xref: /openbmc/linux/drivers/tty/serial/amba-pl011.c (revision df2634f43f5106947f3735a0b61a6527a4b278cd)
1 /*
2  *  linux/drivers/char/amba.c
3  *
4  *  Driver for AMBA serial ports
5  *
6  *  Based on drivers/char/serial.c, by Linus Torvalds, Theodore Ts'o.
7  *
8  *  Copyright 1999 ARM Limited
9  *  Copyright (C) 2000 Deep Blue Solutions Ltd.
10  *  Copyright (C) 2010 ST-Ericsson SA
11  *
12  * This program is free software; you can redistribute it and/or modify
13  * it under the terms of the GNU General Public License as published by
14  * the Free Software Foundation; either version 2 of the License, or
15  * (at your option) any later version.
16  *
17  * This program is distributed in the hope that it will be useful,
18  * but WITHOUT ANY WARRANTY; without even the implied warranty of
19  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
20  * GNU General Public License for more details.
21  *
22  * You should have received a copy of the GNU General Public License
23  * along with this program; if not, write to the Free Software
24  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
25  *
26  * This is a generic driver for ARM AMBA-type serial ports.  They
27  * have a lot of 16550-like features, but are not register compatible.
28  * Note that although they do have CTS, DCD and DSR inputs, they do
29  * not have an RI input, nor do they have DTR or RTS outputs.  If
30  * required, these have to be supplied via some other means (eg, GPIO)
31  * and hooked into this driver.
32  */
33 
34 #if defined(CONFIG_SERIAL_AMBA_PL011_CONSOLE) && defined(CONFIG_MAGIC_SYSRQ)
35 #define SUPPORT_SYSRQ
36 #endif
37 
38 #include <linux/module.h>
39 #include <linux/ioport.h>
40 #include <linux/init.h>
41 #include <linux/console.h>
42 #include <linux/sysrq.h>
43 #include <linux/device.h>
44 #include <linux/tty.h>
45 #include <linux/tty_flip.h>
46 #include <linux/serial_core.h>
47 #include <linux/serial.h>
48 #include <linux/amba/bus.h>
49 #include <linux/amba/serial.h>
50 #include <linux/clk.h>
51 #include <linux/slab.h>
52 #include <linux/dmaengine.h>
53 #include <linux/dma-mapping.h>
54 #include <linux/scatterlist.h>
55 
56 #include <asm/io.h>
57 #include <asm/sizes.h>
58 
59 #define UART_NR			14
60 
61 #define SERIAL_AMBA_MAJOR	204
62 #define SERIAL_AMBA_MINOR	64
63 #define SERIAL_AMBA_NR		UART_NR
64 
65 #define AMBA_ISR_PASS_LIMIT	256
66 
67 #define UART_DR_ERROR		(UART011_DR_OE|UART011_DR_BE|UART011_DR_PE|UART011_DR_FE)
68 #define UART_DUMMY_DR_RX	(1 << 16)
69 
70 /* There is by now at least one vendor with differing details, so handle it */
71 struct vendor_data {
72 	unsigned int		ifls;
73 	unsigned int		fifosize;
74 	unsigned int		lcrh_tx;
75 	unsigned int		lcrh_rx;
76 	bool			oversampling;
77 	bool			dma_threshold;
78 };
79 
80 static struct vendor_data vendor_arm = {
81 	.ifls			= UART011_IFLS_RX4_8|UART011_IFLS_TX4_8,
82 	.fifosize		= 16,
83 	.lcrh_tx		= UART011_LCRH,
84 	.lcrh_rx		= UART011_LCRH,
85 	.oversampling		= false,
86 	.dma_threshold		= false,
87 };
88 
89 static struct vendor_data vendor_st = {
90 	.ifls			= UART011_IFLS_RX_HALF|UART011_IFLS_TX_HALF,
91 	.fifosize		= 64,
92 	.lcrh_tx		= ST_UART011_LCRH_TX,
93 	.lcrh_rx		= ST_UART011_LCRH_RX,
94 	.oversampling		= true,
95 	.dma_threshold		= true,
96 };
97 
98 /* Deals with DMA transactions */
99 struct pl011_dmatx_data {
100 	struct dma_chan		*chan;
101 	struct scatterlist	sg;
102 	char			*buf;
103 	bool			queued;
104 };
105 
106 /*
107  * We wrap our port structure around the generic uart_port.
108  */
109 struct uart_amba_port {
110 	struct uart_port	port;
111 	struct clk		*clk;
112 	const struct vendor_data *vendor;
113 	unsigned int		dmacr;		/* dma control reg */
114 	unsigned int		im;		/* interrupt mask */
115 	unsigned int		old_status;
116 	unsigned int		fifosize;	/* vendor-specific */
117 	unsigned int		lcrh_tx;	/* vendor-specific */
118 	unsigned int		lcrh_rx;	/* vendor-specific */
119 	bool			autorts;
120 	char			type[12];
121 #ifdef CONFIG_DMA_ENGINE
122 	/* DMA stuff */
123 	bool			using_dma;
124 	struct pl011_dmatx_data	dmatx;
125 #endif
126 };
127 
128 /*
129  * All the DMA operation mode stuff goes inside this ifdef.
130  * This assumes that you have a generic DMA device interface,
131  * no custom DMA interfaces are supported.
132  */
133 #ifdef CONFIG_DMA_ENGINE
134 
135 #define PL011_DMA_BUFFER_SIZE PAGE_SIZE
136 
137 static void pl011_dma_probe_initcall(struct uart_amba_port *uap)
138 {
139 	/* DMA is the sole user of the platform data right now */
140 	struct amba_pl011_data *plat = uap->port.dev->platform_data;
141 	struct dma_slave_config tx_conf = {
142 		.dst_addr = uap->port.mapbase + UART01x_DR,
143 		.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
144 		.direction = DMA_TO_DEVICE,
145 		.dst_maxburst = uap->fifosize >> 1,
146 	};
147 	struct dma_chan *chan;
148 	dma_cap_mask_t mask;
149 
150 	/* We need platform data */
151 	if (!plat || !plat->dma_filter) {
152 		dev_info(uap->port.dev, "no DMA platform data\n");
153 		return;
154 	}
155 
156 	/* Try to acquire a generic DMA engine slave channel */
157 	dma_cap_zero(mask);
158 	dma_cap_set(DMA_SLAVE, mask);
159 
160 	chan = dma_request_channel(mask, plat->dma_filter, plat->dma_tx_param);
161 	if (!chan) {
162 		dev_err(uap->port.dev, "no TX DMA channel!\n");
163 		return;
164 	}
165 
166 	dmaengine_slave_config(chan, &tx_conf);
167 	uap->dmatx.chan = chan;
168 
169 	dev_info(uap->port.dev, "DMA channel TX %s\n",
170 		 dma_chan_name(uap->dmatx.chan));
171 }
172 
173 #ifndef MODULE
174 /*
175  * Stack up the UARTs and let the above initcall be done at device
176  * initcall time, because the serial driver is called as an arch
177  * initcall, and at this time the DMA subsystem is not yet registered.
178  * At this point the driver will switch over to using DMA where desired.
179  */
180 struct dma_uap {
181 	struct list_head node;
182 	struct uart_amba_port *uap;
183 };
184 
185 static LIST_HEAD(pl011_dma_uarts);
186 
187 static int __init pl011_dma_initcall(void)
188 {
189 	struct list_head *node, *tmp;
190 
191 	list_for_each_safe(node, tmp, &pl011_dma_uarts) {
192 		struct dma_uap *dmau = list_entry(node, struct dma_uap, node);
193 		pl011_dma_probe_initcall(dmau->uap);
194 		list_del(node);
195 		kfree(dmau);
196 	}
197 	return 0;
198 }
199 
200 device_initcall(pl011_dma_initcall);
201 
202 static void pl011_dma_probe(struct uart_amba_port *uap)
203 {
204 	struct dma_uap *dmau = kzalloc(sizeof(struct dma_uap), GFP_KERNEL);
205 	if (dmau) {
206 		dmau->uap = uap;
207 		list_add_tail(&dmau->node, &pl011_dma_uarts);
208 	}
209 }
210 #else
211 static void pl011_dma_probe(struct uart_amba_port *uap)
212 {
213 	pl011_dma_probe_initcall(uap);
214 }
215 #endif
216 
217 static void pl011_dma_remove(struct uart_amba_port *uap)
218 {
219 	/* TODO: remove the initcall if it has not yet executed */
220 	if (uap->dmatx.chan)
221 		dma_release_channel(uap->dmatx.chan);
222 }
223 
224 
225 /* Forward declare this for the refill routine */
226 static int pl011_dma_tx_refill(struct uart_amba_port *uap);
227 
228 /*
229  * The current DMA TX buffer has been sent.
230  * Try to queue up another DMA buffer.
231  */
232 static void pl011_dma_tx_callback(void *data)
233 {
234 	struct uart_amba_port *uap = data;
235 	struct pl011_dmatx_data *dmatx = &uap->dmatx;
236 	unsigned long flags;
237 	u16 dmacr;
238 
239 	spin_lock_irqsave(&uap->port.lock, flags);
240 	if (uap->dmatx.queued)
241 		dma_unmap_sg(dmatx->chan->device->dev, &dmatx->sg, 1,
242 			     DMA_TO_DEVICE);
243 
244 	dmacr = uap->dmacr;
245 	uap->dmacr = dmacr & ~UART011_TXDMAE;
246 	writew(uap->dmacr, uap->port.membase + UART011_DMACR);
247 
248 	/*
249 	 * If TX DMA was disabled, it means that we've stopped the DMA for
250 	 * some reason (eg, XOFF received, or we want to send an X-char.)
251 	 *
252 	 * Note: we need to be careful here of a potential race between DMA
253 	 * and the rest of the driver - if the driver disables TX DMA while
254 	 * a TX buffer completing, we must update the tx queued status to
255 	 * get further refills (hence we check dmacr).
256 	 */
257 	if (!(dmacr & UART011_TXDMAE) || uart_tx_stopped(&uap->port) ||
258 	    uart_circ_empty(&uap->port.state->xmit)) {
259 		uap->dmatx.queued = false;
260 		spin_unlock_irqrestore(&uap->port.lock, flags);
261 		return;
262 	}
263 
264 	if (pl011_dma_tx_refill(uap) <= 0) {
265 		/*
266 		 * We didn't queue a DMA buffer for some reason, but we
267 		 * have data pending to be sent.  Re-enable the TX IRQ.
268 		 */
269 		uap->im |= UART011_TXIM;
270 		writew(uap->im, uap->port.membase + UART011_IMSC);
271 	}
272 	spin_unlock_irqrestore(&uap->port.lock, flags);
273 }
274 
275 /*
276  * Try to refill the TX DMA buffer.
277  * Locking: called with port lock held and IRQs disabled.
278  * Returns:
279  *   1 if we queued up a TX DMA buffer.
280  *   0 if we didn't want to handle this by DMA
281  *  <0 on error
282  */
283 static int pl011_dma_tx_refill(struct uart_amba_port *uap)
284 {
285 	struct pl011_dmatx_data *dmatx = &uap->dmatx;
286 	struct dma_chan *chan = dmatx->chan;
287 	struct dma_device *dma_dev = chan->device;
288 	struct dma_async_tx_descriptor *desc;
289 	struct circ_buf *xmit = &uap->port.state->xmit;
290 	unsigned int count;
291 
292 	/*
293 	 * Try to avoid the overhead involved in using DMA if the
294 	 * transaction fits in the first half of the FIFO, by using
295 	 * the standard interrupt handling.  This ensures that we
296 	 * issue a uart_write_wakeup() at the appropriate time.
297 	 */
298 	count = uart_circ_chars_pending(xmit);
299 	if (count < (uap->fifosize >> 1)) {
300 		uap->dmatx.queued = false;
301 		return 0;
302 	}
303 
304 	/*
305 	 * Bodge: don't send the last character by DMA, as this
306 	 * will prevent XON from notifying us to restart DMA.
307 	 */
308 	count -= 1;
309 
310 	/* Else proceed to copy the TX chars to the DMA buffer and fire DMA */
311 	if (count > PL011_DMA_BUFFER_SIZE)
312 		count = PL011_DMA_BUFFER_SIZE;
313 
314 	if (xmit->tail < xmit->head)
315 		memcpy(&dmatx->buf[0], &xmit->buf[xmit->tail], count);
316 	else {
317 		size_t first = UART_XMIT_SIZE - xmit->tail;
318 		size_t second = xmit->head;
319 
320 		memcpy(&dmatx->buf[0], &xmit->buf[xmit->tail], first);
321 		if (second)
322 			memcpy(&dmatx->buf[first], &xmit->buf[0], second);
323 	}
324 
325 	dmatx->sg.length = count;
326 
327 	if (dma_map_sg(dma_dev->dev, &dmatx->sg, 1, DMA_TO_DEVICE) != 1) {
328 		uap->dmatx.queued = false;
329 		dev_dbg(uap->port.dev, "unable to map TX DMA\n");
330 		return -EBUSY;
331 	}
332 
333 	desc = dma_dev->device_prep_slave_sg(chan, &dmatx->sg, 1, DMA_TO_DEVICE,
334 					     DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
335 	if (!desc) {
336 		dma_unmap_sg(dma_dev->dev, &dmatx->sg, 1, DMA_TO_DEVICE);
337 		uap->dmatx.queued = false;
338 		/*
339 		 * If DMA cannot be used right now, we complete this
340 		 * transaction via IRQ and let the TTY layer retry.
341 		 */
342 		dev_dbg(uap->port.dev, "TX DMA busy\n");
343 		return -EBUSY;
344 	}
345 
346 	/* Some data to go along to the callback */
347 	desc->callback = pl011_dma_tx_callback;
348 	desc->callback_param = uap;
349 
350 	/* All errors should happen at prepare time */
351 	dmaengine_submit(desc);
352 
353 	/* Fire the DMA transaction */
354 	dma_dev->device_issue_pending(chan);
355 
356 	uap->dmacr |= UART011_TXDMAE;
357 	writew(uap->dmacr, uap->port.membase + UART011_DMACR);
358 	uap->dmatx.queued = true;
359 
360 	/*
361 	 * Now we know that DMA will fire, so advance the ring buffer
362 	 * with the stuff we just dispatched.
363 	 */
364 	xmit->tail = (xmit->tail + count) & (UART_XMIT_SIZE - 1);
365 	uap->port.icount.tx += count;
366 
367 	if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
368 		uart_write_wakeup(&uap->port);
369 
370 	return 1;
371 }
372 
373 /*
374  * We received a transmit interrupt without a pending X-char but with
375  * pending characters.
376  * Locking: called with port lock held and IRQs disabled.
377  * Returns:
378  *   false if we want to use PIO to transmit
379  *   true if we queued a DMA buffer
380  */
381 static bool pl011_dma_tx_irq(struct uart_amba_port *uap)
382 {
383 	if (!uap->using_dma)
384 		return false;
385 
386 	/*
387 	 * If we already have a TX buffer queued, but received a
388 	 * TX interrupt, it will be because we've just sent an X-char.
389 	 * Ensure the TX DMA is enabled and the TX IRQ is disabled.
390 	 */
391 	if (uap->dmatx.queued) {
392 		uap->dmacr |= UART011_TXDMAE;
393 		writew(uap->dmacr, uap->port.membase + UART011_DMACR);
394 		uap->im &= ~UART011_TXIM;
395 		writew(uap->im, uap->port.membase + UART011_IMSC);
396 		return true;
397 	}
398 
399 	/*
400 	 * We don't have a TX buffer queued, so try to queue one.
401 	 * If we succesfully queued a buffer, mask the TX IRQ.
402 	 */
403 	if (pl011_dma_tx_refill(uap) > 0) {
404 		uap->im &= ~UART011_TXIM;
405 		writew(uap->im, uap->port.membase + UART011_IMSC);
406 		return true;
407 	}
408 	return false;
409 }
410 
411 /*
412  * Stop the DMA transmit (eg, due to received XOFF).
413  * Locking: called with port lock held and IRQs disabled.
414  */
415 static inline void pl011_dma_tx_stop(struct uart_amba_port *uap)
416 {
417 	if (uap->dmatx.queued) {
418 		uap->dmacr &= ~UART011_TXDMAE;
419 		writew(uap->dmacr, uap->port.membase + UART011_DMACR);
420 	}
421 }
422 
423 /*
424  * Try to start a DMA transmit, or in the case of an XON/OFF
425  * character queued for send, try to get that character out ASAP.
426  * Locking: called with port lock held and IRQs disabled.
427  * Returns:
428  *   false if we want the TX IRQ to be enabled
429  *   true if we have a buffer queued
430  */
431 static inline bool pl011_dma_tx_start(struct uart_amba_port *uap)
432 {
433 	u16 dmacr;
434 
435 	if (!uap->using_dma)
436 		return false;
437 
438 	if (!uap->port.x_char) {
439 		/* no X-char, try to push chars out in DMA mode */
440 		bool ret = true;
441 
442 		if (!uap->dmatx.queued) {
443 			if (pl011_dma_tx_refill(uap) > 0) {
444 				uap->im &= ~UART011_TXIM;
445 				ret = true;
446 			} else {
447 				uap->im |= UART011_TXIM;
448 				ret = false;
449 			}
450 			writew(uap->im, uap->port.membase + UART011_IMSC);
451 		} else if (!(uap->dmacr & UART011_TXDMAE)) {
452 			uap->dmacr |= UART011_TXDMAE;
453 			writew(uap->dmacr,
454 				       uap->port.membase + UART011_DMACR);
455 		}
456 		return ret;
457 	}
458 
459 	/*
460 	 * We have an X-char to send.  Disable DMA to prevent it loading
461 	 * the TX fifo, and then see if we can stuff it into the FIFO.
462 	 */
463 	dmacr = uap->dmacr;
464 	uap->dmacr &= ~UART011_TXDMAE;
465 	writew(uap->dmacr, uap->port.membase + UART011_DMACR);
466 
467 	if (readw(uap->port.membase + UART01x_FR) & UART01x_FR_TXFF) {
468 		/*
469 		 * No space in the FIFO, so enable the transmit interrupt
470 		 * so we know when there is space.  Note that once we've
471 		 * loaded the character, we should just re-enable DMA.
472 		 */
473 		return false;
474 	}
475 
476 	writew(uap->port.x_char, uap->port.membase + UART01x_DR);
477 	uap->port.icount.tx++;
478 	uap->port.x_char = 0;
479 
480 	/* Success - restore the DMA state */
481 	uap->dmacr = dmacr;
482 	writew(dmacr, uap->port.membase + UART011_DMACR);
483 
484 	return true;
485 }
486 
487 /*
488  * Flush the transmit buffer.
489  * Locking: called with port lock held and IRQs disabled.
490  */
491 static void pl011_dma_flush_buffer(struct uart_port *port)
492 {
493 	struct uart_amba_port *uap = (struct uart_amba_port *)port;
494 
495 	if (!uap->using_dma)
496 		return;
497 
498 	/* Avoid deadlock with the DMA engine callback */
499 	spin_unlock(&uap->port.lock);
500 	dmaengine_terminate_all(uap->dmatx.chan);
501 	spin_lock(&uap->port.lock);
502 	if (uap->dmatx.queued) {
503 		dma_unmap_sg(uap->dmatx.chan->device->dev, &uap->dmatx.sg, 1,
504 			     DMA_TO_DEVICE);
505 		uap->dmatx.queued = false;
506 		uap->dmacr &= ~UART011_TXDMAE;
507 		writew(uap->dmacr, uap->port.membase + UART011_DMACR);
508 	}
509 }
510 
511 
512 static void pl011_dma_startup(struct uart_amba_port *uap)
513 {
514 	if (!uap->dmatx.chan)
515 		return;
516 
517 	uap->dmatx.buf = kmalloc(PL011_DMA_BUFFER_SIZE, GFP_KERNEL);
518 	if (!uap->dmatx.buf) {
519 		dev_err(uap->port.dev, "no memory for DMA TX buffer\n");
520 		uap->port.fifosize = uap->fifosize;
521 		return;
522 	}
523 
524 	sg_init_one(&uap->dmatx.sg, uap->dmatx.buf, PL011_DMA_BUFFER_SIZE);
525 
526 	/* The DMA buffer is now the FIFO the TTY subsystem can use */
527 	uap->port.fifosize = PL011_DMA_BUFFER_SIZE;
528 	uap->using_dma = true;
529 
530 	/* Turn on DMA error (RX/TX will be enabled on demand) */
531 	uap->dmacr |= UART011_DMAONERR;
532 	writew(uap->dmacr, uap->port.membase + UART011_DMACR);
533 
534 	/*
535 	 * ST Micro variants has some specific dma burst threshold
536 	 * compensation. Set this to 16 bytes, so burst will only
537 	 * be issued above/below 16 bytes.
538 	 */
539 	if (uap->vendor->dma_threshold)
540 		writew(ST_UART011_DMAWM_RX_16 | ST_UART011_DMAWM_TX_16,
541 			       uap->port.membase + ST_UART011_DMAWM);
542 }
543 
544 static void pl011_dma_shutdown(struct uart_amba_port *uap)
545 {
546 	if (!uap->using_dma)
547 		return;
548 
549 	/* Disable RX and TX DMA */
550 	while (readw(uap->port.membase + UART01x_FR) & UART01x_FR_BUSY)
551 		barrier();
552 
553 	spin_lock_irq(&uap->port.lock);
554 	uap->dmacr &= ~(UART011_DMAONERR | UART011_RXDMAE | UART011_TXDMAE);
555 	writew(uap->dmacr, uap->port.membase + UART011_DMACR);
556 	spin_unlock_irq(&uap->port.lock);
557 
558 	/* In theory, this should already be done by pl011_dma_flush_buffer */
559 	dmaengine_terminate_all(uap->dmatx.chan);
560 	if (uap->dmatx.queued) {
561 		dma_unmap_sg(uap->dmatx.chan->device->dev, &uap->dmatx.sg, 1,
562 			     DMA_TO_DEVICE);
563 		uap->dmatx.queued = false;
564 	}
565 
566 	kfree(uap->dmatx.buf);
567 
568 	uap->using_dma = false;
569 }
570 
571 #else
572 /* Blank functions if the DMA engine is not available */
573 static inline void pl011_dma_probe(struct uart_amba_port *uap)
574 {
575 }
576 
577 static inline void pl011_dma_remove(struct uart_amba_port *uap)
578 {
579 }
580 
581 static inline void pl011_dma_startup(struct uart_amba_port *uap)
582 {
583 }
584 
585 static inline void pl011_dma_shutdown(struct uart_amba_port *uap)
586 {
587 }
588 
589 static inline bool pl011_dma_tx_irq(struct uart_amba_port *uap)
590 {
591 	return false;
592 }
593 
594 static inline void pl011_dma_tx_stop(struct uart_amba_port *uap)
595 {
596 }
597 
598 static inline bool pl011_dma_tx_start(struct uart_amba_port *uap)
599 {
600 	return false;
601 }
602 
603 #define pl011_dma_flush_buffer	NULL
604 #endif
605 
606 
607 static void pl011_stop_tx(struct uart_port *port)
608 {
609 	struct uart_amba_port *uap = (struct uart_amba_port *)port;
610 
611 	uap->im &= ~UART011_TXIM;
612 	writew(uap->im, uap->port.membase + UART011_IMSC);
613 	pl011_dma_tx_stop(uap);
614 }
615 
616 static void pl011_start_tx(struct uart_port *port)
617 {
618 	struct uart_amba_port *uap = (struct uart_amba_port *)port;
619 
620 	if (!pl011_dma_tx_start(uap)) {
621 		uap->im |= UART011_TXIM;
622 		writew(uap->im, uap->port.membase + UART011_IMSC);
623 	}
624 }
625 
626 static void pl011_stop_rx(struct uart_port *port)
627 {
628 	struct uart_amba_port *uap = (struct uart_amba_port *)port;
629 
630 	uap->im &= ~(UART011_RXIM|UART011_RTIM|UART011_FEIM|
631 		     UART011_PEIM|UART011_BEIM|UART011_OEIM);
632 	writew(uap->im, uap->port.membase + UART011_IMSC);
633 }
634 
635 static void pl011_enable_ms(struct uart_port *port)
636 {
637 	struct uart_amba_port *uap = (struct uart_amba_port *)port;
638 
639 	uap->im |= UART011_RIMIM|UART011_CTSMIM|UART011_DCDMIM|UART011_DSRMIM;
640 	writew(uap->im, uap->port.membase + UART011_IMSC);
641 }
642 
643 static void pl011_rx_chars(struct uart_amba_port *uap)
644 {
645 	struct tty_struct *tty = uap->port.state->port.tty;
646 	unsigned int status, ch, flag, max_count = 256;
647 
648 	status = readw(uap->port.membase + UART01x_FR);
649 	while ((status & UART01x_FR_RXFE) == 0 && max_count--) {
650 		ch = readw(uap->port.membase + UART01x_DR) | UART_DUMMY_DR_RX;
651 		flag = TTY_NORMAL;
652 		uap->port.icount.rx++;
653 
654 		/*
655 		 * Note that the error handling code is
656 		 * out of the main execution path
657 		 */
658 		if (unlikely(ch & UART_DR_ERROR)) {
659 			if (ch & UART011_DR_BE) {
660 				ch &= ~(UART011_DR_FE | UART011_DR_PE);
661 				uap->port.icount.brk++;
662 				if (uart_handle_break(&uap->port))
663 					goto ignore_char;
664 			} else if (ch & UART011_DR_PE)
665 				uap->port.icount.parity++;
666 			else if (ch & UART011_DR_FE)
667 				uap->port.icount.frame++;
668 			if (ch & UART011_DR_OE)
669 				uap->port.icount.overrun++;
670 
671 			ch &= uap->port.read_status_mask;
672 
673 			if (ch & UART011_DR_BE)
674 				flag = TTY_BREAK;
675 			else if (ch & UART011_DR_PE)
676 				flag = TTY_PARITY;
677 			else if (ch & UART011_DR_FE)
678 				flag = TTY_FRAME;
679 		}
680 
681 		if (uart_handle_sysrq_char(&uap->port, ch & 255))
682 			goto ignore_char;
683 
684 		uart_insert_char(&uap->port, ch, UART011_DR_OE, ch, flag);
685 
686 	ignore_char:
687 		status = readw(uap->port.membase + UART01x_FR);
688 	}
689 	spin_unlock(&uap->port.lock);
690 	tty_flip_buffer_push(tty);
691 	spin_lock(&uap->port.lock);
692 }
693 
694 static void pl011_tx_chars(struct uart_amba_port *uap)
695 {
696 	struct circ_buf *xmit = &uap->port.state->xmit;
697 	int count;
698 
699 	if (uap->port.x_char) {
700 		writew(uap->port.x_char, uap->port.membase + UART01x_DR);
701 		uap->port.icount.tx++;
702 		uap->port.x_char = 0;
703 		return;
704 	}
705 	if (uart_circ_empty(xmit) || uart_tx_stopped(&uap->port)) {
706 		pl011_stop_tx(&uap->port);
707 		return;
708 	}
709 
710 	/* If we are using DMA mode, try to send some characters. */
711 	if (pl011_dma_tx_irq(uap))
712 		return;
713 
714 	count = uap->fifosize >> 1;
715 	do {
716 		writew(xmit->buf[xmit->tail], uap->port.membase + UART01x_DR);
717 		xmit->tail = (xmit->tail + 1) & (UART_XMIT_SIZE - 1);
718 		uap->port.icount.tx++;
719 		if (uart_circ_empty(xmit))
720 			break;
721 	} while (--count > 0);
722 
723 	if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
724 		uart_write_wakeup(&uap->port);
725 
726 	if (uart_circ_empty(xmit))
727 		pl011_stop_tx(&uap->port);
728 }
729 
730 static void pl011_modem_status(struct uart_amba_port *uap)
731 {
732 	unsigned int status, delta;
733 
734 	status = readw(uap->port.membase + UART01x_FR) & UART01x_FR_MODEM_ANY;
735 
736 	delta = status ^ uap->old_status;
737 	uap->old_status = status;
738 
739 	if (!delta)
740 		return;
741 
742 	if (delta & UART01x_FR_DCD)
743 		uart_handle_dcd_change(&uap->port, status & UART01x_FR_DCD);
744 
745 	if (delta & UART01x_FR_DSR)
746 		uap->port.icount.dsr++;
747 
748 	if (delta & UART01x_FR_CTS)
749 		uart_handle_cts_change(&uap->port, status & UART01x_FR_CTS);
750 
751 	wake_up_interruptible(&uap->port.state->port.delta_msr_wait);
752 }
753 
754 static irqreturn_t pl011_int(int irq, void *dev_id)
755 {
756 	struct uart_amba_port *uap = dev_id;
757 	unsigned long flags;
758 	unsigned int status, pass_counter = AMBA_ISR_PASS_LIMIT;
759 	int handled = 0;
760 
761 	spin_lock_irqsave(&uap->port.lock, flags);
762 
763 	status = readw(uap->port.membase + UART011_MIS);
764 	if (status) {
765 		do {
766 			writew(status & ~(UART011_TXIS|UART011_RTIS|
767 					  UART011_RXIS),
768 			       uap->port.membase + UART011_ICR);
769 
770 			if (status & (UART011_RTIS|UART011_RXIS))
771 				pl011_rx_chars(uap);
772 			if (status & (UART011_DSRMIS|UART011_DCDMIS|
773 				      UART011_CTSMIS|UART011_RIMIS))
774 				pl011_modem_status(uap);
775 			if (status & UART011_TXIS)
776 				pl011_tx_chars(uap);
777 
778 			if (pass_counter-- == 0)
779 				break;
780 
781 			status = readw(uap->port.membase + UART011_MIS);
782 		} while (status != 0);
783 		handled = 1;
784 	}
785 
786 	spin_unlock_irqrestore(&uap->port.lock, flags);
787 
788 	return IRQ_RETVAL(handled);
789 }
790 
791 static unsigned int pl01x_tx_empty(struct uart_port *port)
792 {
793 	struct uart_amba_port *uap = (struct uart_amba_port *)port;
794 	unsigned int status = readw(uap->port.membase + UART01x_FR);
795 	return status & (UART01x_FR_BUSY|UART01x_FR_TXFF) ? 0 : TIOCSER_TEMT;
796 }
797 
798 static unsigned int pl01x_get_mctrl(struct uart_port *port)
799 {
800 	struct uart_amba_port *uap = (struct uart_amba_port *)port;
801 	unsigned int result = 0;
802 	unsigned int status = readw(uap->port.membase + UART01x_FR);
803 
804 #define TIOCMBIT(uartbit, tiocmbit)	\
805 	if (status & uartbit)		\
806 		result |= tiocmbit
807 
808 	TIOCMBIT(UART01x_FR_DCD, TIOCM_CAR);
809 	TIOCMBIT(UART01x_FR_DSR, TIOCM_DSR);
810 	TIOCMBIT(UART01x_FR_CTS, TIOCM_CTS);
811 	TIOCMBIT(UART011_FR_RI, TIOCM_RNG);
812 #undef TIOCMBIT
813 	return result;
814 }
815 
816 static void pl011_set_mctrl(struct uart_port *port, unsigned int mctrl)
817 {
818 	struct uart_amba_port *uap = (struct uart_amba_port *)port;
819 	unsigned int cr;
820 
821 	cr = readw(uap->port.membase + UART011_CR);
822 
823 #define	TIOCMBIT(tiocmbit, uartbit)		\
824 	if (mctrl & tiocmbit)		\
825 		cr |= uartbit;		\
826 	else				\
827 		cr &= ~uartbit
828 
829 	TIOCMBIT(TIOCM_RTS, UART011_CR_RTS);
830 	TIOCMBIT(TIOCM_DTR, UART011_CR_DTR);
831 	TIOCMBIT(TIOCM_OUT1, UART011_CR_OUT1);
832 	TIOCMBIT(TIOCM_OUT2, UART011_CR_OUT2);
833 	TIOCMBIT(TIOCM_LOOP, UART011_CR_LBE);
834 
835 	if (uap->autorts) {
836 		/* We need to disable auto-RTS if we want to turn RTS off */
837 		TIOCMBIT(TIOCM_RTS, UART011_CR_RTSEN);
838 	}
839 #undef TIOCMBIT
840 
841 	writew(cr, uap->port.membase + UART011_CR);
842 }
843 
844 static void pl011_break_ctl(struct uart_port *port, int break_state)
845 {
846 	struct uart_amba_port *uap = (struct uart_amba_port *)port;
847 	unsigned long flags;
848 	unsigned int lcr_h;
849 
850 	spin_lock_irqsave(&uap->port.lock, flags);
851 	lcr_h = readw(uap->port.membase + uap->lcrh_tx);
852 	if (break_state == -1)
853 		lcr_h |= UART01x_LCRH_BRK;
854 	else
855 		lcr_h &= ~UART01x_LCRH_BRK;
856 	writew(lcr_h, uap->port.membase + uap->lcrh_tx);
857 	spin_unlock_irqrestore(&uap->port.lock, flags);
858 }
859 
860 #ifdef CONFIG_CONSOLE_POLL
861 static int pl010_get_poll_char(struct uart_port *port)
862 {
863 	struct uart_amba_port *uap = (struct uart_amba_port *)port;
864 	unsigned int status;
865 
866 	status = readw(uap->port.membase + UART01x_FR);
867 	if (status & UART01x_FR_RXFE)
868 		return NO_POLL_CHAR;
869 
870 	return readw(uap->port.membase + UART01x_DR);
871 }
872 
873 static void pl010_put_poll_char(struct uart_port *port,
874 			 unsigned char ch)
875 {
876 	struct uart_amba_port *uap = (struct uart_amba_port *)port;
877 
878 	while (readw(uap->port.membase + UART01x_FR) & UART01x_FR_TXFF)
879 		barrier();
880 
881 	writew(ch, uap->port.membase + UART01x_DR);
882 }
883 
884 #endif /* CONFIG_CONSOLE_POLL */
885 
886 static int pl011_startup(struct uart_port *port)
887 {
888 	struct uart_amba_port *uap = (struct uart_amba_port *)port;
889 	unsigned int cr;
890 	int retval;
891 
892 	/*
893 	 * Try to enable the clock producer.
894 	 */
895 	retval = clk_enable(uap->clk);
896 	if (retval)
897 		goto out;
898 
899 	uap->port.uartclk = clk_get_rate(uap->clk);
900 
901 	/*
902 	 * Allocate the IRQ
903 	 */
904 	retval = request_irq(uap->port.irq, pl011_int, 0, "uart-pl011", uap);
905 	if (retval)
906 		goto clk_dis;
907 
908 	writew(uap->vendor->ifls, uap->port.membase + UART011_IFLS);
909 
910 	/*
911 	 * Provoke TX FIFO interrupt into asserting.
912 	 */
913 	cr = UART01x_CR_UARTEN | UART011_CR_TXE | UART011_CR_LBE;
914 	writew(cr, uap->port.membase + UART011_CR);
915 	writew(0, uap->port.membase + UART011_FBRD);
916 	writew(1, uap->port.membase + UART011_IBRD);
917 	writew(0, uap->port.membase + uap->lcrh_rx);
918 	if (uap->lcrh_tx != uap->lcrh_rx) {
919 		int i;
920 		/*
921 		 * Wait 10 PCLKs before writing LCRH_TX register,
922 		 * to get this delay write read only register 10 times
923 		 */
924 		for (i = 0; i < 10; ++i)
925 			writew(0xff, uap->port.membase + UART011_MIS);
926 		writew(0, uap->port.membase + uap->lcrh_tx);
927 	}
928 	writew(0, uap->port.membase + UART01x_DR);
929 	while (readw(uap->port.membase + UART01x_FR) & UART01x_FR_BUSY)
930 		barrier();
931 
932 	cr = UART01x_CR_UARTEN | UART011_CR_RXE | UART011_CR_TXE;
933 	writew(cr, uap->port.membase + UART011_CR);
934 
935 	/* Clear pending error interrupts */
936 	writew(UART011_OEIS | UART011_BEIS | UART011_PEIS | UART011_FEIS,
937 	       uap->port.membase + UART011_ICR);
938 
939 	/*
940 	 * initialise the old status of the modem signals
941 	 */
942 	uap->old_status = readw(uap->port.membase + UART01x_FR) & UART01x_FR_MODEM_ANY;
943 
944 	/* Startup DMA */
945 	pl011_dma_startup(uap);
946 
947 	/*
948 	 * Finally, enable interrupts
949 	 */
950 	spin_lock_irq(&uap->port.lock);
951 	uap->im = UART011_RXIM | UART011_RTIM;
952 	writew(uap->im, uap->port.membase + UART011_IMSC);
953 	spin_unlock_irq(&uap->port.lock);
954 
955 	return 0;
956 
957  clk_dis:
958 	clk_disable(uap->clk);
959  out:
960 	return retval;
961 }
962 
963 static void pl011_shutdown_channel(struct uart_amba_port *uap,
964 					unsigned int lcrh)
965 {
966       unsigned long val;
967 
968       val = readw(uap->port.membase + lcrh);
969       val &= ~(UART01x_LCRH_BRK | UART01x_LCRH_FEN);
970       writew(val, uap->port.membase + lcrh);
971 }
972 
973 static void pl011_shutdown(struct uart_port *port)
974 {
975 	struct uart_amba_port *uap = (struct uart_amba_port *)port;
976 
977 	/*
978 	 * disable all interrupts
979 	 */
980 	spin_lock_irq(&uap->port.lock);
981 	uap->im = 0;
982 	writew(uap->im, uap->port.membase + UART011_IMSC);
983 	writew(0xffff, uap->port.membase + UART011_ICR);
984 	spin_unlock_irq(&uap->port.lock);
985 
986 	pl011_dma_shutdown(uap);
987 
988 	/*
989 	 * Free the interrupt
990 	 */
991 	free_irq(uap->port.irq, uap);
992 
993 	/*
994 	 * disable the port
995 	 */
996 	uap->autorts = false;
997 	writew(UART01x_CR_UARTEN | UART011_CR_TXE, uap->port.membase + UART011_CR);
998 
999 	/*
1000 	 * disable break condition and fifos
1001 	 */
1002 	pl011_shutdown_channel(uap, uap->lcrh_rx);
1003 	if (uap->lcrh_rx != uap->lcrh_tx)
1004 		pl011_shutdown_channel(uap, uap->lcrh_tx);
1005 
1006 	/*
1007 	 * Shut down the clock producer
1008 	 */
1009 	clk_disable(uap->clk);
1010 }
1011 
1012 static void
1013 pl011_set_termios(struct uart_port *port, struct ktermios *termios,
1014 		     struct ktermios *old)
1015 {
1016 	struct uart_amba_port *uap = (struct uart_amba_port *)port;
1017 	unsigned int lcr_h, old_cr;
1018 	unsigned long flags;
1019 	unsigned int baud, quot, clkdiv;
1020 
1021 	if (uap->vendor->oversampling)
1022 		clkdiv = 8;
1023 	else
1024 		clkdiv = 16;
1025 
1026 	/*
1027 	 * Ask the core to calculate the divisor for us.
1028 	 */
1029 	baud = uart_get_baud_rate(port, termios, old, 0,
1030 				  port->uartclk / clkdiv);
1031 
1032 	if (baud > port->uartclk/16)
1033 		quot = DIV_ROUND_CLOSEST(port->uartclk * 8, baud);
1034 	else
1035 		quot = DIV_ROUND_CLOSEST(port->uartclk * 4, baud);
1036 
1037 	switch (termios->c_cflag & CSIZE) {
1038 	case CS5:
1039 		lcr_h = UART01x_LCRH_WLEN_5;
1040 		break;
1041 	case CS6:
1042 		lcr_h = UART01x_LCRH_WLEN_6;
1043 		break;
1044 	case CS7:
1045 		lcr_h = UART01x_LCRH_WLEN_7;
1046 		break;
1047 	default: // CS8
1048 		lcr_h = UART01x_LCRH_WLEN_8;
1049 		break;
1050 	}
1051 	if (termios->c_cflag & CSTOPB)
1052 		lcr_h |= UART01x_LCRH_STP2;
1053 	if (termios->c_cflag & PARENB) {
1054 		lcr_h |= UART01x_LCRH_PEN;
1055 		if (!(termios->c_cflag & PARODD))
1056 			lcr_h |= UART01x_LCRH_EPS;
1057 	}
1058 	if (uap->fifosize > 1)
1059 		lcr_h |= UART01x_LCRH_FEN;
1060 
1061 	spin_lock_irqsave(&port->lock, flags);
1062 
1063 	/*
1064 	 * Update the per-port timeout.
1065 	 */
1066 	uart_update_timeout(port, termios->c_cflag, baud);
1067 
1068 	port->read_status_mask = UART011_DR_OE | 255;
1069 	if (termios->c_iflag & INPCK)
1070 		port->read_status_mask |= UART011_DR_FE | UART011_DR_PE;
1071 	if (termios->c_iflag & (BRKINT | PARMRK))
1072 		port->read_status_mask |= UART011_DR_BE;
1073 
1074 	/*
1075 	 * Characters to ignore
1076 	 */
1077 	port->ignore_status_mask = 0;
1078 	if (termios->c_iflag & IGNPAR)
1079 		port->ignore_status_mask |= UART011_DR_FE | UART011_DR_PE;
1080 	if (termios->c_iflag & IGNBRK) {
1081 		port->ignore_status_mask |= UART011_DR_BE;
1082 		/*
1083 		 * If we're ignoring parity and break indicators,
1084 		 * ignore overruns too (for real raw support).
1085 		 */
1086 		if (termios->c_iflag & IGNPAR)
1087 			port->ignore_status_mask |= UART011_DR_OE;
1088 	}
1089 
1090 	/*
1091 	 * Ignore all characters if CREAD is not set.
1092 	 */
1093 	if ((termios->c_cflag & CREAD) == 0)
1094 		port->ignore_status_mask |= UART_DUMMY_DR_RX;
1095 
1096 	if (UART_ENABLE_MS(port, termios->c_cflag))
1097 		pl011_enable_ms(port);
1098 
1099 	/* first, disable everything */
1100 	old_cr = readw(port->membase + UART011_CR);
1101 	writew(0, port->membase + UART011_CR);
1102 
1103 	if (termios->c_cflag & CRTSCTS) {
1104 		if (old_cr & UART011_CR_RTS)
1105 			old_cr |= UART011_CR_RTSEN;
1106 
1107 		old_cr |= UART011_CR_CTSEN;
1108 		uap->autorts = true;
1109 	} else {
1110 		old_cr &= ~(UART011_CR_CTSEN | UART011_CR_RTSEN);
1111 		uap->autorts = false;
1112 	}
1113 
1114 	if (uap->vendor->oversampling) {
1115 		if (baud > port->uartclk / 16)
1116 			old_cr |= ST_UART011_CR_OVSFACT;
1117 		else
1118 			old_cr &= ~ST_UART011_CR_OVSFACT;
1119 	}
1120 
1121 	/* Set baud rate */
1122 	writew(quot & 0x3f, port->membase + UART011_FBRD);
1123 	writew(quot >> 6, port->membase + UART011_IBRD);
1124 
1125 	/*
1126 	 * ----------v----------v----------v----------v-----
1127 	 * NOTE: MUST BE WRITTEN AFTER UARTLCR_M & UARTLCR_L
1128 	 * ----------^----------^----------^----------^-----
1129 	 */
1130 	writew(lcr_h, port->membase + uap->lcrh_rx);
1131 	if (uap->lcrh_rx != uap->lcrh_tx) {
1132 		int i;
1133 		/*
1134 		 * Wait 10 PCLKs before writing LCRH_TX register,
1135 		 * to get this delay write read only register 10 times
1136 		 */
1137 		for (i = 0; i < 10; ++i)
1138 			writew(0xff, uap->port.membase + UART011_MIS);
1139 		writew(lcr_h, port->membase + uap->lcrh_tx);
1140 	}
1141 	writew(old_cr, port->membase + UART011_CR);
1142 
1143 	spin_unlock_irqrestore(&port->lock, flags);
1144 }
1145 
1146 static const char *pl011_type(struct uart_port *port)
1147 {
1148 	struct uart_amba_port *uap = (struct uart_amba_port *)port;
1149 	return uap->port.type == PORT_AMBA ? uap->type : NULL;
1150 }
1151 
1152 /*
1153  * Release the memory region(s) being used by 'port'
1154  */
1155 static void pl010_release_port(struct uart_port *port)
1156 {
1157 	release_mem_region(port->mapbase, SZ_4K);
1158 }
1159 
1160 /*
1161  * Request the memory region(s) being used by 'port'
1162  */
1163 static int pl010_request_port(struct uart_port *port)
1164 {
1165 	return request_mem_region(port->mapbase, SZ_4K, "uart-pl011")
1166 			!= NULL ? 0 : -EBUSY;
1167 }
1168 
1169 /*
1170  * Configure/autoconfigure the port.
1171  */
1172 static void pl010_config_port(struct uart_port *port, int flags)
1173 {
1174 	if (flags & UART_CONFIG_TYPE) {
1175 		port->type = PORT_AMBA;
1176 		pl010_request_port(port);
1177 	}
1178 }
1179 
1180 /*
1181  * verify the new serial_struct (for TIOCSSERIAL).
1182  */
1183 static int pl010_verify_port(struct uart_port *port, struct serial_struct *ser)
1184 {
1185 	int ret = 0;
1186 	if (ser->type != PORT_UNKNOWN && ser->type != PORT_AMBA)
1187 		ret = -EINVAL;
1188 	if (ser->irq < 0 || ser->irq >= nr_irqs)
1189 		ret = -EINVAL;
1190 	if (ser->baud_base < 9600)
1191 		ret = -EINVAL;
1192 	return ret;
1193 }
1194 
1195 static struct uart_ops amba_pl011_pops = {
1196 	.tx_empty	= pl01x_tx_empty,
1197 	.set_mctrl	= pl011_set_mctrl,
1198 	.get_mctrl	= pl01x_get_mctrl,
1199 	.stop_tx	= pl011_stop_tx,
1200 	.start_tx	= pl011_start_tx,
1201 	.stop_rx	= pl011_stop_rx,
1202 	.enable_ms	= pl011_enable_ms,
1203 	.break_ctl	= pl011_break_ctl,
1204 	.startup	= pl011_startup,
1205 	.shutdown	= pl011_shutdown,
1206 	.flush_buffer	= pl011_dma_flush_buffer,
1207 	.set_termios	= pl011_set_termios,
1208 	.type		= pl011_type,
1209 	.release_port	= pl010_release_port,
1210 	.request_port	= pl010_request_port,
1211 	.config_port	= pl010_config_port,
1212 	.verify_port	= pl010_verify_port,
1213 #ifdef CONFIG_CONSOLE_POLL
1214 	.poll_get_char = pl010_get_poll_char,
1215 	.poll_put_char = pl010_put_poll_char,
1216 #endif
1217 };
1218 
1219 static struct uart_amba_port *amba_ports[UART_NR];
1220 
1221 #ifdef CONFIG_SERIAL_AMBA_PL011_CONSOLE
1222 
1223 static void pl011_console_putchar(struct uart_port *port, int ch)
1224 {
1225 	struct uart_amba_port *uap = (struct uart_amba_port *)port;
1226 
1227 	while (readw(uap->port.membase + UART01x_FR) & UART01x_FR_TXFF)
1228 		barrier();
1229 	writew(ch, uap->port.membase + UART01x_DR);
1230 }
1231 
1232 static void
1233 pl011_console_write(struct console *co, const char *s, unsigned int count)
1234 {
1235 	struct uart_amba_port *uap = amba_ports[co->index];
1236 	unsigned int status, old_cr, new_cr;
1237 
1238 	clk_enable(uap->clk);
1239 
1240 	/*
1241 	 *	First save the CR then disable the interrupts
1242 	 */
1243 	old_cr = readw(uap->port.membase + UART011_CR);
1244 	new_cr = old_cr & ~UART011_CR_CTSEN;
1245 	new_cr |= UART01x_CR_UARTEN | UART011_CR_TXE;
1246 	writew(new_cr, uap->port.membase + UART011_CR);
1247 
1248 	uart_console_write(&uap->port, s, count, pl011_console_putchar);
1249 
1250 	/*
1251 	 *	Finally, wait for transmitter to become empty
1252 	 *	and restore the TCR
1253 	 */
1254 	do {
1255 		status = readw(uap->port.membase + UART01x_FR);
1256 	} while (status & UART01x_FR_BUSY);
1257 	writew(old_cr, uap->port.membase + UART011_CR);
1258 
1259 	clk_disable(uap->clk);
1260 }
1261 
1262 static void __init
1263 pl011_console_get_options(struct uart_amba_port *uap, int *baud,
1264 			     int *parity, int *bits)
1265 {
1266 	if (readw(uap->port.membase + UART011_CR) & UART01x_CR_UARTEN) {
1267 		unsigned int lcr_h, ibrd, fbrd;
1268 
1269 		lcr_h = readw(uap->port.membase + uap->lcrh_tx);
1270 
1271 		*parity = 'n';
1272 		if (lcr_h & UART01x_LCRH_PEN) {
1273 			if (lcr_h & UART01x_LCRH_EPS)
1274 				*parity = 'e';
1275 			else
1276 				*parity = 'o';
1277 		}
1278 
1279 		if ((lcr_h & 0x60) == UART01x_LCRH_WLEN_7)
1280 			*bits = 7;
1281 		else
1282 			*bits = 8;
1283 
1284 		ibrd = readw(uap->port.membase + UART011_IBRD);
1285 		fbrd = readw(uap->port.membase + UART011_FBRD);
1286 
1287 		*baud = uap->port.uartclk * 4 / (64 * ibrd + fbrd);
1288 
1289 		if (uap->vendor->oversampling) {
1290 			if (readw(uap->port.membase + UART011_CR)
1291 				  & ST_UART011_CR_OVSFACT)
1292 				*baud *= 2;
1293 		}
1294 	}
1295 }
1296 
1297 static int __init pl011_console_setup(struct console *co, char *options)
1298 {
1299 	struct uart_amba_port *uap;
1300 	int baud = 38400;
1301 	int bits = 8;
1302 	int parity = 'n';
1303 	int flow = 'n';
1304 
1305 	/*
1306 	 * Check whether an invalid uart number has been specified, and
1307 	 * if so, search for the first available port that does have
1308 	 * console support.
1309 	 */
1310 	if (co->index >= UART_NR)
1311 		co->index = 0;
1312 	uap = amba_ports[co->index];
1313 	if (!uap)
1314 		return -ENODEV;
1315 
1316 	uap->port.uartclk = clk_get_rate(uap->clk);
1317 
1318 	if (options)
1319 		uart_parse_options(options, &baud, &parity, &bits, &flow);
1320 	else
1321 		pl011_console_get_options(uap, &baud, &parity, &bits);
1322 
1323 	return uart_set_options(&uap->port, co, baud, parity, bits, flow);
1324 }
1325 
1326 static struct uart_driver amba_reg;
1327 static struct console amba_console = {
1328 	.name		= "ttyAMA",
1329 	.write		= pl011_console_write,
1330 	.device		= uart_console_device,
1331 	.setup		= pl011_console_setup,
1332 	.flags		= CON_PRINTBUFFER,
1333 	.index		= -1,
1334 	.data		= &amba_reg,
1335 };
1336 
1337 #define AMBA_CONSOLE	(&amba_console)
1338 #else
1339 #define AMBA_CONSOLE	NULL
1340 #endif
1341 
1342 static struct uart_driver amba_reg = {
1343 	.owner			= THIS_MODULE,
1344 	.driver_name		= "ttyAMA",
1345 	.dev_name		= "ttyAMA",
1346 	.major			= SERIAL_AMBA_MAJOR,
1347 	.minor			= SERIAL_AMBA_MINOR,
1348 	.nr			= UART_NR,
1349 	.cons			= AMBA_CONSOLE,
1350 };
1351 
1352 static int pl011_probe(struct amba_device *dev, struct amba_id *id)
1353 {
1354 	struct uart_amba_port *uap;
1355 	struct vendor_data *vendor = id->data;
1356 	void __iomem *base;
1357 	int i, ret;
1358 
1359 	for (i = 0; i < ARRAY_SIZE(amba_ports); i++)
1360 		if (amba_ports[i] == NULL)
1361 			break;
1362 
1363 	if (i == ARRAY_SIZE(amba_ports)) {
1364 		ret = -EBUSY;
1365 		goto out;
1366 	}
1367 
1368 	uap = kzalloc(sizeof(struct uart_amba_port), GFP_KERNEL);
1369 	if (uap == NULL) {
1370 		ret = -ENOMEM;
1371 		goto out;
1372 	}
1373 
1374 	base = ioremap(dev->res.start, resource_size(&dev->res));
1375 	if (!base) {
1376 		ret = -ENOMEM;
1377 		goto free;
1378 	}
1379 
1380 	uap->clk = clk_get(&dev->dev, NULL);
1381 	if (IS_ERR(uap->clk)) {
1382 		ret = PTR_ERR(uap->clk);
1383 		goto unmap;
1384 	}
1385 
1386 	uap->vendor = vendor;
1387 	uap->lcrh_rx = vendor->lcrh_rx;
1388 	uap->lcrh_tx = vendor->lcrh_tx;
1389 	uap->fifosize = vendor->fifosize;
1390 	uap->port.dev = &dev->dev;
1391 	uap->port.mapbase = dev->res.start;
1392 	uap->port.membase = base;
1393 	uap->port.iotype = UPIO_MEM;
1394 	uap->port.irq = dev->irq[0];
1395 	uap->port.fifosize = uap->fifosize;
1396 	uap->port.ops = &amba_pl011_pops;
1397 	uap->port.flags = UPF_BOOT_AUTOCONF;
1398 	uap->port.line = i;
1399 	pl011_dma_probe(uap);
1400 
1401 	snprintf(uap->type, sizeof(uap->type), "PL011 rev%u", amba_rev(dev));
1402 
1403 	amba_ports[i] = uap;
1404 
1405 	amba_set_drvdata(dev, uap);
1406 	ret = uart_add_one_port(&amba_reg, &uap->port);
1407 	if (ret) {
1408 		amba_set_drvdata(dev, NULL);
1409 		amba_ports[i] = NULL;
1410 		pl011_dma_remove(uap);
1411 		clk_put(uap->clk);
1412  unmap:
1413 		iounmap(base);
1414  free:
1415 		kfree(uap);
1416 	}
1417  out:
1418 	return ret;
1419 }
1420 
1421 static int pl011_remove(struct amba_device *dev)
1422 {
1423 	struct uart_amba_port *uap = amba_get_drvdata(dev);
1424 	int i;
1425 
1426 	amba_set_drvdata(dev, NULL);
1427 
1428 	uart_remove_one_port(&amba_reg, &uap->port);
1429 
1430 	for (i = 0; i < ARRAY_SIZE(amba_ports); i++)
1431 		if (amba_ports[i] == uap)
1432 			amba_ports[i] = NULL;
1433 
1434 	pl011_dma_remove(uap);
1435 	iounmap(uap->port.membase);
1436 	clk_put(uap->clk);
1437 	kfree(uap);
1438 	return 0;
1439 }
1440 
1441 #ifdef CONFIG_PM
1442 static int pl011_suspend(struct amba_device *dev, pm_message_t state)
1443 {
1444 	struct uart_amba_port *uap = amba_get_drvdata(dev);
1445 
1446 	if (!uap)
1447 		return -EINVAL;
1448 
1449 	return uart_suspend_port(&amba_reg, &uap->port);
1450 }
1451 
1452 static int pl011_resume(struct amba_device *dev)
1453 {
1454 	struct uart_amba_port *uap = amba_get_drvdata(dev);
1455 
1456 	if (!uap)
1457 		return -EINVAL;
1458 
1459 	return uart_resume_port(&amba_reg, &uap->port);
1460 }
1461 #endif
1462 
1463 static struct amba_id pl011_ids[] = {
1464 	{
1465 		.id	= 0x00041011,
1466 		.mask	= 0x000fffff,
1467 		.data	= &vendor_arm,
1468 	},
1469 	{
1470 		.id	= 0x00380802,
1471 		.mask	= 0x00ffffff,
1472 		.data	= &vendor_st,
1473 	},
1474 	{ 0, 0 },
1475 };
1476 
1477 static struct amba_driver pl011_driver = {
1478 	.drv = {
1479 		.name	= "uart-pl011",
1480 	},
1481 	.id_table	= pl011_ids,
1482 	.probe		= pl011_probe,
1483 	.remove		= pl011_remove,
1484 #ifdef CONFIG_PM
1485 	.suspend	= pl011_suspend,
1486 	.resume		= pl011_resume,
1487 #endif
1488 };
1489 
1490 static int __init pl011_init(void)
1491 {
1492 	int ret;
1493 	printk(KERN_INFO "Serial: AMBA PL011 UART driver\n");
1494 
1495 	ret = uart_register_driver(&amba_reg);
1496 	if (ret == 0) {
1497 		ret = amba_driver_register(&pl011_driver);
1498 		if (ret)
1499 			uart_unregister_driver(&amba_reg);
1500 	}
1501 	return ret;
1502 }
1503 
1504 static void __exit pl011_exit(void)
1505 {
1506 	amba_driver_unregister(&pl011_driver);
1507 	uart_unregister_driver(&amba_reg);
1508 }
1509 
1510 /*
1511  * While this can be a module, if builtin it's most likely the console
1512  * So let's leave module_exit but move module_init to an earlier place
1513  */
1514 arch_initcall(pl011_init);
1515 module_exit(pl011_exit);
1516 
1517 MODULE_AUTHOR("ARM Ltd/Deep Blue Solutions Ltd");
1518 MODULE_DESCRIPTION("ARM AMBA serial port driver");
1519 MODULE_LICENSE("GPL");
1520