xref: /openbmc/linux/drivers/tty/serial/amba-pl011.c (revision d0b73b48)
1 /*
2  *  Driver for AMBA serial ports
3  *
4  *  Based on drivers/char/serial.c, by Linus Torvalds, Theodore Ts'o.
5  *
6  *  Copyright 1999 ARM Limited
7  *  Copyright (C) 2000 Deep Blue Solutions Ltd.
8  *  Copyright (C) 2010 ST-Ericsson SA
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License as published by
12  * the Free Software Foundation; either version 2 of the License, or
13  * (at your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18  * GNU General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public License
21  * along with this program; if not, write to the Free Software
22  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
23  *
24  * This is a generic driver for ARM AMBA-type serial ports.  They
25  * have a lot of 16550-like features, but are not register compatible.
26  * Note that although they do have CTS, DCD and DSR inputs, they do
27  * not have an RI input, nor do they have DTR or RTS outputs.  If
28  * required, these have to be supplied via some other means (eg, GPIO)
29  * and hooked into this driver.
30  */
31 
32 #if defined(CONFIG_SERIAL_AMBA_PL011_CONSOLE) && defined(CONFIG_MAGIC_SYSRQ)
33 #define SUPPORT_SYSRQ
34 #endif
35 
36 #include <linux/module.h>
37 #include <linux/ioport.h>
38 #include <linux/init.h>
39 #include <linux/console.h>
40 #include <linux/sysrq.h>
41 #include <linux/device.h>
42 #include <linux/tty.h>
43 #include <linux/tty_flip.h>
44 #include <linux/serial_core.h>
45 #include <linux/serial.h>
46 #include <linux/amba/bus.h>
47 #include <linux/amba/serial.h>
48 #include <linux/clk.h>
49 #include <linux/slab.h>
50 #include <linux/dmaengine.h>
51 #include <linux/dma-mapping.h>
52 #include <linux/scatterlist.h>
53 #include <linux/delay.h>
54 #include <linux/types.h>
55 #include <linux/of.h>
56 #include <linux/of_device.h>
57 #include <linux/pinctrl/consumer.h>
58 #include <linux/sizes.h>
59 #include <linux/io.h>
60 
61 #define UART_NR			14
62 
63 #define SERIAL_AMBA_MAJOR	204
64 #define SERIAL_AMBA_MINOR	64
65 #define SERIAL_AMBA_NR		UART_NR
66 
67 #define AMBA_ISR_PASS_LIMIT	256
68 
69 #define UART_DR_ERROR		(UART011_DR_OE|UART011_DR_BE|UART011_DR_PE|UART011_DR_FE)
70 #define UART_DUMMY_DR_RX	(1 << 16)
71 
72 /* There is by now at least one vendor with differing details, so handle it */
73 struct vendor_data {
74 	unsigned int		ifls;
75 	unsigned int		fifosize;
76 	unsigned int		lcrh_tx;
77 	unsigned int		lcrh_rx;
78 	bool			oversampling;
79 	bool			dma_threshold;
80 	bool			cts_event_workaround;
81 };
82 
83 static struct vendor_data vendor_arm = {
84 	.ifls			= UART011_IFLS_RX4_8|UART011_IFLS_TX4_8,
85 	.fifosize		= 16,
86 	.lcrh_tx		= UART011_LCRH,
87 	.lcrh_rx		= UART011_LCRH,
88 	.oversampling		= false,
89 	.dma_threshold		= false,
90 	.cts_event_workaround	= false,
91 };
92 
93 static struct vendor_data vendor_st = {
94 	.ifls			= UART011_IFLS_RX_HALF|UART011_IFLS_TX_HALF,
95 	.fifosize		= 64,
96 	.lcrh_tx		= ST_UART011_LCRH_TX,
97 	.lcrh_rx		= ST_UART011_LCRH_RX,
98 	.oversampling		= true,
99 	.dma_threshold		= true,
100 	.cts_event_workaround	= true,
101 };
102 
103 static struct uart_amba_port *amba_ports[UART_NR];
104 
105 /* Deals with DMA transactions */
106 
107 struct pl011_sgbuf {
108 	struct scatterlist sg;
109 	char *buf;
110 };
111 
112 struct pl011_dmarx_data {
113 	struct dma_chan		*chan;
114 	struct completion	complete;
115 	bool			use_buf_b;
116 	struct pl011_sgbuf	sgbuf_a;
117 	struct pl011_sgbuf	sgbuf_b;
118 	dma_cookie_t		cookie;
119 	bool			running;
120 };
121 
122 struct pl011_dmatx_data {
123 	struct dma_chan		*chan;
124 	struct scatterlist	sg;
125 	char			*buf;
126 	bool			queued;
127 };
128 
129 /*
130  * We wrap our port structure around the generic uart_port.
131  */
132 struct uart_amba_port {
133 	struct uart_port	port;
134 	struct clk		*clk;
135 	/* Two optional pin states - default & sleep */
136 	struct pinctrl		*pinctrl;
137 	struct pinctrl_state	*pins_default;
138 	struct pinctrl_state	*pins_sleep;
139 	const struct vendor_data *vendor;
140 	unsigned int		dmacr;		/* dma control reg */
141 	unsigned int		im;		/* interrupt mask */
142 	unsigned int		old_status;
143 	unsigned int		fifosize;	/* vendor-specific */
144 	unsigned int		lcrh_tx;	/* vendor-specific */
145 	unsigned int		lcrh_rx;	/* vendor-specific */
146 	unsigned int		old_cr;		/* state during shutdown */
147 	bool			autorts;
148 	char			type[12];
149 #ifdef CONFIG_DMA_ENGINE
150 	/* DMA stuff */
151 	bool			using_tx_dma;
152 	bool			using_rx_dma;
153 	struct pl011_dmarx_data dmarx;
154 	struct pl011_dmatx_data	dmatx;
155 #endif
156 };
157 
158 /*
159  * Reads up to 256 characters from the FIFO or until it's empty and
160  * inserts them into the TTY layer. Returns the number of characters
161  * read from the FIFO.
162  */
163 static int pl011_fifo_to_tty(struct uart_amba_port *uap)
164 {
165 	u16 status, ch;
166 	unsigned int flag, max_count = 256;
167 	int fifotaken = 0;
168 
169 	while (max_count--) {
170 		status = readw(uap->port.membase + UART01x_FR);
171 		if (status & UART01x_FR_RXFE)
172 			break;
173 
174 		/* Take chars from the FIFO and update status */
175 		ch = readw(uap->port.membase + UART01x_DR) |
176 			UART_DUMMY_DR_RX;
177 		flag = TTY_NORMAL;
178 		uap->port.icount.rx++;
179 		fifotaken++;
180 
181 		if (unlikely(ch & UART_DR_ERROR)) {
182 			if (ch & UART011_DR_BE) {
183 				ch &= ~(UART011_DR_FE | UART011_DR_PE);
184 				uap->port.icount.brk++;
185 				if (uart_handle_break(&uap->port))
186 					continue;
187 			} else if (ch & UART011_DR_PE)
188 				uap->port.icount.parity++;
189 			else if (ch & UART011_DR_FE)
190 				uap->port.icount.frame++;
191 			if (ch & UART011_DR_OE)
192 				uap->port.icount.overrun++;
193 
194 			ch &= uap->port.read_status_mask;
195 
196 			if (ch & UART011_DR_BE)
197 				flag = TTY_BREAK;
198 			else if (ch & UART011_DR_PE)
199 				flag = TTY_PARITY;
200 			else if (ch & UART011_DR_FE)
201 				flag = TTY_FRAME;
202 		}
203 
204 		if (uart_handle_sysrq_char(&uap->port, ch & 255))
205 			continue;
206 
207 		uart_insert_char(&uap->port, ch, UART011_DR_OE, ch, flag);
208 	}
209 
210 	return fifotaken;
211 }
212 
213 
214 /*
215  * All the DMA operation mode stuff goes inside this ifdef.
216  * This assumes that you have a generic DMA device interface,
217  * no custom DMA interfaces are supported.
218  */
219 #ifdef CONFIG_DMA_ENGINE
220 
221 #define PL011_DMA_BUFFER_SIZE PAGE_SIZE
222 
223 static int pl011_sgbuf_init(struct dma_chan *chan, struct pl011_sgbuf *sg,
224 	enum dma_data_direction dir)
225 {
226 	sg->buf = kmalloc(PL011_DMA_BUFFER_SIZE, GFP_KERNEL);
227 	if (!sg->buf)
228 		return -ENOMEM;
229 
230 	sg_init_one(&sg->sg, sg->buf, PL011_DMA_BUFFER_SIZE);
231 
232 	if (dma_map_sg(chan->device->dev, &sg->sg, 1, dir) != 1) {
233 		kfree(sg->buf);
234 		return -EINVAL;
235 	}
236 	return 0;
237 }
238 
239 static void pl011_sgbuf_free(struct dma_chan *chan, struct pl011_sgbuf *sg,
240 	enum dma_data_direction dir)
241 {
242 	if (sg->buf) {
243 		dma_unmap_sg(chan->device->dev, &sg->sg, 1, dir);
244 		kfree(sg->buf);
245 	}
246 }
247 
248 static void pl011_dma_probe_initcall(struct uart_amba_port *uap)
249 {
250 	/* DMA is the sole user of the platform data right now */
251 	struct amba_pl011_data *plat = uap->port.dev->platform_data;
252 	struct dma_slave_config tx_conf = {
253 		.dst_addr = uap->port.mapbase + UART01x_DR,
254 		.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
255 		.direction = DMA_MEM_TO_DEV,
256 		.dst_maxburst = uap->fifosize >> 1,
257 		.device_fc = false,
258 	};
259 	struct dma_chan *chan;
260 	dma_cap_mask_t mask;
261 
262 	/* We need platform data */
263 	if (!plat || !plat->dma_filter) {
264 		dev_info(uap->port.dev, "no DMA platform data\n");
265 		return;
266 	}
267 
268 	/* Try to acquire a generic DMA engine slave TX channel */
269 	dma_cap_zero(mask);
270 	dma_cap_set(DMA_SLAVE, mask);
271 
272 	chan = dma_request_channel(mask, plat->dma_filter, plat->dma_tx_param);
273 	if (!chan) {
274 		dev_err(uap->port.dev, "no TX DMA channel!\n");
275 		return;
276 	}
277 
278 	dmaengine_slave_config(chan, &tx_conf);
279 	uap->dmatx.chan = chan;
280 
281 	dev_info(uap->port.dev, "DMA channel TX %s\n",
282 		 dma_chan_name(uap->dmatx.chan));
283 
284 	/* Optionally make use of an RX channel as well */
285 	if (plat->dma_rx_param) {
286 		struct dma_slave_config rx_conf = {
287 			.src_addr = uap->port.mapbase + UART01x_DR,
288 			.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
289 			.direction = DMA_DEV_TO_MEM,
290 			.src_maxburst = uap->fifosize >> 1,
291 			.device_fc = false,
292 		};
293 
294 		chan = dma_request_channel(mask, plat->dma_filter, plat->dma_rx_param);
295 		if (!chan) {
296 			dev_err(uap->port.dev, "no RX DMA channel!\n");
297 			return;
298 		}
299 
300 		dmaengine_slave_config(chan, &rx_conf);
301 		uap->dmarx.chan = chan;
302 
303 		dev_info(uap->port.dev, "DMA channel RX %s\n",
304 			 dma_chan_name(uap->dmarx.chan));
305 	}
306 }
307 
308 #ifndef MODULE
309 /*
310  * Stack up the UARTs and let the above initcall be done at device
311  * initcall time, because the serial driver is called as an arch
312  * initcall, and at this time the DMA subsystem is not yet registered.
313  * At this point the driver will switch over to using DMA where desired.
314  */
315 struct dma_uap {
316 	struct list_head node;
317 	struct uart_amba_port *uap;
318 };
319 
320 static LIST_HEAD(pl011_dma_uarts);
321 
322 static int __init pl011_dma_initcall(void)
323 {
324 	struct list_head *node, *tmp;
325 
326 	list_for_each_safe(node, tmp, &pl011_dma_uarts) {
327 		struct dma_uap *dmau = list_entry(node, struct dma_uap, node);
328 		pl011_dma_probe_initcall(dmau->uap);
329 		list_del(node);
330 		kfree(dmau);
331 	}
332 	return 0;
333 }
334 
335 device_initcall(pl011_dma_initcall);
336 
337 static void pl011_dma_probe(struct uart_amba_port *uap)
338 {
339 	struct dma_uap *dmau = kzalloc(sizeof(struct dma_uap), GFP_KERNEL);
340 	if (dmau) {
341 		dmau->uap = uap;
342 		list_add_tail(&dmau->node, &pl011_dma_uarts);
343 	}
344 }
345 #else
346 static void pl011_dma_probe(struct uart_amba_port *uap)
347 {
348 	pl011_dma_probe_initcall(uap);
349 }
350 #endif
351 
352 static void pl011_dma_remove(struct uart_amba_port *uap)
353 {
354 	/* TODO: remove the initcall if it has not yet executed */
355 	if (uap->dmatx.chan)
356 		dma_release_channel(uap->dmatx.chan);
357 	if (uap->dmarx.chan)
358 		dma_release_channel(uap->dmarx.chan);
359 }
360 
361 /* Forward declare this for the refill routine */
362 static int pl011_dma_tx_refill(struct uart_amba_port *uap);
363 
364 /*
365  * The current DMA TX buffer has been sent.
366  * Try to queue up another DMA buffer.
367  */
368 static void pl011_dma_tx_callback(void *data)
369 {
370 	struct uart_amba_port *uap = data;
371 	struct pl011_dmatx_data *dmatx = &uap->dmatx;
372 	unsigned long flags;
373 	u16 dmacr;
374 
375 	spin_lock_irqsave(&uap->port.lock, flags);
376 	if (uap->dmatx.queued)
377 		dma_unmap_sg(dmatx->chan->device->dev, &dmatx->sg, 1,
378 			     DMA_TO_DEVICE);
379 
380 	dmacr = uap->dmacr;
381 	uap->dmacr = dmacr & ~UART011_TXDMAE;
382 	writew(uap->dmacr, uap->port.membase + UART011_DMACR);
383 
384 	/*
385 	 * If TX DMA was disabled, it means that we've stopped the DMA for
386 	 * some reason (eg, XOFF received, or we want to send an X-char.)
387 	 *
388 	 * Note: we need to be careful here of a potential race between DMA
389 	 * and the rest of the driver - if the driver disables TX DMA while
390 	 * a TX buffer completing, we must update the tx queued status to
391 	 * get further refills (hence we check dmacr).
392 	 */
393 	if (!(dmacr & UART011_TXDMAE) || uart_tx_stopped(&uap->port) ||
394 	    uart_circ_empty(&uap->port.state->xmit)) {
395 		uap->dmatx.queued = false;
396 		spin_unlock_irqrestore(&uap->port.lock, flags);
397 		return;
398 	}
399 
400 	if (pl011_dma_tx_refill(uap) <= 0) {
401 		/*
402 		 * We didn't queue a DMA buffer for some reason, but we
403 		 * have data pending to be sent.  Re-enable the TX IRQ.
404 		 */
405 		uap->im |= UART011_TXIM;
406 		writew(uap->im, uap->port.membase + UART011_IMSC);
407 	}
408 	spin_unlock_irqrestore(&uap->port.lock, flags);
409 }
410 
411 /*
412  * Try to refill the TX DMA buffer.
413  * Locking: called with port lock held and IRQs disabled.
414  * Returns:
415  *   1 if we queued up a TX DMA buffer.
416  *   0 if we didn't want to handle this by DMA
417  *  <0 on error
418  */
419 static int pl011_dma_tx_refill(struct uart_amba_port *uap)
420 {
421 	struct pl011_dmatx_data *dmatx = &uap->dmatx;
422 	struct dma_chan *chan = dmatx->chan;
423 	struct dma_device *dma_dev = chan->device;
424 	struct dma_async_tx_descriptor *desc;
425 	struct circ_buf *xmit = &uap->port.state->xmit;
426 	unsigned int count;
427 
428 	/*
429 	 * Try to avoid the overhead involved in using DMA if the
430 	 * transaction fits in the first half of the FIFO, by using
431 	 * the standard interrupt handling.  This ensures that we
432 	 * issue a uart_write_wakeup() at the appropriate time.
433 	 */
434 	count = uart_circ_chars_pending(xmit);
435 	if (count < (uap->fifosize >> 1)) {
436 		uap->dmatx.queued = false;
437 		return 0;
438 	}
439 
440 	/*
441 	 * Bodge: don't send the last character by DMA, as this
442 	 * will prevent XON from notifying us to restart DMA.
443 	 */
444 	count -= 1;
445 
446 	/* Else proceed to copy the TX chars to the DMA buffer and fire DMA */
447 	if (count > PL011_DMA_BUFFER_SIZE)
448 		count = PL011_DMA_BUFFER_SIZE;
449 
450 	if (xmit->tail < xmit->head)
451 		memcpy(&dmatx->buf[0], &xmit->buf[xmit->tail], count);
452 	else {
453 		size_t first = UART_XMIT_SIZE - xmit->tail;
454 		size_t second = xmit->head;
455 
456 		memcpy(&dmatx->buf[0], &xmit->buf[xmit->tail], first);
457 		if (second)
458 			memcpy(&dmatx->buf[first], &xmit->buf[0], second);
459 	}
460 
461 	dmatx->sg.length = count;
462 
463 	if (dma_map_sg(dma_dev->dev, &dmatx->sg, 1, DMA_TO_DEVICE) != 1) {
464 		uap->dmatx.queued = false;
465 		dev_dbg(uap->port.dev, "unable to map TX DMA\n");
466 		return -EBUSY;
467 	}
468 
469 	desc = dmaengine_prep_slave_sg(chan, &dmatx->sg, 1, DMA_MEM_TO_DEV,
470 					     DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
471 	if (!desc) {
472 		dma_unmap_sg(dma_dev->dev, &dmatx->sg, 1, DMA_TO_DEVICE);
473 		uap->dmatx.queued = false;
474 		/*
475 		 * If DMA cannot be used right now, we complete this
476 		 * transaction via IRQ and let the TTY layer retry.
477 		 */
478 		dev_dbg(uap->port.dev, "TX DMA busy\n");
479 		return -EBUSY;
480 	}
481 
482 	/* Some data to go along to the callback */
483 	desc->callback = pl011_dma_tx_callback;
484 	desc->callback_param = uap;
485 
486 	/* All errors should happen at prepare time */
487 	dmaengine_submit(desc);
488 
489 	/* Fire the DMA transaction */
490 	dma_dev->device_issue_pending(chan);
491 
492 	uap->dmacr |= UART011_TXDMAE;
493 	writew(uap->dmacr, uap->port.membase + UART011_DMACR);
494 	uap->dmatx.queued = true;
495 
496 	/*
497 	 * Now we know that DMA will fire, so advance the ring buffer
498 	 * with the stuff we just dispatched.
499 	 */
500 	xmit->tail = (xmit->tail + count) & (UART_XMIT_SIZE - 1);
501 	uap->port.icount.tx += count;
502 
503 	if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
504 		uart_write_wakeup(&uap->port);
505 
506 	return 1;
507 }
508 
509 /*
510  * We received a transmit interrupt without a pending X-char but with
511  * pending characters.
512  * Locking: called with port lock held and IRQs disabled.
513  * Returns:
514  *   false if we want to use PIO to transmit
515  *   true if we queued a DMA buffer
516  */
517 static bool pl011_dma_tx_irq(struct uart_amba_port *uap)
518 {
519 	if (!uap->using_tx_dma)
520 		return false;
521 
522 	/*
523 	 * If we already have a TX buffer queued, but received a
524 	 * TX interrupt, it will be because we've just sent an X-char.
525 	 * Ensure the TX DMA is enabled and the TX IRQ is disabled.
526 	 */
527 	if (uap->dmatx.queued) {
528 		uap->dmacr |= UART011_TXDMAE;
529 		writew(uap->dmacr, uap->port.membase + UART011_DMACR);
530 		uap->im &= ~UART011_TXIM;
531 		writew(uap->im, uap->port.membase + UART011_IMSC);
532 		return true;
533 	}
534 
535 	/*
536 	 * We don't have a TX buffer queued, so try to queue one.
537 	 * If we successfully queued a buffer, mask the TX IRQ.
538 	 */
539 	if (pl011_dma_tx_refill(uap) > 0) {
540 		uap->im &= ~UART011_TXIM;
541 		writew(uap->im, uap->port.membase + UART011_IMSC);
542 		return true;
543 	}
544 	return false;
545 }
546 
547 /*
548  * Stop the DMA transmit (eg, due to received XOFF).
549  * Locking: called with port lock held and IRQs disabled.
550  */
551 static inline void pl011_dma_tx_stop(struct uart_amba_port *uap)
552 {
553 	if (uap->dmatx.queued) {
554 		uap->dmacr &= ~UART011_TXDMAE;
555 		writew(uap->dmacr, uap->port.membase + UART011_DMACR);
556 	}
557 }
558 
559 /*
560  * Try to start a DMA transmit, or in the case of an XON/OFF
561  * character queued for send, try to get that character out ASAP.
562  * Locking: called with port lock held and IRQs disabled.
563  * Returns:
564  *   false if we want the TX IRQ to be enabled
565  *   true if we have a buffer queued
566  */
567 static inline bool pl011_dma_tx_start(struct uart_amba_port *uap)
568 {
569 	u16 dmacr;
570 
571 	if (!uap->using_tx_dma)
572 		return false;
573 
574 	if (!uap->port.x_char) {
575 		/* no X-char, try to push chars out in DMA mode */
576 		bool ret = true;
577 
578 		if (!uap->dmatx.queued) {
579 			if (pl011_dma_tx_refill(uap) > 0) {
580 				uap->im &= ~UART011_TXIM;
581 				ret = true;
582 			} else {
583 				uap->im |= UART011_TXIM;
584 				ret = false;
585 			}
586 			writew(uap->im, uap->port.membase + UART011_IMSC);
587 		} else if (!(uap->dmacr & UART011_TXDMAE)) {
588 			uap->dmacr |= UART011_TXDMAE;
589 			writew(uap->dmacr,
590 				       uap->port.membase + UART011_DMACR);
591 		}
592 		return ret;
593 	}
594 
595 	/*
596 	 * We have an X-char to send.  Disable DMA to prevent it loading
597 	 * the TX fifo, and then see if we can stuff it into the FIFO.
598 	 */
599 	dmacr = uap->dmacr;
600 	uap->dmacr &= ~UART011_TXDMAE;
601 	writew(uap->dmacr, uap->port.membase + UART011_DMACR);
602 
603 	if (readw(uap->port.membase + UART01x_FR) & UART01x_FR_TXFF) {
604 		/*
605 		 * No space in the FIFO, so enable the transmit interrupt
606 		 * so we know when there is space.  Note that once we've
607 		 * loaded the character, we should just re-enable DMA.
608 		 */
609 		return false;
610 	}
611 
612 	writew(uap->port.x_char, uap->port.membase + UART01x_DR);
613 	uap->port.icount.tx++;
614 	uap->port.x_char = 0;
615 
616 	/* Success - restore the DMA state */
617 	uap->dmacr = dmacr;
618 	writew(dmacr, uap->port.membase + UART011_DMACR);
619 
620 	return true;
621 }
622 
623 /*
624  * Flush the transmit buffer.
625  * Locking: called with port lock held and IRQs disabled.
626  */
627 static void pl011_dma_flush_buffer(struct uart_port *port)
628 {
629 	struct uart_amba_port *uap = (struct uart_amba_port *)port;
630 
631 	if (!uap->using_tx_dma)
632 		return;
633 
634 	/* Avoid deadlock with the DMA engine callback */
635 	spin_unlock(&uap->port.lock);
636 	dmaengine_terminate_all(uap->dmatx.chan);
637 	spin_lock(&uap->port.lock);
638 	if (uap->dmatx.queued) {
639 		dma_unmap_sg(uap->dmatx.chan->device->dev, &uap->dmatx.sg, 1,
640 			     DMA_TO_DEVICE);
641 		uap->dmatx.queued = false;
642 		uap->dmacr &= ~UART011_TXDMAE;
643 		writew(uap->dmacr, uap->port.membase + UART011_DMACR);
644 	}
645 }
646 
647 static void pl011_dma_rx_callback(void *data);
648 
649 static int pl011_dma_rx_trigger_dma(struct uart_amba_port *uap)
650 {
651 	struct dma_chan *rxchan = uap->dmarx.chan;
652 	struct pl011_dmarx_data *dmarx = &uap->dmarx;
653 	struct dma_async_tx_descriptor *desc;
654 	struct pl011_sgbuf *sgbuf;
655 
656 	if (!rxchan)
657 		return -EIO;
658 
659 	/* Start the RX DMA job */
660 	sgbuf = uap->dmarx.use_buf_b ?
661 		&uap->dmarx.sgbuf_b : &uap->dmarx.sgbuf_a;
662 	desc = dmaengine_prep_slave_sg(rxchan, &sgbuf->sg, 1,
663 					DMA_DEV_TO_MEM,
664 					DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
665 	/*
666 	 * If the DMA engine is busy and cannot prepare a
667 	 * channel, no big deal, the driver will fall back
668 	 * to interrupt mode as a result of this error code.
669 	 */
670 	if (!desc) {
671 		uap->dmarx.running = false;
672 		dmaengine_terminate_all(rxchan);
673 		return -EBUSY;
674 	}
675 
676 	/* Some data to go along to the callback */
677 	desc->callback = pl011_dma_rx_callback;
678 	desc->callback_param = uap;
679 	dmarx->cookie = dmaengine_submit(desc);
680 	dma_async_issue_pending(rxchan);
681 
682 	uap->dmacr |= UART011_RXDMAE;
683 	writew(uap->dmacr, uap->port.membase + UART011_DMACR);
684 	uap->dmarx.running = true;
685 
686 	uap->im &= ~UART011_RXIM;
687 	writew(uap->im, uap->port.membase + UART011_IMSC);
688 
689 	return 0;
690 }
691 
692 /*
693  * This is called when either the DMA job is complete, or
694  * the FIFO timeout interrupt occurred. This must be called
695  * with the port spinlock uap->port.lock held.
696  */
697 static void pl011_dma_rx_chars(struct uart_amba_port *uap,
698 			       u32 pending, bool use_buf_b,
699 			       bool readfifo)
700 {
701 	struct tty_struct *tty = uap->port.state->port.tty;
702 	struct pl011_sgbuf *sgbuf = use_buf_b ?
703 		&uap->dmarx.sgbuf_b : &uap->dmarx.sgbuf_a;
704 	struct device *dev = uap->dmarx.chan->device->dev;
705 	int dma_count = 0;
706 	u32 fifotaken = 0; /* only used for vdbg() */
707 
708 	/* Pick everything from the DMA first */
709 	if (pending) {
710 		/* Sync in buffer */
711 		dma_sync_sg_for_cpu(dev, &sgbuf->sg, 1, DMA_FROM_DEVICE);
712 
713 		/*
714 		 * First take all chars in the DMA pipe, then look in the FIFO.
715 		 * Note that tty_insert_flip_buf() tries to take as many chars
716 		 * as it can.
717 		 */
718 		dma_count = tty_insert_flip_string(uap->port.state->port.tty,
719 						   sgbuf->buf, pending);
720 
721 		/* Return buffer to device */
722 		dma_sync_sg_for_device(dev, &sgbuf->sg, 1, DMA_FROM_DEVICE);
723 
724 		uap->port.icount.rx += dma_count;
725 		if (dma_count < pending)
726 			dev_warn(uap->port.dev,
727 				 "couldn't insert all characters (TTY is full?)\n");
728 	}
729 
730 	/*
731 	 * Only continue with trying to read the FIFO if all DMA chars have
732 	 * been taken first.
733 	 */
734 	if (dma_count == pending && readfifo) {
735 		/* Clear any error flags */
736 		writew(UART011_OEIS | UART011_BEIS | UART011_PEIS | UART011_FEIS,
737 		       uap->port.membase + UART011_ICR);
738 
739 		/*
740 		 * If we read all the DMA'd characters, and we had an
741 		 * incomplete buffer, that could be due to an rx error, or
742 		 * maybe we just timed out. Read any pending chars and check
743 		 * the error status.
744 		 *
745 		 * Error conditions will only occur in the FIFO, these will
746 		 * trigger an immediate interrupt and stop the DMA job, so we
747 		 * will always find the error in the FIFO, never in the DMA
748 		 * buffer.
749 		 */
750 		fifotaken = pl011_fifo_to_tty(uap);
751 	}
752 
753 	spin_unlock(&uap->port.lock);
754 	dev_vdbg(uap->port.dev,
755 		 "Took %d chars from DMA buffer and %d chars from the FIFO\n",
756 		 dma_count, fifotaken);
757 	tty_flip_buffer_push(tty);
758 	spin_lock(&uap->port.lock);
759 }
760 
761 static void pl011_dma_rx_irq(struct uart_amba_port *uap)
762 {
763 	struct pl011_dmarx_data *dmarx = &uap->dmarx;
764 	struct dma_chan *rxchan = dmarx->chan;
765 	struct pl011_sgbuf *sgbuf = dmarx->use_buf_b ?
766 		&dmarx->sgbuf_b : &dmarx->sgbuf_a;
767 	size_t pending;
768 	struct dma_tx_state state;
769 	enum dma_status dmastat;
770 
771 	/*
772 	 * Pause the transfer so we can trust the current counter,
773 	 * do this before we pause the PL011 block, else we may
774 	 * overflow the FIFO.
775 	 */
776 	if (dmaengine_pause(rxchan))
777 		dev_err(uap->port.dev, "unable to pause DMA transfer\n");
778 	dmastat = rxchan->device->device_tx_status(rxchan,
779 						   dmarx->cookie, &state);
780 	if (dmastat != DMA_PAUSED)
781 		dev_err(uap->port.dev, "unable to pause DMA transfer\n");
782 
783 	/* Disable RX DMA - incoming data will wait in the FIFO */
784 	uap->dmacr &= ~UART011_RXDMAE;
785 	writew(uap->dmacr, uap->port.membase + UART011_DMACR);
786 	uap->dmarx.running = false;
787 
788 	pending = sgbuf->sg.length - state.residue;
789 	BUG_ON(pending > PL011_DMA_BUFFER_SIZE);
790 	/* Then we terminate the transfer - we now know our residue */
791 	dmaengine_terminate_all(rxchan);
792 
793 	/*
794 	 * This will take the chars we have so far and insert
795 	 * into the framework.
796 	 */
797 	pl011_dma_rx_chars(uap, pending, dmarx->use_buf_b, true);
798 
799 	/* Switch buffer & re-trigger DMA job */
800 	dmarx->use_buf_b = !dmarx->use_buf_b;
801 	if (pl011_dma_rx_trigger_dma(uap)) {
802 		dev_dbg(uap->port.dev, "could not retrigger RX DMA job "
803 			"fall back to interrupt mode\n");
804 		uap->im |= UART011_RXIM;
805 		writew(uap->im, uap->port.membase + UART011_IMSC);
806 	}
807 }
808 
809 static void pl011_dma_rx_callback(void *data)
810 {
811 	struct uart_amba_port *uap = data;
812 	struct pl011_dmarx_data *dmarx = &uap->dmarx;
813 	struct dma_chan *rxchan = dmarx->chan;
814 	bool lastbuf = dmarx->use_buf_b;
815 	struct pl011_sgbuf *sgbuf = dmarx->use_buf_b ?
816 		&dmarx->sgbuf_b : &dmarx->sgbuf_a;
817 	size_t pending;
818 	struct dma_tx_state state;
819 	int ret;
820 
821 	/*
822 	 * This completion interrupt occurs typically when the
823 	 * RX buffer is totally stuffed but no timeout has yet
824 	 * occurred. When that happens, we just want the RX
825 	 * routine to flush out the secondary DMA buffer while
826 	 * we immediately trigger the next DMA job.
827 	 */
828 	spin_lock_irq(&uap->port.lock);
829 	/*
830 	 * Rx data can be taken by the UART interrupts during
831 	 * the DMA irq handler. So we check the residue here.
832 	 */
833 	rxchan->device->device_tx_status(rxchan, dmarx->cookie, &state);
834 	pending = sgbuf->sg.length - state.residue;
835 	BUG_ON(pending > PL011_DMA_BUFFER_SIZE);
836 	/* Then we terminate the transfer - we now know our residue */
837 	dmaengine_terminate_all(rxchan);
838 
839 	uap->dmarx.running = false;
840 	dmarx->use_buf_b = !lastbuf;
841 	ret = pl011_dma_rx_trigger_dma(uap);
842 
843 	pl011_dma_rx_chars(uap, pending, lastbuf, false);
844 	spin_unlock_irq(&uap->port.lock);
845 	/*
846 	 * Do this check after we picked the DMA chars so we don't
847 	 * get some IRQ immediately from RX.
848 	 */
849 	if (ret) {
850 		dev_dbg(uap->port.dev, "could not retrigger RX DMA job "
851 			"fall back to interrupt mode\n");
852 		uap->im |= UART011_RXIM;
853 		writew(uap->im, uap->port.membase + UART011_IMSC);
854 	}
855 }
856 
857 /*
858  * Stop accepting received characters, when we're shutting down or
859  * suspending this port.
860  * Locking: called with port lock held and IRQs disabled.
861  */
862 static inline void pl011_dma_rx_stop(struct uart_amba_port *uap)
863 {
864 	/* FIXME.  Just disable the DMA enable */
865 	uap->dmacr &= ~UART011_RXDMAE;
866 	writew(uap->dmacr, uap->port.membase + UART011_DMACR);
867 }
868 
869 static void pl011_dma_startup(struct uart_amba_port *uap)
870 {
871 	int ret;
872 
873 	if (!uap->dmatx.chan)
874 		return;
875 
876 	uap->dmatx.buf = kmalloc(PL011_DMA_BUFFER_SIZE, GFP_KERNEL);
877 	if (!uap->dmatx.buf) {
878 		dev_err(uap->port.dev, "no memory for DMA TX buffer\n");
879 		uap->port.fifosize = uap->fifosize;
880 		return;
881 	}
882 
883 	sg_init_one(&uap->dmatx.sg, uap->dmatx.buf, PL011_DMA_BUFFER_SIZE);
884 
885 	/* The DMA buffer is now the FIFO the TTY subsystem can use */
886 	uap->port.fifosize = PL011_DMA_BUFFER_SIZE;
887 	uap->using_tx_dma = true;
888 
889 	if (!uap->dmarx.chan)
890 		goto skip_rx;
891 
892 	/* Allocate and map DMA RX buffers */
893 	ret = pl011_sgbuf_init(uap->dmarx.chan, &uap->dmarx.sgbuf_a,
894 			       DMA_FROM_DEVICE);
895 	if (ret) {
896 		dev_err(uap->port.dev, "failed to init DMA %s: %d\n",
897 			"RX buffer A", ret);
898 		goto skip_rx;
899 	}
900 
901 	ret = pl011_sgbuf_init(uap->dmarx.chan, &uap->dmarx.sgbuf_b,
902 			       DMA_FROM_DEVICE);
903 	if (ret) {
904 		dev_err(uap->port.dev, "failed to init DMA %s: %d\n",
905 			"RX buffer B", ret);
906 		pl011_sgbuf_free(uap->dmarx.chan, &uap->dmarx.sgbuf_a,
907 				 DMA_FROM_DEVICE);
908 		goto skip_rx;
909 	}
910 
911 	uap->using_rx_dma = true;
912 
913 skip_rx:
914 	/* Turn on DMA error (RX/TX will be enabled on demand) */
915 	uap->dmacr |= UART011_DMAONERR;
916 	writew(uap->dmacr, uap->port.membase + UART011_DMACR);
917 
918 	/*
919 	 * ST Micro variants has some specific dma burst threshold
920 	 * compensation. Set this to 16 bytes, so burst will only
921 	 * be issued above/below 16 bytes.
922 	 */
923 	if (uap->vendor->dma_threshold)
924 		writew(ST_UART011_DMAWM_RX_16 | ST_UART011_DMAWM_TX_16,
925 			       uap->port.membase + ST_UART011_DMAWM);
926 
927 	if (uap->using_rx_dma) {
928 		if (pl011_dma_rx_trigger_dma(uap))
929 			dev_dbg(uap->port.dev, "could not trigger initial "
930 				"RX DMA job, fall back to interrupt mode\n");
931 	}
932 }
933 
934 static void pl011_dma_shutdown(struct uart_amba_port *uap)
935 {
936 	if (!(uap->using_tx_dma || uap->using_rx_dma))
937 		return;
938 
939 	/* Disable RX and TX DMA */
940 	while (readw(uap->port.membase + UART01x_FR) & UART01x_FR_BUSY)
941 		barrier();
942 
943 	spin_lock_irq(&uap->port.lock);
944 	uap->dmacr &= ~(UART011_DMAONERR | UART011_RXDMAE | UART011_TXDMAE);
945 	writew(uap->dmacr, uap->port.membase + UART011_DMACR);
946 	spin_unlock_irq(&uap->port.lock);
947 
948 	if (uap->using_tx_dma) {
949 		/* In theory, this should already be done by pl011_dma_flush_buffer */
950 		dmaengine_terminate_all(uap->dmatx.chan);
951 		if (uap->dmatx.queued) {
952 			dma_unmap_sg(uap->dmatx.chan->device->dev, &uap->dmatx.sg, 1,
953 				     DMA_TO_DEVICE);
954 			uap->dmatx.queued = false;
955 		}
956 
957 		kfree(uap->dmatx.buf);
958 		uap->using_tx_dma = false;
959 	}
960 
961 	if (uap->using_rx_dma) {
962 		dmaengine_terminate_all(uap->dmarx.chan);
963 		/* Clean up the RX DMA */
964 		pl011_sgbuf_free(uap->dmarx.chan, &uap->dmarx.sgbuf_a, DMA_FROM_DEVICE);
965 		pl011_sgbuf_free(uap->dmarx.chan, &uap->dmarx.sgbuf_b, DMA_FROM_DEVICE);
966 		uap->using_rx_dma = false;
967 	}
968 }
969 
970 static inline bool pl011_dma_rx_available(struct uart_amba_port *uap)
971 {
972 	return uap->using_rx_dma;
973 }
974 
975 static inline bool pl011_dma_rx_running(struct uart_amba_port *uap)
976 {
977 	return uap->using_rx_dma && uap->dmarx.running;
978 }
979 
980 
981 #else
982 /* Blank functions if the DMA engine is not available */
983 static inline void pl011_dma_probe(struct uart_amba_port *uap)
984 {
985 }
986 
987 static inline void pl011_dma_remove(struct uart_amba_port *uap)
988 {
989 }
990 
991 static inline void pl011_dma_startup(struct uart_amba_port *uap)
992 {
993 }
994 
995 static inline void pl011_dma_shutdown(struct uart_amba_port *uap)
996 {
997 }
998 
999 static inline bool pl011_dma_tx_irq(struct uart_amba_port *uap)
1000 {
1001 	return false;
1002 }
1003 
1004 static inline void pl011_dma_tx_stop(struct uart_amba_port *uap)
1005 {
1006 }
1007 
1008 static inline bool pl011_dma_tx_start(struct uart_amba_port *uap)
1009 {
1010 	return false;
1011 }
1012 
1013 static inline void pl011_dma_rx_irq(struct uart_amba_port *uap)
1014 {
1015 }
1016 
1017 static inline void pl011_dma_rx_stop(struct uart_amba_port *uap)
1018 {
1019 }
1020 
1021 static inline int pl011_dma_rx_trigger_dma(struct uart_amba_port *uap)
1022 {
1023 	return -EIO;
1024 }
1025 
1026 static inline bool pl011_dma_rx_available(struct uart_amba_port *uap)
1027 {
1028 	return false;
1029 }
1030 
1031 static inline bool pl011_dma_rx_running(struct uart_amba_port *uap)
1032 {
1033 	return false;
1034 }
1035 
1036 #define pl011_dma_flush_buffer	NULL
1037 #endif
1038 
1039 static void pl011_stop_tx(struct uart_port *port)
1040 {
1041 	struct uart_amba_port *uap = (struct uart_amba_port *)port;
1042 
1043 	uap->im &= ~UART011_TXIM;
1044 	writew(uap->im, uap->port.membase + UART011_IMSC);
1045 	pl011_dma_tx_stop(uap);
1046 }
1047 
1048 static void pl011_start_tx(struct uart_port *port)
1049 {
1050 	struct uart_amba_port *uap = (struct uart_amba_port *)port;
1051 
1052 	if (!pl011_dma_tx_start(uap)) {
1053 		uap->im |= UART011_TXIM;
1054 		writew(uap->im, uap->port.membase + UART011_IMSC);
1055 	}
1056 }
1057 
1058 static void pl011_stop_rx(struct uart_port *port)
1059 {
1060 	struct uart_amba_port *uap = (struct uart_amba_port *)port;
1061 
1062 	uap->im &= ~(UART011_RXIM|UART011_RTIM|UART011_FEIM|
1063 		     UART011_PEIM|UART011_BEIM|UART011_OEIM);
1064 	writew(uap->im, uap->port.membase + UART011_IMSC);
1065 
1066 	pl011_dma_rx_stop(uap);
1067 }
1068 
1069 static void pl011_enable_ms(struct uart_port *port)
1070 {
1071 	struct uart_amba_port *uap = (struct uart_amba_port *)port;
1072 
1073 	uap->im |= UART011_RIMIM|UART011_CTSMIM|UART011_DCDMIM|UART011_DSRMIM;
1074 	writew(uap->im, uap->port.membase + UART011_IMSC);
1075 }
1076 
1077 static void pl011_rx_chars(struct uart_amba_port *uap)
1078 {
1079 	struct tty_struct *tty = uap->port.state->port.tty;
1080 
1081 	pl011_fifo_to_tty(uap);
1082 
1083 	spin_unlock(&uap->port.lock);
1084 	tty_flip_buffer_push(tty);
1085 	/*
1086 	 * If we were temporarily out of DMA mode for a while,
1087 	 * attempt to switch back to DMA mode again.
1088 	 */
1089 	if (pl011_dma_rx_available(uap)) {
1090 		if (pl011_dma_rx_trigger_dma(uap)) {
1091 			dev_dbg(uap->port.dev, "could not trigger RX DMA job "
1092 				"fall back to interrupt mode again\n");
1093 			uap->im |= UART011_RXIM;
1094 		} else
1095 			uap->im &= ~UART011_RXIM;
1096 		writew(uap->im, uap->port.membase + UART011_IMSC);
1097 	}
1098 	spin_lock(&uap->port.lock);
1099 }
1100 
1101 static void pl011_tx_chars(struct uart_amba_port *uap)
1102 {
1103 	struct circ_buf *xmit = &uap->port.state->xmit;
1104 	int count;
1105 
1106 	if (uap->port.x_char) {
1107 		writew(uap->port.x_char, uap->port.membase + UART01x_DR);
1108 		uap->port.icount.tx++;
1109 		uap->port.x_char = 0;
1110 		return;
1111 	}
1112 	if (uart_circ_empty(xmit) || uart_tx_stopped(&uap->port)) {
1113 		pl011_stop_tx(&uap->port);
1114 		return;
1115 	}
1116 
1117 	/* If we are using DMA mode, try to send some characters. */
1118 	if (pl011_dma_tx_irq(uap))
1119 		return;
1120 
1121 	count = uap->fifosize >> 1;
1122 	do {
1123 		writew(xmit->buf[xmit->tail], uap->port.membase + UART01x_DR);
1124 		xmit->tail = (xmit->tail + 1) & (UART_XMIT_SIZE - 1);
1125 		uap->port.icount.tx++;
1126 		if (uart_circ_empty(xmit))
1127 			break;
1128 	} while (--count > 0);
1129 
1130 	if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
1131 		uart_write_wakeup(&uap->port);
1132 
1133 	if (uart_circ_empty(xmit))
1134 		pl011_stop_tx(&uap->port);
1135 }
1136 
1137 static void pl011_modem_status(struct uart_amba_port *uap)
1138 {
1139 	unsigned int status, delta;
1140 
1141 	status = readw(uap->port.membase + UART01x_FR) & UART01x_FR_MODEM_ANY;
1142 
1143 	delta = status ^ uap->old_status;
1144 	uap->old_status = status;
1145 
1146 	if (!delta)
1147 		return;
1148 
1149 	if (delta & UART01x_FR_DCD)
1150 		uart_handle_dcd_change(&uap->port, status & UART01x_FR_DCD);
1151 
1152 	if (delta & UART01x_FR_DSR)
1153 		uap->port.icount.dsr++;
1154 
1155 	if (delta & UART01x_FR_CTS)
1156 		uart_handle_cts_change(&uap->port, status & UART01x_FR_CTS);
1157 
1158 	wake_up_interruptible(&uap->port.state->port.delta_msr_wait);
1159 }
1160 
1161 static irqreturn_t pl011_int(int irq, void *dev_id)
1162 {
1163 	struct uart_amba_port *uap = dev_id;
1164 	unsigned long flags;
1165 	unsigned int status, pass_counter = AMBA_ISR_PASS_LIMIT;
1166 	int handled = 0;
1167 	unsigned int dummy_read;
1168 
1169 	spin_lock_irqsave(&uap->port.lock, flags);
1170 
1171 	status = readw(uap->port.membase + UART011_MIS);
1172 	if (status) {
1173 		do {
1174 			if (uap->vendor->cts_event_workaround) {
1175 				/* workaround to make sure that all bits are unlocked.. */
1176 				writew(0x00, uap->port.membase + UART011_ICR);
1177 
1178 				/*
1179 				 * WA: introduce 26ns(1 uart clk) delay before W1C;
1180 				 * single apb access will incur 2 pclk(133.12Mhz) delay,
1181 				 * so add 2 dummy reads
1182 				 */
1183 				dummy_read = readw(uap->port.membase + UART011_ICR);
1184 				dummy_read = readw(uap->port.membase + UART011_ICR);
1185 			}
1186 
1187 			writew(status & ~(UART011_TXIS|UART011_RTIS|
1188 					  UART011_RXIS),
1189 			       uap->port.membase + UART011_ICR);
1190 
1191 			if (status & (UART011_RTIS|UART011_RXIS)) {
1192 				if (pl011_dma_rx_running(uap))
1193 					pl011_dma_rx_irq(uap);
1194 				else
1195 					pl011_rx_chars(uap);
1196 			}
1197 			if (status & (UART011_DSRMIS|UART011_DCDMIS|
1198 				      UART011_CTSMIS|UART011_RIMIS))
1199 				pl011_modem_status(uap);
1200 			if (status & UART011_TXIS)
1201 				pl011_tx_chars(uap);
1202 
1203 			if (pass_counter-- == 0)
1204 				break;
1205 
1206 			status = readw(uap->port.membase + UART011_MIS);
1207 		} while (status != 0);
1208 		handled = 1;
1209 	}
1210 
1211 	spin_unlock_irqrestore(&uap->port.lock, flags);
1212 
1213 	return IRQ_RETVAL(handled);
1214 }
1215 
1216 static unsigned int pl011_tx_empty(struct uart_port *port)
1217 {
1218 	struct uart_amba_port *uap = (struct uart_amba_port *)port;
1219 	unsigned int status = readw(uap->port.membase + UART01x_FR);
1220 	return status & (UART01x_FR_BUSY|UART01x_FR_TXFF) ? 0 : TIOCSER_TEMT;
1221 }
1222 
1223 static unsigned int pl011_get_mctrl(struct uart_port *port)
1224 {
1225 	struct uart_amba_port *uap = (struct uart_amba_port *)port;
1226 	unsigned int result = 0;
1227 	unsigned int status = readw(uap->port.membase + UART01x_FR);
1228 
1229 #define TIOCMBIT(uartbit, tiocmbit)	\
1230 	if (status & uartbit)		\
1231 		result |= tiocmbit
1232 
1233 	TIOCMBIT(UART01x_FR_DCD, TIOCM_CAR);
1234 	TIOCMBIT(UART01x_FR_DSR, TIOCM_DSR);
1235 	TIOCMBIT(UART01x_FR_CTS, TIOCM_CTS);
1236 	TIOCMBIT(UART011_FR_RI, TIOCM_RNG);
1237 #undef TIOCMBIT
1238 	return result;
1239 }
1240 
1241 static void pl011_set_mctrl(struct uart_port *port, unsigned int mctrl)
1242 {
1243 	struct uart_amba_port *uap = (struct uart_amba_port *)port;
1244 	unsigned int cr;
1245 
1246 	cr = readw(uap->port.membase + UART011_CR);
1247 
1248 #define	TIOCMBIT(tiocmbit, uartbit)		\
1249 	if (mctrl & tiocmbit)		\
1250 		cr |= uartbit;		\
1251 	else				\
1252 		cr &= ~uartbit
1253 
1254 	TIOCMBIT(TIOCM_RTS, UART011_CR_RTS);
1255 	TIOCMBIT(TIOCM_DTR, UART011_CR_DTR);
1256 	TIOCMBIT(TIOCM_OUT1, UART011_CR_OUT1);
1257 	TIOCMBIT(TIOCM_OUT2, UART011_CR_OUT2);
1258 	TIOCMBIT(TIOCM_LOOP, UART011_CR_LBE);
1259 
1260 	if (uap->autorts) {
1261 		/* We need to disable auto-RTS if we want to turn RTS off */
1262 		TIOCMBIT(TIOCM_RTS, UART011_CR_RTSEN);
1263 	}
1264 #undef TIOCMBIT
1265 
1266 	writew(cr, uap->port.membase + UART011_CR);
1267 }
1268 
1269 static void pl011_break_ctl(struct uart_port *port, int break_state)
1270 {
1271 	struct uart_amba_port *uap = (struct uart_amba_port *)port;
1272 	unsigned long flags;
1273 	unsigned int lcr_h;
1274 
1275 	spin_lock_irqsave(&uap->port.lock, flags);
1276 	lcr_h = readw(uap->port.membase + uap->lcrh_tx);
1277 	if (break_state == -1)
1278 		lcr_h |= UART01x_LCRH_BRK;
1279 	else
1280 		lcr_h &= ~UART01x_LCRH_BRK;
1281 	writew(lcr_h, uap->port.membase + uap->lcrh_tx);
1282 	spin_unlock_irqrestore(&uap->port.lock, flags);
1283 }
1284 
1285 #ifdef CONFIG_CONSOLE_POLL
1286 
1287 static void pl011_quiesce_irqs(struct uart_port *port)
1288 {
1289 	struct uart_amba_port *uap = (struct uart_amba_port *)port;
1290 	unsigned char __iomem *regs = uap->port.membase;
1291 
1292 	writew(readw(regs + UART011_MIS), regs + UART011_ICR);
1293 	/*
1294 	 * There is no way to clear TXIM as this is "ready to transmit IRQ", so
1295 	 * we simply mask it. start_tx() will unmask it.
1296 	 *
1297 	 * Note we can race with start_tx(), and if the race happens, the
1298 	 * polling user might get another interrupt just after we clear it.
1299 	 * But it should be OK and can happen even w/o the race, e.g.
1300 	 * controller immediately got some new data and raised the IRQ.
1301 	 *
1302 	 * And whoever uses polling routines assumes that it manages the device
1303 	 * (including tx queue), so we're also fine with start_tx()'s caller
1304 	 * side.
1305 	 */
1306 	writew(readw(regs + UART011_IMSC) & ~UART011_TXIM, regs + UART011_IMSC);
1307 }
1308 
1309 static int pl011_get_poll_char(struct uart_port *port)
1310 {
1311 	struct uart_amba_port *uap = (struct uart_amba_port *)port;
1312 	unsigned int status;
1313 
1314 	/*
1315 	 * The caller might need IRQs lowered, e.g. if used with KDB NMI
1316 	 * debugger.
1317 	 */
1318 	pl011_quiesce_irqs(port);
1319 
1320 	status = readw(uap->port.membase + UART01x_FR);
1321 	if (status & UART01x_FR_RXFE)
1322 		return NO_POLL_CHAR;
1323 
1324 	return readw(uap->port.membase + UART01x_DR);
1325 }
1326 
1327 static void pl011_put_poll_char(struct uart_port *port,
1328 			 unsigned char ch)
1329 {
1330 	struct uart_amba_port *uap = (struct uart_amba_port *)port;
1331 
1332 	while (readw(uap->port.membase + UART01x_FR) & UART01x_FR_TXFF)
1333 		barrier();
1334 
1335 	writew(ch, uap->port.membase + UART01x_DR);
1336 }
1337 
1338 #endif /* CONFIG_CONSOLE_POLL */
1339 
1340 static int pl011_hwinit(struct uart_port *port)
1341 {
1342 	struct uart_amba_port *uap = (struct uart_amba_port *)port;
1343 	int retval;
1344 
1345 	/* Optionaly enable pins to be muxed in and configured */
1346 	if (!IS_ERR(uap->pins_default)) {
1347 		retval = pinctrl_select_state(uap->pinctrl, uap->pins_default);
1348 		if (retval)
1349 			dev_err(port->dev,
1350 				"could not set default pins\n");
1351 	}
1352 
1353 	/*
1354 	 * Try to enable the clock producer.
1355 	 */
1356 	retval = clk_prepare_enable(uap->clk);
1357 	if (retval)
1358 		goto out;
1359 
1360 	uap->port.uartclk = clk_get_rate(uap->clk);
1361 
1362 	/* Clear pending error and receive interrupts */
1363 	writew(UART011_OEIS | UART011_BEIS | UART011_PEIS | UART011_FEIS |
1364 	       UART011_RTIS | UART011_RXIS, uap->port.membase + UART011_ICR);
1365 
1366 	/*
1367 	 * Save interrupts enable mask, and enable RX interrupts in case if
1368 	 * the interrupt is used for NMI entry.
1369 	 */
1370 	uap->im = readw(uap->port.membase + UART011_IMSC);
1371 	writew(UART011_RTIM | UART011_RXIM, uap->port.membase + UART011_IMSC);
1372 
1373 	if (uap->port.dev->platform_data) {
1374 		struct amba_pl011_data *plat;
1375 
1376 		plat = uap->port.dev->platform_data;
1377 		if (plat->init)
1378 			plat->init();
1379 	}
1380 	return 0;
1381  out:
1382 	return retval;
1383 }
1384 
1385 static int pl011_startup(struct uart_port *port)
1386 {
1387 	struct uart_amba_port *uap = (struct uart_amba_port *)port;
1388 	unsigned int cr;
1389 	int retval;
1390 
1391 	retval = pl011_hwinit(port);
1392 	if (retval)
1393 		goto clk_dis;
1394 
1395 	writew(uap->im, uap->port.membase + UART011_IMSC);
1396 
1397 	/*
1398 	 * Allocate the IRQ
1399 	 */
1400 	retval = request_irq(uap->port.irq, pl011_int, 0, "uart-pl011", uap);
1401 	if (retval)
1402 		goto clk_dis;
1403 
1404 	writew(uap->vendor->ifls, uap->port.membase + UART011_IFLS);
1405 
1406 	/*
1407 	 * Provoke TX FIFO interrupt into asserting.
1408 	 */
1409 	cr = UART01x_CR_UARTEN | UART011_CR_TXE | UART011_CR_LBE;
1410 	writew(cr, uap->port.membase + UART011_CR);
1411 	writew(0, uap->port.membase + UART011_FBRD);
1412 	writew(1, uap->port.membase + UART011_IBRD);
1413 	writew(0, uap->port.membase + uap->lcrh_rx);
1414 	if (uap->lcrh_tx != uap->lcrh_rx) {
1415 		int i;
1416 		/*
1417 		 * Wait 10 PCLKs before writing LCRH_TX register,
1418 		 * to get this delay write read only register 10 times
1419 		 */
1420 		for (i = 0; i < 10; ++i)
1421 			writew(0xff, uap->port.membase + UART011_MIS);
1422 		writew(0, uap->port.membase + uap->lcrh_tx);
1423 	}
1424 	writew(0, uap->port.membase + UART01x_DR);
1425 	while (readw(uap->port.membase + UART01x_FR) & UART01x_FR_BUSY)
1426 		barrier();
1427 
1428 	/* restore RTS and DTR */
1429 	cr = uap->old_cr & (UART011_CR_RTS | UART011_CR_DTR);
1430 	cr |= UART01x_CR_UARTEN | UART011_CR_RXE | UART011_CR_TXE;
1431 	writew(cr, uap->port.membase + UART011_CR);
1432 
1433 	/*
1434 	 * initialise the old status of the modem signals
1435 	 */
1436 	uap->old_status = readw(uap->port.membase + UART01x_FR) & UART01x_FR_MODEM_ANY;
1437 
1438 	/* Startup DMA */
1439 	pl011_dma_startup(uap);
1440 
1441 	/*
1442 	 * Finally, enable interrupts, only timeouts when using DMA
1443 	 * if initial RX DMA job failed, start in interrupt mode
1444 	 * as well.
1445 	 */
1446 	spin_lock_irq(&uap->port.lock);
1447 	/* Clear out any spuriously appearing RX interrupts */
1448 	 writew(UART011_RTIS | UART011_RXIS,
1449 		uap->port.membase + UART011_ICR);
1450 	uap->im = UART011_RTIM;
1451 	if (!pl011_dma_rx_running(uap))
1452 		uap->im |= UART011_RXIM;
1453 	writew(uap->im, uap->port.membase + UART011_IMSC);
1454 	spin_unlock_irq(&uap->port.lock);
1455 
1456 	return 0;
1457 
1458  clk_dis:
1459 	clk_disable_unprepare(uap->clk);
1460 	return retval;
1461 }
1462 
1463 static void pl011_shutdown_channel(struct uart_amba_port *uap,
1464 					unsigned int lcrh)
1465 {
1466       unsigned long val;
1467 
1468       val = readw(uap->port.membase + lcrh);
1469       val &= ~(UART01x_LCRH_BRK | UART01x_LCRH_FEN);
1470       writew(val, uap->port.membase + lcrh);
1471 }
1472 
1473 static void pl011_shutdown(struct uart_port *port)
1474 {
1475 	struct uart_amba_port *uap = (struct uart_amba_port *)port;
1476 	unsigned int cr;
1477 	int retval;
1478 
1479 	/*
1480 	 * disable all interrupts
1481 	 */
1482 	spin_lock_irq(&uap->port.lock);
1483 	uap->im = 0;
1484 	writew(uap->im, uap->port.membase + UART011_IMSC);
1485 	writew(0xffff, uap->port.membase + UART011_ICR);
1486 	spin_unlock_irq(&uap->port.lock);
1487 
1488 	pl011_dma_shutdown(uap);
1489 
1490 	/*
1491 	 * Free the interrupt
1492 	 */
1493 	free_irq(uap->port.irq, uap);
1494 
1495 	/*
1496 	 * disable the port
1497 	 * disable the port. It should not disable RTS and DTR.
1498 	 * Also RTS and DTR state should be preserved to restore
1499 	 * it during startup().
1500 	 */
1501 	uap->autorts = false;
1502 	cr = readw(uap->port.membase + UART011_CR);
1503 	uap->old_cr = cr;
1504 	cr &= UART011_CR_RTS | UART011_CR_DTR;
1505 	cr |= UART01x_CR_UARTEN | UART011_CR_TXE;
1506 	writew(cr, uap->port.membase + UART011_CR);
1507 
1508 	/*
1509 	 * disable break condition and fifos
1510 	 */
1511 	pl011_shutdown_channel(uap, uap->lcrh_rx);
1512 	if (uap->lcrh_rx != uap->lcrh_tx)
1513 		pl011_shutdown_channel(uap, uap->lcrh_tx);
1514 
1515 	/*
1516 	 * Shut down the clock producer
1517 	 */
1518 	clk_disable_unprepare(uap->clk);
1519 	/* Optionally let pins go into sleep states */
1520 	if (!IS_ERR(uap->pins_sleep)) {
1521 		retval = pinctrl_select_state(uap->pinctrl, uap->pins_sleep);
1522 		if (retval)
1523 			dev_err(port->dev,
1524 				"could not set pins to sleep state\n");
1525 	}
1526 
1527 
1528 	if (uap->port.dev->platform_data) {
1529 		struct amba_pl011_data *plat;
1530 
1531 		plat = uap->port.dev->platform_data;
1532 		if (plat->exit)
1533 			plat->exit();
1534 	}
1535 
1536 }
1537 
1538 static void
1539 pl011_set_termios(struct uart_port *port, struct ktermios *termios,
1540 		     struct ktermios *old)
1541 {
1542 	struct uart_amba_port *uap = (struct uart_amba_port *)port;
1543 	unsigned int lcr_h, old_cr;
1544 	unsigned long flags;
1545 	unsigned int baud, quot, clkdiv;
1546 
1547 	if (uap->vendor->oversampling)
1548 		clkdiv = 8;
1549 	else
1550 		clkdiv = 16;
1551 
1552 	/*
1553 	 * Ask the core to calculate the divisor for us.
1554 	 */
1555 	baud = uart_get_baud_rate(port, termios, old, 0,
1556 				  port->uartclk / clkdiv);
1557 
1558 	if (baud > port->uartclk/16)
1559 		quot = DIV_ROUND_CLOSEST(port->uartclk * 8, baud);
1560 	else
1561 		quot = DIV_ROUND_CLOSEST(port->uartclk * 4, baud);
1562 
1563 	switch (termios->c_cflag & CSIZE) {
1564 	case CS5:
1565 		lcr_h = UART01x_LCRH_WLEN_5;
1566 		break;
1567 	case CS6:
1568 		lcr_h = UART01x_LCRH_WLEN_6;
1569 		break;
1570 	case CS7:
1571 		lcr_h = UART01x_LCRH_WLEN_7;
1572 		break;
1573 	default: // CS8
1574 		lcr_h = UART01x_LCRH_WLEN_8;
1575 		break;
1576 	}
1577 	if (termios->c_cflag & CSTOPB)
1578 		lcr_h |= UART01x_LCRH_STP2;
1579 	if (termios->c_cflag & PARENB) {
1580 		lcr_h |= UART01x_LCRH_PEN;
1581 		if (!(termios->c_cflag & PARODD))
1582 			lcr_h |= UART01x_LCRH_EPS;
1583 	}
1584 	if (uap->fifosize > 1)
1585 		lcr_h |= UART01x_LCRH_FEN;
1586 
1587 	spin_lock_irqsave(&port->lock, flags);
1588 
1589 	/*
1590 	 * Update the per-port timeout.
1591 	 */
1592 	uart_update_timeout(port, termios->c_cflag, baud);
1593 
1594 	port->read_status_mask = UART011_DR_OE | 255;
1595 	if (termios->c_iflag & INPCK)
1596 		port->read_status_mask |= UART011_DR_FE | UART011_DR_PE;
1597 	if (termios->c_iflag & (BRKINT | PARMRK))
1598 		port->read_status_mask |= UART011_DR_BE;
1599 
1600 	/*
1601 	 * Characters to ignore
1602 	 */
1603 	port->ignore_status_mask = 0;
1604 	if (termios->c_iflag & IGNPAR)
1605 		port->ignore_status_mask |= UART011_DR_FE | UART011_DR_PE;
1606 	if (termios->c_iflag & IGNBRK) {
1607 		port->ignore_status_mask |= UART011_DR_BE;
1608 		/*
1609 		 * If we're ignoring parity and break indicators,
1610 		 * ignore overruns too (for real raw support).
1611 		 */
1612 		if (termios->c_iflag & IGNPAR)
1613 			port->ignore_status_mask |= UART011_DR_OE;
1614 	}
1615 
1616 	/*
1617 	 * Ignore all characters if CREAD is not set.
1618 	 */
1619 	if ((termios->c_cflag & CREAD) == 0)
1620 		port->ignore_status_mask |= UART_DUMMY_DR_RX;
1621 
1622 	if (UART_ENABLE_MS(port, termios->c_cflag))
1623 		pl011_enable_ms(port);
1624 
1625 	/* first, disable everything */
1626 	old_cr = readw(port->membase + UART011_CR);
1627 	writew(0, port->membase + UART011_CR);
1628 
1629 	if (termios->c_cflag & CRTSCTS) {
1630 		if (old_cr & UART011_CR_RTS)
1631 			old_cr |= UART011_CR_RTSEN;
1632 
1633 		old_cr |= UART011_CR_CTSEN;
1634 		uap->autorts = true;
1635 	} else {
1636 		old_cr &= ~(UART011_CR_CTSEN | UART011_CR_RTSEN);
1637 		uap->autorts = false;
1638 	}
1639 
1640 	if (uap->vendor->oversampling) {
1641 		if (baud > port->uartclk / 16)
1642 			old_cr |= ST_UART011_CR_OVSFACT;
1643 		else
1644 			old_cr &= ~ST_UART011_CR_OVSFACT;
1645 	}
1646 
1647 	/*
1648 	 * Workaround for the ST Micro oversampling variants to
1649 	 * increase the bitrate slightly, by lowering the divisor,
1650 	 * to avoid delayed sampling of start bit at high speeds,
1651 	 * else we see data corruption.
1652 	 */
1653 	if (uap->vendor->oversampling) {
1654 		if ((baud >= 3000000) && (baud < 3250000) && (quot > 1))
1655 			quot -= 1;
1656 		else if ((baud > 3250000) && (quot > 2))
1657 			quot -= 2;
1658 	}
1659 	/* Set baud rate */
1660 	writew(quot & 0x3f, port->membase + UART011_FBRD);
1661 	writew(quot >> 6, port->membase + UART011_IBRD);
1662 
1663 	/*
1664 	 * ----------v----------v----------v----------v-----
1665 	 * NOTE: lcrh_tx and lcrh_rx MUST BE WRITTEN AFTER
1666 	 * UART011_FBRD & UART011_IBRD.
1667 	 * ----------^----------^----------^----------^-----
1668 	 */
1669 	writew(lcr_h, port->membase + uap->lcrh_rx);
1670 	if (uap->lcrh_rx != uap->lcrh_tx) {
1671 		int i;
1672 		/*
1673 		 * Wait 10 PCLKs before writing LCRH_TX register,
1674 		 * to get this delay write read only register 10 times
1675 		 */
1676 		for (i = 0; i < 10; ++i)
1677 			writew(0xff, uap->port.membase + UART011_MIS);
1678 		writew(lcr_h, port->membase + uap->lcrh_tx);
1679 	}
1680 	writew(old_cr, port->membase + UART011_CR);
1681 
1682 	spin_unlock_irqrestore(&port->lock, flags);
1683 }
1684 
1685 static const char *pl011_type(struct uart_port *port)
1686 {
1687 	struct uart_amba_port *uap = (struct uart_amba_port *)port;
1688 	return uap->port.type == PORT_AMBA ? uap->type : NULL;
1689 }
1690 
1691 /*
1692  * Release the memory region(s) being used by 'port'
1693  */
1694 static void pl011_release_port(struct uart_port *port)
1695 {
1696 	release_mem_region(port->mapbase, SZ_4K);
1697 }
1698 
1699 /*
1700  * Request the memory region(s) being used by 'port'
1701  */
1702 static int pl011_request_port(struct uart_port *port)
1703 {
1704 	return request_mem_region(port->mapbase, SZ_4K, "uart-pl011")
1705 			!= NULL ? 0 : -EBUSY;
1706 }
1707 
1708 /*
1709  * Configure/autoconfigure the port.
1710  */
1711 static void pl011_config_port(struct uart_port *port, int flags)
1712 {
1713 	if (flags & UART_CONFIG_TYPE) {
1714 		port->type = PORT_AMBA;
1715 		pl011_request_port(port);
1716 	}
1717 }
1718 
1719 /*
1720  * verify the new serial_struct (for TIOCSSERIAL).
1721  */
1722 static int pl011_verify_port(struct uart_port *port, struct serial_struct *ser)
1723 {
1724 	int ret = 0;
1725 	if (ser->type != PORT_UNKNOWN && ser->type != PORT_AMBA)
1726 		ret = -EINVAL;
1727 	if (ser->irq < 0 || ser->irq >= nr_irqs)
1728 		ret = -EINVAL;
1729 	if (ser->baud_base < 9600)
1730 		ret = -EINVAL;
1731 	return ret;
1732 }
1733 
1734 static struct uart_ops amba_pl011_pops = {
1735 	.tx_empty	= pl011_tx_empty,
1736 	.set_mctrl	= pl011_set_mctrl,
1737 	.get_mctrl	= pl011_get_mctrl,
1738 	.stop_tx	= pl011_stop_tx,
1739 	.start_tx	= pl011_start_tx,
1740 	.stop_rx	= pl011_stop_rx,
1741 	.enable_ms	= pl011_enable_ms,
1742 	.break_ctl	= pl011_break_ctl,
1743 	.startup	= pl011_startup,
1744 	.shutdown	= pl011_shutdown,
1745 	.flush_buffer	= pl011_dma_flush_buffer,
1746 	.set_termios	= pl011_set_termios,
1747 	.type		= pl011_type,
1748 	.release_port	= pl011_release_port,
1749 	.request_port	= pl011_request_port,
1750 	.config_port	= pl011_config_port,
1751 	.verify_port	= pl011_verify_port,
1752 #ifdef CONFIG_CONSOLE_POLL
1753 	.poll_init     = pl011_hwinit,
1754 	.poll_get_char = pl011_get_poll_char,
1755 	.poll_put_char = pl011_put_poll_char,
1756 #endif
1757 };
1758 
1759 static struct uart_amba_port *amba_ports[UART_NR];
1760 
1761 #ifdef CONFIG_SERIAL_AMBA_PL011_CONSOLE
1762 
1763 static void pl011_console_putchar(struct uart_port *port, int ch)
1764 {
1765 	struct uart_amba_port *uap = (struct uart_amba_port *)port;
1766 
1767 	while (readw(uap->port.membase + UART01x_FR) & UART01x_FR_TXFF)
1768 		barrier();
1769 	writew(ch, uap->port.membase + UART01x_DR);
1770 }
1771 
1772 static void
1773 pl011_console_write(struct console *co, const char *s, unsigned int count)
1774 {
1775 	struct uart_amba_port *uap = amba_ports[co->index];
1776 	unsigned int status, old_cr, new_cr;
1777 	unsigned long flags;
1778 	int locked = 1;
1779 
1780 	clk_enable(uap->clk);
1781 
1782 	local_irq_save(flags);
1783 	if (uap->port.sysrq)
1784 		locked = 0;
1785 	else if (oops_in_progress)
1786 		locked = spin_trylock(&uap->port.lock);
1787 	else
1788 		spin_lock(&uap->port.lock);
1789 
1790 	/*
1791 	 *	First save the CR then disable the interrupts
1792 	 */
1793 	old_cr = readw(uap->port.membase + UART011_CR);
1794 	new_cr = old_cr & ~UART011_CR_CTSEN;
1795 	new_cr |= UART01x_CR_UARTEN | UART011_CR_TXE;
1796 	writew(new_cr, uap->port.membase + UART011_CR);
1797 
1798 	uart_console_write(&uap->port, s, count, pl011_console_putchar);
1799 
1800 	/*
1801 	 *	Finally, wait for transmitter to become empty
1802 	 *	and restore the TCR
1803 	 */
1804 	do {
1805 		status = readw(uap->port.membase + UART01x_FR);
1806 	} while (status & UART01x_FR_BUSY);
1807 	writew(old_cr, uap->port.membase + UART011_CR);
1808 
1809 	if (locked)
1810 		spin_unlock(&uap->port.lock);
1811 	local_irq_restore(flags);
1812 
1813 	clk_disable(uap->clk);
1814 }
1815 
1816 static void __init
1817 pl011_console_get_options(struct uart_amba_port *uap, int *baud,
1818 			     int *parity, int *bits)
1819 {
1820 	if (readw(uap->port.membase + UART011_CR) & UART01x_CR_UARTEN) {
1821 		unsigned int lcr_h, ibrd, fbrd;
1822 
1823 		lcr_h = readw(uap->port.membase + uap->lcrh_tx);
1824 
1825 		*parity = 'n';
1826 		if (lcr_h & UART01x_LCRH_PEN) {
1827 			if (lcr_h & UART01x_LCRH_EPS)
1828 				*parity = 'e';
1829 			else
1830 				*parity = 'o';
1831 		}
1832 
1833 		if ((lcr_h & 0x60) == UART01x_LCRH_WLEN_7)
1834 			*bits = 7;
1835 		else
1836 			*bits = 8;
1837 
1838 		ibrd = readw(uap->port.membase + UART011_IBRD);
1839 		fbrd = readw(uap->port.membase + UART011_FBRD);
1840 
1841 		*baud = uap->port.uartclk * 4 / (64 * ibrd + fbrd);
1842 
1843 		if (uap->vendor->oversampling) {
1844 			if (readw(uap->port.membase + UART011_CR)
1845 				  & ST_UART011_CR_OVSFACT)
1846 				*baud *= 2;
1847 		}
1848 	}
1849 }
1850 
1851 static int __init pl011_console_setup(struct console *co, char *options)
1852 {
1853 	struct uart_amba_port *uap;
1854 	int baud = 38400;
1855 	int bits = 8;
1856 	int parity = 'n';
1857 	int flow = 'n';
1858 	int ret;
1859 
1860 	/*
1861 	 * Check whether an invalid uart number has been specified, and
1862 	 * if so, search for the first available port that does have
1863 	 * console support.
1864 	 */
1865 	if (co->index >= UART_NR)
1866 		co->index = 0;
1867 	uap = amba_ports[co->index];
1868 	if (!uap)
1869 		return -ENODEV;
1870 
1871 	/* Allow pins to be muxed in and configured */
1872 	if (!IS_ERR(uap->pins_default)) {
1873 		ret = pinctrl_select_state(uap->pinctrl, uap->pins_default);
1874 		if (ret)
1875 			dev_err(uap->port.dev,
1876 				"could not set default pins\n");
1877 	}
1878 
1879 	ret = clk_prepare(uap->clk);
1880 	if (ret)
1881 		return ret;
1882 
1883 	if (uap->port.dev->platform_data) {
1884 		struct amba_pl011_data *plat;
1885 
1886 		plat = uap->port.dev->platform_data;
1887 		if (plat->init)
1888 			plat->init();
1889 	}
1890 
1891 	uap->port.uartclk = clk_get_rate(uap->clk);
1892 
1893 	if (options)
1894 		uart_parse_options(options, &baud, &parity, &bits, &flow);
1895 	else
1896 		pl011_console_get_options(uap, &baud, &parity, &bits);
1897 
1898 	return uart_set_options(&uap->port, co, baud, parity, bits, flow);
1899 }
1900 
1901 static struct uart_driver amba_reg;
1902 static struct console amba_console = {
1903 	.name		= "ttyAMA",
1904 	.write		= pl011_console_write,
1905 	.device		= uart_console_device,
1906 	.setup		= pl011_console_setup,
1907 	.flags		= CON_PRINTBUFFER,
1908 	.index		= -1,
1909 	.data		= &amba_reg,
1910 };
1911 
1912 #define AMBA_CONSOLE	(&amba_console)
1913 #else
1914 #define AMBA_CONSOLE	NULL
1915 #endif
1916 
1917 static struct uart_driver amba_reg = {
1918 	.owner			= THIS_MODULE,
1919 	.driver_name		= "ttyAMA",
1920 	.dev_name		= "ttyAMA",
1921 	.major			= SERIAL_AMBA_MAJOR,
1922 	.minor			= SERIAL_AMBA_MINOR,
1923 	.nr			= UART_NR,
1924 	.cons			= AMBA_CONSOLE,
1925 };
1926 
1927 static int pl011_probe_dt_alias(int index, struct device *dev)
1928 {
1929 	struct device_node *np;
1930 	static bool seen_dev_with_alias = false;
1931 	static bool seen_dev_without_alias = false;
1932 	int ret = index;
1933 
1934 	if (!IS_ENABLED(CONFIG_OF))
1935 		return ret;
1936 
1937 	np = dev->of_node;
1938 	if (!np)
1939 		return ret;
1940 
1941 	ret = of_alias_get_id(np, "serial");
1942 	if (IS_ERR_VALUE(ret)) {
1943 		seen_dev_without_alias = true;
1944 		ret = index;
1945 	} else {
1946 		seen_dev_with_alias = true;
1947 		if (ret >= ARRAY_SIZE(amba_ports) || amba_ports[ret] != NULL) {
1948 			dev_warn(dev, "requested serial port %d  not available.\n", ret);
1949 			ret = index;
1950 		}
1951 	}
1952 
1953 	if (seen_dev_with_alias && seen_dev_without_alias)
1954 		dev_warn(dev, "aliased and non-aliased serial devices found in device tree. Serial port enumeration may be unpredictable.\n");
1955 
1956 	return ret;
1957 }
1958 
1959 static int pl011_probe(struct amba_device *dev, const struct amba_id *id)
1960 {
1961 	struct uart_amba_port *uap;
1962 	struct vendor_data *vendor = id->data;
1963 	void __iomem *base;
1964 	int i, ret;
1965 
1966 	for (i = 0; i < ARRAY_SIZE(amba_ports); i++)
1967 		if (amba_ports[i] == NULL)
1968 			break;
1969 
1970 	if (i == ARRAY_SIZE(amba_ports)) {
1971 		ret = -EBUSY;
1972 		goto out;
1973 	}
1974 
1975 	uap = devm_kzalloc(&dev->dev, sizeof(struct uart_amba_port),
1976 			   GFP_KERNEL);
1977 	if (uap == NULL) {
1978 		ret = -ENOMEM;
1979 		goto out;
1980 	}
1981 
1982 	i = pl011_probe_dt_alias(i, &dev->dev);
1983 
1984 	base = devm_ioremap(&dev->dev, dev->res.start,
1985 			    resource_size(&dev->res));
1986 	if (!base) {
1987 		ret = -ENOMEM;
1988 		goto out;
1989 	}
1990 
1991 	uap->pinctrl = devm_pinctrl_get(&dev->dev);
1992 	if (IS_ERR(uap->pinctrl)) {
1993 		ret = PTR_ERR(uap->pinctrl);
1994 		goto out;
1995 	}
1996 	uap->pins_default = pinctrl_lookup_state(uap->pinctrl,
1997 						 PINCTRL_STATE_DEFAULT);
1998 	if (IS_ERR(uap->pins_default))
1999 		dev_err(&dev->dev, "could not get default pinstate\n");
2000 
2001 	uap->pins_sleep = pinctrl_lookup_state(uap->pinctrl,
2002 					       PINCTRL_STATE_SLEEP);
2003 	if (IS_ERR(uap->pins_sleep))
2004 		dev_dbg(&dev->dev, "could not get sleep pinstate\n");
2005 
2006 	uap->clk = devm_clk_get(&dev->dev, NULL);
2007 	if (IS_ERR(uap->clk)) {
2008 		ret = PTR_ERR(uap->clk);
2009 		goto out;
2010 	}
2011 
2012 	uap->vendor = vendor;
2013 	uap->lcrh_rx = vendor->lcrh_rx;
2014 	uap->lcrh_tx = vendor->lcrh_tx;
2015 	uap->old_cr = 0;
2016 	uap->fifosize = vendor->fifosize;
2017 	uap->port.dev = &dev->dev;
2018 	uap->port.mapbase = dev->res.start;
2019 	uap->port.membase = base;
2020 	uap->port.iotype = UPIO_MEM;
2021 	uap->port.irq = dev->irq[0];
2022 	uap->port.fifosize = uap->fifosize;
2023 	uap->port.ops = &amba_pl011_pops;
2024 	uap->port.flags = UPF_BOOT_AUTOCONF;
2025 	uap->port.line = i;
2026 	pl011_dma_probe(uap);
2027 
2028 	/* Ensure interrupts from this UART are masked and cleared */
2029 	writew(0, uap->port.membase + UART011_IMSC);
2030 	writew(0xffff, uap->port.membase + UART011_ICR);
2031 
2032 	snprintf(uap->type, sizeof(uap->type), "PL011 rev%u", amba_rev(dev));
2033 
2034 	amba_ports[i] = uap;
2035 
2036 	amba_set_drvdata(dev, uap);
2037 	ret = uart_add_one_port(&amba_reg, &uap->port);
2038 	if (ret) {
2039 		amba_set_drvdata(dev, NULL);
2040 		amba_ports[i] = NULL;
2041 		pl011_dma_remove(uap);
2042 	}
2043  out:
2044 	return ret;
2045 }
2046 
2047 static int pl011_remove(struct amba_device *dev)
2048 {
2049 	struct uart_amba_port *uap = amba_get_drvdata(dev);
2050 	int i;
2051 
2052 	amba_set_drvdata(dev, NULL);
2053 
2054 	uart_remove_one_port(&amba_reg, &uap->port);
2055 
2056 	for (i = 0; i < ARRAY_SIZE(amba_ports); i++)
2057 		if (amba_ports[i] == uap)
2058 			amba_ports[i] = NULL;
2059 
2060 	pl011_dma_remove(uap);
2061 	return 0;
2062 }
2063 
2064 #ifdef CONFIG_PM
2065 static int pl011_suspend(struct amba_device *dev, pm_message_t state)
2066 {
2067 	struct uart_amba_port *uap = amba_get_drvdata(dev);
2068 
2069 	if (!uap)
2070 		return -EINVAL;
2071 
2072 	return uart_suspend_port(&amba_reg, &uap->port);
2073 }
2074 
2075 static int pl011_resume(struct amba_device *dev)
2076 {
2077 	struct uart_amba_port *uap = amba_get_drvdata(dev);
2078 
2079 	if (!uap)
2080 		return -EINVAL;
2081 
2082 	return uart_resume_port(&amba_reg, &uap->port);
2083 }
2084 #endif
2085 
2086 static struct amba_id pl011_ids[] = {
2087 	{
2088 		.id	= 0x00041011,
2089 		.mask	= 0x000fffff,
2090 		.data	= &vendor_arm,
2091 	},
2092 	{
2093 		.id	= 0x00380802,
2094 		.mask	= 0x00ffffff,
2095 		.data	= &vendor_st,
2096 	},
2097 	{ 0, 0 },
2098 };
2099 
2100 MODULE_DEVICE_TABLE(amba, pl011_ids);
2101 
2102 static struct amba_driver pl011_driver = {
2103 	.drv = {
2104 		.name	= "uart-pl011",
2105 	},
2106 	.id_table	= pl011_ids,
2107 	.probe		= pl011_probe,
2108 	.remove		= pl011_remove,
2109 #ifdef CONFIG_PM
2110 	.suspend	= pl011_suspend,
2111 	.resume		= pl011_resume,
2112 #endif
2113 };
2114 
2115 static int __init pl011_init(void)
2116 {
2117 	int ret;
2118 	printk(KERN_INFO "Serial: AMBA PL011 UART driver\n");
2119 
2120 	ret = uart_register_driver(&amba_reg);
2121 	if (ret == 0) {
2122 		ret = amba_driver_register(&pl011_driver);
2123 		if (ret)
2124 			uart_unregister_driver(&amba_reg);
2125 	}
2126 	return ret;
2127 }
2128 
2129 static void __exit pl011_exit(void)
2130 {
2131 	amba_driver_unregister(&pl011_driver);
2132 	uart_unregister_driver(&amba_reg);
2133 }
2134 
2135 /*
2136  * While this can be a module, if builtin it's most likely the console
2137  * So let's leave module_exit but move module_init to an earlier place
2138  */
2139 arch_initcall(pl011_init);
2140 module_exit(pl011_exit);
2141 
2142 MODULE_AUTHOR("ARM Ltd/Deep Blue Solutions Ltd");
2143 MODULE_DESCRIPTION("ARM AMBA serial port driver");
2144 MODULE_LICENSE("GPL");
2145