1 /* 2 * linux/drivers/char/amba.c 3 * 4 * Driver for AMBA serial ports 5 * 6 * Based on drivers/char/serial.c, by Linus Torvalds, Theodore Ts'o. 7 * 8 * Copyright 1999 ARM Limited 9 * Copyright (C) 2000 Deep Blue Solutions Ltd. 10 * Copyright (C) 2010 ST-Ericsson SA 11 * 12 * This program is free software; you can redistribute it and/or modify 13 * it under the terms of the GNU General Public License as published by 14 * the Free Software Foundation; either version 2 of the License, or 15 * (at your option) any later version. 16 * 17 * This program is distributed in the hope that it will be useful, 18 * but WITHOUT ANY WARRANTY; without even the implied warranty of 19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 20 * GNU General Public License for more details. 21 * 22 * You should have received a copy of the GNU General Public License 23 * along with this program; if not, write to the Free Software 24 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 25 * 26 * This is a generic driver for ARM AMBA-type serial ports. They 27 * have a lot of 16550-like features, but are not register compatible. 28 * Note that although they do have CTS, DCD and DSR inputs, they do 29 * not have an RI input, nor do they have DTR or RTS outputs. If 30 * required, these have to be supplied via some other means (eg, GPIO) 31 * and hooked into this driver. 32 */ 33 34 #if defined(CONFIG_SERIAL_AMBA_PL011_CONSOLE) && defined(CONFIG_MAGIC_SYSRQ) 35 #define SUPPORT_SYSRQ 36 #endif 37 38 #include <linux/module.h> 39 #include <linux/ioport.h> 40 #include <linux/init.h> 41 #include <linux/console.h> 42 #include <linux/sysrq.h> 43 #include <linux/device.h> 44 #include <linux/tty.h> 45 #include <linux/tty_flip.h> 46 #include <linux/serial_core.h> 47 #include <linux/serial.h> 48 #include <linux/amba/bus.h> 49 #include <linux/amba/serial.h> 50 #include <linux/clk.h> 51 #include <linux/slab.h> 52 #include <linux/dmaengine.h> 53 #include <linux/dma-mapping.h> 54 #include <linux/scatterlist.h> 55 56 #include <asm/io.h> 57 #include <asm/sizes.h> 58 59 #define UART_NR 14 60 61 #define SERIAL_AMBA_MAJOR 204 62 #define SERIAL_AMBA_MINOR 64 63 #define SERIAL_AMBA_NR UART_NR 64 65 #define AMBA_ISR_PASS_LIMIT 256 66 67 #define UART_DR_ERROR (UART011_DR_OE|UART011_DR_BE|UART011_DR_PE|UART011_DR_FE) 68 #define UART_DUMMY_DR_RX (1 << 16) 69 70 /* There is by now at least one vendor with differing details, so handle it */ 71 struct vendor_data { 72 unsigned int ifls; 73 unsigned int fifosize; 74 unsigned int lcrh_tx; 75 unsigned int lcrh_rx; 76 bool oversampling; 77 bool dma_threshold; 78 }; 79 80 static struct vendor_data vendor_arm = { 81 .ifls = UART011_IFLS_RX4_8|UART011_IFLS_TX4_8, 82 .fifosize = 16, 83 .lcrh_tx = UART011_LCRH, 84 .lcrh_rx = UART011_LCRH, 85 .oversampling = false, 86 .dma_threshold = false, 87 }; 88 89 static struct vendor_data vendor_st = { 90 .ifls = UART011_IFLS_RX_HALF|UART011_IFLS_TX_HALF, 91 .fifosize = 64, 92 .lcrh_tx = ST_UART011_LCRH_TX, 93 .lcrh_rx = ST_UART011_LCRH_RX, 94 .oversampling = true, 95 .dma_threshold = true, 96 }; 97 98 /* Deals with DMA transactions */ 99 struct pl011_dmatx_data { 100 struct dma_chan *chan; 101 struct scatterlist sg; 102 char *buf; 103 bool queued; 104 }; 105 106 /* 107 * We wrap our port structure around the generic uart_port. 108 */ 109 struct uart_amba_port { 110 struct uart_port port; 111 struct clk *clk; 112 const struct vendor_data *vendor; 113 unsigned int dmacr; /* dma control reg */ 114 unsigned int im; /* interrupt mask */ 115 unsigned int old_status; 116 unsigned int fifosize; /* vendor-specific */ 117 unsigned int lcrh_tx; /* vendor-specific */ 118 unsigned int lcrh_rx; /* vendor-specific */ 119 bool autorts; 120 char type[12]; 121 #ifdef CONFIG_DMA_ENGINE 122 /* DMA stuff */ 123 bool using_dma; 124 struct pl011_dmatx_data dmatx; 125 #endif 126 }; 127 128 /* 129 * All the DMA operation mode stuff goes inside this ifdef. 130 * This assumes that you have a generic DMA device interface, 131 * no custom DMA interfaces are supported. 132 */ 133 #ifdef CONFIG_DMA_ENGINE 134 135 #define PL011_DMA_BUFFER_SIZE PAGE_SIZE 136 137 static void pl011_dma_probe_initcall(struct uart_amba_port *uap) 138 { 139 /* DMA is the sole user of the platform data right now */ 140 struct amba_pl011_data *plat = uap->port.dev->platform_data; 141 struct dma_slave_config tx_conf = { 142 .dst_addr = uap->port.mapbase + UART01x_DR, 143 .dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE, 144 .direction = DMA_TO_DEVICE, 145 .dst_maxburst = uap->fifosize >> 1, 146 }; 147 struct dma_chan *chan; 148 dma_cap_mask_t mask; 149 150 /* We need platform data */ 151 if (!plat || !plat->dma_filter) { 152 dev_info(uap->port.dev, "no DMA platform data\n"); 153 return; 154 } 155 156 /* Try to acquire a generic DMA engine slave channel */ 157 dma_cap_zero(mask); 158 dma_cap_set(DMA_SLAVE, mask); 159 160 chan = dma_request_channel(mask, plat->dma_filter, plat->dma_tx_param); 161 if (!chan) { 162 dev_err(uap->port.dev, "no TX DMA channel!\n"); 163 return; 164 } 165 166 dmaengine_slave_config(chan, &tx_conf); 167 uap->dmatx.chan = chan; 168 169 dev_info(uap->port.dev, "DMA channel TX %s\n", 170 dma_chan_name(uap->dmatx.chan)); 171 } 172 173 #ifndef MODULE 174 /* 175 * Stack up the UARTs and let the above initcall be done at device 176 * initcall time, because the serial driver is called as an arch 177 * initcall, and at this time the DMA subsystem is not yet registered. 178 * At this point the driver will switch over to using DMA where desired. 179 */ 180 struct dma_uap { 181 struct list_head node; 182 struct uart_amba_port *uap; 183 }; 184 185 static LIST_HEAD(pl011_dma_uarts); 186 187 static int __init pl011_dma_initcall(void) 188 { 189 struct list_head *node, *tmp; 190 191 list_for_each_safe(node, tmp, &pl011_dma_uarts) { 192 struct dma_uap *dmau = list_entry(node, struct dma_uap, node); 193 pl011_dma_probe_initcall(dmau->uap); 194 list_del(node); 195 kfree(dmau); 196 } 197 return 0; 198 } 199 200 device_initcall(pl011_dma_initcall); 201 202 static void pl011_dma_probe(struct uart_amba_port *uap) 203 { 204 struct dma_uap *dmau = kzalloc(sizeof(struct dma_uap), GFP_KERNEL); 205 if (dmau) { 206 dmau->uap = uap; 207 list_add_tail(&dmau->node, &pl011_dma_uarts); 208 } 209 } 210 #else 211 static void pl011_dma_probe(struct uart_amba_port *uap) 212 { 213 pl011_dma_probe_initcall(uap); 214 } 215 #endif 216 217 static void pl011_dma_remove(struct uart_amba_port *uap) 218 { 219 /* TODO: remove the initcall if it has not yet executed */ 220 if (uap->dmatx.chan) 221 dma_release_channel(uap->dmatx.chan); 222 } 223 224 225 /* Forward declare this for the refill routine */ 226 static int pl011_dma_tx_refill(struct uart_amba_port *uap); 227 228 /* 229 * The current DMA TX buffer has been sent. 230 * Try to queue up another DMA buffer. 231 */ 232 static void pl011_dma_tx_callback(void *data) 233 { 234 struct uart_amba_port *uap = data; 235 struct pl011_dmatx_data *dmatx = &uap->dmatx; 236 unsigned long flags; 237 u16 dmacr; 238 239 spin_lock_irqsave(&uap->port.lock, flags); 240 if (uap->dmatx.queued) 241 dma_unmap_sg(dmatx->chan->device->dev, &dmatx->sg, 1, 242 DMA_TO_DEVICE); 243 244 dmacr = uap->dmacr; 245 uap->dmacr = dmacr & ~UART011_TXDMAE; 246 writew(uap->dmacr, uap->port.membase + UART011_DMACR); 247 248 /* 249 * If TX DMA was disabled, it means that we've stopped the DMA for 250 * some reason (eg, XOFF received, or we want to send an X-char.) 251 * 252 * Note: we need to be careful here of a potential race between DMA 253 * and the rest of the driver - if the driver disables TX DMA while 254 * a TX buffer completing, we must update the tx queued status to 255 * get further refills (hence we check dmacr). 256 */ 257 if (!(dmacr & UART011_TXDMAE) || uart_tx_stopped(&uap->port) || 258 uart_circ_empty(&uap->port.state->xmit)) { 259 uap->dmatx.queued = false; 260 spin_unlock_irqrestore(&uap->port.lock, flags); 261 return; 262 } 263 264 if (pl011_dma_tx_refill(uap) <= 0) { 265 /* 266 * We didn't queue a DMA buffer for some reason, but we 267 * have data pending to be sent. Re-enable the TX IRQ. 268 */ 269 uap->im |= UART011_TXIM; 270 writew(uap->im, uap->port.membase + UART011_IMSC); 271 } 272 spin_unlock_irqrestore(&uap->port.lock, flags); 273 } 274 275 /* 276 * Try to refill the TX DMA buffer. 277 * Locking: called with port lock held and IRQs disabled. 278 * Returns: 279 * 1 if we queued up a TX DMA buffer. 280 * 0 if we didn't want to handle this by DMA 281 * <0 on error 282 */ 283 static int pl011_dma_tx_refill(struct uart_amba_port *uap) 284 { 285 struct pl011_dmatx_data *dmatx = &uap->dmatx; 286 struct dma_chan *chan = dmatx->chan; 287 struct dma_device *dma_dev = chan->device; 288 struct dma_async_tx_descriptor *desc; 289 struct circ_buf *xmit = &uap->port.state->xmit; 290 unsigned int count; 291 292 /* 293 * Try to avoid the overhead involved in using DMA if the 294 * transaction fits in the first half of the FIFO, by using 295 * the standard interrupt handling. This ensures that we 296 * issue a uart_write_wakeup() at the appropriate time. 297 */ 298 count = uart_circ_chars_pending(xmit); 299 if (count < (uap->fifosize >> 1)) { 300 uap->dmatx.queued = false; 301 return 0; 302 } 303 304 /* 305 * Bodge: don't send the last character by DMA, as this 306 * will prevent XON from notifying us to restart DMA. 307 */ 308 count -= 1; 309 310 /* Else proceed to copy the TX chars to the DMA buffer and fire DMA */ 311 if (count > PL011_DMA_BUFFER_SIZE) 312 count = PL011_DMA_BUFFER_SIZE; 313 314 if (xmit->tail < xmit->head) 315 memcpy(&dmatx->buf[0], &xmit->buf[xmit->tail], count); 316 else { 317 size_t first = UART_XMIT_SIZE - xmit->tail; 318 size_t second = xmit->head; 319 320 memcpy(&dmatx->buf[0], &xmit->buf[xmit->tail], first); 321 if (second) 322 memcpy(&dmatx->buf[first], &xmit->buf[0], second); 323 } 324 325 dmatx->sg.length = count; 326 327 if (dma_map_sg(dma_dev->dev, &dmatx->sg, 1, DMA_TO_DEVICE) != 1) { 328 uap->dmatx.queued = false; 329 dev_dbg(uap->port.dev, "unable to map TX DMA\n"); 330 return -EBUSY; 331 } 332 333 desc = dma_dev->device_prep_slave_sg(chan, &dmatx->sg, 1, DMA_TO_DEVICE, 334 DMA_PREP_INTERRUPT | DMA_CTRL_ACK); 335 if (!desc) { 336 dma_unmap_sg(dma_dev->dev, &dmatx->sg, 1, DMA_TO_DEVICE); 337 uap->dmatx.queued = false; 338 /* 339 * If DMA cannot be used right now, we complete this 340 * transaction via IRQ and let the TTY layer retry. 341 */ 342 dev_dbg(uap->port.dev, "TX DMA busy\n"); 343 return -EBUSY; 344 } 345 346 /* Some data to go along to the callback */ 347 desc->callback = pl011_dma_tx_callback; 348 desc->callback_param = uap; 349 350 /* All errors should happen at prepare time */ 351 dmaengine_submit(desc); 352 353 /* Fire the DMA transaction */ 354 dma_dev->device_issue_pending(chan); 355 356 uap->dmacr |= UART011_TXDMAE; 357 writew(uap->dmacr, uap->port.membase + UART011_DMACR); 358 uap->dmatx.queued = true; 359 360 /* 361 * Now we know that DMA will fire, so advance the ring buffer 362 * with the stuff we just dispatched. 363 */ 364 xmit->tail = (xmit->tail + count) & (UART_XMIT_SIZE - 1); 365 uap->port.icount.tx += count; 366 367 if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS) 368 uart_write_wakeup(&uap->port); 369 370 return 1; 371 } 372 373 /* 374 * We received a transmit interrupt without a pending X-char but with 375 * pending characters. 376 * Locking: called with port lock held and IRQs disabled. 377 * Returns: 378 * false if we want to use PIO to transmit 379 * true if we queued a DMA buffer 380 */ 381 static bool pl011_dma_tx_irq(struct uart_amba_port *uap) 382 { 383 if (!uap->using_dma) 384 return false; 385 386 /* 387 * If we already have a TX buffer queued, but received a 388 * TX interrupt, it will be because we've just sent an X-char. 389 * Ensure the TX DMA is enabled and the TX IRQ is disabled. 390 */ 391 if (uap->dmatx.queued) { 392 uap->dmacr |= UART011_TXDMAE; 393 writew(uap->dmacr, uap->port.membase + UART011_DMACR); 394 uap->im &= ~UART011_TXIM; 395 writew(uap->im, uap->port.membase + UART011_IMSC); 396 return true; 397 } 398 399 /* 400 * We don't have a TX buffer queued, so try to queue one. 401 * If we succesfully queued a buffer, mask the TX IRQ. 402 */ 403 if (pl011_dma_tx_refill(uap) > 0) { 404 uap->im &= ~UART011_TXIM; 405 writew(uap->im, uap->port.membase + UART011_IMSC); 406 return true; 407 } 408 return false; 409 } 410 411 /* 412 * Stop the DMA transmit (eg, due to received XOFF). 413 * Locking: called with port lock held and IRQs disabled. 414 */ 415 static inline void pl011_dma_tx_stop(struct uart_amba_port *uap) 416 { 417 if (uap->dmatx.queued) { 418 uap->dmacr &= ~UART011_TXDMAE; 419 writew(uap->dmacr, uap->port.membase + UART011_DMACR); 420 } 421 } 422 423 /* 424 * Try to start a DMA transmit, or in the case of an XON/OFF 425 * character queued for send, try to get that character out ASAP. 426 * Locking: called with port lock held and IRQs disabled. 427 * Returns: 428 * false if we want the TX IRQ to be enabled 429 * true if we have a buffer queued 430 */ 431 static inline bool pl011_dma_tx_start(struct uart_amba_port *uap) 432 { 433 u16 dmacr; 434 435 if (!uap->using_dma) 436 return false; 437 438 if (!uap->port.x_char) { 439 /* no X-char, try to push chars out in DMA mode */ 440 bool ret = true; 441 442 if (!uap->dmatx.queued) { 443 if (pl011_dma_tx_refill(uap) > 0) { 444 uap->im &= ~UART011_TXIM; 445 ret = true; 446 } else { 447 uap->im |= UART011_TXIM; 448 ret = false; 449 } 450 writew(uap->im, uap->port.membase + UART011_IMSC); 451 } else if (!(uap->dmacr & UART011_TXDMAE)) { 452 uap->dmacr |= UART011_TXDMAE; 453 writew(uap->dmacr, 454 uap->port.membase + UART011_DMACR); 455 } 456 return ret; 457 } 458 459 /* 460 * We have an X-char to send. Disable DMA to prevent it loading 461 * the TX fifo, and then see if we can stuff it into the FIFO. 462 */ 463 dmacr = uap->dmacr; 464 uap->dmacr &= ~UART011_TXDMAE; 465 writew(uap->dmacr, uap->port.membase + UART011_DMACR); 466 467 if (readw(uap->port.membase + UART01x_FR) & UART01x_FR_TXFF) { 468 /* 469 * No space in the FIFO, so enable the transmit interrupt 470 * so we know when there is space. Note that once we've 471 * loaded the character, we should just re-enable DMA. 472 */ 473 return false; 474 } 475 476 writew(uap->port.x_char, uap->port.membase + UART01x_DR); 477 uap->port.icount.tx++; 478 uap->port.x_char = 0; 479 480 /* Success - restore the DMA state */ 481 uap->dmacr = dmacr; 482 writew(dmacr, uap->port.membase + UART011_DMACR); 483 484 return true; 485 } 486 487 /* 488 * Flush the transmit buffer. 489 * Locking: called with port lock held and IRQs disabled. 490 */ 491 static void pl011_dma_flush_buffer(struct uart_port *port) 492 { 493 struct uart_amba_port *uap = (struct uart_amba_port *)port; 494 495 if (!uap->using_dma) 496 return; 497 498 /* Avoid deadlock with the DMA engine callback */ 499 spin_unlock(&uap->port.lock); 500 dmaengine_terminate_all(uap->dmatx.chan); 501 spin_lock(&uap->port.lock); 502 if (uap->dmatx.queued) { 503 dma_unmap_sg(uap->dmatx.chan->device->dev, &uap->dmatx.sg, 1, 504 DMA_TO_DEVICE); 505 uap->dmatx.queued = false; 506 uap->dmacr &= ~UART011_TXDMAE; 507 writew(uap->dmacr, uap->port.membase + UART011_DMACR); 508 } 509 } 510 511 512 static void pl011_dma_startup(struct uart_amba_port *uap) 513 { 514 if (!uap->dmatx.chan) 515 return; 516 517 uap->dmatx.buf = kmalloc(PL011_DMA_BUFFER_SIZE, GFP_KERNEL); 518 if (!uap->dmatx.buf) { 519 dev_err(uap->port.dev, "no memory for DMA TX buffer\n"); 520 uap->port.fifosize = uap->fifosize; 521 return; 522 } 523 524 sg_init_one(&uap->dmatx.sg, uap->dmatx.buf, PL011_DMA_BUFFER_SIZE); 525 526 /* The DMA buffer is now the FIFO the TTY subsystem can use */ 527 uap->port.fifosize = PL011_DMA_BUFFER_SIZE; 528 uap->using_dma = true; 529 530 /* Turn on DMA error (RX/TX will be enabled on demand) */ 531 uap->dmacr |= UART011_DMAONERR; 532 writew(uap->dmacr, uap->port.membase + UART011_DMACR); 533 534 /* 535 * ST Micro variants has some specific dma burst threshold 536 * compensation. Set this to 16 bytes, so burst will only 537 * be issued above/below 16 bytes. 538 */ 539 if (uap->vendor->dma_threshold) 540 writew(ST_UART011_DMAWM_RX_16 | ST_UART011_DMAWM_TX_16, 541 uap->port.membase + ST_UART011_DMAWM); 542 } 543 544 static void pl011_dma_shutdown(struct uart_amba_port *uap) 545 { 546 if (!uap->using_dma) 547 return; 548 549 /* Disable RX and TX DMA */ 550 while (readw(uap->port.membase + UART01x_FR) & UART01x_FR_BUSY) 551 barrier(); 552 553 spin_lock_irq(&uap->port.lock); 554 uap->dmacr &= ~(UART011_DMAONERR | UART011_RXDMAE | UART011_TXDMAE); 555 writew(uap->dmacr, uap->port.membase + UART011_DMACR); 556 spin_unlock_irq(&uap->port.lock); 557 558 /* In theory, this should already be done by pl011_dma_flush_buffer */ 559 dmaengine_terminate_all(uap->dmatx.chan); 560 if (uap->dmatx.queued) { 561 dma_unmap_sg(uap->dmatx.chan->device->dev, &uap->dmatx.sg, 1, 562 DMA_TO_DEVICE); 563 uap->dmatx.queued = false; 564 } 565 566 kfree(uap->dmatx.buf); 567 568 uap->using_dma = false; 569 } 570 571 #else 572 /* Blank functions if the DMA engine is not available */ 573 static inline void pl011_dma_probe(struct uart_amba_port *uap) 574 { 575 } 576 577 static inline void pl011_dma_remove(struct uart_amba_port *uap) 578 { 579 } 580 581 static inline void pl011_dma_startup(struct uart_amba_port *uap) 582 { 583 } 584 585 static inline void pl011_dma_shutdown(struct uart_amba_port *uap) 586 { 587 } 588 589 static inline bool pl011_dma_tx_irq(struct uart_amba_port *uap) 590 { 591 return false; 592 } 593 594 static inline void pl011_dma_tx_stop(struct uart_amba_port *uap) 595 { 596 } 597 598 static inline bool pl011_dma_tx_start(struct uart_amba_port *uap) 599 { 600 return false; 601 } 602 603 #define pl011_dma_flush_buffer NULL 604 #endif 605 606 607 static void pl011_stop_tx(struct uart_port *port) 608 { 609 struct uart_amba_port *uap = (struct uart_amba_port *)port; 610 611 uap->im &= ~UART011_TXIM; 612 writew(uap->im, uap->port.membase + UART011_IMSC); 613 pl011_dma_tx_stop(uap); 614 } 615 616 static void pl011_start_tx(struct uart_port *port) 617 { 618 struct uart_amba_port *uap = (struct uart_amba_port *)port; 619 620 if (!pl011_dma_tx_start(uap)) { 621 uap->im |= UART011_TXIM; 622 writew(uap->im, uap->port.membase + UART011_IMSC); 623 } 624 } 625 626 static void pl011_stop_rx(struct uart_port *port) 627 { 628 struct uart_amba_port *uap = (struct uart_amba_port *)port; 629 630 uap->im &= ~(UART011_RXIM|UART011_RTIM|UART011_FEIM| 631 UART011_PEIM|UART011_BEIM|UART011_OEIM); 632 writew(uap->im, uap->port.membase + UART011_IMSC); 633 } 634 635 static void pl011_enable_ms(struct uart_port *port) 636 { 637 struct uart_amba_port *uap = (struct uart_amba_port *)port; 638 639 uap->im |= UART011_RIMIM|UART011_CTSMIM|UART011_DCDMIM|UART011_DSRMIM; 640 writew(uap->im, uap->port.membase + UART011_IMSC); 641 } 642 643 static void pl011_rx_chars(struct uart_amba_port *uap) 644 { 645 struct tty_struct *tty = uap->port.state->port.tty; 646 unsigned int status, ch, flag, max_count = 256; 647 648 status = readw(uap->port.membase + UART01x_FR); 649 while ((status & UART01x_FR_RXFE) == 0 && max_count--) { 650 ch = readw(uap->port.membase + UART01x_DR) | UART_DUMMY_DR_RX; 651 flag = TTY_NORMAL; 652 uap->port.icount.rx++; 653 654 /* 655 * Note that the error handling code is 656 * out of the main execution path 657 */ 658 if (unlikely(ch & UART_DR_ERROR)) { 659 if (ch & UART011_DR_BE) { 660 ch &= ~(UART011_DR_FE | UART011_DR_PE); 661 uap->port.icount.brk++; 662 if (uart_handle_break(&uap->port)) 663 goto ignore_char; 664 } else if (ch & UART011_DR_PE) 665 uap->port.icount.parity++; 666 else if (ch & UART011_DR_FE) 667 uap->port.icount.frame++; 668 if (ch & UART011_DR_OE) 669 uap->port.icount.overrun++; 670 671 ch &= uap->port.read_status_mask; 672 673 if (ch & UART011_DR_BE) 674 flag = TTY_BREAK; 675 else if (ch & UART011_DR_PE) 676 flag = TTY_PARITY; 677 else if (ch & UART011_DR_FE) 678 flag = TTY_FRAME; 679 } 680 681 if (uart_handle_sysrq_char(&uap->port, ch & 255)) 682 goto ignore_char; 683 684 uart_insert_char(&uap->port, ch, UART011_DR_OE, ch, flag); 685 686 ignore_char: 687 status = readw(uap->port.membase + UART01x_FR); 688 } 689 spin_unlock(&uap->port.lock); 690 tty_flip_buffer_push(tty); 691 spin_lock(&uap->port.lock); 692 } 693 694 static void pl011_tx_chars(struct uart_amba_port *uap) 695 { 696 struct circ_buf *xmit = &uap->port.state->xmit; 697 int count; 698 699 if (uap->port.x_char) { 700 writew(uap->port.x_char, uap->port.membase + UART01x_DR); 701 uap->port.icount.tx++; 702 uap->port.x_char = 0; 703 return; 704 } 705 if (uart_circ_empty(xmit) || uart_tx_stopped(&uap->port)) { 706 pl011_stop_tx(&uap->port); 707 return; 708 } 709 710 /* If we are using DMA mode, try to send some characters. */ 711 if (pl011_dma_tx_irq(uap)) 712 return; 713 714 count = uap->fifosize >> 1; 715 do { 716 writew(xmit->buf[xmit->tail], uap->port.membase + UART01x_DR); 717 xmit->tail = (xmit->tail + 1) & (UART_XMIT_SIZE - 1); 718 uap->port.icount.tx++; 719 if (uart_circ_empty(xmit)) 720 break; 721 } while (--count > 0); 722 723 if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS) 724 uart_write_wakeup(&uap->port); 725 726 if (uart_circ_empty(xmit)) 727 pl011_stop_tx(&uap->port); 728 } 729 730 static void pl011_modem_status(struct uart_amba_port *uap) 731 { 732 unsigned int status, delta; 733 734 status = readw(uap->port.membase + UART01x_FR) & UART01x_FR_MODEM_ANY; 735 736 delta = status ^ uap->old_status; 737 uap->old_status = status; 738 739 if (!delta) 740 return; 741 742 if (delta & UART01x_FR_DCD) 743 uart_handle_dcd_change(&uap->port, status & UART01x_FR_DCD); 744 745 if (delta & UART01x_FR_DSR) 746 uap->port.icount.dsr++; 747 748 if (delta & UART01x_FR_CTS) 749 uart_handle_cts_change(&uap->port, status & UART01x_FR_CTS); 750 751 wake_up_interruptible(&uap->port.state->port.delta_msr_wait); 752 } 753 754 static irqreturn_t pl011_int(int irq, void *dev_id) 755 { 756 struct uart_amba_port *uap = dev_id; 757 unsigned long flags; 758 unsigned int status, pass_counter = AMBA_ISR_PASS_LIMIT; 759 int handled = 0; 760 761 spin_lock_irqsave(&uap->port.lock, flags); 762 763 status = readw(uap->port.membase + UART011_MIS); 764 if (status) { 765 do { 766 writew(status & ~(UART011_TXIS|UART011_RTIS| 767 UART011_RXIS), 768 uap->port.membase + UART011_ICR); 769 770 if (status & (UART011_RTIS|UART011_RXIS)) 771 pl011_rx_chars(uap); 772 if (status & (UART011_DSRMIS|UART011_DCDMIS| 773 UART011_CTSMIS|UART011_RIMIS)) 774 pl011_modem_status(uap); 775 if (status & UART011_TXIS) 776 pl011_tx_chars(uap); 777 778 if (pass_counter-- == 0) 779 break; 780 781 status = readw(uap->port.membase + UART011_MIS); 782 } while (status != 0); 783 handled = 1; 784 } 785 786 spin_unlock_irqrestore(&uap->port.lock, flags); 787 788 return IRQ_RETVAL(handled); 789 } 790 791 static unsigned int pl01x_tx_empty(struct uart_port *port) 792 { 793 struct uart_amba_port *uap = (struct uart_amba_port *)port; 794 unsigned int status = readw(uap->port.membase + UART01x_FR); 795 return status & (UART01x_FR_BUSY|UART01x_FR_TXFF) ? 0 : TIOCSER_TEMT; 796 } 797 798 static unsigned int pl01x_get_mctrl(struct uart_port *port) 799 { 800 struct uart_amba_port *uap = (struct uart_amba_port *)port; 801 unsigned int result = 0; 802 unsigned int status = readw(uap->port.membase + UART01x_FR); 803 804 #define TIOCMBIT(uartbit, tiocmbit) \ 805 if (status & uartbit) \ 806 result |= tiocmbit 807 808 TIOCMBIT(UART01x_FR_DCD, TIOCM_CAR); 809 TIOCMBIT(UART01x_FR_DSR, TIOCM_DSR); 810 TIOCMBIT(UART01x_FR_CTS, TIOCM_CTS); 811 TIOCMBIT(UART011_FR_RI, TIOCM_RNG); 812 #undef TIOCMBIT 813 return result; 814 } 815 816 static void pl011_set_mctrl(struct uart_port *port, unsigned int mctrl) 817 { 818 struct uart_amba_port *uap = (struct uart_amba_port *)port; 819 unsigned int cr; 820 821 cr = readw(uap->port.membase + UART011_CR); 822 823 #define TIOCMBIT(tiocmbit, uartbit) \ 824 if (mctrl & tiocmbit) \ 825 cr |= uartbit; \ 826 else \ 827 cr &= ~uartbit 828 829 TIOCMBIT(TIOCM_RTS, UART011_CR_RTS); 830 TIOCMBIT(TIOCM_DTR, UART011_CR_DTR); 831 TIOCMBIT(TIOCM_OUT1, UART011_CR_OUT1); 832 TIOCMBIT(TIOCM_OUT2, UART011_CR_OUT2); 833 TIOCMBIT(TIOCM_LOOP, UART011_CR_LBE); 834 835 if (uap->autorts) { 836 /* We need to disable auto-RTS if we want to turn RTS off */ 837 TIOCMBIT(TIOCM_RTS, UART011_CR_RTSEN); 838 } 839 #undef TIOCMBIT 840 841 writew(cr, uap->port.membase + UART011_CR); 842 } 843 844 static void pl011_break_ctl(struct uart_port *port, int break_state) 845 { 846 struct uart_amba_port *uap = (struct uart_amba_port *)port; 847 unsigned long flags; 848 unsigned int lcr_h; 849 850 spin_lock_irqsave(&uap->port.lock, flags); 851 lcr_h = readw(uap->port.membase + uap->lcrh_tx); 852 if (break_state == -1) 853 lcr_h |= UART01x_LCRH_BRK; 854 else 855 lcr_h &= ~UART01x_LCRH_BRK; 856 writew(lcr_h, uap->port.membase + uap->lcrh_tx); 857 spin_unlock_irqrestore(&uap->port.lock, flags); 858 } 859 860 #ifdef CONFIG_CONSOLE_POLL 861 static int pl010_get_poll_char(struct uart_port *port) 862 { 863 struct uart_amba_port *uap = (struct uart_amba_port *)port; 864 unsigned int status; 865 866 status = readw(uap->port.membase + UART01x_FR); 867 if (status & UART01x_FR_RXFE) 868 return NO_POLL_CHAR; 869 870 return readw(uap->port.membase + UART01x_DR); 871 } 872 873 static void pl010_put_poll_char(struct uart_port *port, 874 unsigned char ch) 875 { 876 struct uart_amba_port *uap = (struct uart_amba_port *)port; 877 878 while (readw(uap->port.membase + UART01x_FR) & UART01x_FR_TXFF) 879 barrier(); 880 881 writew(ch, uap->port.membase + UART01x_DR); 882 } 883 884 #endif /* CONFIG_CONSOLE_POLL */ 885 886 static int pl011_startup(struct uart_port *port) 887 { 888 struct uart_amba_port *uap = (struct uart_amba_port *)port; 889 unsigned int cr; 890 int retval; 891 892 /* 893 * Try to enable the clock producer. 894 */ 895 retval = clk_enable(uap->clk); 896 if (retval) 897 goto out; 898 899 uap->port.uartclk = clk_get_rate(uap->clk); 900 901 /* 902 * Allocate the IRQ 903 */ 904 retval = request_irq(uap->port.irq, pl011_int, 0, "uart-pl011", uap); 905 if (retval) 906 goto clk_dis; 907 908 writew(uap->vendor->ifls, uap->port.membase + UART011_IFLS); 909 910 /* 911 * Provoke TX FIFO interrupt into asserting. 912 */ 913 cr = UART01x_CR_UARTEN | UART011_CR_TXE | UART011_CR_LBE; 914 writew(cr, uap->port.membase + UART011_CR); 915 writew(0, uap->port.membase + UART011_FBRD); 916 writew(1, uap->port.membase + UART011_IBRD); 917 writew(0, uap->port.membase + uap->lcrh_rx); 918 if (uap->lcrh_tx != uap->lcrh_rx) { 919 int i; 920 /* 921 * Wait 10 PCLKs before writing LCRH_TX register, 922 * to get this delay write read only register 10 times 923 */ 924 for (i = 0; i < 10; ++i) 925 writew(0xff, uap->port.membase + UART011_MIS); 926 writew(0, uap->port.membase + uap->lcrh_tx); 927 } 928 writew(0, uap->port.membase + UART01x_DR); 929 while (readw(uap->port.membase + UART01x_FR) & UART01x_FR_BUSY) 930 barrier(); 931 932 cr = UART01x_CR_UARTEN | UART011_CR_RXE | UART011_CR_TXE; 933 writew(cr, uap->port.membase + UART011_CR); 934 935 /* Clear pending error interrupts */ 936 writew(UART011_OEIS | UART011_BEIS | UART011_PEIS | UART011_FEIS, 937 uap->port.membase + UART011_ICR); 938 939 /* 940 * initialise the old status of the modem signals 941 */ 942 uap->old_status = readw(uap->port.membase + UART01x_FR) & UART01x_FR_MODEM_ANY; 943 944 /* Startup DMA */ 945 pl011_dma_startup(uap); 946 947 /* 948 * Finally, enable interrupts 949 */ 950 spin_lock_irq(&uap->port.lock); 951 uap->im = UART011_RXIM | UART011_RTIM; 952 writew(uap->im, uap->port.membase + UART011_IMSC); 953 spin_unlock_irq(&uap->port.lock); 954 955 return 0; 956 957 clk_dis: 958 clk_disable(uap->clk); 959 out: 960 return retval; 961 } 962 963 static void pl011_shutdown_channel(struct uart_amba_port *uap, 964 unsigned int lcrh) 965 { 966 unsigned long val; 967 968 val = readw(uap->port.membase + lcrh); 969 val &= ~(UART01x_LCRH_BRK | UART01x_LCRH_FEN); 970 writew(val, uap->port.membase + lcrh); 971 } 972 973 static void pl011_shutdown(struct uart_port *port) 974 { 975 struct uart_amba_port *uap = (struct uart_amba_port *)port; 976 977 /* 978 * disable all interrupts 979 */ 980 spin_lock_irq(&uap->port.lock); 981 uap->im = 0; 982 writew(uap->im, uap->port.membase + UART011_IMSC); 983 writew(0xffff, uap->port.membase + UART011_ICR); 984 spin_unlock_irq(&uap->port.lock); 985 986 pl011_dma_shutdown(uap); 987 988 /* 989 * Free the interrupt 990 */ 991 free_irq(uap->port.irq, uap); 992 993 /* 994 * disable the port 995 */ 996 uap->autorts = false; 997 writew(UART01x_CR_UARTEN | UART011_CR_TXE, uap->port.membase + UART011_CR); 998 999 /* 1000 * disable break condition and fifos 1001 */ 1002 pl011_shutdown_channel(uap, uap->lcrh_rx); 1003 if (uap->lcrh_rx != uap->lcrh_tx) 1004 pl011_shutdown_channel(uap, uap->lcrh_tx); 1005 1006 /* 1007 * Shut down the clock producer 1008 */ 1009 clk_disable(uap->clk); 1010 } 1011 1012 static void 1013 pl011_set_termios(struct uart_port *port, struct ktermios *termios, 1014 struct ktermios *old) 1015 { 1016 struct uart_amba_port *uap = (struct uart_amba_port *)port; 1017 unsigned int lcr_h, old_cr; 1018 unsigned long flags; 1019 unsigned int baud, quot, clkdiv; 1020 1021 if (uap->vendor->oversampling) 1022 clkdiv = 8; 1023 else 1024 clkdiv = 16; 1025 1026 /* 1027 * Ask the core to calculate the divisor for us. 1028 */ 1029 baud = uart_get_baud_rate(port, termios, old, 0, 1030 port->uartclk / clkdiv); 1031 1032 if (baud > port->uartclk/16) 1033 quot = DIV_ROUND_CLOSEST(port->uartclk * 8, baud); 1034 else 1035 quot = DIV_ROUND_CLOSEST(port->uartclk * 4, baud); 1036 1037 switch (termios->c_cflag & CSIZE) { 1038 case CS5: 1039 lcr_h = UART01x_LCRH_WLEN_5; 1040 break; 1041 case CS6: 1042 lcr_h = UART01x_LCRH_WLEN_6; 1043 break; 1044 case CS7: 1045 lcr_h = UART01x_LCRH_WLEN_7; 1046 break; 1047 default: // CS8 1048 lcr_h = UART01x_LCRH_WLEN_8; 1049 break; 1050 } 1051 if (termios->c_cflag & CSTOPB) 1052 lcr_h |= UART01x_LCRH_STP2; 1053 if (termios->c_cflag & PARENB) { 1054 lcr_h |= UART01x_LCRH_PEN; 1055 if (!(termios->c_cflag & PARODD)) 1056 lcr_h |= UART01x_LCRH_EPS; 1057 } 1058 if (uap->fifosize > 1) 1059 lcr_h |= UART01x_LCRH_FEN; 1060 1061 spin_lock_irqsave(&port->lock, flags); 1062 1063 /* 1064 * Update the per-port timeout. 1065 */ 1066 uart_update_timeout(port, termios->c_cflag, baud); 1067 1068 port->read_status_mask = UART011_DR_OE | 255; 1069 if (termios->c_iflag & INPCK) 1070 port->read_status_mask |= UART011_DR_FE | UART011_DR_PE; 1071 if (termios->c_iflag & (BRKINT | PARMRK)) 1072 port->read_status_mask |= UART011_DR_BE; 1073 1074 /* 1075 * Characters to ignore 1076 */ 1077 port->ignore_status_mask = 0; 1078 if (termios->c_iflag & IGNPAR) 1079 port->ignore_status_mask |= UART011_DR_FE | UART011_DR_PE; 1080 if (termios->c_iflag & IGNBRK) { 1081 port->ignore_status_mask |= UART011_DR_BE; 1082 /* 1083 * If we're ignoring parity and break indicators, 1084 * ignore overruns too (for real raw support). 1085 */ 1086 if (termios->c_iflag & IGNPAR) 1087 port->ignore_status_mask |= UART011_DR_OE; 1088 } 1089 1090 /* 1091 * Ignore all characters if CREAD is not set. 1092 */ 1093 if ((termios->c_cflag & CREAD) == 0) 1094 port->ignore_status_mask |= UART_DUMMY_DR_RX; 1095 1096 if (UART_ENABLE_MS(port, termios->c_cflag)) 1097 pl011_enable_ms(port); 1098 1099 /* first, disable everything */ 1100 old_cr = readw(port->membase + UART011_CR); 1101 writew(0, port->membase + UART011_CR); 1102 1103 if (termios->c_cflag & CRTSCTS) { 1104 if (old_cr & UART011_CR_RTS) 1105 old_cr |= UART011_CR_RTSEN; 1106 1107 old_cr |= UART011_CR_CTSEN; 1108 uap->autorts = true; 1109 } else { 1110 old_cr &= ~(UART011_CR_CTSEN | UART011_CR_RTSEN); 1111 uap->autorts = false; 1112 } 1113 1114 if (uap->vendor->oversampling) { 1115 if (baud > port->uartclk / 16) 1116 old_cr |= ST_UART011_CR_OVSFACT; 1117 else 1118 old_cr &= ~ST_UART011_CR_OVSFACT; 1119 } 1120 1121 /* Set baud rate */ 1122 writew(quot & 0x3f, port->membase + UART011_FBRD); 1123 writew(quot >> 6, port->membase + UART011_IBRD); 1124 1125 /* 1126 * ----------v----------v----------v----------v----- 1127 * NOTE: MUST BE WRITTEN AFTER UARTLCR_M & UARTLCR_L 1128 * ----------^----------^----------^----------^----- 1129 */ 1130 writew(lcr_h, port->membase + uap->lcrh_rx); 1131 if (uap->lcrh_rx != uap->lcrh_tx) { 1132 int i; 1133 /* 1134 * Wait 10 PCLKs before writing LCRH_TX register, 1135 * to get this delay write read only register 10 times 1136 */ 1137 for (i = 0; i < 10; ++i) 1138 writew(0xff, uap->port.membase + UART011_MIS); 1139 writew(lcr_h, port->membase + uap->lcrh_tx); 1140 } 1141 writew(old_cr, port->membase + UART011_CR); 1142 1143 spin_unlock_irqrestore(&port->lock, flags); 1144 } 1145 1146 static const char *pl011_type(struct uart_port *port) 1147 { 1148 struct uart_amba_port *uap = (struct uart_amba_port *)port; 1149 return uap->port.type == PORT_AMBA ? uap->type : NULL; 1150 } 1151 1152 /* 1153 * Release the memory region(s) being used by 'port' 1154 */ 1155 static void pl010_release_port(struct uart_port *port) 1156 { 1157 release_mem_region(port->mapbase, SZ_4K); 1158 } 1159 1160 /* 1161 * Request the memory region(s) being used by 'port' 1162 */ 1163 static int pl010_request_port(struct uart_port *port) 1164 { 1165 return request_mem_region(port->mapbase, SZ_4K, "uart-pl011") 1166 != NULL ? 0 : -EBUSY; 1167 } 1168 1169 /* 1170 * Configure/autoconfigure the port. 1171 */ 1172 static void pl010_config_port(struct uart_port *port, int flags) 1173 { 1174 if (flags & UART_CONFIG_TYPE) { 1175 port->type = PORT_AMBA; 1176 pl010_request_port(port); 1177 } 1178 } 1179 1180 /* 1181 * verify the new serial_struct (for TIOCSSERIAL). 1182 */ 1183 static int pl010_verify_port(struct uart_port *port, struct serial_struct *ser) 1184 { 1185 int ret = 0; 1186 if (ser->type != PORT_UNKNOWN && ser->type != PORT_AMBA) 1187 ret = -EINVAL; 1188 if (ser->irq < 0 || ser->irq >= nr_irqs) 1189 ret = -EINVAL; 1190 if (ser->baud_base < 9600) 1191 ret = -EINVAL; 1192 return ret; 1193 } 1194 1195 static struct uart_ops amba_pl011_pops = { 1196 .tx_empty = pl01x_tx_empty, 1197 .set_mctrl = pl011_set_mctrl, 1198 .get_mctrl = pl01x_get_mctrl, 1199 .stop_tx = pl011_stop_tx, 1200 .start_tx = pl011_start_tx, 1201 .stop_rx = pl011_stop_rx, 1202 .enable_ms = pl011_enable_ms, 1203 .break_ctl = pl011_break_ctl, 1204 .startup = pl011_startup, 1205 .shutdown = pl011_shutdown, 1206 .flush_buffer = pl011_dma_flush_buffer, 1207 .set_termios = pl011_set_termios, 1208 .type = pl011_type, 1209 .release_port = pl010_release_port, 1210 .request_port = pl010_request_port, 1211 .config_port = pl010_config_port, 1212 .verify_port = pl010_verify_port, 1213 #ifdef CONFIG_CONSOLE_POLL 1214 .poll_get_char = pl010_get_poll_char, 1215 .poll_put_char = pl010_put_poll_char, 1216 #endif 1217 }; 1218 1219 static struct uart_amba_port *amba_ports[UART_NR]; 1220 1221 #ifdef CONFIG_SERIAL_AMBA_PL011_CONSOLE 1222 1223 static void pl011_console_putchar(struct uart_port *port, int ch) 1224 { 1225 struct uart_amba_port *uap = (struct uart_amba_port *)port; 1226 1227 while (readw(uap->port.membase + UART01x_FR) & UART01x_FR_TXFF) 1228 barrier(); 1229 writew(ch, uap->port.membase + UART01x_DR); 1230 } 1231 1232 static void 1233 pl011_console_write(struct console *co, const char *s, unsigned int count) 1234 { 1235 struct uart_amba_port *uap = amba_ports[co->index]; 1236 unsigned int status, old_cr, new_cr; 1237 1238 clk_enable(uap->clk); 1239 1240 /* 1241 * First save the CR then disable the interrupts 1242 */ 1243 old_cr = readw(uap->port.membase + UART011_CR); 1244 new_cr = old_cr & ~UART011_CR_CTSEN; 1245 new_cr |= UART01x_CR_UARTEN | UART011_CR_TXE; 1246 writew(new_cr, uap->port.membase + UART011_CR); 1247 1248 uart_console_write(&uap->port, s, count, pl011_console_putchar); 1249 1250 /* 1251 * Finally, wait for transmitter to become empty 1252 * and restore the TCR 1253 */ 1254 do { 1255 status = readw(uap->port.membase + UART01x_FR); 1256 } while (status & UART01x_FR_BUSY); 1257 writew(old_cr, uap->port.membase + UART011_CR); 1258 1259 clk_disable(uap->clk); 1260 } 1261 1262 static void __init 1263 pl011_console_get_options(struct uart_amba_port *uap, int *baud, 1264 int *parity, int *bits) 1265 { 1266 if (readw(uap->port.membase + UART011_CR) & UART01x_CR_UARTEN) { 1267 unsigned int lcr_h, ibrd, fbrd; 1268 1269 lcr_h = readw(uap->port.membase + uap->lcrh_tx); 1270 1271 *parity = 'n'; 1272 if (lcr_h & UART01x_LCRH_PEN) { 1273 if (lcr_h & UART01x_LCRH_EPS) 1274 *parity = 'e'; 1275 else 1276 *parity = 'o'; 1277 } 1278 1279 if ((lcr_h & 0x60) == UART01x_LCRH_WLEN_7) 1280 *bits = 7; 1281 else 1282 *bits = 8; 1283 1284 ibrd = readw(uap->port.membase + UART011_IBRD); 1285 fbrd = readw(uap->port.membase + UART011_FBRD); 1286 1287 *baud = uap->port.uartclk * 4 / (64 * ibrd + fbrd); 1288 1289 if (uap->vendor->oversampling) { 1290 if (readw(uap->port.membase + UART011_CR) 1291 & ST_UART011_CR_OVSFACT) 1292 *baud *= 2; 1293 } 1294 } 1295 } 1296 1297 static int __init pl011_console_setup(struct console *co, char *options) 1298 { 1299 struct uart_amba_port *uap; 1300 int baud = 38400; 1301 int bits = 8; 1302 int parity = 'n'; 1303 int flow = 'n'; 1304 1305 /* 1306 * Check whether an invalid uart number has been specified, and 1307 * if so, search for the first available port that does have 1308 * console support. 1309 */ 1310 if (co->index >= UART_NR) 1311 co->index = 0; 1312 uap = amba_ports[co->index]; 1313 if (!uap) 1314 return -ENODEV; 1315 1316 uap->port.uartclk = clk_get_rate(uap->clk); 1317 1318 if (options) 1319 uart_parse_options(options, &baud, &parity, &bits, &flow); 1320 else 1321 pl011_console_get_options(uap, &baud, &parity, &bits); 1322 1323 return uart_set_options(&uap->port, co, baud, parity, bits, flow); 1324 } 1325 1326 static struct uart_driver amba_reg; 1327 static struct console amba_console = { 1328 .name = "ttyAMA", 1329 .write = pl011_console_write, 1330 .device = uart_console_device, 1331 .setup = pl011_console_setup, 1332 .flags = CON_PRINTBUFFER, 1333 .index = -1, 1334 .data = &amba_reg, 1335 }; 1336 1337 #define AMBA_CONSOLE (&amba_console) 1338 #else 1339 #define AMBA_CONSOLE NULL 1340 #endif 1341 1342 static struct uart_driver amba_reg = { 1343 .owner = THIS_MODULE, 1344 .driver_name = "ttyAMA", 1345 .dev_name = "ttyAMA", 1346 .major = SERIAL_AMBA_MAJOR, 1347 .minor = SERIAL_AMBA_MINOR, 1348 .nr = UART_NR, 1349 .cons = AMBA_CONSOLE, 1350 }; 1351 1352 static int pl011_probe(struct amba_device *dev, struct amba_id *id) 1353 { 1354 struct uart_amba_port *uap; 1355 struct vendor_data *vendor = id->data; 1356 void __iomem *base; 1357 int i, ret; 1358 1359 for (i = 0; i < ARRAY_SIZE(amba_ports); i++) 1360 if (amba_ports[i] == NULL) 1361 break; 1362 1363 if (i == ARRAY_SIZE(amba_ports)) { 1364 ret = -EBUSY; 1365 goto out; 1366 } 1367 1368 uap = kzalloc(sizeof(struct uart_amba_port), GFP_KERNEL); 1369 if (uap == NULL) { 1370 ret = -ENOMEM; 1371 goto out; 1372 } 1373 1374 base = ioremap(dev->res.start, resource_size(&dev->res)); 1375 if (!base) { 1376 ret = -ENOMEM; 1377 goto free; 1378 } 1379 1380 uap->clk = clk_get(&dev->dev, NULL); 1381 if (IS_ERR(uap->clk)) { 1382 ret = PTR_ERR(uap->clk); 1383 goto unmap; 1384 } 1385 1386 uap->vendor = vendor; 1387 uap->lcrh_rx = vendor->lcrh_rx; 1388 uap->lcrh_tx = vendor->lcrh_tx; 1389 uap->fifosize = vendor->fifosize; 1390 uap->port.dev = &dev->dev; 1391 uap->port.mapbase = dev->res.start; 1392 uap->port.membase = base; 1393 uap->port.iotype = UPIO_MEM; 1394 uap->port.irq = dev->irq[0]; 1395 uap->port.fifosize = uap->fifosize; 1396 uap->port.ops = &amba_pl011_pops; 1397 uap->port.flags = UPF_BOOT_AUTOCONF; 1398 uap->port.line = i; 1399 pl011_dma_probe(uap); 1400 1401 snprintf(uap->type, sizeof(uap->type), "PL011 rev%u", amba_rev(dev)); 1402 1403 amba_ports[i] = uap; 1404 1405 amba_set_drvdata(dev, uap); 1406 ret = uart_add_one_port(&amba_reg, &uap->port); 1407 if (ret) { 1408 amba_set_drvdata(dev, NULL); 1409 amba_ports[i] = NULL; 1410 pl011_dma_remove(uap); 1411 clk_put(uap->clk); 1412 unmap: 1413 iounmap(base); 1414 free: 1415 kfree(uap); 1416 } 1417 out: 1418 return ret; 1419 } 1420 1421 static int pl011_remove(struct amba_device *dev) 1422 { 1423 struct uart_amba_port *uap = amba_get_drvdata(dev); 1424 int i; 1425 1426 amba_set_drvdata(dev, NULL); 1427 1428 uart_remove_one_port(&amba_reg, &uap->port); 1429 1430 for (i = 0; i < ARRAY_SIZE(amba_ports); i++) 1431 if (amba_ports[i] == uap) 1432 amba_ports[i] = NULL; 1433 1434 pl011_dma_remove(uap); 1435 iounmap(uap->port.membase); 1436 clk_put(uap->clk); 1437 kfree(uap); 1438 return 0; 1439 } 1440 1441 #ifdef CONFIG_PM 1442 static int pl011_suspend(struct amba_device *dev, pm_message_t state) 1443 { 1444 struct uart_amba_port *uap = amba_get_drvdata(dev); 1445 1446 if (!uap) 1447 return -EINVAL; 1448 1449 return uart_suspend_port(&amba_reg, &uap->port); 1450 } 1451 1452 static int pl011_resume(struct amba_device *dev) 1453 { 1454 struct uart_amba_port *uap = amba_get_drvdata(dev); 1455 1456 if (!uap) 1457 return -EINVAL; 1458 1459 return uart_resume_port(&amba_reg, &uap->port); 1460 } 1461 #endif 1462 1463 static struct amba_id pl011_ids[] = { 1464 { 1465 .id = 0x00041011, 1466 .mask = 0x000fffff, 1467 .data = &vendor_arm, 1468 }, 1469 { 1470 .id = 0x00380802, 1471 .mask = 0x00ffffff, 1472 .data = &vendor_st, 1473 }, 1474 { 0, 0 }, 1475 }; 1476 1477 static struct amba_driver pl011_driver = { 1478 .drv = { 1479 .name = "uart-pl011", 1480 }, 1481 .id_table = pl011_ids, 1482 .probe = pl011_probe, 1483 .remove = pl011_remove, 1484 #ifdef CONFIG_PM 1485 .suspend = pl011_suspend, 1486 .resume = pl011_resume, 1487 #endif 1488 }; 1489 1490 static int __init pl011_init(void) 1491 { 1492 int ret; 1493 printk(KERN_INFO "Serial: AMBA PL011 UART driver\n"); 1494 1495 ret = uart_register_driver(&amba_reg); 1496 if (ret == 0) { 1497 ret = amba_driver_register(&pl011_driver); 1498 if (ret) 1499 uart_unregister_driver(&amba_reg); 1500 } 1501 return ret; 1502 } 1503 1504 static void __exit pl011_exit(void) 1505 { 1506 amba_driver_unregister(&pl011_driver); 1507 uart_unregister_driver(&amba_reg); 1508 } 1509 1510 /* 1511 * While this can be a module, if builtin it's most likely the console 1512 * So let's leave module_exit but move module_init to an earlier place 1513 */ 1514 arch_initcall(pl011_init); 1515 module_exit(pl011_exit); 1516 1517 MODULE_AUTHOR("ARM Ltd/Deep Blue Solutions Ltd"); 1518 MODULE_DESCRIPTION("ARM AMBA serial port driver"); 1519 MODULE_LICENSE("GPL"); 1520