xref: /openbmc/linux/drivers/tty/serial/amba-pl011.c (revision d40d48e1)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  *  Driver for AMBA serial ports
4  *
5  *  Based on drivers/char/serial.c, by Linus Torvalds, Theodore Ts'o.
6  *
7  *  Copyright 1999 ARM Limited
8  *  Copyright (C) 2000 Deep Blue Solutions Ltd.
9  *  Copyright (C) 2010 ST-Ericsson SA
10  *
11  * This is a generic driver for ARM AMBA-type serial ports.  They
12  * have a lot of 16550-like features, but are not register compatible.
13  * Note that although they do have CTS, DCD and DSR inputs, they do
14  * not have an RI input, nor do they have DTR or RTS outputs.  If
15  * required, these have to be supplied via some other means (eg, GPIO)
16  * and hooked into this driver.
17  */
18 
19 #include <linux/module.h>
20 #include <linux/ioport.h>
21 #include <linux/init.h>
22 #include <linux/console.h>
23 #include <linux/sysrq.h>
24 #include <linux/device.h>
25 #include <linux/tty.h>
26 #include <linux/tty_flip.h>
27 #include <linux/serial_core.h>
28 #include <linux/serial.h>
29 #include <linux/amba/bus.h>
30 #include <linux/amba/serial.h>
31 #include <linux/clk.h>
32 #include <linux/slab.h>
33 #include <linux/dmaengine.h>
34 #include <linux/dma-mapping.h>
35 #include <linux/scatterlist.h>
36 #include <linux/delay.h>
37 #include <linux/types.h>
38 #include <linux/of.h>
39 #include <linux/of_device.h>
40 #include <linux/pinctrl/consumer.h>
41 #include <linux/sizes.h>
42 #include <linux/io.h>
43 #include <linux/acpi.h>
44 
45 #include "amba-pl011.h"
46 
47 #define UART_NR			14
48 
49 #define SERIAL_AMBA_MAJOR	204
50 #define SERIAL_AMBA_MINOR	64
51 #define SERIAL_AMBA_NR		UART_NR
52 
53 #define AMBA_ISR_PASS_LIMIT	256
54 
55 #define UART_DR_ERROR		(UART011_DR_OE|UART011_DR_BE|UART011_DR_PE|UART011_DR_FE)
56 #define UART_DUMMY_DR_RX	(1 << 16)
57 
58 static u16 pl011_std_offsets[REG_ARRAY_SIZE] = {
59 	[REG_DR] = UART01x_DR,
60 	[REG_FR] = UART01x_FR,
61 	[REG_LCRH_RX] = UART011_LCRH,
62 	[REG_LCRH_TX] = UART011_LCRH,
63 	[REG_IBRD] = UART011_IBRD,
64 	[REG_FBRD] = UART011_FBRD,
65 	[REG_CR] = UART011_CR,
66 	[REG_IFLS] = UART011_IFLS,
67 	[REG_IMSC] = UART011_IMSC,
68 	[REG_RIS] = UART011_RIS,
69 	[REG_MIS] = UART011_MIS,
70 	[REG_ICR] = UART011_ICR,
71 	[REG_DMACR] = UART011_DMACR,
72 };
73 
74 /* There is by now at least one vendor with differing details, so handle it */
75 struct vendor_data {
76 	const u16		*reg_offset;
77 	unsigned int		ifls;
78 	unsigned int		fr_busy;
79 	unsigned int		fr_dsr;
80 	unsigned int		fr_cts;
81 	unsigned int		fr_ri;
82 	unsigned int		inv_fr;
83 	bool			access_32b;
84 	bool			oversampling;
85 	bool			dma_threshold;
86 	bool			cts_event_workaround;
87 	bool			always_enabled;
88 	bool			fixed_options;
89 
90 	unsigned int (*get_fifosize)(struct amba_device *dev);
91 };
92 
93 static unsigned int get_fifosize_arm(struct amba_device *dev)
94 {
95 	return amba_rev(dev) < 3 ? 16 : 32;
96 }
97 
98 static struct vendor_data vendor_arm = {
99 	.reg_offset		= pl011_std_offsets,
100 	.ifls			= UART011_IFLS_RX4_8|UART011_IFLS_TX4_8,
101 	.fr_busy		= UART01x_FR_BUSY,
102 	.fr_dsr			= UART01x_FR_DSR,
103 	.fr_cts			= UART01x_FR_CTS,
104 	.fr_ri			= UART011_FR_RI,
105 	.oversampling		= false,
106 	.dma_threshold		= false,
107 	.cts_event_workaround	= false,
108 	.always_enabled		= false,
109 	.fixed_options		= false,
110 	.get_fifosize		= get_fifosize_arm,
111 };
112 
113 static const struct vendor_data vendor_sbsa = {
114 	.reg_offset		= pl011_std_offsets,
115 	.fr_busy		= UART01x_FR_BUSY,
116 	.fr_dsr			= UART01x_FR_DSR,
117 	.fr_cts			= UART01x_FR_CTS,
118 	.fr_ri			= UART011_FR_RI,
119 	.access_32b		= true,
120 	.oversampling		= false,
121 	.dma_threshold		= false,
122 	.cts_event_workaround	= false,
123 	.always_enabled		= true,
124 	.fixed_options		= true,
125 };
126 
127 #ifdef CONFIG_ACPI_SPCR_TABLE
128 static const struct vendor_data vendor_qdt_qdf2400_e44 = {
129 	.reg_offset		= pl011_std_offsets,
130 	.fr_busy		= UART011_FR_TXFE,
131 	.fr_dsr			= UART01x_FR_DSR,
132 	.fr_cts			= UART01x_FR_CTS,
133 	.fr_ri			= UART011_FR_RI,
134 	.inv_fr			= UART011_FR_TXFE,
135 	.access_32b		= true,
136 	.oversampling		= false,
137 	.dma_threshold		= false,
138 	.cts_event_workaround	= false,
139 	.always_enabled		= true,
140 	.fixed_options		= true,
141 };
142 #endif
143 
144 static u16 pl011_st_offsets[REG_ARRAY_SIZE] = {
145 	[REG_DR] = UART01x_DR,
146 	[REG_ST_DMAWM] = ST_UART011_DMAWM,
147 	[REG_ST_TIMEOUT] = ST_UART011_TIMEOUT,
148 	[REG_FR] = UART01x_FR,
149 	[REG_LCRH_RX] = ST_UART011_LCRH_RX,
150 	[REG_LCRH_TX] = ST_UART011_LCRH_TX,
151 	[REG_IBRD] = UART011_IBRD,
152 	[REG_FBRD] = UART011_FBRD,
153 	[REG_CR] = UART011_CR,
154 	[REG_IFLS] = UART011_IFLS,
155 	[REG_IMSC] = UART011_IMSC,
156 	[REG_RIS] = UART011_RIS,
157 	[REG_MIS] = UART011_MIS,
158 	[REG_ICR] = UART011_ICR,
159 	[REG_DMACR] = UART011_DMACR,
160 	[REG_ST_XFCR] = ST_UART011_XFCR,
161 	[REG_ST_XON1] = ST_UART011_XON1,
162 	[REG_ST_XON2] = ST_UART011_XON2,
163 	[REG_ST_XOFF1] = ST_UART011_XOFF1,
164 	[REG_ST_XOFF2] = ST_UART011_XOFF2,
165 	[REG_ST_ITCR] = ST_UART011_ITCR,
166 	[REG_ST_ITIP] = ST_UART011_ITIP,
167 	[REG_ST_ABCR] = ST_UART011_ABCR,
168 	[REG_ST_ABIMSC] = ST_UART011_ABIMSC,
169 };
170 
171 static unsigned int get_fifosize_st(struct amba_device *dev)
172 {
173 	return 64;
174 }
175 
176 static struct vendor_data vendor_st = {
177 	.reg_offset		= pl011_st_offsets,
178 	.ifls			= UART011_IFLS_RX_HALF|UART011_IFLS_TX_HALF,
179 	.fr_busy		= UART01x_FR_BUSY,
180 	.fr_dsr			= UART01x_FR_DSR,
181 	.fr_cts			= UART01x_FR_CTS,
182 	.fr_ri			= UART011_FR_RI,
183 	.oversampling		= true,
184 	.dma_threshold		= true,
185 	.cts_event_workaround	= true,
186 	.always_enabled		= false,
187 	.fixed_options		= false,
188 	.get_fifosize		= get_fifosize_st,
189 };
190 
191 static const u16 pl011_zte_offsets[REG_ARRAY_SIZE] = {
192 	[REG_DR] = ZX_UART011_DR,
193 	[REG_FR] = ZX_UART011_FR,
194 	[REG_LCRH_RX] = ZX_UART011_LCRH,
195 	[REG_LCRH_TX] = ZX_UART011_LCRH,
196 	[REG_IBRD] = ZX_UART011_IBRD,
197 	[REG_FBRD] = ZX_UART011_FBRD,
198 	[REG_CR] = ZX_UART011_CR,
199 	[REG_IFLS] = ZX_UART011_IFLS,
200 	[REG_IMSC] = ZX_UART011_IMSC,
201 	[REG_RIS] = ZX_UART011_RIS,
202 	[REG_MIS] = ZX_UART011_MIS,
203 	[REG_ICR] = ZX_UART011_ICR,
204 	[REG_DMACR] = ZX_UART011_DMACR,
205 };
206 
207 static unsigned int get_fifosize_zte(struct amba_device *dev)
208 {
209 	return 16;
210 }
211 
212 static struct vendor_data vendor_zte = {
213 	.reg_offset		= pl011_zte_offsets,
214 	.access_32b		= true,
215 	.ifls			= UART011_IFLS_RX4_8|UART011_IFLS_TX4_8,
216 	.fr_busy		= ZX_UART01x_FR_BUSY,
217 	.fr_dsr			= ZX_UART01x_FR_DSR,
218 	.fr_cts			= ZX_UART01x_FR_CTS,
219 	.fr_ri			= ZX_UART011_FR_RI,
220 	.get_fifosize		= get_fifosize_zte,
221 };
222 
223 /* Deals with DMA transactions */
224 
225 struct pl011_sgbuf {
226 	struct scatterlist sg;
227 	char *buf;
228 };
229 
230 struct pl011_dmarx_data {
231 	struct dma_chan		*chan;
232 	struct completion	complete;
233 	bool			use_buf_b;
234 	struct pl011_sgbuf	sgbuf_a;
235 	struct pl011_sgbuf	sgbuf_b;
236 	dma_cookie_t		cookie;
237 	bool			running;
238 	struct timer_list	timer;
239 	unsigned int last_residue;
240 	unsigned long last_jiffies;
241 	bool auto_poll_rate;
242 	unsigned int poll_rate;
243 	unsigned int poll_timeout;
244 };
245 
246 struct pl011_dmatx_data {
247 	struct dma_chan		*chan;
248 	struct scatterlist	sg;
249 	char			*buf;
250 	bool			queued;
251 };
252 
253 /*
254  * We wrap our port structure around the generic uart_port.
255  */
256 struct uart_amba_port {
257 	struct uart_port	port;
258 	const u16		*reg_offset;
259 	struct clk		*clk;
260 	const struct vendor_data *vendor;
261 	unsigned int		dmacr;		/* dma control reg */
262 	unsigned int		im;		/* interrupt mask */
263 	unsigned int		old_status;
264 	unsigned int		fifosize;	/* vendor-specific */
265 	unsigned int		old_cr;		/* state during shutdown */
266 	unsigned int		fixed_baud;	/* vendor-set fixed baud rate */
267 	char			type[12];
268 	bool			rs485_tx_started;
269 	unsigned int		rs485_tx_drain_interval; /* usecs */
270 #ifdef CONFIG_DMA_ENGINE
271 	/* DMA stuff */
272 	bool			using_tx_dma;
273 	bool			using_rx_dma;
274 	struct pl011_dmarx_data dmarx;
275 	struct pl011_dmatx_data	dmatx;
276 	bool			dma_probed;
277 #endif
278 };
279 
280 static unsigned int pl011_tx_empty(struct uart_port *port);
281 
282 static unsigned int pl011_reg_to_offset(const struct uart_amba_port *uap,
283 	unsigned int reg)
284 {
285 	return uap->reg_offset[reg];
286 }
287 
288 static unsigned int pl011_read(const struct uart_amba_port *uap,
289 	unsigned int reg)
290 {
291 	void __iomem *addr = uap->port.membase + pl011_reg_to_offset(uap, reg);
292 
293 	return (uap->port.iotype == UPIO_MEM32) ?
294 		readl_relaxed(addr) : readw_relaxed(addr);
295 }
296 
297 static void pl011_write(unsigned int val, const struct uart_amba_port *uap,
298 	unsigned int reg)
299 {
300 	void __iomem *addr = uap->port.membase + pl011_reg_to_offset(uap, reg);
301 
302 	if (uap->port.iotype == UPIO_MEM32)
303 		writel_relaxed(val, addr);
304 	else
305 		writew_relaxed(val, addr);
306 }
307 
308 /*
309  * Reads up to 256 characters from the FIFO or until it's empty and
310  * inserts them into the TTY layer. Returns the number of characters
311  * read from the FIFO.
312  */
313 static int pl011_fifo_to_tty(struct uart_amba_port *uap)
314 {
315 	unsigned int ch, flag, fifotaken;
316 	int sysrq;
317 	u16 status;
318 
319 	for (fifotaken = 0; fifotaken != 256; fifotaken++) {
320 		status = pl011_read(uap, REG_FR);
321 		if (status & UART01x_FR_RXFE)
322 			break;
323 
324 		/* Take chars from the FIFO and update status */
325 		ch = pl011_read(uap, REG_DR) | UART_DUMMY_DR_RX;
326 		flag = TTY_NORMAL;
327 		uap->port.icount.rx++;
328 
329 		if (unlikely(ch & UART_DR_ERROR)) {
330 			if (ch & UART011_DR_BE) {
331 				ch &= ~(UART011_DR_FE | UART011_DR_PE);
332 				uap->port.icount.brk++;
333 				if (uart_handle_break(&uap->port))
334 					continue;
335 			} else if (ch & UART011_DR_PE)
336 				uap->port.icount.parity++;
337 			else if (ch & UART011_DR_FE)
338 				uap->port.icount.frame++;
339 			if (ch & UART011_DR_OE)
340 				uap->port.icount.overrun++;
341 
342 			ch &= uap->port.read_status_mask;
343 
344 			if (ch & UART011_DR_BE)
345 				flag = TTY_BREAK;
346 			else if (ch & UART011_DR_PE)
347 				flag = TTY_PARITY;
348 			else if (ch & UART011_DR_FE)
349 				flag = TTY_FRAME;
350 		}
351 
352 		spin_unlock(&uap->port.lock);
353 		sysrq = uart_handle_sysrq_char(&uap->port, ch & 255);
354 		spin_lock(&uap->port.lock);
355 
356 		if (!sysrq)
357 			uart_insert_char(&uap->port, ch, UART011_DR_OE, ch, flag);
358 	}
359 
360 	return fifotaken;
361 }
362 
363 
364 /*
365  * All the DMA operation mode stuff goes inside this ifdef.
366  * This assumes that you have a generic DMA device interface,
367  * no custom DMA interfaces are supported.
368  */
369 #ifdef CONFIG_DMA_ENGINE
370 
371 #define PL011_DMA_BUFFER_SIZE PAGE_SIZE
372 
373 static int pl011_sgbuf_init(struct dma_chan *chan, struct pl011_sgbuf *sg,
374 	enum dma_data_direction dir)
375 {
376 	dma_addr_t dma_addr;
377 
378 	sg->buf = dma_alloc_coherent(chan->device->dev,
379 		PL011_DMA_BUFFER_SIZE, &dma_addr, GFP_KERNEL);
380 	if (!sg->buf)
381 		return -ENOMEM;
382 
383 	sg_init_table(&sg->sg, 1);
384 	sg_set_page(&sg->sg, phys_to_page(dma_addr),
385 		PL011_DMA_BUFFER_SIZE, offset_in_page(dma_addr));
386 	sg_dma_address(&sg->sg) = dma_addr;
387 	sg_dma_len(&sg->sg) = PL011_DMA_BUFFER_SIZE;
388 
389 	return 0;
390 }
391 
392 static void pl011_sgbuf_free(struct dma_chan *chan, struct pl011_sgbuf *sg,
393 	enum dma_data_direction dir)
394 {
395 	if (sg->buf) {
396 		dma_free_coherent(chan->device->dev,
397 			PL011_DMA_BUFFER_SIZE, sg->buf,
398 			sg_dma_address(&sg->sg));
399 	}
400 }
401 
402 static void pl011_dma_probe(struct uart_amba_port *uap)
403 {
404 	/* DMA is the sole user of the platform data right now */
405 	struct amba_pl011_data *plat = dev_get_platdata(uap->port.dev);
406 	struct device *dev = uap->port.dev;
407 	struct dma_slave_config tx_conf = {
408 		.dst_addr = uap->port.mapbase +
409 				 pl011_reg_to_offset(uap, REG_DR),
410 		.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
411 		.direction = DMA_MEM_TO_DEV,
412 		.dst_maxburst = uap->fifosize >> 1,
413 		.device_fc = false,
414 	};
415 	struct dma_chan *chan;
416 	dma_cap_mask_t mask;
417 
418 	uap->dma_probed = true;
419 	chan = dma_request_chan(dev, "tx");
420 	if (IS_ERR(chan)) {
421 		if (PTR_ERR(chan) == -EPROBE_DEFER) {
422 			uap->dma_probed = false;
423 			return;
424 		}
425 
426 		/* We need platform data */
427 		if (!plat || !plat->dma_filter) {
428 			dev_info(uap->port.dev, "no DMA platform data\n");
429 			return;
430 		}
431 
432 		/* Try to acquire a generic DMA engine slave TX channel */
433 		dma_cap_zero(mask);
434 		dma_cap_set(DMA_SLAVE, mask);
435 
436 		chan = dma_request_channel(mask, plat->dma_filter,
437 						plat->dma_tx_param);
438 		if (!chan) {
439 			dev_err(uap->port.dev, "no TX DMA channel!\n");
440 			return;
441 		}
442 	}
443 
444 	dmaengine_slave_config(chan, &tx_conf);
445 	uap->dmatx.chan = chan;
446 
447 	dev_info(uap->port.dev, "DMA channel TX %s\n",
448 		 dma_chan_name(uap->dmatx.chan));
449 
450 	/* Optionally make use of an RX channel as well */
451 	chan = dma_request_slave_channel(dev, "rx");
452 
453 	if (!chan && plat && plat->dma_rx_param) {
454 		chan = dma_request_channel(mask, plat->dma_filter, plat->dma_rx_param);
455 
456 		if (!chan) {
457 			dev_err(uap->port.dev, "no RX DMA channel!\n");
458 			return;
459 		}
460 	}
461 
462 	if (chan) {
463 		struct dma_slave_config rx_conf = {
464 			.src_addr = uap->port.mapbase +
465 				pl011_reg_to_offset(uap, REG_DR),
466 			.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
467 			.direction = DMA_DEV_TO_MEM,
468 			.src_maxburst = uap->fifosize >> 2,
469 			.device_fc = false,
470 		};
471 		struct dma_slave_caps caps;
472 
473 		/*
474 		 * Some DMA controllers provide information on their capabilities.
475 		 * If the controller does, check for suitable residue processing
476 		 * otherwise assime all is well.
477 		 */
478 		if (0 == dma_get_slave_caps(chan, &caps)) {
479 			if (caps.residue_granularity ==
480 					DMA_RESIDUE_GRANULARITY_DESCRIPTOR) {
481 				dma_release_channel(chan);
482 				dev_info(uap->port.dev,
483 					"RX DMA disabled - no residue processing\n");
484 				return;
485 			}
486 		}
487 		dmaengine_slave_config(chan, &rx_conf);
488 		uap->dmarx.chan = chan;
489 
490 		uap->dmarx.auto_poll_rate = false;
491 		if (plat && plat->dma_rx_poll_enable) {
492 			/* Set poll rate if specified. */
493 			if (plat->dma_rx_poll_rate) {
494 				uap->dmarx.auto_poll_rate = false;
495 				uap->dmarx.poll_rate = plat->dma_rx_poll_rate;
496 			} else {
497 				/*
498 				 * 100 ms defaults to poll rate if not
499 				 * specified. This will be adjusted with
500 				 * the baud rate at set_termios.
501 				 */
502 				uap->dmarx.auto_poll_rate = true;
503 				uap->dmarx.poll_rate =  100;
504 			}
505 			/* 3 secs defaults poll_timeout if not specified. */
506 			if (plat->dma_rx_poll_timeout)
507 				uap->dmarx.poll_timeout =
508 					plat->dma_rx_poll_timeout;
509 			else
510 				uap->dmarx.poll_timeout = 3000;
511 		} else if (!plat && dev->of_node) {
512 			uap->dmarx.auto_poll_rate = of_property_read_bool(
513 						dev->of_node, "auto-poll");
514 			if (uap->dmarx.auto_poll_rate) {
515 				u32 x;
516 
517 				if (0 == of_property_read_u32(dev->of_node,
518 						"poll-rate-ms", &x))
519 					uap->dmarx.poll_rate = x;
520 				else
521 					uap->dmarx.poll_rate = 100;
522 				if (0 == of_property_read_u32(dev->of_node,
523 						"poll-timeout-ms", &x))
524 					uap->dmarx.poll_timeout = x;
525 				else
526 					uap->dmarx.poll_timeout = 3000;
527 			}
528 		}
529 		dev_info(uap->port.dev, "DMA channel RX %s\n",
530 			 dma_chan_name(uap->dmarx.chan));
531 	}
532 }
533 
534 static void pl011_dma_remove(struct uart_amba_port *uap)
535 {
536 	if (uap->dmatx.chan)
537 		dma_release_channel(uap->dmatx.chan);
538 	if (uap->dmarx.chan)
539 		dma_release_channel(uap->dmarx.chan);
540 }
541 
542 /* Forward declare these for the refill routine */
543 static int pl011_dma_tx_refill(struct uart_amba_port *uap);
544 static void pl011_start_tx_pio(struct uart_amba_port *uap);
545 
546 /*
547  * The current DMA TX buffer has been sent.
548  * Try to queue up another DMA buffer.
549  */
550 static void pl011_dma_tx_callback(void *data)
551 {
552 	struct uart_amba_port *uap = data;
553 	struct pl011_dmatx_data *dmatx = &uap->dmatx;
554 	unsigned long flags;
555 	u16 dmacr;
556 
557 	spin_lock_irqsave(&uap->port.lock, flags);
558 	if (uap->dmatx.queued)
559 		dma_unmap_sg(dmatx->chan->device->dev, &dmatx->sg, 1,
560 			     DMA_TO_DEVICE);
561 
562 	dmacr = uap->dmacr;
563 	uap->dmacr = dmacr & ~UART011_TXDMAE;
564 	pl011_write(uap->dmacr, uap, REG_DMACR);
565 
566 	/*
567 	 * If TX DMA was disabled, it means that we've stopped the DMA for
568 	 * some reason (eg, XOFF received, or we want to send an X-char.)
569 	 *
570 	 * Note: we need to be careful here of a potential race between DMA
571 	 * and the rest of the driver - if the driver disables TX DMA while
572 	 * a TX buffer completing, we must update the tx queued status to
573 	 * get further refills (hence we check dmacr).
574 	 */
575 	if (!(dmacr & UART011_TXDMAE) || uart_tx_stopped(&uap->port) ||
576 	    uart_circ_empty(&uap->port.state->xmit)) {
577 		uap->dmatx.queued = false;
578 		spin_unlock_irqrestore(&uap->port.lock, flags);
579 		return;
580 	}
581 
582 	if (pl011_dma_tx_refill(uap) <= 0)
583 		/*
584 		 * We didn't queue a DMA buffer for some reason, but we
585 		 * have data pending to be sent.  Re-enable the TX IRQ.
586 		 */
587 		pl011_start_tx_pio(uap);
588 
589 	spin_unlock_irqrestore(&uap->port.lock, flags);
590 }
591 
592 /*
593  * Try to refill the TX DMA buffer.
594  * Locking: called with port lock held and IRQs disabled.
595  * Returns:
596  *   1 if we queued up a TX DMA buffer.
597  *   0 if we didn't want to handle this by DMA
598  *  <0 on error
599  */
600 static int pl011_dma_tx_refill(struct uart_amba_port *uap)
601 {
602 	struct pl011_dmatx_data *dmatx = &uap->dmatx;
603 	struct dma_chan *chan = dmatx->chan;
604 	struct dma_device *dma_dev = chan->device;
605 	struct dma_async_tx_descriptor *desc;
606 	struct circ_buf *xmit = &uap->port.state->xmit;
607 	unsigned int count;
608 
609 	/*
610 	 * Try to avoid the overhead involved in using DMA if the
611 	 * transaction fits in the first half of the FIFO, by using
612 	 * the standard interrupt handling.  This ensures that we
613 	 * issue a uart_write_wakeup() at the appropriate time.
614 	 */
615 	count = uart_circ_chars_pending(xmit);
616 	if (count < (uap->fifosize >> 1)) {
617 		uap->dmatx.queued = false;
618 		return 0;
619 	}
620 
621 	/*
622 	 * Bodge: don't send the last character by DMA, as this
623 	 * will prevent XON from notifying us to restart DMA.
624 	 */
625 	count -= 1;
626 
627 	/* Else proceed to copy the TX chars to the DMA buffer and fire DMA */
628 	if (count > PL011_DMA_BUFFER_SIZE)
629 		count = PL011_DMA_BUFFER_SIZE;
630 
631 	if (xmit->tail < xmit->head)
632 		memcpy(&dmatx->buf[0], &xmit->buf[xmit->tail], count);
633 	else {
634 		size_t first = UART_XMIT_SIZE - xmit->tail;
635 		size_t second;
636 
637 		if (first > count)
638 			first = count;
639 		second = count - first;
640 
641 		memcpy(&dmatx->buf[0], &xmit->buf[xmit->tail], first);
642 		if (second)
643 			memcpy(&dmatx->buf[first], &xmit->buf[0], second);
644 	}
645 
646 	dmatx->sg.length = count;
647 
648 	if (dma_map_sg(dma_dev->dev, &dmatx->sg, 1, DMA_TO_DEVICE) != 1) {
649 		uap->dmatx.queued = false;
650 		dev_dbg(uap->port.dev, "unable to map TX DMA\n");
651 		return -EBUSY;
652 	}
653 
654 	desc = dmaengine_prep_slave_sg(chan, &dmatx->sg, 1, DMA_MEM_TO_DEV,
655 					     DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
656 	if (!desc) {
657 		dma_unmap_sg(dma_dev->dev, &dmatx->sg, 1, DMA_TO_DEVICE);
658 		uap->dmatx.queued = false;
659 		/*
660 		 * If DMA cannot be used right now, we complete this
661 		 * transaction via IRQ and let the TTY layer retry.
662 		 */
663 		dev_dbg(uap->port.dev, "TX DMA busy\n");
664 		return -EBUSY;
665 	}
666 
667 	/* Some data to go along to the callback */
668 	desc->callback = pl011_dma_tx_callback;
669 	desc->callback_param = uap;
670 
671 	/* All errors should happen at prepare time */
672 	dmaengine_submit(desc);
673 
674 	/* Fire the DMA transaction */
675 	dma_dev->device_issue_pending(chan);
676 
677 	uap->dmacr |= UART011_TXDMAE;
678 	pl011_write(uap->dmacr, uap, REG_DMACR);
679 	uap->dmatx.queued = true;
680 
681 	/*
682 	 * Now we know that DMA will fire, so advance the ring buffer
683 	 * with the stuff we just dispatched.
684 	 */
685 	xmit->tail = (xmit->tail + count) & (UART_XMIT_SIZE - 1);
686 	uap->port.icount.tx += count;
687 
688 	if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
689 		uart_write_wakeup(&uap->port);
690 
691 	return 1;
692 }
693 
694 /*
695  * We received a transmit interrupt without a pending X-char but with
696  * pending characters.
697  * Locking: called with port lock held and IRQs disabled.
698  * Returns:
699  *   false if we want to use PIO to transmit
700  *   true if we queued a DMA buffer
701  */
702 static bool pl011_dma_tx_irq(struct uart_amba_port *uap)
703 {
704 	if (!uap->using_tx_dma)
705 		return false;
706 
707 	/*
708 	 * If we already have a TX buffer queued, but received a
709 	 * TX interrupt, it will be because we've just sent an X-char.
710 	 * Ensure the TX DMA is enabled and the TX IRQ is disabled.
711 	 */
712 	if (uap->dmatx.queued) {
713 		uap->dmacr |= UART011_TXDMAE;
714 		pl011_write(uap->dmacr, uap, REG_DMACR);
715 		uap->im &= ~UART011_TXIM;
716 		pl011_write(uap->im, uap, REG_IMSC);
717 		return true;
718 	}
719 
720 	/*
721 	 * We don't have a TX buffer queued, so try to queue one.
722 	 * If we successfully queued a buffer, mask the TX IRQ.
723 	 */
724 	if (pl011_dma_tx_refill(uap) > 0) {
725 		uap->im &= ~UART011_TXIM;
726 		pl011_write(uap->im, uap, REG_IMSC);
727 		return true;
728 	}
729 	return false;
730 }
731 
732 /*
733  * Stop the DMA transmit (eg, due to received XOFF).
734  * Locking: called with port lock held and IRQs disabled.
735  */
736 static inline void pl011_dma_tx_stop(struct uart_amba_port *uap)
737 {
738 	if (uap->dmatx.queued) {
739 		uap->dmacr &= ~UART011_TXDMAE;
740 		pl011_write(uap->dmacr, uap, REG_DMACR);
741 	}
742 }
743 
744 /*
745  * Try to start a DMA transmit, or in the case of an XON/OFF
746  * character queued for send, try to get that character out ASAP.
747  * Locking: called with port lock held and IRQs disabled.
748  * Returns:
749  *   false if we want the TX IRQ to be enabled
750  *   true if we have a buffer queued
751  */
752 static inline bool pl011_dma_tx_start(struct uart_amba_port *uap)
753 {
754 	u16 dmacr;
755 
756 	if (!uap->using_tx_dma)
757 		return false;
758 
759 	if (!uap->port.x_char) {
760 		/* no X-char, try to push chars out in DMA mode */
761 		bool ret = true;
762 
763 		if (!uap->dmatx.queued) {
764 			if (pl011_dma_tx_refill(uap) > 0) {
765 				uap->im &= ~UART011_TXIM;
766 				pl011_write(uap->im, uap, REG_IMSC);
767 			} else
768 				ret = false;
769 		} else if (!(uap->dmacr & UART011_TXDMAE)) {
770 			uap->dmacr |= UART011_TXDMAE;
771 			pl011_write(uap->dmacr, uap, REG_DMACR);
772 		}
773 		return ret;
774 	}
775 
776 	/*
777 	 * We have an X-char to send.  Disable DMA to prevent it loading
778 	 * the TX fifo, and then see if we can stuff it into the FIFO.
779 	 */
780 	dmacr = uap->dmacr;
781 	uap->dmacr &= ~UART011_TXDMAE;
782 	pl011_write(uap->dmacr, uap, REG_DMACR);
783 
784 	if (pl011_read(uap, REG_FR) & UART01x_FR_TXFF) {
785 		/*
786 		 * No space in the FIFO, so enable the transmit interrupt
787 		 * so we know when there is space.  Note that once we've
788 		 * loaded the character, we should just re-enable DMA.
789 		 */
790 		return false;
791 	}
792 
793 	pl011_write(uap->port.x_char, uap, REG_DR);
794 	uap->port.icount.tx++;
795 	uap->port.x_char = 0;
796 
797 	/* Success - restore the DMA state */
798 	uap->dmacr = dmacr;
799 	pl011_write(dmacr, uap, REG_DMACR);
800 
801 	return true;
802 }
803 
804 /*
805  * Flush the transmit buffer.
806  * Locking: called with port lock held and IRQs disabled.
807  */
808 static void pl011_dma_flush_buffer(struct uart_port *port)
809 __releases(&uap->port.lock)
810 __acquires(&uap->port.lock)
811 {
812 	struct uart_amba_port *uap =
813 	    container_of(port, struct uart_amba_port, port);
814 
815 	if (!uap->using_tx_dma)
816 		return;
817 
818 	dmaengine_terminate_async(uap->dmatx.chan);
819 
820 	if (uap->dmatx.queued) {
821 		dma_unmap_sg(uap->dmatx.chan->device->dev, &uap->dmatx.sg, 1,
822 			     DMA_TO_DEVICE);
823 		uap->dmatx.queued = false;
824 		uap->dmacr &= ~UART011_TXDMAE;
825 		pl011_write(uap->dmacr, uap, REG_DMACR);
826 	}
827 }
828 
829 static void pl011_dma_rx_callback(void *data);
830 
831 static int pl011_dma_rx_trigger_dma(struct uart_amba_port *uap)
832 {
833 	struct dma_chan *rxchan = uap->dmarx.chan;
834 	struct pl011_dmarx_data *dmarx = &uap->dmarx;
835 	struct dma_async_tx_descriptor *desc;
836 	struct pl011_sgbuf *sgbuf;
837 
838 	if (!rxchan)
839 		return -EIO;
840 
841 	/* Start the RX DMA job */
842 	sgbuf = uap->dmarx.use_buf_b ?
843 		&uap->dmarx.sgbuf_b : &uap->dmarx.sgbuf_a;
844 	desc = dmaengine_prep_slave_sg(rxchan, &sgbuf->sg, 1,
845 					DMA_DEV_TO_MEM,
846 					DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
847 	/*
848 	 * If the DMA engine is busy and cannot prepare a
849 	 * channel, no big deal, the driver will fall back
850 	 * to interrupt mode as a result of this error code.
851 	 */
852 	if (!desc) {
853 		uap->dmarx.running = false;
854 		dmaengine_terminate_all(rxchan);
855 		return -EBUSY;
856 	}
857 
858 	/* Some data to go along to the callback */
859 	desc->callback = pl011_dma_rx_callback;
860 	desc->callback_param = uap;
861 	dmarx->cookie = dmaengine_submit(desc);
862 	dma_async_issue_pending(rxchan);
863 
864 	uap->dmacr |= UART011_RXDMAE;
865 	pl011_write(uap->dmacr, uap, REG_DMACR);
866 	uap->dmarx.running = true;
867 
868 	uap->im &= ~UART011_RXIM;
869 	pl011_write(uap->im, uap, REG_IMSC);
870 
871 	return 0;
872 }
873 
874 /*
875  * This is called when either the DMA job is complete, or
876  * the FIFO timeout interrupt occurred. This must be called
877  * with the port spinlock uap->port.lock held.
878  */
879 static void pl011_dma_rx_chars(struct uart_amba_port *uap,
880 			       u32 pending, bool use_buf_b,
881 			       bool readfifo)
882 {
883 	struct tty_port *port = &uap->port.state->port;
884 	struct pl011_sgbuf *sgbuf = use_buf_b ?
885 		&uap->dmarx.sgbuf_b : &uap->dmarx.sgbuf_a;
886 	int dma_count = 0;
887 	u32 fifotaken = 0; /* only used for vdbg() */
888 
889 	struct pl011_dmarx_data *dmarx = &uap->dmarx;
890 	int dmataken = 0;
891 
892 	if (uap->dmarx.poll_rate) {
893 		/* The data can be taken by polling */
894 		dmataken = sgbuf->sg.length - dmarx->last_residue;
895 		/* Recalculate the pending size */
896 		if (pending >= dmataken)
897 			pending -= dmataken;
898 	}
899 
900 	/* Pick the remain data from the DMA */
901 	if (pending) {
902 
903 		/*
904 		 * First take all chars in the DMA pipe, then look in the FIFO.
905 		 * Note that tty_insert_flip_buf() tries to take as many chars
906 		 * as it can.
907 		 */
908 		dma_count = tty_insert_flip_string(port, sgbuf->buf + dmataken,
909 				pending);
910 
911 		uap->port.icount.rx += dma_count;
912 		if (dma_count < pending)
913 			dev_warn(uap->port.dev,
914 				 "couldn't insert all characters (TTY is full?)\n");
915 	}
916 
917 	/* Reset the last_residue for Rx DMA poll */
918 	if (uap->dmarx.poll_rate)
919 		dmarx->last_residue = sgbuf->sg.length;
920 
921 	/*
922 	 * Only continue with trying to read the FIFO if all DMA chars have
923 	 * been taken first.
924 	 */
925 	if (dma_count == pending && readfifo) {
926 		/* Clear any error flags */
927 		pl011_write(UART011_OEIS | UART011_BEIS | UART011_PEIS |
928 			    UART011_FEIS, uap, REG_ICR);
929 
930 		/*
931 		 * If we read all the DMA'd characters, and we had an
932 		 * incomplete buffer, that could be due to an rx error, or
933 		 * maybe we just timed out. Read any pending chars and check
934 		 * the error status.
935 		 *
936 		 * Error conditions will only occur in the FIFO, these will
937 		 * trigger an immediate interrupt and stop the DMA job, so we
938 		 * will always find the error in the FIFO, never in the DMA
939 		 * buffer.
940 		 */
941 		fifotaken = pl011_fifo_to_tty(uap);
942 	}
943 
944 	dev_vdbg(uap->port.dev,
945 		 "Took %d chars from DMA buffer and %d chars from the FIFO\n",
946 		 dma_count, fifotaken);
947 	tty_flip_buffer_push(port);
948 }
949 
950 static void pl011_dma_rx_irq(struct uart_amba_port *uap)
951 {
952 	struct pl011_dmarx_data *dmarx = &uap->dmarx;
953 	struct dma_chan *rxchan = dmarx->chan;
954 	struct pl011_sgbuf *sgbuf = dmarx->use_buf_b ?
955 		&dmarx->sgbuf_b : &dmarx->sgbuf_a;
956 	size_t pending;
957 	struct dma_tx_state state;
958 	enum dma_status dmastat;
959 
960 	/*
961 	 * Pause the transfer so we can trust the current counter,
962 	 * do this before we pause the PL011 block, else we may
963 	 * overflow the FIFO.
964 	 */
965 	if (dmaengine_pause(rxchan))
966 		dev_err(uap->port.dev, "unable to pause DMA transfer\n");
967 	dmastat = rxchan->device->device_tx_status(rxchan,
968 						   dmarx->cookie, &state);
969 	if (dmastat != DMA_PAUSED)
970 		dev_err(uap->port.dev, "unable to pause DMA transfer\n");
971 
972 	/* Disable RX DMA - incoming data will wait in the FIFO */
973 	uap->dmacr &= ~UART011_RXDMAE;
974 	pl011_write(uap->dmacr, uap, REG_DMACR);
975 	uap->dmarx.running = false;
976 
977 	pending = sgbuf->sg.length - state.residue;
978 	BUG_ON(pending > PL011_DMA_BUFFER_SIZE);
979 	/* Then we terminate the transfer - we now know our residue */
980 	dmaengine_terminate_all(rxchan);
981 
982 	/*
983 	 * This will take the chars we have so far and insert
984 	 * into the framework.
985 	 */
986 	pl011_dma_rx_chars(uap, pending, dmarx->use_buf_b, true);
987 
988 	/* Switch buffer & re-trigger DMA job */
989 	dmarx->use_buf_b = !dmarx->use_buf_b;
990 	if (pl011_dma_rx_trigger_dma(uap)) {
991 		dev_dbg(uap->port.dev, "could not retrigger RX DMA job "
992 			"fall back to interrupt mode\n");
993 		uap->im |= UART011_RXIM;
994 		pl011_write(uap->im, uap, REG_IMSC);
995 	}
996 }
997 
998 static void pl011_dma_rx_callback(void *data)
999 {
1000 	struct uart_amba_port *uap = data;
1001 	struct pl011_dmarx_data *dmarx = &uap->dmarx;
1002 	struct dma_chan *rxchan = dmarx->chan;
1003 	bool lastbuf = dmarx->use_buf_b;
1004 	struct pl011_sgbuf *sgbuf = dmarx->use_buf_b ?
1005 		&dmarx->sgbuf_b : &dmarx->sgbuf_a;
1006 	size_t pending;
1007 	struct dma_tx_state state;
1008 	int ret;
1009 
1010 	/*
1011 	 * This completion interrupt occurs typically when the
1012 	 * RX buffer is totally stuffed but no timeout has yet
1013 	 * occurred. When that happens, we just want the RX
1014 	 * routine to flush out the secondary DMA buffer while
1015 	 * we immediately trigger the next DMA job.
1016 	 */
1017 	spin_lock_irq(&uap->port.lock);
1018 	/*
1019 	 * Rx data can be taken by the UART interrupts during
1020 	 * the DMA irq handler. So we check the residue here.
1021 	 */
1022 	rxchan->device->device_tx_status(rxchan, dmarx->cookie, &state);
1023 	pending = sgbuf->sg.length - state.residue;
1024 	BUG_ON(pending > PL011_DMA_BUFFER_SIZE);
1025 	/* Then we terminate the transfer - we now know our residue */
1026 	dmaengine_terminate_all(rxchan);
1027 
1028 	uap->dmarx.running = false;
1029 	dmarx->use_buf_b = !lastbuf;
1030 	ret = pl011_dma_rx_trigger_dma(uap);
1031 
1032 	pl011_dma_rx_chars(uap, pending, lastbuf, false);
1033 	spin_unlock_irq(&uap->port.lock);
1034 	/*
1035 	 * Do this check after we picked the DMA chars so we don't
1036 	 * get some IRQ immediately from RX.
1037 	 */
1038 	if (ret) {
1039 		dev_dbg(uap->port.dev, "could not retrigger RX DMA job "
1040 			"fall back to interrupt mode\n");
1041 		uap->im |= UART011_RXIM;
1042 		pl011_write(uap->im, uap, REG_IMSC);
1043 	}
1044 }
1045 
1046 /*
1047  * Stop accepting received characters, when we're shutting down or
1048  * suspending this port.
1049  * Locking: called with port lock held and IRQs disabled.
1050  */
1051 static inline void pl011_dma_rx_stop(struct uart_amba_port *uap)
1052 {
1053 	/* FIXME.  Just disable the DMA enable */
1054 	uap->dmacr &= ~UART011_RXDMAE;
1055 	pl011_write(uap->dmacr, uap, REG_DMACR);
1056 }
1057 
1058 /*
1059  * Timer handler for Rx DMA polling.
1060  * Every polling, It checks the residue in the dma buffer and transfer
1061  * data to the tty. Also, last_residue is updated for the next polling.
1062  */
1063 static void pl011_dma_rx_poll(struct timer_list *t)
1064 {
1065 	struct uart_amba_port *uap = from_timer(uap, t, dmarx.timer);
1066 	struct tty_port *port = &uap->port.state->port;
1067 	struct pl011_dmarx_data *dmarx = &uap->dmarx;
1068 	struct dma_chan *rxchan = uap->dmarx.chan;
1069 	unsigned long flags;
1070 	unsigned int dmataken = 0;
1071 	unsigned int size = 0;
1072 	struct pl011_sgbuf *sgbuf;
1073 	int dma_count;
1074 	struct dma_tx_state state;
1075 
1076 	sgbuf = dmarx->use_buf_b ? &uap->dmarx.sgbuf_b : &uap->dmarx.sgbuf_a;
1077 	rxchan->device->device_tx_status(rxchan, dmarx->cookie, &state);
1078 	if (likely(state.residue < dmarx->last_residue)) {
1079 		dmataken = sgbuf->sg.length - dmarx->last_residue;
1080 		size = dmarx->last_residue - state.residue;
1081 		dma_count = tty_insert_flip_string(port, sgbuf->buf + dmataken,
1082 				size);
1083 		if (dma_count == size)
1084 			dmarx->last_residue =  state.residue;
1085 		dmarx->last_jiffies = jiffies;
1086 	}
1087 	tty_flip_buffer_push(port);
1088 
1089 	/*
1090 	 * If no data is received in poll_timeout, the driver will fall back
1091 	 * to interrupt mode. We will retrigger DMA at the first interrupt.
1092 	 */
1093 	if (jiffies_to_msecs(jiffies - dmarx->last_jiffies)
1094 			> uap->dmarx.poll_timeout) {
1095 
1096 		spin_lock_irqsave(&uap->port.lock, flags);
1097 		pl011_dma_rx_stop(uap);
1098 		uap->im |= UART011_RXIM;
1099 		pl011_write(uap->im, uap, REG_IMSC);
1100 		spin_unlock_irqrestore(&uap->port.lock, flags);
1101 
1102 		uap->dmarx.running = false;
1103 		dmaengine_terminate_all(rxchan);
1104 		del_timer(&uap->dmarx.timer);
1105 	} else {
1106 		mod_timer(&uap->dmarx.timer,
1107 			jiffies + msecs_to_jiffies(uap->dmarx.poll_rate));
1108 	}
1109 }
1110 
1111 static void pl011_dma_startup(struct uart_amba_port *uap)
1112 {
1113 	int ret;
1114 
1115 	if (!uap->dma_probed)
1116 		pl011_dma_probe(uap);
1117 
1118 	if (!uap->dmatx.chan)
1119 		return;
1120 
1121 	uap->dmatx.buf = kmalloc(PL011_DMA_BUFFER_SIZE, GFP_KERNEL | __GFP_DMA);
1122 	if (!uap->dmatx.buf) {
1123 		dev_err(uap->port.dev, "no memory for DMA TX buffer\n");
1124 		uap->port.fifosize = uap->fifosize;
1125 		return;
1126 	}
1127 
1128 	sg_init_one(&uap->dmatx.sg, uap->dmatx.buf, PL011_DMA_BUFFER_SIZE);
1129 
1130 	/* The DMA buffer is now the FIFO the TTY subsystem can use */
1131 	uap->port.fifosize = PL011_DMA_BUFFER_SIZE;
1132 	uap->using_tx_dma = true;
1133 
1134 	if (!uap->dmarx.chan)
1135 		goto skip_rx;
1136 
1137 	/* Allocate and map DMA RX buffers */
1138 	ret = pl011_sgbuf_init(uap->dmarx.chan, &uap->dmarx.sgbuf_a,
1139 			       DMA_FROM_DEVICE);
1140 	if (ret) {
1141 		dev_err(uap->port.dev, "failed to init DMA %s: %d\n",
1142 			"RX buffer A", ret);
1143 		goto skip_rx;
1144 	}
1145 
1146 	ret = pl011_sgbuf_init(uap->dmarx.chan, &uap->dmarx.sgbuf_b,
1147 			       DMA_FROM_DEVICE);
1148 	if (ret) {
1149 		dev_err(uap->port.dev, "failed to init DMA %s: %d\n",
1150 			"RX buffer B", ret);
1151 		pl011_sgbuf_free(uap->dmarx.chan, &uap->dmarx.sgbuf_a,
1152 				 DMA_FROM_DEVICE);
1153 		goto skip_rx;
1154 	}
1155 
1156 	uap->using_rx_dma = true;
1157 
1158 skip_rx:
1159 	/* Turn on DMA error (RX/TX will be enabled on demand) */
1160 	uap->dmacr |= UART011_DMAONERR;
1161 	pl011_write(uap->dmacr, uap, REG_DMACR);
1162 
1163 	/*
1164 	 * ST Micro variants has some specific dma burst threshold
1165 	 * compensation. Set this to 16 bytes, so burst will only
1166 	 * be issued above/below 16 bytes.
1167 	 */
1168 	if (uap->vendor->dma_threshold)
1169 		pl011_write(ST_UART011_DMAWM_RX_16 | ST_UART011_DMAWM_TX_16,
1170 			    uap, REG_ST_DMAWM);
1171 
1172 	if (uap->using_rx_dma) {
1173 		if (pl011_dma_rx_trigger_dma(uap))
1174 			dev_dbg(uap->port.dev, "could not trigger initial "
1175 				"RX DMA job, fall back to interrupt mode\n");
1176 		if (uap->dmarx.poll_rate) {
1177 			timer_setup(&uap->dmarx.timer, pl011_dma_rx_poll, 0);
1178 			mod_timer(&uap->dmarx.timer,
1179 				jiffies +
1180 				msecs_to_jiffies(uap->dmarx.poll_rate));
1181 			uap->dmarx.last_residue = PL011_DMA_BUFFER_SIZE;
1182 			uap->dmarx.last_jiffies = jiffies;
1183 		}
1184 	}
1185 }
1186 
1187 static void pl011_dma_shutdown(struct uart_amba_port *uap)
1188 {
1189 	if (!(uap->using_tx_dma || uap->using_rx_dma))
1190 		return;
1191 
1192 	/* Disable RX and TX DMA */
1193 	while (pl011_read(uap, REG_FR) & uap->vendor->fr_busy)
1194 		cpu_relax();
1195 
1196 	spin_lock_irq(&uap->port.lock);
1197 	uap->dmacr &= ~(UART011_DMAONERR | UART011_RXDMAE | UART011_TXDMAE);
1198 	pl011_write(uap->dmacr, uap, REG_DMACR);
1199 	spin_unlock_irq(&uap->port.lock);
1200 
1201 	if (uap->using_tx_dma) {
1202 		/* In theory, this should already be done by pl011_dma_flush_buffer */
1203 		dmaengine_terminate_all(uap->dmatx.chan);
1204 		if (uap->dmatx.queued) {
1205 			dma_unmap_sg(uap->dmatx.chan->device->dev, &uap->dmatx.sg, 1,
1206 				     DMA_TO_DEVICE);
1207 			uap->dmatx.queued = false;
1208 		}
1209 
1210 		kfree(uap->dmatx.buf);
1211 		uap->using_tx_dma = false;
1212 	}
1213 
1214 	if (uap->using_rx_dma) {
1215 		dmaengine_terminate_all(uap->dmarx.chan);
1216 		/* Clean up the RX DMA */
1217 		pl011_sgbuf_free(uap->dmarx.chan, &uap->dmarx.sgbuf_a, DMA_FROM_DEVICE);
1218 		pl011_sgbuf_free(uap->dmarx.chan, &uap->dmarx.sgbuf_b, DMA_FROM_DEVICE);
1219 		if (uap->dmarx.poll_rate)
1220 			del_timer_sync(&uap->dmarx.timer);
1221 		uap->using_rx_dma = false;
1222 	}
1223 }
1224 
1225 static inline bool pl011_dma_rx_available(struct uart_amba_port *uap)
1226 {
1227 	return uap->using_rx_dma;
1228 }
1229 
1230 static inline bool pl011_dma_rx_running(struct uart_amba_port *uap)
1231 {
1232 	return uap->using_rx_dma && uap->dmarx.running;
1233 }
1234 
1235 #else
1236 /* Blank functions if the DMA engine is not available */
1237 static inline void pl011_dma_remove(struct uart_amba_port *uap)
1238 {
1239 }
1240 
1241 static inline void pl011_dma_startup(struct uart_amba_port *uap)
1242 {
1243 }
1244 
1245 static inline void pl011_dma_shutdown(struct uart_amba_port *uap)
1246 {
1247 }
1248 
1249 static inline bool pl011_dma_tx_irq(struct uart_amba_port *uap)
1250 {
1251 	return false;
1252 }
1253 
1254 static inline void pl011_dma_tx_stop(struct uart_amba_port *uap)
1255 {
1256 }
1257 
1258 static inline bool pl011_dma_tx_start(struct uart_amba_port *uap)
1259 {
1260 	return false;
1261 }
1262 
1263 static inline void pl011_dma_rx_irq(struct uart_amba_port *uap)
1264 {
1265 }
1266 
1267 static inline void pl011_dma_rx_stop(struct uart_amba_port *uap)
1268 {
1269 }
1270 
1271 static inline int pl011_dma_rx_trigger_dma(struct uart_amba_port *uap)
1272 {
1273 	return -EIO;
1274 }
1275 
1276 static inline bool pl011_dma_rx_available(struct uart_amba_port *uap)
1277 {
1278 	return false;
1279 }
1280 
1281 static inline bool pl011_dma_rx_running(struct uart_amba_port *uap)
1282 {
1283 	return false;
1284 }
1285 
1286 #define pl011_dma_flush_buffer	NULL
1287 #endif
1288 
1289 static void pl011_rs485_tx_stop(struct uart_amba_port *uap)
1290 {
1291 	struct uart_port *port = &uap->port;
1292 	int i = 0;
1293 	u32 cr;
1294 
1295 	/* Wait until hardware tx queue is empty */
1296 	while (!pl011_tx_empty(port)) {
1297 		if (i == port->fifosize) {
1298 			dev_warn(port->dev,
1299 				 "timeout while draining hardware tx queue\n");
1300 			break;
1301 		}
1302 
1303 		udelay(uap->rs485_tx_drain_interval);
1304 		i++;
1305 	}
1306 
1307 	if (port->rs485.delay_rts_after_send)
1308 		mdelay(port->rs485.delay_rts_after_send);
1309 
1310 	cr = pl011_read(uap, REG_CR);
1311 
1312 	if (port->rs485.flags & SER_RS485_RTS_AFTER_SEND)
1313 		cr &= ~UART011_CR_RTS;
1314 	else
1315 		cr |= UART011_CR_RTS;
1316 
1317 	/* Disable the transmitter and reenable the transceiver */
1318 	cr &= ~UART011_CR_TXE;
1319 	cr |= UART011_CR_RXE;
1320 	pl011_write(cr, uap, REG_CR);
1321 
1322 	uap->rs485_tx_started = false;
1323 }
1324 
1325 static void pl011_stop_tx(struct uart_port *port)
1326 {
1327 	struct uart_amba_port *uap =
1328 	    container_of(port, struct uart_amba_port, port);
1329 
1330 	uap->im &= ~UART011_TXIM;
1331 	pl011_write(uap->im, uap, REG_IMSC);
1332 	pl011_dma_tx_stop(uap);
1333 
1334 	if ((port->rs485.flags & SER_RS485_ENABLED) && uap->rs485_tx_started)
1335 		pl011_rs485_tx_stop(uap);
1336 }
1337 
1338 static bool pl011_tx_chars(struct uart_amba_port *uap, bool from_irq);
1339 
1340 /* Start TX with programmed I/O only (no DMA) */
1341 static void pl011_start_tx_pio(struct uart_amba_port *uap)
1342 {
1343 	if (pl011_tx_chars(uap, false)) {
1344 		uap->im |= UART011_TXIM;
1345 		pl011_write(uap->im, uap, REG_IMSC);
1346 	}
1347 }
1348 
1349 static void pl011_start_tx(struct uart_port *port)
1350 {
1351 	struct uart_amba_port *uap =
1352 	    container_of(port, struct uart_amba_port, port);
1353 
1354 	if (!pl011_dma_tx_start(uap))
1355 		pl011_start_tx_pio(uap);
1356 }
1357 
1358 static void pl011_stop_rx(struct uart_port *port)
1359 {
1360 	struct uart_amba_port *uap =
1361 	    container_of(port, struct uart_amba_port, port);
1362 
1363 	uap->im &= ~(UART011_RXIM|UART011_RTIM|UART011_FEIM|
1364 		     UART011_PEIM|UART011_BEIM|UART011_OEIM);
1365 	pl011_write(uap->im, uap, REG_IMSC);
1366 
1367 	pl011_dma_rx_stop(uap);
1368 }
1369 
1370 static void pl011_enable_ms(struct uart_port *port)
1371 {
1372 	struct uart_amba_port *uap =
1373 	    container_of(port, struct uart_amba_port, port);
1374 
1375 	uap->im |= UART011_RIMIM|UART011_CTSMIM|UART011_DCDMIM|UART011_DSRMIM;
1376 	pl011_write(uap->im, uap, REG_IMSC);
1377 }
1378 
1379 static void pl011_rx_chars(struct uart_amba_port *uap)
1380 __releases(&uap->port.lock)
1381 __acquires(&uap->port.lock)
1382 {
1383 	pl011_fifo_to_tty(uap);
1384 
1385 	spin_unlock(&uap->port.lock);
1386 	tty_flip_buffer_push(&uap->port.state->port);
1387 	/*
1388 	 * If we were temporarily out of DMA mode for a while,
1389 	 * attempt to switch back to DMA mode again.
1390 	 */
1391 	if (pl011_dma_rx_available(uap)) {
1392 		if (pl011_dma_rx_trigger_dma(uap)) {
1393 			dev_dbg(uap->port.dev, "could not trigger RX DMA job "
1394 				"fall back to interrupt mode again\n");
1395 			uap->im |= UART011_RXIM;
1396 			pl011_write(uap->im, uap, REG_IMSC);
1397 		} else {
1398 #ifdef CONFIG_DMA_ENGINE
1399 			/* Start Rx DMA poll */
1400 			if (uap->dmarx.poll_rate) {
1401 				uap->dmarx.last_jiffies = jiffies;
1402 				uap->dmarx.last_residue	= PL011_DMA_BUFFER_SIZE;
1403 				mod_timer(&uap->dmarx.timer,
1404 					jiffies +
1405 					msecs_to_jiffies(uap->dmarx.poll_rate));
1406 			}
1407 #endif
1408 		}
1409 	}
1410 	spin_lock(&uap->port.lock);
1411 }
1412 
1413 static bool pl011_tx_char(struct uart_amba_port *uap, unsigned char c,
1414 			  bool from_irq)
1415 {
1416 	if (unlikely(!from_irq) &&
1417 	    pl011_read(uap, REG_FR) & UART01x_FR_TXFF)
1418 		return false; /* unable to transmit character */
1419 
1420 	pl011_write(c, uap, REG_DR);
1421 	uap->port.icount.tx++;
1422 
1423 	return true;
1424 }
1425 
1426 static void pl011_rs485_tx_start(struct uart_amba_port *uap)
1427 {
1428 	struct uart_port *port = &uap->port;
1429 	u32 cr;
1430 
1431 	/* Enable transmitter */
1432 	cr = pl011_read(uap, REG_CR);
1433 	cr |= UART011_CR_TXE;
1434 
1435 	/* Disable receiver if half-duplex */
1436 	if (!(port->rs485.flags & SER_RS485_RX_DURING_TX))
1437 		cr &= ~UART011_CR_RXE;
1438 
1439 	if (port->rs485.flags & SER_RS485_RTS_ON_SEND)
1440 		cr &= ~UART011_CR_RTS;
1441 	else
1442 		cr |= UART011_CR_RTS;
1443 
1444 	pl011_write(cr, uap, REG_CR);
1445 
1446 	if (port->rs485.delay_rts_before_send)
1447 		mdelay(port->rs485.delay_rts_before_send);
1448 
1449 	uap->rs485_tx_started = true;
1450 }
1451 
1452 /* Returns true if tx interrupts have to be (kept) enabled  */
1453 static bool pl011_tx_chars(struct uart_amba_port *uap, bool from_irq)
1454 {
1455 	struct circ_buf *xmit = &uap->port.state->xmit;
1456 	int count = uap->fifosize >> 1;
1457 
1458 	if (uap->port.x_char) {
1459 		if (!pl011_tx_char(uap, uap->port.x_char, from_irq))
1460 			return true;
1461 		uap->port.x_char = 0;
1462 		--count;
1463 	}
1464 	if (uart_circ_empty(xmit) || uart_tx_stopped(&uap->port)) {
1465 		pl011_stop_tx(&uap->port);
1466 		return false;
1467 	}
1468 
1469 	if ((uap->port.rs485.flags & SER_RS485_ENABLED) &&
1470 	    !uap->rs485_tx_started)
1471 		pl011_rs485_tx_start(uap);
1472 
1473 	/* If we are using DMA mode, try to send some characters. */
1474 	if (pl011_dma_tx_irq(uap))
1475 		return true;
1476 
1477 	do {
1478 		if (likely(from_irq) && count-- == 0)
1479 			break;
1480 
1481 		if (!pl011_tx_char(uap, xmit->buf[xmit->tail], from_irq))
1482 			break;
1483 
1484 		xmit->tail = (xmit->tail + 1) & (UART_XMIT_SIZE - 1);
1485 	} while (!uart_circ_empty(xmit));
1486 
1487 	if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
1488 		uart_write_wakeup(&uap->port);
1489 
1490 	if (uart_circ_empty(xmit)) {
1491 		pl011_stop_tx(&uap->port);
1492 		return false;
1493 	}
1494 	return true;
1495 }
1496 
1497 static void pl011_modem_status(struct uart_amba_port *uap)
1498 {
1499 	unsigned int status, delta;
1500 
1501 	status = pl011_read(uap, REG_FR) & UART01x_FR_MODEM_ANY;
1502 
1503 	delta = status ^ uap->old_status;
1504 	uap->old_status = status;
1505 
1506 	if (!delta)
1507 		return;
1508 
1509 	if (delta & UART01x_FR_DCD)
1510 		uart_handle_dcd_change(&uap->port, status & UART01x_FR_DCD);
1511 
1512 	if (delta & uap->vendor->fr_dsr)
1513 		uap->port.icount.dsr++;
1514 
1515 	if (delta & uap->vendor->fr_cts)
1516 		uart_handle_cts_change(&uap->port,
1517 				       status & uap->vendor->fr_cts);
1518 
1519 	wake_up_interruptible(&uap->port.state->port.delta_msr_wait);
1520 }
1521 
1522 static void check_apply_cts_event_workaround(struct uart_amba_port *uap)
1523 {
1524 	if (!uap->vendor->cts_event_workaround)
1525 		return;
1526 
1527 	/* workaround to make sure that all bits are unlocked.. */
1528 	pl011_write(0x00, uap, REG_ICR);
1529 
1530 	/*
1531 	 * WA: introduce 26ns(1 uart clk) delay before W1C;
1532 	 * single apb access will incur 2 pclk(133.12Mhz) delay,
1533 	 * so add 2 dummy reads
1534 	 */
1535 	pl011_read(uap, REG_ICR);
1536 	pl011_read(uap, REG_ICR);
1537 }
1538 
1539 static irqreturn_t pl011_int(int irq, void *dev_id)
1540 {
1541 	struct uart_amba_port *uap = dev_id;
1542 	unsigned long flags;
1543 	unsigned int status, pass_counter = AMBA_ISR_PASS_LIMIT;
1544 	int handled = 0;
1545 
1546 	spin_lock_irqsave(&uap->port.lock, flags);
1547 	status = pl011_read(uap, REG_RIS) & uap->im;
1548 	if (status) {
1549 		do {
1550 			check_apply_cts_event_workaround(uap);
1551 
1552 			pl011_write(status & ~(UART011_TXIS|UART011_RTIS|
1553 					       UART011_RXIS),
1554 				    uap, REG_ICR);
1555 
1556 			if (status & (UART011_RTIS|UART011_RXIS)) {
1557 				if (pl011_dma_rx_running(uap))
1558 					pl011_dma_rx_irq(uap);
1559 				else
1560 					pl011_rx_chars(uap);
1561 			}
1562 			if (status & (UART011_DSRMIS|UART011_DCDMIS|
1563 				      UART011_CTSMIS|UART011_RIMIS))
1564 				pl011_modem_status(uap);
1565 			if (status & UART011_TXIS)
1566 				pl011_tx_chars(uap, true);
1567 
1568 			if (pass_counter-- == 0)
1569 				break;
1570 
1571 			status = pl011_read(uap, REG_RIS) & uap->im;
1572 		} while (status != 0);
1573 		handled = 1;
1574 	}
1575 
1576 	spin_unlock_irqrestore(&uap->port.lock, flags);
1577 
1578 	return IRQ_RETVAL(handled);
1579 }
1580 
1581 static unsigned int pl011_tx_empty(struct uart_port *port)
1582 {
1583 	struct uart_amba_port *uap =
1584 	    container_of(port, struct uart_amba_port, port);
1585 
1586 	/* Allow feature register bits to be inverted to work around errata */
1587 	unsigned int status = pl011_read(uap, REG_FR) ^ uap->vendor->inv_fr;
1588 
1589 	return status & (uap->vendor->fr_busy | UART01x_FR_TXFF) ?
1590 							0 : TIOCSER_TEMT;
1591 }
1592 
1593 static unsigned int pl011_get_mctrl(struct uart_port *port)
1594 {
1595 	struct uart_amba_port *uap =
1596 	    container_of(port, struct uart_amba_port, port);
1597 	unsigned int result = 0;
1598 	unsigned int status = pl011_read(uap, REG_FR);
1599 
1600 #define TIOCMBIT(uartbit, tiocmbit)	\
1601 	if (status & uartbit)		\
1602 		result |= tiocmbit
1603 
1604 	TIOCMBIT(UART01x_FR_DCD, TIOCM_CAR);
1605 	TIOCMBIT(uap->vendor->fr_dsr, TIOCM_DSR);
1606 	TIOCMBIT(uap->vendor->fr_cts, TIOCM_CTS);
1607 	TIOCMBIT(uap->vendor->fr_ri, TIOCM_RNG);
1608 #undef TIOCMBIT
1609 	return result;
1610 }
1611 
1612 static void pl011_set_mctrl(struct uart_port *port, unsigned int mctrl)
1613 {
1614 	struct uart_amba_port *uap =
1615 	    container_of(port, struct uart_amba_port, port);
1616 	unsigned int cr;
1617 
1618 	if (port->rs485.flags & SER_RS485_ENABLED)
1619 		mctrl &= ~TIOCM_RTS;
1620 
1621 	cr = pl011_read(uap, REG_CR);
1622 
1623 #define	TIOCMBIT(tiocmbit, uartbit)		\
1624 	if (mctrl & tiocmbit)		\
1625 		cr |= uartbit;		\
1626 	else				\
1627 		cr &= ~uartbit
1628 
1629 	TIOCMBIT(TIOCM_RTS, UART011_CR_RTS);
1630 	TIOCMBIT(TIOCM_DTR, UART011_CR_DTR);
1631 	TIOCMBIT(TIOCM_OUT1, UART011_CR_OUT1);
1632 	TIOCMBIT(TIOCM_OUT2, UART011_CR_OUT2);
1633 	TIOCMBIT(TIOCM_LOOP, UART011_CR_LBE);
1634 
1635 	if (port->status & UPSTAT_AUTORTS) {
1636 		/* We need to disable auto-RTS if we want to turn RTS off */
1637 		TIOCMBIT(TIOCM_RTS, UART011_CR_RTSEN);
1638 	}
1639 #undef TIOCMBIT
1640 
1641 	pl011_write(cr, uap, REG_CR);
1642 }
1643 
1644 static void pl011_break_ctl(struct uart_port *port, int break_state)
1645 {
1646 	struct uart_amba_port *uap =
1647 	    container_of(port, struct uart_amba_port, port);
1648 	unsigned long flags;
1649 	unsigned int lcr_h;
1650 
1651 	spin_lock_irqsave(&uap->port.lock, flags);
1652 	lcr_h = pl011_read(uap, REG_LCRH_TX);
1653 	if (break_state == -1)
1654 		lcr_h |= UART01x_LCRH_BRK;
1655 	else
1656 		lcr_h &= ~UART01x_LCRH_BRK;
1657 	pl011_write(lcr_h, uap, REG_LCRH_TX);
1658 	spin_unlock_irqrestore(&uap->port.lock, flags);
1659 }
1660 
1661 #ifdef CONFIG_CONSOLE_POLL
1662 
1663 static void pl011_quiesce_irqs(struct uart_port *port)
1664 {
1665 	struct uart_amba_port *uap =
1666 	    container_of(port, struct uart_amba_port, port);
1667 
1668 	pl011_write(pl011_read(uap, REG_MIS), uap, REG_ICR);
1669 	/*
1670 	 * There is no way to clear TXIM as this is "ready to transmit IRQ", so
1671 	 * we simply mask it. start_tx() will unmask it.
1672 	 *
1673 	 * Note we can race with start_tx(), and if the race happens, the
1674 	 * polling user might get another interrupt just after we clear it.
1675 	 * But it should be OK and can happen even w/o the race, e.g.
1676 	 * controller immediately got some new data and raised the IRQ.
1677 	 *
1678 	 * And whoever uses polling routines assumes that it manages the device
1679 	 * (including tx queue), so we're also fine with start_tx()'s caller
1680 	 * side.
1681 	 */
1682 	pl011_write(pl011_read(uap, REG_IMSC) & ~UART011_TXIM, uap,
1683 		    REG_IMSC);
1684 }
1685 
1686 static int pl011_get_poll_char(struct uart_port *port)
1687 {
1688 	struct uart_amba_port *uap =
1689 	    container_of(port, struct uart_amba_port, port);
1690 	unsigned int status;
1691 
1692 	/*
1693 	 * The caller might need IRQs lowered, e.g. if used with KDB NMI
1694 	 * debugger.
1695 	 */
1696 	pl011_quiesce_irqs(port);
1697 
1698 	status = pl011_read(uap, REG_FR);
1699 	if (status & UART01x_FR_RXFE)
1700 		return NO_POLL_CHAR;
1701 
1702 	return pl011_read(uap, REG_DR);
1703 }
1704 
1705 static void pl011_put_poll_char(struct uart_port *port,
1706 			 unsigned char ch)
1707 {
1708 	struct uart_amba_port *uap =
1709 	    container_of(port, struct uart_amba_port, port);
1710 
1711 	while (pl011_read(uap, REG_FR) & UART01x_FR_TXFF)
1712 		cpu_relax();
1713 
1714 	pl011_write(ch, uap, REG_DR);
1715 }
1716 
1717 #endif /* CONFIG_CONSOLE_POLL */
1718 
1719 static int pl011_hwinit(struct uart_port *port)
1720 {
1721 	struct uart_amba_port *uap =
1722 	    container_of(port, struct uart_amba_port, port);
1723 	int retval;
1724 
1725 	/* Optionaly enable pins to be muxed in and configured */
1726 	pinctrl_pm_select_default_state(port->dev);
1727 
1728 	/*
1729 	 * Try to enable the clock producer.
1730 	 */
1731 	retval = clk_prepare_enable(uap->clk);
1732 	if (retval)
1733 		return retval;
1734 
1735 	uap->port.uartclk = clk_get_rate(uap->clk);
1736 
1737 	/* Clear pending error and receive interrupts */
1738 	pl011_write(UART011_OEIS | UART011_BEIS | UART011_PEIS |
1739 		    UART011_FEIS | UART011_RTIS | UART011_RXIS,
1740 		    uap, REG_ICR);
1741 
1742 	/*
1743 	 * Save interrupts enable mask, and enable RX interrupts in case if
1744 	 * the interrupt is used for NMI entry.
1745 	 */
1746 	uap->im = pl011_read(uap, REG_IMSC);
1747 	pl011_write(UART011_RTIM | UART011_RXIM, uap, REG_IMSC);
1748 
1749 	if (dev_get_platdata(uap->port.dev)) {
1750 		struct amba_pl011_data *plat;
1751 
1752 		plat = dev_get_platdata(uap->port.dev);
1753 		if (plat->init)
1754 			plat->init();
1755 	}
1756 	return 0;
1757 }
1758 
1759 static bool pl011_split_lcrh(const struct uart_amba_port *uap)
1760 {
1761 	return pl011_reg_to_offset(uap, REG_LCRH_RX) !=
1762 	       pl011_reg_to_offset(uap, REG_LCRH_TX);
1763 }
1764 
1765 static void pl011_write_lcr_h(struct uart_amba_port *uap, unsigned int lcr_h)
1766 {
1767 	pl011_write(lcr_h, uap, REG_LCRH_RX);
1768 	if (pl011_split_lcrh(uap)) {
1769 		int i;
1770 		/*
1771 		 * Wait 10 PCLKs before writing LCRH_TX register,
1772 		 * to get this delay write read only register 10 times
1773 		 */
1774 		for (i = 0; i < 10; ++i)
1775 			pl011_write(0xff, uap, REG_MIS);
1776 		pl011_write(lcr_h, uap, REG_LCRH_TX);
1777 	}
1778 }
1779 
1780 static int pl011_allocate_irq(struct uart_amba_port *uap)
1781 {
1782 	pl011_write(uap->im, uap, REG_IMSC);
1783 
1784 	return request_irq(uap->port.irq, pl011_int, IRQF_SHARED, "uart-pl011", uap);
1785 }
1786 
1787 /*
1788  * Enable interrupts, only timeouts when using DMA
1789  * if initial RX DMA job failed, start in interrupt mode
1790  * as well.
1791  */
1792 static void pl011_enable_interrupts(struct uart_amba_port *uap)
1793 {
1794 	unsigned int i;
1795 
1796 	spin_lock_irq(&uap->port.lock);
1797 
1798 	/* Clear out any spuriously appearing RX interrupts */
1799 	pl011_write(UART011_RTIS | UART011_RXIS, uap, REG_ICR);
1800 
1801 	/*
1802 	 * RXIS is asserted only when the RX FIFO transitions from below
1803 	 * to above the trigger threshold.  If the RX FIFO is already
1804 	 * full to the threshold this can't happen and RXIS will now be
1805 	 * stuck off.  Drain the RX FIFO explicitly to fix this:
1806 	 */
1807 	for (i = 0; i < uap->fifosize * 2; ++i) {
1808 		if (pl011_read(uap, REG_FR) & UART01x_FR_RXFE)
1809 			break;
1810 
1811 		pl011_read(uap, REG_DR);
1812 	}
1813 
1814 	uap->im = UART011_RTIM;
1815 	if (!pl011_dma_rx_running(uap))
1816 		uap->im |= UART011_RXIM;
1817 	pl011_write(uap->im, uap, REG_IMSC);
1818 	spin_unlock_irq(&uap->port.lock);
1819 }
1820 
1821 static int pl011_startup(struct uart_port *port)
1822 {
1823 	struct uart_amba_port *uap =
1824 	    container_of(port, struct uart_amba_port, port);
1825 	unsigned int cr;
1826 	int retval;
1827 
1828 	retval = pl011_hwinit(port);
1829 	if (retval)
1830 		goto clk_dis;
1831 
1832 	retval = pl011_allocate_irq(uap);
1833 	if (retval)
1834 		goto clk_dis;
1835 
1836 	pl011_write(uap->vendor->ifls, uap, REG_IFLS);
1837 
1838 	spin_lock_irq(&uap->port.lock);
1839 
1840 	/* restore RTS and DTR */
1841 	cr = uap->old_cr & (UART011_CR_RTS | UART011_CR_DTR);
1842 	cr |= UART01x_CR_UARTEN | UART011_CR_RXE;
1843 
1844 	if (port->rs485.flags & SER_RS485_ENABLED) {
1845 		if (port->rs485.flags & SER_RS485_RTS_AFTER_SEND)
1846 			cr &= ~UART011_CR_RTS;
1847 		else
1848 			cr |= UART011_CR_RTS;
1849 	} else {
1850 		cr |= UART011_CR_TXE;
1851 	}
1852 
1853 	pl011_write(cr, uap, REG_CR);
1854 
1855 	spin_unlock_irq(&uap->port.lock);
1856 
1857 	/*
1858 	 * initialise the old status of the modem signals
1859 	 */
1860 	uap->old_status = pl011_read(uap, REG_FR) & UART01x_FR_MODEM_ANY;
1861 
1862 	/* Startup DMA */
1863 	pl011_dma_startup(uap);
1864 
1865 	pl011_enable_interrupts(uap);
1866 
1867 	return 0;
1868 
1869  clk_dis:
1870 	clk_disable_unprepare(uap->clk);
1871 	return retval;
1872 }
1873 
1874 static int sbsa_uart_startup(struct uart_port *port)
1875 {
1876 	struct uart_amba_port *uap =
1877 		container_of(port, struct uart_amba_port, port);
1878 	int retval;
1879 
1880 	retval = pl011_hwinit(port);
1881 	if (retval)
1882 		return retval;
1883 
1884 	retval = pl011_allocate_irq(uap);
1885 	if (retval)
1886 		return retval;
1887 
1888 	/* The SBSA UART does not support any modem status lines. */
1889 	uap->old_status = 0;
1890 
1891 	pl011_enable_interrupts(uap);
1892 
1893 	return 0;
1894 }
1895 
1896 static void pl011_shutdown_channel(struct uart_amba_port *uap,
1897 					unsigned int lcrh)
1898 {
1899       unsigned long val;
1900 
1901       val = pl011_read(uap, lcrh);
1902       val &= ~(UART01x_LCRH_BRK | UART01x_LCRH_FEN);
1903       pl011_write(val, uap, lcrh);
1904 }
1905 
1906 /*
1907  * disable the port. It should not disable RTS and DTR.
1908  * Also RTS and DTR state should be preserved to restore
1909  * it during startup().
1910  */
1911 static void pl011_disable_uart(struct uart_amba_port *uap)
1912 {
1913 	unsigned int cr;
1914 
1915 	uap->port.status &= ~(UPSTAT_AUTOCTS | UPSTAT_AUTORTS);
1916 	spin_lock_irq(&uap->port.lock);
1917 	cr = pl011_read(uap, REG_CR);
1918 	uap->old_cr = cr;
1919 	cr &= UART011_CR_RTS | UART011_CR_DTR;
1920 	cr |= UART01x_CR_UARTEN | UART011_CR_TXE;
1921 	pl011_write(cr, uap, REG_CR);
1922 	spin_unlock_irq(&uap->port.lock);
1923 
1924 	/*
1925 	 * disable break condition and fifos
1926 	 */
1927 	pl011_shutdown_channel(uap, REG_LCRH_RX);
1928 	if (pl011_split_lcrh(uap))
1929 		pl011_shutdown_channel(uap, REG_LCRH_TX);
1930 }
1931 
1932 static void pl011_disable_interrupts(struct uart_amba_port *uap)
1933 {
1934 	spin_lock_irq(&uap->port.lock);
1935 
1936 	/* mask all interrupts and clear all pending ones */
1937 	uap->im = 0;
1938 	pl011_write(uap->im, uap, REG_IMSC);
1939 	pl011_write(0xffff, uap, REG_ICR);
1940 
1941 	spin_unlock_irq(&uap->port.lock);
1942 }
1943 
1944 static void pl011_shutdown(struct uart_port *port)
1945 {
1946 	struct uart_amba_port *uap =
1947 		container_of(port, struct uart_amba_port, port);
1948 
1949 	pl011_disable_interrupts(uap);
1950 
1951 	pl011_dma_shutdown(uap);
1952 
1953 	if ((port->rs485.flags & SER_RS485_ENABLED) && uap->rs485_tx_started)
1954 		pl011_rs485_tx_stop(uap);
1955 
1956 	free_irq(uap->port.irq, uap);
1957 
1958 	pl011_disable_uart(uap);
1959 
1960 	/*
1961 	 * Shut down the clock producer
1962 	 */
1963 	clk_disable_unprepare(uap->clk);
1964 	/* Optionally let pins go into sleep states */
1965 	pinctrl_pm_select_sleep_state(port->dev);
1966 
1967 	if (dev_get_platdata(uap->port.dev)) {
1968 		struct amba_pl011_data *plat;
1969 
1970 		plat = dev_get_platdata(uap->port.dev);
1971 		if (plat->exit)
1972 			plat->exit();
1973 	}
1974 
1975 	if (uap->port.ops->flush_buffer)
1976 		uap->port.ops->flush_buffer(port);
1977 }
1978 
1979 static void sbsa_uart_shutdown(struct uart_port *port)
1980 {
1981 	struct uart_amba_port *uap =
1982 		container_of(port, struct uart_amba_port, port);
1983 
1984 	pl011_disable_interrupts(uap);
1985 
1986 	free_irq(uap->port.irq, uap);
1987 
1988 	if (uap->port.ops->flush_buffer)
1989 		uap->port.ops->flush_buffer(port);
1990 }
1991 
1992 static void
1993 pl011_setup_status_masks(struct uart_port *port, struct ktermios *termios)
1994 {
1995 	port->read_status_mask = UART011_DR_OE | 255;
1996 	if (termios->c_iflag & INPCK)
1997 		port->read_status_mask |= UART011_DR_FE | UART011_DR_PE;
1998 	if (termios->c_iflag & (IGNBRK | BRKINT | PARMRK))
1999 		port->read_status_mask |= UART011_DR_BE;
2000 
2001 	/*
2002 	 * Characters to ignore
2003 	 */
2004 	port->ignore_status_mask = 0;
2005 	if (termios->c_iflag & IGNPAR)
2006 		port->ignore_status_mask |= UART011_DR_FE | UART011_DR_PE;
2007 	if (termios->c_iflag & IGNBRK) {
2008 		port->ignore_status_mask |= UART011_DR_BE;
2009 		/*
2010 		 * If we're ignoring parity and break indicators,
2011 		 * ignore overruns too (for real raw support).
2012 		 */
2013 		if (termios->c_iflag & IGNPAR)
2014 			port->ignore_status_mask |= UART011_DR_OE;
2015 	}
2016 
2017 	/*
2018 	 * Ignore all characters if CREAD is not set.
2019 	 */
2020 	if ((termios->c_cflag & CREAD) == 0)
2021 		port->ignore_status_mask |= UART_DUMMY_DR_RX;
2022 }
2023 
2024 static void
2025 pl011_set_termios(struct uart_port *port, struct ktermios *termios,
2026 		     struct ktermios *old)
2027 {
2028 	struct uart_amba_port *uap =
2029 	    container_of(port, struct uart_amba_port, port);
2030 	unsigned int lcr_h, old_cr;
2031 	unsigned long flags;
2032 	unsigned int baud, quot, clkdiv;
2033 	unsigned int bits;
2034 
2035 	if (uap->vendor->oversampling)
2036 		clkdiv = 8;
2037 	else
2038 		clkdiv = 16;
2039 
2040 	/*
2041 	 * Ask the core to calculate the divisor for us.
2042 	 */
2043 	baud = uart_get_baud_rate(port, termios, old, 0,
2044 				  port->uartclk / clkdiv);
2045 #ifdef CONFIG_DMA_ENGINE
2046 	/*
2047 	 * Adjust RX DMA polling rate with baud rate if not specified.
2048 	 */
2049 	if (uap->dmarx.auto_poll_rate)
2050 		uap->dmarx.poll_rate = DIV_ROUND_UP(10000000, baud);
2051 #endif
2052 
2053 	if (baud > port->uartclk/16)
2054 		quot = DIV_ROUND_CLOSEST(port->uartclk * 8, baud);
2055 	else
2056 		quot = DIV_ROUND_CLOSEST(port->uartclk * 4, baud);
2057 
2058 	switch (termios->c_cflag & CSIZE) {
2059 	case CS5:
2060 		lcr_h = UART01x_LCRH_WLEN_5;
2061 		break;
2062 	case CS6:
2063 		lcr_h = UART01x_LCRH_WLEN_6;
2064 		break;
2065 	case CS7:
2066 		lcr_h = UART01x_LCRH_WLEN_7;
2067 		break;
2068 	default: // CS8
2069 		lcr_h = UART01x_LCRH_WLEN_8;
2070 		break;
2071 	}
2072 	if (termios->c_cflag & CSTOPB)
2073 		lcr_h |= UART01x_LCRH_STP2;
2074 	if (termios->c_cflag & PARENB) {
2075 		lcr_h |= UART01x_LCRH_PEN;
2076 		if (!(termios->c_cflag & PARODD))
2077 			lcr_h |= UART01x_LCRH_EPS;
2078 		if (termios->c_cflag & CMSPAR)
2079 			lcr_h |= UART011_LCRH_SPS;
2080 	}
2081 	if (uap->fifosize > 1)
2082 		lcr_h |= UART01x_LCRH_FEN;
2083 
2084 	bits = tty_get_frame_size(termios->c_cflag);
2085 
2086 	spin_lock_irqsave(&port->lock, flags);
2087 
2088 	/*
2089 	 * Update the per-port timeout.
2090 	 */
2091 	uart_update_timeout(port, termios->c_cflag, baud);
2092 
2093 	/*
2094 	 * Calculate the approximated time it takes to transmit one character
2095 	 * with the given baud rate. We use this as the poll interval when we
2096 	 * wait for the tx queue to empty.
2097 	 */
2098 	uap->rs485_tx_drain_interval = (bits * 1000 * 1000) / baud;
2099 
2100 	pl011_setup_status_masks(port, termios);
2101 
2102 	if (UART_ENABLE_MS(port, termios->c_cflag))
2103 		pl011_enable_ms(port);
2104 
2105 	if (port->rs485.flags & SER_RS485_ENABLED)
2106 		termios->c_cflag &= ~CRTSCTS;
2107 
2108 	/* first, disable everything */
2109 	old_cr = pl011_read(uap, REG_CR);
2110 	pl011_write(0, uap, REG_CR);
2111 
2112 	if (termios->c_cflag & CRTSCTS) {
2113 		if (old_cr & UART011_CR_RTS)
2114 			old_cr |= UART011_CR_RTSEN;
2115 
2116 		old_cr |= UART011_CR_CTSEN;
2117 		port->status |= UPSTAT_AUTOCTS | UPSTAT_AUTORTS;
2118 	} else {
2119 		old_cr &= ~(UART011_CR_CTSEN | UART011_CR_RTSEN);
2120 		port->status &= ~(UPSTAT_AUTOCTS | UPSTAT_AUTORTS);
2121 	}
2122 
2123 	if (uap->vendor->oversampling) {
2124 		if (baud > port->uartclk / 16)
2125 			old_cr |= ST_UART011_CR_OVSFACT;
2126 		else
2127 			old_cr &= ~ST_UART011_CR_OVSFACT;
2128 	}
2129 
2130 	/*
2131 	 * Workaround for the ST Micro oversampling variants to
2132 	 * increase the bitrate slightly, by lowering the divisor,
2133 	 * to avoid delayed sampling of start bit at high speeds,
2134 	 * else we see data corruption.
2135 	 */
2136 	if (uap->vendor->oversampling) {
2137 		if ((baud >= 3000000) && (baud < 3250000) && (quot > 1))
2138 			quot -= 1;
2139 		else if ((baud > 3250000) && (quot > 2))
2140 			quot -= 2;
2141 	}
2142 	/* Set baud rate */
2143 	pl011_write(quot & 0x3f, uap, REG_FBRD);
2144 	pl011_write(quot >> 6, uap, REG_IBRD);
2145 
2146 	/*
2147 	 * ----------v----------v----------v----------v-----
2148 	 * NOTE: REG_LCRH_TX and REG_LCRH_RX MUST BE WRITTEN AFTER
2149 	 * REG_FBRD & REG_IBRD.
2150 	 * ----------^----------^----------^----------^-----
2151 	 */
2152 	pl011_write_lcr_h(uap, lcr_h);
2153 	pl011_write(old_cr, uap, REG_CR);
2154 
2155 	spin_unlock_irqrestore(&port->lock, flags);
2156 }
2157 
2158 static void
2159 sbsa_uart_set_termios(struct uart_port *port, struct ktermios *termios,
2160 		      struct ktermios *old)
2161 {
2162 	struct uart_amba_port *uap =
2163 	    container_of(port, struct uart_amba_port, port);
2164 	unsigned long flags;
2165 
2166 	tty_termios_encode_baud_rate(termios, uap->fixed_baud, uap->fixed_baud);
2167 
2168 	/* The SBSA UART only supports 8n1 without hardware flow control. */
2169 	termios->c_cflag &= ~(CSIZE | CSTOPB | PARENB | PARODD);
2170 	termios->c_cflag &= ~(CMSPAR | CRTSCTS);
2171 	termios->c_cflag |= CS8 | CLOCAL;
2172 
2173 	spin_lock_irqsave(&port->lock, flags);
2174 	uart_update_timeout(port, CS8, uap->fixed_baud);
2175 	pl011_setup_status_masks(port, termios);
2176 	spin_unlock_irqrestore(&port->lock, flags);
2177 }
2178 
2179 static const char *pl011_type(struct uart_port *port)
2180 {
2181 	struct uart_amba_port *uap =
2182 	    container_of(port, struct uart_amba_port, port);
2183 	return uap->port.type == PORT_AMBA ? uap->type : NULL;
2184 }
2185 
2186 /*
2187  * Release the memory region(s) being used by 'port'
2188  */
2189 static void pl011_release_port(struct uart_port *port)
2190 {
2191 	release_mem_region(port->mapbase, SZ_4K);
2192 }
2193 
2194 /*
2195  * Request the memory region(s) being used by 'port'
2196  */
2197 static int pl011_request_port(struct uart_port *port)
2198 {
2199 	return request_mem_region(port->mapbase, SZ_4K, "uart-pl011")
2200 			!= NULL ? 0 : -EBUSY;
2201 }
2202 
2203 /*
2204  * Configure/autoconfigure the port.
2205  */
2206 static void pl011_config_port(struct uart_port *port, int flags)
2207 {
2208 	if (flags & UART_CONFIG_TYPE) {
2209 		port->type = PORT_AMBA;
2210 		pl011_request_port(port);
2211 	}
2212 }
2213 
2214 /*
2215  * verify the new serial_struct (for TIOCSSERIAL).
2216  */
2217 static int pl011_verify_port(struct uart_port *port, struct serial_struct *ser)
2218 {
2219 	int ret = 0;
2220 	if (ser->type != PORT_UNKNOWN && ser->type != PORT_AMBA)
2221 		ret = -EINVAL;
2222 	if (ser->irq < 0 || ser->irq >= nr_irqs)
2223 		ret = -EINVAL;
2224 	if (ser->baud_base < 9600)
2225 		ret = -EINVAL;
2226 	return ret;
2227 }
2228 
2229 static int pl011_rs485_config(struct uart_port *port,
2230 			      struct serial_rs485 *rs485)
2231 {
2232 	struct uart_amba_port *uap =
2233 		container_of(port, struct uart_amba_port, port);
2234 
2235 	/* pick sane settings if the user hasn't */
2236 	if (!(rs485->flags & SER_RS485_RTS_ON_SEND) ==
2237 	    !(rs485->flags & SER_RS485_RTS_AFTER_SEND)) {
2238 		rs485->flags |= SER_RS485_RTS_ON_SEND;
2239 		rs485->flags &= ~SER_RS485_RTS_AFTER_SEND;
2240 	}
2241 	/* clamp the delays to [0, 100ms] */
2242 	rs485->delay_rts_before_send = min(rs485->delay_rts_before_send, 100U);
2243 	rs485->delay_rts_after_send = min(rs485->delay_rts_after_send, 100U);
2244 	memset(rs485->padding, 0, sizeof(rs485->padding));
2245 
2246 	if (port->rs485.flags & SER_RS485_ENABLED)
2247 		pl011_rs485_tx_stop(uap);
2248 
2249 	/* Set new configuration */
2250 	port->rs485 = *rs485;
2251 
2252 	/* Make sure auto RTS is disabled */
2253 	if (port->rs485.flags & SER_RS485_ENABLED) {
2254 		u32 cr = pl011_read(uap, REG_CR);
2255 
2256 		cr &= ~UART011_CR_RTSEN;
2257 		pl011_write(cr, uap, REG_CR);
2258 		port->status &= ~UPSTAT_AUTORTS;
2259 	}
2260 
2261 	return 0;
2262 }
2263 
2264 static const struct uart_ops amba_pl011_pops = {
2265 	.tx_empty	= pl011_tx_empty,
2266 	.set_mctrl	= pl011_set_mctrl,
2267 	.get_mctrl	= pl011_get_mctrl,
2268 	.stop_tx	= pl011_stop_tx,
2269 	.start_tx	= pl011_start_tx,
2270 	.stop_rx	= pl011_stop_rx,
2271 	.enable_ms	= pl011_enable_ms,
2272 	.break_ctl	= pl011_break_ctl,
2273 	.startup	= pl011_startup,
2274 	.shutdown	= pl011_shutdown,
2275 	.flush_buffer	= pl011_dma_flush_buffer,
2276 	.set_termios	= pl011_set_termios,
2277 	.type		= pl011_type,
2278 	.release_port	= pl011_release_port,
2279 	.request_port	= pl011_request_port,
2280 	.config_port	= pl011_config_port,
2281 	.verify_port	= pl011_verify_port,
2282 #ifdef CONFIG_CONSOLE_POLL
2283 	.poll_init     = pl011_hwinit,
2284 	.poll_get_char = pl011_get_poll_char,
2285 	.poll_put_char = pl011_put_poll_char,
2286 #endif
2287 };
2288 
2289 static void sbsa_uart_set_mctrl(struct uart_port *port, unsigned int mctrl)
2290 {
2291 }
2292 
2293 static unsigned int sbsa_uart_get_mctrl(struct uart_port *port)
2294 {
2295 	return 0;
2296 }
2297 
2298 static const struct uart_ops sbsa_uart_pops = {
2299 	.tx_empty	= pl011_tx_empty,
2300 	.set_mctrl	= sbsa_uart_set_mctrl,
2301 	.get_mctrl	= sbsa_uart_get_mctrl,
2302 	.stop_tx	= pl011_stop_tx,
2303 	.start_tx	= pl011_start_tx,
2304 	.stop_rx	= pl011_stop_rx,
2305 	.startup	= sbsa_uart_startup,
2306 	.shutdown	= sbsa_uart_shutdown,
2307 	.set_termios	= sbsa_uart_set_termios,
2308 	.type		= pl011_type,
2309 	.release_port	= pl011_release_port,
2310 	.request_port	= pl011_request_port,
2311 	.config_port	= pl011_config_port,
2312 	.verify_port	= pl011_verify_port,
2313 #ifdef CONFIG_CONSOLE_POLL
2314 	.poll_init     = pl011_hwinit,
2315 	.poll_get_char = pl011_get_poll_char,
2316 	.poll_put_char = pl011_put_poll_char,
2317 #endif
2318 };
2319 
2320 static struct uart_amba_port *amba_ports[UART_NR];
2321 
2322 #ifdef CONFIG_SERIAL_AMBA_PL011_CONSOLE
2323 
2324 static void pl011_console_putchar(struct uart_port *port, int ch)
2325 {
2326 	struct uart_amba_port *uap =
2327 	    container_of(port, struct uart_amba_port, port);
2328 
2329 	while (pl011_read(uap, REG_FR) & UART01x_FR_TXFF)
2330 		cpu_relax();
2331 	pl011_write(ch, uap, REG_DR);
2332 }
2333 
2334 static void
2335 pl011_console_write(struct console *co, const char *s, unsigned int count)
2336 {
2337 	struct uart_amba_port *uap = amba_ports[co->index];
2338 	unsigned int old_cr = 0, new_cr;
2339 	unsigned long flags;
2340 	int locked = 1;
2341 
2342 	clk_enable(uap->clk);
2343 
2344 	local_irq_save(flags);
2345 	if (uap->port.sysrq)
2346 		locked = 0;
2347 	else if (oops_in_progress)
2348 		locked = spin_trylock(&uap->port.lock);
2349 	else
2350 		spin_lock(&uap->port.lock);
2351 
2352 	/*
2353 	 *	First save the CR then disable the interrupts
2354 	 */
2355 	if (!uap->vendor->always_enabled) {
2356 		old_cr = pl011_read(uap, REG_CR);
2357 		new_cr = old_cr & ~UART011_CR_CTSEN;
2358 		new_cr |= UART01x_CR_UARTEN | UART011_CR_TXE;
2359 		pl011_write(new_cr, uap, REG_CR);
2360 	}
2361 
2362 	uart_console_write(&uap->port, s, count, pl011_console_putchar);
2363 
2364 	/*
2365 	 *	Finally, wait for transmitter to become empty and restore the
2366 	 *	TCR. Allow feature register bits to be inverted to work around
2367 	 *	errata.
2368 	 */
2369 	while ((pl011_read(uap, REG_FR) ^ uap->vendor->inv_fr)
2370 						& uap->vendor->fr_busy)
2371 		cpu_relax();
2372 	if (!uap->vendor->always_enabled)
2373 		pl011_write(old_cr, uap, REG_CR);
2374 
2375 	if (locked)
2376 		spin_unlock(&uap->port.lock);
2377 	local_irq_restore(flags);
2378 
2379 	clk_disable(uap->clk);
2380 }
2381 
2382 static void pl011_console_get_options(struct uart_amba_port *uap, int *baud,
2383 				      int *parity, int *bits)
2384 {
2385 	if (pl011_read(uap, REG_CR) & UART01x_CR_UARTEN) {
2386 		unsigned int lcr_h, ibrd, fbrd;
2387 
2388 		lcr_h = pl011_read(uap, REG_LCRH_TX);
2389 
2390 		*parity = 'n';
2391 		if (lcr_h & UART01x_LCRH_PEN) {
2392 			if (lcr_h & UART01x_LCRH_EPS)
2393 				*parity = 'e';
2394 			else
2395 				*parity = 'o';
2396 		}
2397 
2398 		if ((lcr_h & 0x60) == UART01x_LCRH_WLEN_7)
2399 			*bits = 7;
2400 		else
2401 			*bits = 8;
2402 
2403 		ibrd = pl011_read(uap, REG_IBRD);
2404 		fbrd = pl011_read(uap, REG_FBRD);
2405 
2406 		*baud = uap->port.uartclk * 4 / (64 * ibrd + fbrd);
2407 
2408 		if (uap->vendor->oversampling) {
2409 			if (pl011_read(uap, REG_CR)
2410 				  & ST_UART011_CR_OVSFACT)
2411 				*baud *= 2;
2412 		}
2413 	}
2414 }
2415 
2416 static int pl011_console_setup(struct console *co, char *options)
2417 {
2418 	struct uart_amba_port *uap;
2419 	int baud = 38400;
2420 	int bits = 8;
2421 	int parity = 'n';
2422 	int flow = 'n';
2423 	int ret;
2424 
2425 	/*
2426 	 * Check whether an invalid uart number has been specified, and
2427 	 * if so, search for the first available port that does have
2428 	 * console support.
2429 	 */
2430 	if (co->index >= UART_NR)
2431 		co->index = 0;
2432 	uap = amba_ports[co->index];
2433 	if (!uap)
2434 		return -ENODEV;
2435 
2436 	/* Allow pins to be muxed in and configured */
2437 	pinctrl_pm_select_default_state(uap->port.dev);
2438 
2439 	ret = clk_prepare(uap->clk);
2440 	if (ret)
2441 		return ret;
2442 
2443 	if (dev_get_platdata(uap->port.dev)) {
2444 		struct amba_pl011_data *plat;
2445 
2446 		plat = dev_get_platdata(uap->port.dev);
2447 		if (plat->init)
2448 			plat->init();
2449 	}
2450 
2451 	uap->port.uartclk = clk_get_rate(uap->clk);
2452 
2453 	if (uap->vendor->fixed_options) {
2454 		baud = uap->fixed_baud;
2455 	} else {
2456 		if (options)
2457 			uart_parse_options(options,
2458 					   &baud, &parity, &bits, &flow);
2459 		else
2460 			pl011_console_get_options(uap, &baud, &parity, &bits);
2461 	}
2462 
2463 	return uart_set_options(&uap->port, co, baud, parity, bits, flow);
2464 }
2465 
2466 /**
2467  *	pl011_console_match - non-standard console matching
2468  *	@co:	  registering console
2469  *	@name:	  name from console command line
2470  *	@idx:	  index from console command line
2471  *	@options: ptr to option string from console command line
2472  *
2473  *	Only attempts to match console command lines of the form:
2474  *	    console=pl011,mmio|mmio32,<addr>[,<options>]
2475  *	    console=pl011,0x<addr>[,<options>]
2476  *	This form is used to register an initial earlycon boot console and
2477  *	replace it with the amba_console at pl011 driver init.
2478  *
2479  *	Performs console setup for a match (as required by interface)
2480  *	If no <options> are specified, then assume the h/w is already setup.
2481  *
2482  *	Returns 0 if console matches; otherwise non-zero to use default matching
2483  */
2484 static int pl011_console_match(struct console *co, char *name, int idx,
2485 			       char *options)
2486 {
2487 	unsigned char iotype;
2488 	resource_size_t addr;
2489 	int i;
2490 
2491 	/*
2492 	 * Systems affected by the Qualcomm Technologies QDF2400 E44 erratum
2493 	 * have a distinct console name, so make sure we check for that.
2494 	 * The actual implementation of the erratum occurs in the probe
2495 	 * function.
2496 	 */
2497 	if ((strcmp(name, "qdf2400_e44") != 0) && (strcmp(name, "pl011") != 0))
2498 		return -ENODEV;
2499 
2500 	if (uart_parse_earlycon(options, &iotype, &addr, &options))
2501 		return -ENODEV;
2502 
2503 	if (iotype != UPIO_MEM && iotype != UPIO_MEM32)
2504 		return -ENODEV;
2505 
2506 	/* try to match the port specified on the command line */
2507 	for (i = 0; i < ARRAY_SIZE(amba_ports); i++) {
2508 		struct uart_port *port;
2509 
2510 		if (!amba_ports[i])
2511 			continue;
2512 
2513 		port = &amba_ports[i]->port;
2514 
2515 		if (port->mapbase != addr)
2516 			continue;
2517 
2518 		co->index = i;
2519 		port->cons = co;
2520 		return pl011_console_setup(co, options);
2521 	}
2522 
2523 	return -ENODEV;
2524 }
2525 
2526 static struct uart_driver amba_reg;
2527 static struct console amba_console = {
2528 	.name		= "ttyAMA",
2529 	.write		= pl011_console_write,
2530 	.device		= uart_console_device,
2531 	.setup		= pl011_console_setup,
2532 	.match		= pl011_console_match,
2533 	.flags		= CON_PRINTBUFFER | CON_ANYTIME,
2534 	.index		= -1,
2535 	.data		= &amba_reg,
2536 };
2537 
2538 #define AMBA_CONSOLE	(&amba_console)
2539 
2540 static void qdf2400_e44_putc(struct uart_port *port, int c)
2541 {
2542 	while (readl(port->membase + UART01x_FR) & UART01x_FR_TXFF)
2543 		cpu_relax();
2544 	writel(c, port->membase + UART01x_DR);
2545 	while (!(readl(port->membase + UART01x_FR) & UART011_FR_TXFE))
2546 		cpu_relax();
2547 }
2548 
2549 static void qdf2400_e44_early_write(struct console *con, const char *s, unsigned n)
2550 {
2551 	struct earlycon_device *dev = con->data;
2552 
2553 	uart_console_write(&dev->port, s, n, qdf2400_e44_putc);
2554 }
2555 
2556 static void pl011_putc(struct uart_port *port, int c)
2557 {
2558 	while (readl(port->membase + UART01x_FR) & UART01x_FR_TXFF)
2559 		cpu_relax();
2560 	if (port->iotype == UPIO_MEM32)
2561 		writel(c, port->membase + UART01x_DR);
2562 	else
2563 		writeb(c, port->membase + UART01x_DR);
2564 	while (readl(port->membase + UART01x_FR) & UART01x_FR_BUSY)
2565 		cpu_relax();
2566 }
2567 
2568 static void pl011_early_write(struct console *con, const char *s, unsigned n)
2569 {
2570 	struct earlycon_device *dev = con->data;
2571 
2572 	uart_console_write(&dev->port, s, n, pl011_putc);
2573 }
2574 
2575 #ifdef CONFIG_CONSOLE_POLL
2576 static int pl011_getc(struct uart_port *port)
2577 {
2578 	if (readl(port->membase + UART01x_FR) & UART01x_FR_RXFE)
2579 		return NO_POLL_CHAR;
2580 
2581 	if (port->iotype == UPIO_MEM32)
2582 		return readl(port->membase + UART01x_DR);
2583 	else
2584 		return readb(port->membase + UART01x_DR);
2585 }
2586 
2587 static int pl011_early_read(struct console *con, char *s, unsigned int n)
2588 {
2589 	struct earlycon_device *dev = con->data;
2590 	int ch, num_read = 0;
2591 
2592 	while (num_read < n) {
2593 		ch = pl011_getc(&dev->port);
2594 		if (ch == NO_POLL_CHAR)
2595 			break;
2596 
2597 		s[num_read++] = ch;
2598 	}
2599 
2600 	return num_read;
2601 }
2602 #else
2603 #define pl011_early_read NULL
2604 #endif
2605 
2606 /*
2607  * On non-ACPI systems, earlycon is enabled by specifying
2608  * "earlycon=pl011,<address>" on the kernel command line.
2609  *
2610  * On ACPI ARM64 systems, an "early" console is enabled via the SPCR table,
2611  * by specifying only "earlycon" on the command line.  Because it requires
2612  * SPCR, the console starts after ACPI is parsed, which is later than a
2613  * traditional early console.
2614  *
2615  * To get the traditional early console that starts before ACPI is parsed,
2616  * specify the full "earlycon=pl011,<address>" option.
2617  */
2618 static int __init pl011_early_console_setup(struct earlycon_device *device,
2619 					    const char *opt)
2620 {
2621 	if (!device->port.membase)
2622 		return -ENODEV;
2623 
2624 	device->con->write = pl011_early_write;
2625 	device->con->read = pl011_early_read;
2626 
2627 	return 0;
2628 }
2629 OF_EARLYCON_DECLARE(pl011, "arm,pl011", pl011_early_console_setup);
2630 OF_EARLYCON_DECLARE(pl011, "arm,sbsa-uart", pl011_early_console_setup);
2631 
2632 /*
2633  * On Qualcomm Datacenter Technologies QDF2400 SOCs affected by
2634  * Erratum 44, traditional earlycon can be enabled by specifying
2635  * "earlycon=qdf2400_e44,<address>".  Any options are ignored.
2636  *
2637  * Alternatively, you can just specify "earlycon", and the early console
2638  * will be enabled with the information from the SPCR table.  In this
2639  * case, the SPCR code will detect the need for the E44 work-around,
2640  * and set the console name to "qdf2400_e44".
2641  */
2642 static int __init
2643 qdf2400_e44_early_console_setup(struct earlycon_device *device,
2644 				const char *opt)
2645 {
2646 	if (!device->port.membase)
2647 		return -ENODEV;
2648 
2649 	device->con->write = qdf2400_e44_early_write;
2650 	return 0;
2651 }
2652 EARLYCON_DECLARE(qdf2400_e44, qdf2400_e44_early_console_setup);
2653 
2654 #else
2655 #define AMBA_CONSOLE	NULL
2656 #endif
2657 
2658 static struct uart_driver amba_reg = {
2659 	.owner			= THIS_MODULE,
2660 	.driver_name		= "ttyAMA",
2661 	.dev_name		= "ttyAMA",
2662 	.major			= SERIAL_AMBA_MAJOR,
2663 	.minor			= SERIAL_AMBA_MINOR,
2664 	.nr			= UART_NR,
2665 	.cons			= AMBA_CONSOLE,
2666 };
2667 
2668 static int pl011_probe_dt_alias(int index, struct device *dev)
2669 {
2670 	struct device_node *np;
2671 	static bool seen_dev_with_alias = false;
2672 	static bool seen_dev_without_alias = false;
2673 	int ret = index;
2674 
2675 	if (!IS_ENABLED(CONFIG_OF))
2676 		return ret;
2677 
2678 	np = dev->of_node;
2679 	if (!np)
2680 		return ret;
2681 
2682 	ret = of_alias_get_id(np, "serial");
2683 	if (ret < 0) {
2684 		seen_dev_without_alias = true;
2685 		ret = index;
2686 	} else {
2687 		seen_dev_with_alias = true;
2688 		if (ret >= ARRAY_SIZE(amba_ports) || amba_ports[ret] != NULL) {
2689 			dev_warn(dev, "requested serial port %d  not available.\n", ret);
2690 			ret = index;
2691 		}
2692 	}
2693 
2694 	if (seen_dev_with_alias && seen_dev_without_alias)
2695 		dev_warn(dev, "aliased and non-aliased serial devices found in device tree. Serial port enumeration may be unpredictable.\n");
2696 
2697 	return ret;
2698 }
2699 
2700 /* unregisters the driver also if no more ports are left */
2701 static void pl011_unregister_port(struct uart_amba_port *uap)
2702 {
2703 	int i;
2704 	bool busy = false;
2705 
2706 	for (i = 0; i < ARRAY_SIZE(amba_ports); i++) {
2707 		if (amba_ports[i] == uap)
2708 			amba_ports[i] = NULL;
2709 		else if (amba_ports[i])
2710 			busy = true;
2711 	}
2712 	pl011_dma_remove(uap);
2713 	if (!busy)
2714 		uart_unregister_driver(&amba_reg);
2715 }
2716 
2717 static int pl011_find_free_port(void)
2718 {
2719 	int i;
2720 
2721 	for (i = 0; i < ARRAY_SIZE(amba_ports); i++)
2722 		if (amba_ports[i] == NULL)
2723 			return i;
2724 
2725 	return -EBUSY;
2726 }
2727 
2728 static int pl011_get_rs485_mode(struct uart_amba_port *uap)
2729 {
2730 	struct uart_port *port = &uap->port;
2731 	struct serial_rs485 *rs485 = &port->rs485;
2732 	int ret;
2733 
2734 	ret = uart_get_rs485_mode(port);
2735 	if (ret)
2736 		return ret;
2737 
2738 	/* clamp the delays to [0, 100ms] */
2739 	rs485->delay_rts_before_send = min(rs485->delay_rts_before_send, 100U);
2740 	rs485->delay_rts_after_send = min(rs485->delay_rts_after_send, 100U);
2741 
2742 	return 0;
2743 }
2744 
2745 static int pl011_setup_port(struct device *dev, struct uart_amba_port *uap,
2746 			    struct resource *mmiobase, int index)
2747 {
2748 	void __iomem *base;
2749 	int ret;
2750 
2751 	base = devm_ioremap_resource(dev, mmiobase);
2752 	if (IS_ERR(base))
2753 		return PTR_ERR(base);
2754 
2755 	index = pl011_probe_dt_alias(index, dev);
2756 
2757 	uap->old_cr = 0;
2758 	uap->port.dev = dev;
2759 	uap->port.mapbase = mmiobase->start;
2760 	uap->port.membase = base;
2761 	uap->port.fifosize = uap->fifosize;
2762 	uap->port.has_sysrq = IS_ENABLED(CONFIG_SERIAL_AMBA_PL011_CONSOLE);
2763 	uap->port.flags = UPF_BOOT_AUTOCONF;
2764 	uap->port.line = index;
2765 
2766 	ret = pl011_get_rs485_mode(uap);
2767 	if (ret)
2768 		return ret;
2769 
2770 	amba_ports[index] = uap;
2771 
2772 	return 0;
2773 }
2774 
2775 static int pl011_register_port(struct uart_amba_port *uap)
2776 {
2777 	int ret, i;
2778 
2779 	/* Ensure interrupts from this UART are masked and cleared */
2780 	pl011_write(0, uap, REG_IMSC);
2781 	pl011_write(0xffff, uap, REG_ICR);
2782 
2783 	if (!amba_reg.state) {
2784 		ret = uart_register_driver(&amba_reg);
2785 		if (ret < 0) {
2786 			dev_err(uap->port.dev,
2787 				"Failed to register AMBA-PL011 driver\n");
2788 			for (i = 0; i < ARRAY_SIZE(amba_ports); i++)
2789 				if (amba_ports[i] == uap)
2790 					amba_ports[i] = NULL;
2791 			return ret;
2792 		}
2793 	}
2794 
2795 	ret = uart_add_one_port(&amba_reg, &uap->port);
2796 	if (ret)
2797 		pl011_unregister_port(uap);
2798 
2799 	return ret;
2800 }
2801 
2802 static int pl011_probe(struct amba_device *dev, const struct amba_id *id)
2803 {
2804 	struct uart_amba_port *uap;
2805 	struct vendor_data *vendor = id->data;
2806 	int portnr, ret;
2807 
2808 	portnr = pl011_find_free_port();
2809 	if (portnr < 0)
2810 		return portnr;
2811 
2812 	uap = devm_kzalloc(&dev->dev, sizeof(struct uart_amba_port),
2813 			   GFP_KERNEL);
2814 	if (!uap)
2815 		return -ENOMEM;
2816 
2817 	uap->clk = devm_clk_get(&dev->dev, NULL);
2818 	if (IS_ERR(uap->clk))
2819 		return PTR_ERR(uap->clk);
2820 
2821 	uap->reg_offset = vendor->reg_offset;
2822 	uap->vendor = vendor;
2823 	uap->fifosize = vendor->get_fifosize(dev);
2824 	uap->port.iotype = vendor->access_32b ? UPIO_MEM32 : UPIO_MEM;
2825 	uap->port.irq = dev->irq[0];
2826 	uap->port.ops = &amba_pl011_pops;
2827 	uap->port.rs485_config = pl011_rs485_config;
2828 	snprintf(uap->type, sizeof(uap->type), "PL011 rev%u", amba_rev(dev));
2829 
2830 	ret = pl011_setup_port(&dev->dev, uap, &dev->res, portnr);
2831 	if (ret)
2832 		return ret;
2833 
2834 	amba_set_drvdata(dev, uap);
2835 
2836 	return pl011_register_port(uap);
2837 }
2838 
2839 static void pl011_remove(struct amba_device *dev)
2840 {
2841 	struct uart_amba_port *uap = amba_get_drvdata(dev);
2842 
2843 	uart_remove_one_port(&amba_reg, &uap->port);
2844 	pl011_unregister_port(uap);
2845 }
2846 
2847 #ifdef CONFIG_PM_SLEEP
2848 static int pl011_suspend(struct device *dev)
2849 {
2850 	struct uart_amba_port *uap = dev_get_drvdata(dev);
2851 
2852 	if (!uap)
2853 		return -EINVAL;
2854 
2855 	return uart_suspend_port(&amba_reg, &uap->port);
2856 }
2857 
2858 static int pl011_resume(struct device *dev)
2859 {
2860 	struct uart_amba_port *uap = dev_get_drvdata(dev);
2861 
2862 	if (!uap)
2863 		return -EINVAL;
2864 
2865 	return uart_resume_port(&amba_reg, &uap->port);
2866 }
2867 #endif
2868 
2869 static SIMPLE_DEV_PM_OPS(pl011_dev_pm_ops, pl011_suspend, pl011_resume);
2870 
2871 static int sbsa_uart_probe(struct platform_device *pdev)
2872 {
2873 	struct uart_amba_port *uap;
2874 	struct resource *r;
2875 	int portnr, ret;
2876 	int baudrate;
2877 
2878 	/*
2879 	 * Check the mandatory baud rate parameter in the DT node early
2880 	 * so that we can easily exit with the error.
2881 	 */
2882 	if (pdev->dev.of_node) {
2883 		struct device_node *np = pdev->dev.of_node;
2884 
2885 		ret = of_property_read_u32(np, "current-speed", &baudrate);
2886 		if (ret)
2887 			return ret;
2888 	} else {
2889 		baudrate = 115200;
2890 	}
2891 
2892 	portnr = pl011_find_free_port();
2893 	if (portnr < 0)
2894 		return portnr;
2895 
2896 	uap = devm_kzalloc(&pdev->dev, sizeof(struct uart_amba_port),
2897 			   GFP_KERNEL);
2898 	if (!uap)
2899 		return -ENOMEM;
2900 
2901 	ret = platform_get_irq(pdev, 0);
2902 	if (ret < 0)
2903 		return ret;
2904 	uap->port.irq	= ret;
2905 
2906 #ifdef CONFIG_ACPI_SPCR_TABLE
2907 	if (qdf2400_e44_present) {
2908 		dev_info(&pdev->dev, "working around QDF2400 SoC erratum 44\n");
2909 		uap->vendor = &vendor_qdt_qdf2400_e44;
2910 	} else
2911 #endif
2912 		uap->vendor = &vendor_sbsa;
2913 
2914 	uap->reg_offset	= uap->vendor->reg_offset;
2915 	uap->fifosize	= 32;
2916 	uap->port.iotype = uap->vendor->access_32b ? UPIO_MEM32 : UPIO_MEM;
2917 	uap->port.ops	= &sbsa_uart_pops;
2918 	uap->fixed_baud = baudrate;
2919 
2920 	snprintf(uap->type, sizeof(uap->type), "SBSA");
2921 
2922 	r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2923 
2924 	ret = pl011_setup_port(&pdev->dev, uap, r, portnr);
2925 	if (ret)
2926 		return ret;
2927 
2928 	platform_set_drvdata(pdev, uap);
2929 
2930 	return pl011_register_port(uap);
2931 }
2932 
2933 static int sbsa_uart_remove(struct platform_device *pdev)
2934 {
2935 	struct uart_amba_port *uap = platform_get_drvdata(pdev);
2936 
2937 	uart_remove_one_port(&amba_reg, &uap->port);
2938 	pl011_unregister_port(uap);
2939 	return 0;
2940 }
2941 
2942 static const struct of_device_id sbsa_uart_of_match[] = {
2943 	{ .compatible = "arm,sbsa-uart", },
2944 	{},
2945 };
2946 MODULE_DEVICE_TABLE(of, sbsa_uart_of_match);
2947 
2948 static const struct acpi_device_id __maybe_unused sbsa_uart_acpi_match[] = {
2949 	{ "ARMH0011", 0 },
2950 	{ "ARMHB000", 0 },
2951 	{},
2952 };
2953 MODULE_DEVICE_TABLE(acpi, sbsa_uart_acpi_match);
2954 
2955 static struct platform_driver arm_sbsa_uart_platform_driver = {
2956 	.probe		= sbsa_uart_probe,
2957 	.remove		= sbsa_uart_remove,
2958 	.driver	= {
2959 		.name	= "sbsa-uart",
2960 		.pm	= &pl011_dev_pm_ops,
2961 		.of_match_table = of_match_ptr(sbsa_uart_of_match),
2962 		.acpi_match_table = ACPI_PTR(sbsa_uart_acpi_match),
2963 		.suppress_bind_attrs = IS_BUILTIN(CONFIG_SERIAL_AMBA_PL011),
2964 	},
2965 };
2966 
2967 static const struct amba_id pl011_ids[] = {
2968 	{
2969 		.id	= 0x00041011,
2970 		.mask	= 0x000fffff,
2971 		.data	= &vendor_arm,
2972 	},
2973 	{
2974 		.id	= 0x00380802,
2975 		.mask	= 0x00ffffff,
2976 		.data	= &vendor_st,
2977 	},
2978 	{
2979 		.id	= AMBA_LINUX_ID(0x00, 0x1, 0xffe),
2980 		.mask	= 0x00ffffff,
2981 		.data	= &vendor_zte,
2982 	},
2983 	{ 0, 0 },
2984 };
2985 
2986 MODULE_DEVICE_TABLE(amba, pl011_ids);
2987 
2988 static struct amba_driver pl011_driver = {
2989 	.drv = {
2990 		.name	= "uart-pl011",
2991 		.pm	= &pl011_dev_pm_ops,
2992 		.suppress_bind_attrs = IS_BUILTIN(CONFIG_SERIAL_AMBA_PL011),
2993 	},
2994 	.id_table	= pl011_ids,
2995 	.probe		= pl011_probe,
2996 	.remove		= pl011_remove,
2997 };
2998 
2999 static int __init pl011_init(void)
3000 {
3001 	printk(KERN_INFO "Serial: AMBA PL011 UART driver\n");
3002 
3003 	if (platform_driver_register(&arm_sbsa_uart_platform_driver))
3004 		pr_warn("could not register SBSA UART platform driver\n");
3005 	return amba_driver_register(&pl011_driver);
3006 }
3007 
3008 static void __exit pl011_exit(void)
3009 {
3010 	platform_driver_unregister(&arm_sbsa_uart_platform_driver);
3011 	amba_driver_unregister(&pl011_driver);
3012 }
3013 
3014 /*
3015  * While this can be a module, if builtin it's most likely the console
3016  * So let's leave module_exit but move module_init to an earlier place
3017  */
3018 arch_initcall(pl011_init);
3019 module_exit(pl011_exit);
3020 
3021 MODULE_AUTHOR("ARM Ltd/Deep Blue Solutions Ltd");
3022 MODULE_DESCRIPTION("ARM AMBA serial port driver");
3023 MODULE_LICENSE("GPL");
3024