1 /* 2 * Driver for AMBA serial ports 3 * 4 * Based on drivers/char/serial.c, by Linus Torvalds, Theodore Ts'o. 5 * 6 * Copyright 1999 ARM Limited 7 * Copyright (C) 2000 Deep Blue Solutions Ltd. 8 * Copyright (C) 2010 ST-Ericsson SA 9 * 10 * This program is free software; you can redistribute it and/or modify 11 * it under the terms of the GNU General Public License as published by 12 * the Free Software Foundation; either version 2 of the License, or 13 * (at your option) any later version. 14 * 15 * This program is distributed in the hope that it will be useful, 16 * but WITHOUT ANY WARRANTY; without even the implied warranty of 17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 18 * GNU General Public License for more details. 19 * 20 * You should have received a copy of the GNU General Public License 21 * along with this program; if not, write to the Free Software 22 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 23 * 24 * This is a generic driver for ARM AMBA-type serial ports. They 25 * have a lot of 16550-like features, but are not register compatible. 26 * Note that although they do have CTS, DCD and DSR inputs, they do 27 * not have an RI input, nor do they have DTR or RTS outputs. If 28 * required, these have to be supplied via some other means (eg, GPIO) 29 * and hooked into this driver. 30 */ 31 32 33 #if defined(CONFIG_SERIAL_AMBA_PL011_CONSOLE) && defined(CONFIG_MAGIC_SYSRQ) 34 #define SUPPORT_SYSRQ 35 #endif 36 37 #include <linux/module.h> 38 #include <linux/ioport.h> 39 #include <linux/init.h> 40 #include <linux/console.h> 41 #include <linux/sysrq.h> 42 #include <linux/device.h> 43 #include <linux/tty.h> 44 #include <linux/tty_flip.h> 45 #include <linux/serial_core.h> 46 #include <linux/serial.h> 47 #include <linux/amba/bus.h> 48 #include <linux/amba/serial.h> 49 #include <linux/clk.h> 50 #include <linux/slab.h> 51 #include <linux/dmaengine.h> 52 #include <linux/dma-mapping.h> 53 #include <linux/scatterlist.h> 54 #include <linux/delay.h> 55 #include <linux/types.h> 56 #include <linux/of.h> 57 #include <linux/of_device.h> 58 #include <linux/pinctrl/consumer.h> 59 #include <linux/sizes.h> 60 #include <linux/io.h> 61 62 #define UART_NR 14 63 64 #define SERIAL_AMBA_MAJOR 204 65 #define SERIAL_AMBA_MINOR 64 66 #define SERIAL_AMBA_NR UART_NR 67 68 #define AMBA_ISR_PASS_LIMIT 256 69 70 #define UART_DR_ERROR (UART011_DR_OE|UART011_DR_BE|UART011_DR_PE|UART011_DR_FE) 71 #define UART_DUMMY_DR_RX (1 << 16) 72 73 /* There is by now at least one vendor with differing details, so handle it */ 74 struct vendor_data { 75 unsigned int ifls; 76 unsigned int lcrh_tx; 77 unsigned int lcrh_rx; 78 bool oversampling; 79 bool dma_threshold; 80 bool cts_event_workaround; 81 82 unsigned int (*get_fifosize)(struct amba_device *dev); 83 }; 84 85 static unsigned int get_fifosize_arm(struct amba_device *dev) 86 { 87 return amba_rev(dev) < 3 ? 16 : 32; 88 } 89 90 static struct vendor_data vendor_arm = { 91 .ifls = UART011_IFLS_RX4_8|UART011_IFLS_TX4_8, 92 .lcrh_tx = UART011_LCRH, 93 .lcrh_rx = UART011_LCRH, 94 .oversampling = false, 95 .dma_threshold = false, 96 .cts_event_workaround = false, 97 .get_fifosize = get_fifosize_arm, 98 }; 99 100 static unsigned int get_fifosize_st(struct amba_device *dev) 101 { 102 return 64; 103 } 104 105 static struct vendor_data vendor_st = { 106 .ifls = UART011_IFLS_RX_HALF|UART011_IFLS_TX_HALF, 107 .lcrh_tx = ST_UART011_LCRH_TX, 108 .lcrh_rx = ST_UART011_LCRH_RX, 109 .oversampling = true, 110 .dma_threshold = true, 111 .cts_event_workaround = true, 112 .get_fifosize = get_fifosize_st, 113 }; 114 115 static struct uart_amba_port *amba_ports[UART_NR]; 116 117 /* Deals with DMA transactions */ 118 119 struct pl011_sgbuf { 120 struct scatterlist sg; 121 char *buf; 122 }; 123 124 struct pl011_dmarx_data { 125 struct dma_chan *chan; 126 struct completion complete; 127 bool use_buf_b; 128 struct pl011_sgbuf sgbuf_a; 129 struct pl011_sgbuf sgbuf_b; 130 dma_cookie_t cookie; 131 bool running; 132 struct timer_list timer; 133 unsigned int last_residue; 134 unsigned long last_jiffies; 135 bool auto_poll_rate; 136 unsigned int poll_rate; 137 unsigned int poll_timeout; 138 }; 139 140 struct pl011_dmatx_data { 141 struct dma_chan *chan; 142 struct scatterlist sg; 143 char *buf; 144 bool queued; 145 }; 146 147 /* 148 * We wrap our port structure around the generic uart_port. 149 */ 150 struct uart_amba_port { 151 struct uart_port port; 152 struct clk *clk; 153 const struct vendor_data *vendor; 154 unsigned int dmacr; /* dma control reg */ 155 unsigned int im; /* interrupt mask */ 156 unsigned int old_status; 157 unsigned int fifosize; /* vendor-specific */ 158 unsigned int lcrh_tx; /* vendor-specific */ 159 unsigned int lcrh_rx; /* vendor-specific */ 160 unsigned int old_cr; /* state during shutdown */ 161 bool autorts; 162 char type[12]; 163 #ifdef CONFIG_DMA_ENGINE 164 /* DMA stuff */ 165 bool using_tx_dma; 166 bool using_rx_dma; 167 struct pl011_dmarx_data dmarx; 168 struct pl011_dmatx_data dmatx; 169 #endif 170 }; 171 172 /* 173 * Reads up to 256 characters from the FIFO or until it's empty and 174 * inserts them into the TTY layer. Returns the number of characters 175 * read from the FIFO. 176 */ 177 static int pl011_fifo_to_tty(struct uart_amba_port *uap) 178 { 179 u16 status, ch; 180 unsigned int flag, max_count = 256; 181 int fifotaken = 0; 182 183 while (max_count--) { 184 status = readw(uap->port.membase + UART01x_FR); 185 if (status & UART01x_FR_RXFE) 186 break; 187 188 /* Take chars from the FIFO and update status */ 189 ch = readw(uap->port.membase + UART01x_DR) | 190 UART_DUMMY_DR_RX; 191 flag = TTY_NORMAL; 192 uap->port.icount.rx++; 193 fifotaken++; 194 195 if (unlikely(ch & UART_DR_ERROR)) { 196 if (ch & UART011_DR_BE) { 197 ch &= ~(UART011_DR_FE | UART011_DR_PE); 198 uap->port.icount.brk++; 199 if (uart_handle_break(&uap->port)) 200 continue; 201 } else if (ch & UART011_DR_PE) 202 uap->port.icount.parity++; 203 else if (ch & UART011_DR_FE) 204 uap->port.icount.frame++; 205 if (ch & UART011_DR_OE) 206 uap->port.icount.overrun++; 207 208 ch &= uap->port.read_status_mask; 209 210 if (ch & UART011_DR_BE) 211 flag = TTY_BREAK; 212 else if (ch & UART011_DR_PE) 213 flag = TTY_PARITY; 214 else if (ch & UART011_DR_FE) 215 flag = TTY_FRAME; 216 } 217 218 if (uart_handle_sysrq_char(&uap->port, ch & 255)) 219 continue; 220 221 uart_insert_char(&uap->port, ch, UART011_DR_OE, ch, flag); 222 } 223 224 return fifotaken; 225 } 226 227 228 /* 229 * All the DMA operation mode stuff goes inside this ifdef. 230 * This assumes that you have a generic DMA device interface, 231 * no custom DMA interfaces are supported. 232 */ 233 #ifdef CONFIG_DMA_ENGINE 234 235 #define PL011_DMA_BUFFER_SIZE PAGE_SIZE 236 237 static int pl011_sgbuf_init(struct dma_chan *chan, struct pl011_sgbuf *sg, 238 enum dma_data_direction dir) 239 { 240 dma_addr_t dma_addr; 241 242 sg->buf = dma_alloc_coherent(chan->device->dev, 243 PL011_DMA_BUFFER_SIZE, &dma_addr, GFP_KERNEL); 244 if (!sg->buf) 245 return -ENOMEM; 246 247 sg_init_table(&sg->sg, 1); 248 sg_set_page(&sg->sg, phys_to_page(dma_addr), 249 PL011_DMA_BUFFER_SIZE, offset_in_page(dma_addr)); 250 sg_dma_address(&sg->sg) = dma_addr; 251 252 return 0; 253 } 254 255 static void pl011_sgbuf_free(struct dma_chan *chan, struct pl011_sgbuf *sg, 256 enum dma_data_direction dir) 257 { 258 if (sg->buf) { 259 dma_free_coherent(chan->device->dev, 260 PL011_DMA_BUFFER_SIZE, sg->buf, 261 sg_dma_address(&sg->sg)); 262 } 263 } 264 265 static void pl011_dma_probe_initcall(struct device *dev, struct uart_amba_port *uap) 266 { 267 /* DMA is the sole user of the platform data right now */ 268 struct amba_pl011_data *plat = dev_get_platdata(uap->port.dev); 269 struct dma_slave_config tx_conf = { 270 .dst_addr = uap->port.mapbase + UART01x_DR, 271 .dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE, 272 .direction = DMA_MEM_TO_DEV, 273 .dst_maxburst = uap->fifosize >> 1, 274 .device_fc = false, 275 }; 276 struct dma_chan *chan; 277 dma_cap_mask_t mask; 278 279 chan = dma_request_slave_channel(dev, "tx"); 280 281 if (!chan) { 282 /* We need platform data */ 283 if (!plat || !plat->dma_filter) { 284 dev_info(uap->port.dev, "no DMA platform data\n"); 285 return; 286 } 287 288 /* Try to acquire a generic DMA engine slave TX channel */ 289 dma_cap_zero(mask); 290 dma_cap_set(DMA_SLAVE, mask); 291 292 chan = dma_request_channel(mask, plat->dma_filter, 293 plat->dma_tx_param); 294 if (!chan) { 295 dev_err(uap->port.dev, "no TX DMA channel!\n"); 296 return; 297 } 298 } 299 300 dmaengine_slave_config(chan, &tx_conf); 301 uap->dmatx.chan = chan; 302 303 dev_info(uap->port.dev, "DMA channel TX %s\n", 304 dma_chan_name(uap->dmatx.chan)); 305 306 /* Optionally make use of an RX channel as well */ 307 chan = dma_request_slave_channel(dev, "rx"); 308 309 if (!chan && plat->dma_rx_param) { 310 chan = dma_request_channel(mask, plat->dma_filter, plat->dma_rx_param); 311 312 if (!chan) { 313 dev_err(uap->port.dev, "no RX DMA channel!\n"); 314 return; 315 } 316 } 317 318 if (chan) { 319 struct dma_slave_config rx_conf = { 320 .src_addr = uap->port.mapbase + UART01x_DR, 321 .src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE, 322 .direction = DMA_DEV_TO_MEM, 323 .src_maxburst = uap->fifosize >> 1, 324 .device_fc = false, 325 }; 326 327 dmaengine_slave_config(chan, &rx_conf); 328 uap->dmarx.chan = chan; 329 330 if (plat && plat->dma_rx_poll_enable) { 331 /* Set poll rate if specified. */ 332 if (plat->dma_rx_poll_rate) { 333 uap->dmarx.auto_poll_rate = false; 334 uap->dmarx.poll_rate = plat->dma_rx_poll_rate; 335 } else { 336 /* 337 * 100 ms defaults to poll rate if not 338 * specified. This will be adjusted with 339 * the baud rate at set_termios. 340 */ 341 uap->dmarx.auto_poll_rate = true; 342 uap->dmarx.poll_rate = 100; 343 } 344 /* 3 secs defaults poll_timeout if not specified. */ 345 if (plat->dma_rx_poll_timeout) 346 uap->dmarx.poll_timeout = 347 plat->dma_rx_poll_timeout; 348 else 349 uap->dmarx.poll_timeout = 3000; 350 } else 351 uap->dmarx.auto_poll_rate = false; 352 353 dev_info(uap->port.dev, "DMA channel RX %s\n", 354 dma_chan_name(uap->dmarx.chan)); 355 } 356 } 357 358 #ifndef MODULE 359 /* 360 * Stack up the UARTs and let the above initcall be done at device 361 * initcall time, because the serial driver is called as an arch 362 * initcall, and at this time the DMA subsystem is not yet registered. 363 * At this point the driver will switch over to using DMA where desired. 364 */ 365 struct dma_uap { 366 struct list_head node; 367 struct uart_amba_port *uap; 368 struct device *dev; 369 }; 370 371 static LIST_HEAD(pl011_dma_uarts); 372 373 static int __init pl011_dma_initcall(void) 374 { 375 struct list_head *node, *tmp; 376 377 list_for_each_safe(node, tmp, &pl011_dma_uarts) { 378 struct dma_uap *dmau = list_entry(node, struct dma_uap, node); 379 pl011_dma_probe_initcall(dmau->dev, dmau->uap); 380 list_del(node); 381 kfree(dmau); 382 } 383 return 0; 384 } 385 386 device_initcall(pl011_dma_initcall); 387 388 static void pl011_dma_probe(struct device *dev, struct uart_amba_port *uap) 389 { 390 struct dma_uap *dmau = kzalloc(sizeof(struct dma_uap), GFP_KERNEL); 391 if (dmau) { 392 dmau->uap = uap; 393 dmau->dev = dev; 394 list_add_tail(&dmau->node, &pl011_dma_uarts); 395 } 396 } 397 #else 398 static void pl011_dma_probe(struct device *dev, struct uart_amba_port *uap) 399 { 400 pl011_dma_probe_initcall(dev, uap); 401 } 402 #endif 403 404 static void pl011_dma_remove(struct uart_amba_port *uap) 405 { 406 /* TODO: remove the initcall if it has not yet executed */ 407 if (uap->dmatx.chan) 408 dma_release_channel(uap->dmatx.chan); 409 if (uap->dmarx.chan) 410 dma_release_channel(uap->dmarx.chan); 411 } 412 413 /* Forward declare this for the refill routine */ 414 static int pl011_dma_tx_refill(struct uart_amba_port *uap); 415 416 /* 417 * The current DMA TX buffer has been sent. 418 * Try to queue up another DMA buffer. 419 */ 420 static void pl011_dma_tx_callback(void *data) 421 { 422 struct uart_amba_port *uap = data; 423 struct pl011_dmatx_data *dmatx = &uap->dmatx; 424 unsigned long flags; 425 u16 dmacr; 426 427 spin_lock_irqsave(&uap->port.lock, flags); 428 if (uap->dmatx.queued) 429 dma_unmap_sg(dmatx->chan->device->dev, &dmatx->sg, 1, 430 DMA_TO_DEVICE); 431 432 dmacr = uap->dmacr; 433 uap->dmacr = dmacr & ~UART011_TXDMAE; 434 writew(uap->dmacr, uap->port.membase + UART011_DMACR); 435 436 /* 437 * If TX DMA was disabled, it means that we've stopped the DMA for 438 * some reason (eg, XOFF received, or we want to send an X-char.) 439 * 440 * Note: we need to be careful here of a potential race between DMA 441 * and the rest of the driver - if the driver disables TX DMA while 442 * a TX buffer completing, we must update the tx queued status to 443 * get further refills (hence we check dmacr). 444 */ 445 if (!(dmacr & UART011_TXDMAE) || uart_tx_stopped(&uap->port) || 446 uart_circ_empty(&uap->port.state->xmit)) { 447 uap->dmatx.queued = false; 448 spin_unlock_irqrestore(&uap->port.lock, flags); 449 return; 450 } 451 452 if (pl011_dma_tx_refill(uap) <= 0) { 453 /* 454 * We didn't queue a DMA buffer for some reason, but we 455 * have data pending to be sent. Re-enable the TX IRQ. 456 */ 457 uap->im |= UART011_TXIM; 458 writew(uap->im, uap->port.membase + UART011_IMSC); 459 } 460 spin_unlock_irqrestore(&uap->port.lock, flags); 461 } 462 463 /* 464 * Try to refill the TX DMA buffer. 465 * Locking: called with port lock held and IRQs disabled. 466 * Returns: 467 * 1 if we queued up a TX DMA buffer. 468 * 0 if we didn't want to handle this by DMA 469 * <0 on error 470 */ 471 static int pl011_dma_tx_refill(struct uart_amba_port *uap) 472 { 473 struct pl011_dmatx_data *dmatx = &uap->dmatx; 474 struct dma_chan *chan = dmatx->chan; 475 struct dma_device *dma_dev = chan->device; 476 struct dma_async_tx_descriptor *desc; 477 struct circ_buf *xmit = &uap->port.state->xmit; 478 unsigned int count; 479 480 /* 481 * Try to avoid the overhead involved in using DMA if the 482 * transaction fits in the first half of the FIFO, by using 483 * the standard interrupt handling. This ensures that we 484 * issue a uart_write_wakeup() at the appropriate time. 485 */ 486 count = uart_circ_chars_pending(xmit); 487 if (count < (uap->fifosize >> 1)) { 488 uap->dmatx.queued = false; 489 return 0; 490 } 491 492 /* 493 * Bodge: don't send the last character by DMA, as this 494 * will prevent XON from notifying us to restart DMA. 495 */ 496 count -= 1; 497 498 /* Else proceed to copy the TX chars to the DMA buffer and fire DMA */ 499 if (count > PL011_DMA_BUFFER_SIZE) 500 count = PL011_DMA_BUFFER_SIZE; 501 502 if (xmit->tail < xmit->head) 503 memcpy(&dmatx->buf[0], &xmit->buf[xmit->tail], count); 504 else { 505 size_t first = UART_XMIT_SIZE - xmit->tail; 506 size_t second = xmit->head; 507 508 memcpy(&dmatx->buf[0], &xmit->buf[xmit->tail], first); 509 if (second) 510 memcpy(&dmatx->buf[first], &xmit->buf[0], second); 511 } 512 513 dmatx->sg.length = count; 514 515 if (dma_map_sg(dma_dev->dev, &dmatx->sg, 1, DMA_TO_DEVICE) != 1) { 516 uap->dmatx.queued = false; 517 dev_dbg(uap->port.dev, "unable to map TX DMA\n"); 518 return -EBUSY; 519 } 520 521 desc = dmaengine_prep_slave_sg(chan, &dmatx->sg, 1, DMA_MEM_TO_DEV, 522 DMA_PREP_INTERRUPT | DMA_CTRL_ACK); 523 if (!desc) { 524 dma_unmap_sg(dma_dev->dev, &dmatx->sg, 1, DMA_TO_DEVICE); 525 uap->dmatx.queued = false; 526 /* 527 * If DMA cannot be used right now, we complete this 528 * transaction via IRQ and let the TTY layer retry. 529 */ 530 dev_dbg(uap->port.dev, "TX DMA busy\n"); 531 return -EBUSY; 532 } 533 534 /* Some data to go along to the callback */ 535 desc->callback = pl011_dma_tx_callback; 536 desc->callback_param = uap; 537 538 /* All errors should happen at prepare time */ 539 dmaengine_submit(desc); 540 541 /* Fire the DMA transaction */ 542 dma_dev->device_issue_pending(chan); 543 544 uap->dmacr |= UART011_TXDMAE; 545 writew(uap->dmacr, uap->port.membase + UART011_DMACR); 546 uap->dmatx.queued = true; 547 548 /* 549 * Now we know that DMA will fire, so advance the ring buffer 550 * with the stuff we just dispatched. 551 */ 552 xmit->tail = (xmit->tail + count) & (UART_XMIT_SIZE - 1); 553 uap->port.icount.tx += count; 554 555 if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS) 556 uart_write_wakeup(&uap->port); 557 558 return 1; 559 } 560 561 /* 562 * We received a transmit interrupt without a pending X-char but with 563 * pending characters. 564 * Locking: called with port lock held and IRQs disabled. 565 * Returns: 566 * false if we want to use PIO to transmit 567 * true if we queued a DMA buffer 568 */ 569 static bool pl011_dma_tx_irq(struct uart_amba_port *uap) 570 { 571 if (!uap->using_tx_dma) 572 return false; 573 574 /* 575 * If we already have a TX buffer queued, but received a 576 * TX interrupt, it will be because we've just sent an X-char. 577 * Ensure the TX DMA is enabled and the TX IRQ is disabled. 578 */ 579 if (uap->dmatx.queued) { 580 uap->dmacr |= UART011_TXDMAE; 581 writew(uap->dmacr, uap->port.membase + UART011_DMACR); 582 uap->im &= ~UART011_TXIM; 583 writew(uap->im, uap->port.membase + UART011_IMSC); 584 return true; 585 } 586 587 /* 588 * We don't have a TX buffer queued, so try to queue one. 589 * If we successfully queued a buffer, mask the TX IRQ. 590 */ 591 if (pl011_dma_tx_refill(uap) > 0) { 592 uap->im &= ~UART011_TXIM; 593 writew(uap->im, uap->port.membase + UART011_IMSC); 594 return true; 595 } 596 return false; 597 } 598 599 /* 600 * Stop the DMA transmit (eg, due to received XOFF). 601 * Locking: called with port lock held and IRQs disabled. 602 */ 603 static inline void pl011_dma_tx_stop(struct uart_amba_port *uap) 604 { 605 if (uap->dmatx.queued) { 606 uap->dmacr &= ~UART011_TXDMAE; 607 writew(uap->dmacr, uap->port.membase + UART011_DMACR); 608 } 609 } 610 611 /* 612 * Try to start a DMA transmit, or in the case of an XON/OFF 613 * character queued for send, try to get that character out ASAP. 614 * Locking: called with port lock held and IRQs disabled. 615 * Returns: 616 * false if we want the TX IRQ to be enabled 617 * true if we have a buffer queued 618 */ 619 static inline bool pl011_dma_tx_start(struct uart_amba_port *uap) 620 { 621 u16 dmacr; 622 623 if (!uap->using_tx_dma) 624 return false; 625 626 if (!uap->port.x_char) { 627 /* no X-char, try to push chars out in DMA mode */ 628 bool ret = true; 629 630 if (!uap->dmatx.queued) { 631 if (pl011_dma_tx_refill(uap) > 0) { 632 uap->im &= ~UART011_TXIM; 633 ret = true; 634 } else { 635 uap->im |= UART011_TXIM; 636 ret = false; 637 } 638 writew(uap->im, uap->port.membase + UART011_IMSC); 639 } else if (!(uap->dmacr & UART011_TXDMAE)) { 640 uap->dmacr |= UART011_TXDMAE; 641 writew(uap->dmacr, 642 uap->port.membase + UART011_DMACR); 643 } 644 return ret; 645 } 646 647 /* 648 * We have an X-char to send. Disable DMA to prevent it loading 649 * the TX fifo, and then see if we can stuff it into the FIFO. 650 */ 651 dmacr = uap->dmacr; 652 uap->dmacr &= ~UART011_TXDMAE; 653 writew(uap->dmacr, uap->port.membase + UART011_DMACR); 654 655 if (readw(uap->port.membase + UART01x_FR) & UART01x_FR_TXFF) { 656 /* 657 * No space in the FIFO, so enable the transmit interrupt 658 * so we know when there is space. Note that once we've 659 * loaded the character, we should just re-enable DMA. 660 */ 661 return false; 662 } 663 664 writew(uap->port.x_char, uap->port.membase + UART01x_DR); 665 uap->port.icount.tx++; 666 uap->port.x_char = 0; 667 668 /* Success - restore the DMA state */ 669 uap->dmacr = dmacr; 670 writew(dmacr, uap->port.membase + UART011_DMACR); 671 672 return true; 673 } 674 675 /* 676 * Flush the transmit buffer. 677 * Locking: called with port lock held and IRQs disabled. 678 */ 679 static void pl011_dma_flush_buffer(struct uart_port *port) 680 __releases(&uap->port.lock) 681 __acquires(&uap->port.lock) 682 { 683 struct uart_amba_port *uap = (struct uart_amba_port *)port; 684 685 if (!uap->using_tx_dma) 686 return; 687 688 /* Avoid deadlock with the DMA engine callback */ 689 spin_unlock(&uap->port.lock); 690 dmaengine_terminate_all(uap->dmatx.chan); 691 spin_lock(&uap->port.lock); 692 if (uap->dmatx.queued) { 693 dma_unmap_sg(uap->dmatx.chan->device->dev, &uap->dmatx.sg, 1, 694 DMA_TO_DEVICE); 695 uap->dmatx.queued = false; 696 uap->dmacr &= ~UART011_TXDMAE; 697 writew(uap->dmacr, uap->port.membase + UART011_DMACR); 698 } 699 } 700 701 static void pl011_dma_rx_callback(void *data); 702 703 static int pl011_dma_rx_trigger_dma(struct uart_amba_port *uap) 704 { 705 struct dma_chan *rxchan = uap->dmarx.chan; 706 struct pl011_dmarx_data *dmarx = &uap->dmarx; 707 struct dma_async_tx_descriptor *desc; 708 struct pl011_sgbuf *sgbuf; 709 710 if (!rxchan) 711 return -EIO; 712 713 /* Start the RX DMA job */ 714 sgbuf = uap->dmarx.use_buf_b ? 715 &uap->dmarx.sgbuf_b : &uap->dmarx.sgbuf_a; 716 desc = dmaengine_prep_slave_sg(rxchan, &sgbuf->sg, 1, 717 DMA_DEV_TO_MEM, 718 DMA_PREP_INTERRUPT | DMA_CTRL_ACK); 719 /* 720 * If the DMA engine is busy and cannot prepare a 721 * channel, no big deal, the driver will fall back 722 * to interrupt mode as a result of this error code. 723 */ 724 if (!desc) { 725 uap->dmarx.running = false; 726 dmaengine_terminate_all(rxchan); 727 return -EBUSY; 728 } 729 730 /* Some data to go along to the callback */ 731 desc->callback = pl011_dma_rx_callback; 732 desc->callback_param = uap; 733 dmarx->cookie = dmaengine_submit(desc); 734 dma_async_issue_pending(rxchan); 735 736 uap->dmacr |= UART011_RXDMAE; 737 writew(uap->dmacr, uap->port.membase + UART011_DMACR); 738 uap->dmarx.running = true; 739 740 uap->im &= ~UART011_RXIM; 741 writew(uap->im, uap->port.membase + UART011_IMSC); 742 743 return 0; 744 } 745 746 /* 747 * This is called when either the DMA job is complete, or 748 * the FIFO timeout interrupt occurred. This must be called 749 * with the port spinlock uap->port.lock held. 750 */ 751 static void pl011_dma_rx_chars(struct uart_amba_port *uap, 752 u32 pending, bool use_buf_b, 753 bool readfifo) 754 { 755 struct tty_port *port = &uap->port.state->port; 756 struct pl011_sgbuf *sgbuf = use_buf_b ? 757 &uap->dmarx.sgbuf_b : &uap->dmarx.sgbuf_a; 758 int dma_count = 0; 759 u32 fifotaken = 0; /* only used for vdbg() */ 760 761 struct pl011_dmarx_data *dmarx = &uap->dmarx; 762 int dmataken = 0; 763 764 if (uap->dmarx.poll_rate) { 765 /* The data can be taken by polling */ 766 dmataken = sgbuf->sg.length - dmarx->last_residue; 767 /* Recalculate the pending size */ 768 if (pending >= dmataken) 769 pending -= dmataken; 770 } 771 772 /* Pick the remain data from the DMA */ 773 if (pending) { 774 775 /* 776 * First take all chars in the DMA pipe, then look in the FIFO. 777 * Note that tty_insert_flip_buf() tries to take as many chars 778 * as it can. 779 */ 780 dma_count = tty_insert_flip_string(port, sgbuf->buf + dmataken, 781 pending); 782 783 uap->port.icount.rx += dma_count; 784 if (dma_count < pending) 785 dev_warn(uap->port.dev, 786 "couldn't insert all characters (TTY is full?)\n"); 787 } 788 789 /* Reset the last_residue for Rx DMA poll */ 790 if (uap->dmarx.poll_rate) 791 dmarx->last_residue = sgbuf->sg.length; 792 793 /* 794 * Only continue with trying to read the FIFO if all DMA chars have 795 * been taken first. 796 */ 797 if (dma_count == pending && readfifo) { 798 /* Clear any error flags */ 799 writew(UART011_OEIS | UART011_BEIS | UART011_PEIS | UART011_FEIS, 800 uap->port.membase + UART011_ICR); 801 802 /* 803 * If we read all the DMA'd characters, and we had an 804 * incomplete buffer, that could be due to an rx error, or 805 * maybe we just timed out. Read any pending chars and check 806 * the error status. 807 * 808 * Error conditions will only occur in the FIFO, these will 809 * trigger an immediate interrupt and stop the DMA job, so we 810 * will always find the error in the FIFO, never in the DMA 811 * buffer. 812 */ 813 fifotaken = pl011_fifo_to_tty(uap); 814 } 815 816 spin_unlock(&uap->port.lock); 817 dev_vdbg(uap->port.dev, 818 "Took %d chars from DMA buffer and %d chars from the FIFO\n", 819 dma_count, fifotaken); 820 tty_flip_buffer_push(port); 821 spin_lock(&uap->port.lock); 822 } 823 824 static void pl011_dma_rx_irq(struct uart_amba_port *uap) 825 { 826 struct pl011_dmarx_data *dmarx = &uap->dmarx; 827 struct dma_chan *rxchan = dmarx->chan; 828 struct pl011_sgbuf *sgbuf = dmarx->use_buf_b ? 829 &dmarx->sgbuf_b : &dmarx->sgbuf_a; 830 size_t pending; 831 struct dma_tx_state state; 832 enum dma_status dmastat; 833 834 /* 835 * Pause the transfer so we can trust the current counter, 836 * do this before we pause the PL011 block, else we may 837 * overflow the FIFO. 838 */ 839 if (dmaengine_pause(rxchan)) 840 dev_err(uap->port.dev, "unable to pause DMA transfer\n"); 841 dmastat = rxchan->device->device_tx_status(rxchan, 842 dmarx->cookie, &state); 843 if (dmastat != DMA_PAUSED) 844 dev_err(uap->port.dev, "unable to pause DMA transfer\n"); 845 846 /* Disable RX DMA - incoming data will wait in the FIFO */ 847 uap->dmacr &= ~UART011_RXDMAE; 848 writew(uap->dmacr, uap->port.membase + UART011_DMACR); 849 uap->dmarx.running = false; 850 851 pending = sgbuf->sg.length - state.residue; 852 BUG_ON(pending > PL011_DMA_BUFFER_SIZE); 853 /* Then we terminate the transfer - we now know our residue */ 854 dmaengine_terminate_all(rxchan); 855 856 /* 857 * This will take the chars we have so far and insert 858 * into the framework. 859 */ 860 pl011_dma_rx_chars(uap, pending, dmarx->use_buf_b, true); 861 862 /* Switch buffer & re-trigger DMA job */ 863 dmarx->use_buf_b = !dmarx->use_buf_b; 864 if (pl011_dma_rx_trigger_dma(uap)) { 865 dev_dbg(uap->port.dev, "could not retrigger RX DMA job " 866 "fall back to interrupt mode\n"); 867 uap->im |= UART011_RXIM; 868 writew(uap->im, uap->port.membase + UART011_IMSC); 869 } 870 } 871 872 static void pl011_dma_rx_callback(void *data) 873 { 874 struct uart_amba_port *uap = data; 875 struct pl011_dmarx_data *dmarx = &uap->dmarx; 876 struct dma_chan *rxchan = dmarx->chan; 877 bool lastbuf = dmarx->use_buf_b; 878 struct pl011_sgbuf *sgbuf = dmarx->use_buf_b ? 879 &dmarx->sgbuf_b : &dmarx->sgbuf_a; 880 size_t pending; 881 struct dma_tx_state state; 882 int ret; 883 884 /* 885 * This completion interrupt occurs typically when the 886 * RX buffer is totally stuffed but no timeout has yet 887 * occurred. When that happens, we just want the RX 888 * routine to flush out the secondary DMA buffer while 889 * we immediately trigger the next DMA job. 890 */ 891 spin_lock_irq(&uap->port.lock); 892 /* 893 * Rx data can be taken by the UART interrupts during 894 * the DMA irq handler. So we check the residue here. 895 */ 896 rxchan->device->device_tx_status(rxchan, dmarx->cookie, &state); 897 pending = sgbuf->sg.length - state.residue; 898 BUG_ON(pending > PL011_DMA_BUFFER_SIZE); 899 /* Then we terminate the transfer - we now know our residue */ 900 dmaengine_terminate_all(rxchan); 901 902 uap->dmarx.running = false; 903 dmarx->use_buf_b = !lastbuf; 904 ret = pl011_dma_rx_trigger_dma(uap); 905 906 pl011_dma_rx_chars(uap, pending, lastbuf, false); 907 spin_unlock_irq(&uap->port.lock); 908 /* 909 * Do this check after we picked the DMA chars so we don't 910 * get some IRQ immediately from RX. 911 */ 912 if (ret) { 913 dev_dbg(uap->port.dev, "could not retrigger RX DMA job " 914 "fall back to interrupt mode\n"); 915 uap->im |= UART011_RXIM; 916 writew(uap->im, uap->port.membase + UART011_IMSC); 917 } 918 } 919 920 /* 921 * Stop accepting received characters, when we're shutting down or 922 * suspending this port. 923 * Locking: called with port lock held and IRQs disabled. 924 */ 925 static inline void pl011_dma_rx_stop(struct uart_amba_port *uap) 926 { 927 /* FIXME. Just disable the DMA enable */ 928 uap->dmacr &= ~UART011_RXDMAE; 929 writew(uap->dmacr, uap->port.membase + UART011_DMACR); 930 } 931 932 /* 933 * Timer handler for Rx DMA polling. 934 * Every polling, It checks the residue in the dma buffer and transfer 935 * data to the tty. Also, last_residue is updated for the next polling. 936 */ 937 static void pl011_dma_rx_poll(unsigned long args) 938 { 939 struct uart_amba_port *uap = (struct uart_amba_port *)args; 940 struct tty_port *port = &uap->port.state->port; 941 struct pl011_dmarx_data *dmarx = &uap->dmarx; 942 struct dma_chan *rxchan = uap->dmarx.chan; 943 unsigned long flags = 0; 944 unsigned int dmataken = 0; 945 unsigned int size = 0; 946 struct pl011_sgbuf *sgbuf; 947 int dma_count; 948 struct dma_tx_state state; 949 950 sgbuf = dmarx->use_buf_b ? &uap->dmarx.sgbuf_b : &uap->dmarx.sgbuf_a; 951 rxchan->device->device_tx_status(rxchan, dmarx->cookie, &state); 952 if (likely(state.residue < dmarx->last_residue)) { 953 dmataken = sgbuf->sg.length - dmarx->last_residue; 954 size = dmarx->last_residue - state.residue; 955 dma_count = tty_insert_flip_string(port, sgbuf->buf + dmataken, 956 size); 957 if (dma_count == size) 958 dmarx->last_residue = state.residue; 959 dmarx->last_jiffies = jiffies; 960 } 961 tty_flip_buffer_push(port); 962 963 /* 964 * If no data is received in poll_timeout, the driver will fall back 965 * to interrupt mode. We will retrigger DMA at the first interrupt. 966 */ 967 if (jiffies_to_msecs(jiffies - dmarx->last_jiffies) 968 > uap->dmarx.poll_timeout) { 969 970 spin_lock_irqsave(&uap->port.lock, flags); 971 pl011_dma_rx_stop(uap); 972 spin_unlock_irqrestore(&uap->port.lock, flags); 973 974 uap->dmarx.running = false; 975 dmaengine_terminate_all(rxchan); 976 del_timer(&uap->dmarx.timer); 977 } else { 978 mod_timer(&uap->dmarx.timer, 979 jiffies + msecs_to_jiffies(uap->dmarx.poll_rate)); 980 } 981 } 982 983 static void pl011_dma_startup(struct uart_amba_port *uap) 984 { 985 int ret; 986 987 if (!uap->dmatx.chan) 988 return; 989 990 uap->dmatx.buf = kmalloc(PL011_DMA_BUFFER_SIZE, GFP_KERNEL); 991 if (!uap->dmatx.buf) { 992 dev_err(uap->port.dev, "no memory for DMA TX buffer\n"); 993 uap->port.fifosize = uap->fifosize; 994 return; 995 } 996 997 sg_init_one(&uap->dmatx.sg, uap->dmatx.buf, PL011_DMA_BUFFER_SIZE); 998 999 /* The DMA buffer is now the FIFO the TTY subsystem can use */ 1000 uap->port.fifosize = PL011_DMA_BUFFER_SIZE; 1001 uap->using_tx_dma = true; 1002 1003 if (!uap->dmarx.chan) 1004 goto skip_rx; 1005 1006 /* Allocate and map DMA RX buffers */ 1007 ret = pl011_sgbuf_init(uap->dmarx.chan, &uap->dmarx.sgbuf_a, 1008 DMA_FROM_DEVICE); 1009 if (ret) { 1010 dev_err(uap->port.dev, "failed to init DMA %s: %d\n", 1011 "RX buffer A", ret); 1012 goto skip_rx; 1013 } 1014 1015 ret = pl011_sgbuf_init(uap->dmarx.chan, &uap->dmarx.sgbuf_b, 1016 DMA_FROM_DEVICE); 1017 if (ret) { 1018 dev_err(uap->port.dev, "failed to init DMA %s: %d\n", 1019 "RX buffer B", ret); 1020 pl011_sgbuf_free(uap->dmarx.chan, &uap->dmarx.sgbuf_a, 1021 DMA_FROM_DEVICE); 1022 goto skip_rx; 1023 } 1024 1025 uap->using_rx_dma = true; 1026 1027 skip_rx: 1028 /* Turn on DMA error (RX/TX will be enabled on demand) */ 1029 uap->dmacr |= UART011_DMAONERR; 1030 writew(uap->dmacr, uap->port.membase + UART011_DMACR); 1031 1032 /* 1033 * ST Micro variants has some specific dma burst threshold 1034 * compensation. Set this to 16 bytes, so burst will only 1035 * be issued above/below 16 bytes. 1036 */ 1037 if (uap->vendor->dma_threshold) 1038 writew(ST_UART011_DMAWM_RX_16 | ST_UART011_DMAWM_TX_16, 1039 uap->port.membase + ST_UART011_DMAWM); 1040 1041 if (uap->using_rx_dma) { 1042 if (pl011_dma_rx_trigger_dma(uap)) 1043 dev_dbg(uap->port.dev, "could not trigger initial " 1044 "RX DMA job, fall back to interrupt mode\n"); 1045 if (uap->dmarx.poll_rate) { 1046 init_timer(&(uap->dmarx.timer)); 1047 uap->dmarx.timer.function = pl011_dma_rx_poll; 1048 uap->dmarx.timer.data = (unsigned long)uap; 1049 mod_timer(&uap->dmarx.timer, 1050 jiffies + 1051 msecs_to_jiffies(uap->dmarx.poll_rate)); 1052 uap->dmarx.last_residue = PL011_DMA_BUFFER_SIZE; 1053 uap->dmarx.last_jiffies = jiffies; 1054 } 1055 } 1056 } 1057 1058 static void pl011_dma_shutdown(struct uart_amba_port *uap) 1059 { 1060 if (!(uap->using_tx_dma || uap->using_rx_dma)) 1061 return; 1062 1063 /* Disable RX and TX DMA */ 1064 while (readw(uap->port.membase + UART01x_FR) & UART01x_FR_BUSY) 1065 barrier(); 1066 1067 spin_lock_irq(&uap->port.lock); 1068 uap->dmacr &= ~(UART011_DMAONERR | UART011_RXDMAE | UART011_TXDMAE); 1069 writew(uap->dmacr, uap->port.membase + UART011_DMACR); 1070 spin_unlock_irq(&uap->port.lock); 1071 1072 if (uap->using_tx_dma) { 1073 /* In theory, this should already be done by pl011_dma_flush_buffer */ 1074 dmaengine_terminate_all(uap->dmatx.chan); 1075 if (uap->dmatx.queued) { 1076 dma_unmap_sg(uap->dmatx.chan->device->dev, &uap->dmatx.sg, 1, 1077 DMA_TO_DEVICE); 1078 uap->dmatx.queued = false; 1079 } 1080 1081 kfree(uap->dmatx.buf); 1082 uap->using_tx_dma = false; 1083 } 1084 1085 if (uap->using_rx_dma) { 1086 dmaengine_terminate_all(uap->dmarx.chan); 1087 /* Clean up the RX DMA */ 1088 pl011_sgbuf_free(uap->dmarx.chan, &uap->dmarx.sgbuf_a, DMA_FROM_DEVICE); 1089 pl011_sgbuf_free(uap->dmarx.chan, &uap->dmarx.sgbuf_b, DMA_FROM_DEVICE); 1090 if (uap->dmarx.poll_rate) 1091 del_timer_sync(&uap->dmarx.timer); 1092 uap->using_rx_dma = false; 1093 } 1094 } 1095 1096 static inline bool pl011_dma_rx_available(struct uart_amba_port *uap) 1097 { 1098 return uap->using_rx_dma; 1099 } 1100 1101 static inline bool pl011_dma_rx_running(struct uart_amba_port *uap) 1102 { 1103 return uap->using_rx_dma && uap->dmarx.running; 1104 } 1105 1106 #else 1107 /* Blank functions if the DMA engine is not available */ 1108 static inline void pl011_dma_probe(struct device *dev, struct uart_amba_port *uap) 1109 { 1110 } 1111 1112 static inline void pl011_dma_remove(struct uart_amba_port *uap) 1113 { 1114 } 1115 1116 static inline void pl011_dma_startup(struct uart_amba_port *uap) 1117 { 1118 } 1119 1120 static inline void pl011_dma_shutdown(struct uart_amba_port *uap) 1121 { 1122 } 1123 1124 static inline bool pl011_dma_tx_irq(struct uart_amba_port *uap) 1125 { 1126 return false; 1127 } 1128 1129 static inline void pl011_dma_tx_stop(struct uart_amba_port *uap) 1130 { 1131 } 1132 1133 static inline bool pl011_dma_tx_start(struct uart_amba_port *uap) 1134 { 1135 return false; 1136 } 1137 1138 static inline void pl011_dma_rx_irq(struct uart_amba_port *uap) 1139 { 1140 } 1141 1142 static inline void pl011_dma_rx_stop(struct uart_amba_port *uap) 1143 { 1144 } 1145 1146 static inline int pl011_dma_rx_trigger_dma(struct uart_amba_port *uap) 1147 { 1148 return -EIO; 1149 } 1150 1151 static inline bool pl011_dma_rx_available(struct uart_amba_port *uap) 1152 { 1153 return false; 1154 } 1155 1156 static inline bool pl011_dma_rx_running(struct uart_amba_port *uap) 1157 { 1158 return false; 1159 } 1160 1161 #define pl011_dma_flush_buffer NULL 1162 #endif 1163 1164 static void pl011_stop_tx(struct uart_port *port) 1165 { 1166 struct uart_amba_port *uap = (struct uart_amba_port *)port; 1167 1168 uap->im &= ~UART011_TXIM; 1169 writew(uap->im, uap->port.membase + UART011_IMSC); 1170 pl011_dma_tx_stop(uap); 1171 } 1172 1173 static void pl011_start_tx(struct uart_port *port) 1174 { 1175 struct uart_amba_port *uap = (struct uart_amba_port *)port; 1176 1177 if (!pl011_dma_tx_start(uap)) { 1178 uap->im |= UART011_TXIM; 1179 writew(uap->im, uap->port.membase + UART011_IMSC); 1180 } 1181 } 1182 1183 static void pl011_stop_rx(struct uart_port *port) 1184 { 1185 struct uart_amba_port *uap = (struct uart_amba_port *)port; 1186 1187 uap->im &= ~(UART011_RXIM|UART011_RTIM|UART011_FEIM| 1188 UART011_PEIM|UART011_BEIM|UART011_OEIM); 1189 writew(uap->im, uap->port.membase + UART011_IMSC); 1190 1191 pl011_dma_rx_stop(uap); 1192 } 1193 1194 static void pl011_enable_ms(struct uart_port *port) 1195 { 1196 struct uart_amba_port *uap = (struct uart_amba_port *)port; 1197 1198 uap->im |= UART011_RIMIM|UART011_CTSMIM|UART011_DCDMIM|UART011_DSRMIM; 1199 writew(uap->im, uap->port.membase + UART011_IMSC); 1200 } 1201 1202 static void pl011_rx_chars(struct uart_amba_port *uap) 1203 __releases(&uap->port.lock) 1204 __acquires(&uap->port.lock) 1205 { 1206 pl011_fifo_to_tty(uap); 1207 1208 spin_unlock(&uap->port.lock); 1209 tty_flip_buffer_push(&uap->port.state->port); 1210 /* 1211 * If we were temporarily out of DMA mode for a while, 1212 * attempt to switch back to DMA mode again. 1213 */ 1214 if (pl011_dma_rx_available(uap)) { 1215 if (pl011_dma_rx_trigger_dma(uap)) { 1216 dev_dbg(uap->port.dev, "could not trigger RX DMA job " 1217 "fall back to interrupt mode again\n"); 1218 uap->im |= UART011_RXIM; 1219 } else { 1220 uap->im &= ~UART011_RXIM; 1221 #ifdef CONFIG_DMA_ENGINE 1222 /* Start Rx DMA poll */ 1223 if (uap->dmarx.poll_rate) { 1224 uap->dmarx.last_jiffies = jiffies; 1225 uap->dmarx.last_residue = PL011_DMA_BUFFER_SIZE; 1226 mod_timer(&uap->dmarx.timer, 1227 jiffies + 1228 msecs_to_jiffies(uap->dmarx.poll_rate)); 1229 } 1230 #endif 1231 } 1232 1233 writew(uap->im, uap->port.membase + UART011_IMSC); 1234 } 1235 spin_lock(&uap->port.lock); 1236 } 1237 1238 static void pl011_tx_chars(struct uart_amba_port *uap) 1239 { 1240 struct circ_buf *xmit = &uap->port.state->xmit; 1241 int count; 1242 1243 if (uap->port.x_char) { 1244 writew(uap->port.x_char, uap->port.membase + UART01x_DR); 1245 uap->port.icount.tx++; 1246 uap->port.x_char = 0; 1247 return; 1248 } 1249 if (uart_circ_empty(xmit) || uart_tx_stopped(&uap->port)) { 1250 pl011_stop_tx(&uap->port); 1251 return; 1252 } 1253 1254 /* If we are using DMA mode, try to send some characters. */ 1255 if (pl011_dma_tx_irq(uap)) 1256 return; 1257 1258 count = uap->fifosize >> 1; 1259 do { 1260 writew(xmit->buf[xmit->tail], uap->port.membase + UART01x_DR); 1261 xmit->tail = (xmit->tail + 1) & (UART_XMIT_SIZE - 1); 1262 uap->port.icount.tx++; 1263 if (uart_circ_empty(xmit)) 1264 break; 1265 } while (--count > 0); 1266 1267 if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS) 1268 uart_write_wakeup(&uap->port); 1269 1270 if (uart_circ_empty(xmit)) 1271 pl011_stop_tx(&uap->port); 1272 } 1273 1274 static void pl011_modem_status(struct uart_amba_port *uap) 1275 { 1276 unsigned int status, delta; 1277 1278 status = readw(uap->port.membase + UART01x_FR) & UART01x_FR_MODEM_ANY; 1279 1280 delta = status ^ uap->old_status; 1281 uap->old_status = status; 1282 1283 if (!delta) 1284 return; 1285 1286 if (delta & UART01x_FR_DCD) 1287 uart_handle_dcd_change(&uap->port, status & UART01x_FR_DCD); 1288 1289 if (delta & UART01x_FR_DSR) 1290 uap->port.icount.dsr++; 1291 1292 if (delta & UART01x_FR_CTS) 1293 uart_handle_cts_change(&uap->port, status & UART01x_FR_CTS); 1294 1295 wake_up_interruptible(&uap->port.state->port.delta_msr_wait); 1296 } 1297 1298 static irqreturn_t pl011_int(int irq, void *dev_id) 1299 { 1300 struct uart_amba_port *uap = dev_id; 1301 unsigned long flags; 1302 unsigned int status, pass_counter = AMBA_ISR_PASS_LIMIT; 1303 int handled = 0; 1304 unsigned int dummy_read; 1305 1306 spin_lock_irqsave(&uap->port.lock, flags); 1307 status = readw(uap->port.membase + UART011_MIS); 1308 if (status) { 1309 do { 1310 if (uap->vendor->cts_event_workaround) { 1311 /* workaround to make sure that all bits are unlocked.. */ 1312 writew(0x00, uap->port.membase + UART011_ICR); 1313 1314 /* 1315 * WA: introduce 26ns(1 uart clk) delay before W1C; 1316 * single apb access will incur 2 pclk(133.12Mhz) delay, 1317 * so add 2 dummy reads 1318 */ 1319 dummy_read = readw(uap->port.membase + UART011_ICR); 1320 dummy_read = readw(uap->port.membase + UART011_ICR); 1321 } 1322 1323 writew(status & ~(UART011_TXIS|UART011_RTIS| 1324 UART011_RXIS), 1325 uap->port.membase + UART011_ICR); 1326 1327 if (status & (UART011_RTIS|UART011_RXIS)) { 1328 if (pl011_dma_rx_running(uap)) 1329 pl011_dma_rx_irq(uap); 1330 else 1331 pl011_rx_chars(uap); 1332 } 1333 if (status & (UART011_DSRMIS|UART011_DCDMIS| 1334 UART011_CTSMIS|UART011_RIMIS)) 1335 pl011_modem_status(uap); 1336 if (status & UART011_TXIS) 1337 pl011_tx_chars(uap); 1338 1339 if (pass_counter-- == 0) 1340 break; 1341 1342 status = readw(uap->port.membase + UART011_MIS); 1343 } while (status != 0); 1344 handled = 1; 1345 } 1346 1347 spin_unlock_irqrestore(&uap->port.lock, flags); 1348 1349 return IRQ_RETVAL(handled); 1350 } 1351 1352 static unsigned int pl011_tx_empty(struct uart_port *port) 1353 { 1354 struct uart_amba_port *uap = (struct uart_amba_port *)port; 1355 unsigned int status = readw(uap->port.membase + UART01x_FR); 1356 return status & (UART01x_FR_BUSY|UART01x_FR_TXFF) ? 0 : TIOCSER_TEMT; 1357 } 1358 1359 static unsigned int pl011_get_mctrl(struct uart_port *port) 1360 { 1361 struct uart_amba_port *uap = (struct uart_amba_port *)port; 1362 unsigned int result = 0; 1363 unsigned int status = readw(uap->port.membase + UART01x_FR); 1364 1365 #define TIOCMBIT(uartbit, tiocmbit) \ 1366 if (status & uartbit) \ 1367 result |= tiocmbit 1368 1369 TIOCMBIT(UART01x_FR_DCD, TIOCM_CAR); 1370 TIOCMBIT(UART01x_FR_DSR, TIOCM_DSR); 1371 TIOCMBIT(UART01x_FR_CTS, TIOCM_CTS); 1372 TIOCMBIT(UART011_FR_RI, TIOCM_RNG); 1373 #undef TIOCMBIT 1374 return result; 1375 } 1376 1377 static void pl011_set_mctrl(struct uart_port *port, unsigned int mctrl) 1378 { 1379 struct uart_amba_port *uap = (struct uart_amba_port *)port; 1380 unsigned int cr; 1381 1382 cr = readw(uap->port.membase + UART011_CR); 1383 1384 #define TIOCMBIT(tiocmbit, uartbit) \ 1385 if (mctrl & tiocmbit) \ 1386 cr |= uartbit; \ 1387 else \ 1388 cr &= ~uartbit 1389 1390 TIOCMBIT(TIOCM_RTS, UART011_CR_RTS); 1391 TIOCMBIT(TIOCM_DTR, UART011_CR_DTR); 1392 TIOCMBIT(TIOCM_OUT1, UART011_CR_OUT1); 1393 TIOCMBIT(TIOCM_OUT2, UART011_CR_OUT2); 1394 TIOCMBIT(TIOCM_LOOP, UART011_CR_LBE); 1395 1396 if (uap->autorts) { 1397 /* We need to disable auto-RTS if we want to turn RTS off */ 1398 TIOCMBIT(TIOCM_RTS, UART011_CR_RTSEN); 1399 } 1400 #undef TIOCMBIT 1401 1402 writew(cr, uap->port.membase + UART011_CR); 1403 } 1404 1405 static void pl011_break_ctl(struct uart_port *port, int break_state) 1406 { 1407 struct uart_amba_port *uap = (struct uart_amba_port *)port; 1408 unsigned long flags; 1409 unsigned int lcr_h; 1410 1411 spin_lock_irqsave(&uap->port.lock, flags); 1412 lcr_h = readw(uap->port.membase + uap->lcrh_tx); 1413 if (break_state == -1) 1414 lcr_h |= UART01x_LCRH_BRK; 1415 else 1416 lcr_h &= ~UART01x_LCRH_BRK; 1417 writew(lcr_h, uap->port.membase + uap->lcrh_tx); 1418 spin_unlock_irqrestore(&uap->port.lock, flags); 1419 } 1420 1421 #ifdef CONFIG_CONSOLE_POLL 1422 1423 static void pl011_quiesce_irqs(struct uart_port *port) 1424 { 1425 struct uart_amba_port *uap = (struct uart_amba_port *)port; 1426 unsigned char __iomem *regs = uap->port.membase; 1427 1428 writew(readw(regs + UART011_MIS), regs + UART011_ICR); 1429 /* 1430 * There is no way to clear TXIM as this is "ready to transmit IRQ", so 1431 * we simply mask it. start_tx() will unmask it. 1432 * 1433 * Note we can race with start_tx(), and if the race happens, the 1434 * polling user might get another interrupt just after we clear it. 1435 * But it should be OK and can happen even w/o the race, e.g. 1436 * controller immediately got some new data and raised the IRQ. 1437 * 1438 * And whoever uses polling routines assumes that it manages the device 1439 * (including tx queue), so we're also fine with start_tx()'s caller 1440 * side. 1441 */ 1442 writew(readw(regs + UART011_IMSC) & ~UART011_TXIM, regs + UART011_IMSC); 1443 } 1444 1445 static int pl011_get_poll_char(struct uart_port *port) 1446 { 1447 struct uart_amba_port *uap = (struct uart_amba_port *)port; 1448 unsigned int status; 1449 1450 /* 1451 * The caller might need IRQs lowered, e.g. if used with KDB NMI 1452 * debugger. 1453 */ 1454 pl011_quiesce_irqs(port); 1455 1456 status = readw(uap->port.membase + UART01x_FR); 1457 if (status & UART01x_FR_RXFE) 1458 return NO_POLL_CHAR; 1459 1460 return readw(uap->port.membase + UART01x_DR); 1461 } 1462 1463 static void pl011_put_poll_char(struct uart_port *port, 1464 unsigned char ch) 1465 { 1466 struct uart_amba_port *uap = (struct uart_amba_port *)port; 1467 1468 while (readw(uap->port.membase + UART01x_FR) & UART01x_FR_TXFF) 1469 barrier(); 1470 1471 writew(ch, uap->port.membase + UART01x_DR); 1472 } 1473 1474 #endif /* CONFIG_CONSOLE_POLL */ 1475 1476 static int pl011_hwinit(struct uart_port *port) 1477 { 1478 struct uart_amba_port *uap = (struct uart_amba_port *)port; 1479 int retval; 1480 1481 /* Optionaly enable pins to be muxed in and configured */ 1482 pinctrl_pm_select_default_state(port->dev); 1483 1484 /* 1485 * Try to enable the clock producer. 1486 */ 1487 retval = clk_prepare_enable(uap->clk); 1488 if (retval) 1489 goto out; 1490 1491 uap->port.uartclk = clk_get_rate(uap->clk); 1492 1493 /* Clear pending error and receive interrupts */ 1494 writew(UART011_OEIS | UART011_BEIS | UART011_PEIS | UART011_FEIS | 1495 UART011_RTIS | UART011_RXIS, uap->port.membase + UART011_ICR); 1496 1497 /* 1498 * Save interrupts enable mask, and enable RX interrupts in case if 1499 * the interrupt is used for NMI entry. 1500 */ 1501 uap->im = readw(uap->port.membase + UART011_IMSC); 1502 writew(UART011_RTIM | UART011_RXIM, uap->port.membase + UART011_IMSC); 1503 1504 if (dev_get_platdata(uap->port.dev)) { 1505 struct amba_pl011_data *plat; 1506 1507 plat = dev_get_platdata(uap->port.dev); 1508 if (plat->init) 1509 plat->init(); 1510 } 1511 return 0; 1512 out: 1513 return retval; 1514 } 1515 1516 static int pl011_startup(struct uart_port *port) 1517 { 1518 struct uart_amba_port *uap = (struct uart_amba_port *)port; 1519 unsigned int cr; 1520 int retval; 1521 1522 retval = pl011_hwinit(port); 1523 if (retval) 1524 goto clk_dis; 1525 1526 writew(uap->im, uap->port.membase + UART011_IMSC); 1527 1528 /* 1529 * Allocate the IRQ 1530 */ 1531 retval = request_irq(uap->port.irq, pl011_int, 0, "uart-pl011", uap); 1532 if (retval) 1533 goto clk_dis; 1534 1535 writew(uap->vendor->ifls, uap->port.membase + UART011_IFLS); 1536 1537 /* 1538 * Provoke TX FIFO interrupt into asserting. 1539 */ 1540 cr = UART01x_CR_UARTEN | UART011_CR_TXE | UART011_CR_LBE; 1541 writew(cr, uap->port.membase + UART011_CR); 1542 writew(0, uap->port.membase + UART011_FBRD); 1543 writew(1, uap->port.membase + UART011_IBRD); 1544 writew(0, uap->port.membase + uap->lcrh_rx); 1545 if (uap->lcrh_tx != uap->lcrh_rx) { 1546 int i; 1547 /* 1548 * Wait 10 PCLKs before writing LCRH_TX register, 1549 * to get this delay write read only register 10 times 1550 */ 1551 for (i = 0; i < 10; ++i) 1552 writew(0xff, uap->port.membase + UART011_MIS); 1553 writew(0, uap->port.membase + uap->lcrh_tx); 1554 } 1555 writew(0, uap->port.membase + UART01x_DR); 1556 while (readw(uap->port.membase + UART01x_FR) & UART01x_FR_BUSY) 1557 barrier(); 1558 1559 /* restore RTS and DTR */ 1560 cr = uap->old_cr & (UART011_CR_RTS | UART011_CR_DTR); 1561 cr |= UART01x_CR_UARTEN | UART011_CR_RXE | UART011_CR_TXE; 1562 writew(cr, uap->port.membase + UART011_CR); 1563 1564 /* 1565 * initialise the old status of the modem signals 1566 */ 1567 uap->old_status = readw(uap->port.membase + UART01x_FR) & UART01x_FR_MODEM_ANY; 1568 1569 /* Startup DMA */ 1570 pl011_dma_startup(uap); 1571 1572 /* 1573 * Finally, enable interrupts, only timeouts when using DMA 1574 * if initial RX DMA job failed, start in interrupt mode 1575 * as well. 1576 */ 1577 spin_lock_irq(&uap->port.lock); 1578 /* Clear out any spuriously appearing RX interrupts */ 1579 writew(UART011_RTIS | UART011_RXIS, 1580 uap->port.membase + UART011_ICR); 1581 uap->im = UART011_RTIM; 1582 if (!pl011_dma_rx_running(uap)) 1583 uap->im |= UART011_RXIM; 1584 writew(uap->im, uap->port.membase + UART011_IMSC); 1585 spin_unlock_irq(&uap->port.lock); 1586 1587 return 0; 1588 1589 clk_dis: 1590 clk_disable_unprepare(uap->clk); 1591 return retval; 1592 } 1593 1594 static void pl011_shutdown_channel(struct uart_amba_port *uap, 1595 unsigned int lcrh) 1596 { 1597 unsigned long val; 1598 1599 val = readw(uap->port.membase + lcrh); 1600 val &= ~(UART01x_LCRH_BRK | UART01x_LCRH_FEN); 1601 writew(val, uap->port.membase + lcrh); 1602 } 1603 1604 static void pl011_shutdown(struct uart_port *port) 1605 { 1606 struct uart_amba_port *uap = (struct uart_amba_port *)port; 1607 unsigned int cr; 1608 1609 /* 1610 * disable all interrupts 1611 */ 1612 spin_lock_irq(&uap->port.lock); 1613 uap->im = 0; 1614 writew(uap->im, uap->port.membase + UART011_IMSC); 1615 writew(0xffff, uap->port.membase + UART011_ICR); 1616 spin_unlock_irq(&uap->port.lock); 1617 1618 pl011_dma_shutdown(uap); 1619 1620 /* 1621 * Free the interrupt 1622 */ 1623 free_irq(uap->port.irq, uap); 1624 1625 /* 1626 * disable the port 1627 * disable the port. It should not disable RTS and DTR. 1628 * Also RTS and DTR state should be preserved to restore 1629 * it during startup(). 1630 */ 1631 uap->autorts = false; 1632 cr = readw(uap->port.membase + UART011_CR); 1633 uap->old_cr = cr; 1634 cr &= UART011_CR_RTS | UART011_CR_DTR; 1635 cr |= UART01x_CR_UARTEN | UART011_CR_TXE; 1636 writew(cr, uap->port.membase + UART011_CR); 1637 1638 /* 1639 * disable break condition and fifos 1640 */ 1641 pl011_shutdown_channel(uap, uap->lcrh_rx); 1642 if (uap->lcrh_rx != uap->lcrh_tx) 1643 pl011_shutdown_channel(uap, uap->lcrh_tx); 1644 1645 /* 1646 * Shut down the clock producer 1647 */ 1648 clk_disable_unprepare(uap->clk); 1649 /* Optionally let pins go into sleep states */ 1650 pinctrl_pm_select_sleep_state(port->dev); 1651 1652 if (dev_get_platdata(uap->port.dev)) { 1653 struct amba_pl011_data *plat; 1654 1655 plat = dev_get_platdata(uap->port.dev); 1656 if (plat->exit) 1657 plat->exit(); 1658 } 1659 1660 } 1661 1662 static void 1663 pl011_set_termios(struct uart_port *port, struct ktermios *termios, 1664 struct ktermios *old) 1665 { 1666 struct uart_amba_port *uap = (struct uart_amba_port *)port; 1667 unsigned int lcr_h, old_cr; 1668 unsigned long flags; 1669 unsigned int baud, quot, clkdiv; 1670 1671 if (uap->vendor->oversampling) 1672 clkdiv = 8; 1673 else 1674 clkdiv = 16; 1675 1676 /* 1677 * Ask the core to calculate the divisor for us. 1678 */ 1679 baud = uart_get_baud_rate(port, termios, old, 0, 1680 port->uartclk / clkdiv); 1681 #ifdef CONFIG_DMA_ENGINE 1682 /* 1683 * Adjust RX DMA polling rate with baud rate if not specified. 1684 */ 1685 if (uap->dmarx.auto_poll_rate) 1686 uap->dmarx.poll_rate = DIV_ROUND_UP(10000000, baud); 1687 #endif 1688 1689 if (baud > port->uartclk/16) 1690 quot = DIV_ROUND_CLOSEST(port->uartclk * 8, baud); 1691 else 1692 quot = DIV_ROUND_CLOSEST(port->uartclk * 4, baud); 1693 1694 switch (termios->c_cflag & CSIZE) { 1695 case CS5: 1696 lcr_h = UART01x_LCRH_WLEN_5; 1697 break; 1698 case CS6: 1699 lcr_h = UART01x_LCRH_WLEN_6; 1700 break; 1701 case CS7: 1702 lcr_h = UART01x_LCRH_WLEN_7; 1703 break; 1704 default: // CS8 1705 lcr_h = UART01x_LCRH_WLEN_8; 1706 break; 1707 } 1708 if (termios->c_cflag & CSTOPB) 1709 lcr_h |= UART01x_LCRH_STP2; 1710 if (termios->c_cflag & PARENB) { 1711 lcr_h |= UART01x_LCRH_PEN; 1712 if (!(termios->c_cflag & PARODD)) 1713 lcr_h |= UART01x_LCRH_EPS; 1714 } 1715 if (uap->fifosize > 1) 1716 lcr_h |= UART01x_LCRH_FEN; 1717 1718 spin_lock_irqsave(&port->lock, flags); 1719 1720 /* 1721 * Update the per-port timeout. 1722 */ 1723 uart_update_timeout(port, termios->c_cflag, baud); 1724 1725 port->read_status_mask = UART011_DR_OE | 255; 1726 if (termios->c_iflag & INPCK) 1727 port->read_status_mask |= UART011_DR_FE | UART011_DR_PE; 1728 if (termios->c_iflag & (BRKINT | PARMRK)) 1729 port->read_status_mask |= UART011_DR_BE; 1730 1731 /* 1732 * Characters to ignore 1733 */ 1734 port->ignore_status_mask = 0; 1735 if (termios->c_iflag & IGNPAR) 1736 port->ignore_status_mask |= UART011_DR_FE | UART011_DR_PE; 1737 if (termios->c_iflag & IGNBRK) { 1738 port->ignore_status_mask |= UART011_DR_BE; 1739 /* 1740 * If we're ignoring parity and break indicators, 1741 * ignore overruns too (for real raw support). 1742 */ 1743 if (termios->c_iflag & IGNPAR) 1744 port->ignore_status_mask |= UART011_DR_OE; 1745 } 1746 1747 /* 1748 * Ignore all characters if CREAD is not set. 1749 */ 1750 if ((termios->c_cflag & CREAD) == 0) 1751 port->ignore_status_mask |= UART_DUMMY_DR_RX; 1752 1753 if (UART_ENABLE_MS(port, termios->c_cflag)) 1754 pl011_enable_ms(port); 1755 1756 /* first, disable everything */ 1757 old_cr = readw(port->membase + UART011_CR); 1758 writew(0, port->membase + UART011_CR); 1759 1760 if (termios->c_cflag & CRTSCTS) { 1761 if (old_cr & UART011_CR_RTS) 1762 old_cr |= UART011_CR_RTSEN; 1763 1764 old_cr |= UART011_CR_CTSEN; 1765 uap->autorts = true; 1766 } else { 1767 old_cr &= ~(UART011_CR_CTSEN | UART011_CR_RTSEN); 1768 uap->autorts = false; 1769 } 1770 1771 if (uap->vendor->oversampling) { 1772 if (baud > port->uartclk / 16) 1773 old_cr |= ST_UART011_CR_OVSFACT; 1774 else 1775 old_cr &= ~ST_UART011_CR_OVSFACT; 1776 } 1777 1778 /* 1779 * Workaround for the ST Micro oversampling variants to 1780 * increase the bitrate slightly, by lowering the divisor, 1781 * to avoid delayed sampling of start bit at high speeds, 1782 * else we see data corruption. 1783 */ 1784 if (uap->vendor->oversampling) { 1785 if ((baud >= 3000000) && (baud < 3250000) && (quot > 1)) 1786 quot -= 1; 1787 else if ((baud > 3250000) && (quot > 2)) 1788 quot -= 2; 1789 } 1790 /* Set baud rate */ 1791 writew(quot & 0x3f, port->membase + UART011_FBRD); 1792 writew(quot >> 6, port->membase + UART011_IBRD); 1793 1794 /* 1795 * ----------v----------v----------v----------v----- 1796 * NOTE: lcrh_tx and lcrh_rx MUST BE WRITTEN AFTER 1797 * UART011_FBRD & UART011_IBRD. 1798 * ----------^----------^----------^----------^----- 1799 */ 1800 writew(lcr_h, port->membase + uap->lcrh_rx); 1801 if (uap->lcrh_rx != uap->lcrh_tx) { 1802 int i; 1803 /* 1804 * Wait 10 PCLKs before writing LCRH_TX register, 1805 * to get this delay write read only register 10 times 1806 */ 1807 for (i = 0; i < 10; ++i) 1808 writew(0xff, uap->port.membase + UART011_MIS); 1809 writew(lcr_h, port->membase + uap->lcrh_tx); 1810 } 1811 writew(old_cr, port->membase + UART011_CR); 1812 1813 spin_unlock_irqrestore(&port->lock, flags); 1814 } 1815 1816 static const char *pl011_type(struct uart_port *port) 1817 { 1818 struct uart_amba_port *uap = (struct uart_amba_port *)port; 1819 return uap->port.type == PORT_AMBA ? uap->type : NULL; 1820 } 1821 1822 /* 1823 * Release the memory region(s) being used by 'port' 1824 */ 1825 static void pl011_release_port(struct uart_port *port) 1826 { 1827 release_mem_region(port->mapbase, SZ_4K); 1828 } 1829 1830 /* 1831 * Request the memory region(s) being used by 'port' 1832 */ 1833 static int pl011_request_port(struct uart_port *port) 1834 { 1835 return request_mem_region(port->mapbase, SZ_4K, "uart-pl011") 1836 != NULL ? 0 : -EBUSY; 1837 } 1838 1839 /* 1840 * Configure/autoconfigure the port. 1841 */ 1842 static void pl011_config_port(struct uart_port *port, int flags) 1843 { 1844 if (flags & UART_CONFIG_TYPE) { 1845 port->type = PORT_AMBA; 1846 pl011_request_port(port); 1847 } 1848 } 1849 1850 /* 1851 * verify the new serial_struct (for TIOCSSERIAL). 1852 */ 1853 static int pl011_verify_port(struct uart_port *port, struct serial_struct *ser) 1854 { 1855 int ret = 0; 1856 if (ser->type != PORT_UNKNOWN && ser->type != PORT_AMBA) 1857 ret = -EINVAL; 1858 if (ser->irq < 0 || ser->irq >= nr_irqs) 1859 ret = -EINVAL; 1860 if (ser->baud_base < 9600) 1861 ret = -EINVAL; 1862 return ret; 1863 } 1864 1865 static struct uart_ops amba_pl011_pops = { 1866 .tx_empty = pl011_tx_empty, 1867 .set_mctrl = pl011_set_mctrl, 1868 .get_mctrl = pl011_get_mctrl, 1869 .stop_tx = pl011_stop_tx, 1870 .start_tx = pl011_start_tx, 1871 .stop_rx = pl011_stop_rx, 1872 .enable_ms = pl011_enable_ms, 1873 .break_ctl = pl011_break_ctl, 1874 .startup = pl011_startup, 1875 .shutdown = pl011_shutdown, 1876 .flush_buffer = pl011_dma_flush_buffer, 1877 .set_termios = pl011_set_termios, 1878 .type = pl011_type, 1879 .release_port = pl011_release_port, 1880 .request_port = pl011_request_port, 1881 .config_port = pl011_config_port, 1882 .verify_port = pl011_verify_port, 1883 #ifdef CONFIG_CONSOLE_POLL 1884 .poll_init = pl011_hwinit, 1885 .poll_get_char = pl011_get_poll_char, 1886 .poll_put_char = pl011_put_poll_char, 1887 #endif 1888 }; 1889 1890 static struct uart_amba_port *amba_ports[UART_NR]; 1891 1892 #ifdef CONFIG_SERIAL_AMBA_PL011_CONSOLE 1893 1894 static void pl011_console_putchar(struct uart_port *port, int ch) 1895 { 1896 struct uart_amba_port *uap = (struct uart_amba_port *)port; 1897 1898 while (readw(uap->port.membase + UART01x_FR) & UART01x_FR_TXFF) 1899 barrier(); 1900 writew(ch, uap->port.membase + UART01x_DR); 1901 } 1902 1903 static void 1904 pl011_console_write(struct console *co, const char *s, unsigned int count) 1905 { 1906 struct uart_amba_port *uap = amba_ports[co->index]; 1907 unsigned int status, old_cr, new_cr; 1908 unsigned long flags; 1909 int locked = 1; 1910 1911 clk_enable(uap->clk); 1912 1913 local_irq_save(flags); 1914 if (uap->port.sysrq) 1915 locked = 0; 1916 else if (oops_in_progress) 1917 locked = spin_trylock(&uap->port.lock); 1918 else 1919 spin_lock(&uap->port.lock); 1920 1921 /* 1922 * First save the CR then disable the interrupts 1923 */ 1924 old_cr = readw(uap->port.membase + UART011_CR); 1925 new_cr = old_cr & ~UART011_CR_CTSEN; 1926 new_cr |= UART01x_CR_UARTEN | UART011_CR_TXE; 1927 writew(new_cr, uap->port.membase + UART011_CR); 1928 1929 uart_console_write(&uap->port, s, count, pl011_console_putchar); 1930 1931 /* 1932 * Finally, wait for transmitter to become empty 1933 * and restore the TCR 1934 */ 1935 do { 1936 status = readw(uap->port.membase + UART01x_FR); 1937 } while (status & UART01x_FR_BUSY); 1938 writew(old_cr, uap->port.membase + UART011_CR); 1939 1940 if (locked) 1941 spin_unlock(&uap->port.lock); 1942 local_irq_restore(flags); 1943 1944 clk_disable(uap->clk); 1945 } 1946 1947 static void __init 1948 pl011_console_get_options(struct uart_amba_port *uap, int *baud, 1949 int *parity, int *bits) 1950 { 1951 if (readw(uap->port.membase + UART011_CR) & UART01x_CR_UARTEN) { 1952 unsigned int lcr_h, ibrd, fbrd; 1953 1954 lcr_h = readw(uap->port.membase + uap->lcrh_tx); 1955 1956 *parity = 'n'; 1957 if (lcr_h & UART01x_LCRH_PEN) { 1958 if (lcr_h & UART01x_LCRH_EPS) 1959 *parity = 'e'; 1960 else 1961 *parity = 'o'; 1962 } 1963 1964 if ((lcr_h & 0x60) == UART01x_LCRH_WLEN_7) 1965 *bits = 7; 1966 else 1967 *bits = 8; 1968 1969 ibrd = readw(uap->port.membase + UART011_IBRD); 1970 fbrd = readw(uap->port.membase + UART011_FBRD); 1971 1972 *baud = uap->port.uartclk * 4 / (64 * ibrd + fbrd); 1973 1974 if (uap->vendor->oversampling) { 1975 if (readw(uap->port.membase + UART011_CR) 1976 & ST_UART011_CR_OVSFACT) 1977 *baud *= 2; 1978 } 1979 } 1980 } 1981 1982 static int __init pl011_console_setup(struct console *co, char *options) 1983 { 1984 struct uart_amba_port *uap; 1985 int baud = 38400; 1986 int bits = 8; 1987 int parity = 'n'; 1988 int flow = 'n'; 1989 int ret; 1990 1991 /* 1992 * Check whether an invalid uart number has been specified, and 1993 * if so, search for the first available port that does have 1994 * console support. 1995 */ 1996 if (co->index >= UART_NR) 1997 co->index = 0; 1998 uap = amba_ports[co->index]; 1999 if (!uap) 2000 return -ENODEV; 2001 2002 /* Allow pins to be muxed in and configured */ 2003 pinctrl_pm_select_default_state(uap->port.dev); 2004 2005 ret = clk_prepare(uap->clk); 2006 if (ret) 2007 return ret; 2008 2009 if (dev_get_platdata(uap->port.dev)) { 2010 struct amba_pl011_data *plat; 2011 2012 plat = dev_get_platdata(uap->port.dev); 2013 if (plat->init) 2014 plat->init(); 2015 } 2016 2017 uap->port.uartclk = clk_get_rate(uap->clk); 2018 2019 if (options) 2020 uart_parse_options(options, &baud, &parity, &bits, &flow); 2021 else 2022 pl011_console_get_options(uap, &baud, &parity, &bits); 2023 2024 return uart_set_options(&uap->port, co, baud, parity, bits, flow); 2025 } 2026 2027 static struct uart_driver amba_reg; 2028 static struct console amba_console = { 2029 .name = "ttyAMA", 2030 .write = pl011_console_write, 2031 .device = uart_console_device, 2032 .setup = pl011_console_setup, 2033 .flags = CON_PRINTBUFFER, 2034 .index = -1, 2035 .data = &amba_reg, 2036 }; 2037 2038 #define AMBA_CONSOLE (&amba_console) 2039 #else 2040 #define AMBA_CONSOLE NULL 2041 #endif 2042 2043 static struct uart_driver amba_reg = { 2044 .owner = THIS_MODULE, 2045 .driver_name = "ttyAMA", 2046 .dev_name = "ttyAMA", 2047 .major = SERIAL_AMBA_MAJOR, 2048 .minor = SERIAL_AMBA_MINOR, 2049 .nr = UART_NR, 2050 .cons = AMBA_CONSOLE, 2051 }; 2052 2053 static int pl011_probe_dt_alias(int index, struct device *dev) 2054 { 2055 struct device_node *np; 2056 static bool seen_dev_with_alias = false; 2057 static bool seen_dev_without_alias = false; 2058 int ret = index; 2059 2060 if (!IS_ENABLED(CONFIG_OF)) 2061 return ret; 2062 2063 np = dev->of_node; 2064 if (!np) 2065 return ret; 2066 2067 ret = of_alias_get_id(np, "serial"); 2068 if (IS_ERR_VALUE(ret)) { 2069 seen_dev_without_alias = true; 2070 ret = index; 2071 } else { 2072 seen_dev_with_alias = true; 2073 if (ret >= ARRAY_SIZE(amba_ports) || amba_ports[ret] != NULL) { 2074 dev_warn(dev, "requested serial port %d not available.\n", ret); 2075 ret = index; 2076 } 2077 } 2078 2079 if (seen_dev_with_alias && seen_dev_without_alias) 2080 dev_warn(dev, "aliased and non-aliased serial devices found in device tree. Serial port enumeration may be unpredictable.\n"); 2081 2082 return ret; 2083 } 2084 2085 static int pl011_probe(struct amba_device *dev, const struct amba_id *id) 2086 { 2087 struct uart_amba_port *uap; 2088 struct vendor_data *vendor = id->data; 2089 void __iomem *base; 2090 int i, ret; 2091 2092 for (i = 0; i < ARRAY_SIZE(amba_ports); i++) 2093 if (amba_ports[i] == NULL) 2094 break; 2095 2096 if (i == ARRAY_SIZE(amba_ports)) { 2097 ret = -EBUSY; 2098 goto out; 2099 } 2100 2101 uap = devm_kzalloc(&dev->dev, sizeof(struct uart_amba_port), 2102 GFP_KERNEL); 2103 if (uap == NULL) { 2104 ret = -ENOMEM; 2105 goto out; 2106 } 2107 2108 i = pl011_probe_dt_alias(i, &dev->dev); 2109 2110 base = devm_ioremap(&dev->dev, dev->res.start, 2111 resource_size(&dev->res)); 2112 if (!base) { 2113 ret = -ENOMEM; 2114 goto out; 2115 } 2116 2117 uap->clk = devm_clk_get(&dev->dev, NULL); 2118 if (IS_ERR(uap->clk)) { 2119 ret = PTR_ERR(uap->clk); 2120 goto out; 2121 } 2122 2123 uap->vendor = vendor; 2124 uap->lcrh_rx = vendor->lcrh_rx; 2125 uap->lcrh_tx = vendor->lcrh_tx; 2126 uap->old_cr = 0; 2127 uap->fifosize = vendor->get_fifosize(dev); 2128 uap->port.dev = &dev->dev; 2129 uap->port.mapbase = dev->res.start; 2130 uap->port.membase = base; 2131 uap->port.iotype = UPIO_MEM; 2132 uap->port.irq = dev->irq[0]; 2133 uap->port.fifosize = uap->fifosize; 2134 uap->port.ops = &amba_pl011_pops; 2135 uap->port.flags = UPF_BOOT_AUTOCONF; 2136 uap->port.line = i; 2137 pl011_dma_probe(&dev->dev, uap); 2138 2139 /* Ensure interrupts from this UART are masked and cleared */ 2140 writew(0, uap->port.membase + UART011_IMSC); 2141 writew(0xffff, uap->port.membase + UART011_ICR); 2142 2143 snprintf(uap->type, sizeof(uap->type), "PL011 rev%u", amba_rev(dev)); 2144 2145 amba_ports[i] = uap; 2146 2147 amba_set_drvdata(dev, uap); 2148 ret = uart_add_one_port(&amba_reg, &uap->port); 2149 if (ret) { 2150 amba_set_drvdata(dev, NULL); 2151 amba_ports[i] = NULL; 2152 pl011_dma_remove(uap); 2153 } 2154 out: 2155 return ret; 2156 } 2157 2158 static int pl011_remove(struct amba_device *dev) 2159 { 2160 struct uart_amba_port *uap = amba_get_drvdata(dev); 2161 int i; 2162 2163 amba_set_drvdata(dev, NULL); 2164 2165 uart_remove_one_port(&amba_reg, &uap->port); 2166 2167 for (i = 0; i < ARRAY_SIZE(amba_ports); i++) 2168 if (amba_ports[i] == uap) 2169 amba_ports[i] = NULL; 2170 2171 pl011_dma_remove(uap); 2172 return 0; 2173 } 2174 2175 #ifdef CONFIG_PM 2176 static int pl011_suspend(struct amba_device *dev, pm_message_t state) 2177 { 2178 struct uart_amba_port *uap = amba_get_drvdata(dev); 2179 2180 if (!uap) 2181 return -EINVAL; 2182 2183 return uart_suspend_port(&amba_reg, &uap->port); 2184 } 2185 2186 static int pl011_resume(struct amba_device *dev) 2187 { 2188 struct uart_amba_port *uap = amba_get_drvdata(dev); 2189 2190 if (!uap) 2191 return -EINVAL; 2192 2193 return uart_resume_port(&amba_reg, &uap->port); 2194 } 2195 #endif 2196 2197 static struct amba_id pl011_ids[] = { 2198 { 2199 .id = 0x00041011, 2200 .mask = 0x000fffff, 2201 .data = &vendor_arm, 2202 }, 2203 { 2204 .id = 0x00380802, 2205 .mask = 0x00ffffff, 2206 .data = &vendor_st, 2207 }, 2208 { 0, 0 }, 2209 }; 2210 2211 MODULE_DEVICE_TABLE(amba, pl011_ids); 2212 2213 static struct amba_driver pl011_driver = { 2214 .drv = { 2215 .name = "uart-pl011", 2216 }, 2217 .id_table = pl011_ids, 2218 .probe = pl011_probe, 2219 .remove = pl011_remove, 2220 #ifdef CONFIG_PM 2221 .suspend = pl011_suspend, 2222 .resume = pl011_resume, 2223 #endif 2224 }; 2225 2226 static int __init pl011_init(void) 2227 { 2228 int ret; 2229 printk(KERN_INFO "Serial: AMBA PL011 UART driver\n"); 2230 2231 ret = uart_register_driver(&amba_reg); 2232 if (ret == 0) { 2233 ret = amba_driver_register(&pl011_driver); 2234 if (ret) 2235 uart_unregister_driver(&amba_reg); 2236 } 2237 return ret; 2238 } 2239 2240 static void __exit pl011_exit(void) 2241 { 2242 amba_driver_unregister(&pl011_driver); 2243 uart_unregister_driver(&amba_reg); 2244 } 2245 2246 /* 2247 * While this can be a module, if builtin it's most likely the console 2248 * So let's leave module_exit but move module_init to an earlier place 2249 */ 2250 arch_initcall(pl011_init); 2251 module_exit(pl011_exit); 2252 2253 MODULE_AUTHOR("ARM Ltd/Deep Blue Solutions Ltd"); 2254 MODULE_DESCRIPTION("ARM AMBA serial port driver"); 2255 MODULE_LICENSE("GPL"); 2256