xref: /openbmc/linux/drivers/tty/serial/amba-pl011.c (revision cc698db4)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  *  Driver for AMBA serial ports
4  *
5  *  Based on drivers/char/serial.c, by Linus Torvalds, Theodore Ts'o.
6  *
7  *  Copyright 1999 ARM Limited
8  *  Copyright (C) 2000 Deep Blue Solutions Ltd.
9  *  Copyright (C) 2010 ST-Ericsson SA
10  *
11  * This is a generic driver for ARM AMBA-type serial ports.  They
12  * have a lot of 16550-like features, but are not register compatible.
13  * Note that although they do have CTS, DCD and DSR inputs, they do
14  * not have an RI input, nor do they have DTR or RTS outputs.  If
15  * required, these have to be supplied via some other means (eg, GPIO)
16  * and hooked into this driver.
17  */
18 
19 #include <linux/module.h>
20 #include <linux/ioport.h>
21 #include <linux/init.h>
22 #include <linux/console.h>
23 #include <linux/platform_device.h>
24 #include <linux/sysrq.h>
25 #include <linux/device.h>
26 #include <linux/tty.h>
27 #include <linux/tty_flip.h>
28 #include <linux/serial_core.h>
29 #include <linux/serial.h>
30 #include <linux/amba/bus.h>
31 #include <linux/amba/serial.h>
32 #include <linux/clk.h>
33 #include <linux/slab.h>
34 #include <linux/dmaengine.h>
35 #include <linux/dma-mapping.h>
36 #include <linux/scatterlist.h>
37 #include <linux/delay.h>
38 #include <linux/types.h>
39 #include <linux/of.h>
40 #include <linux/pinctrl/consumer.h>
41 #include <linux/sizes.h>
42 #include <linux/io.h>
43 #include <linux/acpi.h>
44 
45 #define UART_NR			14
46 
47 #define SERIAL_AMBA_MAJOR	204
48 #define SERIAL_AMBA_MINOR	64
49 #define SERIAL_AMBA_NR		UART_NR
50 
51 #define AMBA_ISR_PASS_LIMIT	256
52 
53 #define UART_DR_ERROR		(UART011_DR_OE|UART011_DR_BE|UART011_DR_PE|UART011_DR_FE)
54 #define UART_DUMMY_DR_RX	(1 << 16)
55 
56 enum {
57 	REG_DR,
58 	REG_ST_DMAWM,
59 	REG_ST_TIMEOUT,
60 	REG_FR,
61 	REG_LCRH_RX,
62 	REG_LCRH_TX,
63 	REG_IBRD,
64 	REG_FBRD,
65 	REG_CR,
66 	REG_IFLS,
67 	REG_IMSC,
68 	REG_RIS,
69 	REG_MIS,
70 	REG_ICR,
71 	REG_DMACR,
72 	REG_ST_XFCR,
73 	REG_ST_XON1,
74 	REG_ST_XON2,
75 	REG_ST_XOFF1,
76 	REG_ST_XOFF2,
77 	REG_ST_ITCR,
78 	REG_ST_ITIP,
79 	REG_ST_ABCR,
80 	REG_ST_ABIMSC,
81 
82 	/* The size of the array - must be last */
83 	REG_ARRAY_SIZE,
84 };
85 
86 static u16 pl011_std_offsets[REG_ARRAY_SIZE] = {
87 	[REG_DR] = UART01x_DR,
88 	[REG_FR] = UART01x_FR,
89 	[REG_LCRH_RX] = UART011_LCRH,
90 	[REG_LCRH_TX] = UART011_LCRH,
91 	[REG_IBRD] = UART011_IBRD,
92 	[REG_FBRD] = UART011_FBRD,
93 	[REG_CR] = UART011_CR,
94 	[REG_IFLS] = UART011_IFLS,
95 	[REG_IMSC] = UART011_IMSC,
96 	[REG_RIS] = UART011_RIS,
97 	[REG_MIS] = UART011_MIS,
98 	[REG_ICR] = UART011_ICR,
99 	[REG_DMACR] = UART011_DMACR,
100 };
101 
102 /* There is by now at least one vendor with differing details, so handle it */
103 struct vendor_data {
104 	const u16		*reg_offset;
105 	unsigned int		ifls;
106 	unsigned int		fr_busy;
107 	unsigned int		fr_dsr;
108 	unsigned int		fr_cts;
109 	unsigned int		fr_ri;
110 	unsigned int		inv_fr;
111 	bool			access_32b;
112 	bool			oversampling;
113 	bool			dma_threshold;
114 	bool			cts_event_workaround;
115 	bool			always_enabled;
116 	bool			fixed_options;
117 
118 	unsigned int (*get_fifosize)(struct amba_device *dev);
119 };
120 
121 static unsigned int get_fifosize_arm(struct amba_device *dev)
122 {
123 	return amba_rev(dev) < 3 ? 16 : 32;
124 }
125 
126 static struct vendor_data vendor_arm = {
127 	.reg_offset		= pl011_std_offsets,
128 	.ifls			= UART011_IFLS_RX4_8|UART011_IFLS_TX4_8,
129 	.fr_busy		= UART01x_FR_BUSY,
130 	.fr_dsr			= UART01x_FR_DSR,
131 	.fr_cts			= UART01x_FR_CTS,
132 	.fr_ri			= UART011_FR_RI,
133 	.oversampling		= false,
134 	.dma_threshold		= false,
135 	.cts_event_workaround	= false,
136 	.always_enabled		= false,
137 	.fixed_options		= false,
138 	.get_fifosize		= get_fifosize_arm,
139 };
140 
141 static const struct vendor_data vendor_sbsa = {
142 	.reg_offset		= pl011_std_offsets,
143 	.fr_busy		= UART01x_FR_BUSY,
144 	.fr_dsr			= UART01x_FR_DSR,
145 	.fr_cts			= UART01x_FR_CTS,
146 	.fr_ri			= UART011_FR_RI,
147 	.access_32b		= true,
148 	.oversampling		= false,
149 	.dma_threshold		= false,
150 	.cts_event_workaround	= false,
151 	.always_enabled		= true,
152 	.fixed_options		= true,
153 };
154 
155 #ifdef CONFIG_ACPI_SPCR_TABLE
156 static const struct vendor_data vendor_qdt_qdf2400_e44 = {
157 	.reg_offset		= pl011_std_offsets,
158 	.fr_busy		= UART011_FR_TXFE,
159 	.fr_dsr			= UART01x_FR_DSR,
160 	.fr_cts			= UART01x_FR_CTS,
161 	.fr_ri			= UART011_FR_RI,
162 	.inv_fr			= UART011_FR_TXFE,
163 	.access_32b		= true,
164 	.oversampling		= false,
165 	.dma_threshold		= false,
166 	.cts_event_workaround	= false,
167 	.always_enabled		= true,
168 	.fixed_options		= true,
169 };
170 #endif
171 
172 static u16 pl011_st_offsets[REG_ARRAY_SIZE] = {
173 	[REG_DR] = UART01x_DR,
174 	[REG_ST_DMAWM] = ST_UART011_DMAWM,
175 	[REG_ST_TIMEOUT] = ST_UART011_TIMEOUT,
176 	[REG_FR] = UART01x_FR,
177 	[REG_LCRH_RX] = ST_UART011_LCRH_RX,
178 	[REG_LCRH_TX] = ST_UART011_LCRH_TX,
179 	[REG_IBRD] = UART011_IBRD,
180 	[REG_FBRD] = UART011_FBRD,
181 	[REG_CR] = UART011_CR,
182 	[REG_IFLS] = UART011_IFLS,
183 	[REG_IMSC] = UART011_IMSC,
184 	[REG_RIS] = UART011_RIS,
185 	[REG_MIS] = UART011_MIS,
186 	[REG_ICR] = UART011_ICR,
187 	[REG_DMACR] = UART011_DMACR,
188 	[REG_ST_XFCR] = ST_UART011_XFCR,
189 	[REG_ST_XON1] = ST_UART011_XON1,
190 	[REG_ST_XON2] = ST_UART011_XON2,
191 	[REG_ST_XOFF1] = ST_UART011_XOFF1,
192 	[REG_ST_XOFF2] = ST_UART011_XOFF2,
193 	[REG_ST_ITCR] = ST_UART011_ITCR,
194 	[REG_ST_ITIP] = ST_UART011_ITIP,
195 	[REG_ST_ABCR] = ST_UART011_ABCR,
196 	[REG_ST_ABIMSC] = ST_UART011_ABIMSC,
197 };
198 
199 static unsigned int get_fifosize_st(struct amba_device *dev)
200 {
201 	return 64;
202 }
203 
204 static struct vendor_data vendor_st = {
205 	.reg_offset		= pl011_st_offsets,
206 	.ifls			= UART011_IFLS_RX_HALF|UART011_IFLS_TX_HALF,
207 	.fr_busy		= UART01x_FR_BUSY,
208 	.fr_dsr			= UART01x_FR_DSR,
209 	.fr_cts			= UART01x_FR_CTS,
210 	.fr_ri			= UART011_FR_RI,
211 	.oversampling		= true,
212 	.dma_threshold		= true,
213 	.cts_event_workaround	= true,
214 	.always_enabled		= false,
215 	.fixed_options		= false,
216 	.get_fifosize		= get_fifosize_st,
217 };
218 
219 /* Deals with DMA transactions */
220 
221 struct pl011_dmabuf {
222 	dma_addr_t		dma;
223 	size_t			len;
224 	char			*buf;
225 };
226 
227 struct pl011_dmarx_data {
228 	struct dma_chan		*chan;
229 	struct completion	complete;
230 	bool			use_buf_b;
231 	struct pl011_dmabuf	dbuf_a;
232 	struct pl011_dmabuf	dbuf_b;
233 	dma_cookie_t		cookie;
234 	bool			running;
235 	struct timer_list	timer;
236 	unsigned int last_residue;
237 	unsigned long last_jiffies;
238 	bool auto_poll_rate;
239 	unsigned int poll_rate;
240 	unsigned int poll_timeout;
241 };
242 
243 struct pl011_dmatx_data {
244 	struct dma_chan		*chan;
245 	dma_addr_t		dma;
246 	size_t			len;
247 	char			*buf;
248 	bool			queued;
249 };
250 
251 /*
252  * We wrap our port structure around the generic uart_port.
253  */
254 struct uart_amba_port {
255 	struct uart_port	port;
256 	const u16		*reg_offset;
257 	struct clk		*clk;
258 	const struct vendor_data *vendor;
259 	unsigned int		dmacr;		/* dma control reg */
260 	unsigned int		im;		/* interrupt mask */
261 	unsigned int		old_status;
262 	unsigned int		fifosize;	/* vendor-specific */
263 	unsigned int		fixed_baud;	/* vendor-set fixed baud rate */
264 	char			type[12];
265 	bool			rs485_tx_started;
266 	unsigned int		rs485_tx_drain_interval; /* usecs */
267 #ifdef CONFIG_DMA_ENGINE
268 	/* DMA stuff */
269 	bool			using_tx_dma;
270 	bool			using_rx_dma;
271 	struct pl011_dmarx_data dmarx;
272 	struct pl011_dmatx_data	dmatx;
273 	bool			dma_probed;
274 #endif
275 };
276 
277 static unsigned int pl011_tx_empty(struct uart_port *port);
278 
279 static unsigned int pl011_reg_to_offset(const struct uart_amba_port *uap,
280 	unsigned int reg)
281 {
282 	return uap->reg_offset[reg];
283 }
284 
285 static unsigned int pl011_read(const struct uart_amba_port *uap,
286 	unsigned int reg)
287 {
288 	void __iomem *addr = uap->port.membase + pl011_reg_to_offset(uap, reg);
289 
290 	return (uap->port.iotype == UPIO_MEM32) ?
291 		readl_relaxed(addr) : readw_relaxed(addr);
292 }
293 
294 static void pl011_write(unsigned int val, const struct uart_amba_port *uap,
295 	unsigned int reg)
296 {
297 	void __iomem *addr = uap->port.membase + pl011_reg_to_offset(uap, reg);
298 
299 	if (uap->port.iotype == UPIO_MEM32)
300 		writel_relaxed(val, addr);
301 	else
302 		writew_relaxed(val, addr);
303 }
304 
305 /*
306  * Reads up to 256 characters from the FIFO or until it's empty and
307  * inserts them into the TTY layer. Returns the number of characters
308  * read from the FIFO.
309  */
310 static int pl011_fifo_to_tty(struct uart_amba_port *uap)
311 {
312 	unsigned int ch, fifotaken;
313 	int sysrq;
314 	u16 status;
315 	u8 flag;
316 
317 	for (fifotaken = 0; fifotaken != 256; fifotaken++) {
318 		status = pl011_read(uap, REG_FR);
319 		if (status & UART01x_FR_RXFE)
320 			break;
321 
322 		/* Take chars from the FIFO and update status */
323 		ch = pl011_read(uap, REG_DR) | UART_DUMMY_DR_RX;
324 		flag = TTY_NORMAL;
325 		uap->port.icount.rx++;
326 
327 		if (unlikely(ch & UART_DR_ERROR)) {
328 			if (ch & UART011_DR_BE) {
329 				ch &= ~(UART011_DR_FE | UART011_DR_PE);
330 				uap->port.icount.brk++;
331 				if (uart_handle_break(&uap->port))
332 					continue;
333 			} else if (ch & UART011_DR_PE)
334 				uap->port.icount.parity++;
335 			else if (ch & UART011_DR_FE)
336 				uap->port.icount.frame++;
337 			if (ch & UART011_DR_OE)
338 				uap->port.icount.overrun++;
339 
340 			ch &= uap->port.read_status_mask;
341 
342 			if (ch & UART011_DR_BE)
343 				flag = TTY_BREAK;
344 			else if (ch & UART011_DR_PE)
345 				flag = TTY_PARITY;
346 			else if (ch & UART011_DR_FE)
347 				flag = TTY_FRAME;
348 		}
349 
350 		spin_unlock(&uap->port.lock);
351 		sysrq = uart_handle_sysrq_char(&uap->port, ch & 255);
352 		spin_lock(&uap->port.lock);
353 
354 		if (!sysrq)
355 			uart_insert_char(&uap->port, ch, UART011_DR_OE, ch, flag);
356 	}
357 
358 	return fifotaken;
359 }
360 
361 
362 /*
363  * All the DMA operation mode stuff goes inside this ifdef.
364  * This assumes that you have a generic DMA device interface,
365  * no custom DMA interfaces are supported.
366  */
367 #ifdef CONFIG_DMA_ENGINE
368 
369 #define PL011_DMA_BUFFER_SIZE PAGE_SIZE
370 
371 static int pl011_dmabuf_init(struct dma_chan *chan, struct pl011_dmabuf *db,
372 	enum dma_data_direction dir)
373 {
374 	db->buf = dma_alloc_coherent(chan->device->dev, PL011_DMA_BUFFER_SIZE,
375 				     &db->dma, GFP_KERNEL);
376 	if (!db->buf)
377 		return -ENOMEM;
378 	db->len = PL011_DMA_BUFFER_SIZE;
379 
380 	return 0;
381 }
382 
383 static void pl011_dmabuf_free(struct dma_chan *chan, struct pl011_dmabuf *db,
384 	enum dma_data_direction dir)
385 {
386 	if (db->buf) {
387 		dma_free_coherent(chan->device->dev,
388 				  PL011_DMA_BUFFER_SIZE, db->buf, db->dma);
389 	}
390 }
391 
392 static void pl011_dma_probe(struct uart_amba_port *uap)
393 {
394 	/* DMA is the sole user of the platform data right now */
395 	struct amba_pl011_data *plat = dev_get_platdata(uap->port.dev);
396 	struct device *dev = uap->port.dev;
397 	struct dma_slave_config tx_conf = {
398 		.dst_addr = uap->port.mapbase +
399 				 pl011_reg_to_offset(uap, REG_DR),
400 		.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
401 		.direction = DMA_MEM_TO_DEV,
402 		.dst_maxburst = uap->fifosize >> 1,
403 		.device_fc = false,
404 	};
405 	struct dma_chan *chan;
406 	dma_cap_mask_t mask;
407 
408 	uap->dma_probed = true;
409 	chan = dma_request_chan(dev, "tx");
410 	if (IS_ERR(chan)) {
411 		if (PTR_ERR(chan) == -EPROBE_DEFER) {
412 			uap->dma_probed = false;
413 			return;
414 		}
415 
416 		/* We need platform data */
417 		if (!plat || !plat->dma_filter) {
418 			dev_info(uap->port.dev, "no DMA platform data\n");
419 			return;
420 		}
421 
422 		/* Try to acquire a generic DMA engine slave TX channel */
423 		dma_cap_zero(mask);
424 		dma_cap_set(DMA_SLAVE, mask);
425 
426 		chan = dma_request_channel(mask, plat->dma_filter,
427 						plat->dma_tx_param);
428 		if (!chan) {
429 			dev_err(uap->port.dev, "no TX DMA channel!\n");
430 			return;
431 		}
432 	}
433 
434 	dmaengine_slave_config(chan, &tx_conf);
435 	uap->dmatx.chan = chan;
436 
437 	dev_info(uap->port.dev, "DMA channel TX %s\n",
438 		 dma_chan_name(uap->dmatx.chan));
439 
440 	/* Optionally make use of an RX channel as well */
441 	chan = dma_request_slave_channel(dev, "rx");
442 
443 	if (!chan && plat && plat->dma_rx_param) {
444 		chan = dma_request_channel(mask, plat->dma_filter, plat->dma_rx_param);
445 
446 		if (!chan) {
447 			dev_err(uap->port.dev, "no RX DMA channel!\n");
448 			return;
449 		}
450 	}
451 
452 	if (chan) {
453 		struct dma_slave_config rx_conf = {
454 			.src_addr = uap->port.mapbase +
455 				pl011_reg_to_offset(uap, REG_DR),
456 			.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
457 			.direction = DMA_DEV_TO_MEM,
458 			.src_maxburst = uap->fifosize >> 2,
459 			.device_fc = false,
460 		};
461 		struct dma_slave_caps caps;
462 
463 		/*
464 		 * Some DMA controllers provide information on their capabilities.
465 		 * If the controller does, check for suitable residue processing
466 		 * otherwise assime all is well.
467 		 */
468 		if (0 == dma_get_slave_caps(chan, &caps)) {
469 			if (caps.residue_granularity ==
470 					DMA_RESIDUE_GRANULARITY_DESCRIPTOR) {
471 				dma_release_channel(chan);
472 				dev_info(uap->port.dev,
473 					"RX DMA disabled - no residue processing\n");
474 				return;
475 			}
476 		}
477 		dmaengine_slave_config(chan, &rx_conf);
478 		uap->dmarx.chan = chan;
479 
480 		uap->dmarx.auto_poll_rate = false;
481 		if (plat && plat->dma_rx_poll_enable) {
482 			/* Set poll rate if specified. */
483 			if (plat->dma_rx_poll_rate) {
484 				uap->dmarx.auto_poll_rate = false;
485 				uap->dmarx.poll_rate = plat->dma_rx_poll_rate;
486 			} else {
487 				/*
488 				 * 100 ms defaults to poll rate if not
489 				 * specified. This will be adjusted with
490 				 * the baud rate at set_termios.
491 				 */
492 				uap->dmarx.auto_poll_rate = true;
493 				uap->dmarx.poll_rate =  100;
494 			}
495 			/* 3 secs defaults poll_timeout if not specified. */
496 			if (plat->dma_rx_poll_timeout)
497 				uap->dmarx.poll_timeout =
498 					plat->dma_rx_poll_timeout;
499 			else
500 				uap->dmarx.poll_timeout = 3000;
501 		} else if (!plat && dev->of_node) {
502 			uap->dmarx.auto_poll_rate = of_property_read_bool(
503 						dev->of_node, "auto-poll");
504 			if (uap->dmarx.auto_poll_rate) {
505 				u32 x;
506 
507 				if (0 == of_property_read_u32(dev->of_node,
508 						"poll-rate-ms", &x))
509 					uap->dmarx.poll_rate = x;
510 				else
511 					uap->dmarx.poll_rate = 100;
512 				if (0 == of_property_read_u32(dev->of_node,
513 						"poll-timeout-ms", &x))
514 					uap->dmarx.poll_timeout = x;
515 				else
516 					uap->dmarx.poll_timeout = 3000;
517 			}
518 		}
519 		dev_info(uap->port.dev, "DMA channel RX %s\n",
520 			 dma_chan_name(uap->dmarx.chan));
521 	}
522 }
523 
524 static void pl011_dma_remove(struct uart_amba_port *uap)
525 {
526 	if (uap->dmatx.chan)
527 		dma_release_channel(uap->dmatx.chan);
528 	if (uap->dmarx.chan)
529 		dma_release_channel(uap->dmarx.chan);
530 }
531 
532 /* Forward declare these for the refill routine */
533 static int pl011_dma_tx_refill(struct uart_amba_port *uap);
534 static void pl011_start_tx_pio(struct uart_amba_port *uap);
535 
536 /*
537  * The current DMA TX buffer has been sent.
538  * Try to queue up another DMA buffer.
539  */
540 static void pl011_dma_tx_callback(void *data)
541 {
542 	struct uart_amba_port *uap = data;
543 	struct pl011_dmatx_data *dmatx = &uap->dmatx;
544 	unsigned long flags;
545 	u16 dmacr;
546 
547 	spin_lock_irqsave(&uap->port.lock, flags);
548 	if (uap->dmatx.queued)
549 		dma_unmap_single(dmatx->chan->device->dev, dmatx->dma,
550 				dmatx->len, DMA_TO_DEVICE);
551 
552 	dmacr = uap->dmacr;
553 	uap->dmacr = dmacr & ~UART011_TXDMAE;
554 	pl011_write(uap->dmacr, uap, REG_DMACR);
555 
556 	/*
557 	 * If TX DMA was disabled, it means that we've stopped the DMA for
558 	 * some reason (eg, XOFF received, or we want to send an X-char.)
559 	 *
560 	 * Note: we need to be careful here of a potential race between DMA
561 	 * and the rest of the driver - if the driver disables TX DMA while
562 	 * a TX buffer completing, we must update the tx queued status to
563 	 * get further refills (hence we check dmacr).
564 	 */
565 	if (!(dmacr & UART011_TXDMAE) || uart_tx_stopped(&uap->port) ||
566 	    uart_circ_empty(&uap->port.state->xmit)) {
567 		uap->dmatx.queued = false;
568 		spin_unlock_irqrestore(&uap->port.lock, flags);
569 		return;
570 	}
571 
572 	if (pl011_dma_tx_refill(uap) <= 0)
573 		/*
574 		 * We didn't queue a DMA buffer for some reason, but we
575 		 * have data pending to be sent.  Re-enable the TX IRQ.
576 		 */
577 		pl011_start_tx_pio(uap);
578 
579 	spin_unlock_irqrestore(&uap->port.lock, flags);
580 }
581 
582 /*
583  * Try to refill the TX DMA buffer.
584  * Locking: called with port lock held and IRQs disabled.
585  * Returns:
586  *   1 if we queued up a TX DMA buffer.
587  *   0 if we didn't want to handle this by DMA
588  *  <0 on error
589  */
590 static int pl011_dma_tx_refill(struct uart_amba_port *uap)
591 {
592 	struct pl011_dmatx_data *dmatx = &uap->dmatx;
593 	struct dma_chan *chan = dmatx->chan;
594 	struct dma_device *dma_dev = chan->device;
595 	struct dma_async_tx_descriptor *desc;
596 	struct circ_buf *xmit = &uap->port.state->xmit;
597 	unsigned int count;
598 
599 	/*
600 	 * Try to avoid the overhead involved in using DMA if the
601 	 * transaction fits in the first half of the FIFO, by using
602 	 * the standard interrupt handling.  This ensures that we
603 	 * issue a uart_write_wakeup() at the appropriate time.
604 	 */
605 	count = uart_circ_chars_pending(xmit);
606 	if (count < (uap->fifosize >> 1)) {
607 		uap->dmatx.queued = false;
608 		return 0;
609 	}
610 
611 	/*
612 	 * Bodge: don't send the last character by DMA, as this
613 	 * will prevent XON from notifying us to restart DMA.
614 	 */
615 	count -= 1;
616 
617 	/* Else proceed to copy the TX chars to the DMA buffer and fire DMA */
618 	if (count > PL011_DMA_BUFFER_SIZE)
619 		count = PL011_DMA_BUFFER_SIZE;
620 
621 	if (xmit->tail < xmit->head)
622 		memcpy(&dmatx->buf[0], &xmit->buf[xmit->tail], count);
623 	else {
624 		size_t first = UART_XMIT_SIZE - xmit->tail;
625 		size_t second;
626 
627 		if (first > count)
628 			first = count;
629 		second = count - first;
630 
631 		memcpy(&dmatx->buf[0], &xmit->buf[xmit->tail], first);
632 		if (second)
633 			memcpy(&dmatx->buf[first], &xmit->buf[0], second);
634 	}
635 
636 	dmatx->len = count;
637 	dmatx->dma = dma_map_single(dma_dev->dev, dmatx->buf, count,
638 				    DMA_TO_DEVICE);
639 	if (dmatx->dma == DMA_MAPPING_ERROR) {
640 		uap->dmatx.queued = false;
641 		dev_dbg(uap->port.dev, "unable to map TX DMA\n");
642 		return -EBUSY;
643 	}
644 
645 	desc = dmaengine_prep_slave_single(chan, dmatx->dma, dmatx->len, DMA_MEM_TO_DEV,
646 					     DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
647 	if (!desc) {
648 		dma_unmap_single(dma_dev->dev, dmatx->dma, dmatx->len, DMA_TO_DEVICE);
649 		uap->dmatx.queued = false;
650 		/*
651 		 * If DMA cannot be used right now, we complete this
652 		 * transaction via IRQ and let the TTY layer retry.
653 		 */
654 		dev_dbg(uap->port.dev, "TX DMA busy\n");
655 		return -EBUSY;
656 	}
657 
658 	/* Some data to go along to the callback */
659 	desc->callback = pl011_dma_tx_callback;
660 	desc->callback_param = uap;
661 
662 	/* All errors should happen at prepare time */
663 	dmaengine_submit(desc);
664 
665 	/* Fire the DMA transaction */
666 	dma_dev->device_issue_pending(chan);
667 
668 	uap->dmacr |= UART011_TXDMAE;
669 	pl011_write(uap->dmacr, uap, REG_DMACR);
670 	uap->dmatx.queued = true;
671 
672 	/*
673 	 * Now we know that DMA will fire, so advance the ring buffer
674 	 * with the stuff we just dispatched.
675 	 */
676 	uart_xmit_advance(&uap->port, count);
677 
678 	if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
679 		uart_write_wakeup(&uap->port);
680 
681 	return 1;
682 }
683 
684 /*
685  * We received a transmit interrupt without a pending X-char but with
686  * pending characters.
687  * Locking: called with port lock held and IRQs disabled.
688  * Returns:
689  *   false if we want to use PIO to transmit
690  *   true if we queued a DMA buffer
691  */
692 static bool pl011_dma_tx_irq(struct uart_amba_port *uap)
693 {
694 	if (!uap->using_tx_dma)
695 		return false;
696 
697 	/*
698 	 * If we already have a TX buffer queued, but received a
699 	 * TX interrupt, it will be because we've just sent an X-char.
700 	 * Ensure the TX DMA is enabled and the TX IRQ is disabled.
701 	 */
702 	if (uap->dmatx.queued) {
703 		uap->dmacr |= UART011_TXDMAE;
704 		pl011_write(uap->dmacr, uap, REG_DMACR);
705 		uap->im &= ~UART011_TXIM;
706 		pl011_write(uap->im, uap, REG_IMSC);
707 		return true;
708 	}
709 
710 	/*
711 	 * We don't have a TX buffer queued, so try to queue one.
712 	 * If we successfully queued a buffer, mask the TX IRQ.
713 	 */
714 	if (pl011_dma_tx_refill(uap) > 0) {
715 		uap->im &= ~UART011_TXIM;
716 		pl011_write(uap->im, uap, REG_IMSC);
717 		return true;
718 	}
719 	return false;
720 }
721 
722 /*
723  * Stop the DMA transmit (eg, due to received XOFF).
724  * Locking: called with port lock held and IRQs disabled.
725  */
726 static inline void pl011_dma_tx_stop(struct uart_amba_port *uap)
727 {
728 	if (uap->dmatx.queued) {
729 		uap->dmacr &= ~UART011_TXDMAE;
730 		pl011_write(uap->dmacr, uap, REG_DMACR);
731 	}
732 }
733 
734 /*
735  * Try to start a DMA transmit, or in the case of an XON/OFF
736  * character queued for send, try to get that character out ASAP.
737  * Locking: called with port lock held and IRQs disabled.
738  * Returns:
739  *   false if we want the TX IRQ to be enabled
740  *   true if we have a buffer queued
741  */
742 static inline bool pl011_dma_tx_start(struct uart_amba_port *uap)
743 {
744 	u16 dmacr;
745 
746 	if (!uap->using_tx_dma)
747 		return false;
748 
749 	if (!uap->port.x_char) {
750 		/* no X-char, try to push chars out in DMA mode */
751 		bool ret = true;
752 
753 		if (!uap->dmatx.queued) {
754 			if (pl011_dma_tx_refill(uap) > 0) {
755 				uap->im &= ~UART011_TXIM;
756 				pl011_write(uap->im, uap, REG_IMSC);
757 			} else
758 				ret = false;
759 		} else if (!(uap->dmacr & UART011_TXDMAE)) {
760 			uap->dmacr |= UART011_TXDMAE;
761 			pl011_write(uap->dmacr, uap, REG_DMACR);
762 		}
763 		return ret;
764 	}
765 
766 	/*
767 	 * We have an X-char to send.  Disable DMA to prevent it loading
768 	 * the TX fifo, and then see if we can stuff it into the FIFO.
769 	 */
770 	dmacr = uap->dmacr;
771 	uap->dmacr &= ~UART011_TXDMAE;
772 	pl011_write(uap->dmacr, uap, REG_DMACR);
773 
774 	if (pl011_read(uap, REG_FR) & UART01x_FR_TXFF) {
775 		/*
776 		 * No space in the FIFO, so enable the transmit interrupt
777 		 * so we know when there is space.  Note that once we've
778 		 * loaded the character, we should just re-enable DMA.
779 		 */
780 		return false;
781 	}
782 
783 	pl011_write(uap->port.x_char, uap, REG_DR);
784 	uap->port.icount.tx++;
785 	uap->port.x_char = 0;
786 
787 	/* Success - restore the DMA state */
788 	uap->dmacr = dmacr;
789 	pl011_write(dmacr, uap, REG_DMACR);
790 
791 	return true;
792 }
793 
794 /*
795  * Flush the transmit buffer.
796  * Locking: called with port lock held and IRQs disabled.
797  */
798 static void pl011_dma_flush_buffer(struct uart_port *port)
799 __releases(&uap->port.lock)
800 __acquires(&uap->port.lock)
801 {
802 	struct uart_amba_port *uap =
803 	    container_of(port, struct uart_amba_port, port);
804 
805 	if (!uap->using_tx_dma)
806 		return;
807 
808 	dmaengine_terminate_async(uap->dmatx.chan);
809 
810 	if (uap->dmatx.queued) {
811 		dma_unmap_single(uap->dmatx.chan->device->dev, uap->dmatx.dma,
812 				 uap->dmatx.len, DMA_TO_DEVICE);
813 		uap->dmatx.queued = false;
814 		uap->dmacr &= ~UART011_TXDMAE;
815 		pl011_write(uap->dmacr, uap, REG_DMACR);
816 	}
817 }
818 
819 static void pl011_dma_rx_callback(void *data);
820 
821 static int pl011_dma_rx_trigger_dma(struct uart_amba_port *uap)
822 {
823 	struct dma_chan *rxchan = uap->dmarx.chan;
824 	struct pl011_dmarx_data *dmarx = &uap->dmarx;
825 	struct dma_async_tx_descriptor *desc;
826 	struct pl011_dmabuf *dbuf;
827 
828 	if (!rxchan)
829 		return -EIO;
830 
831 	/* Start the RX DMA job */
832 	dbuf = uap->dmarx.use_buf_b ?
833 		&uap->dmarx.dbuf_b : &uap->dmarx.dbuf_a;
834 	desc = dmaengine_prep_slave_single(rxchan, dbuf->dma, dbuf->len,
835 					DMA_DEV_TO_MEM,
836 					DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
837 	/*
838 	 * If the DMA engine is busy and cannot prepare a
839 	 * channel, no big deal, the driver will fall back
840 	 * to interrupt mode as a result of this error code.
841 	 */
842 	if (!desc) {
843 		uap->dmarx.running = false;
844 		dmaengine_terminate_all(rxchan);
845 		return -EBUSY;
846 	}
847 
848 	/* Some data to go along to the callback */
849 	desc->callback = pl011_dma_rx_callback;
850 	desc->callback_param = uap;
851 	dmarx->cookie = dmaengine_submit(desc);
852 	dma_async_issue_pending(rxchan);
853 
854 	uap->dmacr |= UART011_RXDMAE;
855 	pl011_write(uap->dmacr, uap, REG_DMACR);
856 	uap->dmarx.running = true;
857 
858 	uap->im &= ~UART011_RXIM;
859 	pl011_write(uap->im, uap, REG_IMSC);
860 
861 	return 0;
862 }
863 
864 /*
865  * This is called when either the DMA job is complete, or
866  * the FIFO timeout interrupt occurred. This must be called
867  * with the port spinlock uap->port.lock held.
868  */
869 static void pl011_dma_rx_chars(struct uart_amba_port *uap,
870 			       u32 pending, bool use_buf_b,
871 			       bool readfifo)
872 {
873 	struct tty_port *port = &uap->port.state->port;
874 	struct pl011_dmabuf *dbuf = use_buf_b ?
875 		&uap->dmarx.dbuf_b : &uap->dmarx.dbuf_a;
876 	int dma_count = 0;
877 	u32 fifotaken = 0; /* only used for vdbg() */
878 
879 	struct pl011_dmarx_data *dmarx = &uap->dmarx;
880 	int dmataken = 0;
881 
882 	if (uap->dmarx.poll_rate) {
883 		/* The data can be taken by polling */
884 		dmataken = dbuf->len - dmarx->last_residue;
885 		/* Recalculate the pending size */
886 		if (pending >= dmataken)
887 			pending -= dmataken;
888 	}
889 
890 	/* Pick the remain data from the DMA */
891 	if (pending) {
892 
893 		/*
894 		 * First take all chars in the DMA pipe, then look in the FIFO.
895 		 * Note that tty_insert_flip_buf() tries to take as many chars
896 		 * as it can.
897 		 */
898 		dma_count = tty_insert_flip_string(port, dbuf->buf + dmataken,
899 				pending);
900 
901 		uap->port.icount.rx += dma_count;
902 		if (dma_count < pending)
903 			dev_warn(uap->port.dev,
904 				 "couldn't insert all characters (TTY is full?)\n");
905 	}
906 
907 	/* Reset the last_residue for Rx DMA poll */
908 	if (uap->dmarx.poll_rate)
909 		dmarx->last_residue = dbuf->len;
910 
911 	/*
912 	 * Only continue with trying to read the FIFO if all DMA chars have
913 	 * been taken first.
914 	 */
915 	if (dma_count == pending && readfifo) {
916 		/* Clear any error flags */
917 		pl011_write(UART011_OEIS | UART011_BEIS | UART011_PEIS |
918 			    UART011_FEIS, uap, REG_ICR);
919 
920 		/*
921 		 * If we read all the DMA'd characters, and we had an
922 		 * incomplete buffer, that could be due to an rx error, or
923 		 * maybe we just timed out. Read any pending chars and check
924 		 * the error status.
925 		 *
926 		 * Error conditions will only occur in the FIFO, these will
927 		 * trigger an immediate interrupt and stop the DMA job, so we
928 		 * will always find the error in the FIFO, never in the DMA
929 		 * buffer.
930 		 */
931 		fifotaken = pl011_fifo_to_tty(uap);
932 	}
933 
934 	dev_vdbg(uap->port.dev,
935 		 "Took %d chars from DMA buffer and %d chars from the FIFO\n",
936 		 dma_count, fifotaken);
937 	tty_flip_buffer_push(port);
938 }
939 
940 static void pl011_dma_rx_irq(struct uart_amba_port *uap)
941 {
942 	struct pl011_dmarx_data *dmarx = &uap->dmarx;
943 	struct dma_chan *rxchan = dmarx->chan;
944 	struct pl011_dmabuf *dbuf = dmarx->use_buf_b ?
945 		&dmarx->dbuf_b : &dmarx->dbuf_a;
946 	size_t pending;
947 	struct dma_tx_state state;
948 	enum dma_status dmastat;
949 
950 	/*
951 	 * Pause the transfer so we can trust the current counter,
952 	 * do this before we pause the PL011 block, else we may
953 	 * overflow the FIFO.
954 	 */
955 	if (dmaengine_pause(rxchan))
956 		dev_err(uap->port.dev, "unable to pause DMA transfer\n");
957 	dmastat = rxchan->device->device_tx_status(rxchan,
958 						   dmarx->cookie, &state);
959 	if (dmastat != DMA_PAUSED)
960 		dev_err(uap->port.dev, "unable to pause DMA transfer\n");
961 
962 	/* Disable RX DMA - incoming data will wait in the FIFO */
963 	uap->dmacr &= ~UART011_RXDMAE;
964 	pl011_write(uap->dmacr, uap, REG_DMACR);
965 	uap->dmarx.running = false;
966 
967 	pending = dbuf->len - state.residue;
968 	BUG_ON(pending > PL011_DMA_BUFFER_SIZE);
969 	/* Then we terminate the transfer - we now know our residue */
970 	dmaengine_terminate_all(rxchan);
971 
972 	/*
973 	 * This will take the chars we have so far and insert
974 	 * into the framework.
975 	 */
976 	pl011_dma_rx_chars(uap, pending, dmarx->use_buf_b, true);
977 
978 	/* Switch buffer & re-trigger DMA job */
979 	dmarx->use_buf_b = !dmarx->use_buf_b;
980 	if (pl011_dma_rx_trigger_dma(uap)) {
981 		dev_dbg(uap->port.dev, "could not retrigger RX DMA job "
982 			"fall back to interrupt mode\n");
983 		uap->im |= UART011_RXIM;
984 		pl011_write(uap->im, uap, REG_IMSC);
985 	}
986 }
987 
988 static void pl011_dma_rx_callback(void *data)
989 {
990 	struct uart_amba_port *uap = data;
991 	struct pl011_dmarx_data *dmarx = &uap->dmarx;
992 	struct dma_chan *rxchan = dmarx->chan;
993 	bool lastbuf = dmarx->use_buf_b;
994 	struct pl011_dmabuf *dbuf = dmarx->use_buf_b ?
995 		&dmarx->dbuf_b : &dmarx->dbuf_a;
996 	size_t pending;
997 	struct dma_tx_state state;
998 	int ret;
999 
1000 	/*
1001 	 * This completion interrupt occurs typically when the
1002 	 * RX buffer is totally stuffed but no timeout has yet
1003 	 * occurred. When that happens, we just want the RX
1004 	 * routine to flush out the secondary DMA buffer while
1005 	 * we immediately trigger the next DMA job.
1006 	 */
1007 	spin_lock_irq(&uap->port.lock);
1008 	/*
1009 	 * Rx data can be taken by the UART interrupts during
1010 	 * the DMA irq handler. So we check the residue here.
1011 	 */
1012 	rxchan->device->device_tx_status(rxchan, dmarx->cookie, &state);
1013 	pending = dbuf->len - state.residue;
1014 	BUG_ON(pending > PL011_DMA_BUFFER_SIZE);
1015 	/* Then we terminate the transfer - we now know our residue */
1016 	dmaengine_terminate_all(rxchan);
1017 
1018 	uap->dmarx.running = false;
1019 	dmarx->use_buf_b = !lastbuf;
1020 	ret = pl011_dma_rx_trigger_dma(uap);
1021 
1022 	pl011_dma_rx_chars(uap, pending, lastbuf, false);
1023 	spin_unlock_irq(&uap->port.lock);
1024 	/*
1025 	 * Do this check after we picked the DMA chars so we don't
1026 	 * get some IRQ immediately from RX.
1027 	 */
1028 	if (ret) {
1029 		dev_dbg(uap->port.dev, "could not retrigger RX DMA job "
1030 			"fall back to interrupt mode\n");
1031 		uap->im |= UART011_RXIM;
1032 		pl011_write(uap->im, uap, REG_IMSC);
1033 	}
1034 }
1035 
1036 /*
1037  * Stop accepting received characters, when we're shutting down or
1038  * suspending this port.
1039  * Locking: called with port lock held and IRQs disabled.
1040  */
1041 static inline void pl011_dma_rx_stop(struct uart_amba_port *uap)
1042 {
1043 	if (!uap->using_rx_dma)
1044 		return;
1045 
1046 	/* FIXME.  Just disable the DMA enable */
1047 	uap->dmacr &= ~UART011_RXDMAE;
1048 	pl011_write(uap->dmacr, uap, REG_DMACR);
1049 }
1050 
1051 /*
1052  * Timer handler for Rx DMA polling.
1053  * Every polling, It checks the residue in the dma buffer and transfer
1054  * data to the tty. Also, last_residue is updated for the next polling.
1055  */
1056 static void pl011_dma_rx_poll(struct timer_list *t)
1057 {
1058 	struct uart_amba_port *uap = from_timer(uap, t, dmarx.timer);
1059 	struct tty_port *port = &uap->port.state->port;
1060 	struct pl011_dmarx_data *dmarx = &uap->dmarx;
1061 	struct dma_chan *rxchan = uap->dmarx.chan;
1062 	unsigned long flags;
1063 	unsigned int dmataken = 0;
1064 	unsigned int size = 0;
1065 	struct pl011_dmabuf *dbuf;
1066 	int dma_count;
1067 	struct dma_tx_state state;
1068 
1069 	dbuf = dmarx->use_buf_b ? &uap->dmarx.dbuf_b : &uap->dmarx.dbuf_a;
1070 	rxchan->device->device_tx_status(rxchan, dmarx->cookie, &state);
1071 	if (likely(state.residue < dmarx->last_residue)) {
1072 		dmataken = dbuf->len - dmarx->last_residue;
1073 		size = dmarx->last_residue - state.residue;
1074 		dma_count = tty_insert_flip_string(port, dbuf->buf + dmataken,
1075 				size);
1076 		if (dma_count == size)
1077 			dmarx->last_residue =  state.residue;
1078 		dmarx->last_jiffies = jiffies;
1079 	}
1080 	tty_flip_buffer_push(port);
1081 
1082 	/*
1083 	 * If no data is received in poll_timeout, the driver will fall back
1084 	 * to interrupt mode. We will retrigger DMA at the first interrupt.
1085 	 */
1086 	if (jiffies_to_msecs(jiffies - dmarx->last_jiffies)
1087 			> uap->dmarx.poll_timeout) {
1088 
1089 		spin_lock_irqsave(&uap->port.lock, flags);
1090 		pl011_dma_rx_stop(uap);
1091 		uap->im |= UART011_RXIM;
1092 		pl011_write(uap->im, uap, REG_IMSC);
1093 		spin_unlock_irqrestore(&uap->port.lock, flags);
1094 
1095 		uap->dmarx.running = false;
1096 		dmaengine_terminate_all(rxchan);
1097 		del_timer(&uap->dmarx.timer);
1098 	} else {
1099 		mod_timer(&uap->dmarx.timer,
1100 			jiffies + msecs_to_jiffies(uap->dmarx.poll_rate));
1101 	}
1102 }
1103 
1104 static void pl011_dma_startup(struct uart_amba_port *uap)
1105 {
1106 	int ret;
1107 
1108 	if (!uap->dma_probed)
1109 		pl011_dma_probe(uap);
1110 
1111 	if (!uap->dmatx.chan)
1112 		return;
1113 
1114 	uap->dmatx.buf = kmalloc(PL011_DMA_BUFFER_SIZE, GFP_KERNEL | __GFP_DMA);
1115 	if (!uap->dmatx.buf) {
1116 		dev_err(uap->port.dev, "no memory for DMA TX buffer\n");
1117 		uap->port.fifosize = uap->fifosize;
1118 		return;
1119 	}
1120 
1121 	uap->dmatx.len = PL011_DMA_BUFFER_SIZE;
1122 
1123 	/* The DMA buffer is now the FIFO the TTY subsystem can use */
1124 	uap->port.fifosize = PL011_DMA_BUFFER_SIZE;
1125 	uap->using_tx_dma = true;
1126 
1127 	if (!uap->dmarx.chan)
1128 		goto skip_rx;
1129 
1130 	/* Allocate and map DMA RX buffers */
1131 	ret = pl011_dmabuf_init(uap->dmarx.chan, &uap->dmarx.dbuf_a,
1132 			       DMA_FROM_DEVICE);
1133 	if (ret) {
1134 		dev_err(uap->port.dev, "failed to init DMA %s: %d\n",
1135 			"RX buffer A", ret);
1136 		goto skip_rx;
1137 	}
1138 
1139 	ret = pl011_dmabuf_init(uap->dmarx.chan, &uap->dmarx.dbuf_b,
1140 			       DMA_FROM_DEVICE);
1141 	if (ret) {
1142 		dev_err(uap->port.dev, "failed to init DMA %s: %d\n",
1143 			"RX buffer B", ret);
1144 		pl011_dmabuf_free(uap->dmarx.chan, &uap->dmarx.dbuf_a,
1145 				 DMA_FROM_DEVICE);
1146 		goto skip_rx;
1147 	}
1148 
1149 	uap->using_rx_dma = true;
1150 
1151 skip_rx:
1152 	/* Turn on DMA error (RX/TX will be enabled on demand) */
1153 	uap->dmacr |= UART011_DMAONERR;
1154 	pl011_write(uap->dmacr, uap, REG_DMACR);
1155 
1156 	/*
1157 	 * ST Micro variants has some specific dma burst threshold
1158 	 * compensation. Set this to 16 bytes, so burst will only
1159 	 * be issued above/below 16 bytes.
1160 	 */
1161 	if (uap->vendor->dma_threshold)
1162 		pl011_write(ST_UART011_DMAWM_RX_16 | ST_UART011_DMAWM_TX_16,
1163 			    uap, REG_ST_DMAWM);
1164 
1165 	if (uap->using_rx_dma) {
1166 		if (pl011_dma_rx_trigger_dma(uap))
1167 			dev_dbg(uap->port.dev, "could not trigger initial "
1168 				"RX DMA job, fall back to interrupt mode\n");
1169 		if (uap->dmarx.poll_rate) {
1170 			timer_setup(&uap->dmarx.timer, pl011_dma_rx_poll, 0);
1171 			mod_timer(&uap->dmarx.timer,
1172 				jiffies +
1173 				msecs_to_jiffies(uap->dmarx.poll_rate));
1174 			uap->dmarx.last_residue = PL011_DMA_BUFFER_SIZE;
1175 			uap->dmarx.last_jiffies = jiffies;
1176 		}
1177 	}
1178 }
1179 
1180 static void pl011_dma_shutdown(struct uart_amba_port *uap)
1181 {
1182 	if (!(uap->using_tx_dma || uap->using_rx_dma))
1183 		return;
1184 
1185 	/* Disable RX and TX DMA */
1186 	while (pl011_read(uap, REG_FR) & uap->vendor->fr_busy)
1187 		cpu_relax();
1188 
1189 	spin_lock_irq(&uap->port.lock);
1190 	uap->dmacr &= ~(UART011_DMAONERR | UART011_RXDMAE | UART011_TXDMAE);
1191 	pl011_write(uap->dmacr, uap, REG_DMACR);
1192 	spin_unlock_irq(&uap->port.lock);
1193 
1194 	if (uap->using_tx_dma) {
1195 		/* In theory, this should already be done by pl011_dma_flush_buffer */
1196 		dmaengine_terminate_all(uap->dmatx.chan);
1197 		if (uap->dmatx.queued) {
1198 			dma_unmap_single(uap->dmatx.chan->device->dev,
1199 					 uap->dmatx.dma, uap->dmatx.len,
1200 					 DMA_TO_DEVICE);
1201 			uap->dmatx.queued = false;
1202 		}
1203 
1204 		kfree(uap->dmatx.buf);
1205 		uap->using_tx_dma = false;
1206 	}
1207 
1208 	if (uap->using_rx_dma) {
1209 		dmaengine_terminate_all(uap->dmarx.chan);
1210 		/* Clean up the RX DMA */
1211 		pl011_dmabuf_free(uap->dmarx.chan, &uap->dmarx.dbuf_a, DMA_FROM_DEVICE);
1212 		pl011_dmabuf_free(uap->dmarx.chan, &uap->dmarx.dbuf_b, DMA_FROM_DEVICE);
1213 		if (uap->dmarx.poll_rate)
1214 			del_timer_sync(&uap->dmarx.timer);
1215 		uap->using_rx_dma = false;
1216 	}
1217 }
1218 
1219 static inline bool pl011_dma_rx_available(struct uart_amba_port *uap)
1220 {
1221 	return uap->using_rx_dma;
1222 }
1223 
1224 static inline bool pl011_dma_rx_running(struct uart_amba_port *uap)
1225 {
1226 	return uap->using_rx_dma && uap->dmarx.running;
1227 }
1228 
1229 #else
1230 /* Blank functions if the DMA engine is not available */
1231 static inline void pl011_dma_remove(struct uart_amba_port *uap)
1232 {
1233 }
1234 
1235 static inline void pl011_dma_startup(struct uart_amba_port *uap)
1236 {
1237 }
1238 
1239 static inline void pl011_dma_shutdown(struct uart_amba_port *uap)
1240 {
1241 }
1242 
1243 static inline bool pl011_dma_tx_irq(struct uart_amba_port *uap)
1244 {
1245 	return false;
1246 }
1247 
1248 static inline void pl011_dma_tx_stop(struct uart_amba_port *uap)
1249 {
1250 }
1251 
1252 static inline bool pl011_dma_tx_start(struct uart_amba_port *uap)
1253 {
1254 	return false;
1255 }
1256 
1257 static inline void pl011_dma_rx_irq(struct uart_amba_port *uap)
1258 {
1259 }
1260 
1261 static inline void pl011_dma_rx_stop(struct uart_amba_port *uap)
1262 {
1263 }
1264 
1265 static inline int pl011_dma_rx_trigger_dma(struct uart_amba_port *uap)
1266 {
1267 	return -EIO;
1268 }
1269 
1270 static inline bool pl011_dma_rx_available(struct uart_amba_port *uap)
1271 {
1272 	return false;
1273 }
1274 
1275 static inline bool pl011_dma_rx_running(struct uart_amba_port *uap)
1276 {
1277 	return false;
1278 }
1279 
1280 #define pl011_dma_flush_buffer	NULL
1281 #endif
1282 
1283 static void pl011_rs485_tx_stop(struct uart_amba_port *uap)
1284 {
1285 	/*
1286 	 * To be on the safe side only time out after twice as many iterations
1287 	 * as fifo size.
1288 	 */
1289 	const int MAX_TX_DRAIN_ITERS = uap->port.fifosize * 2;
1290 	struct uart_port *port = &uap->port;
1291 	int i = 0;
1292 	u32 cr;
1293 
1294 	/* Wait until hardware tx queue is empty */
1295 	while (!pl011_tx_empty(port)) {
1296 		if (i > MAX_TX_DRAIN_ITERS) {
1297 			dev_warn(port->dev,
1298 				 "timeout while draining hardware tx queue\n");
1299 			break;
1300 		}
1301 
1302 		udelay(uap->rs485_tx_drain_interval);
1303 		i++;
1304 	}
1305 
1306 	if (port->rs485.delay_rts_after_send)
1307 		mdelay(port->rs485.delay_rts_after_send);
1308 
1309 	cr = pl011_read(uap, REG_CR);
1310 
1311 	if (port->rs485.flags & SER_RS485_RTS_AFTER_SEND)
1312 		cr &= ~UART011_CR_RTS;
1313 	else
1314 		cr |= UART011_CR_RTS;
1315 
1316 	/* Disable the transmitter and reenable the transceiver */
1317 	cr &= ~UART011_CR_TXE;
1318 	cr |= UART011_CR_RXE;
1319 	pl011_write(cr, uap, REG_CR);
1320 
1321 	uap->rs485_tx_started = false;
1322 }
1323 
1324 static void pl011_stop_tx(struct uart_port *port)
1325 {
1326 	struct uart_amba_port *uap =
1327 	    container_of(port, struct uart_amba_port, port);
1328 
1329 	uap->im &= ~UART011_TXIM;
1330 	pl011_write(uap->im, uap, REG_IMSC);
1331 	pl011_dma_tx_stop(uap);
1332 
1333 	if ((port->rs485.flags & SER_RS485_ENABLED) && uap->rs485_tx_started)
1334 		pl011_rs485_tx_stop(uap);
1335 }
1336 
1337 static bool pl011_tx_chars(struct uart_amba_port *uap, bool from_irq);
1338 
1339 /* Start TX with programmed I/O only (no DMA) */
1340 static void pl011_start_tx_pio(struct uart_amba_port *uap)
1341 {
1342 	if (pl011_tx_chars(uap, false)) {
1343 		uap->im |= UART011_TXIM;
1344 		pl011_write(uap->im, uap, REG_IMSC);
1345 	}
1346 }
1347 
1348 static void pl011_rs485_tx_start(struct uart_amba_port *uap)
1349 {
1350 	struct uart_port *port = &uap->port;
1351 	u32 cr;
1352 
1353 	/* Enable transmitter */
1354 	cr = pl011_read(uap, REG_CR);
1355 	cr |= UART011_CR_TXE;
1356 
1357 	/* Disable receiver if half-duplex */
1358 	if (!(port->rs485.flags & SER_RS485_RX_DURING_TX))
1359 		cr &= ~UART011_CR_RXE;
1360 
1361 	if (port->rs485.flags & SER_RS485_RTS_ON_SEND)
1362 		cr &= ~UART011_CR_RTS;
1363 	else
1364 		cr |= UART011_CR_RTS;
1365 
1366 	pl011_write(cr, uap, REG_CR);
1367 
1368 	if (port->rs485.delay_rts_before_send)
1369 		mdelay(port->rs485.delay_rts_before_send);
1370 
1371 	uap->rs485_tx_started = true;
1372 }
1373 
1374 static void pl011_start_tx(struct uart_port *port)
1375 {
1376 	struct uart_amba_port *uap =
1377 	    container_of(port, struct uart_amba_port, port);
1378 
1379 	if ((uap->port.rs485.flags & SER_RS485_ENABLED) &&
1380 	    !uap->rs485_tx_started)
1381 		pl011_rs485_tx_start(uap);
1382 
1383 	if (!pl011_dma_tx_start(uap))
1384 		pl011_start_tx_pio(uap);
1385 }
1386 
1387 static void pl011_stop_rx(struct uart_port *port)
1388 {
1389 	struct uart_amba_port *uap =
1390 	    container_of(port, struct uart_amba_port, port);
1391 
1392 	uap->im &= ~(UART011_RXIM|UART011_RTIM|UART011_FEIM|
1393 		     UART011_PEIM|UART011_BEIM|UART011_OEIM);
1394 	pl011_write(uap->im, uap, REG_IMSC);
1395 
1396 	pl011_dma_rx_stop(uap);
1397 }
1398 
1399 static void pl011_throttle_rx(struct uart_port *port)
1400 {
1401 	unsigned long flags;
1402 
1403 	spin_lock_irqsave(&port->lock, flags);
1404 	pl011_stop_rx(port);
1405 	spin_unlock_irqrestore(&port->lock, flags);
1406 }
1407 
1408 static void pl011_enable_ms(struct uart_port *port)
1409 {
1410 	struct uart_amba_port *uap =
1411 	    container_of(port, struct uart_amba_port, port);
1412 
1413 	uap->im |= UART011_RIMIM|UART011_CTSMIM|UART011_DCDMIM|UART011_DSRMIM;
1414 	pl011_write(uap->im, uap, REG_IMSC);
1415 }
1416 
1417 static void pl011_rx_chars(struct uart_amba_port *uap)
1418 __releases(&uap->port.lock)
1419 __acquires(&uap->port.lock)
1420 {
1421 	pl011_fifo_to_tty(uap);
1422 
1423 	spin_unlock(&uap->port.lock);
1424 	tty_flip_buffer_push(&uap->port.state->port);
1425 	/*
1426 	 * If we were temporarily out of DMA mode for a while,
1427 	 * attempt to switch back to DMA mode again.
1428 	 */
1429 	if (pl011_dma_rx_available(uap)) {
1430 		if (pl011_dma_rx_trigger_dma(uap)) {
1431 			dev_dbg(uap->port.dev, "could not trigger RX DMA job "
1432 				"fall back to interrupt mode again\n");
1433 			uap->im |= UART011_RXIM;
1434 			pl011_write(uap->im, uap, REG_IMSC);
1435 		} else {
1436 #ifdef CONFIG_DMA_ENGINE
1437 			/* Start Rx DMA poll */
1438 			if (uap->dmarx.poll_rate) {
1439 				uap->dmarx.last_jiffies = jiffies;
1440 				uap->dmarx.last_residue	= PL011_DMA_BUFFER_SIZE;
1441 				mod_timer(&uap->dmarx.timer,
1442 					jiffies +
1443 					msecs_to_jiffies(uap->dmarx.poll_rate));
1444 			}
1445 #endif
1446 		}
1447 	}
1448 	spin_lock(&uap->port.lock);
1449 }
1450 
1451 static bool pl011_tx_char(struct uart_amba_port *uap, unsigned char c,
1452 			  bool from_irq)
1453 {
1454 	if (unlikely(!from_irq) &&
1455 	    pl011_read(uap, REG_FR) & UART01x_FR_TXFF)
1456 		return false; /* unable to transmit character */
1457 
1458 	pl011_write(c, uap, REG_DR);
1459 	uap->port.icount.tx++;
1460 
1461 	return true;
1462 }
1463 
1464 /* Returns true if tx interrupts have to be (kept) enabled  */
1465 static bool pl011_tx_chars(struct uart_amba_port *uap, bool from_irq)
1466 {
1467 	struct circ_buf *xmit = &uap->port.state->xmit;
1468 	int count = uap->fifosize >> 1;
1469 
1470 	if (uap->port.x_char) {
1471 		if (!pl011_tx_char(uap, uap->port.x_char, from_irq))
1472 			return true;
1473 		uap->port.x_char = 0;
1474 		--count;
1475 	}
1476 	if (uart_circ_empty(xmit) || uart_tx_stopped(&uap->port)) {
1477 		pl011_stop_tx(&uap->port);
1478 		return false;
1479 	}
1480 
1481 	/* If we are using DMA mode, try to send some characters. */
1482 	if (pl011_dma_tx_irq(uap))
1483 		return true;
1484 
1485 	do {
1486 		if (likely(from_irq) && count-- == 0)
1487 			break;
1488 
1489 		if (!pl011_tx_char(uap, xmit->buf[xmit->tail], from_irq))
1490 			break;
1491 
1492 		xmit->tail = (xmit->tail + 1) & (UART_XMIT_SIZE - 1);
1493 	} while (!uart_circ_empty(xmit));
1494 
1495 	if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
1496 		uart_write_wakeup(&uap->port);
1497 
1498 	if (uart_circ_empty(xmit)) {
1499 		pl011_stop_tx(&uap->port);
1500 		return false;
1501 	}
1502 	return true;
1503 }
1504 
1505 static void pl011_modem_status(struct uart_amba_port *uap)
1506 {
1507 	unsigned int status, delta;
1508 
1509 	status = pl011_read(uap, REG_FR) & UART01x_FR_MODEM_ANY;
1510 
1511 	delta = status ^ uap->old_status;
1512 	uap->old_status = status;
1513 
1514 	if (!delta)
1515 		return;
1516 
1517 	if (delta & UART01x_FR_DCD)
1518 		uart_handle_dcd_change(&uap->port, status & UART01x_FR_DCD);
1519 
1520 	if (delta & uap->vendor->fr_dsr)
1521 		uap->port.icount.dsr++;
1522 
1523 	if (delta & uap->vendor->fr_cts)
1524 		uart_handle_cts_change(&uap->port,
1525 				       status & uap->vendor->fr_cts);
1526 
1527 	wake_up_interruptible(&uap->port.state->port.delta_msr_wait);
1528 }
1529 
1530 static void check_apply_cts_event_workaround(struct uart_amba_port *uap)
1531 {
1532 	if (!uap->vendor->cts_event_workaround)
1533 		return;
1534 
1535 	/* workaround to make sure that all bits are unlocked.. */
1536 	pl011_write(0x00, uap, REG_ICR);
1537 
1538 	/*
1539 	 * WA: introduce 26ns(1 uart clk) delay before W1C;
1540 	 * single apb access will incur 2 pclk(133.12Mhz) delay,
1541 	 * so add 2 dummy reads
1542 	 */
1543 	pl011_read(uap, REG_ICR);
1544 	pl011_read(uap, REG_ICR);
1545 }
1546 
1547 static irqreturn_t pl011_int(int irq, void *dev_id)
1548 {
1549 	struct uart_amba_port *uap = dev_id;
1550 	unsigned long flags;
1551 	unsigned int status, pass_counter = AMBA_ISR_PASS_LIMIT;
1552 	int handled = 0;
1553 
1554 	spin_lock_irqsave(&uap->port.lock, flags);
1555 	status = pl011_read(uap, REG_RIS) & uap->im;
1556 	if (status) {
1557 		do {
1558 			check_apply_cts_event_workaround(uap);
1559 
1560 			pl011_write(status & ~(UART011_TXIS|UART011_RTIS|
1561 					       UART011_RXIS),
1562 				    uap, REG_ICR);
1563 
1564 			if (status & (UART011_RTIS|UART011_RXIS)) {
1565 				if (pl011_dma_rx_running(uap))
1566 					pl011_dma_rx_irq(uap);
1567 				else
1568 					pl011_rx_chars(uap);
1569 			}
1570 			if (status & (UART011_DSRMIS|UART011_DCDMIS|
1571 				      UART011_CTSMIS|UART011_RIMIS))
1572 				pl011_modem_status(uap);
1573 			if (status & UART011_TXIS)
1574 				pl011_tx_chars(uap, true);
1575 
1576 			if (pass_counter-- == 0)
1577 				break;
1578 
1579 			status = pl011_read(uap, REG_RIS) & uap->im;
1580 		} while (status != 0);
1581 		handled = 1;
1582 	}
1583 
1584 	spin_unlock_irqrestore(&uap->port.lock, flags);
1585 
1586 	return IRQ_RETVAL(handled);
1587 }
1588 
1589 static unsigned int pl011_tx_empty(struct uart_port *port)
1590 {
1591 	struct uart_amba_port *uap =
1592 	    container_of(port, struct uart_amba_port, port);
1593 
1594 	/* Allow feature register bits to be inverted to work around errata */
1595 	unsigned int status = pl011_read(uap, REG_FR) ^ uap->vendor->inv_fr;
1596 
1597 	return status & (uap->vendor->fr_busy | UART01x_FR_TXFF) ?
1598 							0 : TIOCSER_TEMT;
1599 }
1600 
1601 static unsigned int pl011_get_mctrl(struct uart_port *port)
1602 {
1603 	struct uart_amba_port *uap =
1604 	    container_of(port, struct uart_amba_port, port);
1605 	unsigned int result = 0;
1606 	unsigned int status = pl011_read(uap, REG_FR);
1607 
1608 #define TIOCMBIT(uartbit, tiocmbit)	\
1609 	if (status & uartbit)		\
1610 		result |= tiocmbit
1611 
1612 	TIOCMBIT(UART01x_FR_DCD, TIOCM_CAR);
1613 	TIOCMBIT(uap->vendor->fr_dsr, TIOCM_DSR);
1614 	TIOCMBIT(uap->vendor->fr_cts, TIOCM_CTS);
1615 	TIOCMBIT(uap->vendor->fr_ri, TIOCM_RNG);
1616 #undef TIOCMBIT
1617 	return result;
1618 }
1619 
1620 static void pl011_set_mctrl(struct uart_port *port, unsigned int mctrl)
1621 {
1622 	struct uart_amba_port *uap =
1623 	    container_of(port, struct uart_amba_port, port);
1624 	unsigned int cr;
1625 
1626 	cr = pl011_read(uap, REG_CR);
1627 
1628 #define	TIOCMBIT(tiocmbit, uartbit)		\
1629 	if (mctrl & tiocmbit)		\
1630 		cr |= uartbit;		\
1631 	else				\
1632 		cr &= ~uartbit
1633 
1634 	TIOCMBIT(TIOCM_RTS, UART011_CR_RTS);
1635 	TIOCMBIT(TIOCM_DTR, UART011_CR_DTR);
1636 	TIOCMBIT(TIOCM_OUT1, UART011_CR_OUT1);
1637 	TIOCMBIT(TIOCM_OUT2, UART011_CR_OUT2);
1638 	TIOCMBIT(TIOCM_LOOP, UART011_CR_LBE);
1639 
1640 	if (port->status & UPSTAT_AUTORTS) {
1641 		/* We need to disable auto-RTS if we want to turn RTS off */
1642 		TIOCMBIT(TIOCM_RTS, UART011_CR_RTSEN);
1643 	}
1644 #undef TIOCMBIT
1645 
1646 	pl011_write(cr, uap, REG_CR);
1647 }
1648 
1649 static void pl011_break_ctl(struct uart_port *port, int break_state)
1650 {
1651 	struct uart_amba_port *uap =
1652 	    container_of(port, struct uart_amba_port, port);
1653 	unsigned long flags;
1654 	unsigned int lcr_h;
1655 
1656 	spin_lock_irqsave(&uap->port.lock, flags);
1657 	lcr_h = pl011_read(uap, REG_LCRH_TX);
1658 	if (break_state == -1)
1659 		lcr_h |= UART01x_LCRH_BRK;
1660 	else
1661 		lcr_h &= ~UART01x_LCRH_BRK;
1662 	pl011_write(lcr_h, uap, REG_LCRH_TX);
1663 	spin_unlock_irqrestore(&uap->port.lock, flags);
1664 }
1665 
1666 #ifdef CONFIG_CONSOLE_POLL
1667 
1668 static void pl011_quiesce_irqs(struct uart_port *port)
1669 {
1670 	struct uart_amba_port *uap =
1671 	    container_of(port, struct uart_amba_port, port);
1672 
1673 	pl011_write(pl011_read(uap, REG_MIS), uap, REG_ICR);
1674 	/*
1675 	 * There is no way to clear TXIM as this is "ready to transmit IRQ", so
1676 	 * we simply mask it. start_tx() will unmask it.
1677 	 *
1678 	 * Note we can race with start_tx(), and if the race happens, the
1679 	 * polling user might get another interrupt just after we clear it.
1680 	 * But it should be OK and can happen even w/o the race, e.g.
1681 	 * controller immediately got some new data and raised the IRQ.
1682 	 *
1683 	 * And whoever uses polling routines assumes that it manages the device
1684 	 * (including tx queue), so we're also fine with start_tx()'s caller
1685 	 * side.
1686 	 */
1687 	pl011_write(pl011_read(uap, REG_IMSC) & ~UART011_TXIM, uap,
1688 		    REG_IMSC);
1689 }
1690 
1691 static int pl011_get_poll_char(struct uart_port *port)
1692 {
1693 	struct uart_amba_port *uap =
1694 	    container_of(port, struct uart_amba_port, port);
1695 	unsigned int status;
1696 
1697 	/*
1698 	 * The caller might need IRQs lowered, e.g. if used with KDB NMI
1699 	 * debugger.
1700 	 */
1701 	pl011_quiesce_irqs(port);
1702 
1703 	status = pl011_read(uap, REG_FR);
1704 	if (status & UART01x_FR_RXFE)
1705 		return NO_POLL_CHAR;
1706 
1707 	return pl011_read(uap, REG_DR);
1708 }
1709 
1710 static void pl011_put_poll_char(struct uart_port *port,
1711 			 unsigned char ch)
1712 {
1713 	struct uart_amba_port *uap =
1714 	    container_of(port, struct uart_amba_port, port);
1715 
1716 	while (pl011_read(uap, REG_FR) & UART01x_FR_TXFF)
1717 		cpu_relax();
1718 
1719 	pl011_write(ch, uap, REG_DR);
1720 }
1721 
1722 #endif /* CONFIG_CONSOLE_POLL */
1723 
1724 static int pl011_hwinit(struct uart_port *port)
1725 {
1726 	struct uart_amba_port *uap =
1727 	    container_of(port, struct uart_amba_port, port);
1728 	int retval;
1729 
1730 	/* Optionaly enable pins to be muxed in and configured */
1731 	pinctrl_pm_select_default_state(port->dev);
1732 
1733 	/*
1734 	 * Try to enable the clock producer.
1735 	 */
1736 	retval = clk_prepare_enable(uap->clk);
1737 	if (retval)
1738 		return retval;
1739 
1740 	uap->port.uartclk = clk_get_rate(uap->clk);
1741 
1742 	/* Clear pending error and receive interrupts */
1743 	pl011_write(UART011_OEIS | UART011_BEIS | UART011_PEIS |
1744 		    UART011_FEIS | UART011_RTIS | UART011_RXIS,
1745 		    uap, REG_ICR);
1746 
1747 	/*
1748 	 * Save interrupts enable mask, and enable RX interrupts in case if
1749 	 * the interrupt is used for NMI entry.
1750 	 */
1751 	uap->im = pl011_read(uap, REG_IMSC);
1752 	pl011_write(UART011_RTIM | UART011_RXIM, uap, REG_IMSC);
1753 
1754 	if (dev_get_platdata(uap->port.dev)) {
1755 		struct amba_pl011_data *plat;
1756 
1757 		plat = dev_get_platdata(uap->port.dev);
1758 		if (plat->init)
1759 			plat->init();
1760 	}
1761 	return 0;
1762 }
1763 
1764 static bool pl011_split_lcrh(const struct uart_amba_port *uap)
1765 {
1766 	return pl011_reg_to_offset(uap, REG_LCRH_RX) !=
1767 	       pl011_reg_to_offset(uap, REG_LCRH_TX);
1768 }
1769 
1770 static void pl011_write_lcr_h(struct uart_amba_port *uap, unsigned int lcr_h)
1771 {
1772 	pl011_write(lcr_h, uap, REG_LCRH_RX);
1773 	if (pl011_split_lcrh(uap)) {
1774 		int i;
1775 		/*
1776 		 * Wait 10 PCLKs before writing LCRH_TX register,
1777 		 * to get this delay write read only register 10 times
1778 		 */
1779 		for (i = 0; i < 10; ++i)
1780 			pl011_write(0xff, uap, REG_MIS);
1781 		pl011_write(lcr_h, uap, REG_LCRH_TX);
1782 	}
1783 }
1784 
1785 static int pl011_allocate_irq(struct uart_amba_port *uap)
1786 {
1787 	pl011_write(uap->im, uap, REG_IMSC);
1788 
1789 	return request_irq(uap->port.irq, pl011_int, IRQF_SHARED, "uart-pl011", uap);
1790 }
1791 
1792 /*
1793  * Enable interrupts, only timeouts when using DMA
1794  * if initial RX DMA job failed, start in interrupt mode
1795  * as well.
1796  */
1797 static void pl011_enable_interrupts(struct uart_amba_port *uap)
1798 {
1799 	unsigned long flags;
1800 	unsigned int i;
1801 
1802 	spin_lock_irqsave(&uap->port.lock, flags);
1803 
1804 	/* Clear out any spuriously appearing RX interrupts */
1805 	pl011_write(UART011_RTIS | UART011_RXIS, uap, REG_ICR);
1806 
1807 	/*
1808 	 * RXIS is asserted only when the RX FIFO transitions from below
1809 	 * to above the trigger threshold.  If the RX FIFO is already
1810 	 * full to the threshold this can't happen and RXIS will now be
1811 	 * stuck off.  Drain the RX FIFO explicitly to fix this:
1812 	 */
1813 	for (i = 0; i < uap->fifosize * 2; ++i) {
1814 		if (pl011_read(uap, REG_FR) & UART01x_FR_RXFE)
1815 			break;
1816 
1817 		pl011_read(uap, REG_DR);
1818 	}
1819 
1820 	uap->im = UART011_RTIM;
1821 	if (!pl011_dma_rx_running(uap))
1822 		uap->im |= UART011_RXIM;
1823 	pl011_write(uap->im, uap, REG_IMSC);
1824 	spin_unlock_irqrestore(&uap->port.lock, flags);
1825 }
1826 
1827 static void pl011_unthrottle_rx(struct uart_port *port)
1828 {
1829 	struct uart_amba_port *uap = container_of(port, struct uart_amba_port, port);
1830 	unsigned long flags;
1831 
1832 	spin_lock_irqsave(&uap->port.lock, flags);
1833 
1834 	uap->im = UART011_RTIM;
1835 	if (!pl011_dma_rx_running(uap))
1836 		uap->im |= UART011_RXIM;
1837 
1838 	pl011_write(uap->im, uap, REG_IMSC);
1839 
1840 	spin_unlock_irqrestore(&uap->port.lock, flags);
1841 }
1842 
1843 static int pl011_startup(struct uart_port *port)
1844 {
1845 	struct uart_amba_port *uap =
1846 	    container_of(port, struct uart_amba_port, port);
1847 	unsigned int cr;
1848 	int retval;
1849 
1850 	retval = pl011_hwinit(port);
1851 	if (retval)
1852 		goto clk_dis;
1853 
1854 	retval = pl011_allocate_irq(uap);
1855 	if (retval)
1856 		goto clk_dis;
1857 
1858 	pl011_write(uap->vendor->ifls, uap, REG_IFLS);
1859 
1860 	spin_lock_irq(&uap->port.lock);
1861 
1862 	cr = pl011_read(uap, REG_CR);
1863 	cr &= UART011_CR_RTS | UART011_CR_DTR;
1864 	cr |= UART01x_CR_UARTEN | UART011_CR_RXE;
1865 
1866 	if (!(port->rs485.flags & SER_RS485_ENABLED))
1867 		cr |= UART011_CR_TXE;
1868 
1869 	pl011_write(cr, uap, REG_CR);
1870 
1871 	spin_unlock_irq(&uap->port.lock);
1872 
1873 	/*
1874 	 * initialise the old status of the modem signals
1875 	 */
1876 	uap->old_status = pl011_read(uap, REG_FR) & UART01x_FR_MODEM_ANY;
1877 
1878 	/* Startup DMA */
1879 	pl011_dma_startup(uap);
1880 
1881 	pl011_enable_interrupts(uap);
1882 
1883 	return 0;
1884 
1885  clk_dis:
1886 	clk_disable_unprepare(uap->clk);
1887 	return retval;
1888 }
1889 
1890 static int sbsa_uart_startup(struct uart_port *port)
1891 {
1892 	struct uart_amba_port *uap =
1893 		container_of(port, struct uart_amba_port, port);
1894 	int retval;
1895 
1896 	retval = pl011_hwinit(port);
1897 	if (retval)
1898 		return retval;
1899 
1900 	retval = pl011_allocate_irq(uap);
1901 	if (retval)
1902 		return retval;
1903 
1904 	/* The SBSA UART does not support any modem status lines. */
1905 	uap->old_status = 0;
1906 
1907 	pl011_enable_interrupts(uap);
1908 
1909 	return 0;
1910 }
1911 
1912 static void pl011_shutdown_channel(struct uart_amba_port *uap,
1913 					unsigned int lcrh)
1914 {
1915       unsigned long val;
1916 
1917       val = pl011_read(uap, lcrh);
1918       val &= ~(UART01x_LCRH_BRK | UART01x_LCRH_FEN);
1919       pl011_write(val, uap, lcrh);
1920 }
1921 
1922 /*
1923  * disable the port. It should not disable RTS and DTR.
1924  * Also RTS and DTR state should be preserved to restore
1925  * it during startup().
1926  */
1927 static void pl011_disable_uart(struct uart_amba_port *uap)
1928 {
1929 	unsigned int cr;
1930 
1931 	uap->port.status &= ~(UPSTAT_AUTOCTS | UPSTAT_AUTORTS);
1932 	spin_lock_irq(&uap->port.lock);
1933 	cr = pl011_read(uap, REG_CR);
1934 	cr &= UART011_CR_RTS | UART011_CR_DTR;
1935 	cr |= UART01x_CR_UARTEN | UART011_CR_TXE;
1936 	pl011_write(cr, uap, REG_CR);
1937 	spin_unlock_irq(&uap->port.lock);
1938 
1939 	/*
1940 	 * disable break condition and fifos
1941 	 */
1942 	pl011_shutdown_channel(uap, REG_LCRH_RX);
1943 	if (pl011_split_lcrh(uap))
1944 		pl011_shutdown_channel(uap, REG_LCRH_TX);
1945 }
1946 
1947 static void pl011_disable_interrupts(struct uart_amba_port *uap)
1948 {
1949 	spin_lock_irq(&uap->port.lock);
1950 
1951 	/* mask all interrupts and clear all pending ones */
1952 	uap->im = 0;
1953 	pl011_write(uap->im, uap, REG_IMSC);
1954 	pl011_write(0xffff, uap, REG_ICR);
1955 
1956 	spin_unlock_irq(&uap->port.lock);
1957 }
1958 
1959 static void pl011_shutdown(struct uart_port *port)
1960 {
1961 	struct uart_amba_port *uap =
1962 		container_of(port, struct uart_amba_port, port);
1963 
1964 	pl011_disable_interrupts(uap);
1965 
1966 	pl011_dma_shutdown(uap);
1967 
1968 	if ((port->rs485.flags & SER_RS485_ENABLED) && uap->rs485_tx_started)
1969 		pl011_rs485_tx_stop(uap);
1970 
1971 	free_irq(uap->port.irq, uap);
1972 
1973 	pl011_disable_uart(uap);
1974 
1975 	/*
1976 	 * Shut down the clock producer
1977 	 */
1978 	clk_disable_unprepare(uap->clk);
1979 	/* Optionally let pins go into sleep states */
1980 	pinctrl_pm_select_sleep_state(port->dev);
1981 
1982 	if (dev_get_platdata(uap->port.dev)) {
1983 		struct amba_pl011_data *plat;
1984 
1985 		plat = dev_get_platdata(uap->port.dev);
1986 		if (plat->exit)
1987 			plat->exit();
1988 	}
1989 
1990 	if (uap->port.ops->flush_buffer)
1991 		uap->port.ops->flush_buffer(port);
1992 }
1993 
1994 static void sbsa_uart_shutdown(struct uart_port *port)
1995 {
1996 	struct uart_amba_port *uap =
1997 		container_of(port, struct uart_amba_port, port);
1998 
1999 	pl011_disable_interrupts(uap);
2000 
2001 	free_irq(uap->port.irq, uap);
2002 
2003 	if (uap->port.ops->flush_buffer)
2004 		uap->port.ops->flush_buffer(port);
2005 }
2006 
2007 static void
2008 pl011_setup_status_masks(struct uart_port *port, struct ktermios *termios)
2009 {
2010 	port->read_status_mask = UART011_DR_OE | 255;
2011 	if (termios->c_iflag & INPCK)
2012 		port->read_status_mask |= UART011_DR_FE | UART011_DR_PE;
2013 	if (termios->c_iflag & (IGNBRK | BRKINT | PARMRK))
2014 		port->read_status_mask |= UART011_DR_BE;
2015 
2016 	/*
2017 	 * Characters to ignore
2018 	 */
2019 	port->ignore_status_mask = 0;
2020 	if (termios->c_iflag & IGNPAR)
2021 		port->ignore_status_mask |= UART011_DR_FE | UART011_DR_PE;
2022 	if (termios->c_iflag & IGNBRK) {
2023 		port->ignore_status_mask |= UART011_DR_BE;
2024 		/*
2025 		 * If we're ignoring parity and break indicators,
2026 		 * ignore overruns too (for real raw support).
2027 		 */
2028 		if (termios->c_iflag & IGNPAR)
2029 			port->ignore_status_mask |= UART011_DR_OE;
2030 	}
2031 
2032 	/*
2033 	 * Ignore all characters if CREAD is not set.
2034 	 */
2035 	if ((termios->c_cflag & CREAD) == 0)
2036 		port->ignore_status_mask |= UART_DUMMY_DR_RX;
2037 }
2038 
2039 static void
2040 pl011_set_termios(struct uart_port *port, struct ktermios *termios,
2041 		  const struct ktermios *old)
2042 {
2043 	struct uart_amba_port *uap =
2044 	    container_of(port, struct uart_amba_port, port);
2045 	unsigned int lcr_h, old_cr;
2046 	unsigned long flags;
2047 	unsigned int baud, quot, clkdiv;
2048 	unsigned int bits;
2049 
2050 	if (uap->vendor->oversampling)
2051 		clkdiv = 8;
2052 	else
2053 		clkdiv = 16;
2054 
2055 	/*
2056 	 * Ask the core to calculate the divisor for us.
2057 	 */
2058 	baud = uart_get_baud_rate(port, termios, old, 0,
2059 				  port->uartclk / clkdiv);
2060 #ifdef CONFIG_DMA_ENGINE
2061 	/*
2062 	 * Adjust RX DMA polling rate with baud rate if not specified.
2063 	 */
2064 	if (uap->dmarx.auto_poll_rate)
2065 		uap->dmarx.poll_rate = DIV_ROUND_UP(10000000, baud);
2066 #endif
2067 
2068 	if (baud > port->uartclk/16)
2069 		quot = DIV_ROUND_CLOSEST(port->uartclk * 8, baud);
2070 	else
2071 		quot = DIV_ROUND_CLOSEST(port->uartclk * 4, baud);
2072 
2073 	switch (termios->c_cflag & CSIZE) {
2074 	case CS5:
2075 		lcr_h = UART01x_LCRH_WLEN_5;
2076 		break;
2077 	case CS6:
2078 		lcr_h = UART01x_LCRH_WLEN_6;
2079 		break;
2080 	case CS7:
2081 		lcr_h = UART01x_LCRH_WLEN_7;
2082 		break;
2083 	default: // CS8
2084 		lcr_h = UART01x_LCRH_WLEN_8;
2085 		break;
2086 	}
2087 	if (termios->c_cflag & CSTOPB)
2088 		lcr_h |= UART01x_LCRH_STP2;
2089 	if (termios->c_cflag & PARENB) {
2090 		lcr_h |= UART01x_LCRH_PEN;
2091 		if (!(termios->c_cflag & PARODD))
2092 			lcr_h |= UART01x_LCRH_EPS;
2093 		if (termios->c_cflag & CMSPAR)
2094 			lcr_h |= UART011_LCRH_SPS;
2095 	}
2096 	if (uap->fifosize > 1)
2097 		lcr_h |= UART01x_LCRH_FEN;
2098 
2099 	bits = tty_get_frame_size(termios->c_cflag);
2100 
2101 	spin_lock_irqsave(&port->lock, flags);
2102 
2103 	/*
2104 	 * Update the per-port timeout.
2105 	 */
2106 	uart_update_timeout(port, termios->c_cflag, baud);
2107 
2108 	/*
2109 	 * Calculate the approximated time it takes to transmit one character
2110 	 * with the given baud rate. We use this as the poll interval when we
2111 	 * wait for the tx queue to empty.
2112 	 */
2113 	uap->rs485_tx_drain_interval = DIV_ROUND_UP(bits * 1000 * 1000, baud);
2114 
2115 	pl011_setup_status_masks(port, termios);
2116 
2117 	if (UART_ENABLE_MS(port, termios->c_cflag))
2118 		pl011_enable_ms(port);
2119 
2120 	if (port->rs485.flags & SER_RS485_ENABLED)
2121 		termios->c_cflag &= ~CRTSCTS;
2122 
2123 	old_cr = pl011_read(uap, REG_CR);
2124 
2125 	if (termios->c_cflag & CRTSCTS) {
2126 		if (old_cr & UART011_CR_RTS)
2127 			old_cr |= UART011_CR_RTSEN;
2128 
2129 		old_cr |= UART011_CR_CTSEN;
2130 		port->status |= UPSTAT_AUTOCTS | UPSTAT_AUTORTS;
2131 	} else {
2132 		old_cr &= ~(UART011_CR_CTSEN | UART011_CR_RTSEN);
2133 		port->status &= ~(UPSTAT_AUTOCTS | UPSTAT_AUTORTS);
2134 	}
2135 
2136 	if (uap->vendor->oversampling) {
2137 		if (baud > port->uartclk / 16)
2138 			old_cr |= ST_UART011_CR_OVSFACT;
2139 		else
2140 			old_cr &= ~ST_UART011_CR_OVSFACT;
2141 	}
2142 
2143 	/*
2144 	 * Workaround for the ST Micro oversampling variants to
2145 	 * increase the bitrate slightly, by lowering the divisor,
2146 	 * to avoid delayed sampling of start bit at high speeds,
2147 	 * else we see data corruption.
2148 	 */
2149 	if (uap->vendor->oversampling) {
2150 		if ((baud >= 3000000) && (baud < 3250000) && (quot > 1))
2151 			quot -= 1;
2152 		else if ((baud > 3250000) && (quot > 2))
2153 			quot -= 2;
2154 	}
2155 	/* Set baud rate */
2156 	pl011_write(quot & 0x3f, uap, REG_FBRD);
2157 	pl011_write(quot >> 6, uap, REG_IBRD);
2158 
2159 	/*
2160 	 * ----------v----------v----------v----------v-----
2161 	 * NOTE: REG_LCRH_TX and REG_LCRH_RX MUST BE WRITTEN AFTER
2162 	 * REG_FBRD & REG_IBRD.
2163 	 * ----------^----------^----------^----------^-----
2164 	 */
2165 	pl011_write_lcr_h(uap, lcr_h);
2166 
2167 	/*
2168 	 * Receive was disabled by pl011_disable_uart during shutdown.
2169 	 * Need to reenable receive if you need to use a tty_driver
2170 	 * returns from tty_find_polling_driver() after a port shutdown.
2171 	 */
2172 	old_cr |= UART011_CR_RXE;
2173 	pl011_write(old_cr, uap, REG_CR);
2174 
2175 	spin_unlock_irqrestore(&port->lock, flags);
2176 }
2177 
2178 static void
2179 sbsa_uart_set_termios(struct uart_port *port, struct ktermios *termios,
2180 		      const struct ktermios *old)
2181 {
2182 	struct uart_amba_port *uap =
2183 	    container_of(port, struct uart_amba_port, port);
2184 	unsigned long flags;
2185 
2186 	tty_termios_encode_baud_rate(termios, uap->fixed_baud, uap->fixed_baud);
2187 
2188 	/* The SBSA UART only supports 8n1 without hardware flow control. */
2189 	termios->c_cflag &= ~(CSIZE | CSTOPB | PARENB | PARODD);
2190 	termios->c_cflag &= ~(CMSPAR | CRTSCTS);
2191 	termios->c_cflag |= CS8 | CLOCAL;
2192 
2193 	spin_lock_irqsave(&port->lock, flags);
2194 	uart_update_timeout(port, CS8, uap->fixed_baud);
2195 	pl011_setup_status_masks(port, termios);
2196 	spin_unlock_irqrestore(&port->lock, flags);
2197 }
2198 
2199 static const char *pl011_type(struct uart_port *port)
2200 {
2201 	struct uart_amba_port *uap =
2202 	    container_of(port, struct uart_amba_port, port);
2203 	return uap->port.type == PORT_AMBA ? uap->type : NULL;
2204 }
2205 
2206 /*
2207  * Configure/autoconfigure the port.
2208  */
2209 static void pl011_config_port(struct uart_port *port, int flags)
2210 {
2211 	if (flags & UART_CONFIG_TYPE)
2212 		port->type = PORT_AMBA;
2213 }
2214 
2215 /*
2216  * verify the new serial_struct (for TIOCSSERIAL).
2217  */
2218 static int pl011_verify_port(struct uart_port *port, struct serial_struct *ser)
2219 {
2220 	int ret = 0;
2221 	if (ser->type != PORT_UNKNOWN && ser->type != PORT_AMBA)
2222 		ret = -EINVAL;
2223 	if (ser->irq < 0 || ser->irq >= nr_irqs)
2224 		ret = -EINVAL;
2225 	if (ser->baud_base < 9600)
2226 		ret = -EINVAL;
2227 	if (port->mapbase != (unsigned long) ser->iomem_base)
2228 		ret = -EINVAL;
2229 	return ret;
2230 }
2231 
2232 static int pl011_rs485_config(struct uart_port *port, struct ktermios *termios,
2233 			      struct serial_rs485 *rs485)
2234 {
2235 	struct uart_amba_port *uap =
2236 		container_of(port, struct uart_amba_port, port);
2237 
2238 	if (port->rs485.flags & SER_RS485_ENABLED)
2239 		pl011_rs485_tx_stop(uap);
2240 
2241 	/* Make sure auto RTS is disabled */
2242 	if (rs485->flags & SER_RS485_ENABLED) {
2243 		u32 cr = pl011_read(uap, REG_CR);
2244 
2245 		cr &= ~UART011_CR_RTSEN;
2246 		pl011_write(cr, uap, REG_CR);
2247 		port->status &= ~UPSTAT_AUTORTS;
2248 	}
2249 
2250 	return 0;
2251 }
2252 
2253 static const struct uart_ops amba_pl011_pops = {
2254 	.tx_empty	= pl011_tx_empty,
2255 	.set_mctrl	= pl011_set_mctrl,
2256 	.get_mctrl	= pl011_get_mctrl,
2257 	.stop_tx	= pl011_stop_tx,
2258 	.start_tx	= pl011_start_tx,
2259 	.stop_rx	= pl011_stop_rx,
2260 	.throttle	= pl011_throttle_rx,
2261 	.unthrottle	= pl011_unthrottle_rx,
2262 	.enable_ms	= pl011_enable_ms,
2263 	.break_ctl	= pl011_break_ctl,
2264 	.startup	= pl011_startup,
2265 	.shutdown	= pl011_shutdown,
2266 	.flush_buffer	= pl011_dma_flush_buffer,
2267 	.set_termios	= pl011_set_termios,
2268 	.type		= pl011_type,
2269 	.config_port	= pl011_config_port,
2270 	.verify_port	= pl011_verify_port,
2271 #ifdef CONFIG_CONSOLE_POLL
2272 	.poll_init     = pl011_hwinit,
2273 	.poll_get_char = pl011_get_poll_char,
2274 	.poll_put_char = pl011_put_poll_char,
2275 #endif
2276 };
2277 
2278 static void sbsa_uart_set_mctrl(struct uart_port *port, unsigned int mctrl)
2279 {
2280 }
2281 
2282 static unsigned int sbsa_uart_get_mctrl(struct uart_port *port)
2283 {
2284 	return 0;
2285 }
2286 
2287 static const struct uart_ops sbsa_uart_pops = {
2288 	.tx_empty	= pl011_tx_empty,
2289 	.set_mctrl	= sbsa_uart_set_mctrl,
2290 	.get_mctrl	= sbsa_uart_get_mctrl,
2291 	.stop_tx	= pl011_stop_tx,
2292 	.start_tx	= pl011_start_tx,
2293 	.stop_rx	= pl011_stop_rx,
2294 	.startup	= sbsa_uart_startup,
2295 	.shutdown	= sbsa_uart_shutdown,
2296 	.set_termios	= sbsa_uart_set_termios,
2297 	.type		= pl011_type,
2298 	.config_port	= pl011_config_port,
2299 	.verify_port	= pl011_verify_port,
2300 #ifdef CONFIG_CONSOLE_POLL
2301 	.poll_init     = pl011_hwinit,
2302 	.poll_get_char = pl011_get_poll_char,
2303 	.poll_put_char = pl011_put_poll_char,
2304 #endif
2305 };
2306 
2307 static struct uart_amba_port *amba_ports[UART_NR];
2308 
2309 #ifdef CONFIG_SERIAL_AMBA_PL011_CONSOLE
2310 
2311 static void pl011_console_putchar(struct uart_port *port, unsigned char ch)
2312 {
2313 	struct uart_amba_port *uap =
2314 	    container_of(port, struct uart_amba_port, port);
2315 
2316 	while (pl011_read(uap, REG_FR) & UART01x_FR_TXFF)
2317 		cpu_relax();
2318 	pl011_write(ch, uap, REG_DR);
2319 }
2320 
2321 static void
2322 pl011_console_write(struct console *co, const char *s, unsigned int count)
2323 {
2324 	struct uart_amba_port *uap = amba_ports[co->index];
2325 	unsigned int old_cr = 0, new_cr;
2326 	unsigned long flags;
2327 	int locked = 1;
2328 
2329 	clk_enable(uap->clk);
2330 
2331 	local_irq_save(flags);
2332 	if (uap->port.sysrq)
2333 		locked = 0;
2334 	else if (oops_in_progress)
2335 		locked = spin_trylock(&uap->port.lock);
2336 	else
2337 		spin_lock(&uap->port.lock);
2338 
2339 	/*
2340 	 *	First save the CR then disable the interrupts
2341 	 */
2342 	if (!uap->vendor->always_enabled) {
2343 		old_cr = pl011_read(uap, REG_CR);
2344 		new_cr = old_cr & ~UART011_CR_CTSEN;
2345 		new_cr |= UART01x_CR_UARTEN | UART011_CR_TXE;
2346 		pl011_write(new_cr, uap, REG_CR);
2347 	}
2348 
2349 	uart_console_write(&uap->port, s, count, pl011_console_putchar);
2350 
2351 	/*
2352 	 *	Finally, wait for transmitter to become empty and restore the
2353 	 *	TCR. Allow feature register bits to be inverted to work around
2354 	 *	errata.
2355 	 */
2356 	while ((pl011_read(uap, REG_FR) ^ uap->vendor->inv_fr)
2357 						& uap->vendor->fr_busy)
2358 		cpu_relax();
2359 	if (!uap->vendor->always_enabled)
2360 		pl011_write(old_cr, uap, REG_CR);
2361 
2362 	if (locked)
2363 		spin_unlock(&uap->port.lock);
2364 	local_irq_restore(flags);
2365 
2366 	clk_disable(uap->clk);
2367 }
2368 
2369 static void pl011_console_get_options(struct uart_amba_port *uap, int *baud,
2370 				      int *parity, int *bits)
2371 {
2372 	if (pl011_read(uap, REG_CR) & UART01x_CR_UARTEN) {
2373 		unsigned int lcr_h, ibrd, fbrd;
2374 
2375 		lcr_h = pl011_read(uap, REG_LCRH_TX);
2376 
2377 		*parity = 'n';
2378 		if (lcr_h & UART01x_LCRH_PEN) {
2379 			if (lcr_h & UART01x_LCRH_EPS)
2380 				*parity = 'e';
2381 			else
2382 				*parity = 'o';
2383 		}
2384 
2385 		if ((lcr_h & 0x60) == UART01x_LCRH_WLEN_7)
2386 			*bits = 7;
2387 		else
2388 			*bits = 8;
2389 
2390 		ibrd = pl011_read(uap, REG_IBRD);
2391 		fbrd = pl011_read(uap, REG_FBRD);
2392 
2393 		*baud = uap->port.uartclk * 4 / (64 * ibrd + fbrd);
2394 
2395 		if (uap->vendor->oversampling) {
2396 			if (pl011_read(uap, REG_CR)
2397 				  & ST_UART011_CR_OVSFACT)
2398 				*baud *= 2;
2399 		}
2400 	}
2401 }
2402 
2403 static int pl011_console_setup(struct console *co, char *options)
2404 {
2405 	struct uart_amba_port *uap;
2406 	int baud = 38400;
2407 	int bits = 8;
2408 	int parity = 'n';
2409 	int flow = 'n';
2410 	int ret;
2411 
2412 	/*
2413 	 * Check whether an invalid uart number has been specified, and
2414 	 * if so, search for the first available port that does have
2415 	 * console support.
2416 	 */
2417 	if (co->index >= UART_NR)
2418 		co->index = 0;
2419 	uap = amba_ports[co->index];
2420 	if (!uap)
2421 		return -ENODEV;
2422 
2423 	/* Allow pins to be muxed in and configured */
2424 	pinctrl_pm_select_default_state(uap->port.dev);
2425 
2426 	ret = clk_prepare(uap->clk);
2427 	if (ret)
2428 		return ret;
2429 
2430 	if (dev_get_platdata(uap->port.dev)) {
2431 		struct amba_pl011_data *plat;
2432 
2433 		plat = dev_get_platdata(uap->port.dev);
2434 		if (plat->init)
2435 			plat->init();
2436 	}
2437 
2438 	uap->port.uartclk = clk_get_rate(uap->clk);
2439 
2440 	if (uap->vendor->fixed_options) {
2441 		baud = uap->fixed_baud;
2442 	} else {
2443 		if (options)
2444 			uart_parse_options(options,
2445 					   &baud, &parity, &bits, &flow);
2446 		else
2447 			pl011_console_get_options(uap, &baud, &parity, &bits);
2448 	}
2449 
2450 	return uart_set_options(&uap->port, co, baud, parity, bits, flow);
2451 }
2452 
2453 /**
2454  *	pl011_console_match - non-standard console matching
2455  *	@co:	  registering console
2456  *	@name:	  name from console command line
2457  *	@idx:	  index from console command line
2458  *	@options: ptr to option string from console command line
2459  *
2460  *	Only attempts to match console command lines of the form:
2461  *	    console=pl011,mmio|mmio32,<addr>[,<options>]
2462  *	    console=pl011,0x<addr>[,<options>]
2463  *	This form is used to register an initial earlycon boot console and
2464  *	replace it with the amba_console at pl011 driver init.
2465  *
2466  *	Performs console setup for a match (as required by interface)
2467  *	If no <options> are specified, then assume the h/w is already setup.
2468  *
2469  *	Returns 0 if console matches; otherwise non-zero to use default matching
2470  */
2471 static int pl011_console_match(struct console *co, char *name, int idx,
2472 			       char *options)
2473 {
2474 	unsigned char iotype;
2475 	resource_size_t addr;
2476 	int i;
2477 
2478 	/*
2479 	 * Systems affected by the Qualcomm Technologies QDF2400 E44 erratum
2480 	 * have a distinct console name, so make sure we check for that.
2481 	 * The actual implementation of the erratum occurs in the probe
2482 	 * function.
2483 	 */
2484 	if ((strcmp(name, "qdf2400_e44") != 0) && (strcmp(name, "pl011") != 0))
2485 		return -ENODEV;
2486 
2487 	if (uart_parse_earlycon(options, &iotype, &addr, &options))
2488 		return -ENODEV;
2489 
2490 	if (iotype != UPIO_MEM && iotype != UPIO_MEM32)
2491 		return -ENODEV;
2492 
2493 	/* try to match the port specified on the command line */
2494 	for (i = 0; i < ARRAY_SIZE(amba_ports); i++) {
2495 		struct uart_port *port;
2496 
2497 		if (!amba_ports[i])
2498 			continue;
2499 
2500 		port = &amba_ports[i]->port;
2501 
2502 		if (port->mapbase != addr)
2503 			continue;
2504 
2505 		co->index = i;
2506 		port->cons = co;
2507 		return pl011_console_setup(co, options);
2508 	}
2509 
2510 	return -ENODEV;
2511 }
2512 
2513 static struct uart_driver amba_reg;
2514 static struct console amba_console = {
2515 	.name		= "ttyAMA",
2516 	.write		= pl011_console_write,
2517 	.device		= uart_console_device,
2518 	.setup		= pl011_console_setup,
2519 	.match		= pl011_console_match,
2520 	.flags		= CON_PRINTBUFFER | CON_ANYTIME,
2521 	.index		= -1,
2522 	.data		= &amba_reg,
2523 };
2524 
2525 #define AMBA_CONSOLE	(&amba_console)
2526 
2527 static void qdf2400_e44_putc(struct uart_port *port, unsigned char c)
2528 {
2529 	while (readl(port->membase + UART01x_FR) & UART01x_FR_TXFF)
2530 		cpu_relax();
2531 	writel(c, port->membase + UART01x_DR);
2532 	while (!(readl(port->membase + UART01x_FR) & UART011_FR_TXFE))
2533 		cpu_relax();
2534 }
2535 
2536 static void qdf2400_e44_early_write(struct console *con, const char *s, unsigned n)
2537 {
2538 	struct earlycon_device *dev = con->data;
2539 
2540 	uart_console_write(&dev->port, s, n, qdf2400_e44_putc);
2541 }
2542 
2543 static void pl011_putc(struct uart_port *port, unsigned char c)
2544 {
2545 	while (readl(port->membase + UART01x_FR) & UART01x_FR_TXFF)
2546 		cpu_relax();
2547 	if (port->iotype == UPIO_MEM32)
2548 		writel(c, port->membase + UART01x_DR);
2549 	else
2550 		writeb(c, port->membase + UART01x_DR);
2551 	while (readl(port->membase + UART01x_FR) & UART01x_FR_BUSY)
2552 		cpu_relax();
2553 }
2554 
2555 static void pl011_early_write(struct console *con, const char *s, unsigned n)
2556 {
2557 	struct earlycon_device *dev = con->data;
2558 
2559 	uart_console_write(&dev->port, s, n, pl011_putc);
2560 }
2561 
2562 #ifdef CONFIG_CONSOLE_POLL
2563 static int pl011_getc(struct uart_port *port)
2564 {
2565 	if (readl(port->membase + UART01x_FR) & UART01x_FR_RXFE)
2566 		return NO_POLL_CHAR;
2567 
2568 	if (port->iotype == UPIO_MEM32)
2569 		return readl(port->membase + UART01x_DR);
2570 	else
2571 		return readb(port->membase + UART01x_DR);
2572 }
2573 
2574 static int pl011_early_read(struct console *con, char *s, unsigned int n)
2575 {
2576 	struct earlycon_device *dev = con->data;
2577 	int ch, num_read = 0;
2578 
2579 	while (num_read < n) {
2580 		ch = pl011_getc(&dev->port);
2581 		if (ch == NO_POLL_CHAR)
2582 			break;
2583 
2584 		s[num_read++] = ch;
2585 	}
2586 
2587 	return num_read;
2588 }
2589 #else
2590 #define pl011_early_read NULL
2591 #endif
2592 
2593 /*
2594  * On non-ACPI systems, earlycon is enabled by specifying
2595  * "earlycon=pl011,<address>" on the kernel command line.
2596  *
2597  * On ACPI ARM64 systems, an "early" console is enabled via the SPCR table,
2598  * by specifying only "earlycon" on the command line.  Because it requires
2599  * SPCR, the console starts after ACPI is parsed, which is later than a
2600  * traditional early console.
2601  *
2602  * To get the traditional early console that starts before ACPI is parsed,
2603  * specify the full "earlycon=pl011,<address>" option.
2604  */
2605 static int __init pl011_early_console_setup(struct earlycon_device *device,
2606 					    const char *opt)
2607 {
2608 	if (!device->port.membase)
2609 		return -ENODEV;
2610 
2611 	device->con->write = pl011_early_write;
2612 	device->con->read = pl011_early_read;
2613 
2614 	return 0;
2615 }
2616 OF_EARLYCON_DECLARE(pl011, "arm,pl011", pl011_early_console_setup);
2617 OF_EARLYCON_DECLARE(pl011, "arm,sbsa-uart", pl011_early_console_setup);
2618 
2619 /*
2620  * On Qualcomm Datacenter Technologies QDF2400 SOCs affected by
2621  * Erratum 44, traditional earlycon can be enabled by specifying
2622  * "earlycon=qdf2400_e44,<address>".  Any options are ignored.
2623  *
2624  * Alternatively, you can just specify "earlycon", and the early console
2625  * will be enabled with the information from the SPCR table.  In this
2626  * case, the SPCR code will detect the need for the E44 work-around,
2627  * and set the console name to "qdf2400_e44".
2628  */
2629 static int __init
2630 qdf2400_e44_early_console_setup(struct earlycon_device *device,
2631 				const char *opt)
2632 {
2633 	if (!device->port.membase)
2634 		return -ENODEV;
2635 
2636 	device->con->write = qdf2400_e44_early_write;
2637 	return 0;
2638 }
2639 EARLYCON_DECLARE(qdf2400_e44, qdf2400_e44_early_console_setup);
2640 
2641 #else
2642 #define AMBA_CONSOLE	NULL
2643 #endif
2644 
2645 static struct uart_driver amba_reg = {
2646 	.owner			= THIS_MODULE,
2647 	.driver_name		= "ttyAMA",
2648 	.dev_name		= "ttyAMA",
2649 	.major			= SERIAL_AMBA_MAJOR,
2650 	.minor			= SERIAL_AMBA_MINOR,
2651 	.nr			= UART_NR,
2652 	.cons			= AMBA_CONSOLE,
2653 };
2654 
2655 static int pl011_probe_dt_alias(int index, struct device *dev)
2656 {
2657 	struct device_node *np;
2658 	static bool seen_dev_with_alias = false;
2659 	static bool seen_dev_without_alias = false;
2660 	int ret = index;
2661 
2662 	if (!IS_ENABLED(CONFIG_OF))
2663 		return ret;
2664 
2665 	np = dev->of_node;
2666 	if (!np)
2667 		return ret;
2668 
2669 	ret = of_alias_get_id(np, "serial");
2670 	if (ret < 0) {
2671 		seen_dev_without_alias = true;
2672 		ret = index;
2673 	} else {
2674 		seen_dev_with_alias = true;
2675 		if (ret >= ARRAY_SIZE(amba_ports) || amba_ports[ret] != NULL) {
2676 			dev_warn(dev, "requested serial port %d  not available.\n", ret);
2677 			ret = index;
2678 		}
2679 	}
2680 
2681 	if (seen_dev_with_alias && seen_dev_without_alias)
2682 		dev_warn(dev, "aliased and non-aliased serial devices found in device tree. Serial port enumeration may be unpredictable.\n");
2683 
2684 	return ret;
2685 }
2686 
2687 /* unregisters the driver also if no more ports are left */
2688 static void pl011_unregister_port(struct uart_amba_port *uap)
2689 {
2690 	int i;
2691 	bool busy = false;
2692 
2693 	for (i = 0; i < ARRAY_SIZE(amba_ports); i++) {
2694 		if (amba_ports[i] == uap)
2695 			amba_ports[i] = NULL;
2696 		else if (amba_ports[i])
2697 			busy = true;
2698 	}
2699 	pl011_dma_remove(uap);
2700 	if (!busy)
2701 		uart_unregister_driver(&amba_reg);
2702 }
2703 
2704 static int pl011_find_free_port(void)
2705 {
2706 	int i;
2707 
2708 	for (i = 0; i < ARRAY_SIZE(amba_ports); i++)
2709 		if (amba_ports[i] == NULL)
2710 			return i;
2711 
2712 	return -EBUSY;
2713 }
2714 
2715 static int pl011_get_rs485_mode(struct uart_amba_port *uap)
2716 {
2717 	struct uart_port *port = &uap->port;
2718 	int ret;
2719 
2720 	ret = uart_get_rs485_mode(port);
2721 	if (ret)
2722 		return ret;
2723 
2724 	return 0;
2725 }
2726 
2727 static int pl011_setup_port(struct device *dev, struct uart_amba_port *uap,
2728 			    struct resource *mmiobase, int index)
2729 {
2730 	void __iomem *base;
2731 	int ret;
2732 
2733 	base = devm_ioremap_resource(dev, mmiobase);
2734 	if (IS_ERR(base))
2735 		return PTR_ERR(base);
2736 
2737 	index = pl011_probe_dt_alias(index, dev);
2738 
2739 	uap->port.dev = dev;
2740 	uap->port.mapbase = mmiobase->start;
2741 	uap->port.membase = base;
2742 	uap->port.fifosize = uap->fifosize;
2743 	uap->port.has_sysrq = IS_ENABLED(CONFIG_SERIAL_AMBA_PL011_CONSOLE);
2744 	uap->port.flags = UPF_BOOT_AUTOCONF;
2745 	uap->port.line = index;
2746 
2747 	ret = pl011_get_rs485_mode(uap);
2748 	if (ret)
2749 		return ret;
2750 
2751 	amba_ports[index] = uap;
2752 
2753 	return 0;
2754 }
2755 
2756 static int pl011_register_port(struct uart_amba_port *uap)
2757 {
2758 	int ret, i;
2759 
2760 	/* Ensure interrupts from this UART are masked and cleared */
2761 	pl011_write(0, uap, REG_IMSC);
2762 	pl011_write(0xffff, uap, REG_ICR);
2763 
2764 	if (!amba_reg.state) {
2765 		ret = uart_register_driver(&amba_reg);
2766 		if (ret < 0) {
2767 			dev_err(uap->port.dev,
2768 				"Failed to register AMBA-PL011 driver\n");
2769 			for (i = 0; i < ARRAY_SIZE(amba_ports); i++)
2770 				if (amba_ports[i] == uap)
2771 					amba_ports[i] = NULL;
2772 			return ret;
2773 		}
2774 	}
2775 
2776 	ret = uart_add_one_port(&amba_reg, &uap->port);
2777 	if (ret)
2778 		pl011_unregister_port(uap);
2779 
2780 	return ret;
2781 }
2782 
2783 static const struct serial_rs485 pl011_rs485_supported = {
2784 	.flags = SER_RS485_ENABLED | SER_RS485_RTS_ON_SEND | SER_RS485_RTS_AFTER_SEND |
2785 		 SER_RS485_RX_DURING_TX,
2786 	.delay_rts_before_send = 1,
2787 	.delay_rts_after_send = 1,
2788 };
2789 
2790 static int pl011_probe(struct amba_device *dev, const struct amba_id *id)
2791 {
2792 	struct uart_amba_port *uap;
2793 	struct vendor_data *vendor = id->data;
2794 	int portnr, ret;
2795 	u32 val;
2796 
2797 	portnr = pl011_find_free_port();
2798 	if (portnr < 0)
2799 		return portnr;
2800 
2801 	uap = devm_kzalloc(&dev->dev, sizeof(struct uart_amba_port),
2802 			   GFP_KERNEL);
2803 	if (!uap)
2804 		return -ENOMEM;
2805 
2806 	uap->clk = devm_clk_get(&dev->dev, NULL);
2807 	if (IS_ERR(uap->clk))
2808 		return PTR_ERR(uap->clk);
2809 
2810 	uap->reg_offset = vendor->reg_offset;
2811 	uap->vendor = vendor;
2812 	uap->fifosize = vendor->get_fifosize(dev);
2813 	uap->port.iotype = vendor->access_32b ? UPIO_MEM32 : UPIO_MEM;
2814 	uap->port.irq = dev->irq[0];
2815 	uap->port.ops = &amba_pl011_pops;
2816 	uap->port.rs485_config = pl011_rs485_config;
2817 	uap->port.rs485_supported = pl011_rs485_supported;
2818 	snprintf(uap->type, sizeof(uap->type), "PL011 rev%u", amba_rev(dev));
2819 
2820 	if (device_property_read_u32(&dev->dev, "reg-io-width", &val) == 0) {
2821 		switch (val) {
2822 		case 1:
2823 			uap->port.iotype = UPIO_MEM;
2824 			break;
2825 		case 4:
2826 			uap->port.iotype = UPIO_MEM32;
2827 			break;
2828 		default:
2829 			dev_warn(&dev->dev, "unsupported reg-io-width (%d)\n",
2830 				 val);
2831 			return -EINVAL;
2832 		}
2833 	}
2834 
2835 	ret = pl011_setup_port(&dev->dev, uap, &dev->res, portnr);
2836 	if (ret)
2837 		return ret;
2838 
2839 	amba_set_drvdata(dev, uap);
2840 
2841 	return pl011_register_port(uap);
2842 }
2843 
2844 static void pl011_remove(struct amba_device *dev)
2845 {
2846 	struct uart_amba_port *uap = amba_get_drvdata(dev);
2847 
2848 	uart_remove_one_port(&amba_reg, &uap->port);
2849 	pl011_unregister_port(uap);
2850 }
2851 
2852 #ifdef CONFIG_PM_SLEEP
2853 static int pl011_suspend(struct device *dev)
2854 {
2855 	struct uart_amba_port *uap = dev_get_drvdata(dev);
2856 
2857 	if (!uap)
2858 		return -EINVAL;
2859 
2860 	return uart_suspend_port(&amba_reg, &uap->port);
2861 }
2862 
2863 static int pl011_resume(struct device *dev)
2864 {
2865 	struct uart_amba_port *uap = dev_get_drvdata(dev);
2866 
2867 	if (!uap)
2868 		return -EINVAL;
2869 
2870 	return uart_resume_port(&amba_reg, &uap->port);
2871 }
2872 #endif
2873 
2874 static SIMPLE_DEV_PM_OPS(pl011_dev_pm_ops, pl011_suspend, pl011_resume);
2875 
2876 static int sbsa_uart_probe(struct platform_device *pdev)
2877 {
2878 	struct uart_amba_port *uap;
2879 	struct resource *r;
2880 	int portnr, ret;
2881 	int baudrate;
2882 
2883 	/*
2884 	 * Check the mandatory baud rate parameter in the DT node early
2885 	 * so that we can easily exit with the error.
2886 	 */
2887 	if (pdev->dev.of_node) {
2888 		struct device_node *np = pdev->dev.of_node;
2889 
2890 		ret = of_property_read_u32(np, "current-speed", &baudrate);
2891 		if (ret)
2892 			return ret;
2893 	} else {
2894 		baudrate = 115200;
2895 	}
2896 
2897 	portnr = pl011_find_free_port();
2898 	if (portnr < 0)
2899 		return portnr;
2900 
2901 	uap = devm_kzalloc(&pdev->dev, sizeof(struct uart_amba_port),
2902 			   GFP_KERNEL);
2903 	if (!uap)
2904 		return -ENOMEM;
2905 
2906 	ret = platform_get_irq(pdev, 0);
2907 	if (ret < 0)
2908 		return ret;
2909 	uap->port.irq	= ret;
2910 
2911 #ifdef CONFIG_ACPI_SPCR_TABLE
2912 	if (qdf2400_e44_present) {
2913 		dev_info(&pdev->dev, "working around QDF2400 SoC erratum 44\n");
2914 		uap->vendor = &vendor_qdt_qdf2400_e44;
2915 	} else
2916 #endif
2917 		uap->vendor = &vendor_sbsa;
2918 
2919 	uap->reg_offset	= uap->vendor->reg_offset;
2920 	uap->fifosize	= 32;
2921 	uap->port.iotype = uap->vendor->access_32b ? UPIO_MEM32 : UPIO_MEM;
2922 	uap->port.ops	= &sbsa_uart_pops;
2923 	uap->fixed_baud = baudrate;
2924 
2925 	snprintf(uap->type, sizeof(uap->type), "SBSA");
2926 
2927 	r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2928 
2929 	ret = pl011_setup_port(&pdev->dev, uap, r, portnr);
2930 	if (ret)
2931 		return ret;
2932 
2933 	platform_set_drvdata(pdev, uap);
2934 
2935 	return pl011_register_port(uap);
2936 }
2937 
2938 static int sbsa_uart_remove(struct platform_device *pdev)
2939 {
2940 	struct uart_amba_port *uap = platform_get_drvdata(pdev);
2941 
2942 	uart_remove_one_port(&amba_reg, &uap->port);
2943 	pl011_unregister_port(uap);
2944 	return 0;
2945 }
2946 
2947 static const struct of_device_id sbsa_uart_of_match[] = {
2948 	{ .compatible = "arm,sbsa-uart", },
2949 	{},
2950 };
2951 MODULE_DEVICE_TABLE(of, sbsa_uart_of_match);
2952 
2953 static const struct acpi_device_id __maybe_unused sbsa_uart_acpi_match[] = {
2954 	{ "ARMH0011", 0 },
2955 	{ "ARMHB000", 0 },
2956 	{},
2957 };
2958 MODULE_DEVICE_TABLE(acpi, sbsa_uart_acpi_match);
2959 
2960 static struct platform_driver arm_sbsa_uart_platform_driver = {
2961 	.probe		= sbsa_uart_probe,
2962 	.remove		= sbsa_uart_remove,
2963 	.driver	= {
2964 		.name	= "sbsa-uart",
2965 		.pm	= &pl011_dev_pm_ops,
2966 		.of_match_table = of_match_ptr(sbsa_uart_of_match),
2967 		.acpi_match_table = ACPI_PTR(sbsa_uart_acpi_match),
2968 		.suppress_bind_attrs = IS_BUILTIN(CONFIG_SERIAL_AMBA_PL011),
2969 	},
2970 };
2971 
2972 static const struct amba_id pl011_ids[] = {
2973 	{
2974 		.id	= 0x00041011,
2975 		.mask	= 0x000fffff,
2976 		.data	= &vendor_arm,
2977 	},
2978 	{
2979 		.id	= 0x00380802,
2980 		.mask	= 0x00ffffff,
2981 		.data	= &vendor_st,
2982 	},
2983 	{ 0, 0 },
2984 };
2985 
2986 MODULE_DEVICE_TABLE(amba, pl011_ids);
2987 
2988 static struct amba_driver pl011_driver = {
2989 	.drv = {
2990 		.name	= "uart-pl011",
2991 		.pm	= &pl011_dev_pm_ops,
2992 		.suppress_bind_attrs = IS_BUILTIN(CONFIG_SERIAL_AMBA_PL011),
2993 	},
2994 	.id_table	= pl011_ids,
2995 	.probe		= pl011_probe,
2996 	.remove		= pl011_remove,
2997 };
2998 
2999 static int __init pl011_init(void)
3000 {
3001 	printk(KERN_INFO "Serial: AMBA PL011 UART driver\n");
3002 
3003 	if (platform_driver_register(&arm_sbsa_uart_platform_driver))
3004 		pr_warn("could not register SBSA UART platform driver\n");
3005 	return amba_driver_register(&pl011_driver);
3006 }
3007 
3008 static void __exit pl011_exit(void)
3009 {
3010 	platform_driver_unregister(&arm_sbsa_uart_platform_driver);
3011 	amba_driver_unregister(&pl011_driver);
3012 }
3013 
3014 /*
3015  * While this can be a module, if builtin it's most likely the console
3016  * So let's leave module_exit but move module_init to an earlier place
3017  */
3018 arch_initcall(pl011_init);
3019 module_exit(pl011_exit);
3020 
3021 MODULE_AUTHOR("ARM Ltd/Deep Blue Solutions Ltd");
3022 MODULE_DESCRIPTION("ARM AMBA serial port driver");
3023 MODULE_LICENSE("GPL");
3024