DMA */ 1051 memset(&config, 0, sizeof(config)); 1052 config.direction = DMA_MEM_TO_DEV; 1053 config.dst_addr_width = (atmel_port->fifo_size) ? 1054 DMA_SLAVE_BUSWIDTH_4_BYTES : 1055 DMA_SLAVE_BUSWIDTH_1_BYTE; 1056 config.dst_addr = port->mapbase + ATMEL_US_THR; 1057 config.dst_maxburst = 1; 1058 1059 ret = dmaengine_slave_config(atmel_port->chan_tx, 1060 &config); 1061 if (ret) { 1062 dev_err(port->dev, "DMA tx slave configuration failed\n"); 1063 goto chan_err; 1064 } 1065 1066 return 0; 1067 1068 chan_err: 1069 dev_err(port->dev, "TX channel not available, switch to pio\n"); 1070 atmel_port->use_dma_tx = false; 1071 if (atmel_port->chan_tx) 1072 atmel_release_tx_dma(port); 1073 return -EINVAL; 1074 } 1075 1076 static void atmel_complete_rx_dma(void *arg) 1077 { 1078 struct uart_port *port = arg; 1079 struct atmel_uart_port *atmel_port = to_atmel_uart_port(port); 1080 1081 atmel_tasklet_schedule(atmel_port, &atmel_port->tasklet_rx); 1082 } 1083 1084 static void atmel_release_rx_dma(struct uart_port *port) 1085 { 1086 struct atmel_uart_port *atmel_port = to_atmel_uart_port(port); 1087 struct dma_chan *chan = atmel_port->chan_rx; 1088 1089 if (chan) { 1090 dmaengine_terminate_all(chan); 1091 dma_release_channel(chan); 1092 dma_unmap_sg(port->dev, &atmel_port->sg_rx, 1, 1093 DMA_FROM_DEVICE); 1094 } 1095 1096 atmel_port->desc_rx = NULL; 1097 atmel_port->chan_rx = NULL; 1098 atmel_port->cookie_rx = -EINVAL; 1099 } 1100 1101 static void atmel_rx_from_dma(struct uart_port *port) 1102 { 1103 struct atmel_uart_port *atmel_port = to_atmel_uart_port(port); 1104 struct tty_port *tport = &port->state->port; 1105 struct circ_buf *ring = &atmel_port->rx_ring; 1106 struct dma_chan *chan = atmel_port->chan_rx; 1107 struct dma_tx_state state; 1108 enum dma_status dmastat; 1109 size_t count; 1110 1111 1112 /* Reset the UART timeout early so that we don't miss one */ 1113 atmel_uart_writel(port, ATMEL_US_CR, ATMEL_US_STTTO); 1114 dmastat = dmaengine_tx_status(chan, 1115 atmel_port->cookie_rx, 1116 &state); 1117 /* Restart a new tasklet if DMA status is error */ 1118 if (dmastat == DMA_ERROR) { 1119 dev_dbg(port->dev, "Get residue error, restart tasklet\n"); 1120 atmel_uart_writel(port, ATMEL_US_IER, ATMEL_US_TIMEOUT); 1121 atmel_tasklet_schedule(atmel_port, &atmel_port->tasklet_rx); 1122 return; 1123 } 1124 1125 /* CPU claims ownership of RX DMA buffer */ 1126 dma_sync_sg_for_cpu(port->dev, 1127 &atmel_port->sg_rx, 1128 1, 1129 DMA_FROM_DEVICE); 1130 1131 /* 1132 * ring->head points to the end of data already written by the DMA. 1133 * ring->tail points to the beginning of data to be read by the 1134 * framework. 1135 * The current transfer size should not be larger than the dma buffer 1136 * length. 1137 */ 1138 ring->head = sg_dma_len(&atmel_port->sg_rx) - state.residue; 1139 BUG_ON(ring->head > sg_dma_len(&atmel_port->sg_rx)); 1140 /* 1141 * At this point ring->head may point to the first byte right after the 1142 * last byte of the dma buffer: 1143 * 0 <= ring->head <= sg_dma_len(&atmel_port->sg_rx) 1144 * 1145 * However ring->tail must always points inside the dma buffer: 1146 * 0 <= ring->tail <= sg_dma_len(&atmel_port->sg_rx) - 1 1147 * 1148 * Since we use a ring buffer, we have to handle the case 1149 * where head is lower than tail. In such a case, we first read from 1150 * tail to the end of the buffer then reset tail. 1151 */ 1152 if (ring->head < ring->tail) { 1153 count = sg_dma_len(&atmel_port->sg_rx) - ring->tail; 1154 1155 tty_insert_flip_string(tport, ring->buf + ring->tail, count); 1156 ring->tail = 0; 1157 port->icount.rx += count; 1158 } 1159 1160 /* Finally we read data from tail to head */ 1161 if (ring->tail < ring->head) { 1162 count = ring->head - ring->tail; 1163 1164 tty_insert_flip_string(tport, ring->buf + ring->tail, count); 1165 /* Wrap ring->head if needed */ 1166 if (ring->head >= sg_dma_len(&atmel_port->sg_rx)) 1167 ring->head = 0; 1168 ring->tail = ring->head; 1169 port->icount.rx += count; 1170 } 1171 1172 /* USART retreives ownership of RX DMA buffer */ 1173 dma_sync_sg_for_device(port->dev, 1174 &atmel_port->sg_rx, 1175 1, 1176 DMA_FROM_DEVICE); 1177 1178 tty_flip_buffer_push(tport); 1179 1180 atmel_uart_writel(port, ATMEL_US_IER, ATMEL_US_TIMEOUT); 1181 } 1182 1183 static int atmel_prepare_rx_dma(struct uart_port *port) 1184 { 1185 struct atmel_uart_port *atmel_port = to_atmel_uart_port(port); 1186 struct device *mfd_dev = port->dev->parent; 1187 struct dma_async_tx_descriptor *desc; 1188 dma_cap_mask_t mask; 1189 struct dma_slave_config config; 1190 struct circ_buf *ring; 1191 int ret, nent; 1192 1193 ring = &atmel_port->rx_ring; 1194 1195 dma_cap_zero(mask); 1196 dma_cap_set(DMA_CYCLIC, mask); 1197 1198 atmel_port->chan_rx = dma_request_slave_channel(mfd_dev, "rx"); 1199 if (atmel_port->chan_rx == NULL) 1200 goto chan_err; 1201 dev_info(port->dev, "using %s for rx DMA transfers\n", 1202 dma_chan_name(atmel_port->chan_rx)); 1203 1204 spin_lock_init(&atmel_port->lock_rx); 1205 sg_init_table(&atmel_port->sg_rx, 1); 1206 /* UART circular rx buffer is an aligned page. */ 1207 BUG_ON(!PAGE_ALIGNED(ring->buf)); 1208 sg_set_page(&atmel_port->sg_rx, 1209 virt_to_page(ring->buf), 1210 sizeof(struct atmel_uart_char) * ATMEL_SERIAL_RINGSIZE, 1211 offset_in_page(ring->buf)); 1212 nent = dma_map_sg(port->dev, 1213 &atmel_port->sg_rx, 1214 1, 1215 DMA_FROM_DEVICE); 1216 1217 if (!nent) { 1218 dev_dbg(port->dev, "need to release resource of dma\n"); 1219 goto chan_err; 1220 } else { 1221 dev_dbg(port->dev, "%s: mapped %d@%p to %pad\n", __func__, 1222 sg_dma_len(&atmel_port->sg_rx), 1223 ring->buf, 1224 &sg_dma_address(&atmel_port->sg_rx)); 1225 } 1226 1227 /* Configure the slave DMA */ 1228 memset(&config, 0, sizeof(config)); 1229 config.direction = DMA_DEV_TO_MEM; 1230 config.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE; 1231 config.src_addr = port->mapbase + ATMEL_US_RHR; 1232 config.src_maxburst = 1; 1233 1234 ret = dmaengine_slave_config(atmel_port->chan_rx, 1235 &config); 1236 if (ret) { 1237 dev_err(port->dev, "DMA rx slave configuration failed\n"); 1238 goto chan_err; 1239 } 1240 /* 1241 * Prepare a cyclic dma transfer, assign 2 descriptors, 1242 * each one is half ring buffer size 1243 */ 1244 desc = dmaengine_prep_dma_cyclic(atmel_port->chan_rx, 1245 sg_dma_address(&atmel_port->sg_rx), 1246 sg_dma_len(&atmel_port->sg_rx), 1247 sg_dma_len(&atmel_port->sg_rx)/2, 1248 DMA_DEV_TO_MEM, 1249 DMA_PREP_INTERRUPT); 1250 if (!desc) { 1251 dev_err(port->dev, "Preparing DMA cyclic failed\n"); 1252 goto chan_err; 1253 } 1254 desc->callback = atmel_complete_rx_dma; 1255 desc->callback_param = port; 1256 atmel_port->desc_rx = desc; 1257 atmel_port->cookie_rx = dmaengine_submit(desc); 1258 if (dma_submit_error(atmel_port->cookie_rx)) { 1259 dev_err(port->dev, "dma_submit_error %d\n", 1260 atmel_port->cookie_rx); 1261 goto chan_err; 1262 } 1263 1264 dma_async_issue_pending(atmel_port->chan_rx); 1265 1266 return 0; 1267 1268 chan_err: 1269 dev_err(port->dev, "RX channel not available, switch to pio\n"); 1270 atmel_port->use_dma_rx = false; 1271 if (atmel_port->chan_rx) 1272 atmel_release_rx_dma(port); 1273 return -EINVAL; 1274 } 1275 1276 static void atmel_uart_timer_callback(struct timer_list *t) 1277 { 1278 struct atmel_uart_port *atmel_port = from_timer(atmel_port, t, 1279 uart_timer); 1280 struct uart_port *port = &atmel_port->uart; 1281 1282 if (!atomic_read(&atmel_port->tasklet_shutdown)) { 1283 tasklet_schedule(&atmel_port->tasklet_rx); 1284 mod_timer(&atmel_port->uart_timer, 1285 jiffies + uart_poll_timeout(port)); 1286 } 1287 } 1288 1289 /* 1290 * receive interrupt handler. 1291 */ 1292 static void 1293 atmel_handle_receive(struct uart_port *port, unsigned int pending) 1294 { 1295 struct atmel_uart_port *atmel_port = to_atmel_uart_port(port); 1296 1297 if (atmel_use_pdc_rx(port)) { 1298 /* 1299 * PDC receive. Just schedule the tasklet and let it 1300 * figure out the details. 1301 * 1302 * TODO: We're not handling error flags correctly at 1303 * the moment. 1304 */ 1305 if (pending & (ATMEL_US_ENDRX | ATMEL_US_TIMEOUT)) { 1306 atmel_uart_writel(port, ATMEL_US_IDR, 1307 (ATMEL_US_ENDRX | ATMEL_US_TIMEOUT)); 1308 atmel_tasklet_schedule(atmel_port, 1309 &atmel_port->tasklet_rx); 1310 } 1311 1312 if (pending & (ATMEL_US_RXBRK | ATMEL_US_OVRE | 1313 ATMEL_US_FRAME | ATMEL_US_PARE)) 1314 atmel_pdc_rxerr(port, pending); 1315 } 1316 1317 if (atmel_use_dma_rx(port)) { 1318 if (pending & ATMEL_US_TIMEOUT) { 1319 atmel_uart_writel(port, ATMEL_US_IDR, 1320 ATMEL_US_TIMEOUT); 1321 atmel_tasklet_schedule(atmel_port, 1322 &atmel_port->tasklet_rx); 1323 } 1324 } 1325 1326 /* Interrupt receive */ 1327 if (pending & ATMEL_US_RXRDY) 1328 atmel_rx_chars(port); 1329 else if (pending & ATMEL_US_RXBRK) { 1330 /* 1331 * End of break detected. If it came along with a 1332 * character, atmel_rx_chars will handle it. 1333 */ 1334 atmel_uart_writel(port, ATMEL_US_CR, ATMEL_US_RSTSTA); 1335 atmel_uart_writel(port, ATMEL_US_IDR, ATMEL_US_RXBRK); 1336 atmel_port->break_active = 0; 1337 } 1338 } 1339 1340 /* 1341 * transmit interrupt handler. (Transmit is IRQF_NODELAY safe) 1342 */ 1343 static void 1344 atmel_handle_transmit(struct uart_port *port, unsigned int pending) 1345 { 1346 struct atmel_uart_port *atmel_port = to_atmel_uart_port(port); 1347 1348 if (pending & atmel_port->tx_done_mask) { 1349 atmel_uart_writel(port, ATMEL_US_IDR, 1350 atmel_port->tx_done_mask); 1351 1352 /* Start RX if flag was set and FIFO is empty */ 1353 if (atmel_port->hd_start_rx) { 1354 if (!(atmel_uart_readl(port, ATMEL_US_CSR) 1355 & ATMEL_US_TXEMPTY)) 1356 dev_warn(port->dev, "Should start RX, but TX fifo is not empty\n"); 1357 1358 atmel_port->hd_start_rx = false; 1359 atmel_start_rx(port); 1360 } 1361 1362 atmel_tasklet_schedule(atmel_port, &atmel_port->tasklet_tx); 1363 } 1364 } 1365 1366 /* 1367 * status flags interrupt handler. 1368 */ 1369 static void 1370 atmel_handle_status(struct uart_port *port, unsigned int pending, 1371 unsigned int status) 1372 { 1373 struct atmel_uart_port *atmel_port = to_atmel_uart_port(port); 1374 unsigned int status_change; 1375 1376 if (pending & (ATMEL_US_RIIC | ATMEL_US_DSRIC | ATMEL_US_DCDIC 1377 | ATMEL_US_CTSIC)) { 1378 status_change = status ^ atmel_port->irq_status_prev; 1379 atmel_port->irq_status_prev = status; 1380 1381 if (status_change & (ATMEL_US_RI | ATMEL_US_DSR 1382 | ATMEL_US_DCD | ATMEL_US_CTS)) { 1383 /* TODO: All reads to CSR will clear these interrupts! */ 1384 if (status_change & ATMEL_US_RI) 1385 port->icount.rng++; 1386 if (status_change & ATMEL_US_DSR) 1387 port->icount.dsr++; 1388 if (status_change & ATMEL_US_DCD) 1389 uart_handle_dcd_change(port, !(status & ATMEL_US_DCD)); 1390 if (status_change & ATMEL_US_CTS) 1391 uart_handle_cts_change(port, !(status & ATMEL_US_CTS)); 1392 1393 wake_up_interruptible(&port->state->port.delta_msr_wait); 1394 } 1395 } 1396 1397 if (pending & (ATMEL_US_NACK | ATMEL_US_ITERATION)) 1398 dev_dbg(port->dev, "ISO7816 ERROR (0x%08x)\n", pending); 1399 } 1400 1401 /* 1402 * Interrupt handler 1403 */ 1404 static irqreturn_t atmel_interrupt(int irq, void *dev_id) 1405 { 1406 struct uart_port *port = dev_id; 1407 struct atmel_uart_port *atmel_port = to_atmel_uart_port(port); 1408 unsigned int status, pending, mask, pass_counter = 0; 1409 1410 spin_lock(&atmel_port->lock_suspended); 1411 1412 do { 1413 status = atmel_uart_readl(port, ATMEL_US_CSR); 1414 mask = atmel_uart_readl(port, ATMEL_US_IMR); 1415 pending = status & mask; 1416 if (!pending) 1417 break; 1418 1419 if (atmel_port->suspended) { 1420 atmel_port->pending |= pending; 1421 atmel_port->pending_status = status; 1422 atmel_uart_writel(port, ATMEL_US_IDR, mask); 1423 pm_system_wakeup(); 1424 break; 1425 } 1426 1427 atmel_handle_receive(port, pending); 1428 atmel_handle_status(port, pending, status); 1429 atmel_handle_transmit(port, pending); 1430 } while (pass_counter++ < ATMEL_ISR_PASS_LIMIT); 1431 1432 spin_unlock(&atmel_port->lock_suspended); 1433 1434 return pass_counter ? IRQ_HANDLED : IRQ_NONE; 1435 } 1436 1437 static void atmel_release_tx_pdc(struct uart_port *port) 1438 { 1439 struct atmel_uart_port *atmel_port = to_atmel_uart_port(port); 1440 struct atmel_dma_buffer *pdc = &atmel_port->pdc_tx; 1441 1442 dma_unmap_single(port->dev, 1443 pdc->dma_addr, 1444 pdc->dma_size, 1445 DMA_TO_DEVICE); 1446 } 1447 1448 /* 1449 * Called from tasklet with ENDTX and TXBUFE interrupts disabled. 1450 */ 1451 static void atmel_tx_pdc(struct uart_port *port) 1452 { 1453 struct atmel_uart_port *atmel_port = to_atmel_uart_port(port); 1454 struct circ_buf *xmit = &port->state->xmit; 1455 struct atmel_dma_buffer *pdc = &atmel_port->pdc_tx; 1456 int count; 1457 1458 /* nothing left to transmit? */ 1459 if (atmel_uart_readl(port, ATMEL_PDC_TCR)) 1460 return; 1461 uart_xmit_advance(port, pdc->ofs); 1462 pdc->ofs = 0; 1463 1464 /* more to transmit - setup next transfer */ 1465 1466 /* disable PDC transmit */ 1467 atmel_uart_writel(port, ATMEL_PDC_PTCR, ATMEL_PDC_TXTDIS); 1468 1469 if (!uart_circ_empty(xmit) && !uart_tx_stopped(port)) { 1470 dma_sync_single_for_device(port->dev, 1471 pdc->dma_addr, 1472 pdc->dma_size, 1473 DMA_TO_DEVICE); 1474 1475 count = CIRC_CNT_TO_END(xmit->head, xmit->tail, UART_XMIT_SIZE); 1476 pdc->ofs = count; 1477 1478 atmel_uart_writel(port, ATMEL_PDC_TPR, 1479 pdc->dma_addr + xmit->tail); 1480 atmel_uart_writel(port, ATMEL_PDC_TCR, count); 1481 /* re-enable PDC transmit */ 1482 atmel_uart_writel(port, ATMEL_PDC_PTCR, ATMEL_PDC_TXTEN); 1483 /* Enable interrupts */ 1484 atmel_uart_writel(port, ATMEL_US_IER, 1485 atmel_port->tx_done_mask); 1486 } else { 1487 if (atmel_uart_is_half_duplex(port)) { 1488 /* DMA done, stop TX, start RX for RS485 */ 1489 atmel_start_rx(port); 1490 } 1491 } 1492 1493 if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS) 1494 uart_write_wakeup(port); 1495 } 1496 1497 static int atmel_prepare_tx_pdc(struct uart_port *port) 1498 { 1499 struct atmel_uart_port *atmel_port = to_atmel_uart_port(port); 1500 struct atmel_dma_buffer *pdc = &atmel_port->pdc_tx; 1501 struct circ_buf *xmit = &port->state->xmit; 1502 1503 pdc->buf = xmit->buf; 1504 pdc->dma_addr = dma_map_single(port->dev, 1505 pdc->buf, 1506 UART_XMIT_SIZE, 1507 DMA_TO_DEVICE); 1508 pdc->dma_size = UART_XMIT_SIZE; 1509 pdc->ofs = 0; 1510 1511 return 0; 1512 } 1513 1514 static void atmel_rx_from_ring(struct uart_port *port) 1515 { 1516 struct atmel_uart_port *atmel_port = to_atmel_uart_port(port); 1517 struct circ_buf *ring = &atmel_port->rx_ring; 1518 unsigned int status; 1519 u8 flg; 1520 1521 while (ring->head != ring->tail) { 1522 struct atmel_uart_char c; 1523 1524 /* Make sure c is loaded after head. */ 1525 smp_rmb(); 1526 1527 c = ((struct atmel_uart_char *)ring->buf)[ring->tail]; 1528 1529 ring->tail = (ring->tail + 1) & (ATMEL_SERIAL_RINGSIZE - 1); 1530 1531 port->icount.rx++; 1532 status = c.status; 1533 flg = TTY_NORMAL; 1534 1535 /* 1536 * note that the error handling code is 1537 * out of the main execution path 1538 */ 1539 if (unlikely(status & (ATMEL_US_PARE | ATMEL_US_FRAME 1540 | ATMEL_US_OVRE | ATMEL_US_RXBRK))) { 1541 if (status & ATMEL_US_RXBRK) { 1542 /* ignore side-effect */ 1543 status &= ~(ATMEL_US_PARE | ATMEL_US_FRAME); 1544 1545 port->icount.brk++; 1546 if (uart_handle_break(port)) 1547 continue; 1548 } 1549 if (status & ATMEL_US_PARE) 1550 port->icount.parity++; 1551 if (status & ATMEL_US_FRAME) 1552 port->icount.frame++; 1553 if (status & ATMEL_US_OVRE) 1554 port->icount.overrun++; 1555 1556 status &= port->read_status_mask; 1557 1558 if (status & ATMEL_US_RXBRK) 1559 flg = TTY_BREAK; 1560 else if (status & ATMEL_US_PARE) 1561 flg = TTY_PARITY; 1562 else if (status & ATMEL_US_FRAME) 1563 flg = TTY_FRAME; 1564 } 1565 1566 1567 if (uart_handle_sysrq_char(port, c.ch)) 1568 continue; 1569 1570 uart_insert_char(port, status, ATMEL_US_OVRE, c.ch, flg); 1571 } 1572 1573 tty_flip_buffer_push(&port->state->port); 1574 } 1575 1576 static void atmel_release_rx_pdc(struct uart_port *port) 1577 { 1578 struct atmel_uart_port *atmel_port = to_atmel_uart_port(port); 1579 int i; 1580 1581 for (i = 0; i < 2; i++) { 1582 struct atmel_dma_buffer *pdc = &atmel_port->pdc_rx[i]; 1583 1584 dma_unmap_single(port->dev, 1585 pdc->dma_addr, 1586 pdc->dma_size, 1587 DMA_FROM_DEVICE); 1588 kfree(pdc->buf); 1589 } 1590 } 1591 1592 static void atmel_rx_from_pdc(struct uart_port *port) 1593 { 1594 struct atmel_uart_port *atmel_port = to_atmel_uart_port(port); 1595 struct tty_port *tport = &port->state->port; 1596 struct atmel_dma_buffer *pdc; 1597 int rx_idx = atmel_port->pdc_rx_idx; 1598 unsigned int head; 1599 unsigned int tail; 1600 unsigned int count; 1601 1602 do { 1603 /* Reset the UART timeout early so that we don't miss one */ 1604 atmel_uart_writel(port, ATMEL_US_CR, ATMEL_US_STTTO); 1605 1606 pdc = &atmel_port->pdc_rx[rx_idx]; 1607 head = atmel_uart_readl(port, ATMEL_PDC_RPR) - pdc->dma_addr; 1608 tail = pdc->ofs; 1609 1610 /* If the PDC has switched buffers, RPR won't contain 1611 * any address within the current buffer. Since head 1612 * is unsigned, we just need a one-way comparison to 1613 * find out. 1614 * 1615 * In this case, we just need to consume the entire 1616 * buffer and resubmit it for DMA. This will clear the 1617 * ENDRX bit as well, so that we can safely re-enable 1618 * all interrupts below. 1619 */ 1620 head = min(head, pdc->dma_size); 1621 1622 if (likely(head != tail)) { 1623 dma_sync_single_for_cpu(port->dev, pdc->dma_addr, 1624 pdc->dma_size, DMA_FROM_DEVICE); 1625 1626 /* 1627 * head will only wrap around when we recycle 1628 * the DMA buffer, and when that happens, we 1629 * explicitly set tail to 0. So head will 1630 * always be greater than tail. 1631 */ 1632 count = head - tail; 1633 1634 tty_insert_flip_string(tport, pdc->buf + pdc->ofs, 1635 count); 1636 1637 dma_sync_single_for_device(port->dev, pdc->dma_addr, 1638 pdc->dma_size, DMA_FROM_DEVICE); 1639 1640 port->icount.rx += count; 1641 pdc->ofs = head; 1642 } 1643 1644 /* 1645 * If the current buffer is full, we need to check if 1646 * the next one contains any additional data. 1647 */ 1648 if (head >= pdc->dma_size) { 1649 pdc->ofs = 0; 1650 atmel_uart_writel(port, ATMEL_PDC_RNPR, pdc->dma_addr); 1651 atmel_uart_writel(port, ATMEL_PDC_RNCR, pdc->dma_size); 1652 1653 rx_idx = !rx_idx; 1654 atmel_port->pdc_rx_idx = rx_idx; 1655 } 1656 } while (head >= pdc->dma_size); 1657 1658 tty_flip_buffer_push(tport); 1659 1660 atmel_uart_writel(port, ATMEL_US_IER, 1661 ATMEL_US_ENDRX | ATMEL_US_TIMEOUT); 1662 } 1663 1664 static int atmel_prepare_rx_pdc(struct uart_port *port) 1665 { 1666 struct atmel_uart_port *atmel_port = to_atmel_uart_port(port); 1667 int i; 1668 1669 for (i = 0; i < 2; i++) { 1670 struct atmel_dma_buffer *pdc = &atmel_port->pdc_rx[i]; 1671 1672 pdc->buf = kmalloc(PDC_BUFFER_SIZE, GFP_KERNEL); 1673 if (pdc->buf == NULL) { 1674 if (i != 0) { 1675 dma_unmap_single(port->dev, 1676 atmel_port->pdc_rx[0].dma_addr, 1677 PDC_BUFFER_SIZE, 1678 DMA_FROM_DEVICE); 1679 kfree(atmel_port->pdc_rx[0].buf); 1680 } 1681 atmel_port->use_pdc_rx = false; 1682 return -ENOMEM; 1683 } 1684 pdc->dma_addr = dma_map_single(port->dev, 1685 pdc->buf, 1686 PDC_BUFFER_SIZE, 1687 DMA_FROM_DEVICE); 1688 pdc->dma_size = PDC_BUFFER_SIZE; 1689 pdc->ofs = 0; 1690 } 1691 1692 atmel_port->pdc_rx_idx = 0; 1693 1694 atmel_uart_writel(port, ATMEL_PDC_RPR, atmel_port->pdc_rx[0].dma_addr); 1695 atmel_uart_writel(port, ATMEL_PDC_RCR, PDC_BUFFER_SIZE); 1696 1697 atmel_uart_writel(port, ATMEL_PDC_RNPR, 1698 atmel_port->pdc_rx[1].dma_addr); 1699 atmel_uart_writel(port, ATMEL_PDC_RNCR, PDC_BUFFER_SIZE); 1700 1701 return 0; 1702 } 1703 1704 /* 1705 * tasklet handling tty stuff outside the interrupt handler. 1706 */ 1707 static void atmel_tasklet_rx_func(struct tasklet_struct *t) 1708 { 1709 struct atmel_uart_port *atmel_port = from_tasklet(atmel_port, t, 1710 tasklet_rx); 1711 struct uart_port *port = &atmel_port->uart; 1712 1713 /* The interrupt handler does not take the lock */ 1714 spin_lock(&port->lock); 1715 atmel_port->schedule_rx(port); 1716 spin_unlock(&port->lock); 1717 } 1718 1719 static void atmel_tasklet_tx_func(struct tasklet_struct *t) 1720 { 1721 struct atmel_uart_port *atmel_port = from_tasklet(atmel_port, t, 1722 tasklet_tx); 1723 struct uart_port *port = &atmel_port->uart; 1724 1725 /* The interrupt handler does not take the lock */ 1726 spin_lock(&port->lock); 1727 atmel_port->schedule_tx(port); 1728 spin_unlock(&port->lock); 1729 } 1730 1731 static void atmel_init_property(struct atmel_uart_port *atmel_port, 1732 struct platform_device *pdev) 1733 { 1734 struct device_node *np = pdev->dev.of_node; 1735 1736 /* DMA/PDC usage specification */ 1737 if (of_property_read_bool(np, "atmel,use-dma-rx")) { 1738 if (of_property_read_bool(np, "dmas")) { 1739 atmel_port->use_dma_rx = true; 1740 atmel_port->use_pdc_rx = false; 1741 } else { 1742 atmel_port->use_dma_rx = false; 1743 atmel_port->use_pdc_rx = true; 1744 } 1745 } else { 1746 atmel_port->use_dma_rx = false; 1747 atmel_port->use_pdc_rx = false; 1748 } 1749 1750 if (of_property_read_bool(np, "atmel,use-dma-tx")) { 1751 if (of_property_read_bool(np, "dmas")) { 1752 atmel_port->use_dma_tx = true; 1753 atmel_port->use_pdc_tx = false; 1754 } else { 1755 atmel_port->use_dma_tx = false; 1756 atmel_port->use_pdc_tx = true; 1757 } 1758 } else { 1759 atmel_port->use_dma_tx = false; 1760 atmel_port->use_pdc_tx = false; 1761 } 1762 } 1763 1764 static void atmel_set_ops(struct uart_port *port) 1765 { 1766 struct atmel_uart_port *atmel_port = to_atmel_uart_port(port); 1767 1768 if (atmel_use_dma_rx(port)) { 1769 atmel_port->prepare_rx = &atmel_prepare_rx_dma; 1770 atmel_port->schedule_rx = &atmel_rx_from_dma; 1771 atmel_port->release_rx = &atmel_release_rx_dma; 1772 } else if (atmel_use_pdc_rx(port)) { 1773 atmel_port->prepare_rx = &atmel_prepare_rx_pdc; 1774 atmel_port->schedule_rx = &atmel_rx_from_pdc; 1775 atmel_port->release_rx = &atmel_release_rx_pdc; 1776 } else { 1777 atmel_port->prepare_rx = NULL; 1778 atmel_port->schedule_rx = &atmel_rx_from_ring; 1779 atmel_port->release_rx = NULL; 1780 } 1781 1782 if (atmel_use_dma_tx(port)) { 1783 atmel_port->prepare_tx = &atmel_prepare_tx_dma; 1784 atmel_port->schedule_tx = &atmel_tx_dma; 1785 atmel_port->release_tx = &atmel_release_tx_dma; 1786 } else if (atmel_use_pdc_tx(port)) { 1787 atmel_port->prepare_tx = &atmel_prepare_tx_pdc; 1788 atmel_port->schedule_tx = &atmel_tx_pdc; 1789 atmel_port->release_tx = &atmel_release_tx_pdc; 1790 } else { 1791 atmel_port->prepare_tx = NULL; 1792 atmel_port->schedule_tx = &atmel_tx_chars; 1793 atmel_port->release_tx = NULL; 1794 } 1795 } 1796 1797 /* 1798 * Get ip name usart or uart 1799 */ 1800 static void atmel_get_ip_name(struct uart_port *port) 1801 { 1802 struct atmel_uart_port *atmel_port = to_atmel_uart_port(port); 1803 int name = atmel_uart_readl(port, ATMEL_US_NAME); 1804 u32 version; 1805 u32 usart, dbgu_uart, new_uart; 1806 /* ASCII decoding for IP version */ 1807 usart = 0x55534152; /* USAR(T) */ 1808 dbgu_uart = 0x44424755; /* DBGU */ 1809 new_uart = 0x55415254; /* UART */ 1810 1811 /* 1812 * Only USART devices from at91sam9260 SOC implement fractional 1813 * baudrate. It is available for all asynchronous modes, with the 1814 * following restriction: the sampling clock's duty cycle is not 1815 * constant. 1816 */ 1817 atmel_port->has_frac_baudrate = false; 1818 atmel_port->has_hw_timer = false; 1819 atmel_port->is_usart = false; 1820 1821 if (name == new_uart) { 1822 dev_dbg(port->dev, "Uart with hw timer"); 1823 atmel_port->has_hw_timer = true; 1824 atmel_port->rtor = ATMEL_UA_RTOR; 1825 } else if (name == usart) { 1826 dev_dbg(port->dev, "Usart\n"); 1827 atmel_port->has_frac_baudrate = true; 1828 atmel_port->has_hw_timer = true; 1829 atmel_port->is_usart = true; 1830 atmel_port->rtor = ATMEL_US_RTOR; 1831 version = atmel_uart_readl(port, ATMEL_US_VERSION); 1832 switch (version) { 1833 case 0x814: /* sama5d2 */ 1834 fallthrough; 1835 case 0x701: /* sama5d4 */ 1836 atmel_port->fidi_min = 3; 1837 atmel_port->fidi_max = 65535; 1838 break; 1839 case 0x502: /* sam9x5, sama5d3 */ 1840 atmel_port->fidi_min = 3; 1841 atmel_port->fidi_max = 2047; 1842 break; 1843 default: 1844 atmel_port->fidi_min = 1; 1845 atmel_port->fidi_max = 2047; 1846 } 1847 } else if (name == dbgu_uart) { 1848 dev_dbg(port->dev, "Dbgu or uart without hw timer\n"); 1849 } else { 1850 /* fallback for older SoCs: use version field */ 1851 version = atmel_uart_readl(port, ATMEL_US_VERSION); 1852 switch (version) { 1853 case 0x302: 1854 case 0x10213: 1855 case 0x10302: 1856 dev_dbg(port->dev, "This version is usart\n"); 1857 atmel_port->has_frac_baudrate = true; 1858 atmel_port->has_hw_timer = true; 1859 atmel_port->is_usart = true; 1860 atmel_port->rtor = ATMEL_US_RTOR; 1861 break; 1862 case 0x203: 1863 case 0x10202: 1864 dev_dbg(port->dev, "This version is uart\n"); 1865 break; 1866 default: 1867 dev_err(port->dev, "Not supported ip name nor version, set to uart\n"); 1868 } 1869 } 1870 } 1871 1872 /* 1873 * Perform initialization and enable port for reception 1874 */ 1875 static int atmel_startup(struct uart_port *port) 1876 { 1877 struct platform_device *pdev = to_platform_device(port->dev); 1878 struct atmel_uart_port *atmel_port = to_atmel_uart_port(port); 1879 int retval; 1880 1881 /* 1882 * Ensure that no interrupts are enabled otherwise when 1883 * request_irq() is called we could get stuck trying to 1884 * handle an unexpected interrupt 1885 */ 1886 atmel_uart_writel(port, ATMEL_US_IDR, -1); 1887 atmel_port->ms_irq_enabled = false; 1888 1889 /* 1890 * Allocate the IRQ 1891 */ 1892 retval = request_irq(port->irq, atmel_interrupt, 1893 IRQF_SHARED | IRQF_COND_SUSPEND, 1894 dev_name(&pdev->dev), port); 1895 if (retval) { 1896 dev_err(port->dev, "atmel_startup - Can't get irq\n"); 1897 return retval; 1898 } 1899 1900 atomic_set(&atmel_port->tasklet_shutdown, 0); 1901 tasklet_setup(&atmel_port->tasklet_rx, atmel_tasklet_rx_func); 1902 tasklet_setup(&atmel_port->tasklet_tx, atmel_tasklet_tx_func); 1903 1904 /* 1905 * Initialize DMA (if necessary) 1906 */ 1907 atmel_init_property(atmel_port, pdev); 1908 atmel_set_ops(port); 1909 1910 if (atmel_port->prepare_rx) { 1911 retval = atmel_port->prepare_rx(port); 1912 if (retval < 0) 1913 atmel_set_ops(port); 1914 } 1915 1916 if (atmel_port->prepare_tx) { 1917 retval = atmel_port->prepare_tx(port); 1918 if (retval < 0) 1919 atmel_set_ops(port); 1920 } 1921 1922 /* 1923 * Enable FIFO when available 1924 */ 1925 if (atmel_port->fifo_size) { 1926 unsigned int txrdym = ATMEL_US_ONE_DATA; 1927 unsigned int rxrdym = ATMEL_US_ONE_DATA; 1928 unsigned int fmr; 1929 1930 atmel_uart_writel(port, ATMEL_US_CR, 1931 ATMEL_US_FIFOEN | 1932 ATMEL_US_RXFCLR | 1933 ATMEL_US_TXFLCLR); 1934 1935 if (atmel_use_dma_tx(port)) 1936 txrdym = ATMEL_US_FOUR_DATA; 1937 1938 fmr = ATMEL_US_TXRDYM(txrdym) | ATMEL_US_RXRDYM(rxrdym); 1939 if (atmel_port->rts_high && 1940 atmel_port->rts_low) 1941 fmr |= ATMEL_US_FRTSC | 1942 ATMEL_US_RXFTHRES(atmel_port->rts_high) | 1943 ATMEL_US_RXFTHRES2(atmel_port->rts_low); 1944 1945 atmel_uart_writel(port, ATMEL_US_FMR, fmr); 1946 } 1947 1948 /* Save current CSR for comparison in atmel_tasklet_func() */ 1949 atmel_port->irq_status_prev = atmel_uart_readl(port, ATMEL_US_CSR); 1950 1951 /* 1952 * Finally, enable the serial port 1953 */ 1954 atmel_uart_writel(port, ATMEL_US_CR, ATMEL_US_RSTSTA | ATMEL_US_RSTRX); 1955 /* enable xmit & rcvr */ 1956 atmel_uart_writel(port, ATMEL_US_CR, ATMEL_US_TXEN | ATMEL_US_RXEN); 1957 atmel_port->tx_stopped = false; 1958 1959 timer_setup(&atmel_port->uart_timer, atmel_uart_timer_callback, 0); 1960 1961 if (atmel_use_pdc_rx(port)) { 1962 /* set UART timeout */ 1963 if (!atmel_port->has_hw_timer) { 1964 mod_timer(&atmel_port->uart_timer, 1965 jiffies + uart_poll_timeout(port)); 1966 /* set USART timeout */ 1967 } else { 1968 atmel_uart_writel(port, atmel_port->rtor, 1969 PDC_RX_TIMEOUT); 1970 atmel_uart_writel(port, ATMEL_US_CR, ATMEL_US_STTTO); 1971 1972 atmel_uart_writel(port, ATMEL_US_IER, 1973 ATMEL_US_ENDRX | ATMEL_US_TIMEOUT); 1974 } 1975 /* enable PDC controller */ 1976 atmel_uart_writel(port, ATMEL_PDC_PTCR, ATMEL_PDC_RXTEN); 1977 } else if (atmel_use_dma_rx(port)) { 1978 /* set UART timeout */ 1979 if (!atmel_port->has_hw_timer) { 1980 mod_timer(&atmel_port->uart_timer, 1981 jiffies + uart_poll_timeout(port)); 1982 /* set USART timeout */ 1983 } else { 1984 atmel_uart_writel(port, atmel_port->rtor, 1985 PDC_RX_TIMEOUT); 1986 atmel_uart_writel(port, ATMEL_US_CR, ATMEL_US_STTTO); 1987 1988 atmel_uart_writel(port, ATMEL_US_IER, 1989 ATMEL_US_TIMEOUT); 1990 } 1991 } else { 1992 /* enable receive only */ 1993 atmel_uart_writel(port, ATMEL_US_IER, ATMEL_US_RXRDY); 1994 } 1995 1996 return 0; 1997 } 1998 1999 /* 2000 * Flush any TX data submitted for DMA. Called when the TX circular 2001 * buffer is reset. 2002 */ 2003 static void atmel_flush_buffer(struct uart_port *port) 2004 { 2005 struct atmel_uart_port *atmel_port = to_atmel_uart_port(port); 2006 2007 if (atmel_use_pdc_tx(port)) { 2008 atmel_uart_writel(port, ATMEL_PDC_TCR, 0); 2009 atmel_port->pdc_tx.ofs = 0; 2010 } 2011 /* 2012 * in uart_flush_buffer(), the xmit circular buffer has just 2013 * been cleared, so we have to reset tx_len accordingly. 2014 */ 2015 atmel_port->tx_len = 0; 2016 } 2017 2018 /* 2019 * Disable the port 2020 */ 2021 static void atmel_shutdown(struct uart_port *port) 2022 { 2023 struct atmel_uart_port *atmel_port = to_atmel_uart_port(port); 2024 2025 /* Disable modem control lines interrupts */ 2026 atmel_disable_ms(port); 2027 2028 /* Disable interrupts at device level */ 2029 atmel_uart_writel(port, ATMEL_US_IDR, -1); 2030 2031 /* Prevent spurious interrupts from scheduling the tasklet */ 2032 atomic_inc(&atmel_port->tasklet_shutdown); 2033 2034 /* 2035 * Prevent any tasklets being scheduled during 2036 * cleanup 2037 */ 2038 del_timer_sync(&atmel_port->uart_timer); 2039 2040 /* Make sure that no interrupt is on the fly */ 2041 synchronize_irq(port->irq); 2042 2043 /* 2044 * Clear out any scheduled tasklets before 2045 * we destroy the buffers 2046 */ 2047 tasklet_kill(&atmel_port->tasklet_rx); 2048 tasklet_kill(&atmel_port->tasklet_tx); 2049 2050 /* 2051 * Ensure everything is stopped and 2052 * disable port and break condition. 2053 */ 2054 atmel_stop_rx(port); 2055 atmel_stop_tx(port); 2056 2057 atmel_uart_writel(port, ATMEL_US_CR, ATMEL_US_RSTSTA); 2058 2059 /* 2060 * Shut-down the DMA. 2061 */ 2062 if (atmel_port->release_rx) 2063 atmel_port->release_rx(port); 2064 if (atmel_port->release_tx) 2065 atmel_port->release_tx(port); 2066 2067 /* 2068 * Reset ring buffer pointers 2069 */ 2070 atmel_port->rx_ring.head = 0; 2071 atmel_port->rx_ring.tail = 0; 2072 2073 /* 2074 * Free the interrupts 2075 */ 2076 free_irq(port->irq, port); 2077 2078 atmel_flush_buffer(port); 2079 } 2080 2081 /* 2082 * Power / Clock management. 2083 */ 2084 static void atmel_serial_pm(struct uart_port *port, unsigned int state, 2085 unsigned int oldstate) 2086 { 2087 struct atmel_uart_port *atmel_port = to_atmel_uart_port(port); 2088 2089 switch (state) { 2090 case UART_PM_STATE_ON: 2091 /* 2092 * Enable the peripheral clock for this serial port. 2093 * This is called on uart_open() or a resume event. 2094 */ 2095 clk_prepare_enable(atmel_port->clk); 2096 2097 /* re-enable interrupts if we disabled some on suspend */ 2098 atmel_uart_writel(port, ATMEL_US_IER, atmel_port->backup_imr); 2099 break; 2100 case UART_PM_STATE_OFF: 2101 /* Back up the interrupt mask and disable all interrupts */ 2102 atmel_port->backup_imr = atmel_uart_readl(port, ATMEL_US_IMR); 2103 atmel_uart_writel(port, ATMEL_US_IDR, -1); 2104 2105 /* 2106 * Disable the peripheral clock for this serial port. 2107 * This is called on uart_close() or a suspend event. 2108 */ 2109 clk_disable_unprepare(atmel_port->clk); 2110 if (__clk_is_enabled(atmel_port->gclk)) 2111 clk_disable_unprepare(atmel_port->gclk); 2112 break; 2113 default: 2114 dev_err(port->dev, "atmel_serial: unknown pm %d\n", state); 2115 } 2116 } 2117 2118 /* 2119 * Change the port parameters 2120 */ 2121 static void atmel_set_termios(struct uart_port *port, 2122 struct ktermios *termios, 2123 const struct ktermios *old) 2124 { 2125 struct atmel_uart_port *atmel_port = to_atmel_uart_port(port); 2126 unsigned long flags; 2127 unsigned int old_mode, mode, imr, quot, div, cd, fp = 0; 2128 unsigned int baud, actual_baud, gclk_rate; 2129 int ret; 2130 2131 /* save the current mode register */ 2132 mode = old_mode = atmel_uart_readl(port, ATMEL_US_MR); 2133 2134 /* reset the mode, clock divisor, parity, stop bits and data size */ 2135 if (atmel_port->is_usart) 2136 mode &= ~(ATMEL_US_NBSTOP | ATMEL_US_PAR | ATMEL_US_CHRL | 2137 ATMEL_US_USCLKS | ATMEL_US_USMODE); 2138 else 2139 mode &= ~(ATMEL_UA_BRSRCCK | ATMEL_US_PAR | ATMEL_UA_FILTER); 2140 2141 baud = uart_get_baud_rate(port, termios, old, 0, port->uartclk / 16); 2142 2143 /* byte size */ 2144 switch (termios->c_cflag & CSIZE) { 2145 case CS5: 2146 mode |= ATMEL_US_CHRL_5; 2147 break; 2148 case CS6: 2149 mode |= ATMEL_US_CHRL_6; 2150 break; 2151 case CS7: 2152 mode |= ATMEL_US_CHRL_7; 2153 break; 2154 default: 2155 mode |= ATMEL_US_CHRL_8; 2156 break; 2157 } 2158 2159 /* stop bits */ 2160 if (termios->c_cflag & CSTOPB) 2161 mode |= ATMEL_US_NBSTOP_2; 2162 2163 /* parity */ 2164 if (termios->c_cflag & PARENB) { 2165 /* Mark or Space parity */ 2166 if (termios->c_cflag & CMSPAR) { 2167 if (termios->c_cflag & PARODD) 2168 mode |= ATMEL_US_PAR_MARK; 2169 else 2170 mode |= ATMEL_US_PAR_SPACE; 2171 } else if (termios->c_cflag & PARODD) 2172 mode |= ATMEL_US_PAR_ODD; 2173 else 2174 mode |= ATMEL_US_PAR_EVEN; 2175 } else 2176 mode |= ATMEL_US_PAR_NONE; 2177 2178 spin_lock_irqsave(&port->lock, flags); 2179 2180 port->read_status_mask = ATMEL_US_OVRE; 2181 if (termios->c_iflag & INPCK) 2182 port->read_status_mask |= (ATMEL_US_FRAME | ATMEL_US_PARE); 2183 if (termios->c_iflag & (IGNBRK | BRKINT | PARMRK)) 2184 port->read_status_mask |= ATMEL_US_RXBRK; 2185 2186 if (atmel_use_pdc_rx(port)) 2187 /* need to enable error interrupts */ 2188 atmel_uart_writel(port, ATMEL_US_IER, port->read_status_mask); 2189 2190 /* 2191 * Characters to ignore 2192 */ 2193 port->ignore_status_mask = 0; 2194 if (termios->c_iflag & IGNPAR) 2195 port->ignore_status_mask |= (ATMEL_US_FRAME | ATMEL_US_PARE); 2196 if (termios->c_iflag & IGNBRK) { 2197 port->ignore_status_mask |= ATMEL_US_RXBRK; 2198 /* 2199 * If we're ignoring parity and break indicators, 2200 * ignore overruns too (for real raw support). 2201 */ 2202 if (termios->c_iflag & IGNPAR) 2203 port->ignore_status_mask |= ATMEL_US_OVRE; 2204 } 2205 /* TODO: Ignore all characters if CREAD is set.*/ 2206 2207 /* update the per-port timeout */ 2208 uart_update_timeout(port, termios->c_cflag, baud); 2209 2210 /* 2211 * save/disable interrupts. The tty layer will ensure that the 2212 * transmitter is empty if requested by the caller, so there's 2213 * no need to wait for it here. 2214 */ 2215 imr = atmel_uart_readl(port, ATMEL_US_IMR); 2216 atmel_uart_writel(port, ATMEL_US_IDR, -1); 2217 2218 /* disable receiver and transmitter */ 2219 atmel_uart_writel(port, ATMEL_US_CR, ATMEL_US_TXDIS | ATMEL_US_RXDIS); 2220 atmel_port->tx_stopped = true; 2221 2222 /* mode */ 2223 if (port->rs485.flags & SER_RS485_ENABLED) { 2224 atmel_uart_writel(port, ATMEL_US_TTGR, 2225 port->rs485.delay_rts_after_send); 2226 mode |= ATMEL_US_USMODE_RS485; 2227 } else if (port->iso7816.flags & SER_ISO7816_ENABLED) { 2228 atmel_uart_writel(port, ATMEL_US_TTGR, port->iso7816.tg); 2229 /* select mck clock, and output */ 2230 mode |= ATMEL_US_USCLKS_MCK | ATMEL_US_CLKO; 2231 /* set max iterations */ 2232 mode |= ATMEL_US_MAX_ITER(3); 2233 if ((port->iso7816.flags & SER_ISO7816_T_PARAM) 2234 == SER_ISO7816_T(0)) 2235 mode |= ATMEL_US_USMODE_ISO7816_T0; 2236 else 2237 mode |= ATMEL_US_USMODE_ISO7816_T1; 2238 } else if (termios->c_cflag & CRTSCTS) { 2239 /* RS232 with hardware handshake (RTS/CTS) */ 2240 if (atmel_use_fifo(port) && 2241 !mctrl_gpio_to_gpiod(atmel_port->gpios, UART_GPIO_CTS)) { 2242 /* 2243 * with ATMEL_US_USMODE_HWHS set, the controller will 2244 * be able to drive the RTS pin high/low when the RX 2245 * FIFO is above RXFTHRES/below RXFTHRES2. 2246 * It will also disable the transmitter when the CTS 2247 * pin is high. 2248 * This mode is not activated if CTS pin is a GPIO 2249 * because in this case, the transmitter is always 2250 * disabled (there must be an internal pull-up 2251 * responsible for this behaviour). 2252 * If the RTS pin is a GPIO, the controller won't be 2253 * able to drive it according to the FIFO thresholds, 2254 * but it will be handled by the driver. 2255 */ 2256 mode |= ATMEL_US_USMODE_HWHS; 2257 } else { 2258 /* 2259 * For platforms without FIFO, the flow control is 2260 * handled by the driver. 2261 */ 2262 mode |= ATMEL_US_USMODE_NORMAL; 2263 } 2264 } else { 2265 /* RS232 without hadware handshake */ 2266 mode |= ATMEL_US_USMODE_NORMAL; 2267 } 2268 2269 /* 2270 * Set the baud rate: 2271 * Fractional baudrate allows to setup output frequency more 2272 * accurately. This feature is enabled only when using normal mode. 2273 * baudrate = selected clock / (8 * (2 - OVER) * (CD + FP / 8)) 2274 * Currently, OVER is always set to 0 so we get 2275 * baudrate = selected clock / (16 * (CD + FP / 8)) 2276 * then 2277 * 8 CD + FP = selected clock / (2 * baudrate) 2278 */ 2279 if (atmel_port->has_frac_baudrate) { 2280 div = DIV_ROUND_CLOSEST(port->uartclk, baud * 2); 2281 cd = div >> 3; 2282 fp = div & ATMEL_US_FP_MASK; 2283 } else { 2284 cd = uart_get_divisor(port, baud); 2285 } 2286 2287 /* 2288 * If the current value of the Clock Divisor surpasses the 16 bit 2289 * ATMEL_US_CD mask and the IP is USART, switch to the Peripheral 2290 * Clock implicitly divided by 8. 2291 * If the IP is UART however, keep the highest possible value for 2292 * the CD and avoid needless division of CD, since UART IP's do not 2293 * support implicit division of the Peripheral Clock. 2294 */ 2295 if (atmel_port->is_usart && cd > ATMEL_US_CD) { 2296 cd /= 8; 2297 mode |= ATMEL_US_USCLKS_MCK_DIV8; 2298 } else { 2299 cd = min_t(unsigned int, cd, ATMEL_US_CD); 2300 } 2301 2302 /* 2303 * If there is no Fractional Part, there is a high chance that 2304 * we may be able to generate a baudrate closer to the desired one 2305 * if we use the GCLK as the clock source driving the baudrate 2306 * generator. 2307 */ 2308 if (!atmel_port->has_frac_baudrate) { 2309 if (__clk_is_enabled(atmel_port->gclk)) 2310 clk_disable_unprepare(atmel_port->gclk); 2311 gclk_rate = clk_round_rate(atmel_port->gclk, 16 * baud); 2312 actual_baud = clk_get_rate(atmel_port->clk) / (16 * cd); 2313 if (gclk_rate && abs(atmel_error_rate(baud, actual_baud)) > 2314 abs(atmel_error_rate(baud, gclk_rate / 16))) { 2315 clk_set_rate(atmel_port->gclk, 16 * baud); 2316 ret = clk_prepare_enable(atmel_port->gclk); 2317 if (ret) 2318 goto gclk_fail; 2319 2320 if (atmel_port->is_usart) { 2321 mode &= ~ATMEL_US_USCLKS; 2322 mode |= ATMEL_US_USCLKS_GCLK; 2323 } else { 2324 mode |= ATMEL_UA_BRSRCCK; 2325 } 2326 2327 /* 2328 * Set the Clock Divisor for GCLK to 1. 2329 * Since we were able to generate the smallest 2330 * multiple of the desired baudrate times 16, 2331 * then we surely can generate a bigger multiple 2332 * with the exact error rate for an equally increased 2333 * CD. Thus no need to take into account 2334 * a higher value for CD. 2335 */ 2336 cd = 1; 2337 } 2338 } 2339 2340 gclk_fail: 2341 quot = cd | fp << ATMEL_US_FP_OFFSET; 2342 2343 if (!(port->iso7816.flags & SER_ISO7816_ENABLED)) 2344 atmel_uart_writel(port, ATMEL_US_BRGR, quot); 2345 2346 /* set the mode, clock divisor, parity, stop bits and data size */ 2347 atmel_uart_writel(port, ATMEL_US_MR, mode); 2348 2349 /* 2350 * when switching the mode, set the RTS line state according to the 2351 * new mode, otherwise keep the former state 2352 */ 2353 if ((old_mode & ATMEL_US_USMODE) != (mode & ATMEL_US_USMODE)) { 2354 unsigned int rts_state; 2355 2356 if ((mode & ATMEL_US_USMODE) == ATMEL_US_USMODE_HWHS) { 2357 /* let the hardware control the RTS line */ 2358 rts_state = ATMEL_US_RTSDIS; 2359 } else { 2360 /* force RTS line to low level */ 2361 rts_state = ATMEL_US_RTSEN; 2362 } 2363 2364 atmel_uart_writel(port, ATMEL_US_CR, rts_state); 2365 } 2366 2367 atmel_uart_writel(port, ATMEL_US_CR, ATMEL_US_RSTSTA | ATMEL_US_RSTRX); 2368 atmel_uart_writel(port, ATMEL_US_CR, ATMEL_US_TXEN | ATMEL_US_RXEN); 2369 atmel_port->tx_stopped = false; 2370 2371 /* restore interrupts */ 2372 atmel_uart_writel(port, ATMEL_US_IER, imr); 2373 2374 /* CTS flow-control and modem-status interrupts */ 2375 if (UART_ENABLE_MS(port, termios->c_cflag)) 2376 atmel_enable_ms(port); 2377 else 2378 atmel_disable_ms(port); 2379 2380 spin_unlock_irqrestore(&port->lock, flags); 2381 } 2382 2383 static void atmel_set_ldisc(struct uart_port *port, struct ktermios *termios) 2384 { 2385 if (termios->c_line == N_PPS) { 2386 port->flags |= UPF_HARDPPS_CD; 2387 spin_lock_irq(&port->lock); 2388 atmel_enable_ms(port); 2389 spin_unlock_irq(&port->lock); 2390 } else { 2391 port->flags &= ~UPF_HARDPPS_CD; 2392 if (!UART_ENABLE_MS(port, termios->c_cflag)) { 2393 spin_lock_irq(&port->lock); 2394 atmel_disable_ms(port); 2395 spin_unlock_irq(&port->lock); 2396 } 2397 } 2398 } 2399 2400 /* 2401 * Return string describing the specified port 2402 */ 2403 static const char *atmel_type(struct uart_port *port) 2404 { 2405 return (port->type == PORT_ATMEL) ? "ATMEL_SERIAL" : NULL; 2406 } 2407 2408 /* 2409 * Release the memory region(s) being used by 'port'. 2410 */ 2411 static void atmel_release_port(struct uart_port *port) 2412 { 2413 struct platform_device *mpdev = to_platform_device(port->dev->parent); 2414 int size = resource_size(mpdev->resource); 2415 2416 release_mem_region(port->mapbase, size); 2417 2418 if (port->flags & UPF_IOREMAP) { 2419 iounmap(port->membase); 2420 port->membase = NULL; 2421 } 2422 } 2423 2424 /* 2425 * Request the memory region(s) being used by 'port'. 2426 */ 2427 static int atmel_request_port(struct uart_port *port) 2428 { 2429 struct platform_device *mpdev = to_platform_device(port->dev->parent); 2430 int size = resource_size(mpdev->resource); 2431 2432 if (!request_mem_region(port->mapbase, size, "atmel_serial")) 2433 return -EBUSY; 2434 2435 if (port->flags & UPF_IOREMAP) { 2436 port->membase = ioremap(port->mapbase, size); 2437 if (port->membase == NULL) { 2438 release_mem_region(port->mapbase, size); 2439 return -ENOMEM; 2440 } 2441 } 2442 2443 return 0; 2444 } 2445 2446 /* 2447 * Configure/autoconfigure the port. 2448 */ 2449 static void atmel_config_port(struct uart_port *port, int flags) 2450 { 2451 if (flags & UART_CONFIG_TYPE) { 2452 port->type = PORT_ATMEL; 2453 atmel_request_port(port); 2454 } 2455 } 2456 2457 /* 2458 * Verify the new serial_struct (for TIOCSSERIAL). 2459 */ 2460 static int atmel_verify_port(struct uart_port *port, struct serial_struct *ser) 2461 { 2462 int ret = 0; 2463 if (ser->type != PORT_UNKNOWN && ser->type != PORT_ATMEL) 2464 ret = -EINVAL; 2465 if (port->irq != ser->irq) 2466 ret = -EINVAL; 2467 if (ser->io_type != SERIAL_IO_MEM) 2468 ret = -EINVAL; 2469 if (port->uartclk / 16 != ser->baud_base) 2470 ret = -EINVAL; 2471 if (port->mapbase != (unsigned long)ser->iomem_base) 2472 ret = -EINVAL; 2473 if (port->iobase != ser->port) 2474 ret = -EINVAL; 2475 if (ser->hub6 != 0) 2476 ret = -EINVAL; 2477 return ret; 2478 } 2479 2480 #ifdef CONFIG_CONSOLE_POLL 2481 static int atmel_poll_get_char(struct uart_port *port) 2482 { 2483 while (!(atmel_uart_readl(port, ATMEL_US_CSR) & ATMEL_US_RXRDY)) 2484 cpu_relax(); 2485 2486 return atmel_uart_read_char(port); 2487 } 2488 2489 static void atmel_poll_put_char(struct uart_port *port, unsigned char ch) 2490 { 2491 while (!(atmel_uart_readl(port, ATMEL_US_CSR) & ATMEL_US_TXRDY)) 2492 cpu_relax(); 2493 2494 atmel_uart_write_char(port, ch); 2495 } 2496 #endif 2497 2498 static const struct uart_ops atmel_pops = { 2499 .tx_empty = atmel_tx_empty, 2500 .set_mctrl = atmel_set_mctrl, 2501 .get_mctrl = atmel_get_mctrl, 2502 .stop_tx = atmel_stop_tx, 2503 .start_tx = atmel_start_tx, 2504 .stop_rx = atmel_stop_rx, 2505 .enable_ms = atmel_enable_ms, 2506 .break_ctl = atmel_break_ctl, 2507 .startup = atmel_startup, 2508 .shutdown = atmel_shutdown, 2509 .flush_buffer = atmel_flush_buffer, 2510 .set_termios = atmel_set_termios, 2511 .set_ldisc = atmel_set_ldisc, 2512 .type = atmel_type, 2513 .release_port = atmel_release_port, 2514 .request_port = atmel_request_port, 2515 .config_port = atmel_config_port, 2516 .verify_port = atmel_verify_port, 2517 .pm = atmel_serial_pm, 2518 #ifdef CONFIG_CONSOLE_POLL 2519 .poll_get_char = atmel_poll_get_char, 2520 .poll_put_char = atmel_poll_put_char, 2521 #endif 2522 }; 2523 2524 static const struct serial_rs485 atmel_rs485_supported = { 2525 .flags = SER_RS485_ENABLED | SER_RS485_RTS_ON_SEND | SER_RS485_RX_DURING_TX, 2526 .delay_rts_before_send = 1, 2527 .delay_rts_after_send = 1, 2528 }; 2529 2530 /* 2531 * Configure the port from the platform device resource info. 2532 */ 2533 static int atmel_init_port(struct atmel_uart_port *atmel_port, 2534 struct platform_device *pdev) 2535 { 2536 int ret; 2537 struct uart_port *port = &atmel_port->uart; 2538 struct platform_device *mpdev = to_platform_device(pdev->dev.parent); 2539 2540 atmel_init_property(atmel_port, pdev); 2541 atmel_set_ops(port); 2542 2543 port->iotype = UPIO_MEM; 2544 port->flags = UPF_BOOT_AUTOCONF | UPF_IOREMAP; 2545 port->ops = &atmel_pops; 2546 port->fifosize = 1; 2547 port->dev = &pdev->dev; 2548 port->mapbase = mpdev->resource[0].start; 2549 port->irq = platform_get_irq(mpdev, 0); 2550 port->rs485_config = atmel_config_rs485; 2551 port->rs485_supported = atmel_rs485_supported; 2552 port->iso7816_config = atmel_config_iso7816; 2553 port->membase = NULL; 2554 2555 memset(&atmel_port->rx_ring, 0, sizeof(atmel_port->rx_ring)); 2556 2557 ret = uart_get_rs485_mode(port); 2558 if (ret) 2559 return ret; 2560 2561 port->uartclk = clk_get_rate(atmel_port->clk); 2562 2563 /* 2564 * Use TXEMPTY for interrupt when rs485 or ISO7816 else TXRDY or 2565 * ENDTX|TXBUFE 2566 */ 2567 if (atmel_uart_is_half_duplex(port)) 2568 atmel_port->tx_done_mask = ATMEL_US_TXEMPTY; 2569 else if (atmel_use_pdc_tx(port)) { 2570 port->fifosize = PDC_BUFFER_SIZE; 2571 atmel_port->tx_done_mask = ATMEL_US_ENDTX | ATMEL_US_TXBUFE; 2572 } else { 2573 atmel_port->tx_done_mask = ATMEL_US_TXRDY; 2574 } 2575 2576 return 0; 2577 } 2578 2579 #ifdef CONFIG_SERIAL_ATMEL_CONSOLE 2580 static void atmel_console_putchar(struct uart_port *port, unsigned char ch) 2581 { 2582 while (!(atmel_uart_readl(port, ATMEL_US_CSR) & ATMEL_US_TXRDY)) 2583 cpu_relax(); 2584 atmel_uart_write_char(port, ch); 2585 } 2586 2587 /* 2588 * Interrupts are disabled on entering 2589 */ 2590 static void atmel_console_write(struct console *co, const char *s, u_int count) 2591 { 2592 struct uart_port *port = &atmel_ports[co->index].uart; 2593 struct atmel_uart_port *atmel_port = to_atmel_uart_port(port); 2594 unsigned int status, imr; 2595 unsigned int pdc_tx; 2596 2597 /* 2598 * First, save IMR and then disable interrupts 2599 */ 2600 imr = atmel_uart_readl(port, ATMEL_US_IMR); 2601 atmel_uart_writel(port, ATMEL_US_IDR, 2602 ATMEL_US_RXRDY | atmel_port->tx_done_mask); 2603 2604 /* Store PDC transmit status and disable it */ 2605 pdc_tx = atmel_uart_readl(port, ATMEL_PDC_PTSR) & ATMEL_PDC_TXTEN; 2606 atmel_uart_writel(port, ATMEL_PDC_PTCR, ATMEL_PDC_TXTDIS); 2607 2608 /* Make sure that tx path is actually able to send characters */ 2609 atmel_uart_writel(port, ATMEL_US_CR, ATMEL_US_TXEN); 2610 atmel_port->tx_stopped = false; 2611 2612 uart_console_write(port, s, count, atmel_console_putchar); 2613 2614 /* 2615 * Finally, wait for transmitter to become empty 2616 * and restore IMR 2617 */ 2618 do { 2619 status = atmel_uart_readl(port, ATMEL_US_CSR); 2620 } while (!(status & ATMEL_US_TXRDY)); 2621 2622 /* Restore PDC transmit status */ 2623 if (pdc_tx) 2624 atmel_uart_writel(port, ATMEL_PDC_PTCR, ATMEL_PDC_TXTEN); 2625 2626 /* set interrupts back the way they were */ 2627 atmel_uart_writel(port, ATMEL_US_IER, imr); 2628 } 2629 2630 /* 2631 * If the port was already initialised (eg, by a boot loader), 2632 * try to determine the current setup. 2633 */ 2634 static void __init atmel_console_get_options(struct uart_port *port, int *baud, 2635 int *parity, int *bits) 2636 { 2637 unsigned int mr, quot; 2638 2639 /* 2640 * If the baud rate generator isn't running, the port wasn't 2641 * initialized by the boot loader. 2642 */ 2643 quot = atmel_uart_readl(port, ATMEL_US_BRGR) & ATMEL_US_CD; 2644 if (!quot) 2645 return; 2646 2647 mr = atmel_uart_readl(port, ATMEL_US_MR) & ATMEL_US_CHRL; 2648 if (mr == ATMEL_US_CHRL_8) 2649 *bits = 8; 2650 else 2651 *bits = 7; 2652 2653 mr = atmel_uart_readl(port, ATMEL_US_MR) & ATMEL_US_PAR; 2654 if (mr == ATMEL_US_PAR_EVEN) 2655 *parity = 'e'; 2656 else if (mr == ATMEL_US_PAR_ODD) 2657 *parity = 'o'; 2658 2659 *baud = port->uartclk / (16 * quot); 2660 } 2661 2662 static int __init atmel_console_setup(struct console *co, char *options) 2663 { 2664 struct uart_port *port = &atmel_ports[co->index].uart; 2665 struct atmel_uart_port *atmel_port = to_atmel_uart_port(port); 2666 int baud = 115200; 2667 int bits = 8; 2668 int parity = 'n'; 2669 int flow = 'n'; 2670 2671 if (port->membase == NULL) { 2672 /* Port not initialized yet - delay setup */ 2673 return -ENODEV; 2674 } 2675 2676 atmel_uart_writel(port, ATMEL_US_IDR, -1); 2677 atmel_uart_writel(port, ATMEL_US_CR, ATMEL_US_RSTSTA | ATMEL_US_RSTRX); 2678 atmel_uart_writel(port, ATMEL_US_CR, ATMEL_US_TXEN | ATMEL_US_RXEN); 2679 atmel_port->tx_stopped = false; 2680 2681 if (options) 2682 uart_parse_options(options, &baud, &parity, &bits, &flow); 2683 else 2684 atmel_console_get_options(port, &baud, &parity, &bits); 2685 2686 return uart_set_options(port, co, baud, parity, bits, flow); 2687 } 2688 2689 static struct uart_driver atmel_uart; 2690 2691 static struct console atmel_console = { 2692 .name = ATMEL_DEVICENAME, 2693 .write = atmel_console_write, 2694 .device = uart_console_device, 2695 .setup = atmel_console_setup, 2696 .flags = CON_PRINTBUFFER, 2697 .index = -1, 2698 .data = &atmel_uart, 2699 }; 2700 2701 static void atmel_serial_early_write(struct console *con, const char *s, 2702 unsigned int n) 2703 { 2704 struct earlycon_device *dev = con->data; 2705 2706 uart_console_write(&dev->port, s, n, atmel_console_putchar); 2707 } 2708 2709 static int __init atmel_early_console_setup(struct earlycon_device *device, 2710 const char *options) 2711 { 2712 if (!device->port.membase) 2713 return -ENODEV; 2714 2715 device->con->write = atmel_serial_early_write; 2716 2717 return 0; 2718 } 2719 2720 OF_EARLYCON_DECLARE(atmel_serial, "atmel,at91rm9200-usart", 2721 atmel_early_console_setup); 2722 OF_EARLYCON_DECLARE(atmel_serial, "atmel,at91sam9260-usart", 2723 atmel_early_console_setup); 2724 2725 #define ATMEL_CONSOLE_DEVICE (&atmel_console) 2726 2727 #else 2728 #define ATMEL_CONSOLE_DEVICE NULL 2729 #endif 2730 2731 static struct uart_driver atmel_uart = { 2732 .owner = THIS_MODULE, 2733 .driver_name = "atmel_serial", 2734 .dev_name = ATMEL_DEVICENAME, 2735 .major = SERIAL_ATMEL_MAJOR, 2736 .minor = MINOR_START, 2737 .nr = ATMEL_MAX_UART, 2738 .cons = ATMEL_CONSOLE_DEVICE, 2739 }; 2740 2741 static bool atmel_serial_clk_will_stop(void) 2742 { 2743 #ifdef CONFIG_ARCH_AT91 2744 return at91_suspend_entering_slow_clock(); 2745 #else 2746 return false; 2747 #endif 2748 } 2749 2750 static int __maybe_unused atmel_serial_suspend(struct device *dev) 2751 { 2752 struct uart_port *port = dev_get_drvdata(dev); 2753 struct atmel_uart_port *atmel_port = to_atmel_uart_port(port); 2754 2755 if (uart_console(port) && console_suspend_enabled) { 2756 /* Drain the TX shifter */ 2757 while (!(atmel_uart_readl(port, ATMEL_US_CSR) & 2758 ATMEL_US_TXEMPTY)) 2759 cpu_relax(); 2760 } 2761 2762 if (uart_console(port) && !console_suspend_enabled) { 2763 /* Cache register values as we won't get a full shutdown/startup 2764 * cycle 2765 */ 2766 atmel_port->cache.mr = atmel_uart_readl(port, ATMEL_US_MR); 2767 atmel_port->cache.imr = atmel_uart_readl(port, ATMEL_US_IMR); 2768 atmel_port->cache.brgr = atmel_uart_readl(port, ATMEL_US_BRGR); 2769 atmel_port->cache.rtor = atmel_uart_readl(port, 2770 atmel_port->rtor); 2771 atmel_port->cache.ttgr = atmel_uart_readl(port, ATMEL_US_TTGR); 2772 atmel_port->cache.fmr = atmel_uart_readl(port, ATMEL_US_FMR); 2773 atmel_port->cache.fimr = atmel_uart_readl(port, ATMEL_US_FIMR); 2774 } 2775 2776 /* we can not wake up if we're running on slow clock */ 2777 atmel_port->may_wakeup = device_may_wakeup(dev); 2778 if (atmel_serial_clk_will_stop()) { 2779 unsigned long flags; 2780 2781 spin_lock_irqsave(&atmel_port->lock_suspended, flags); 2782 atmel_port->suspended = true; 2783 spin_unlock_irqrestore(&atmel_port->lock_suspended, flags); 2784 device_set_wakeup_enable(dev, 0); 2785 } 2786 2787 uart_suspend_port(&atmel_uart, port); 2788 2789 return 0; 2790 } 2791 2792 static int __maybe_unused atmel_serial_resume(struct device *dev) 2793 { 2794 struct uart_port *port = dev_get_drvdata(dev); 2795 struct atmel_uart_port *atmel_port = to_atmel_uart_port(port); 2796 unsigned long flags; 2797 2798 if (uart_console(port) && !console_suspend_enabled) { 2799 atmel_uart_writel(port, ATMEL_US_MR, atmel_port->cache.mr); 2800 atmel_uart_writel(port, ATMEL_US_IER, atmel_port->cache.imr); 2801 atmel_uart_writel(port, ATMEL_US_BRGR, atmel_port->cache.brgr); 2802 atmel_uart_writel(port, atmel_port->rtor, 2803 atmel_port->cache.rtor); 2804 atmel_uart_writel(port, ATMEL_US_TTGR, atmel_port->cache.ttgr); 2805 2806 if (atmel_port->fifo_size) { 2807 atmel_uart_writel(port, ATMEL_US_CR, ATMEL_US_FIFOEN | 2808 ATMEL_US_RXFCLR | ATMEL_US_TXFLCLR); 2809 atmel_uart_writel(port, ATMEL_US_FMR, 2810 atmel_port->cache.fmr); 2811 atmel_uart_writel(port, ATMEL_US_FIER, 2812 atmel_port->cache.fimr); 2813 } 2814 atmel_start_rx(port); 2815 } 2816 2817 spin_lock_irqsave(&atmel_port->lock_suspended, flags); 2818 if (atmel_port->pending) { 2819 atmel_handle_receive(port, atmel_port->pending); 2820 atmel_handle_status(port, atmel_port->pending, 2821 atmel_port->pending_status); 2822 atmel_handle_transmit(port, atmel_port->pending); 2823 atmel_port->pending = 0; 2824 } 2825 atmel_port->suspended = false; 2826 spin_unlock_irqrestore(&atmel_port->lock_suspended, flags); 2827 2828 uart_resume_port(&atmel_uart, port); 2829 device_set_wakeup_enable(dev, atmel_port->may_wakeup); 2830 2831 return 0; 2832 } 2833 2834 static void atmel_serial_probe_fifos(struct atmel_uart_port *atmel_port, 2835 struct platform_device *pdev) 2836 { 2837 atmel_port->fifo_size = 0; 2838 atmel_port->rts_low = 0; 2839 atmel_port->rts_high = 0; 2840 2841 if (of_property_read_u32(pdev->dev.of_node, 2842 "atmel,fifo-size", 2843 &atmel_port->fifo_size)) 2844 return; 2845 2846 if (!atmel_port->fifo_size) 2847 return; 2848 2849 if (atmel_port->fifo_size < ATMEL_MIN_FIFO_SIZE) { 2850 atmel_port->fifo_size = 0; 2851 dev_err(&pdev->dev, "Invalid FIFO size\n"); 2852 return; 2853 } 2854 2855 /* 2856 * 0 <= rts_low <= rts_high <= fifo_size 2857 * Once their CTS line asserted by the remote peer, some x86 UARTs tend 2858 * to flush their internal TX FIFO, commonly up to 16 data, before 2859 * actually stopping to send new data. So we try to set the RTS High 2860 * Threshold to a reasonably high value respecting this 16 data 2861 * empirical rule when possible. 2862 */ 2863 atmel_port->rts_high = max_t(int, atmel_port->fifo_size >> 1, 2864 atmel_port->fifo_size - ATMEL_RTS_HIGH_OFFSET); 2865 atmel_port->rts_low = max_t(int, atmel_port->fifo_size >> 2, 2866 atmel_port->fifo_size - ATMEL_RTS_LOW_OFFSET); 2867 2868 dev_info(&pdev->dev, "Using FIFO (%u data)\n", 2869 atmel_port->fifo_size); 2870 dev_dbg(&pdev->dev, "RTS High Threshold : %2u data\n", 2871 atmel_port->rts_high); 2872 dev_dbg(&pdev->dev, "RTS Low Threshold : %2u data\n", 2873 atmel_port->rts_low); 2874 } 2875 2876 static int atmel_serial_probe(struct platform_device *pdev) 2877 { 2878 struct atmel_uart_port *atmel_port; 2879 struct device_node *np = pdev->dev.parent->of_node; 2880 void *data; 2881 int ret; 2882 bool rs485_enabled; 2883 2884 BUILD_BUG_ON(ATMEL_SERIAL_RINGSIZE & (ATMEL_SERIAL_RINGSIZE - 1)); 2885 2886 /* 2887 * In device tree there is no node with "atmel,at91rm9200-usart-serial" 2888 * as compatible string. This driver is probed by at91-usart mfd driver 2889 * which is just a wrapper over the atmel_serial driver and 2890 * spi-at91-usart driver. All attributes needed by this driver are 2891 * found in of_node of parent. 2892 */ 2893 pdev->dev.of_node = np; 2894 2895 ret = of_alias_get_id(np, "serial"); 2896 if (ret < 0) 2897 /* port id not found in platform data nor device-tree aliases: 2898 * auto-enumerate it */ 2899 ret = find_first_zero_bit(atmel_ports_in_use, ATMEL_MAX_UART); 2900 2901 if (ret >= ATMEL_MAX_UART) { 2902 ret = -ENODEV; 2903 goto err; 2904 } 2905 2906 if (test_and_set_bit(ret, atmel_ports_in_use)) { 2907 /* port already in use */ 2908 ret = -EBUSY; 2909 goto err; 2910 } 2911 2912 atmel_port = &atmel_ports[ret]; 2913 atmel_port->backup_imr = 0; 2914 atmel_port->uart.line = ret; 2915 atmel_port->uart.has_sysrq = IS_ENABLED(CONFIG_SERIAL_ATMEL_CONSOLE); 2916 atmel_serial_probe_fifos(atmel_port, pdev); 2917 2918 atomic_set(&atmel_port->tasklet_shutdown, 0); 2919 spin_lock_init(&atmel_port->lock_suspended); 2920 2921 atmel_port->clk = devm_clk_get(&pdev->dev, "usart"); 2922 if (IS_ERR(atmel_port->clk)) { 2923 ret = PTR_ERR(atmel_port->clk); 2924 goto err; 2925 } 2926 ret = clk_prepare_enable(atmel_port->clk); 2927 if (ret) 2928 goto err; 2929 2930 atmel_port->gclk = devm_clk_get_optional(&pdev->dev, "gclk"); 2931 if (IS_ERR(atmel_port->gclk)) { 2932 ret = PTR_ERR(atmel_port->gclk); 2933 goto err_clk_disable_unprepare; 2934 } 2935 2936 ret = atmel_init_port(atmel_port, pdev); 2937 if (ret) 2938 goto err_clk_disable_unprepare; 2939 2940 atmel_port->gpios = mctrl_gpio_init(&atmel_port->uart, 0); 2941 if (IS_ERR(atmel_port->gpios)) { 2942 ret = PTR_ERR(atmel_port->gpios); 2943 goto err_clk_disable_unprepare; 2944 } 2945 2946 if (!atmel_use_pdc_rx(&atmel_port->uart)) { 2947 ret = -ENOMEM; 2948 data = kmalloc_array(ATMEL_SERIAL_RINGSIZE, 2949 sizeof(struct atmel_uart_char), 2950 GFP_KERNEL); 2951 if (!data) 2952 goto err_clk_disable_unprepare; 2953 atmel_port->rx_ring.buf = data; 2954 } 2955 2956 rs485_enabled = atmel_port->uart.rs485.flags & SER_RS485_ENABLED; 2957 2958 ret = uart_add_one_port(&atmel_uart, &atmel_port->uart); 2959 if (ret) 2960 goto err_add_port; 2961 2962 device_init_wakeup(&pdev->dev, 1); 2963 platform_set_drvdata(pdev, atmel_port); 2964 2965 if (rs485_enabled) { 2966 atmel_uart_writel(&atmel_port->uart, ATMEL_US_MR, 2967 ATMEL_US_USMODE_NORMAL); 2968 atmel_uart_writel(&atmel_port->uart, ATMEL_US_CR, 2969 ATMEL_US_RTSEN); 2970 } 2971 2972 /* 2973 * Get port name of usart or uart 2974 */ 2975 atmel_get_ip_name(&atmel_port->uart); 2976 2977 /* 2978 * The peripheral clock can now safely be disabled till the port 2979 * is used 2980 */ 2981 clk_disable_unprepare(atmel_port->clk); 2982 2983 return 0; 2984 2985 err_add_port: 2986 kfree(atmel_port->rx_ring.buf); 2987 atmel_port->rx_ring.buf = NULL; 2988 err_clk_disable_unprepare: 2989 clk_disable_unprepare(atmel_port->clk); 2990 clear_bit(atmel_port->uart.line, atmel_ports_in_use); 2991 err: 2992 return ret; 2993 } 2994 2995 /* 2996 * Even if the driver is not modular, it makes sense to be able to 2997 * unbind a device: there can be many bound devices, and there are 2998 * situations where dynamic binding and unbinding can be useful. 2999 * 3000 * For example, a connected device can require a specific firmware update 3001 * protocol that needs bitbanging on IO lines, but use the regular serial 3002 * port in the normal case. 3003 */ 3004 static int atmel_serial_remove(struct platform_device *pdev) 3005 { 3006 struct uart_port *port = platform_get_drvdata(pdev); 3007 struct atmel_uart_port *atmel_port = to_atmel_uart_port(port); 3008 3009 tasklet_kill(&atmel_port->tasklet_rx); 3010 tasklet_kill(&atmel_port->tasklet_tx); 3011 3012 device_init_wakeup(&pdev->dev, 0); 3013 3014 uart_remove_one_port(&atmel_uart, port); 3015 3016 kfree(atmel_port->rx_ring.buf); 3017 3018 /* "port" is allocated statically, so we shouldn't free it */ 3019 3020 clear_bit(port->line, atmel_ports_in_use); 3021 3022 pdev->dev.of_node = NULL; 3023 3024 return 0; 3025 } 3026 3027 static SIMPLE_DEV_PM_OPS(atmel_serial_pm_ops, atmel_serial_suspend, 3028 atmel_serial_resume); 3029 3030 static struct platform_driver atmel_serial_driver = { 3031 .probe = atmel_serial_probe, 3032 .remove = atmel_serial_remove, 3033 .driver = { 3034 .name = "atmel_usart_serial", 3035 .of_match_table = of_match_ptr(atmel_serial_dt_ids), 3036 .pm = pm_ptr(&atmel_serial_pm_ops), 3037 }, 3038 }; 3039 3040 static int __init atmel_serial_init(void) 3041 { 3042 int ret; 3043 3044 ret = uart_register_driver(&atmel_uart); 3045 if (ret) 3046 return ret; 3047 3048 ret = platform_driver_register(&atmel_serial_driver); 3049 if (ret) 3050 uart_unregister_driver(&atmel_uart); 3051 3052 return ret; 3053 } 3054 device_initcall(atmel_serial_init); 3055