1 /* 2 * Driver for AMBA serial ports 3 * 4 * Based on drivers/char/serial.c, by Linus Torvalds, Theodore Ts'o. 5 * 6 * Copyright 1999 ARM Limited 7 * Copyright (C) 2000 Deep Blue Solutions Ltd. 8 * Copyright (C) 2010 ST-Ericsson SA 9 * 10 * This program is free software; you can redistribute it and/or modify 11 * it under the terms of the GNU General Public License as published by 12 * the Free Software Foundation; either version 2 of the License, or 13 * (at your option) any later version. 14 * 15 * This program is distributed in the hope that it will be useful, 16 * but WITHOUT ANY WARRANTY; without even the implied warranty of 17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 18 * GNU General Public License for more details. 19 * 20 * You should have received a copy of the GNU General Public License 21 * along with this program; if not, write to the Free Software 22 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 23 * 24 * This is a generic driver for ARM AMBA-type serial ports. They 25 * have a lot of 16550-like features, but are not register compatible. 26 * Note that although they do have CTS, DCD and DSR inputs, they do 27 * not have an RI input, nor do they have DTR or RTS outputs. If 28 * required, these have to be supplied via some other means (eg, GPIO) 29 * and hooked into this driver. 30 */ 31 32 33 #if defined(CONFIG_SERIAL_AMBA_PL011_CONSOLE) && defined(CONFIG_MAGIC_SYSRQ) 34 #define SUPPORT_SYSRQ 35 #endif 36 37 #include <linux/module.h> 38 #include <linux/ioport.h> 39 #include <linux/init.h> 40 #include <linux/console.h> 41 #include <linux/sysrq.h> 42 #include <linux/device.h> 43 #include <linux/tty.h> 44 #include <linux/tty_flip.h> 45 #include <linux/serial_core.h> 46 #include <linux/serial.h> 47 #include <linux/amba/bus.h> 48 #include <linux/amba/serial.h> 49 #include <linux/clk.h> 50 #include <linux/slab.h> 51 #include <linux/dmaengine.h> 52 #include <linux/dma-mapping.h> 53 #include <linux/scatterlist.h> 54 #include <linux/delay.h> 55 #include <linux/types.h> 56 #include <linux/of.h> 57 #include <linux/of_device.h> 58 #include <linux/pinctrl/consumer.h> 59 #include <linux/sizes.h> 60 #include <linux/io.h> 61 62 #define UART_NR 14 63 64 #define SERIAL_AMBA_MAJOR 204 65 #define SERIAL_AMBA_MINOR 64 66 #define SERIAL_AMBA_NR UART_NR 67 68 #define AMBA_ISR_PASS_LIMIT 256 69 70 #define UART_DR_ERROR (UART011_DR_OE|UART011_DR_BE|UART011_DR_PE|UART011_DR_FE) 71 #define UART_DUMMY_DR_RX (1 << 16) 72 73 /* There is by now at least one vendor with differing details, so handle it */ 74 struct vendor_data { 75 unsigned int ifls; 76 unsigned int lcrh_tx; 77 unsigned int lcrh_rx; 78 bool oversampling; 79 bool dma_threshold; 80 bool cts_event_workaround; 81 82 unsigned int (*get_fifosize)(struct amba_device *dev); 83 }; 84 85 static unsigned int get_fifosize_arm(struct amba_device *dev) 86 { 87 return amba_rev(dev) < 3 ? 16 : 32; 88 } 89 90 static struct vendor_data vendor_arm = { 91 .ifls = UART011_IFLS_RX4_8|UART011_IFLS_TX4_8, 92 .lcrh_tx = UART011_LCRH, 93 .lcrh_rx = UART011_LCRH, 94 .oversampling = false, 95 .dma_threshold = false, 96 .cts_event_workaround = false, 97 .get_fifosize = get_fifosize_arm, 98 }; 99 100 static unsigned int get_fifosize_st(struct amba_device *dev) 101 { 102 return 64; 103 } 104 105 static struct vendor_data vendor_st = { 106 .ifls = UART011_IFLS_RX_HALF|UART011_IFLS_TX_HALF, 107 .lcrh_tx = ST_UART011_LCRH_TX, 108 .lcrh_rx = ST_UART011_LCRH_RX, 109 .oversampling = true, 110 .dma_threshold = true, 111 .cts_event_workaround = true, 112 .get_fifosize = get_fifosize_st, 113 }; 114 115 /* Deals with DMA transactions */ 116 117 struct pl011_sgbuf { 118 struct scatterlist sg; 119 char *buf; 120 }; 121 122 struct pl011_dmarx_data { 123 struct dma_chan *chan; 124 struct completion complete; 125 bool use_buf_b; 126 struct pl011_sgbuf sgbuf_a; 127 struct pl011_sgbuf sgbuf_b; 128 dma_cookie_t cookie; 129 bool running; 130 struct timer_list timer; 131 unsigned int last_residue; 132 unsigned long last_jiffies; 133 bool auto_poll_rate; 134 unsigned int poll_rate; 135 unsigned int poll_timeout; 136 }; 137 138 struct pl011_dmatx_data { 139 struct dma_chan *chan; 140 struct scatterlist sg; 141 char *buf; 142 bool queued; 143 }; 144 145 /* 146 * We wrap our port structure around the generic uart_port. 147 */ 148 struct uart_amba_port { 149 struct uart_port port; 150 struct clk *clk; 151 const struct vendor_data *vendor; 152 unsigned int dmacr; /* dma control reg */ 153 unsigned int im; /* interrupt mask */ 154 unsigned int old_status; 155 unsigned int fifosize; /* vendor-specific */ 156 unsigned int lcrh_tx; /* vendor-specific */ 157 unsigned int lcrh_rx; /* vendor-specific */ 158 unsigned int old_cr; /* state during shutdown */ 159 bool autorts; 160 char type[12]; 161 #ifdef CONFIG_DMA_ENGINE 162 /* DMA stuff */ 163 bool using_tx_dma; 164 bool using_rx_dma; 165 struct pl011_dmarx_data dmarx; 166 struct pl011_dmatx_data dmatx; 167 #endif 168 }; 169 170 /* 171 * Reads up to 256 characters from the FIFO or until it's empty and 172 * inserts them into the TTY layer. Returns the number of characters 173 * read from the FIFO. 174 */ 175 static int pl011_fifo_to_tty(struct uart_amba_port *uap) 176 { 177 u16 status, ch; 178 unsigned int flag, max_count = 256; 179 int fifotaken = 0; 180 181 while (max_count--) { 182 status = readw(uap->port.membase + UART01x_FR); 183 if (status & UART01x_FR_RXFE) 184 break; 185 186 /* Take chars from the FIFO and update status */ 187 ch = readw(uap->port.membase + UART01x_DR) | 188 UART_DUMMY_DR_RX; 189 flag = TTY_NORMAL; 190 uap->port.icount.rx++; 191 fifotaken++; 192 193 if (unlikely(ch & UART_DR_ERROR)) { 194 if (ch & UART011_DR_BE) { 195 ch &= ~(UART011_DR_FE | UART011_DR_PE); 196 uap->port.icount.brk++; 197 if (uart_handle_break(&uap->port)) 198 continue; 199 } else if (ch & UART011_DR_PE) 200 uap->port.icount.parity++; 201 else if (ch & UART011_DR_FE) 202 uap->port.icount.frame++; 203 if (ch & UART011_DR_OE) 204 uap->port.icount.overrun++; 205 206 ch &= uap->port.read_status_mask; 207 208 if (ch & UART011_DR_BE) 209 flag = TTY_BREAK; 210 else if (ch & UART011_DR_PE) 211 flag = TTY_PARITY; 212 else if (ch & UART011_DR_FE) 213 flag = TTY_FRAME; 214 } 215 216 if (uart_handle_sysrq_char(&uap->port, ch & 255)) 217 continue; 218 219 uart_insert_char(&uap->port, ch, UART011_DR_OE, ch, flag); 220 } 221 222 return fifotaken; 223 } 224 225 226 /* 227 * All the DMA operation mode stuff goes inside this ifdef. 228 * This assumes that you have a generic DMA device interface, 229 * no custom DMA interfaces are supported. 230 */ 231 #ifdef CONFIG_DMA_ENGINE 232 233 #define PL011_DMA_BUFFER_SIZE PAGE_SIZE 234 235 static int pl011_sgbuf_init(struct dma_chan *chan, struct pl011_sgbuf *sg, 236 enum dma_data_direction dir) 237 { 238 dma_addr_t dma_addr; 239 240 sg->buf = dma_alloc_coherent(chan->device->dev, 241 PL011_DMA_BUFFER_SIZE, &dma_addr, GFP_KERNEL); 242 if (!sg->buf) 243 return -ENOMEM; 244 245 sg_init_table(&sg->sg, 1); 246 sg_set_page(&sg->sg, phys_to_page(dma_addr), 247 PL011_DMA_BUFFER_SIZE, offset_in_page(dma_addr)); 248 sg_dma_address(&sg->sg) = dma_addr; 249 250 return 0; 251 } 252 253 static void pl011_sgbuf_free(struct dma_chan *chan, struct pl011_sgbuf *sg, 254 enum dma_data_direction dir) 255 { 256 if (sg->buf) { 257 dma_free_coherent(chan->device->dev, 258 PL011_DMA_BUFFER_SIZE, sg->buf, 259 sg_dma_address(&sg->sg)); 260 } 261 } 262 263 static void pl011_dma_probe_initcall(struct device *dev, struct uart_amba_port *uap) 264 { 265 /* DMA is the sole user of the platform data right now */ 266 struct amba_pl011_data *plat = dev_get_platdata(uap->port.dev); 267 struct dma_slave_config tx_conf = { 268 .dst_addr = uap->port.mapbase + UART01x_DR, 269 .dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE, 270 .direction = DMA_MEM_TO_DEV, 271 .dst_maxburst = uap->fifosize >> 1, 272 .device_fc = false, 273 }; 274 struct dma_chan *chan; 275 dma_cap_mask_t mask; 276 277 chan = dma_request_slave_channel(dev, "tx"); 278 279 if (!chan) { 280 /* We need platform data */ 281 if (!plat || !plat->dma_filter) { 282 dev_info(uap->port.dev, "no DMA platform data\n"); 283 return; 284 } 285 286 /* Try to acquire a generic DMA engine slave TX channel */ 287 dma_cap_zero(mask); 288 dma_cap_set(DMA_SLAVE, mask); 289 290 chan = dma_request_channel(mask, plat->dma_filter, 291 plat->dma_tx_param); 292 if (!chan) { 293 dev_err(uap->port.dev, "no TX DMA channel!\n"); 294 return; 295 } 296 } 297 298 dmaengine_slave_config(chan, &tx_conf); 299 uap->dmatx.chan = chan; 300 301 dev_info(uap->port.dev, "DMA channel TX %s\n", 302 dma_chan_name(uap->dmatx.chan)); 303 304 /* Optionally make use of an RX channel as well */ 305 chan = dma_request_slave_channel(dev, "rx"); 306 307 if (!chan && plat->dma_rx_param) { 308 chan = dma_request_channel(mask, plat->dma_filter, plat->dma_rx_param); 309 310 if (!chan) { 311 dev_err(uap->port.dev, "no RX DMA channel!\n"); 312 return; 313 } 314 } 315 316 if (chan) { 317 struct dma_slave_config rx_conf = { 318 .src_addr = uap->port.mapbase + UART01x_DR, 319 .src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE, 320 .direction = DMA_DEV_TO_MEM, 321 .src_maxburst = uap->fifosize >> 2, 322 .device_fc = false, 323 }; 324 325 dmaengine_slave_config(chan, &rx_conf); 326 uap->dmarx.chan = chan; 327 328 if (plat && plat->dma_rx_poll_enable) { 329 /* Set poll rate if specified. */ 330 if (plat->dma_rx_poll_rate) { 331 uap->dmarx.auto_poll_rate = false; 332 uap->dmarx.poll_rate = plat->dma_rx_poll_rate; 333 } else { 334 /* 335 * 100 ms defaults to poll rate if not 336 * specified. This will be adjusted with 337 * the baud rate at set_termios. 338 */ 339 uap->dmarx.auto_poll_rate = true; 340 uap->dmarx.poll_rate = 100; 341 } 342 /* 3 secs defaults poll_timeout if not specified. */ 343 if (plat->dma_rx_poll_timeout) 344 uap->dmarx.poll_timeout = 345 plat->dma_rx_poll_timeout; 346 else 347 uap->dmarx.poll_timeout = 3000; 348 } else 349 uap->dmarx.auto_poll_rate = false; 350 351 dev_info(uap->port.dev, "DMA channel RX %s\n", 352 dma_chan_name(uap->dmarx.chan)); 353 } 354 } 355 356 #ifndef MODULE 357 /* 358 * Stack up the UARTs and let the above initcall be done at device 359 * initcall time, because the serial driver is called as an arch 360 * initcall, and at this time the DMA subsystem is not yet registered. 361 * At this point the driver will switch over to using DMA where desired. 362 */ 363 struct dma_uap { 364 struct list_head node; 365 struct uart_amba_port *uap; 366 struct device *dev; 367 }; 368 369 static LIST_HEAD(pl011_dma_uarts); 370 371 static int __init pl011_dma_initcall(void) 372 { 373 struct list_head *node, *tmp; 374 375 list_for_each_safe(node, tmp, &pl011_dma_uarts) { 376 struct dma_uap *dmau = list_entry(node, struct dma_uap, node); 377 pl011_dma_probe_initcall(dmau->dev, dmau->uap); 378 list_del(node); 379 kfree(dmau); 380 } 381 return 0; 382 } 383 384 device_initcall(pl011_dma_initcall); 385 386 static void pl011_dma_probe(struct device *dev, struct uart_amba_port *uap) 387 { 388 struct dma_uap *dmau = kzalloc(sizeof(struct dma_uap), GFP_KERNEL); 389 if (dmau) { 390 dmau->uap = uap; 391 dmau->dev = dev; 392 list_add_tail(&dmau->node, &pl011_dma_uarts); 393 } 394 } 395 #else 396 static void pl011_dma_probe(struct device *dev, struct uart_amba_port *uap) 397 { 398 pl011_dma_probe_initcall(dev, uap); 399 } 400 #endif 401 402 static void pl011_dma_remove(struct uart_amba_port *uap) 403 { 404 /* TODO: remove the initcall if it has not yet executed */ 405 if (uap->dmatx.chan) 406 dma_release_channel(uap->dmatx.chan); 407 if (uap->dmarx.chan) 408 dma_release_channel(uap->dmarx.chan); 409 } 410 411 /* Forward declare this for the refill routine */ 412 static int pl011_dma_tx_refill(struct uart_amba_port *uap); 413 414 /* 415 * The current DMA TX buffer has been sent. 416 * Try to queue up another DMA buffer. 417 */ 418 static void pl011_dma_tx_callback(void *data) 419 { 420 struct uart_amba_port *uap = data; 421 struct pl011_dmatx_data *dmatx = &uap->dmatx; 422 unsigned long flags; 423 u16 dmacr; 424 425 spin_lock_irqsave(&uap->port.lock, flags); 426 if (uap->dmatx.queued) 427 dma_unmap_sg(dmatx->chan->device->dev, &dmatx->sg, 1, 428 DMA_TO_DEVICE); 429 430 dmacr = uap->dmacr; 431 uap->dmacr = dmacr & ~UART011_TXDMAE; 432 writew(uap->dmacr, uap->port.membase + UART011_DMACR); 433 434 /* 435 * If TX DMA was disabled, it means that we've stopped the DMA for 436 * some reason (eg, XOFF received, or we want to send an X-char.) 437 * 438 * Note: we need to be careful here of a potential race between DMA 439 * and the rest of the driver - if the driver disables TX DMA while 440 * a TX buffer completing, we must update the tx queued status to 441 * get further refills (hence we check dmacr). 442 */ 443 if (!(dmacr & UART011_TXDMAE) || uart_tx_stopped(&uap->port) || 444 uart_circ_empty(&uap->port.state->xmit)) { 445 uap->dmatx.queued = false; 446 spin_unlock_irqrestore(&uap->port.lock, flags); 447 return; 448 } 449 450 if (pl011_dma_tx_refill(uap) <= 0) { 451 /* 452 * We didn't queue a DMA buffer for some reason, but we 453 * have data pending to be sent. Re-enable the TX IRQ. 454 */ 455 uap->im |= UART011_TXIM; 456 writew(uap->im, uap->port.membase + UART011_IMSC); 457 } 458 spin_unlock_irqrestore(&uap->port.lock, flags); 459 } 460 461 /* 462 * Try to refill the TX DMA buffer. 463 * Locking: called with port lock held and IRQs disabled. 464 * Returns: 465 * 1 if we queued up a TX DMA buffer. 466 * 0 if we didn't want to handle this by DMA 467 * <0 on error 468 */ 469 static int pl011_dma_tx_refill(struct uart_amba_port *uap) 470 { 471 struct pl011_dmatx_data *dmatx = &uap->dmatx; 472 struct dma_chan *chan = dmatx->chan; 473 struct dma_device *dma_dev = chan->device; 474 struct dma_async_tx_descriptor *desc; 475 struct circ_buf *xmit = &uap->port.state->xmit; 476 unsigned int count; 477 478 /* 479 * Try to avoid the overhead involved in using DMA if the 480 * transaction fits in the first half of the FIFO, by using 481 * the standard interrupt handling. This ensures that we 482 * issue a uart_write_wakeup() at the appropriate time. 483 */ 484 count = uart_circ_chars_pending(xmit); 485 if (count < (uap->fifosize >> 1)) { 486 uap->dmatx.queued = false; 487 return 0; 488 } 489 490 /* 491 * Bodge: don't send the last character by DMA, as this 492 * will prevent XON from notifying us to restart DMA. 493 */ 494 count -= 1; 495 496 /* Else proceed to copy the TX chars to the DMA buffer and fire DMA */ 497 if (count > PL011_DMA_BUFFER_SIZE) 498 count = PL011_DMA_BUFFER_SIZE; 499 500 if (xmit->tail < xmit->head) 501 memcpy(&dmatx->buf[0], &xmit->buf[xmit->tail], count); 502 else { 503 size_t first = UART_XMIT_SIZE - xmit->tail; 504 size_t second = xmit->head; 505 506 memcpy(&dmatx->buf[0], &xmit->buf[xmit->tail], first); 507 if (second) 508 memcpy(&dmatx->buf[first], &xmit->buf[0], second); 509 } 510 511 dmatx->sg.length = count; 512 513 if (dma_map_sg(dma_dev->dev, &dmatx->sg, 1, DMA_TO_DEVICE) != 1) { 514 uap->dmatx.queued = false; 515 dev_dbg(uap->port.dev, "unable to map TX DMA\n"); 516 return -EBUSY; 517 } 518 519 desc = dmaengine_prep_slave_sg(chan, &dmatx->sg, 1, DMA_MEM_TO_DEV, 520 DMA_PREP_INTERRUPT | DMA_CTRL_ACK); 521 if (!desc) { 522 dma_unmap_sg(dma_dev->dev, &dmatx->sg, 1, DMA_TO_DEVICE); 523 uap->dmatx.queued = false; 524 /* 525 * If DMA cannot be used right now, we complete this 526 * transaction via IRQ and let the TTY layer retry. 527 */ 528 dev_dbg(uap->port.dev, "TX DMA busy\n"); 529 return -EBUSY; 530 } 531 532 /* Some data to go along to the callback */ 533 desc->callback = pl011_dma_tx_callback; 534 desc->callback_param = uap; 535 536 /* All errors should happen at prepare time */ 537 dmaengine_submit(desc); 538 539 /* Fire the DMA transaction */ 540 dma_dev->device_issue_pending(chan); 541 542 uap->dmacr |= UART011_TXDMAE; 543 writew(uap->dmacr, uap->port.membase + UART011_DMACR); 544 uap->dmatx.queued = true; 545 546 /* 547 * Now we know that DMA will fire, so advance the ring buffer 548 * with the stuff we just dispatched. 549 */ 550 xmit->tail = (xmit->tail + count) & (UART_XMIT_SIZE - 1); 551 uap->port.icount.tx += count; 552 553 if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS) 554 uart_write_wakeup(&uap->port); 555 556 return 1; 557 } 558 559 /* 560 * We received a transmit interrupt without a pending X-char but with 561 * pending characters. 562 * Locking: called with port lock held and IRQs disabled. 563 * Returns: 564 * false if we want to use PIO to transmit 565 * true if we queued a DMA buffer 566 */ 567 static bool pl011_dma_tx_irq(struct uart_amba_port *uap) 568 { 569 if (!uap->using_tx_dma) 570 return false; 571 572 /* 573 * If we already have a TX buffer queued, but received a 574 * TX interrupt, it will be because we've just sent an X-char. 575 * Ensure the TX DMA is enabled and the TX IRQ is disabled. 576 */ 577 if (uap->dmatx.queued) { 578 uap->dmacr |= UART011_TXDMAE; 579 writew(uap->dmacr, uap->port.membase + UART011_DMACR); 580 uap->im &= ~UART011_TXIM; 581 writew(uap->im, uap->port.membase + UART011_IMSC); 582 return true; 583 } 584 585 /* 586 * We don't have a TX buffer queued, so try to queue one. 587 * If we successfully queued a buffer, mask the TX IRQ. 588 */ 589 if (pl011_dma_tx_refill(uap) > 0) { 590 uap->im &= ~UART011_TXIM; 591 writew(uap->im, uap->port.membase + UART011_IMSC); 592 return true; 593 } 594 return false; 595 } 596 597 /* 598 * Stop the DMA transmit (eg, due to received XOFF). 599 * Locking: called with port lock held and IRQs disabled. 600 */ 601 static inline void pl011_dma_tx_stop(struct uart_amba_port *uap) 602 { 603 if (uap->dmatx.queued) { 604 uap->dmacr &= ~UART011_TXDMAE; 605 writew(uap->dmacr, uap->port.membase + UART011_DMACR); 606 } 607 } 608 609 /* 610 * Try to start a DMA transmit, or in the case of an XON/OFF 611 * character queued for send, try to get that character out ASAP. 612 * Locking: called with port lock held and IRQs disabled. 613 * Returns: 614 * false if we want the TX IRQ to be enabled 615 * true if we have a buffer queued 616 */ 617 static inline bool pl011_dma_tx_start(struct uart_amba_port *uap) 618 { 619 u16 dmacr; 620 621 if (!uap->using_tx_dma) 622 return false; 623 624 if (!uap->port.x_char) { 625 /* no X-char, try to push chars out in DMA mode */ 626 bool ret = true; 627 628 if (!uap->dmatx.queued) { 629 if (pl011_dma_tx_refill(uap) > 0) { 630 uap->im &= ~UART011_TXIM; 631 ret = true; 632 } else { 633 uap->im |= UART011_TXIM; 634 ret = false; 635 } 636 writew(uap->im, uap->port.membase + UART011_IMSC); 637 } else if (!(uap->dmacr & UART011_TXDMAE)) { 638 uap->dmacr |= UART011_TXDMAE; 639 writew(uap->dmacr, 640 uap->port.membase + UART011_DMACR); 641 } 642 return ret; 643 } 644 645 /* 646 * We have an X-char to send. Disable DMA to prevent it loading 647 * the TX fifo, and then see if we can stuff it into the FIFO. 648 */ 649 dmacr = uap->dmacr; 650 uap->dmacr &= ~UART011_TXDMAE; 651 writew(uap->dmacr, uap->port.membase + UART011_DMACR); 652 653 if (readw(uap->port.membase + UART01x_FR) & UART01x_FR_TXFF) { 654 /* 655 * No space in the FIFO, so enable the transmit interrupt 656 * so we know when there is space. Note that once we've 657 * loaded the character, we should just re-enable DMA. 658 */ 659 return false; 660 } 661 662 writew(uap->port.x_char, uap->port.membase + UART01x_DR); 663 uap->port.icount.tx++; 664 uap->port.x_char = 0; 665 666 /* Success - restore the DMA state */ 667 uap->dmacr = dmacr; 668 writew(dmacr, uap->port.membase + UART011_DMACR); 669 670 return true; 671 } 672 673 /* 674 * Flush the transmit buffer. 675 * Locking: called with port lock held and IRQs disabled. 676 */ 677 static void pl011_dma_flush_buffer(struct uart_port *port) 678 __releases(&uap->port.lock) 679 __acquires(&uap->port.lock) 680 { 681 struct uart_amba_port *uap = (struct uart_amba_port *)port; 682 683 if (!uap->using_tx_dma) 684 return; 685 686 /* Avoid deadlock with the DMA engine callback */ 687 spin_unlock(&uap->port.lock); 688 dmaengine_terminate_all(uap->dmatx.chan); 689 spin_lock(&uap->port.lock); 690 if (uap->dmatx.queued) { 691 dma_unmap_sg(uap->dmatx.chan->device->dev, &uap->dmatx.sg, 1, 692 DMA_TO_DEVICE); 693 uap->dmatx.queued = false; 694 uap->dmacr &= ~UART011_TXDMAE; 695 writew(uap->dmacr, uap->port.membase + UART011_DMACR); 696 } 697 } 698 699 static void pl011_dma_rx_callback(void *data); 700 701 static int pl011_dma_rx_trigger_dma(struct uart_amba_port *uap) 702 { 703 struct dma_chan *rxchan = uap->dmarx.chan; 704 struct pl011_dmarx_data *dmarx = &uap->dmarx; 705 struct dma_async_tx_descriptor *desc; 706 struct pl011_sgbuf *sgbuf; 707 708 if (!rxchan) 709 return -EIO; 710 711 /* Start the RX DMA job */ 712 sgbuf = uap->dmarx.use_buf_b ? 713 &uap->dmarx.sgbuf_b : &uap->dmarx.sgbuf_a; 714 desc = dmaengine_prep_slave_sg(rxchan, &sgbuf->sg, 1, 715 DMA_DEV_TO_MEM, 716 DMA_PREP_INTERRUPT | DMA_CTRL_ACK); 717 /* 718 * If the DMA engine is busy and cannot prepare a 719 * channel, no big deal, the driver will fall back 720 * to interrupt mode as a result of this error code. 721 */ 722 if (!desc) { 723 uap->dmarx.running = false; 724 dmaengine_terminate_all(rxchan); 725 return -EBUSY; 726 } 727 728 /* Some data to go along to the callback */ 729 desc->callback = pl011_dma_rx_callback; 730 desc->callback_param = uap; 731 dmarx->cookie = dmaengine_submit(desc); 732 dma_async_issue_pending(rxchan); 733 734 uap->dmacr |= UART011_RXDMAE; 735 writew(uap->dmacr, uap->port.membase + UART011_DMACR); 736 uap->dmarx.running = true; 737 738 uap->im &= ~UART011_RXIM; 739 writew(uap->im, uap->port.membase + UART011_IMSC); 740 741 return 0; 742 } 743 744 /* 745 * This is called when either the DMA job is complete, or 746 * the FIFO timeout interrupt occurred. This must be called 747 * with the port spinlock uap->port.lock held. 748 */ 749 static void pl011_dma_rx_chars(struct uart_amba_port *uap, 750 u32 pending, bool use_buf_b, 751 bool readfifo) 752 { 753 struct tty_port *port = &uap->port.state->port; 754 struct pl011_sgbuf *sgbuf = use_buf_b ? 755 &uap->dmarx.sgbuf_b : &uap->dmarx.sgbuf_a; 756 int dma_count = 0; 757 u32 fifotaken = 0; /* only used for vdbg() */ 758 759 struct pl011_dmarx_data *dmarx = &uap->dmarx; 760 int dmataken = 0; 761 762 if (uap->dmarx.poll_rate) { 763 /* The data can be taken by polling */ 764 dmataken = sgbuf->sg.length - dmarx->last_residue; 765 /* Recalculate the pending size */ 766 if (pending >= dmataken) 767 pending -= dmataken; 768 } 769 770 /* Pick the remain data from the DMA */ 771 if (pending) { 772 773 /* 774 * First take all chars in the DMA pipe, then look in the FIFO. 775 * Note that tty_insert_flip_buf() tries to take as many chars 776 * as it can. 777 */ 778 dma_count = tty_insert_flip_string(port, sgbuf->buf + dmataken, 779 pending); 780 781 uap->port.icount.rx += dma_count; 782 if (dma_count < pending) 783 dev_warn(uap->port.dev, 784 "couldn't insert all characters (TTY is full?)\n"); 785 } 786 787 /* Reset the last_residue for Rx DMA poll */ 788 if (uap->dmarx.poll_rate) 789 dmarx->last_residue = sgbuf->sg.length; 790 791 /* 792 * Only continue with trying to read the FIFO if all DMA chars have 793 * been taken first. 794 */ 795 if (dma_count == pending && readfifo) { 796 /* Clear any error flags */ 797 writew(UART011_OEIS | UART011_BEIS | UART011_PEIS | UART011_FEIS, 798 uap->port.membase + UART011_ICR); 799 800 /* 801 * If we read all the DMA'd characters, and we had an 802 * incomplete buffer, that could be due to an rx error, or 803 * maybe we just timed out. Read any pending chars and check 804 * the error status. 805 * 806 * Error conditions will only occur in the FIFO, these will 807 * trigger an immediate interrupt and stop the DMA job, so we 808 * will always find the error in the FIFO, never in the DMA 809 * buffer. 810 */ 811 fifotaken = pl011_fifo_to_tty(uap); 812 } 813 814 spin_unlock(&uap->port.lock); 815 dev_vdbg(uap->port.dev, 816 "Took %d chars from DMA buffer and %d chars from the FIFO\n", 817 dma_count, fifotaken); 818 tty_flip_buffer_push(port); 819 spin_lock(&uap->port.lock); 820 } 821 822 static void pl011_dma_rx_irq(struct uart_amba_port *uap) 823 { 824 struct pl011_dmarx_data *dmarx = &uap->dmarx; 825 struct dma_chan *rxchan = dmarx->chan; 826 struct pl011_sgbuf *sgbuf = dmarx->use_buf_b ? 827 &dmarx->sgbuf_b : &dmarx->sgbuf_a; 828 size_t pending; 829 struct dma_tx_state state; 830 enum dma_status dmastat; 831 832 /* 833 * Pause the transfer so we can trust the current counter, 834 * do this before we pause the PL011 block, else we may 835 * overflow the FIFO. 836 */ 837 if (dmaengine_pause(rxchan)) 838 dev_err(uap->port.dev, "unable to pause DMA transfer\n"); 839 dmastat = rxchan->device->device_tx_status(rxchan, 840 dmarx->cookie, &state); 841 if (dmastat != DMA_PAUSED) 842 dev_err(uap->port.dev, "unable to pause DMA transfer\n"); 843 844 /* Disable RX DMA - incoming data will wait in the FIFO */ 845 uap->dmacr &= ~UART011_RXDMAE; 846 writew(uap->dmacr, uap->port.membase + UART011_DMACR); 847 uap->dmarx.running = false; 848 849 pending = sgbuf->sg.length - state.residue; 850 BUG_ON(pending > PL011_DMA_BUFFER_SIZE); 851 /* Then we terminate the transfer - we now know our residue */ 852 dmaengine_terminate_all(rxchan); 853 854 /* 855 * This will take the chars we have so far and insert 856 * into the framework. 857 */ 858 pl011_dma_rx_chars(uap, pending, dmarx->use_buf_b, true); 859 860 /* Switch buffer & re-trigger DMA job */ 861 dmarx->use_buf_b = !dmarx->use_buf_b; 862 if (pl011_dma_rx_trigger_dma(uap)) { 863 dev_dbg(uap->port.dev, "could not retrigger RX DMA job " 864 "fall back to interrupt mode\n"); 865 uap->im |= UART011_RXIM; 866 writew(uap->im, uap->port.membase + UART011_IMSC); 867 } 868 } 869 870 static void pl011_dma_rx_callback(void *data) 871 { 872 struct uart_amba_port *uap = data; 873 struct pl011_dmarx_data *dmarx = &uap->dmarx; 874 struct dma_chan *rxchan = dmarx->chan; 875 bool lastbuf = dmarx->use_buf_b; 876 struct pl011_sgbuf *sgbuf = dmarx->use_buf_b ? 877 &dmarx->sgbuf_b : &dmarx->sgbuf_a; 878 size_t pending; 879 struct dma_tx_state state; 880 int ret; 881 882 /* 883 * This completion interrupt occurs typically when the 884 * RX buffer is totally stuffed but no timeout has yet 885 * occurred. When that happens, we just want the RX 886 * routine to flush out the secondary DMA buffer while 887 * we immediately trigger the next DMA job. 888 */ 889 spin_lock_irq(&uap->port.lock); 890 /* 891 * Rx data can be taken by the UART interrupts during 892 * the DMA irq handler. So we check the residue here. 893 */ 894 rxchan->device->device_tx_status(rxchan, dmarx->cookie, &state); 895 pending = sgbuf->sg.length - state.residue; 896 BUG_ON(pending > PL011_DMA_BUFFER_SIZE); 897 /* Then we terminate the transfer - we now know our residue */ 898 dmaengine_terminate_all(rxchan); 899 900 uap->dmarx.running = false; 901 dmarx->use_buf_b = !lastbuf; 902 ret = pl011_dma_rx_trigger_dma(uap); 903 904 pl011_dma_rx_chars(uap, pending, lastbuf, false); 905 spin_unlock_irq(&uap->port.lock); 906 /* 907 * Do this check after we picked the DMA chars so we don't 908 * get some IRQ immediately from RX. 909 */ 910 if (ret) { 911 dev_dbg(uap->port.dev, "could not retrigger RX DMA job " 912 "fall back to interrupt mode\n"); 913 uap->im |= UART011_RXIM; 914 writew(uap->im, uap->port.membase + UART011_IMSC); 915 } 916 } 917 918 /* 919 * Stop accepting received characters, when we're shutting down or 920 * suspending this port. 921 * Locking: called with port lock held and IRQs disabled. 922 */ 923 static inline void pl011_dma_rx_stop(struct uart_amba_port *uap) 924 { 925 /* FIXME. Just disable the DMA enable */ 926 uap->dmacr &= ~UART011_RXDMAE; 927 writew(uap->dmacr, uap->port.membase + UART011_DMACR); 928 } 929 930 /* 931 * Timer handler for Rx DMA polling. 932 * Every polling, It checks the residue in the dma buffer and transfer 933 * data to the tty. Also, last_residue is updated for the next polling. 934 */ 935 static void pl011_dma_rx_poll(unsigned long args) 936 { 937 struct uart_amba_port *uap = (struct uart_amba_port *)args; 938 struct tty_port *port = &uap->port.state->port; 939 struct pl011_dmarx_data *dmarx = &uap->dmarx; 940 struct dma_chan *rxchan = uap->dmarx.chan; 941 unsigned long flags = 0; 942 unsigned int dmataken = 0; 943 unsigned int size = 0; 944 struct pl011_sgbuf *sgbuf; 945 int dma_count; 946 struct dma_tx_state state; 947 948 sgbuf = dmarx->use_buf_b ? &uap->dmarx.sgbuf_b : &uap->dmarx.sgbuf_a; 949 rxchan->device->device_tx_status(rxchan, dmarx->cookie, &state); 950 if (likely(state.residue < dmarx->last_residue)) { 951 dmataken = sgbuf->sg.length - dmarx->last_residue; 952 size = dmarx->last_residue - state.residue; 953 dma_count = tty_insert_flip_string(port, sgbuf->buf + dmataken, 954 size); 955 if (dma_count == size) 956 dmarx->last_residue = state.residue; 957 dmarx->last_jiffies = jiffies; 958 } 959 tty_flip_buffer_push(port); 960 961 /* 962 * If no data is received in poll_timeout, the driver will fall back 963 * to interrupt mode. We will retrigger DMA at the first interrupt. 964 */ 965 if (jiffies_to_msecs(jiffies - dmarx->last_jiffies) 966 > uap->dmarx.poll_timeout) { 967 968 spin_lock_irqsave(&uap->port.lock, flags); 969 pl011_dma_rx_stop(uap); 970 uap->im |= UART011_RXIM; 971 writew(uap->im, uap->port.membase + UART011_IMSC); 972 spin_unlock_irqrestore(&uap->port.lock, flags); 973 974 uap->dmarx.running = false; 975 dmaengine_terminate_all(rxchan); 976 del_timer(&uap->dmarx.timer); 977 } else { 978 mod_timer(&uap->dmarx.timer, 979 jiffies + msecs_to_jiffies(uap->dmarx.poll_rate)); 980 } 981 } 982 983 static void pl011_dma_startup(struct uart_amba_port *uap) 984 { 985 int ret; 986 987 if (!uap->dmatx.chan) 988 return; 989 990 uap->dmatx.buf = kmalloc(PL011_DMA_BUFFER_SIZE, GFP_KERNEL); 991 if (!uap->dmatx.buf) { 992 dev_err(uap->port.dev, "no memory for DMA TX buffer\n"); 993 uap->port.fifosize = uap->fifosize; 994 return; 995 } 996 997 sg_init_one(&uap->dmatx.sg, uap->dmatx.buf, PL011_DMA_BUFFER_SIZE); 998 999 /* The DMA buffer is now the FIFO the TTY subsystem can use */ 1000 uap->port.fifosize = PL011_DMA_BUFFER_SIZE; 1001 uap->using_tx_dma = true; 1002 1003 if (!uap->dmarx.chan) 1004 goto skip_rx; 1005 1006 /* Allocate and map DMA RX buffers */ 1007 ret = pl011_sgbuf_init(uap->dmarx.chan, &uap->dmarx.sgbuf_a, 1008 DMA_FROM_DEVICE); 1009 if (ret) { 1010 dev_err(uap->port.dev, "failed to init DMA %s: %d\n", 1011 "RX buffer A", ret); 1012 goto skip_rx; 1013 } 1014 1015 ret = pl011_sgbuf_init(uap->dmarx.chan, &uap->dmarx.sgbuf_b, 1016 DMA_FROM_DEVICE); 1017 if (ret) { 1018 dev_err(uap->port.dev, "failed to init DMA %s: %d\n", 1019 "RX buffer B", ret); 1020 pl011_sgbuf_free(uap->dmarx.chan, &uap->dmarx.sgbuf_a, 1021 DMA_FROM_DEVICE); 1022 goto skip_rx; 1023 } 1024 1025 uap->using_rx_dma = true; 1026 1027 skip_rx: 1028 /* Turn on DMA error (RX/TX will be enabled on demand) */ 1029 uap->dmacr |= UART011_DMAONERR; 1030 writew(uap->dmacr, uap->port.membase + UART011_DMACR); 1031 1032 /* 1033 * ST Micro variants has some specific dma burst threshold 1034 * compensation. Set this to 16 bytes, so burst will only 1035 * be issued above/below 16 bytes. 1036 */ 1037 if (uap->vendor->dma_threshold) 1038 writew(ST_UART011_DMAWM_RX_16 | ST_UART011_DMAWM_TX_16, 1039 uap->port.membase + ST_UART011_DMAWM); 1040 1041 if (uap->using_rx_dma) { 1042 if (pl011_dma_rx_trigger_dma(uap)) 1043 dev_dbg(uap->port.dev, "could not trigger initial " 1044 "RX DMA job, fall back to interrupt mode\n"); 1045 if (uap->dmarx.poll_rate) { 1046 init_timer(&(uap->dmarx.timer)); 1047 uap->dmarx.timer.function = pl011_dma_rx_poll; 1048 uap->dmarx.timer.data = (unsigned long)uap; 1049 mod_timer(&uap->dmarx.timer, 1050 jiffies + 1051 msecs_to_jiffies(uap->dmarx.poll_rate)); 1052 uap->dmarx.last_residue = PL011_DMA_BUFFER_SIZE; 1053 uap->dmarx.last_jiffies = jiffies; 1054 } 1055 } 1056 } 1057 1058 static void pl011_dma_shutdown(struct uart_amba_port *uap) 1059 { 1060 if (!(uap->using_tx_dma || uap->using_rx_dma)) 1061 return; 1062 1063 /* Disable RX and TX DMA */ 1064 while (readw(uap->port.membase + UART01x_FR) & UART01x_FR_BUSY) 1065 barrier(); 1066 1067 spin_lock_irq(&uap->port.lock); 1068 uap->dmacr &= ~(UART011_DMAONERR | UART011_RXDMAE | UART011_TXDMAE); 1069 writew(uap->dmacr, uap->port.membase + UART011_DMACR); 1070 spin_unlock_irq(&uap->port.lock); 1071 1072 if (uap->using_tx_dma) { 1073 /* In theory, this should already be done by pl011_dma_flush_buffer */ 1074 dmaengine_terminate_all(uap->dmatx.chan); 1075 if (uap->dmatx.queued) { 1076 dma_unmap_sg(uap->dmatx.chan->device->dev, &uap->dmatx.sg, 1, 1077 DMA_TO_DEVICE); 1078 uap->dmatx.queued = false; 1079 } 1080 1081 kfree(uap->dmatx.buf); 1082 uap->using_tx_dma = false; 1083 } 1084 1085 if (uap->using_rx_dma) { 1086 dmaengine_terminate_all(uap->dmarx.chan); 1087 /* Clean up the RX DMA */ 1088 pl011_sgbuf_free(uap->dmarx.chan, &uap->dmarx.sgbuf_a, DMA_FROM_DEVICE); 1089 pl011_sgbuf_free(uap->dmarx.chan, &uap->dmarx.sgbuf_b, DMA_FROM_DEVICE); 1090 if (uap->dmarx.poll_rate) 1091 del_timer_sync(&uap->dmarx.timer); 1092 uap->using_rx_dma = false; 1093 } 1094 } 1095 1096 static inline bool pl011_dma_rx_available(struct uart_amba_port *uap) 1097 { 1098 return uap->using_rx_dma; 1099 } 1100 1101 static inline bool pl011_dma_rx_running(struct uart_amba_port *uap) 1102 { 1103 return uap->using_rx_dma && uap->dmarx.running; 1104 } 1105 1106 #else 1107 /* Blank functions if the DMA engine is not available */ 1108 static inline void pl011_dma_probe(struct device *dev, struct uart_amba_port *uap) 1109 { 1110 } 1111 1112 static inline void pl011_dma_remove(struct uart_amba_port *uap) 1113 { 1114 } 1115 1116 static inline void pl011_dma_startup(struct uart_amba_port *uap) 1117 { 1118 } 1119 1120 static inline void pl011_dma_shutdown(struct uart_amba_port *uap) 1121 { 1122 } 1123 1124 static inline bool pl011_dma_tx_irq(struct uart_amba_port *uap) 1125 { 1126 return false; 1127 } 1128 1129 static inline void pl011_dma_tx_stop(struct uart_amba_port *uap) 1130 { 1131 } 1132 1133 static inline bool pl011_dma_tx_start(struct uart_amba_port *uap) 1134 { 1135 return false; 1136 } 1137 1138 static inline void pl011_dma_rx_irq(struct uart_amba_port *uap) 1139 { 1140 } 1141 1142 static inline void pl011_dma_rx_stop(struct uart_amba_port *uap) 1143 { 1144 } 1145 1146 static inline int pl011_dma_rx_trigger_dma(struct uart_amba_port *uap) 1147 { 1148 return -EIO; 1149 } 1150 1151 static inline bool pl011_dma_rx_available(struct uart_amba_port *uap) 1152 { 1153 return false; 1154 } 1155 1156 static inline bool pl011_dma_rx_running(struct uart_amba_port *uap) 1157 { 1158 return false; 1159 } 1160 1161 #define pl011_dma_flush_buffer NULL 1162 #endif 1163 1164 static void pl011_stop_tx(struct uart_port *port) 1165 { 1166 struct uart_amba_port *uap = (struct uart_amba_port *)port; 1167 1168 uap->im &= ~UART011_TXIM; 1169 writew(uap->im, uap->port.membase + UART011_IMSC); 1170 pl011_dma_tx_stop(uap); 1171 } 1172 1173 static void pl011_start_tx(struct uart_port *port) 1174 { 1175 struct uart_amba_port *uap = (struct uart_amba_port *)port; 1176 1177 if (!pl011_dma_tx_start(uap)) { 1178 uap->im |= UART011_TXIM; 1179 writew(uap->im, uap->port.membase + UART011_IMSC); 1180 } 1181 } 1182 1183 static void pl011_stop_rx(struct uart_port *port) 1184 { 1185 struct uart_amba_port *uap = (struct uart_amba_port *)port; 1186 1187 uap->im &= ~(UART011_RXIM|UART011_RTIM|UART011_FEIM| 1188 UART011_PEIM|UART011_BEIM|UART011_OEIM); 1189 writew(uap->im, uap->port.membase + UART011_IMSC); 1190 1191 pl011_dma_rx_stop(uap); 1192 } 1193 1194 static void pl011_enable_ms(struct uart_port *port) 1195 { 1196 struct uart_amba_port *uap = (struct uart_amba_port *)port; 1197 1198 uap->im |= UART011_RIMIM|UART011_CTSMIM|UART011_DCDMIM|UART011_DSRMIM; 1199 writew(uap->im, uap->port.membase + UART011_IMSC); 1200 } 1201 1202 static void pl011_rx_chars(struct uart_amba_port *uap) 1203 __releases(&uap->port.lock) 1204 __acquires(&uap->port.lock) 1205 { 1206 pl011_fifo_to_tty(uap); 1207 1208 spin_unlock(&uap->port.lock); 1209 tty_flip_buffer_push(&uap->port.state->port); 1210 /* 1211 * If we were temporarily out of DMA mode for a while, 1212 * attempt to switch back to DMA mode again. 1213 */ 1214 if (pl011_dma_rx_available(uap)) { 1215 if (pl011_dma_rx_trigger_dma(uap)) { 1216 dev_dbg(uap->port.dev, "could not trigger RX DMA job " 1217 "fall back to interrupt mode again\n"); 1218 uap->im |= UART011_RXIM; 1219 writew(uap->im, uap->port.membase + UART011_IMSC); 1220 } else { 1221 #ifdef CONFIG_DMA_ENGINE 1222 /* Start Rx DMA poll */ 1223 if (uap->dmarx.poll_rate) { 1224 uap->dmarx.last_jiffies = jiffies; 1225 uap->dmarx.last_residue = PL011_DMA_BUFFER_SIZE; 1226 mod_timer(&uap->dmarx.timer, 1227 jiffies + 1228 msecs_to_jiffies(uap->dmarx.poll_rate)); 1229 } 1230 #endif 1231 } 1232 } 1233 spin_lock(&uap->port.lock); 1234 } 1235 1236 static void pl011_tx_chars(struct uart_amba_port *uap) 1237 { 1238 struct circ_buf *xmit = &uap->port.state->xmit; 1239 int count; 1240 1241 if (uap->port.x_char) { 1242 writew(uap->port.x_char, uap->port.membase + UART01x_DR); 1243 uap->port.icount.tx++; 1244 uap->port.x_char = 0; 1245 return; 1246 } 1247 if (uart_circ_empty(xmit) || uart_tx_stopped(&uap->port)) { 1248 pl011_stop_tx(&uap->port); 1249 return; 1250 } 1251 1252 /* If we are using DMA mode, try to send some characters. */ 1253 if (pl011_dma_tx_irq(uap)) 1254 return; 1255 1256 count = uap->fifosize >> 1; 1257 do { 1258 writew(xmit->buf[xmit->tail], uap->port.membase + UART01x_DR); 1259 xmit->tail = (xmit->tail + 1) & (UART_XMIT_SIZE - 1); 1260 uap->port.icount.tx++; 1261 if (uart_circ_empty(xmit)) 1262 break; 1263 } while (--count > 0); 1264 1265 if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS) 1266 uart_write_wakeup(&uap->port); 1267 1268 if (uart_circ_empty(xmit)) 1269 pl011_stop_tx(&uap->port); 1270 } 1271 1272 static void pl011_modem_status(struct uart_amba_port *uap) 1273 { 1274 unsigned int status, delta; 1275 1276 status = readw(uap->port.membase + UART01x_FR) & UART01x_FR_MODEM_ANY; 1277 1278 delta = status ^ uap->old_status; 1279 uap->old_status = status; 1280 1281 if (!delta) 1282 return; 1283 1284 if (delta & UART01x_FR_DCD) 1285 uart_handle_dcd_change(&uap->port, status & UART01x_FR_DCD); 1286 1287 if (delta & UART01x_FR_DSR) 1288 uap->port.icount.dsr++; 1289 1290 if (delta & UART01x_FR_CTS) 1291 uart_handle_cts_change(&uap->port, status & UART01x_FR_CTS); 1292 1293 wake_up_interruptible(&uap->port.state->port.delta_msr_wait); 1294 } 1295 1296 static irqreturn_t pl011_int(int irq, void *dev_id) 1297 { 1298 struct uart_amba_port *uap = dev_id; 1299 unsigned long flags; 1300 unsigned int status, pass_counter = AMBA_ISR_PASS_LIMIT; 1301 int handled = 0; 1302 unsigned int dummy_read; 1303 1304 spin_lock_irqsave(&uap->port.lock, flags); 1305 status = readw(uap->port.membase + UART011_MIS); 1306 if (status) { 1307 do { 1308 if (uap->vendor->cts_event_workaround) { 1309 /* workaround to make sure that all bits are unlocked.. */ 1310 writew(0x00, uap->port.membase + UART011_ICR); 1311 1312 /* 1313 * WA: introduce 26ns(1 uart clk) delay before W1C; 1314 * single apb access will incur 2 pclk(133.12Mhz) delay, 1315 * so add 2 dummy reads 1316 */ 1317 dummy_read = readw(uap->port.membase + UART011_ICR); 1318 dummy_read = readw(uap->port.membase + UART011_ICR); 1319 } 1320 1321 writew(status & ~(UART011_TXIS|UART011_RTIS| 1322 UART011_RXIS), 1323 uap->port.membase + UART011_ICR); 1324 1325 if (status & (UART011_RTIS|UART011_RXIS)) { 1326 if (pl011_dma_rx_running(uap)) 1327 pl011_dma_rx_irq(uap); 1328 else 1329 pl011_rx_chars(uap); 1330 } 1331 if (status & (UART011_DSRMIS|UART011_DCDMIS| 1332 UART011_CTSMIS|UART011_RIMIS)) 1333 pl011_modem_status(uap); 1334 if (status & UART011_TXIS) 1335 pl011_tx_chars(uap); 1336 1337 if (pass_counter-- == 0) 1338 break; 1339 1340 status = readw(uap->port.membase + UART011_MIS); 1341 } while (status != 0); 1342 handled = 1; 1343 } 1344 1345 spin_unlock_irqrestore(&uap->port.lock, flags); 1346 1347 return IRQ_RETVAL(handled); 1348 } 1349 1350 static unsigned int pl011_tx_empty(struct uart_port *port) 1351 { 1352 struct uart_amba_port *uap = (struct uart_amba_port *)port; 1353 unsigned int status = readw(uap->port.membase + UART01x_FR); 1354 return status & (UART01x_FR_BUSY|UART01x_FR_TXFF) ? 0 : TIOCSER_TEMT; 1355 } 1356 1357 static unsigned int pl011_get_mctrl(struct uart_port *port) 1358 { 1359 struct uart_amba_port *uap = (struct uart_amba_port *)port; 1360 unsigned int result = 0; 1361 unsigned int status = readw(uap->port.membase + UART01x_FR); 1362 1363 #define TIOCMBIT(uartbit, tiocmbit) \ 1364 if (status & uartbit) \ 1365 result |= tiocmbit 1366 1367 TIOCMBIT(UART01x_FR_DCD, TIOCM_CAR); 1368 TIOCMBIT(UART01x_FR_DSR, TIOCM_DSR); 1369 TIOCMBIT(UART01x_FR_CTS, TIOCM_CTS); 1370 TIOCMBIT(UART011_FR_RI, TIOCM_RNG); 1371 #undef TIOCMBIT 1372 return result; 1373 } 1374 1375 static void pl011_set_mctrl(struct uart_port *port, unsigned int mctrl) 1376 { 1377 struct uart_amba_port *uap = (struct uart_amba_port *)port; 1378 unsigned int cr; 1379 1380 cr = readw(uap->port.membase + UART011_CR); 1381 1382 #define TIOCMBIT(tiocmbit, uartbit) \ 1383 if (mctrl & tiocmbit) \ 1384 cr |= uartbit; \ 1385 else \ 1386 cr &= ~uartbit 1387 1388 TIOCMBIT(TIOCM_RTS, UART011_CR_RTS); 1389 TIOCMBIT(TIOCM_DTR, UART011_CR_DTR); 1390 TIOCMBIT(TIOCM_OUT1, UART011_CR_OUT1); 1391 TIOCMBIT(TIOCM_OUT2, UART011_CR_OUT2); 1392 TIOCMBIT(TIOCM_LOOP, UART011_CR_LBE); 1393 1394 if (uap->autorts) { 1395 /* We need to disable auto-RTS if we want to turn RTS off */ 1396 TIOCMBIT(TIOCM_RTS, UART011_CR_RTSEN); 1397 } 1398 #undef TIOCMBIT 1399 1400 writew(cr, uap->port.membase + UART011_CR); 1401 } 1402 1403 static void pl011_break_ctl(struct uart_port *port, int break_state) 1404 { 1405 struct uart_amba_port *uap = (struct uart_amba_port *)port; 1406 unsigned long flags; 1407 unsigned int lcr_h; 1408 1409 spin_lock_irqsave(&uap->port.lock, flags); 1410 lcr_h = readw(uap->port.membase + uap->lcrh_tx); 1411 if (break_state == -1) 1412 lcr_h |= UART01x_LCRH_BRK; 1413 else 1414 lcr_h &= ~UART01x_LCRH_BRK; 1415 writew(lcr_h, uap->port.membase + uap->lcrh_tx); 1416 spin_unlock_irqrestore(&uap->port.lock, flags); 1417 } 1418 1419 #ifdef CONFIG_CONSOLE_POLL 1420 1421 static void pl011_quiesce_irqs(struct uart_port *port) 1422 { 1423 struct uart_amba_port *uap = (struct uart_amba_port *)port; 1424 unsigned char __iomem *regs = uap->port.membase; 1425 1426 writew(readw(regs + UART011_MIS), regs + UART011_ICR); 1427 /* 1428 * There is no way to clear TXIM as this is "ready to transmit IRQ", so 1429 * we simply mask it. start_tx() will unmask it. 1430 * 1431 * Note we can race with start_tx(), and if the race happens, the 1432 * polling user might get another interrupt just after we clear it. 1433 * But it should be OK and can happen even w/o the race, e.g. 1434 * controller immediately got some new data and raised the IRQ. 1435 * 1436 * And whoever uses polling routines assumes that it manages the device 1437 * (including tx queue), so we're also fine with start_tx()'s caller 1438 * side. 1439 */ 1440 writew(readw(regs + UART011_IMSC) & ~UART011_TXIM, regs + UART011_IMSC); 1441 } 1442 1443 static int pl011_get_poll_char(struct uart_port *port) 1444 { 1445 struct uart_amba_port *uap = (struct uart_amba_port *)port; 1446 unsigned int status; 1447 1448 /* 1449 * The caller might need IRQs lowered, e.g. if used with KDB NMI 1450 * debugger. 1451 */ 1452 pl011_quiesce_irqs(port); 1453 1454 status = readw(uap->port.membase + UART01x_FR); 1455 if (status & UART01x_FR_RXFE) 1456 return NO_POLL_CHAR; 1457 1458 return readw(uap->port.membase + UART01x_DR); 1459 } 1460 1461 static void pl011_put_poll_char(struct uart_port *port, 1462 unsigned char ch) 1463 { 1464 struct uart_amba_port *uap = (struct uart_amba_port *)port; 1465 1466 while (readw(uap->port.membase + UART01x_FR) & UART01x_FR_TXFF) 1467 barrier(); 1468 1469 writew(ch, uap->port.membase + UART01x_DR); 1470 } 1471 1472 #endif /* CONFIG_CONSOLE_POLL */ 1473 1474 static int pl011_hwinit(struct uart_port *port) 1475 { 1476 struct uart_amba_port *uap = (struct uart_amba_port *)port; 1477 int retval; 1478 1479 /* Optionaly enable pins to be muxed in and configured */ 1480 pinctrl_pm_select_default_state(port->dev); 1481 1482 /* 1483 * Try to enable the clock producer. 1484 */ 1485 retval = clk_prepare_enable(uap->clk); 1486 if (retval) 1487 goto out; 1488 1489 uap->port.uartclk = clk_get_rate(uap->clk); 1490 1491 /* Clear pending error and receive interrupts */ 1492 writew(UART011_OEIS | UART011_BEIS | UART011_PEIS | UART011_FEIS | 1493 UART011_RTIS | UART011_RXIS, uap->port.membase + UART011_ICR); 1494 1495 /* 1496 * Save interrupts enable mask, and enable RX interrupts in case if 1497 * the interrupt is used for NMI entry. 1498 */ 1499 uap->im = readw(uap->port.membase + UART011_IMSC); 1500 writew(UART011_RTIM | UART011_RXIM, uap->port.membase + UART011_IMSC); 1501 1502 if (dev_get_platdata(uap->port.dev)) { 1503 struct amba_pl011_data *plat; 1504 1505 plat = dev_get_platdata(uap->port.dev); 1506 if (plat->init) 1507 plat->init(); 1508 } 1509 return 0; 1510 out: 1511 return retval; 1512 } 1513 1514 static void pl011_write_lcr_h(struct uart_amba_port *uap, unsigned int lcr_h) 1515 { 1516 writew(lcr_h, uap->port.membase + uap->lcrh_rx); 1517 if (uap->lcrh_rx != uap->lcrh_tx) { 1518 int i; 1519 /* 1520 * Wait 10 PCLKs before writing LCRH_TX register, 1521 * to get this delay write read only register 10 times 1522 */ 1523 for (i = 0; i < 10; ++i) 1524 writew(0xff, uap->port.membase + UART011_MIS); 1525 writew(lcr_h, uap->port.membase + uap->lcrh_tx); 1526 } 1527 } 1528 1529 static int pl011_startup(struct uart_port *port) 1530 { 1531 struct uart_amba_port *uap = (struct uart_amba_port *)port; 1532 unsigned int cr, lcr_h, fbrd, ibrd; 1533 int retval; 1534 1535 retval = pl011_hwinit(port); 1536 if (retval) 1537 goto clk_dis; 1538 1539 writew(uap->im, uap->port.membase + UART011_IMSC); 1540 1541 /* 1542 * Allocate the IRQ 1543 */ 1544 retval = request_irq(uap->port.irq, pl011_int, 0, "uart-pl011", uap); 1545 if (retval) 1546 goto clk_dis; 1547 1548 writew(uap->vendor->ifls, uap->port.membase + UART011_IFLS); 1549 1550 /* 1551 * Provoke TX FIFO interrupt into asserting. Taking care to preserve 1552 * baud rate and data format specified by FBRD, IBRD and LCRH as the 1553 * UART may already be in use as a console. 1554 */ 1555 spin_lock_irq(&uap->port.lock); 1556 1557 fbrd = readw(uap->port.membase + UART011_FBRD); 1558 ibrd = readw(uap->port.membase + UART011_IBRD); 1559 lcr_h = readw(uap->port.membase + uap->lcrh_rx); 1560 1561 cr = UART01x_CR_UARTEN | UART011_CR_TXE | UART011_CR_LBE; 1562 writew(cr, uap->port.membase + UART011_CR); 1563 writew(0, uap->port.membase + UART011_FBRD); 1564 writew(1, uap->port.membase + UART011_IBRD); 1565 pl011_write_lcr_h(uap, 0); 1566 writew(0, uap->port.membase + UART01x_DR); 1567 while (readw(uap->port.membase + UART01x_FR) & UART01x_FR_BUSY) 1568 barrier(); 1569 1570 writew(fbrd, uap->port.membase + UART011_FBRD); 1571 writew(ibrd, uap->port.membase + UART011_IBRD); 1572 pl011_write_lcr_h(uap, lcr_h); 1573 1574 /* restore RTS and DTR */ 1575 cr = uap->old_cr & (UART011_CR_RTS | UART011_CR_DTR); 1576 cr |= UART01x_CR_UARTEN | UART011_CR_RXE | UART011_CR_TXE; 1577 writew(cr, uap->port.membase + UART011_CR); 1578 1579 spin_unlock_irq(&uap->port.lock); 1580 1581 /* 1582 * initialise the old status of the modem signals 1583 */ 1584 uap->old_status = readw(uap->port.membase + UART01x_FR) & UART01x_FR_MODEM_ANY; 1585 1586 /* Startup DMA */ 1587 pl011_dma_startup(uap); 1588 1589 /* 1590 * Finally, enable interrupts, only timeouts when using DMA 1591 * if initial RX DMA job failed, start in interrupt mode 1592 * as well. 1593 */ 1594 spin_lock_irq(&uap->port.lock); 1595 /* Clear out any spuriously appearing RX interrupts */ 1596 writew(UART011_RTIS | UART011_RXIS, 1597 uap->port.membase + UART011_ICR); 1598 uap->im = UART011_RTIM; 1599 if (!pl011_dma_rx_running(uap)) 1600 uap->im |= UART011_RXIM; 1601 writew(uap->im, uap->port.membase + UART011_IMSC); 1602 spin_unlock_irq(&uap->port.lock); 1603 1604 return 0; 1605 1606 clk_dis: 1607 clk_disable_unprepare(uap->clk); 1608 return retval; 1609 } 1610 1611 static void pl011_shutdown_channel(struct uart_amba_port *uap, 1612 unsigned int lcrh) 1613 { 1614 unsigned long val; 1615 1616 val = readw(uap->port.membase + lcrh); 1617 val &= ~(UART01x_LCRH_BRK | UART01x_LCRH_FEN); 1618 writew(val, uap->port.membase + lcrh); 1619 } 1620 1621 static void pl011_shutdown(struct uart_port *port) 1622 { 1623 struct uart_amba_port *uap = (struct uart_amba_port *)port; 1624 unsigned int cr; 1625 1626 /* 1627 * disable all interrupts 1628 */ 1629 spin_lock_irq(&uap->port.lock); 1630 uap->im = 0; 1631 writew(uap->im, uap->port.membase + UART011_IMSC); 1632 writew(0xffff, uap->port.membase + UART011_ICR); 1633 spin_unlock_irq(&uap->port.lock); 1634 1635 pl011_dma_shutdown(uap); 1636 1637 /* 1638 * Free the interrupt 1639 */ 1640 free_irq(uap->port.irq, uap); 1641 1642 /* 1643 * disable the port 1644 * disable the port. It should not disable RTS and DTR. 1645 * Also RTS and DTR state should be preserved to restore 1646 * it during startup(). 1647 */ 1648 uap->autorts = false; 1649 spin_lock_irq(&uap->port.lock); 1650 cr = readw(uap->port.membase + UART011_CR); 1651 uap->old_cr = cr; 1652 cr &= UART011_CR_RTS | UART011_CR_DTR; 1653 cr |= UART01x_CR_UARTEN | UART011_CR_TXE; 1654 writew(cr, uap->port.membase + UART011_CR); 1655 spin_unlock_irq(&uap->port.lock); 1656 1657 /* 1658 * disable break condition and fifos 1659 */ 1660 pl011_shutdown_channel(uap, uap->lcrh_rx); 1661 if (uap->lcrh_rx != uap->lcrh_tx) 1662 pl011_shutdown_channel(uap, uap->lcrh_tx); 1663 1664 /* 1665 * Shut down the clock producer 1666 */ 1667 clk_disable_unprepare(uap->clk); 1668 /* Optionally let pins go into sleep states */ 1669 pinctrl_pm_select_sleep_state(port->dev); 1670 1671 if (dev_get_platdata(uap->port.dev)) { 1672 struct amba_pl011_data *plat; 1673 1674 plat = dev_get_platdata(uap->port.dev); 1675 if (plat->exit) 1676 plat->exit(); 1677 } 1678 1679 } 1680 1681 static void 1682 pl011_set_termios(struct uart_port *port, struct ktermios *termios, 1683 struct ktermios *old) 1684 { 1685 struct uart_amba_port *uap = (struct uart_amba_port *)port; 1686 unsigned int lcr_h, old_cr; 1687 unsigned long flags; 1688 unsigned int baud, quot, clkdiv; 1689 1690 if (uap->vendor->oversampling) 1691 clkdiv = 8; 1692 else 1693 clkdiv = 16; 1694 1695 /* 1696 * Ask the core to calculate the divisor for us. 1697 */ 1698 baud = uart_get_baud_rate(port, termios, old, 0, 1699 port->uartclk / clkdiv); 1700 #ifdef CONFIG_DMA_ENGINE 1701 /* 1702 * Adjust RX DMA polling rate with baud rate if not specified. 1703 */ 1704 if (uap->dmarx.auto_poll_rate) 1705 uap->dmarx.poll_rate = DIV_ROUND_UP(10000000, baud); 1706 #endif 1707 1708 if (baud > port->uartclk/16) 1709 quot = DIV_ROUND_CLOSEST(port->uartclk * 8, baud); 1710 else 1711 quot = DIV_ROUND_CLOSEST(port->uartclk * 4, baud); 1712 1713 switch (termios->c_cflag & CSIZE) { 1714 case CS5: 1715 lcr_h = UART01x_LCRH_WLEN_5; 1716 break; 1717 case CS6: 1718 lcr_h = UART01x_LCRH_WLEN_6; 1719 break; 1720 case CS7: 1721 lcr_h = UART01x_LCRH_WLEN_7; 1722 break; 1723 default: // CS8 1724 lcr_h = UART01x_LCRH_WLEN_8; 1725 break; 1726 } 1727 if (termios->c_cflag & CSTOPB) 1728 lcr_h |= UART01x_LCRH_STP2; 1729 if (termios->c_cflag & PARENB) { 1730 lcr_h |= UART01x_LCRH_PEN; 1731 if (!(termios->c_cflag & PARODD)) 1732 lcr_h |= UART01x_LCRH_EPS; 1733 } 1734 if (uap->fifosize > 1) 1735 lcr_h |= UART01x_LCRH_FEN; 1736 1737 spin_lock_irqsave(&port->lock, flags); 1738 1739 /* 1740 * Update the per-port timeout. 1741 */ 1742 uart_update_timeout(port, termios->c_cflag, baud); 1743 1744 port->read_status_mask = UART011_DR_OE | 255; 1745 if (termios->c_iflag & INPCK) 1746 port->read_status_mask |= UART011_DR_FE | UART011_DR_PE; 1747 if (termios->c_iflag & (IGNBRK | BRKINT | PARMRK)) 1748 port->read_status_mask |= UART011_DR_BE; 1749 1750 /* 1751 * Characters to ignore 1752 */ 1753 port->ignore_status_mask = 0; 1754 if (termios->c_iflag & IGNPAR) 1755 port->ignore_status_mask |= UART011_DR_FE | UART011_DR_PE; 1756 if (termios->c_iflag & IGNBRK) { 1757 port->ignore_status_mask |= UART011_DR_BE; 1758 /* 1759 * If we're ignoring parity and break indicators, 1760 * ignore overruns too (for real raw support). 1761 */ 1762 if (termios->c_iflag & IGNPAR) 1763 port->ignore_status_mask |= UART011_DR_OE; 1764 } 1765 1766 /* 1767 * Ignore all characters if CREAD is not set. 1768 */ 1769 if ((termios->c_cflag & CREAD) == 0) 1770 port->ignore_status_mask |= UART_DUMMY_DR_RX; 1771 1772 if (UART_ENABLE_MS(port, termios->c_cflag)) 1773 pl011_enable_ms(port); 1774 1775 /* first, disable everything */ 1776 old_cr = readw(port->membase + UART011_CR); 1777 writew(0, port->membase + UART011_CR); 1778 1779 if (termios->c_cflag & CRTSCTS) { 1780 if (old_cr & UART011_CR_RTS) 1781 old_cr |= UART011_CR_RTSEN; 1782 1783 old_cr |= UART011_CR_CTSEN; 1784 uap->autorts = true; 1785 } else { 1786 old_cr &= ~(UART011_CR_CTSEN | UART011_CR_RTSEN); 1787 uap->autorts = false; 1788 } 1789 1790 if (uap->vendor->oversampling) { 1791 if (baud > port->uartclk / 16) 1792 old_cr |= ST_UART011_CR_OVSFACT; 1793 else 1794 old_cr &= ~ST_UART011_CR_OVSFACT; 1795 } 1796 1797 /* 1798 * Workaround for the ST Micro oversampling variants to 1799 * increase the bitrate slightly, by lowering the divisor, 1800 * to avoid delayed sampling of start bit at high speeds, 1801 * else we see data corruption. 1802 */ 1803 if (uap->vendor->oversampling) { 1804 if ((baud >= 3000000) && (baud < 3250000) && (quot > 1)) 1805 quot -= 1; 1806 else if ((baud > 3250000) && (quot > 2)) 1807 quot -= 2; 1808 } 1809 /* Set baud rate */ 1810 writew(quot & 0x3f, port->membase + UART011_FBRD); 1811 writew(quot >> 6, port->membase + UART011_IBRD); 1812 1813 /* 1814 * ----------v----------v----------v----------v----- 1815 * NOTE: lcrh_tx and lcrh_rx MUST BE WRITTEN AFTER 1816 * UART011_FBRD & UART011_IBRD. 1817 * ----------^----------^----------^----------^----- 1818 */ 1819 pl011_write_lcr_h(uap, lcr_h); 1820 writew(old_cr, port->membase + UART011_CR); 1821 1822 spin_unlock_irqrestore(&port->lock, flags); 1823 } 1824 1825 static const char *pl011_type(struct uart_port *port) 1826 { 1827 struct uart_amba_port *uap = (struct uart_amba_port *)port; 1828 return uap->port.type == PORT_AMBA ? uap->type : NULL; 1829 } 1830 1831 /* 1832 * Release the memory region(s) being used by 'port' 1833 */ 1834 static void pl011_release_port(struct uart_port *port) 1835 { 1836 release_mem_region(port->mapbase, SZ_4K); 1837 } 1838 1839 /* 1840 * Request the memory region(s) being used by 'port' 1841 */ 1842 static int pl011_request_port(struct uart_port *port) 1843 { 1844 return request_mem_region(port->mapbase, SZ_4K, "uart-pl011") 1845 != NULL ? 0 : -EBUSY; 1846 } 1847 1848 /* 1849 * Configure/autoconfigure the port. 1850 */ 1851 static void pl011_config_port(struct uart_port *port, int flags) 1852 { 1853 if (flags & UART_CONFIG_TYPE) { 1854 port->type = PORT_AMBA; 1855 pl011_request_port(port); 1856 } 1857 } 1858 1859 /* 1860 * verify the new serial_struct (for TIOCSSERIAL). 1861 */ 1862 static int pl011_verify_port(struct uart_port *port, struct serial_struct *ser) 1863 { 1864 int ret = 0; 1865 if (ser->type != PORT_UNKNOWN && ser->type != PORT_AMBA) 1866 ret = -EINVAL; 1867 if (ser->irq < 0 || ser->irq >= nr_irqs) 1868 ret = -EINVAL; 1869 if (ser->baud_base < 9600) 1870 ret = -EINVAL; 1871 return ret; 1872 } 1873 1874 static struct uart_ops amba_pl011_pops = { 1875 .tx_empty = pl011_tx_empty, 1876 .set_mctrl = pl011_set_mctrl, 1877 .get_mctrl = pl011_get_mctrl, 1878 .stop_tx = pl011_stop_tx, 1879 .start_tx = pl011_start_tx, 1880 .stop_rx = pl011_stop_rx, 1881 .enable_ms = pl011_enable_ms, 1882 .break_ctl = pl011_break_ctl, 1883 .startup = pl011_startup, 1884 .shutdown = pl011_shutdown, 1885 .flush_buffer = pl011_dma_flush_buffer, 1886 .set_termios = pl011_set_termios, 1887 .type = pl011_type, 1888 .release_port = pl011_release_port, 1889 .request_port = pl011_request_port, 1890 .config_port = pl011_config_port, 1891 .verify_port = pl011_verify_port, 1892 #ifdef CONFIG_CONSOLE_POLL 1893 .poll_init = pl011_hwinit, 1894 .poll_get_char = pl011_get_poll_char, 1895 .poll_put_char = pl011_put_poll_char, 1896 #endif 1897 }; 1898 1899 static struct uart_amba_port *amba_ports[UART_NR]; 1900 1901 #ifdef CONFIG_SERIAL_AMBA_PL011_CONSOLE 1902 1903 static void pl011_console_putchar(struct uart_port *port, int ch) 1904 { 1905 struct uart_amba_port *uap = (struct uart_amba_port *)port; 1906 1907 while (readw(uap->port.membase + UART01x_FR) & UART01x_FR_TXFF) 1908 barrier(); 1909 writew(ch, uap->port.membase + UART01x_DR); 1910 } 1911 1912 static void 1913 pl011_console_write(struct console *co, const char *s, unsigned int count) 1914 { 1915 struct uart_amba_port *uap = amba_ports[co->index]; 1916 unsigned int status, old_cr, new_cr; 1917 unsigned long flags; 1918 int locked = 1; 1919 1920 clk_enable(uap->clk); 1921 1922 local_irq_save(flags); 1923 if (uap->port.sysrq) 1924 locked = 0; 1925 else if (oops_in_progress) 1926 locked = spin_trylock(&uap->port.lock); 1927 else 1928 spin_lock(&uap->port.lock); 1929 1930 /* 1931 * First save the CR then disable the interrupts 1932 */ 1933 old_cr = readw(uap->port.membase + UART011_CR); 1934 new_cr = old_cr & ~UART011_CR_CTSEN; 1935 new_cr |= UART01x_CR_UARTEN | UART011_CR_TXE; 1936 writew(new_cr, uap->port.membase + UART011_CR); 1937 1938 uart_console_write(&uap->port, s, count, pl011_console_putchar); 1939 1940 /* 1941 * Finally, wait for transmitter to become empty 1942 * and restore the TCR 1943 */ 1944 do { 1945 status = readw(uap->port.membase + UART01x_FR); 1946 } while (status & UART01x_FR_BUSY); 1947 writew(old_cr, uap->port.membase + UART011_CR); 1948 1949 if (locked) 1950 spin_unlock(&uap->port.lock); 1951 local_irq_restore(flags); 1952 1953 clk_disable(uap->clk); 1954 } 1955 1956 static void __init 1957 pl011_console_get_options(struct uart_amba_port *uap, int *baud, 1958 int *parity, int *bits) 1959 { 1960 if (readw(uap->port.membase + UART011_CR) & UART01x_CR_UARTEN) { 1961 unsigned int lcr_h, ibrd, fbrd; 1962 1963 lcr_h = readw(uap->port.membase + uap->lcrh_tx); 1964 1965 *parity = 'n'; 1966 if (lcr_h & UART01x_LCRH_PEN) { 1967 if (lcr_h & UART01x_LCRH_EPS) 1968 *parity = 'e'; 1969 else 1970 *parity = 'o'; 1971 } 1972 1973 if ((lcr_h & 0x60) == UART01x_LCRH_WLEN_7) 1974 *bits = 7; 1975 else 1976 *bits = 8; 1977 1978 ibrd = readw(uap->port.membase + UART011_IBRD); 1979 fbrd = readw(uap->port.membase + UART011_FBRD); 1980 1981 *baud = uap->port.uartclk * 4 / (64 * ibrd + fbrd); 1982 1983 if (uap->vendor->oversampling) { 1984 if (readw(uap->port.membase + UART011_CR) 1985 & ST_UART011_CR_OVSFACT) 1986 *baud *= 2; 1987 } 1988 } 1989 } 1990 1991 static int __init pl011_console_setup(struct console *co, char *options) 1992 { 1993 struct uart_amba_port *uap; 1994 int baud = 38400; 1995 int bits = 8; 1996 int parity = 'n'; 1997 int flow = 'n'; 1998 int ret; 1999 2000 /* 2001 * Check whether an invalid uart number has been specified, and 2002 * if so, search for the first available port that does have 2003 * console support. 2004 */ 2005 if (co->index >= UART_NR) 2006 co->index = 0; 2007 uap = amba_ports[co->index]; 2008 if (!uap) 2009 return -ENODEV; 2010 2011 /* Allow pins to be muxed in and configured */ 2012 pinctrl_pm_select_default_state(uap->port.dev); 2013 2014 ret = clk_prepare(uap->clk); 2015 if (ret) 2016 return ret; 2017 2018 if (dev_get_platdata(uap->port.dev)) { 2019 struct amba_pl011_data *plat; 2020 2021 plat = dev_get_platdata(uap->port.dev); 2022 if (plat->init) 2023 plat->init(); 2024 } 2025 2026 uap->port.uartclk = clk_get_rate(uap->clk); 2027 2028 if (options) 2029 uart_parse_options(options, &baud, &parity, &bits, &flow); 2030 else 2031 pl011_console_get_options(uap, &baud, &parity, &bits); 2032 2033 return uart_set_options(&uap->port, co, baud, parity, bits, flow); 2034 } 2035 2036 static struct uart_driver amba_reg; 2037 static struct console amba_console = { 2038 .name = "ttyAMA", 2039 .write = pl011_console_write, 2040 .device = uart_console_device, 2041 .setup = pl011_console_setup, 2042 .flags = CON_PRINTBUFFER, 2043 .index = -1, 2044 .data = &amba_reg, 2045 }; 2046 2047 #define AMBA_CONSOLE (&amba_console) 2048 2049 static void pl011_putc(struct uart_port *port, int c) 2050 { 2051 while (readl(port->membase + UART01x_FR) & UART01x_FR_TXFF) 2052 ; 2053 writeb(c, port->membase + UART01x_DR); 2054 while (readl(port->membase + UART01x_FR) & UART01x_FR_BUSY) 2055 ; 2056 } 2057 2058 static void pl011_early_write(struct console *con, const char *s, unsigned n) 2059 { 2060 struct earlycon_device *dev = con->data; 2061 2062 uart_console_write(&dev->port, s, n, pl011_putc); 2063 } 2064 2065 static int __init pl011_early_console_setup(struct earlycon_device *device, 2066 const char *opt) 2067 { 2068 if (!device->port.membase) 2069 return -ENODEV; 2070 2071 device->con->write = pl011_early_write; 2072 return 0; 2073 } 2074 EARLYCON_DECLARE(pl011, pl011_early_console_setup); 2075 OF_EARLYCON_DECLARE(pl011, "arm,pl011", pl011_early_console_setup); 2076 2077 #else 2078 #define AMBA_CONSOLE NULL 2079 #endif 2080 2081 static struct uart_driver amba_reg = { 2082 .owner = THIS_MODULE, 2083 .driver_name = "ttyAMA", 2084 .dev_name = "ttyAMA", 2085 .major = SERIAL_AMBA_MAJOR, 2086 .minor = SERIAL_AMBA_MINOR, 2087 .nr = UART_NR, 2088 .cons = AMBA_CONSOLE, 2089 }; 2090 2091 static int pl011_probe_dt_alias(int index, struct device *dev) 2092 { 2093 struct device_node *np; 2094 static bool seen_dev_with_alias = false; 2095 static bool seen_dev_without_alias = false; 2096 int ret = index; 2097 2098 if (!IS_ENABLED(CONFIG_OF)) 2099 return ret; 2100 2101 np = dev->of_node; 2102 if (!np) 2103 return ret; 2104 2105 ret = of_alias_get_id(np, "serial"); 2106 if (IS_ERR_VALUE(ret)) { 2107 seen_dev_without_alias = true; 2108 ret = index; 2109 } else { 2110 seen_dev_with_alias = true; 2111 if (ret >= ARRAY_SIZE(amba_ports) || amba_ports[ret] != NULL) { 2112 dev_warn(dev, "requested serial port %d not available.\n", ret); 2113 ret = index; 2114 } 2115 } 2116 2117 if (seen_dev_with_alias && seen_dev_without_alias) 2118 dev_warn(dev, "aliased and non-aliased serial devices found in device tree. Serial port enumeration may be unpredictable.\n"); 2119 2120 return ret; 2121 } 2122 2123 static int pl011_probe(struct amba_device *dev, const struct amba_id *id) 2124 { 2125 struct uart_amba_port *uap; 2126 struct vendor_data *vendor = id->data; 2127 void __iomem *base; 2128 int i, ret; 2129 2130 for (i = 0; i < ARRAY_SIZE(amba_ports); i++) 2131 if (amba_ports[i] == NULL) 2132 break; 2133 2134 if (i == ARRAY_SIZE(amba_ports)) { 2135 ret = -EBUSY; 2136 goto out; 2137 } 2138 2139 uap = devm_kzalloc(&dev->dev, sizeof(struct uart_amba_port), 2140 GFP_KERNEL); 2141 if (uap == NULL) { 2142 ret = -ENOMEM; 2143 goto out; 2144 } 2145 2146 i = pl011_probe_dt_alias(i, &dev->dev); 2147 2148 base = devm_ioremap(&dev->dev, dev->res.start, 2149 resource_size(&dev->res)); 2150 if (!base) { 2151 ret = -ENOMEM; 2152 goto out; 2153 } 2154 2155 uap->clk = devm_clk_get(&dev->dev, NULL); 2156 if (IS_ERR(uap->clk)) { 2157 ret = PTR_ERR(uap->clk); 2158 goto out; 2159 } 2160 2161 uap->vendor = vendor; 2162 uap->lcrh_rx = vendor->lcrh_rx; 2163 uap->lcrh_tx = vendor->lcrh_tx; 2164 uap->old_cr = 0; 2165 uap->fifosize = vendor->get_fifosize(dev); 2166 uap->port.dev = &dev->dev; 2167 uap->port.mapbase = dev->res.start; 2168 uap->port.membase = base; 2169 uap->port.iotype = UPIO_MEM; 2170 uap->port.irq = dev->irq[0]; 2171 uap->port.fifosize = uap->fifosize; 2172 uap->port.ops = &amba_pl011_pops; 2173 uap->port.flags = UPF_BOOT_AUTOCONF; 2174 uap->port.line = i; 2175 pl011_dma_probe(&dev->dev, uap); 2176 2177 /* Ensure interrupts from this UART are masked and cleared */ 2178 writew(0, uap->port.membase + UART011_IMSC); 2179 writew(0xffff, uap->port.membase + UART011_ICR); 2180 2181 snprintf(uap->type, sizeof(uap->type), "PL011 rev%u", amba_rev(dev)); 2182 2183 amba_ports[i] = uap; 2184 2185 amba_set_drvdata(dev, uap); 2186 2187 if (!amba_reg.state) { 2188 ret = uart_register_driver(&amba_reg); 2189 if (ret < 0) { 2190 pr_err("Failed to register AMBA-PL011 driver\n"); 2191 return ret; 2192 } 2193 } 2194 2195 ret = uart_add_one_port(&amba_reg, &uap->port); 2196 if (ret) { 2197 amba_ports[i] = NULL; 2198 uart_unregister_driver(&amba_reg); 2199 pl011_dma_remove(uap); 2200 } 2201 out: 2202 return ret; 2203 } 2204 2205 static int pl011_remove(struct amba_device *dev) 2206 { 2207 struct uart_amba_port *uap = amba_get_drvdata(dev); 2208 bool busy = false; 2209 int i; 2210 2211 uart_remove_one_port(&amba_reg, &uap->port); 2212 2213 for (i = 0; i < ARRAY_SIZE(amba_ports); i++) 2214 if (amba_ports[i] == uap) 2215 amba_ports[i] = NULL; 2216 else if (amba_ports[i]) 2217 busy = true; 2218 2219 pl011_dma_remove(uap); 2220 if (!busy) 2221 uart_unregister_driver(&amba_reg); 2222 return 0; 2223 } 2224 2225 #ifdef CONFIG_PM_SLEEP 2226 static int pl011_suspend(struct device *dev) 2227 { 2228 struct uart_amba_port *uap = dev_get_drvdata(dev); 2229 2230 if (!uap) 2231 return -EINVAL; 2232 2233 return uart_suspend_port(&amba_reg, &uap->port); 2234 } 2235 2236 static int pl011_resume(struct device *dev) 2237 { 2238 struct uart_amba_port *uap = dev_get_drvdata(dev); 2239 2240 if (!uap) 2241 return -EINVAL; 2242 2243 return uart_resume_port(&amba_reg, &uap->port); 2244 } 2245 #endif 2246 2247 static SIMPLE_DEV_PM_OPS(pl011_dev_pm_ops, pl011_suspend, pl011_resume); 2248 2249 static struct amba_id pl011_ids[] = { 2250 { 2251 .id = 0x00041011, 2252 .mask = 0x000fffff, 2253 .data = &vendor_arm, 2254 }, 2255 { 2256 .id = 0x00380802, 2257 .mask = 0x00ffffff, 2258 .data = &vendor_st, 2259 }, 2260 { 0, 0 }, 2261 }; 2262 2263 MODULE_DEVICE_TABLE(amba, pl011_ids); 2264 2265 static struct amba_driver pl011_driver = { 2266 .drv = { 2267 .name = "uart-pl011", 2268 .pm = &pl011_dev_pm_ops, 2269 }, 2270 .id_table = pl011_ids, 2271 .probe = pl011_probe, 2272 .remove = pl011_remove, 2273 }; 2274 2275 static int __init pl011_init(void) 2276 { 2277 printk(KERN_INFO "Serial: AMBA PL011 UART driver\n"); 2278 2279 return amba_driver_register(&pl011_driver); 2280 } 2281 2282 static void __exit pl011_exit(void) 2283 { 2284 amba_driver_unregister(&pl011_driver); 2285 } 2286 2287 /* 2288 * While this can be a module, if builtin it's most likely the console 2289 * So let's leave module_exit but move module_init to an earlier place 2290 */ 2291 arch_initcall(pl011_init); 2292 module_exit(pl011_exit); 2293 2294 MODULE_AUTHOR("ARM Ltd/Deep Blue Solutions Ltd"); 2295 MODULE_DESCRIPTION("ARM AMBA serial port driver"); 2296 MODULE_LICENSE("GPL"); 2297