xref: /openbmc/linux/drivers/tty/serial/amba-pl011.c (revision e00a844a)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  *  Driver for AMBA serial ports
4  *
5  *  Based on drivers/char/serial.c, by Linus Torvalds, Theodore Ts'o.
6  *
7  *  Copyright 1999 ARM Limited
8  *  Copyright (C) 2000 Deep Blue Solutions Ltd.
9  *  Copyright (C) 2010 ST-Ericsson SA
10  *
11  * This is a generic driver for ARM AMBA-type serial ports.  They
12  * have a lot of 16550-like features, but are not register compatible.
13  * Note that although they do have CTS, DCD and DSR inputs, they do
14  * not have an RI input, nor do they have DTR or RTS outputs.  If
15  * required, these have to be supplied via some other means (eg, GPIO)
16  * and hooked into this driver.
17  */
18 
19 
20 #if defined(CONFIG_SERIAL_AMBA_PL011_CONSOLE) && defined(CONFIG_MAGIC_SYSRQ)
21 #define SUPPORT_SYSRQ
22 #endif
23 
24 #include <linux/module.h>
25 #include <linux/ioport.h>
26 #include <linux/init.h>
27 #include <linux/console.h>
28 #include <linux/sysrq.h>
29 #include <linux/device.h>
30 #include <linux/tty.h>
31 #include <linux/tty_flip.h>
32 #include <linux/serial_core.h>
33 #include <linux/serial.h>
34 #include <linux/amba/bus.h>
35 #include <linux/amba/serial.h>
36 #include <linux/clk.h>
37 #include <linux/slab.h>
38 #include <linux/dmaengine.h>
39 #include <linux/dma-mapping.h>
40 #include <linux/scatterlist.h>
41 #include <linux/delay.h>
42 #include <linux/types.h>
43 #include <linux/of.h>
44 #include <linux/of_device.h>
45 #include <linux/pinctrl/consumer.h>
46 #include <linux/sizes.h>
47 #include <linux/io.h>
48 #include <linux/acpi.h>
49 
50 #include "amba-pl011.h"
51 
52 #define UART_NR			14
53 
54 #define SERIAL_AMBA_MAJOR	204
55 #define SERIAL_AMBA_MINOR	64
56 #define SERIAL_AMBA_NR		UART_NR
57 
58 #define AMBA_ISR_PASS_LIMIT	256
59 
60 #define UART_DR_ERROR		(UART011_DR_OE|UART011_DR_BE|UART011_DR_PE|UART011_DR_FE)
61 #define UART_DUMMY_DR_RX	(1 << 16)
62 
63 static u16 pl011_std_offsets[REG_ARRAY_SIZE] = {
64 	[REG_DR] = UART01x_DR,
65 	[REG_FR] = UART01x_FR,
66 	[REG_LCRH_RX] = UART011_LCRH,
67 	[REG_LCRH_TX] = UART011_LCRH,
68 	[REG_IBRD] = UART011_IBRD,
69 	[REG_FBRD] = UART011_FBRD,
70 	[REG_CR] = UART011_CR,
71 	[REG_IFLS] = UART011_IFLS,
72 	[REG_IMSC] = UART011_IMSC,
73 	[REG_RIS] = UART011_RIS,
74 	[REG_MIS] = UART011_MIS,
75 	[REG_ICR] = UART011_ICR,
76 	[REG_DMACR] = UART011_DMACR,
77 };
78 
79 /* There is by now at least one vendor with differing details, so handle it */
80 struct vendor_data {
81 	const u16		*reg_offset;
82 	unsigned int		ifls;
83 	unsigned int		fr_busy;
84 	unsigned int		fr_dsr;
85 	unsigned int		fr_cts;
86 	unsigned int		fr_ri;
87 	unsigned int		inv_fr;
88 	bool			access_32b;
89 	bool			oversampling;
90 	bool			dma_threshold;
91 	bool			cts_event_workaround;
92 	bool			always_enabled;
93 	bool			fixed_options;
94 
95 	unsigned int (*get_fifosize)(struct amba_device *dev);
96 };
97 
98 static unsigned int get_fifosize_arm(struct amba_device *dev)
99 {
100 	return amba_rev(dev) < 3 ? 16 : 32;
101 }
102 
103 static struct vendor_data vendor_arm = {
104 	.reg_offset		= pl011_std_offsets,
105 	.ifls			= UART011_IFLS_RX4_8|UART011_IFLS_TX4_8,
106 	.fr_busy		= UART01x_FR_BUSY,
107 	.fr_dsr			= UART01x_FR_DSR,
108 	.fr_cts			= UART01x_FR_CTS,
109 	.fr_ri			= UART011_FR_RI,
110 	.oversampling		= false,
111 	.dma_threshold		= false,
112 	.cts_event_workaround	= false,
113 	.always_enabled		= false,
114 	.fixed_options		= false,
115 	.get_fifosize		= get_fifosize_arm,
116 };
117 
118 static const struct vendor_data vendor_sbsa = {
119 	.reg_offset		= pl011_std_offsets,
120 	.fr_busy		= UART01x_FR_BUSY,
121 	.fr_dsr			= UART01x_FR_DSR,
122 	.fr_cts			= UART01x_FR_CTS,
123 	.fr_ri			= UART011_FR_RI,
124 	.access_32b		= true,
125 	.oversampling		= false,
126 	.dma_threshold		= false,
127 	.cts_event_workaround	= false,
128 	.always_enabled		= true,
129 	.fixed_options		= true,
130 };
131 
132 #ifdef CONFIG_ACPI_SPCR_TABLE
133 static const struct vendor_data vendor_qdt_qdf2400_e44 = {
134 	.reg_offset		= pl011_std_offsets,
135 	.fr_busy		= UART011_FR_TXFE,
136 	.fr_dsr			= UART01x_FR_DSR,
137 	.fr_cts			= UART01x_FR_CTS,
138 	.fr_ri			= UART011_FR_RI,
139 	.inv_fr			= UART011_FR_TXFE,
140 	.access_32b		= true,
141 	.oversampling		= false,
142 	.dma_threshold		= false,
143 	.cts_event_workaround	= false,
144 	.always_enabled		= true,
145 	.fixed_options		= true,
146 };
147 #endif
148 
149 static u16 pl011_st_offsets[REG_ARRAY_SIZE] = {
150 	[REG_DR] = UART01x_DR,
151 	[REG_ST_DMAWM] = ST_UART011_DMAWM,
152 	[REG_ST_TIMEOUT] = ST_UART011_TIMEOUT,
153 	[REG_FR] = UART01x_FR,
154 	[REG_LCRH_RX] = ST_UART011_LCRH_RX,
155 	[REG_LCRH_TX] = ST_UART011_LCRH_TX,
156 	[REG_IBRD] = UART011_IBRD,
157 	[REG_FBRD] = UART011_FBRD,
158 	[REG_CR] = UART011_CR,
159 	[REG_IFLS] = UART011_IFLS,
160 	[REG_IMSC] = UART011_IMSC,
161 	[REG_RIS] = UART011_RIS,
162 	[REG_MIS] = UART011_MIS,
163 	[REG_ICR] = UART011_ICR,
164 	[REG_DMACR] = UART011_DMACR,
165 	[REG_ST_XFCR] = ST_UART011_XFCR,
166 	[REG_ST_XON1] = ST_UART011_XON1,
167 	[REG_ST_XON2] = ST_UART011_XON2,
168 	[REG_ST_XOFF1] = ST_UART011_XOFF1,
169 	[REG_ST_XOFF2] = ST_UART011_XOFF2,
170 	[REG_ST_ITCR] = ST_UART011_ITCR,
171 	[REG_ST_ITIP] = ST_UART011_ITIP,
172 	[REG_ST_ABCR] = ST_UART011_ABCR,
173 	[REG_ST_ABIMSC] = ST_UART011_ABIMSC,
174 };
175 
176 static unsigned int get_fifosize_st(struct amba_device *dev)
177 {
178 	return 64;
179 }
180 
181 static struct vendor_data vendor_st = {
182 	.reg_offset		= pl011_st_offsets,
183 	.ifls			= UART011_IFLS_RX_HALF|UART011_IFLS_TX_HALF,
184 	.fr_busy		= UART01x_FR_BUSY,
185 	.fr_dsr			= UART01x_FR_DSR,
186 	.fr_cts			= UART01x_FR_CTS,
187 	.fr_ri			= UART011_FR_RI,
188 	.oversampling		= true,
189 	.dma_threshold		= true,
190 	.cts_event_workaround	= true,
191 	.always_enabled		= false,
192 	.fixed_options		= false,
193 	.get_fifosize		= get_fifosize_st,
194 };
195 
196 static const u16 pl011_zte_offsets[REG_ARRAY_SIZE] = {
197 	[REG_DR] = ZX_UART011_DR,
198 	[REG_FR] = ZX_UART011_FR,
199 	[REG_LCRH_RX] = ZX_UART011_LCRH,
200 	[REG_LCRH_TX] = ZX_UART011_LCRH,
201 	[REG_IBRD] = ZX_UART011_IBRD,
202 	[REG_FBRD] = ZX_UART011_FBRD,
203 	[REG_CR] = ZX_UART011_CR,
204 	[REG_IFLS] = ZX_UART011_IFLS,
205 	[REG_IMSC] = ZX_UART011_IMSC,
206 	[REG_RIS] = ZX_UART011_RIS,
207 	[REG_MIS] = ZX_UART011_MIS,
208 	[REG_ICR] = ZX_UART011_ICR,
209 	[REG_DMACR] = ZX_UART011_DMACR,
210 };
211 
212 static unsigned int get_fifosize_zte(struct amba_device *dev)
213 {
214 	return 16;
215 }
216 
217 static struct vendor_data vendor_zte = {
218 	.reg_offset		= pl011_zte_offsets,
219 	.access_32b		= true,
220 	.ifls			= UART011_IFLS_RX4_8|UART011_IFLS_TX4_8,
221 	.fr_busy		= ZX_UART01x_FR_BUSY,
222 	.fr_dsr			= ZX_UART01x_FR_DSR,
223 	.fr_cts			= ZX_UART01x_FR_CTS,
224 	.fr_ri			= ZX_UART011_FR_RI,
225 	.get_fifosize		= get_fifosize_zte,
226 };
227 
228 /* Deals with DMA transactions */
229 
230 struct pl011_sgbuf {
231 	struct scatterlist sg;
232 	char *buf;
233 };
234 
235 struct pl011_dmarx_data {
236 	struct dma_chan		*chan;
237 	struct completion	complete;
238 	bool			use_buf_b;
239 	struct pl011_sgbuf	sgbuf_a;
240 	struct pl011_sgbuf	sgbuf_b;
241 	dma_cookie_t		cookie;
242 	bool			running;
243 	struct timer_list	timer;
244 	unsigned int last_residue;
245 	unsigned long last_jiffies;
246 	bool auto_poll_rate;
247 	unsigned int poll_rate;
248 	unsigned int poll_timeout;
249 };
250 
251 struct pl011_dmatx_data {
252 	struct dma_chan		*chan;
253 	struct scatterlist	sg;
254 	char			*buf;
255 	bool			queued;
256 };
257 
258 /*
259  * We wrap our port structure around the generic uart_port.
260  */
261 struct uart_amba_port {
262 	struct uart_port	port;
263 	const u16		*reg_offset;
264 	struct clk		*clk;
265 	const struct vendor_data *vendor;
266 	unsigned int		dmacr;		/* dma control reg */
267 	unsigned int		im;		/* interrupt mask */
268 	unsigned int		old_status;
269 	unsigned int		fifosize;	/* vendor-specific */
270 	unsigned int		old_cr;		/* state during shutdown */
271 	unsigned int		fixed_baud;	/* vendor-set fixed baud rate */
272 	char			type[12];
273 #ifdef CONFIG_DMA_ENGINE
274 	/* DMA stuff */
275 	bool			using_tx_dma;
276 	bool			using_rx_dma;
277 	struct pl011_dmarx_data dmarx;
278 	struct pl011_dmatx_data	dmatx;
279 	bool			dma_probed;
280 #endif
281 };
282 
283 static unsigned int pl011_reg_to_offset(const struct uart_amba_port *uap,
284 	unsigned int reg)
285 {
286 	return uap->reg_offset[reg];
287 }
288 
289 static unsigned int pl011_read(const struct uart_amba_port *uap,
290 	unsigned int reg)
291 {
292 	void __iomem *addr = uap->port.membase + pl011_reg_to_offset(uap, reg);
293 
294 	return (uap->port.iotype == UPIO_MEM32) ?
295 		readl_relaxed(addr) : readw_relaxed(addr);
296 }
297 
298 static void pl011_write(unsigned int val, const struct uart_amba_port *uap,
299 	unsigned int reg)
300 {
301 	void __iomem *addr = uap->port.membase + pl011_reg_to_offset(uap, reg);
302 
303 	if (uap->port.iotype == UPIO_MEM32)
304 		writel_relaxed(val, addr);
305 	else
306 		writew_relaxed(val, addr);
307 }
308 
309 /*
310  * Reads up to 256 characters from the FIFO or until it's empty and
311  * inserts them into the TTY layer. Returns the number of characters
312  * read from the FIFO.
313  */
314 static int pl011_fifo_to_tty(struct uart_amba_port *uap)
315 {
316 	u16 status;
317 	unsigned int ch, flag, max_count = 256;
318 	int fifotaken = 0;
319 
320 	while (max_count--) {
321 		status = pl011_read(uap, REG_FR);
322 		if (status & UART01x_FR_RXFE)
323 			break;
324 
325 		/* Take chars from the FIFO and update status */
326 		ch = pl011_read(uap, REG_DR) | UART_DUMMY_DR_RX;
327 		flag = TTY_NORMAL;
328 		uap->port.icount.rx++;
329 		fifotaken++;
330 
331 		if (unlikely(ch & UART_DR_ERROR)) {
332 			if (ch & UART011_DR_BE) {
333 				ch &= ~(UART011_DR_FE | UART011_DR_PE);
334 				uap->port.icount.brk++;
335 				if (uart_handle_break(&uap->port))
336 					continue;
337 			} else if (ch & UART011_DR_PE)
338 				uap->port.icount.parity++;
339 			else if (ch & UART011_DR_FE)
340 				uap->port.icount.frame++;
341 			if (ch & UART011_DR_OE)
342 				uap->port.icount.overrun++;
343 
344 			ch &= uap->port.read_status_mask;
345 
346 			if (ch & UART011_DR_BE)
347 				flag = TTY_BREAK;
348 			else if (ch & UART011_DR_PE)
349 				flag = TTY_PARITY;
350 			else if (ch & UART011_DR_FE)
351 				flag = TTY_FRAME;
352 		}
353 
354 		if (uart_handle_sysrq_char(&uap->port, ch & 255))
355 			continue;
356 
357 		uart_insert_char(&uap->port, ch, UART011_DR_OE, ch, flag);
358 	}
359 
360 	return fifotaken;
361 }
362 
363 
364 /*
365  * All the DMA operation mode stuff goes inside this ifdef.
366  * This assumes that you have a generic DMA device interface,
367  * no custom DMA interfaces are supported.
368  */
369 #ifdef CONFIG_DMA_ENGINE
370 
371 #define PL011_DMA_BUFFER_SIZE PAGE_SIZE
372 
373 static int pl011_sgbuf_init(struct dma_chan *chan, struct pl011_sgbuf *sg,
374 	enum dma_data_direction dir)
375 {
376 	dma_addr_t dma_addr;
377 
378 	sg->buf = dma_alloc_coherent(chan->device->dev,
379 		PL011_DMA_BUFFER_SIZE, &dma_addr, GFP_KERNEL);
380 	if (!sg->buf)
381 		return -ENOMEM;
382 
383 	sg_init_table(&sg->sg, 1);
384 	sg_set_page(&sg->sg, phys_to_page(dma_addr),
385 		PL011_DMA_BUFFER_SIZE, offset_in_page(dma_addr));
386 	sg_dma_address(&sg->sg) = dma_addr;
387 	sg_dma_len(&sg->sg) = PL011_DMA_BUFFER_SIZE;
388 
389 	return 0;
390 }
391 
392 static void pl011_sgbuf_free(struct dma_chan *chan, struct pl011_sgbuf *sg,
393 	enum dma_data_direction dir)
394 {
395 	if (sg->buf) {
396 		dma_free_coherent(chan->device->dev,
397 			PL011_DMA_BUFFER_SIZE, sg->buf,
398 			sg_dma_address(&sg->sg));
399 	}
400 }
401 
402 static void pl011_dma_probe(struct uart_amba_port *uap)
403 {
404 	/* DMA is the sole user of the platform data right now */
405 	struct amba_pl011_data *plat = dev_get_platdata(uap->port.dev);
406 	struct device *dev = uap->port.dev;
407 	struct dma_slave_config tx_conf = {
408 		.dst_addr = uap->port.mapbase +
409 				 pl011_reg_to_offset(uap, REG_DR),
410 		.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
411 		.direction = DMA_MEM_TO_DEV,
412 		.dst_maxburst = uap->fifosize >> 1,
413 		.device_fc = false,
414 	};
415 	struct dma_chan *chan;
416 	dma_cap_mask_t mask;
417 
418 	uap->dma_probed = true;
419 	chan = dma_request_slave_channel_reason(dev, "tx");
420 	if (IS_ERR(chan)) {
421 		if (PTR_ERR(chan) == -EPROBE_DEFER) {
422 			uap->dma_probed = false;
423 			return;
424 		}
425 
426 		/* We need platform data */
427 		if (!plat || !plat->dma_filter) {
428 			dev_info(uap->port.dev, "no DMA platform data\n");
429 			return;
430 		}
431 
432 		/* Try to acquire a generic DMA engine slave TX channel */
433 		dma_cap_zero(mask);
434 		dma_cap_set(DMA_SLAVE, mask);
435 
436 		chan = dma_request_channel(mask, plat->dma_filter,
437 						plat->dma_tx_param);
438 		if (!chan) {
439 			dev_err(uap->port.dev, "no TX DMA channel!\n");
440 			return;
441 		}
442 	}
443 
444 	dmaengine_slave_config(chan, &tx_conf);
445 	uap->dmatx.chan = chan;
446 
447 	dev_info(uap->port.dev, "DMA channel TX %s\n",
448 		 dma_chan_name(uap->dmatx.chan));
449 
450 	/* Optionally make use of an RX channel as well */
451 	chan = dma_request_slave_channel(dev, "rx");
452 
453 	if (!chan && plat && plat->dma_rx_param) {
454 		chan = dma_request_channel(mask, plat->dma_filter, plat->dma_rx_param);
455 
456 		if (!chan) {
457 			dev_err(uap->port.dev, "no RX DMA channel!\n");
458 			return;
459 		}
460 	}
461 
462 	if (chan) {
463 		struct dma_slave_config rx_conf = {
464 			.src_addr = uap->port.mapbase +
465 				pl011_reg_to_offset(uap, REG_DR),
466 			.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
467 			.direction = DMA_DEV_TO_MEM,
468 			.src_maxburst = uap->fifosize >> 2,
469 			.device_fc = false,
470 		};
471 		struct dma_slave_caps caps;
472 
473 		/*
474 		 * Some DMA controllers provide information on their capabilities.
475 		 * If the controller does, check for suitable residue processing
476 		 * otherwise assime all is well.
477 		 */
478 		if (0 == dma_get_slave_caps(chan, &caps)) {
479 			if (caps.residue_granularity ==
480 					DMA_RESIDUE_GRANULARITY_DESCRIPTOR) {
481 				dma_release_channel(chan);
482 				dev_info(uap->port.dev,
483 					"RX DMA disabled - no residue processing\n");
484 				return;
485 			}
486 		}
487 		dmaengine_slave_config(chan, &rx_conf);
488 		uap->dmarx.chan = chan;
489 
490 		uap->dmarx.auto_poll_rate = false;
491 		if (plat && plat->dma_rx_poll_enable) {
492 			/* Set poll rate if specified. */
493 			if (plat->dma_rx_poll_rate) {
494 				uap->dmarx.auto_poll_rate = false;
495 				uap->dmarx.poll_rate = plat->dma_rx_poll_rate;
496 			} else {
497 				/*
498 				 * 100 ms defaults to poll rate if not
499 				 * specified. This will be adjusted with
500 				 * the baud rate at set_termios.
501 				 */
502 				uap->dmarx.auto_poll_rate = true;
503 				uap->dmarx.poll_rate =  100;
504 			}
505 			/* 3 secs defaults poll_timeout if not specified. */
506 			if (plat->dma_rx_poll_timeout)
507 				uap->dmarx.poll_timeout =
508 					plat->dma_rx_poll_timeout;
509 			else
510 				uap->dmarx.poll_timeout = 3000;
511 		} else if (!plat && dev->of_node) {
512 			uap->dmarx.auto_poll_rate = of_property_read_bool(
513 						dev->of_node, "auto-poll");
514 			if (uap->dmarx.auto_poll_rate) {
515 				u32 x;
516 
517 				if (0 == of_property_read_u32(dev->of_node,
518 						"poll-rate-ms", &x))
519 					uap->dmarx.poll_rate = x;
520 				else
521 					uap->dmarx.poll_rate = 100;
522 				if (0 == of_property_read_u32(dev->of_node,
523 						"poll-timeout-ms", &x))
524 					uap->dmarx.poll_timeout = x;
525 				else
526 					uap->dmarx.poll_timeout = 3000;
527 			}
528 		}
529 		dev_info(uap->port.dev, "DMA channel RX %s\n",
530 			 dma_chan_name(uap->dmarx.chan));
531 	}
532 }
533 
534 static void pl011_dma_remove(struct uart_amba_port *uap)
535 {
536 	if (uap->dmatx.chan)
537 		dma_release_channel(uap->dmatx.chan);
538 	if (uap->dmarx.chan)
539 		dma_release_channel(uap->dmarx.chan);
540 }
541 
542 /* Forward declare these for the refill routine */
543 static int pl011_dma_tx_refill(struct uart_amba_port *uap);
544 static void pl011_start_tx_pio(struct uart_amba_port *uap);
545 
546 /*
547  * The current DMA TX buffer has been sent.
548  * Try to queue up another DMA buffer.
549  */
550 static void pl011_dma_tx_callback(void *data)
551 {
552 	struct uart_amba_port *uap = data;
553 	struct pl011_dmatx_data *dmatx = &uap->dmatx;
554 	unsigned long flags;
555 	u16 dmacr;
556 
557 	spin_lock_irqsave(&uap->port.lock, flags);
558 	if (uap->dmatx.queued)
559 		dma_unmap_sg(dmatx->chan->device->dev, &dmatx->sg, 1,
560 			     DMA_TO_DEVICE);
561 
562 	dmacr = uap->dmacr;
563 	uap->dmacr = dmacr & ~UART011_TXDMAE;
564 	pl011_write(uap->dmacr, uap, REG_DMACR);
565 
566 	/*
567 	 * If TX DMA was disabled, it means that we've stopped the DMA for
568 	 * some reason (eg, XOFF received, or we want to send an X-char.)
569 	 *
570 	 * Note: we need to be careful here of a potential race between DMA
571 	 * and the rest of the driver - if the driver disables TX DMA while
572 	 * a TX buffer completing, we must update the tx queued status to
573 	 * get further refills (hence we check dmacr).
574 	 */
575 	if (!(dmacr & UART011_TXDMAE) || uart_tx_stopped(&uap->port) ||
576 	    uart_circ_empty(&uap->port.state->xmit)) {
577 		uap->dmatx.queued = false;
578 		spin_unlock_irqrestore(&uap->port.lock, flags);
579 		return;
580 	}
581 
582 	if (pl011_dma_tx_refill(uap) <= 0)
583 		/*
584 		 * We didn't queue a DMA buffer for some reason, but we
585 		 * have data pending to be sent.  Re-enable the TX IRQ.
586 		 */
587 		pl011_start_tx_pio(uap);
588 
589 	spin_unlock_irqrestore(&uap->port.lock, flags);
590 }
591 
592 /*
593  * Try to refill the TX DMA buffer.
594  * Locking: called with port lock held and IRQs disabled.
595  * Returns:
596  *   1 if we queued up a TX DMA buffer.
597  *   0 if we didn't want to handle this by DMA
598  *  <0 on error
599  */
600 static int pl011_dma_tx_refill(struct uart_amba_port *uap)
601 {
602 	struct pl011_dmatx_data *dmatx = &uap->dmatx;
603 	struct dma_chan *chan = dmatx->chan;
604 	struct dma_device *dma_dev = chan->device;
605 	struct dma_async_tx_descriptor *desc;
606 	struct circ_buf *xmit = &uap->port.state->xmit;
607 	unsigned int count;
608 
609 	/*
610 	 * Try to avoid the overhead involved in using DMA if the
611 	 * transaction fits in the first half of the FIFO, by using
612 	 * the standard interrupt handling.  This ensures that we
613 	 * issue a uart_write_wakeup() at the appropriate time.
614 	 */
615 	count = uart_circ_chars_pending(xmit);
616 	if (count < (uap->fifosize >> 1)) {
617 		uap->dmatx.queued = false;
618 		return 0;
619 	}
620 
621 	/*
622 	 * Bodge: don't send the last character by DMA, as this
623 	 * will prevent XON from notifying us to restart DMA.
624 	 */
625 	count -= 1;
626 
627 	/* Else proceed to copy the TX chars to the DMA buffer and fire DMA */
628 	if (count > PL011_DMA_BUFFER_SIZE)
629 		count = PL011_DMA_BUFFER_SIZE;
630 
631 	if (xmit->tail < xmit->head)
632 		memcpy(&dmatx->buf[0], &xmit->buf[xmit->tail], count);
633 	else {
634 		size_t first = UART_XMIT_SIZE - xmit->tail;
635 		size_t second;
636 
637 		if (first > count)
638 			first = count;
639 		second = count - first;
640 
641 		memcpy(&dmatx->buf[0], &xmit->buf[xmit->tail], first);
642 		if (second)
643 			memcpy(&dmatx->buf[first], &xmit->buf[0], second);
644 	}
645 
646 	dmatx->sg.length = count;
647 
648 	if (dma_map_sg(dma_dev->dev, &dmatx->sg, 1, DMA_TO_DEVICE) != 1) {
649 		uap->dmatx.queued = false;
650 		dev_dbg(uap->port.dev, "unable to map TX DMA\n");
651 		return -EBUSY;
652 	}
653 
654 	desc = dmaengine_prep_slave_sg(chan, &dmatx->sg, 1, DMA_MEM_TO_DEV,
655 					     DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
656 	if (!desc) {
657 		dma_unmap_sg(dma_dev->dev, &dmatx->sg, 1, DMA_TO_DEVICE);
658 		uap->dmatx.queued = false;
659 		/*
660 		 * If DMA cannot be used right now, we complete this
661 		 * transaction via IRQ and let the TTY layer retry.
662 		 */
663 		dev_dbg(uap->port.dev, "TX DMA busy\n");
664 		return -EBUSY;
665 	}
666 
667 	/* Some data to go along to the callback */
668 	desc->callback = pl011_dma_tx_callback;
669 	desc->callback_param = uap;
670 
671 	/* All errors should happen at prepare time */
672 	dmaengine_submit(desc);
673 
674 	/* Fire the DMA transaction */
675 	dma_dev->device_issue_pending(chan);
676 
677 	uap->dmacr |= UART011_TXDMAE;
678 	pl011_write(uap->dmacr, uap, REG_DMACR);
679 	uap->dmatx.queued = true;
680 
681 	/*
682 	 * Now we know that DMA will fire, so advance the ring buffer
683 	 * with the stuff we just dispatched.
684 	 */
685 	xmit->tail = (xmit->tail + count) & (UART_XMIT_SIZE - 1);
686 	uap->port.icount.tx += count;
687 
688 	if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
689 		uart_write_wakeup(&uap->port);
690 
691 	return 1;
692 }
693 
694 /*
695  * We received a transmit interrupt without a pending X-char but with
696  * pending characters.
697  * Locking: called with port lock held and IRQs disabled.
698  * Returns:
699  *   false if we want to use PIO to transmit
700  *   true if we queued a DMA buffer
701  */
702 static bool pl011_dma_tx_irq(struct uart_amba_port *uap)
703 {
704 	if (!uap->using_tx_dma)
705 		return false;
706 
707 	/*
708 	 * If we already have a TX buffer queued, but received a
709 	 * TX interrupt, it will be because we've just sent an X-char.
710 	 * Ensure the TX DMA is enabled and the TX IRQ is disabled.
711 	 */
712 	if (uap->dmatx.queued) {
713 		uap->dmacr |= UART011_TXDMAE;
714 		pl011_write(uap->dmacr, uap, REG_DMACR);
715 		uap->im &= ~UART011_TXIM;
716 		pl011_write(uap->im, uap, REG_IMSC);
717 		return true;
718 	}
719 
720 	/*
721 	 * We don't have a TX buffer queued, so try to queue one.
722 	 * If we successfully queued a buffer, mask the TX IRQ.
723 	 */
724 	if (pl011_dma_tx_refill(uap) > 0) {
725 		uap->im &= ~UART011_TXIM;
726 		pl011_write(uap->im, uap, REG_IMSC);
727 		return true;
728 	}
729 	return false;
730 }
731 
732 /*
733  * Stop the DMA transmit (eg, due to received XOFF).
734  * Locking: called with port lock held and IRQs disabled.
735  */
736 static inline void pl011_dma_tx_stop(struct uart_amba_port *uap)
737 {
738 	if (uap->dmatx.queued) {
739 		uap->dmacr &= ~UART011_TXDMAE;
740 		pl011_write(uap->dmacr, uap, REG_DMACR);
741 	}
742 }
743 
744 /*
745  * Try to start a DMA transmit, or in the case of an XON/OFF
746  * character queued for send, try to get that character out ASAP.
747  * Locking: called with port lock held and IRQs disabled.
748  * Returns:
749  *   false if we want the TX IRQ to be enabled
750  *   true if we have a buffer queued
751  */
752 static inline bool pl011_dma_tx_start(struct uart_amba_port *uap)
753 {
754 	u16 dmacr;
755 
756 	if (!uap->using_tx_dma)
757 		return false;
758 
759 	if (!uap->port.x_char) {
760 		/* no X-char, try to push chars out in DMA mode */
761 		bool ret = true;
762 
763 		if (!uap->dmatx.queued) {
764 			if (pl011_dma_tx_refill(uap) > 0) {
765 				uap->im &= ~UART011_TXIM;
766 				pl011_write(uap->im, uap, REG_IMSC);
767 			} else
768 				ret = false;
769 		} else if (!(uap->dmacr & UART011_TXDMAE)) {
770 			uap->dmacr |= UART011_TXDMAE;
771 			pl011_write(uap->dmacr, uap, REG_DMACR);
772 		}
773 		return ret;
774 	}
775 
776 	/*
777 	 * We have an X-char to send.  Disable DMA to prevent it loading
778 	 * the TX fifo, and then see if we can stuff it into the FIFO.
779 	 */
780 	dmacr = uap->dmacr;
781 	uap->dmacr &= ~UART011_TXDMAE;
782 	pl011_write(uap->dmacr, uap, REG_DMACR);
783 
784 	if (pl011_read(uap, REG_FR) & UART01x_FR_TXFF) {
785 		/*
786 		 * No space in the FIFO, so enable the transmit interrupt
787 		 * so we know when there is space.  Note that once we've
788 		 * loaded the character, we should just re-enable DMA.
789 		 */
790 		return false;
791 	}
792 
793 	pl011_write(uap->port.x_char, uap, REG_DR);
794 	uap->port.icount.tx++;
795 	uap->port.x_char = 0;
796 
797 	/* Success - restore the DMA state */
798 	uap->dmacr = dmacr;
799 	pl011_write(dmacr, uap, REG_DMACR);
800 
801 	return true;
802 }
803 
804 /*
805  * Flush the transmit buffer.
806  * Locking: called with port lock held and IRQs disabled.
807  */
808 static void pl011_dma_flush_buffer(struct uart_port *port)
809 __releases(&uap->port.lock)
810 __acquires(&uap->port.lock)
811 {
812 	struct uart_amba_port *uap =
813 	    container_of(port, struct uart_amba_port, port);
814 
815 	if (!uap->using_tx_dma)
816 		return;
817 
818 	/* Avoid deadlock with the DMA engine callback */
819 	spin_unlock(&uap->port.lock);
820 	dmaengine_terminate_all(uap->dmatx.chan);
821 	spin_lock(&uap->port.lock);
822 	if (uap->dmatx.queued) {
823 		dma_unmap_sg(uap->dmatx.chan->device->dev, &uap->dmatx.sg, 1,
824 			     DMA_TO_DEVICE);
825 		uap->dmatx.queued = false;
826 		uap->dmacr &= ~UART011_TXDMAE;
827 		pl011_write(uap->dmacr, uap, REG_DMACR);
828 	}
829 }
830 
831 static void pl011_dma_rx_callback(void *data);
832 
833 static int pl011_dma_rx_trigger_dma(struct uart_amba_port *uap)
834 {
835 	struct dma_chan *rxchan = uap->dmarx.chan;
836 	struct pl011_dmarx_data *dmarx = &uap->dmarx;
837 	struct dma_async_tx_descriptor *desc;
838 	struct pl011_sgbuf *sgbuf;
839 
840 	if (!rxchan)
841 		return -EIO;
842 
843 	/* Start the RX DMA job */
844 	sgbuf = uap->dmarx.use_buf_b ?
845 		&uap->dmarx.sgbuf_b : &uap->dmarx.sgbuf_a;
846 	desc = dmaengine_prep_slave_sg(rxchan, &sgbuf->sg, 1,
847 					DMA_DEV_TO_MEM,
848 					DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
849 	/*
850 	 * If the DMA engine is busy and cannot prepare a
851 	 * channel, no big deal, the driver will fall back
852 	 * to interrupt mode as a result of this error code.
853 	 */
854 	if (!desc) {
855 		uap->dmarx.running = false;
856 		dmaengine_terminate_all(rxchan);
857 		return -EBUSY;
858 	}
859 
860 	/* Some data to go along to the callback */
861 	desc->callback = pl011_dma_rx_callback;
862 	desc->callback_param = uap;
863 	dmarx->cookie = dmaengine_submit(desc);
864 	dma_async_issue_pending(rxchan);
865 
866 	uap->dmacr |= UART011_RXDMAE;
867 	pl011_write(uap->dmacr, uap, REG_DMACR);
868 	uap->dmarx.running = true;
869 
870 	uap->im &= ~UART011_RXIM;
871 	pl011_write(uap->im, uap, REG_IMSC);
872 
873 	return 0;
874 }
875 
876 /*
877  * This is called when either the DMA job is complete, or
878  * the FIFO timeout interrupt occurred. This must be called
879  * with the port spinlock uap->port.lock held.
880  */
881 static void pl011_dma_rx_chars(struct uart_amba_port *uap,
882 			       u32 pending, bool use_buf_b,
883 			       bool readfifo)
884 {
885 	struct tty_port *port = &uap->port.state->port;
886 	struct pl011_sgbuf *sgbuf = use_buf_b ?
887 		&uap->dmarx.sgbuf_b : &uap->dmarx.sgbuf_a;
888 	int dma_count = 0;
889 	u32 fifotaken = 0; /* only used for vdbg() */
890 
891 	struct pl011_dmarx_data *dmarx = &uap->dmarx;
892 	int dmataken = 0;
893 
894 	if (uap->dmarx.poll_rate) {
895 		/* The data can be taken by polling */
896 		dmataken = sgbuf->sg.length - dmarx->last_residue;
897 		/* Recalculate the pending size */
898 		if (pending >= dmataken)
899 			pending -= dmataken;
900 	}
901 
902 	/* Pick the remain data from the DMA */
903 	if (pending) {
904 
905 		/*
906 		 * First take all chars in the DMA pipe, then look in the FIFO.
907 		 * Note that tty_insert_flip_buf() tries to take as many chars
908 		 * as it can.
909 		 */
910 		dma_count = tty_insert_flip_string(port, sgbuf->buf + dmataken,
911 				pending);
912 
913 		uap->port.icount.rx += dma_count;
914 		if (dma_count < pending)
915 			dev_warn(uap->port.dev,
916 				 "couldn't insert all characters (TTY is full?)\n");
917 	}
918 
919 	/* Reset the last_residue for Rx DMA poll */
920 	if (uap->dmarx.poll_rate)
921 		dmarx->last_residue = sgbuf->sg.length;
922 
923 	/*
924 	 * Only continue with trying to read the FIFO if all DMA chars have
925 	 * been taken first.
926 	 */
927 	if (dma_count == pending && readfifo) {
928 		/* Clear any error flags */
929 		pl011_write(UART011_OEIS | UART011_BEIS | UART011_PEIS |
930 			    UART011_FEIS, uap, REG_ICR);
931 
932 		/*
933 		 * If we read all the DMA'd characters, and we had an
934 		 * incomplete buffer, that could be due to an rx error, or
935 		 * maybe we just timed out. Read any pending chars and check
936 		 * the error status.
937 		 *
938 		 * Error conditions will only occur in the FIFO, these will
939 		 * trigger an immediate interrupt and stop the DMA job, so we
940 		 * will always find the error in the FIFO, never in the DMA
941 		 * buffer.
942 		 */
943 		fifotaken = pl011_fifo_to_tty(uap);
944 	}
945 
946 	spin_unlock(&uap->port.lock);
947 	dev_vdbg(uap->port.dev,
948 		 "Took %d chars from DMA buffer and %d chars from the FIFO\n",
949 		 dma_count, fifotaken);
950 	tty_flip_buffer_push(port);
951 	spin_lock(&uap->port.lock);
952 }
953 
954 static void pl011_dma_rx_irq(struct uart_amba_port *uap)
955 {
956 	struct pl011_dmarx_data *dmarx = &uap->dmarx;
957 	struct dma_chan *rxchan = dmarx->chan;
958 	struct pl011_sgbuf *sgbuf = dmarx->use_buf_b ?
959 		&dmarx->sgbuf_b : &dmarx->sgbuf_a;
960 	size_t pending;
961 	struct dma_tx_state state;
962 	enum dma_status dmastat;
963 
964 	/*
965 	 * Pause the transfer so we can trust the current counter,
966 	 * do this before we pause the PL011 block, else we may
967 	 * overflow the FIFO.
968 	 */
969 	if (dmaengine_pause(rxchan))
970 		dev_err(uap->port.dev, "unable to pause DMA transfer\n");
971 	dmastat = rxchan->device->device_tx_status(rxchan,
972 						   dmarx->cookie, &state);
973 	if (dmastat != DMA_PAUSED)
974 		dev_err(uap->port.dev, "unable to pause DMA transfer\n");
975 
976 	/* Disable RX DMA - incoming data will wait in the FIFO */
977 	uap->dmacr &= ~UART011_RXDMAE;
978 	pl011_write(uap->dmacr, uap, REG_DMACR);
979 	uap->dmarx.running = false;
980 
981 	pending = sgbuf->sg.length - state.residue;
982 	BUG_ON(pending > PL011_DMA_BUFFER_SIZE);
983 	/* Then we terminate the transfer - we now know our residue */
984 	dmaengine_terminate_all(rxchan);
985 
986 	/*
987 	 * This will take the chars we have so far and insert
988 	 * into the framework.
989 	 */
990 	pl011_dma_rx_chars(uap, pending, dmarx->use_buf_b, true);
991 
992 	/* Switch buffer & re-trigger DMA job */
993 	dmarx->use_buf_b = !dmarx->use_buf_b;
994 	if (pl011_dma_rx_trigger_dma(uap)) {
995 		dev_dbg(uap->port.dev, "could not retrigger RX DMA job "
996 			"fall back to interrupt mode\n");
997 		uap->im |= UART011_RXIM;
998 		pl011_write(uap->im, uap, REG_IMSC);
999 	}
1000 }
1001 
1002 static void pl011_dma_rx_callback(void *data)
1003 {
1004 	struct uart_amba_port *uap = data;
1005 	struct pl011_dmarx_data *dmarx = &uap->dmarx;
1006 	struct dma_chan *rxchan = dmarx->chan;
1007 	bool lastbuf = dmarx->use_buf_b;
1008 	struct pl011_sgbuf *sgbuf = dmarx->use_buf_b ?
1009 		&dmarx->sgbuf_b : &dmarx->sgbuf_a;
1010 	size_t pending;
1011 	struct dma_tx_state state;
1012 	int ret;
1013 
1014 	/*
1015 	 * This completion interrupt occurs typically when the
1016 	 * RX buffer is totally stuffed but no timeout has yet
1017 	 * occurred. When that happens, we just want the RX
1018 	 * routine to flush out the secondary DMA buffer while
1019 	 * we immediately trigger the next DMA job.
1020 	 */
1021 	spin_lock_irq(&uap->port.lock);
1022 	/*
1023 	 * Rx data can be taken by the UART interrupts during
1024 	 * the DMA irq handler. So we check the residue here.
1025 	 */
1026 	rxchan->device->device_tx_status(rxchan, dmarx->cookie, &state);
1027 	pending = sgbuf->sg.length - state.residue;
1028 	BUG_ON(pending > PL011_DMA_BUFFER_SIZE);
1029 	/* Then we terminate the transfer - we now know our residue */
1030 	dmaengine_terminate_all(rxchan);
1031 
1032 	uap->dmarx.running = false;
1033 	dmarx->use_buf_b = !lastbuf;
1034 	ret = pl011_dma_rx_trigger_dma(uap);
1035 
1036 	pl011_dma_rx_chars(uap, pending, lastbuf, false);
1037 	spin_unlock_irq(&uap->port.lock);
1038 	/*
1039 	 * Do this check after we picked the DMA chars so we don't
1040 	 * get some IRQ immediately from RX.
1041 	 */
1042 	if (ret) {
1043 		dev_dbg(uap->port.dev, "could not retrigger RX DMA job "
1044 			"fall back to interrupt mode\n");
1045 		uap->im |= UART011_RXIM;
1046 		pl011_write(uap->im, uap, REG_IMSC);
1047 	}
1048 }
1049 
1050 /*
1051  * Stop accepting received characters, when we're shutting down or
1052  * suspending this port.
1053  * Locking: called with port lock held and IRQs disabled.
1054  */
1055 static inline void pl011_dma_rx_stop(struct uart_amba_port *uap)
1056 {
1057 	/* FIXME.  Just disable the DMA enable */
1058 	uap->dmacr &= ~UART011_RXDMAE;
1059 	pl011_write(uap->dmacr, uap, REG_DMACR);
1060 }
1061 
1062 /*
1063  * Timer handler for Rx DMA polling.
1064  * Every polling, It checks the residue in the dma buffer and transfer
1065  * data to the tty. Also, last_residue is updated for the next polling.
1066  */
1067 static void pl011_dma_rx_poll(struct timer_list *t)
1068 {
1069 	struct uart_amba_port *uap = from_timer(uap, t, dmarx.timer);
1070 	struct tty_port *port = &uap->port.state->port;
1071 	struct pl011_dmarx_data *dmarx = &uap->dmarx;
1072 	struct dma_chan *rxchan = uap->dmarx.chan;
1073 	unsigned long flags = 0;
1074 	unsigned int dmataken = 0;
1075 	unsigned int size = 0;
1076 	struct pl011_sgbuf *sgbuf;
1077 	int dma_count;
1078 	struct dma_tx_state state;
1079 
1080 	sgbuf = dmarx->use_buf_b ? &uap->dmarx.sgbuf_b : &uap->dmarx.sgbuf_a;
1081 	rxchan->device->device_tx_status(rxchan, dmarx->cookie, &state);
1082 	if (likely(state.residue < dmarx->last_residue)) {
1083 		dmataken = sgbuf->sg.length - dmarx->last_residue;
1084 		size = dmarx->last_residue - state.residue;
1085 		dma_count = tty_insert_flip_string(port, sgbuf->buf + dmataken,
1086 				size);
1087 		if (dma_count == size)
1088 			dmarx->last_residue =  state.residue;
1089 		dmarx->last_jiffies = jiffies;
1090 	}
1091 	tty_flip_buffer_push(port);
1092 
1093 	/*
1094 	 * If no data is received in poll_timeout, the driver will fall back
1095 	 * to interrupt mode. We will retrigger DMA at the first interrupt.
1096 	 */
1097 	if (jiffies_to_msecs(jiffies - dmarx->last_jiffies)
1098 			> uap->dmarx.poll_timeout) {
1099 
1100 		spin_lock_irqsave(&uap->port.lock, flags);
1101 		pl011_dma_rx_stop(uap);
1102 		uap->im |= UART011_RXIM;
1103 		pl011_write(uap->im, uap, REG_IMSC);
1104 		spin_unlock_irqrestore(&uap->port.lock, flags);
1105 
1106 		uap->dmarx.running = false;
1107 		dmaengine_terminate_all(rxchan);
1108 		del_timer(&uap->dmarx.timer);
1109 	} else {
1110 		mod_timer(&uap->dmarx.timer,
1111 			jiffies + msecs_to_jiffies(uap->dmarx.poll_rate));
1112 	}
1113 }
1114 
1115 static void pl011_dma_startup(struct uart_amba_port *uap)
1116 {
1117 	int ret;
1118 
1119 	if (!uap->dma_probed)
1120 		pl011_dma_probe(uap);
1121 
1122 	if (!uap->dmatx.chan)
1123 		return;
1124 
1125 	uap->dmatx.buf = kmalloc(PL011_DMA_BUFFER_SIZE, GFP_KERNEL | __GFP_DMA);
1126 	if (!uap->dmatx.buf) {
1127 		dev_err(uap->port.dev, "no memory for DMA TX buffer\n");
1128 		uap->port.fifosize = uap->fifosize;
1129 		return;
1130 	}
1131 
1132 	sg_init_one(&uap->dmatx.sg, uap->dmatx.buf, PL011_DMA_BUFFER_SIZE);
1133 
1134 	/* The DMA buffer is now the FIFO the TTY subsystem can use */
1135 	uap->port.fifosize = PL011_DMA_BUFFER_SIZE;
1136 	uap->using_tx_dma = true;
1137 
1138 	if (!uap->dmarx.chan)
1139 		goto skip_rx;
1140 
1141 	/* Allocate and map DMA RX buffers */
1142 	ret = pl011_sgbuf_init(uap->dmarx.chan, &uap->dmarx.sgbuf_a,
1143 			       DMA_FROM_DEVICE);
1144 	if (ret) {
1145 		dev_err(uap->port.dev, "failed to init DMA %s: %d\n",
1146 			"RX buffer A", ret);
1147 		goto skip_rx;
1148 	}
1149 
1150 	ret = pl011_sgbuf_init(uap->dmarx.chan, &uap->dmarx.sgbuf_b,
1151 			       DMA_FROM_DEVICE);
1152 	if (ret) {
1153 		dev_err(uap->port.dev, "failed to init DMA %s: %d\n",
1154 			"RX buffer B", ret);
1155 		pl011_sgbuf_free(uap->dmarx.chan, &uap->dmarx.sgbuf_a,
1156 				 DMA_FROM_DEVICE);
1157 		goto skip_rx;
1158 	}
1159 
1160 	uap->using_rx_dma = true;
1161 
1162 skip_rx:
1163 	/* Turn on DMA error (RX/TX will be enabled on demand) */
1164 	uap->dmacr |= UART011_DMAONERR;
1165 	pl011_write(uap->dmacr, uap, REG_DMACR);
1166 
1167 	/*
1168 	 * ST Micro variants has some specific dma burst threshold
1169 	 * compensation. Set this to 16 bytes, so burst will only
1170 	 * be issued above/below 16 bytes.
1171 	 */
1172 	if (uap->vendor->dma_threshold)
1173 		pl011_write(ST_UART011_DMAWM_RX_16 | ST_UART011_DMAWM_TX_16,
1174 			    uap, REG_ST_DMAWM);
1175 
1176 	if (uap->using_rx_dma) {
1177 		if (pl011_dma_rx_trigger_dma(uap))
1178 			dev_dbg(uap->port.dev, "could not trigger initial "
1179 				"RX DMA job, fall back to interrupt mode\n");
1180 		if (uap->dmarx.poll_rate) {
1181 			timer_setup(&uap->dmarx.timer, pl011_dma_rx_poll, 0);
1182 			mod_timer(&uap->dmarx.timer,
1183 				jiffies +
1184 				msecs_to_jiffies(uap->dmarx.poll_rate));
1185 			uap->dmarx.last_residue = PL011_DMA_BUFFER_SIZE;
1186 			uap->dmarx.last_jiffies = jiffies;
1187 		}
1188 	}
1189 }
1190 
1191 static void pl011_dma_shutdown(struct uart_amba_port *uap)
1192 {
1193 	if (!(uap->using_tx_dma || uap->using_rx_dma))
1194 		return;
1195 
1196 	/* Disable RX and TX DMA */
1197 	while (pl011_read(uap, REG_FR) & uap->vendor->fr_busy)
1198 		cpu_relax();
1199 
1200 	spin_lock_irq(&uap->port.lock);
1201 	uap->dmacr &= ~(UART011_DMAONERR | UART011_RXDMAE | UART011_TXDMAE);
1202 	pl011_write(uap->dmacr, uap, REG_DMACR);
1203 	spin_unlock_irq(&uap->port.lock);
1204 
1205 	if (uap->using_tx_dma) {
1206 		/* In theory, this should already be done by pl011_dma_flush_buffer */
1207 		dmaengine_terminate_all(uap->dmatx.chan);
1208 		if (uap->dmatx.queued) {
1209 			dma_unmap_sg(uap->dmatx.chan->device->dev, &uap->dmatx.sg, 1,
1210 				     DMA_TO_DEVICE);
1211 			uap->dmatx.queued = false;
1212 		}
1213 
1214 		kfree(uap->dmatx.buf);
1215 		uap->using_tx_dma = false;
1216 	}
1217 
1218 	if (uap->using_rx_dma) {
1219 		dmaengine_terminate_all(uap->dmarx.chan);
1220 		/* Clean up the RX DMA */
1221 		pl011_sgbuf_free(uap->dmarx.chan, &uap->dmarx.sgbuf_a, DMA_FROM_DEVICE);
1222 		pl011_sgbuf_free(uap->dmarx.chan, &uap->dmarx.sgbuf_b, DMA_FROM_DEVICE);
1223 		if (uap->dmarx.poll_rate)
1224 			del_timer_sync(&uap->dmarx.timer);
1225 		uap->using_rx_dma = false;
1226 	}
1227 }
1228 
1229 static inline bool pl011_dma_rx_available(struct uart_amba_port *uap)
1230 {
1231 	return uap->using_rx_dma;
1232 }
1233 
1234 static inline bool pl011_dma_rx_running(struct uart_amba_port *uap)
1235 {
1236 	return uap->using_rx_dma && uap->dmarx.running;
1237 }
1238 
1239 #else
1240 /* Blank functions if the DMA engine is not available */
1241 static inline void pl011_dma_probe(struct uart_amba_port *uap)
1242 {
1243 }
1244 
1245 static inline void pl011_dma_remove(struct uart_amba_port *uap)
1246 {
1247 }
1248 
1249 static inline void pl011_dma_startup(struct uart_amba_port *uap)
1250 {
1251 }
1252 
1253 static inline void pl011_dma_shutdown(struct uart_amba_port *uap)
1254 {
1255 }
1256 
1257 static inline bool pl011_dma_tx_irq(struct uart_amba_port *uap)
1258 {
1259 	return false;
1260 }
1261 
1262 static inline void pl011_dma_tx_stop(struct uart_amba_port *uap)
1263 {
1264 }
1265 
1266 static inline bool pl011_dma_tx_start(struct uart_amba_port *uap)
1267 {
1268 	return false;
1269 }
1270 
1271 static inline void pl011_dma_rx_irq(struct uart_amba_port *uap)
1272 {
1273 }
1274 
1275 static inline void pl011_dma_rx_stop(struct uart_amba_port *uap)
1276 {
1277 }
1278 
1279 static inline int pl011_dma_rx_trigger_dma(struct uart_amba_port *uap)
1280 {
1281 	return -EIO;
1282 }
1283 
1284 static inline bool pl011_dma_rx_available(struct uart_amba_port *uap)
1285 {
1286 	return false;
1287 }
1288 
1289 static inline bool pl011_dma_rx_running(struct uart_amba_port *uap)
1290 {
1291 	return false;
1292 }
1293 
1294 #define pl011_dma_flush_buffer	NULL
1295 #endif
1296 
1297 static void pl011_stop_tx(struct uart_port *port)
1298 {
1299 	struct uart_amba_port *uap =
1300 	    container_of(port, struct uart_amba_port, port);
1301 
1302 	uap->im &= ~UART011_TXIM;
1303 	pl011_write(uap->im, uap, REG_IMSC);
1304 	pl011_dma_tx_stop(uap);
1305 }
1306 
1307 static bool pl011_tx_chars(struct uart_amba_port *uap, bool from_irq);
1308 
1309 /* Start TX with programmed I/O only (no DMA) */
1310 static void pl011_start_tx_pio(struct uart_amba_port *uap)
1311 {
1312 	if (pl011_tx_chars(uap, false)) {
1313 		uap->im |= UART011_TXIM;
1314 		pl011_write(uap->im, uap, REG_IMSC);
1315 	}
1316 }
1317 
1318 static void pl011_start_tx(struct uart_port *port)
1319 {
1320 	struct uart_amba_port *uap =
1321 	    container_of(port, struct uart_amba_port, port);
1322 
1323 	if (!pl011_dma_tx_start(uap))
1324 		pl011_start_tx_pio(uap);
1325 }
1326 
1327 static void pl011_stop_rx(struct uart_port *port)
1328 {
1329 	struct uart_amba_port *uap =
1330 	    container_of(port, struct uart_amba_port, port);
1331 
1332 	uap->im &= ~(UART011_RXIM|UART011_RTIM|UART011_FEIM|
1333 		     UART011_PEIM|UART011_BEIM|UART011_OEIM);
1334 	pl011_write(uap->im, uap, REG_IMSC);
1335 
1336 	pl011_dma_rx_stop(uap);
1337 }
1338 
1339 static void pl011_enable_ms(struct uart_port *port)
1340 {
1341 	struct uart_amba_port *uap =
1342 	    container_of(port, struct uart_amba_port, port);
1343 
1344 	uap->im |= UART011_RIMIM|UART011_CTSMIM|UART011_DCDMIM|UART011_DSRMIM;
1345 	pl011_write(uap->im, uap, REG_IMSC);
1346 }
1347 
1348 static void pl011_rx_chars(struct uart_amba_port *uap)
1349 __releases(&uap->port.lock)
1350 __acquires(&uap->port.lock)
1351 {
1352 	pl011_fifo_to_tty(uap);
1353 
1354 	spin_unlock(&uap->port.lock);
1355 	tty_flip_buffer_push(&uap->port.state->port);
1356 	/*
1357 	 * If we were temporarily out of DMA mode for a while,
1358 	 * attempt to switch back to DMA mode again.
1359 	 */
1360 	if (pl011_dma_rx_available(uap)) {
1361 		if (pl011_dma_rx_trigger_dma(uap)) {
1362 			dev_dbg(uap->port.dev, "could not trigger RX DMA job "
1363 				"fall back to interrupt mode again\n");
1364 			uap->im |= UART011_RXIM;
1365 			pl011_write(uap->im, uap, REG_IMSC);
1366 		} else {
1367 #ifdef CONFIG_DMA_ENGINE
1368 			/* Start Rx DMA poll */
1369 			if (uap->dmarx.poll_rate) {
1370 				uap->dmarx.last_jiffies = jiffies;
1371 				uap->dmarx.last_residue	= PL011_DMA_BUFFER_SIZE;
1372 				mod_timer(&uap->dmarx.timer,
1373 					jiffies +
1374 					msecs_to_jiffies(uap->dmarx.poll_rate));
1375 			}
1376 #endif
1377 		}
1378 	}
1379 	spin_lock(&uap->port.lock);
1380 }
1381 
1382 static bool pl011_tx_char(struct uart_amba_port *uap, unsigned char c,
1383 			  bool from_irq)
1384 {
1385 	if (unlikely(!from_irq) &&
1386 	    pl011_read(uap, REG_FR) & UART01x_FR_TXFF)
1387 		return false; /* unable to transmit character */
1388 
1389 	pl011_write(c, uap, REG_DR);
1390 	uap->port.icount.tx++;
1391 
1392 	return true;
1393 }
1394 
1395 /* Returns true if tx interrupts have to be (kept) enabled  */
1396 static bool pl011_tx_chars(struct uart_amba_port *uap, bool from_irq)
1397 {
1398 	struct circ_buf *xmit = &uap->port.state->xmit;
1399 	int count = uap->fifosize >> 1;
1400 
1401 	if (uap->port.x_char) {
1402 		if (!pl011_tx_char(uap, uap->port.x_char, from_irq))
1403 			return true;
1404 		uap->port.x_char = 0;
1405 		--count;
1406 	}
1407 	if (uart_circ_empty(xmit) || uart_tx_stopped(&uap->port)) {
1408 		pl011_stop_tx(&uap->port);
1409 		return false;
1410 	}
1411 
1412 	/* If we are using DMA mode, try to send some characters. */
1413 	if (pl011_dma_tx_irq(uap))
1414 		return true;
1415 
1416 	do {
1417 		if (likely(from_irq) && count-- == 0)
1418 			break;
1419 
1420 		if (!pl011_tx_char(uap, xmit->buf[xmit->tail], from_irq))
1421 			break;
1422 
1423 		xmit->tail = (xmit->tail + 1) & (UART_XMIT_SIZE - 1);
1424 	} while (!uart_circ_empty(xmit));
1425 
1426 	if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
1427 		uart_write_wakeup(&uap->port);
1428 
1429 	if (uart_circ_empty(xmit)) {
1430 		pl011_stop_tx(&uap->port);
1431 		return false;
1432 	}
1433 	return true;
1434 }
1435 
1436 static void pl011_modem_status(struct uart_amba_port *uap)
1437 {
1438 	unsigned int status, delta;
1439 
1440 	status = pl011_read(uap, REG_FR) & UART01x_FR_MODEM_ANY;
1441 
1442 	delta = status ^ uap->old_status;
1443 	uap->old_status = status;
1444 
1445 	if (!delta)
1446 		return;
1447 
1448 	if (delta & UART01x_FR_DCD)
1449 		uart_handle_dcd_change(&uap->port, status & UART01x_FR_DCD);
1450 
1451 	if (delta & uap->vendor->fr_dsr)
1452 		uap->port.icount.dsr++;
1453 
1454 	if (delta & uap->vendor->fr_cts)
1455 		uart_handle_cts_change(&uap->port,
1456 				       status & uap->vendor->fr_cts);
1457 
1458 	wake_up_interruptible(&uap->port.state->port.delta_msr_wait);
1459 }
1460 
1461 static void check_apply_cts_event_workaround(struct uart_amba_port *uap)
1462 {
1463 	unsigned int dummy_read;
1464 
1465 	if (!uap->vendor->cts_event_workaround)
1466 		return;
1467 
1468 	/* workaround to make sure that all bits are unlocked.. */
1469 	pl011_write(0x00, uap, REG_ICR);
1470 
1471 	/*
1472 	 * WA: introduce 26ns(1 uart clk) delay before W1C;
1473 	 * single apb access will incur 2 pclk(133.12Mhz) delay,
1474 	 * so add 2 dummy reads
1475 	 */
1476 	dummy_read = pl011_read(uap, REG_ICR);
1477 	dummy_read = pl011_read(uap, REG_ICR);
1478 }
1479 
1480 static irqreturn_t pl011_int(int irq, void *dev_id)
1481 {
1482 	struct uart_amba_port *uap = dev_id;
1483 	unsigned long flags;
1484 	unsigned int status, pass_counter = AMBA_ISR_PASS_LIMIT;
1485 	u16 imsc;
1486 	int handled = 0;
1487 
1488 	spin_lock_irqsave(&uap->port.lock, flags);
1489 	imsc = pl011_read(uap, REG_IMSC);
1490 	status = pl011_read(uap, REG_RIS) & imsc;
1491 	if (status) {
1492 		do {
1493 			check_apply_cts_event_workaround(uap);
1494 
1495 			pl011_write(status & ~(UART011_TXIS|UART011_RTIS|
1496 					       UART011_RXIS),
1497 				    uap, REG_ICR);
1498 
1499 			if (status & (UART011_RTIS|UART011_RXIS)) {
1500 				if (pl011_dma_rx_running(uap))
1501 					pl011_dma_rx_irq(uap);
1502 				else
1503 					pl011_rx_chars(uap);
1504 			}
1505 			if (status & (UART011_DSRMIS|UART011_DCDMIS|
1506 				      UART011_CTSMIS|UART011_RIMIS))
1507 				pl011_modem_status(uap);
1508 			if (status & UART011_TXIS)
1509 				pl011_tx_chars(uap, true);
1510 
1511 			if (pass_counter-- == 0)
1512 				break;
1513 
1514 			status = pl011_read(uap, REG_RIS) & imsc;
1515 		} while (status != 0);
1516 		handled = 1;
1517 	}
1518 
1519 	spin_unlock_irqrestore(&uap->port.lock, flags);
1520 
1521 	return IRQ_RETVAL(handled);
1522 }
1523 
1524 static unsigned int pl011_tx_empty(struct uart_port *port)
1525 {
1526 	struct uart_amba_port *uap =
1527 	    container_of(port, struct uart_amba_port, port);
1528 
1529 	/* Allow feature register bits to be inverted to work around errata */
1530 	unsigned int status = pl011_read(uap, REG_FR) ^ uap->vendor->inv_fr;
1531 
1532 	return status & (uap->vendor->fr_busy | UART01x_FR_TXFF) ?
1533 							0 : TIOCSER_TEMT;
1534 }
1535 
1536 static unsigned int pl011_get_mctrl(struct uart_port *port)
1537 {
1538 	struct uart_amba_port *uap =
1539 	    container_of(port, struct uart_amba_port, port);
1540 	unsigned int result = 0;
1541 	unsigned int status = pl011_read(uap, REG_FR);
1542 
1543 #define TIOCMBIT(uartbit, tiocmbit)	\
1544 	if (status & uartbit)		\
1545 		result |= tiocmbit
1546 
1547 	TIOCMBIT(UART01x_FR_DCD, TIOCM_CAR);
1548 	TIOCMBIT(uap->vendor->fr_dsr, TIOCM_DSR);
1549 	TIOCMBIT(uap->vendor->fr_cts, TIOCM_CTS);
1550 	TIOCMBIT(uap->vendor->fr_ri, TIOCM_RNG);
1551 #undef TIOCMBIT
1552 	return result;
1553 }
1554 
1555 static void pl011_set_mctrl(struct uart_port *port, unsigned int mctrl)
1556 {
1557 	struct uart_amba_port *uap =
1558 	    container_of(port, struct uart_amba_port, port);
1559 	unsigned int cr;
1560 
1561 	cr = pl011_read(uap, REG_CR);
1562 
1563 #define	TIOCMBIT(tiocmbit, uartbit)		\
1564 	if (mctrl & tiocmbit)		\
1565 		cr |= uartbit;		\
1566 	else				\
1567 		cr &= ~uartbit
1568 
1569 	TIOCMBIT(TIOCM_RTS, UART011_CR_RTS);
1570 	TIOCMBIT(TIOCM_DTR, UART011_CR_DTR);
1571 	TIOCMBIT(TIOCM_OUT1, UART011_CR_OUT1);
1572 	TIOCMBIT(TIOCM_OUT2, UART011_CR_OUT2);
1573 	TIOCMBIT(TIOCM_LOOP, UART011_CR_LBE);
1574 
1575 	if (port->status & UPSTAT_AUTORTS) {
1576 		/* We need to disable auto-RTS if we want to turn RTS off */
1577 		TIOCMBIT(TIOCM_RTS, UART011_CR_RTSEN);
1578 	}
1579 #undef TIOCMBIT
1580 
1581 	pl011_write(cr, uap, REG_CR);
1582 }
1583 
1584 static void pl011_break_ctl(struct uart_port *port, int break_state)
1585 {
1586 	struct uart_amba_port *uap =
1587 	    container_of(port, struct uart_amba_port, port);
1588 	unsigned long flags;
1589 	unsigned int lcr_h;
1590 
1591 	spin_lock_irqsave(&uap->port.lock, flags);
1592 	lcr_h = pl011_read(uap, REG_LCRH_TX);
1593 	if (break_state == -1)
1594 		lcr_h |= UART01x_LCRH_BRK;
1595 	else
1596 		lcr_h &= ~UART01x_LCRH_BRK;
1597 	pl011_write(lcr_h, uap, REG_LCRH_TX);
1598 	spin_unlock_irqrestore(&uap->port.lock, flags);
1599 }
1600 
1601 #ifdef CONFIG_CONSOLE_POLL
1602 
1603 static void pl011_quiesce_irqs(struct uart_port *port)
1604 {
1605 	struct uart_amba_port *uap =
1606 	    container_of(port, struct uart_amba_port, port);
1607 
1608 	pl011_write(pl011_read(uap, REG_MIS), uap, REG_ICR);
1609 	/*
1610 	 * There is no way to clear TXIM as this is "ready to transmit IRQ", so
1611 	 * we simply mask it. start_tx() will unmask it.
1612 	 *
1613 	 * Note we can race with start_tx(), and if the race happens, the
1614 	 * polling user might get another interrupt just after we clear it.
1615 	 * But it should be OK and can happen even w/o the race, e.g.
1616 	 * controller immediately got some new data and raised the IRQ.
1617 	 *
1618 	 * And whoever uses polling routines assumes that it manages the device
1619 	 * (including tx queue), so we're also fine with start_tx()'s caller
1620 	 * side.
1621 	 */
1622 	pl011_write(pl011_read(uap, REG_IMSC) & ~UART011_TXIM, uap,
1623 		    REG_IMSC);
1624 }
1625 
1626 static int pl011_get_poll_char(struct uart_port *port)
1627 {
1628 	struct uart_amba_port *uap =
1629 	    container_of(port, struct uart_amba_port, port);
1630 	unsigned int status;
1631 
1632 	/*
1633 	 * The caller might need IRQs lowered, e.g. if used with KDB NMI
1634 	 * debugger.
1635 	 */
1636 	pl011_quiesce_irqs(port);
1637 
1638 	status = pl011_read(uap, REG_FR);
1639 	if (status & UART01x_FR_RXFE)
1640 		return NO_POLL_CHAR;
1641 
1642 	return pl011_read(uap, REG_DR);
1643 }
1644 
1645 static void pl011_put_poll_char(struct uart_port *port,
1646 			 unsigned char ch)
1647 {
1648 	struct uart_amba_port *uap =
1649 	    container_of(port, struct uart_amba_port, port);
1650 
1651 	while (pl011_read(uap, REG_FR) & UART01x_FR_TXFF)
1652 		cpu_relax();
1653 
1654 	pl011_write(ch, uap, REG_DR);
1655 }
1656 
1657 #endif /* CONFIG_CONSOLE_POLL */
1658 
1659 static int pl011_hwinit(struct uart_port *port)
1660 {
1661 	struct uart_amba_port *uap =
1662 	    container_of(port, struct uart_amba_port, port);
1663 	int retval;
1664 
1665 	/* Optionaly enable pins to be muxed in and configured */
1666 	pinctrl_pm_select_default_state(port->dev);
1667 
1668 	/*
1669 	 * Try to enable the clock producer.
1670 	 */
1671 	retval = clk_prepare_enable(uap->clk);
1672 	if (retval)
1673 		return retval;
1674 
1675 	uap->port.uartclk = clk_get_rate(uap->clk);
1676 
1677 	/* Clear pending error and receive interrupts */
1678 	pl011_write(UART011_OEIS | UART011_BEIS | UART011_PEIS |
1679 		    UART011_FEIS | UART011_RTIS | UART011_RXIS,
1680 		    uap, REG_ICR);
1681 
1682 	/*
1683 	 * Save interrupts enable mask, and enable RX interrupts in case if
1684 	 * the interrupt is used for NMI entry.
1685 	 */
1686 	uap->im = pl011_read(uap, REG_IMSC);
1687 	pl011_write(UART011_RTIM | UART011_RXIM, uap, REG_IMSC);
1688 
1689 	if (dev_get_platdata(uap->port.dev)) {
1690 		struct amba_pl011_data *plat;
1691 
1692 		plat = dev_get_platdata(uap->port.dev);
1693 		if (plat->init)
1694 			plat->init();
1695 	}
1696 	return 0;
1697 }
1698 
1699 static bool pl011_split_lcrh(const struct uart_amba_port *uap)
1700 {
1701 	return pl011_reg_to_offset(uap, REG_LCRH_RX) !=
1702 	       pl011_reg_to_offset(uap, REG_LCRH_TX);
1703 }
1704 
1705 static void pl011_write_lcr_h(struct uart_amba_port *uap, unsigned int lcr_h)
1706 {
1707 	pl011_write(lcr_h, uap, REG_LCRH_RX);
1708 	if (pl011_split_lcrh(uap)) {
1709 		int i;
1710 		/*
1711 		 * Wait 10 PCLKs before writing LCRH_TX register,
1712 		 * to get this delay write read only register 10 times
1713 		 */
1714 		for (i = 0; i < 10; ++i)
1715 			pl011_write(0xff, uap, REG_MIS);
1716 		pl011_write(lcr_h, uap, REG_LCRH_TX);
1717 	}
1718 }
1719 
1720 static int pl011_allocate_irq(struct uart_amba_port *uap)
1721 {
1722 	pl011_write(uap->im, uap, REG_IMSC);
1723 
1724 	return request_irq(uap->port.irq, pl011_int, 0, "uart-pl011", uap);
1725 }
1726 
1727 /*
1728  * Enable interrupts, only timeouts when using DMA
1729  * if initial RX DMA job failed, start in interrupt mode
1730  * as well.
1731  */
1732 static void pl011_enable_interrupts(struct uart_amba_port *uap)
1733 {
1734 	spin_lock_irq(&uap->port.lock);
1735 
1736 	/* Clear out any spuriously appearing RX interrupts */
1737 	pl011_write(UART011_RTIS | UART011_RXIS, uap, REG_ICR);
1738 	uap->im = UART011_RTIM;
1739 	if (!pl011_dma_rx_running(uap))
1740 		uap->im |= UART011_RXIM;
1741 	pl011_write(uap->im, uap, REG_IMSC);
1742 	spin_unlock_irq(&uap->port.lock);
1743 }
1744 
1745 static int pl011_startup(struct uart_port *port)
1746 {
1747 	struct uart_amba_port *uap =
1748 	    container_of(port, struct uart_amba_port, port);
1749 	unsigned int cr;
1750 	int retval;
1751 
1752 	retval = pl011_hwinit(port);
1753 	if (retval)
1754 		goto clk_dis;
1755 
1756 	retval = pl011_allocate_irq(uap);
1757 	if (retval)
1758 		goto clk_dis;
1759 
1760 	pl011_write(uap->vendor->ifls, uap, REG_IFLS);
1761 
1762 	spin_lock_irq(&uap->port.lock);
1763 
1764 	/* restore RTS and DTR */
1765 	cr = uap->old_cr & (UART011_CR_RTS | UART011_CR_DTR);
1766 	cr |= UART01x_CR_UARTEN | UART011_CR_RXE | UART011_CR_TXE;
1767 	pl011_write(cr, uap, REG_CR);
1768 
1769 	spin_unlock_irq(&uap->port.lock);
1770 
1771 	/*
1772 	 * initialise the old status of the modem signals
1773 	 */
1774 	uap->old_status = pl011_read(uap, REG_FR) & UART01x_FR_MODEM_ANY;
1775 
1776 	/* Startup DMA */
1777 	pl011_dma_startup(uap);
1778 
1779 	pl011_enable_interrupts(uap);
1780 
1781 	return 0;
1782 
1783  clk_dis:
1784 	clk_disable_unprepare(uap->clk);
1785 	return retval;
1786 }
1787 
1788 static int sbsa_uart_startup(struct uart_port *port)
1789 {
1790 	struct uart_amba_port *uap =
1791 		container_of(port, struct uart_amba_port, port);
1792 	int retval;
1793 
1794 	retval = pl011_hwinit(port);
1795 	if (retval)
1796 		return retval;
1797 
1798 	retval = pl011_allocate_irq(uap);
1799 	if (retval)
1800 		return retval;
1801 
1802 	/* The SBSA UART does not support any modem status lines. */
1803 	uap->old_status = 0;
1804 
1805 	pl011_enable_interrupts(uap);
1806 
1807 	return 0;
1808 }
1809 
1810 static void pl011_shutdown_channel(struct uart_amba_port *uap,
1811 					unsigned int lcrh)
1812 {
1813       unsigned long val;
1814 
1815       val = pl011_read(uap, lcrh);
1816       val &= ~(UART01x_LCRH_BRK | UART01x_LCRH_FEN);
1817       pl011_write(val, uap, lcrh);
1818 }
1819 
1820 /*
1821  * disable the port. It should not disable RTS and DTR.
1822  * Also RTS and DTR state should be preserved to restore
1823  * it during startup().
1824  */
1825 static void pl011_disable_uart(struct uart_amba_port *uap)
1826 {
1827 	unsigned int cr;
1828 
1829 	uap->port.status &= ~(UPSTAT_AUTOCTS | UPSTAT_AUTORTS);
1830 	spin_lock_irq(&uap->port.lock);
1831 	cr = pl011_read(uap, REG_CR);
1832 	uap->old_cr = cr;
1833 	cr &= UART011_CR_RTS | UART011_CR_DTR;
1834 	cr |= UART01x_CR_UARTEN | UART011_CR_TXE;
1835 	pl011_write(cr, uap, REG_CR);
1836 	spin_unlock_irq(&uap->port.lock);
1837 
1838 	/*
1839 	 * disable break condition and fifos
1840 	 */
1841 	pl011_shutdown_channel(uap, REG_LCRH_RX);
1842 	if (pl011_split_lcrh(uap))
1843 		pl011_shutdown_channel(uap, REG_LCRH_TX);
1844 }
1845 
1846 static void pl011_disable_interrupts(struct uart_amba_port *uap)
1847 {
1848 	spin_lock_irq(&uap->port.lock);
1849 
1850 	/* mask all interrupts and clear all pending ones */
1851 	uap->im = 0;
1852 	pl011_write(uap->im, uap, REG_IMSC);
1853 	pl011_write(0xffff, uap, REG_ICR);
1854 
1855 	spin_unlock_irq(&uap->port.lock);
1856 }
1857 
1858 static void pl011_shutdown(struct uart_port *port)
1859 {
1860 	struct uart_amba_port *uap =
1861 		container_of(port, struct uart_amba_port, port);
1862 
1863 	pl011_disable_interrupts(uap);
1864 
1865 	pl011_dma_shutdown(uap);
1866 
1867 	free_irq(uap->port.irq, uap);
1868 
1869 	pl011_disable_uart(uap);
1870 
1871 	/*
1872 	 * Shut down the clock producer
1873 	 */
1874 	clk_disable_unprepare(uap->clk);
1875 	/* Optionally let pins go into sleep states */
1876 	pinctrl_pm_select_sleep_state(port->dev);
1877 
1878 	if (dev_get_platdata(uap->port.dev)) {
1879 		struct amba_pl011_data *plat;
1880 
1881 		plat = dev_get_platdata(uap->port.dev);
1882 		if (plat->exit)
1883 			plat->exit();
1884 	}
1885 
1886 	if (uap->port.ops->flush_buffer)
1887 		uap->port.ops->flush_buffer(port);
1888 }
1889 
1890 static void sbsa_uart_shutdown(struct uart_port *port)
1891 {
1892 	struct uart_amba_port *uap =
1893 		container_of(port, struct uart_amba_port, port);
1894 
1895 	pl011_disable_interrupts(uap);
1896 
1897 	free_irq(uap->port.irq, uap);
1898 
1899 	if (uap->port.ops->flush_buffer)
1900 		uap->port.ops->flush_buffer(port);
1901 }
1902 
1903 static void
1904 pl011_setup_status_masks(struct uart_port *port, struct ktermios *termios)
1905 {
1906 	port->read_status_mask = UART011_DR_OE | 255;
1907 	if (termios->c_iflag & INPCK)
1908 		port->read_status_mask |= UART011_DR_FE | UART011_DR_PE;
1909 	if (termios->c_iflag & (IGNBRK | BRKINT | PARMRK))
1910 		port->read_status_mask |= UART011_DR_BE;
1911 
1912 	/*
1913 	 * Characters to ignore
1914 	 */
1915 	port->ignore_status_mask = 0;
1916 	if (termios->c_iflag & IGNPAR)
1917 		port->ignore_status_mask |= UART011_DR_FE | UART011_DR_PE;
1918 	if (termios->c_iflag & IGNBRK) {
1919 		port->ignore_status_mask |= UART011_DR_BE;
1920 		/*
1921 		 * If we're ignoring parity and break indicators,
1922 		 * ignore overruns too (for real raw support).
1923 		 */
1924 		if (termios->c_iflag & IGNPAR)
1925 			port->ignore_status_mask |= UART011_DR_OE;
1926 	}
1927 
1928 	/*
1929 	 * Ignore all characters if CREAD is not set.
1930 	 */
1931 	if ((termios->c_cflag & CREAD) == 0)
1932 		port->ignore_status_mask |= UART_DUMMY_DR_RX;
1933 }
1934 
1935 static void
1936 pl011_set_termios(struct uart_port *port, struct ktermios *termios,
1937 		     struct ktermios *old)
1938 {
1939 	struct uart_amba_port *uap =
1940 	    container_of(port, struct uart_amba_port, port);
1941 	unsigned int lcr_h, old_cr;
1942 	unsigned long flags;
1943 	unsigned int baud, quot, clkdiv;
1944 
1945 	if (uap->vendor->oversampling)
1946 		clkdiv = 8;
1947 	else
1948 		clkdiv = 16;
1949 
1950 	/*
1951 	 * Ask the core to calculate the divisor for us.
1952 	 */
1953 	baud = uart_get_baud_rate(port, termios, old, 0,
1954 				  port->uartclk / clkdiv);
1955 #ifdef CONFIG_DMA_ENGINE
1956 	/*
1957 	 * Adjust RX DMA polling rate with baud rate if not specified.
1958 	 */
1959 	if (uap->dmarx.auto_poll_rate)
1960 		uap->dmarx.poll_rate = DIV_ROUND_UP(10000000, baud);
1961 #endif
1962 
1963 	if (baud > port->uartclk/16)
1964 		quot = DIV_ROUND_CLOSEST(port->uartclk * 8, baud);
1965 	else
1966 		quot = DIV_ROUND_CLOSEST(port->uartclk * 4, baud);
1967 
1968 	switch (termios->c_cflag & CSIZE) {
1969 	case CS5:
1970 		lcr_h = UART01x_LCRH_WLEN_5;
1971 		break;
1972 	case CS6:
1973 		lcr_h = UART01x_LCRH_WLEN_6;
1974 		break;
1975 	case CS7:
1976 		lcr_h = UART01x_LCRH_WLEN_7;
1977 		break;
1978 	default: // CS8
1979 		lcr_h = UART01x_LCRH_WLEN_8;
1980 		break;
1981 	}
1982 	if (termios->c_cflag & CSTOPB)
1983 		lcr_h |= UART01x_LCRH_STP2;
1984 	if (termios->c_cflag & PARENB) {
1985 		lcr_h |= UART01x_LCRH_PEN;
1986 		if (!(termios->c_cflag & PARODD))
1987 			lcr_h |= UART01x_LCRH_EPS;
1988 		if (termios->c_cflag & CMSPAR)
1989 			lcr_h |= UART011_LCRH_SPS;
1990 	}
1991 	if (uap->fifosize > 1)
1992 		lcr_h |= UART01x_LCRH_FEN;
1993 
1994 	spin_lock_irqsave(&port->lock, flags);
1995 
1996 	/*
1997 	 * Update the per-port timeout.
1998 	 */
1999 	uart_update_timeout(port, termios->c_cflag, baud);
2000 
2001 	pl011_setup_status_masks(port, termios);
2002 
2003 	if (UART_ENABLE_MS(port, termios->c_cflag))
2004 		pl011_enable_ms(port);
2005 
2006 	/* first, disable everything */
2007 	old_cr = pl011_read(uap, REG_CR);
2008 	pl011_write(0, uap, REG_CR);
2009 
2010 	if (termios->c_cflag & CRTSCTS) {
2011 		if (old_cr & UART011_CR_RTS)
2012 			old_cr |= UART011_CR_RTSEN;
2013 
2014 		old_cr |= UART011_CR_CTSEN;
2015 		port->status |= UPSTAT_AUTOCTS | UPSTAT_AUTORTS;
2016 	} else {
2017 		old_cr &= ~(UART011_CR_CTSEN | UART011_CR_RTSEN);
2018 		port->status &= ~(UPSTAT_AUTOCTS | UPSTAT_AUTORTS);
2019 	}
2020 
2021 	if (uap->vendor->oversampling) {
2022 		if (baud > port->uartclk / 16)
2023 			old_cr |= ST_UART011_CR_OVSFACT;
2024 		else
2025 			old_cr &= ~ST_UART011_CR_OVSFACT;
2026 	}
2027 
2028 	/*
2029 	 * Workaround for the ST Micro oversampling variants to
2030 	 * increase the bitrate slightly, by lowering the divisor,
2031 	 * to avoid delayed sampling of start bit at high speeds,
2032 	 * else we see data corruption.
2033 	 */
2034 	if (uap->vendor->oversampling) {
2035 		if ((baud >= 3000000) && (baud < 3250000) && (quot > 1))
2036 			quot -= 1;
2037 		else if ((baud > 3250000) && (quot > 2))
2038 			quot -= 2;
2039 	}
2040 	/* Set baud rate */
2041 	pl011_write(quot & 0x3f, uap, REG_FBRD);
2042 	pl011_write(quot >> 6, uap, REG_IBRD);
2043 
2044 	/*
2045 	 * ----------v----------v----------v----------v-----
2046 	 * NOTE: REG_LCRH_TX and REG_LCRH_RX MUST BE WRITTEN AFTER
2047 	 * REG_FBRD & REG_IBRD.
2048 	 * ----------^----------^----------^----------^-----
2049 	 */
2050 	pl011_write_lcr_h(uap, lcr_h);
2051 	pl011_write(old_cr, uap, REG_CR);
2052 
2053 	spin_unlock_irqrestore(&port->lock, flags);
2054 }
2055 
2056 static void
2057 sbsa_uart_set_termios(struct uart_port *port, struct ktermios *termios,
2058 		      struct ktermios *old)
2059 {
2060 	struct uart_amba_port *uap =
2061 	    container_of(port, struct uart_amba_port, port);
2062 	unsigned long flags;
2063 
2064 	tty_termios_encode_baud_rate(termios, uap->fixed_baud, uap->fixed_baud);
2065 
2066 	/* The SBSA UART only supports 8n1 without hardware flow control. */
2067 	termios->c_cflag &= ~(CSIZE | CSTOPB | PARENB | PARODD);
2068 	termios->c_cflag &= ~(CMSPAR | CRTSCTS);
2069 	termios->c_cflag |= CS8 | CLOCAL;
2070 
2071 	spin_lock_irqsave(&port->lock, flags);
2072 	uart_update_timeout(port, CS8, uap->fixed_baud);
2073 	pl011_setup_status_masks(port, termios);
2074 	spin_unlock_irqrestore(&port->lock, flags);
2075 }
2076 
2077 static const char *pl011_type(struct uart_port *port)
2078 {
2079 	struct uart_amba_port *uap =
2080 	    container_of(port, struct uart_amba_port, port);
2081 	return uap->port.type == PORT_AMBA ? uap->type : NULL;
2082 }
2083 
2084 /*
2085  * Release the memory region(s) being used by 'port'
2086  */
2087 static void pl011_release_port(struct uart_port *port)
2088 {
2089 	release_mem_region(port->mapbase, SZ_4K);
2090 }
2091 
2092 /*
2093  * Request the memory region(s) being used by 'port'
2094  */
2095 static int pl011_request_port(struct uart_port *port)
2096 {
2097 	return request_mem_region(port->mapbase, SZ_4K, "uart-pl011")
2098 			!= NULL ? 0 : -EBUSY;
2099 }
2100 
2101 /*
2102  * Configure/autoconfigure the port.
2103  */
2104 static void pl011_config_port(struct uart_port *port, int flags)
2105 {
2106 	if (flags & UART_CONFIG_TYPE) {
2107 		port->type = PORT_AMBA;
2108 		pl011_request_port(port);
2109 	}
2110 }
2111 
2112 /*
2113  * verify the new serial_struct (for TIOCSSERIAL).
2114  */
2115 static int pl011_verify_port(struct uart_port *port, struct serial_struct *ser)
2116 {
2117 	int ret = 0;
2118 	if (ser->type != PORT_UNKNOWN && ser->type != PORT_AMBA)
2119 		ret = -EINVAL;
2120 	if (ser->irq < 0 || ser->irq >= nr_irqs)
2121 		ret = -EINVAL;
2122 	if (ser->baud_base < 9600)
2123 		ret = -EINVAL;
2124 	return ret;
2125 }
2126 
2127 static const struct uart_ops amba_pl011_pops = {
2128 	.tx_empty	= pl011_tx_empty,
2129 	.set_mctrl	= pl011_set_mctrl,
2130 	.get_mctrl	= pl011_get_mctrl,
2131 	.stop_tx	= pl011_stop_tx,
2132 	.start_tx	= pl011_start_tx,
2133 	.stop_rx	= pl011_stop_rx,
2134 	.enable_ms	= pl011_enable_ms,
2135 	.break_ctl	= pl011_break_ctl,
2136 	.startup	= pl011_startup,
2137 	.shutdown	= pl011_shutdown,
2138 	.flush_buffer	= pl011_dma_flush_buffer,
2139 	.set_termios	= pl011_set_termios,
2140 	.type		= pl011_type,
2141 	.release_port	= pl011_release_port,
2142 	.request_port	= pl011_request_port,
2143 	.config_port	= pl011_config_port,
2144 	.verify_port	= pl011_verify_port,
2145 #ifdef CONFIG_CONSOLE_POLL
2146 	.poll_init     = pl011_hwinit,
2147 	.poll_get_char = pl011_get_poll_char,
2148 	.poll_put_char = pl011_put_poll_char,
2149 #endif
2150 };
2151 
2152 static void sbsa_uart_set_mctrl(struct uart_port *port, unsigned int mctrl)
2153 {
2154 }
2155 
2156 static unsigned int sbsa_uart_get_mctrl(struct uart_port *port)
2157 {
2158 	return 0;
2159 }
2160 
2161 static const struct uart_ops sbsa_uart_pops = {
2162 	.tx_empty	= pl011_tx_empty,
2163 	.set_mctrl	= sbsa_uart_set_mctrl,
2164 	.get_mctrl	= sbsa_uart_get_mctrl,
2165 	.stop_tx	= pl011_stop_tx,
2166 	.start_tx	= pl011_start_tx,
2167 	.stop_rx	= pl011_stop_rx,
2168 	.startup	= sbsa_uart_startup,
2169 	.shutdown	= sbsa_uart_shutdown,
2170 	.set_termios	= sbsa_uart_set_termios,
2171 	.type		= pl011_type,
2172 	.release_port	= pl011_release_port,
2173 	.request_port	= pl011_request_port,
2174 	.config_port	= pl011_config_port,
2175 	.verify_port	= pl011_verify_port,
2176 #ifdef CONFIG_CONSOLE_POLL
2177 	.poll_init     = pl011_hwinit,
2178 	.poll_get_char = pl011_get_poll_char,
2179 	.poll_put_char = pl011_put_poll_char,
2180 #endif
2181 };
2182 
2183 static struct uart_amba_port *amba_ports[UART_NR];
2184 
2185 #ifdef CONFIG_SERIAL_AMBA_PL011_CONSOLE
2186 
2187 static void pl011_console_putchar(struct uart_port *port, int ch)
2188 {
2189 	struct uart_amba_port *uap =
2190 	    container_of(port, struct uart_amba_port, port);
2191 
2192 	while (pl011_read(uap, REG_FR) & UART01x_FR_TXFF)
2193 		cpu_relax();
2194 	pl011_write(ch, uap, REG_DR);
2195 }
2196 
2197 static void
2198 pl011_console_write(struct console *co, const char *s, unsigned int count)
2199 {
2200 	struct uart_amba_port *uap = amba_ports[co->index];
2201 	unsigned int old_cr = 0, new_cr;
2202 	unsigned long flags;
2203 	int locked = 1;
2204 
2205 	clk_enable(uap->clk);
2206 
2207 	local_irq_save(flags);
2208 	if (uap->port.sysrq)
2209 		locked = 0;
2210 	else if (oops_in_progress)
2211 		locked = spin_trylock(&uap->port.lock);
2212 	else
2213 		spin_lock(&uap->port.lock);
2214 
2215 	/*
2216 	 *	First save the CR then disable the interrupts
2217 	 */
2218 	if (!uap->vendor->always_enabled) {
2219 		old_cr = pl011_read(uap, REG_CR);
2220 		new_cr = old_cr & ~UART011_CR_CTSEN;
2221 		new_cr |= UART01x_CR_UARTEN | UART011_CR_TXE;
2222 		pl011_write(new_cr, uap, REG_CR);
2223 	}
2224 
2225 	uart_console_write(&uap->port, s, count, pl011_console_putchar);
2226 
2227 	/*
2228 	 *	Finally, wait for transmitter to become empty and restore the
2229 	 *	TCR. Allow feature register bits to be inverted to work around
2230 	 *	errata.
2231 	 */
2232 	while ((pl011_read(uap, REG_FR) ^ uap->vendor->inv_fr)
2233 						& uap->vendor->fr_busy)
2234 		cpu_relax();
2235 	if (!uap->vendor->always_enabled)
2236 		pl011_write(old_cr, uap, REG_CR);
2237 
2238 	if (locked)
2239 		spin_unlock(&uap->port.lock);
2240 	local_irq_restore(flags);
2241 
2242 	clk_disable(uap->clk);
2243 }
2244 
2245 static void __init
2246 pl011_console_get_options(struct uart_amba_port *uap, int *baud,
2247 			     int *parity, int *bits)
2248 {
2249 	if (pl011_read(uap, REG_CR) & UART01x_CR_UARTEN) {
2250 		unsigned int lcr_h, ibrd, fbrd;
2251 
2252 		lcr_h = pl011_read(uap, REG_LCRH_TX);
2253 
2254 		*parity = 'n';
2255 		if (lcr_h & UART01x_LCRH_PEN) {
2256 			if (lcr_h & UART01x_LCRH_EPS)
2257 				*parity = 'e';
2258 			else
2259 				*parity = 'o';
2260 		}
2261 
2262 		if ((lcr_h & 0x60) == UART01x_LCRH_WLEN_7)
2263 			*bits = 7;
2264 		else
2265 			*bits = 8;
2266 
2267 		ibrd = pl011_read(uap, REG_IBRD);
2268 		fbrd = pl011_read(uap, REG_FBRD);
2269 
2270 		*baud = uap->port.uartclk * 4 / (64 * ibrd + fbrd);
2271 
2272 		if (uap->vendor->oversampling) {
2273 			if (pl011_read(uap, REG_CR)
2274 				  & ST_UART011_CR_OVSFACT)
2275 				*baud *= 2;
2276 		}
2277 	}
2278 }
2279 
2280 static int __init pl011_console_setup(struct console *co, char *options)
2281 {
2282 	struct uart_amba_port *uap;
2283 	int baud = 38400;
2284 	int bits = 8;
2285 	int parity = 'n';
2286 	int flow = 'n';
2287 	int ret;
2288 
2289 	/*
2290 	 * Check whether an invalid uart number has been specified, and
2291 	 * if so, search for the first available port that does have
2292 	 * console support.
2293 	 */
2294 	if (co->index >= UART_NR)
2295 		co->index = 0;
2296 	uap = amba_ports[co->index];
2297 	if (!uap)
2298 		return -ENODEV;
2299 
2300 	/* Allow pins to be muxed in and configured */
2301 	pinctrl_pm_select_default_state(uap->port.dev);
2302 
2303 	ret = clk_prepare(uap->clk);
2304 	if (ret)
2305 		return ret;
2306 
2307 	if (dev_get_platdata(uap->port.dev)) {
2308 		struct amba_pl011_data *plat;
2309 
2310 		plat = dev_get_platdata(uap->port.dev);
2311 		if (plat->init)
2312 			plat->init();
2313 	}
2314 
2315 	uap->port.uartclk = clk_get_rate(uap->clk);
2316 
2317 	if (uap->vendor->fixed_options) {
2318 		baud = uap->fixed_baud;
2319 	} else {
2320 		if (options)
2321 			uart_parse_options(options,
2322 					   &baud, &parity, &bits, &flow);
2323 		else
2324 			pl011_console_get_options(uap, &baud, &parity, &bits);
2325 	}
2326 
2327 	return uart_set_options(&uap->port, co, baud, parity, bits, flow);
2328 }
2329 
2330 /**
2331  *	pl011_console_match - non-standard console matching
2332  *	@co:	  registering console
2333  *	@name:	  name from console command line
2334  *	@idx:	  index from console command line
2335  *	@options: ptr to option string from console command line
2336  *
2337  *	Only attempts to match console command lines of the form:
2338  *	    console=pl011,mmio|mmio32,<addr>[,<options>]
2339  *	    console=pl011,0x<addr>[,<options>]
2340  *	This form is used to register an initial earlycon boot console and
2341  *	replace it with the amba_console at pl011 driver init.
2342  *
2343  *	Performs console setup for a match (as required by interface)
2344  *	If no <options> are specified, then assume the h/w is already setup.
2345  *
2346  *	Returns 0 if console matches; otherwise non-zero to use default matching
2347  */
2348 static int __init pl011_console_match(struct console *co, char *name, int idx,
2349 				      char *options)
2350 {
2351 	unsigned char iotype;
2352 	resource_size_t addr;
2353 	int i;
2354 
2355 	/*
2356 	 * Systems affected by the Qualcomm Technologies QDF2400 E44 erratum
2357 	 * have a distinct console name, so make sure we check for that.
2358 	 * The actual implementation of the erratum occurs in the probe
2359 	 * function.
2360 	 */
2361 	if ((strcmp(name, "qdf2400_e44") != 0) && (strcmp(name, "pl011") != 0))
2362 		return -ENODEV;
2363 
2364 	if (uart_parse_earlycon(options, &iotype, &addr, &options))
2365 		return -ENODEV;
2366 
2367 	if (iotype != UPIO_MEM && iotype != UPIO_MEM32)
2368 		return -ENODEV;
2369 
2370 	/* try to match the port specified on the command line */
2371 	for (i = 0; i < ARRAY_SIZE(amba_ports); i++) {
2372 		struct uart_port *port;
2373 
2374 		if (!amba_ports[i])
2375 			continue;
2376 
2377 		port = &amba_ports[i]->port;
2378 
2379 		if (port->mapbase != addr)
2380 			continue;
2381 
2382 		co->index = i;
2383 		port->cons = co;
2384 		return pl011_console_setup(co, options);
2385 	}
2386 
2387 	return -ENODEV;
2388 }
2389 
2390 static struct uart_driver amba_reg;
2391 static struct console amba_console = {
2392 	.name		= "ttyAMA",
2393 	.write		= pl011_console_write,
2394 	.device		= uart_console_device,
2395 	.setup		= pl011_console_setup,
2396 	.match		= pl011_console_match,
2397 	.flags		= CON_PRINTBUFFER | CON_ANYTIME,
2398 	.index		= -1,
2399 	.data		= &amba_reg,
2400 };
2401 
2402 #define AMBA_CONSOLE	(&amba_console)
2403 
2404 static void qdf2400_e44_putc(struct uart_port *port, int c)
2405 {
2406 	while (readl(port->membase + UART01x_FR) & UART01x_FR_TXFF)
2407 		cpu_relax();
2408 	writel(c, port->membase + UART01x_DR);
2409 	while (!(readl(port->membase + UART01x_FR) & UART011_FR_TXFE))
2410 		cpu_relax();
2411 }
2412 
2413 static void qdf2400_e44_early_write(struct console *con, const char *s, unsigned n)
2414 {
2415 	struct earlycon_device *dev = con->data;
2416 
2417 	uart_console_write(&dev->port, s, n, qdf2400_e44_putc);
2418 }
2419 
2420 static void pl011_putc(struct uart_port *port, int c)
2421 {
2422 	while (readl(port->membase + UART01x_FR) & UART01x_FR_TXFF)
2423 		cpu_relax();
2424 	if (port->iotype == UPIO_MEM32)
2425 		writel(c, port->membase + UART01x_DR);
2426 	else
2427 		writeb(c, port->membase + UART01x_DR);
2428 	while (readl(port->membase + UART01x_FR) & UART01x_FR_BUSY)
2429 		cpu_relax();
2430 }
2431 
2432 static void pl011_early_write(struct console *con, const char *s, unsigned n)
2433 {
2434 	struct earlycon_device *dev = con->data;
2435 
2436 	uart_console_write(&dev->port, s, n, pl011_putc);
2437 }
2438 
2439 /*
2440  * On non-ACPI systems, earlycon is enabled by specifying
2441  * "earlycon=pl011,<address>" on the kernel command line.
2442  *
2443  * On ACPI ARM64 systems, an "early" console is enabled via the SPCR table,
2444  * by specifying only "earlycon" on the command line.  Because it requires
2445  * SPCR, the console starts after ACPI is parsed, which is later than a
2446  * traditional early console.
2447  *
2448  * To get the traditional early console that starts before ACPI is parsed,
2449  * specify the full "earlycon=pl011,<address>" option.
2450  */
2451 static int __init pl011_early_console_setup(struct earlycon_device *device,
2452 					    const char *opt)
2453 {
2454 	if (!device->port.membase)
2455 		return -ENODEV;
2456 
2457 	device->con->write = pl011_early_write;
2458 
2459 	return 0;
2460 }
2461 OF_EARLYCON_DECLARE(pl011, "arm,pl011", pl011_early_console_setup);
2462 OF_EARLYCON_DECLARE(pl011, "arm,sbsa-uart", pl011_early_console_setup);
2463 
2464 /*
2465  * On Qualcomm Datacenter Technologies QDF2400 SOCs affected by
2466  * Erratum 44, traditional earlycon can be enabled by specifying
2467  * "earlycon=qdf2400_e44,<address>".  Any options are ignored.
2468  *
2469  * Alternatively, you can just specify "earlycon", and the early console
2470  * will be enabled with the information from the SPCR table.  In this
2471  * case, the SPCR code will detect the need for the E44 work-around,
2472  * and set the console name to "qdf2400_e44".
2473  */
2474 static int __init
2475 qdf2400_e44_early_console_setup(struct earlycon_device *device,
2476 				const char *opt)
2477 {
2478 	if (!device->port.membase)
2479 		return -ENODEV;
2480 
2481 	device->con->write = qdf2400_e44_early_write;
2482 	return 0;
2483 }
2484 EARLYCON_DECLARE(qdf2400_e44, qdf2400_e44_early_console_setup);
2485 
2486 #else
2487 #define AMBA_CONSOLE	NULL
2488 #endif
2489 
2490 static struct uart_driver amba_reg = {
2491 	.owner			= THIS_MODULE,
2492 	.driver_name		= "ttyAMA",
2493 	.dev_name		= "ttyAMA",
2494 	.major			= SERIAL_AMBA_MAJOR,
2495 	.minor			= SERIAL_AMBA_MINOR,
2496 	.nr			= UART_NR,
2497 	.cons			= AMBA_CONSOLE,
2498 };
2499 
2500 static int pl011_probe_dt_alias(int index, struct device *dev)
2501 {
2502 	struct device_node *np;
2503 	static bool seen_dev_with_alias = false;
2504 	static bool seen_dev_without_alias = false;
2505 	int ret = index;
2506 
2507 	if (!IS_ENABLED(CONFIG_OF))
2508 		return ret;
2509 
2510 	np = dev->of_node;
2511 	if (!np)
2512 		return ret;
2513 
2514 	ret = of_alias_get_id(np, "serial");
2515 	if (ret < 0) {
2516 		seen_dev_without_alias = true;
2517 		ret = index;
2518 	} else {
2519 		seen_dev_with_alias = true;
2520 		if (ret >= ARRAY_SIZE(amba_ports) || amba_ports[ret] != NULL) {
2521 			dev_warn(dev, "requested serial port %d  not available.\n", ret);
2522 			ret = index;
2523 		}
2524 	}
2525 
2526 	if (seen_dev_with_alias && seen_dev_without_alias)
2527 		dev_warn(dev, "aliased and non-aliased serial devices found in device tree. Serial port enumeration may be unpredictable.\n");
2528 
2529 	return ret;
2530 }
2531 
2532 /* unregisters the driver also if no more ports are left */
2533 static void pl011_unregister_port(struct uart_amba_port *uap)
2534 {
2535 	int i;
2536 	bool busy = false;
2537 
2538 	for (i = 0; i < ARRAY_SIZE(amba_ports); i++) {
2539 		if (amba_ports[i] == uap)
2540 			amba_ports[i] = NULL;
2541 		else if (amba_ports[i])
2542 			busy = true;
2543 	}
2544 	pl011_dma_remove(uap);
2545 	if (!busy)
2546 		uart_unregister_driver(&amba_reg);
2547 }
2548 
2549 static int pl011_find_free_port(void)
2550 {
2551 	int i;
2552 
2553 	for (i = 0; i < ARRAY_SIZE(amba_ports); i++)
2554 		if (amba_ports[i] == NULL)
2555 			return i;
2556 
2557 	return -EBUSY;
2558 }
2559 
2560 static int pl011_setup_port(struct device *dev, struct uart_amba_port *uap,
2561 			    struct resource *mmiobase, int index)
2562 {
2563 	void __iomem *base;
2564 
2565 	base = devm_ioremap_resource(dev, mmiobase);
2566 	if (IS_ERR(base))
2567 		return PTR_ERR(base);
2568 
2569 	index = pl011_probe_dt_alias(index, dev);
2570 
2571 	uap->old_cr = 0;
2572 	uap->port.dev = dev;
2573 	uap->port.mapbase = mmiobase->start;
2574 	uap->port.membase = base;
2575 	uap->port.fifosize = uap->fifosize;
2576 	uap->port.flags = UPF_BOOT_AUTOCONF;
2577 	uap->port.line = index;
2578 
2579 	amba_ports[index] = uap;
2580 
2581 	return 0;
2582 }
2583 
2584 static int pl011_register_port(struct uart_amba_port *uap)
2585 {
2586 	int ret;
2587 
2588 	/* Ensure interrupts from this UART are masked and cleared */
2589 	pl011_write(0, uap, REG_IMSC);
2590 	pl011_write(0xffff, uap, REG_ICR);
2591 
2592 	if (!amba_reg.state) {
2593 		ret = uart_register_driver(&amba_reg);
2594 		if (ret < 0) {
2595 			dev_err(uap->port.dev,
2596 				"Failed to register AMBA-PL011 driver\n");
2597 			return ret;
2598 		}
2599 	}
2600 
2601 	ret = uart_add_one_port(&amba_reg, &uap->port);
2602 	if (ret)
2603 		pl011_unregister_port(uap);
2604 
2605 	return ret;
2606 }
2607 
2608 static int pl011_probe(struct amba_device *dev, const struct amba_id *id)
2609 {
2610 	struct uart_amba_port *uap;
2611 	struct vendor_data *vendor = id->data;
2612 	int portnr, ret;
2613 
2614 	portnr = pl011_find_free_port();
2615 	if (portnr < 0)
2616 		return portnr;
2617 
2618 	uap = devm_kzalloc(&dev->dev, sizeof(struct uart_amba_port),
2619 			   GFP_KERNEL);
2620 	if (!uap)
2621 		return -ENOMEM;
2622 
2623 	uap->clk = devm_clk_get(&dev->dev, NULL);
2624 	if (IS_ERR(uap->clk))
2625 		return PTR_ERR(uap->clk);
2626 
2627 	uap->reg_offset = vendor->reg_offset;
2628 	uap->vendor = vendor;
2629 	uap->fifosize = vendor->get_fifosize(dev);
2630 	uap->port.iotype = vendor->access_32b ? UPIO_MEM32 : UPIO_MEM;
2631 	uap->port.irq = dev->irq[0];
2632 	uap->port.ops = &amba_pl011_pops;
2633 
2634 	snprintf(uap->type, sizeof(uap->type), "PL011 rev%u", amba_rev(dev));
2635 
2636 	ret = pl011_setup_port(&dev->dev, uap, &dev->res, portnr);
2637 	if (ret)
2638 		return ret;
2639 
2640 	amba_set_drvdata(dev, uap);
2641 
2642 	return pl011_register_port(uap);
2643 }
2644 
2645 static int pl011_remove(struct amba_device *dev)
2646 {
2647 	struct uart_amba_port *uap = amba_get_drvdata(dev);
2648 
2649 	uart_remove_one_port(&amba_reg, &uap->port);
2650 	pl011_unregister_port(uap);
2651 	return 0;
2652 }
2653 
2654 #ifdef CONFIG_PM_SLEEP
2655 static int pl011_suspend(struct device *dev)
2656 {
2657 	struct uart_amba_port *uap = dev_get_drvdata(dev);
2658 
2659 	if (!uap)
2660 		return -EINVAL;
2661 
2662 	return uart_suspend_port(&amba_reg, &uap->port);
2663 }
2664 
2665 static int pl011_resume(struct device *dev)
2666 {
2667 	struct uart_amba_port *uap = dev_get_drvdata(dev);
2668 
2669 	if (!uap)
2670 		return -EINVAL;
2671 
2672 	return uart_resume_port(&amba_reg, &uap->port);
2673 }
2674 #endif
2675 
2676 static SIMPLE_DEV_PM_OPS(pl011_dev_pm_ops, pl011_suspend, pl011_resume);
2677 
2678 static int sbsa_uart_probe(struct platform_device *pdev)
2679 {
2680 	struct uart_amba_port *uap;
2681 	struct resource *r;
2682 	int portnr, ret;
2683 	int baudrate;
2684 
2685 	/*
2686 	 * Check the mandatory baud rate parameter in the DT node early
2687 	 * so that we can easily exit with the error.
2688 	 */
2689 	if (pdev->dev.of_node) {
2690 		struct device_node *np = pdev->dev.of_node;
2691 
2692 		ret = of_property_read_u32(np, "current-speed", &baudrate);
2693 		if (ret)
2694 			return ret;
2695 	} else {
2696 		baudrate = 115200;
2697 	}
2698 
2699 	portnr = pl011_find_free_port();
2700 	if (portnr < 0)
2701 		return portnr;
2702 
2703 	uap = devm_kzalloc(&pdev->dev, sizeof(struct uart_amba_port),
2704 			   GFP_KERNEL);
2705 	if (!uap)
2706 		return -ENOMEM;
2707 
2708 	ret = platform_get_irq(pdev, 0);
2709 	if (ret < 0) {
2710 		if (ret != -EPROBE_DEFER)
2711 			dev_err(&pdev->dev, "cannot obtain irq\n");
2712 		return ret;
2713 	}
2714 	uap->port.irq	= ret;
2715 
2716 #ifdef CONFIG_ACPI_SPCR_TABLE
2717 	if (qdf2400_e44_present) {
2718 		dev_info(&pdev->dev, "working around QDF2400 SoC erratum 44\n");
2719 		uap->vendor = &vendor_qdt_qdf2400_e44;
2720 	} else
2721 #endif
2722 		uap->vendor = &vendor_sbsa;
2723 
2724 	uap->reg_offset	= uap->vendor->reg_offset;
2725 	uap->fifosize	= 32;
2726 	uap->port.iotype = uap->vendor->access_32b ? UPIO_MEM32 : UPIO_MEM;
2727 	uap->port.ops	= &sbsa_uart_pops;
2728 	uap->fixed_baud = baudrate;
2729 
2730 	snprintf(uap->type, sizeof(uap->type), "SBSA");
2731 
2732 	r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2733 
2734 	ret = pl011_setup_port(&pdev->dev, uap, r, portnr);
2735 	if (ret)
2736 		return ret;
2737 
2738 	platform_set_drvdata(pdev, uap);
2739 
2740 	return pl011_register_port(uap);
2741 }
2742 
2743 static int sbsa_uart_remove(struct platform_device *pdev)
2744 {
2745 	struct uart_amba_port *uap = platform_get_drvdata(pdev);
2746 
2747 	uart_remove_one_port(&amba_reg, &uap->port);
2748 	pl011_unregister_port(uap);
2749 	return 0;
2750 }
2751 
2752 static const struct of_device_id sbsa_uart_of_match[] = {
2753 	{ .compatible = "arm,sbsa-uart", },
2754 	{},
2755 };
2756 MODULE_DEVICE_TABLE(of, sbsa_uart_of_match);
2757 
2758 static const struct acpi_device_id sbsa_uart_acpi_match[] = {
2759 	{ "ARMH0011", 0 },
2760 	{},
2761 };
2762 MODULE_DEVICE_TABLE(acpi, sbsa_uart_acpi_match);
2763 
2764 static struct platform_driver arm_sbsa_uart_platform_driver = {
2765 	.probe		= sbsa_uart_probe,
2766 	.remove		= sbsa_uart_remove,
2767 	.driver	= {
2768 		.name	= "sbsa-uart",
2769 		.of_match_table = of_match_ptr(sbsa_uart_of_match),
2770 		.acpi_match_table = ACPI_PTR(sbsa_uart_acpi_match),
2771 	},
2772 };
2773 
2774 static const struct amba_id pl011_ids[] = {
2775 	{
2776 		.id	= 0x00041011,
2777 		.mask	= 0x000fffff,
2778 		.data	= &vendor_arm,
2779 	},
2780 	{
2781 		.id	= 0x00380802,
2782 		.mask	= 0x00ffffff,
2783 		.data	= &vendor_st,
2784 	},
2785 	{
2786 		.id	= AMBA_LINUX_ID(0x00, 0x1, 0xffe),
2787 		.mask	= 0x00ffffff,
2788 		.data	= &vendor_zte,
2789 	},
2790 	{ 0, 0 },
2791 };
2792 
2793 MODULE_DEVICE_TABLE(amba, pl011_ids);
2794 
2795 static struct amba_driver pl011_driver = {
2796 	.drv = {
2797 		.name	= "uart-pl011",
2798 		.pm	= &pl011_dev_pm_ops,
2799 	},
2800 	.id_table	= pl011_ids,
2801 	.probe		= pl011_probe,
2802 	.remove		= pl011_remove,
2803 };
2804 
2805 static int __init pl011_init(void)
2806 {
2807 	printk(KERN_INFO "Serial: AMBA PL011 UART driver\n");
2808 
2809 	if (platform_driver_register(&arm_sbsa_uart_platform_driver))
2810 		pr_warn("could not register SBSA UART platform driver\n");
2811 	return amba_driver_register(&pl011_driver);
2812 }
2813 
2814 static void __exit pl011_exit(void)
2815 {
2816 	platform_driver_unregister(&arm_sbsa_uart_platform_driver);
2817 	amba_driver_unregister(&pl011_driver);
2818 }
2819 
2820 /*
2821  * While this can be a module, if builtin it's most likely the console
2822  * So let's leave module_exit but move module_init to an earlier place
2823  */
2824 arch_initcall(pl011_init);
2825 module_exit(pl011_exit);
2826 
2827 MODULE_AUTHOR("ARM Ltd/Deep Blue Solutions Ltd");
2828 MODULE_DESCRIPTION("ARM AMBA serial port driver");
2829 MODULE_LICENSE("GPL");
2830