1 /* 2 * Driver for AMBA serial ports 3 * 4 * Based on drivers/char/serial.c, by Linus Torvalds, Theodore Ts'o. 5 * 6 * Copyright 1999 ARM Limited 7 * Copyright (C) 2000 Deep Blue Solutions Ltd. 8 * Copyright (C) 2010 ST-Ericsson SA 9 * 10 * This program is free software; you can redistribute it and/or modify 11 * it under the terms of the GNU General Public License as published by 12 * the Free Software Foundation; either version 2 of the License, or 13 * (at your option) any later version. 14 * 15 * This program is distributed in the hope that it will be useful, 16 * but WITHOUT ANY WARRANTY; without even the implied warranty of 17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 18 * GNU General Public License for more details. 19 * 20 * You should have received a copy of the GNU General Public License 21 * along with this program; if not, write to the Free Software 22 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 23 * 24 * This is a generic driver for ARM AMBA-type serial ports. They 25 * have a lot of 16550-like features, but are not register compatible. 26 * Note that although they do have CTS, DCD and DSR inputs, they do 27 * not have an RI input, nor do they have DTR or RTS outputs. If 28 * required, these have to be supplied via some other means (eg, GPIO) 29 * and hooked into this driver. 30 */ 31 32 33 #if defined(CONFIG_SERIAL_AMBA_PL011_CONSOLE) && defined(CONFIG_MAGIC_SYSRQ) 34 #define SUPPORT_SYSRQ 35 #endif 36 37 #include <linux/module.h> 38 #include <linux/ioport.h> 39 #include <linux/init.h> 40 #include <linux/console.h> 41 #include <linux/sysrq.h> 42 #include <linux/device.h> 43 #include <linux/tty.h> 44 #include <linux/tty_flip.h> 45 #include <linux/serial_core.h> 46 #include <linux/serial.h> 47 #include <linux/amba/bus.h> 48 #include <linux/amba/serial.h> 49 #include <linux/clk.h> 50 #include <linux/slab.h> 51 #include <linux/dmaengine.h> 52 #include <linux/dma-mapping.h> 53 #include <linux/scatterlist.h> 54 #include <linux/delay.h> 55 #include <linux/types.h> 56 #include <linux/of.h> 57 #include <linux/of_device.h> 58 #include <linux/pinctrl/consumer.h> 59 #include <linux/sizes.h> 60 #include <linux/io.h> 61 62 #define UART_NR 14 63 64 #define SERIAL_AMBA_MAJOR 204 65 #define SERIAL_AMBA_MINOR 64 66 #define SERIAL_AMBA_NR UART_NR 67 68 #define AMBA_ISR_PASS_LIMIT 256 69 70 #define UART_DR_ERROR (UART011_DR_OE|UART011_DR_BE|UART011_DR_PE|UART011_DR_FE) 71 #define UART_DUMMY_DR_RX (1 << 16) 72 73 /* There is by now at least one vendor with differing details, so handle it */ 74 struct vendor_data { 75 unsigned int ifls; 76 unsigned int lcrh_tx; 77 unsigned int lcrh_rx; 78 bool oversampling; 79 bool dma_threshold; 80 bool cts_event_workaround; 81 82 unsigned int (*get_fifosize)(struct amba_device *dev); 83 }; 84 85 static unsigned int get_fifosize_arm(struct amba_device *dev) 86 { 87 return amba_rev(dev) < 3 ? 16 : 32; 88 } 89 90 static struct vendor_data vendor_arm = { 91 .ifls = UART011_IFLS_RX4_8|UART011_IFLS_TX4_8, 92 .lcrh_tx = UART011_LCRH, 93 .lcrh_rx = UART011_LCRH, 94 .oversampling = false, 95 .dma_threshold = false, 96 .cts_event_workaround = false, 97 .get_fifosize = get_fifosize_arm, 98 }; 99 100 static unsigned int get_fifosize_st(struct amba_device *dev) 101 { 102 return 64; 103 } 104 105 static struct vendor_data vendor_st = { 106 .ifls = UART011_IFLS_RX_HALF|UART011_IFLS_TX_HALF, 107 .lcrh_tx = ST_UART011_LCRH_TX, 108 .lcrh_rx = ST_UART011_LCRH_RX, 109 .oversampling = true, 110 .dma_threshold = true, 111 .cts_event_workaround = true, 112 .get_fifosize = get_fifosize_st, 113 }; 114 115 /* Deals with DMA transactions */ 116 117 struct pl011_sgbuf { 118 struct scatterlist sg; 119 char *buf; 120 }; 121 122 struct pl011_dmarx_data { 123 struct dma_chan *chan; 124 struct completion complete; 125 bool use_buf_b; 126 struct pl011_sgbuf sgbuf_a; 127 struct pl011_sgbuf sgbuf_b; 128 dma_cookie_t cookie; 129 bool running; 130 struct timer_list timer; 131 unsigned int last_residue; 132 unsigned long last_jiffies; 133 bool auto_poll_rate; 134 unsigned int poll_rate; 135 unsigned int poll_timeout; 136 }; 137 138 struct pl011_dmatx_data { 139 struct dma_chan *chan; 140 struct scatterlist sg; 141 char *buf; 142 bool queued; 143 }; 144 145 /* 146 * We wrap our port structure around the generic uart_port. 147 */ 148 struct uart_amba_port { 149 struct uart_port port; 150 struct clk *clk; 151 const struct vendor_data *vendor; 152 unsigned int dmacr; /* dma control reg */ 153 unsigned int im; /* interrupt mask */ 154 unsigned int old_status; 155 unsigned int fifosize; /* vendor-specific */ 156 unsigned int lcrh_tx; /* vendor-specific */ 157 unsigned int lcrh_rx; /* vendor-specific */ 158 unsigned int old_cr; /* state during shutdown */ 159 bool autorts; 160 char type[12]; 161 #ifdef CONFIG_DMA_ENGINE 162 /* DMA stuff */ 163 bool using_tx_dma; 164 bool using_rx_dma; 165 struct pl011_dmarx_data dmarx; 166 struct pl011_dmatx_data dmatx; 167 #endif 168 }; 169 170 /* 171 * Reads up to 256 characters from the FIFO or until it's empty and 172 * inserts them into the TTY layer. Returns the number of characters 173 * read from the FIFO. 174 */ 175 static int pl011_fifo_to_tty(struct uart_amba_port *uap) 176 { 177 u16 status, ch; 178 unsigned int flag, max_count = 256; 179 int fifotaken = 0; 180 181 while (max_count--) { 182 status = readw(uap->port.membase + UART01x_FR); 183 if (status & UART01x_FR_RXFE) 184 break; 185 186 /* Take chars from the FIFO and update status */ 187 ch = readw(uap->port.membase + UART01x_DR) | 188 UART_DUMMY_DR_RX; 189 flag = TTY_NORMAL; 190 uap->port.icount.rx++; 191 fifotaken++; 192 193 if (unlikely(ch & UART_DR_ERROR)) { 194 if (ch & UART011_DR_BE) { 195 ch &= ~(UART011_DR_FE | UART011_DR_PE); 196 uap->port.icount.brk++; 197 if (uart_handle_break(&uap->port)) 198 continue; 199 } else if (ch & UART011_DR_PE) 200 uap->port.icount.parity++; 201 else if (ch & UART011_DR_FE) 202 uap->port.icount.frame++; 203 if (ch & UART011_DR_OE) 204 uap->port.icount.overrun++; 205 206 ch &= uap->port.read_status_mask; 207 208 if (ch & UART011_DR_BE) 209 flag = TTY_BREAK; 210 else if (ch & UART011_DR_PE) 211 flag = TTY_PARITY; 212 else if (ch & UART011_DR_FE) 213 flag = TTY_FRAME; 214 } 215 216 if (uart_handle_sysrq_char(&uap->port, ch & 255)) 217 continue; 218 219 uart_insert_char(&uap->port, ch, UART011_DR_OE, ch, flag); 220 } 221 222 return fifotaken; 223 } 224 225 226 /* 227 * All the DMA operation mode stuff goes inside this ifdef. 228 * This assumes that you have a generic DMA device interface, 229 * no custom DMA interfaces are supported. 230 */ 231 #ifdef CONFIG_DMA_ENGINE 232 233 #define PL011_DMA_BUFFER_SIZE PAGE_SIZE 234 235 static int pl011_sgbuf_init(struct dma_chan *chan, struct pl011_sgbuf *sg, 236 enum dma_data_direction dir) 237 { 238 dma_addr_t dma_addr; 239 240 sg->buf = dma_alloc_coherent(chan->device->dev, 241 PL011_DMA_BUFFER_SIZE, &dma_addr, GFP_KERNEL); 242 if (!sg->buf) 243 return -ENOMEM; 244 245 sg_init_table(&sg->sg, 1); 246 sg_set_page(&sg->sg, phys_to_page(dma_addr), 247 PL011_DMA_BUFFER_SIZE, offset_in_page(dma_addr)); 248 sg_dma_address(&sg->sg) = dma_addr; 249 sg_dma_len(&sg->sg) = PL011_DMA_BUFFER_SIZE; 250 251 return 0; 252 } 253 254 static void pl011_sgbuf_free(struct dma_chan *chan, struct pl011_sgbuf *sg, 255 enum dma_data_direction dir) 256 { 257 if (sg->buf) { 258 dma_free_coherent(chan->device->dev, 259 PL011_DMA_BUFFER_SIZE, sg->buf, 260 sg_dma_address(&sg->sg)); 261 } 262 } 263 264 static void pl011_dma_probe_initcall(struct device *dev, struct uart_amba_port *uap) 265 { 266 /* DMA is the sole user of the platform data right now */ 267 struct amba_pl011_data *plat = dev_get_platdata(uap->port.dev); 268 struct dma_slave_config tx_conf = { 269 .dst_addr = uap->port.mapbase + UART01x_DR, 270 .dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE, 271 .direction = DMA_MEM_TO_DEV, 272 .dst_maxburst = uap->fifosize >> 1, 273 .device_fc = false, 274 }; 275 struct dma_chan *chan; 276 dma_cap_mask_t mask; 277 278 chan = dma_request_slave_channel(dev, "tx"); 279 280 if (!chan) { 281 /* We need platform data */ 282 if (!plat || !plat->dma_filter) { 283 dev_info(uap->port.dev, "no DMA platform data\n"); 284 return; 285 } 286 287 /* Try to acquire a generic DMA engine slave TX channel */ 288 dma_cap_zero(mask); 289 dma_cap_set(DMA_SLAVE, mask); 290 291 chan = dma_request_channel(mask, plat->dma_filter, 292 plat->dma_tx_param); 293 if (!chan) { 294 dev_err(uap->port.dev, "no TX DMA channel!\n"); 295 return; 296 } 297 } 298 299 dmaengine_slave_config(chan, &tx_conf); 300 uap->dmatx.chan = chan; 301 302 dev_info(uap->port.dev, "DMA channel TX %s\n", 303 dma_chan_name(uap->dmatx.chan)); 304 305 /* Optionally make use of an RX channel as well */ 306 chan = dma_request_slave_channel(dev, "rx"); 307 308 if (!chan && plat->dma_rx_param) { 309 chan = dma_request_channel(mask, plat->dma_filter, plat->dma_rx_param); 310 311 if (!chan) { 312 dev_err(uap->port.dev, "no RX DMA channel!\n"); 313 return; 314 } 315 } 316 317 if (chan) { 318 struct dma_slave_config rx_conf = { 319 .src_addr = uap->port.mapbase + UART01x_DR, 320 .src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE, 321 .direction = DMA_DEV_TO_MEM, 322 .src_maxburst = uap->fifosize >> 2, 323 .device_fc = false, 324 }; 325 struct dma_slave_caps caps; 326 327 /* 328 * Some DMA controllers provide information on their capabilities. 329 * If the controller does, check for suitable residue processing 330 * otherwise assime all is well. 331 */ 332 if (0 == dma_get_slave_caps(chan, &caps)) { 333 if (caps.residue_granularity == 334 DMA_RESIDUE_GRANULARITY_DESCRIPTOR) { 335 dma_release_channel(chan); 336 dev_info(uap->port.dev, 337 "RX DMA disabled - no residue processing\n"); 338 return; 339 } 340 } 341 dmaengine_slave_config(chan, &rx_conf); 342 uap->dmarx.chan = chan; 343 344 uap->dmarx.auto_poll_rate = false; 345 if (plat && plat->dma_rx_poll_enable) { 346 /* Set poll rate if specified. */ 347 if (plat->dma_rx_poll_rate) { 348 uap->dmarx.auto_poll_rate = false; 349 uap->dmarx.poll_rate = plat->dma_rx_poll_rate; 350 } else { 351 /* 352 * 100 ms defaults to poll rate if not 353 * specified. This will be adjusted with 354 * the baud rate at set_termios. 355 */ 356 uap->dmarx.auto_poll_rate = true; 357 uap->dmarx.poll_rate = 100; 358 } 359 /* 3 secs defaults poll_timeout if not specified. */ 360 if (plat->dma_rx_poll_timeout) 361 uap->dmarx.poll_timeout = 362 plat->dma_rx_poll_timeout; 363 else 364 uap->dmarx.poll_timeout = 3000; 365 } else if (!plat && dev->of_node) { 366 uap->dmarx.auto_poll_rate = of_property_read_bool( 367 dev->of_node, "auto-poll"); 368 if (uap->dmarx.auto_poll_rate) { 369 u32 x; 370 371 if (0 == of_property_read_u32(dev->of_node, 372 "poll-rate-ms", &x)) 373 uap->dmarx.poll_rate = x; 374 else 375 uap->dmarx.poll_rate = 100; 376 if (0 == of_property_read_u32(dev->of_node, 377 "poll-timeout-ms", &x)) 378 uap->dmarx.poll_timeout = x; 379 else 380 uap->dmarx.poll_timeout = 3000; 381 } 382 } 383 dev_info(uap->port.dev, "DMA channel RX %s\n", 384 dma_chan_name(uap->dmarx.chan)); 385 } 386 } 387 388 #ifndef MODULE 389 /* 390 * Stack up the UARTs and let the above initcall be done at device 391 * initcall time, because the serial driver is called as an arch 392 * initcall, and at this time the DMA subsystem is not yet registered. 393 * At this point the driver will switch over to using DMA where desired. 394 */ 395 struct dma_uap { 396 struct list_head node; 397 struct uart_amba_port *uap; 398 struct device *dev; 399 }; 400 401 static LIST_HEAD(pl011_dma_uarts); 402 403 static int __init pl011_dma_initcall(void) 404 { 405 struct list_head *node, *tmp; 406 407 list_for_each_safe(node, tmp, &pl011_dma_uarts) { 408 struct dma_uap *dmau = list_entry(node, struct dma_uap, node); 409 pl011_dma_probe_initcall(dmau->dev, dmau->uap); 410 list_del(node); 411 kfree(dmau); 412 } 413 return 0; 414 } 415 416 device_initcall(pl011_dma_initcall); 417 418 static void pl011_dma_probe(struct device *dev, struct uart_amba_port *uap) 419 { 420 struct dma_uap *dmau = kzalloc(sizeof(struct dma_uap), GFP_KERNEL); 421 if (dmau) { 422 dmau->uap = uap; 423 dmau->dev = dev; 424 list_add_tail(&dmau->node, &pl011_dma_uarts); 425 } 426 } 427 #else 428 static void pl011_dma_probe(struct device *dev, struct uart_amba_port *uap) 429 { 430 pl011_dma_probe_initcall(dev, uap); 431 } 432 #endif 433 434 static void pl011_dma_remove(struct uart_amba_port *uap) 435 { 436 /* TODO: remove the initcall if it has not yet executed */ 437 if (uap->dmatx.chan) 438 dma_release_channel(uap->dmatx.chan); 439 if (uap->dmarx.chan) 440 dma_release_channel(uap->dmarx.chan); 441 } 442 443 /* Forward declare this for the refill routine */ 444 static int pl011_dma_tx_refill(struct uart_amba_port *uap); 445 446 /* 447 * The current DMA TX buffer has been sent. 448 * Try to queue up another DMA buffer. 449 */ 450 static void pl011_dma_tx_callback(void *data) 451 { 452 struct uart_amba_port *uap = data; 453 struct pl011_dmatx_data *dmatx = &uap->dmatx; 454 unsigned long flags; 455 u16 dmacr; 456 457 spin_lock_irqsave(&uap->port.lock, flags); 458 if (uap->dmatx.queued) 459 dma_unmap_sg(dmatx->chan->device->dev, &dmatx->sg, 1, 460 DMA_TO_DEVICE); 461 462 dmacr = uap->dmacr; 463 uap->dmacr = dmacr & ~UART011_TXDMAE; 464 writew(uap->dmacr, uap->port.membase + UART011_DMACR); 465 466 /* 467 * If TX DMA was disabled, it means that we've stopped the DMA for 468 * some reason (eg, XOFF received, or we want to send an X-char.) 469 * 470 * Note: we need to be careful here of a potential race between DMA 471 * and the rest of the driver - if the driver disables TX DMA while 472 * a TX buffer completing, we must update the tx queued status to 473 * get further refills (hence we check dmacr). 474 */ 475 if (!(dmacr & UART011_TXDMAE) || uart_tx_stopped(&uap->port) || 476 uart_circ_empty(&uap->port.state->xmit)) { 477 uap->dmatx.queued = false; 478 spin_unlock_irqrestore(&uap->port.lock, flags); 479 return; 480 } 481 482 if (pl011_dma_tx_refill(uap) <= 0) { 483 /* 484 * We didn't queue a DMA buffer for some reason, but we 485 * have data pending to be sent. Re-enable the TX IRQ. 486 */ 487 uap->im |= UART011_TXIM; 488 writew(uap->im, uap->port.membase + UART011_IMSC); 489 } 490 spin_unlock_irqrestore(&uap->port.lock, flags); 491 } 492 493 /* 494 * Try to refill the TX DMA buffer. 495 * Locking: called with port lock held and IRQs disabled. 496 * Returns: 497 * 1 if we queued up a TX DMA buffer. 498 * 0 if we didn't want to handle this by DMA 499 * <0 on error 500 */ 501 static int pl011_dma_tx_refill(struct uart_amba_port *uap) 502 { 503 struct pl011_dmatx_data *dmatx = &uap->dmatx; 504 struct dma_chan *chan = dmatx->chan; 505 struct dma_device *dma_dev = chan->device; 506 struct dma_async_tx_descriptor *desc; 507 struct circ_buf *xmit = &uap->port.state->xmit; 508 unsigned int count; 509 510 /* 511 * Try to avoid the overhead involved in using DMA if the 512 * transaction fits in the first half of the FIFO, by using 513 * the standard interrupt handling. This ensures that we 514 * issue a uart_write_wakeup() at the appropriate time. 515 */ 516 count = uart_circ_chars_pending(xmit); 517 if (count < (uap->fifosize >> 1)) { 518 uap->dmatx.queued = false; 519 return 0; 520 } 521 522 /* 523 * Bodge: don't send the last character by DMA, as this 524 * will prevent XON from notifying us to restart DMA. 525 */ 526 count -= 1; 527 528 /* Else proceed to copy the TX chars to the DMA buffer and fire DMA */ 529 if (count > PL011_DMA_BUFFER_SIZE) 530 count = PL011_DMA_BUFFER_SIZE; 531 532 if (xmit->tail < xmit->head) 533 memcpy(&dmatx->buf[0], &xmit->buf[xmit->tail], count); 534 else { 535 size_t first = UART_XMIT_SIZE - xmit->tail; 536 size_t second; 537 538 if (first > count) 539 first = count; 540 second = count - first; 541 542 memcpy(&dmatx->buf[0], &xmit->buf[xmit->tail], first); 543 if (second) 544 memcpy(&dmatx->buf[first], &xmit->buf[0], second); 545 } 546 547 dmatx->sg.length = count; 548 549 if (dma_map_sg(dma_dev->dev, &dmatx->sg, 1, DMA_TO_DEVICE) != 1) { 550 uap->dmatx.queued = false; 551 dev_dbg(uap->port.dev, "unable to map TX DMA\n"); 552 return -EBUSY; 553 } 554 555 desc = dmaengine_prep_slave_sg(chan, &dmatx->sg, 1, DMA_MEM_TO_DEV, 556 DMA_PREP_INTERRUPT | DMA_CTRL_ACK); 557 if (!desc) { 558 dma_unmap_sg(dma_dev->dev, &dmatx->sg, 1, DMA_TO_DEVICE); 559 uap->dmatx.queued = false; 560 /* 561 * If DMA cannot be used right now, we complete this 562 * transaction via IRQ and let the TTY layer retry. 563 */ 564 dev_dbg(uap->port.dev, "TX DMA busy\n"); 565 return -EBUSY; 566 } 567 568 /* Some data to go along to the callback */ 569 desc->callback = pl011_dma_tx_callback; 570 desc->callback_param = uap; 571 572 /* All errors should happen at prepare time */ 573 dmaengine_submit(desc); 574 575 /* Fire the DMA transaction */ 576 dma_dev->device_issue_pending(chan); 577 578 uap->dmacr |= UART011_TXDMAE; 579 writew(uap->dmacr, uap->port.membase + UART011_DMACR); 580 uap->dmatx.queued = true; 581 582 /* 583 * Now we know that DMA will fire, so advance the ring buffer 584 * with the stuff we just dispatched. 585 */ 586 xmit->tail = (xmit->tail + count) & (UART_XMIT_SIZE - 1); 587 uap->port.icount.tx += count; 588 589 if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS) 590 uart_write_wakeup(&uap->port); 591 592 return 1; 593 } 594 595 /* 596 * We received a transmit interrupt without a pending X-char but with 597 * pending characters. 598 * Locking: called with port lock held and IRQs disabled. 599 * Returns: 600 * false if we want to use PIO to transmit 601 * true if we queued a DMA buffer 602 */ 603 static bool pl011_dma_tx_irq(struct uart_amba_port *uap) 604 { 605 if (!uap->using_tx_dma) 606 return false; 607 608 /* 609 * If we already have a TX buffer queued, but received a 610 * TX interrupt, it will be because we've just sent an X-char. 611 * Ensure the TX DMA is enabled and the TX IRQ is disabled. 612 */ 613 if (uap->dmatx.queued) { 614 uap->dmacr |= UART011_TXDMAE; 615 writew(uap->dmacr, uap->port.membase + UART011_DMACR); 616 uap->im &= ~UART011_TXIM; 617 writew(uap->im, uap->port.membase + UART011_IMSC); 618 return true; 619 } 620 621 /* 622 * We don't have a TX buffer queued, so try to queue one. 623 * If we successfully queued a buffer, mask the TX IRQ. 624 */ 625 if (pl011_dma_tx_refill(uap) > 0) { 626 uap->im &= ~UART011_TXIM; 627 writew(uap->im, uap->port.membase + UART011_IMSC); 628 return true; 629 } 630 return false; 631 } 632 633 /* 634 * Stop the DMA transmit (eg, due to received XOFF). 635 * Locking: called with port lock held and IRQs disabled. 636 */ 637 static inline void pl011_dma_tx_stop(struct uart_amba_port *uap) 638 { 639 if (uap->dmatx.queued) { 640 uap->dmacr &= ~UART011_TXDMAE; 641 writew(uap->dmacr, uap->port.membase + UART011_DMACR); 642 } 643 } 644 645 /* 646 * Try to start a DMA transmit, or in the case of an XON/OFF 647 * character queued for send, try to get that character out ASAP. 648 * Locking: called with port lock held and IRQs disabled. 649 * Returns: 650 * false if we want the TX IRQ to be enabled 651 * true if we have a buffer queued 652 */ 653 static inline bool pl011_dma_tx_start(struct uart_amba_port *uap) 654 { 655 u16 dmacr; 656 657 if (!uap->using_tx_dma) 658 return false; 659 660 if (!uap->port.x_char) { 661 /* no X-char, try to push chars out in DMA mode */ 662 bool ret = true; 663 664 if (!uap->dmatx.queued) { 665 if (pl011_dma_tx_refill(uap) > 0) { 666 uap->im &= ~UART011_TXIM; 667 ret = true; 668 } else { 669 uap->im |= UART011_TXIM; 670 ret = false; 671 } 672 writew(uap->im, uap->port.membase + UART011_IMSC); 673 } else if (!(uap->dmacr & UART011_TXDMAE)) { 674 uap->dmacr |= UART011_TXDMAE; 675 writew(uap->dmacr, 676 uap->port.membase + UART011_DMACR); 677 } 678 return ret; 679 } 680 681 /* 682 * We have an X-char to send. Disable DMA to prevent it loading 683 * the TX fifo, and then see if we can stuff it into the FIFO. 684 */ 685 dmacr = uap->dmacr; 686 uap->dmacr &= ~UART011_TXDMAE; 687 writew(uap->dmacr, uap->port.membase + UART011_DMACR); 688 689 if (readw(uap->port.membase + UART01x_FR) & UART01x_FR_TXFF) { 690 /* 691 * No space in the FIFO, so enable the transmit interrupt 692 * so we know when there is space. Note that once we've 693 * loaded the character, we should just re-enable DMA. 694 */ 695 return false; 696 } 697 698 writew(uap->port.x_char, uap->port.membase + UART01x_DR); 699 uap->port.icount.tx++; 700 uap->port.x_char = 0; 701 702 /* Success - restore the DMA state */ 703 uap->dmacr = dmacr; 704 writew(dmacr, uap->port.membase + UART011_DMACR); 705 706 return true; 707 } 708 709 /* 710 * Flush the transmit buffer. 711 * Locking: called with port lock held and IRQs disabled. 712 */ 713 static void pl011_dma_flush_buffer(struct uart_port *port) 714 __releases(&uap->port.lock) 715 __acquires(&uap->port.lock) 716 { 717 struct uart_amba_port *uap = 718 container_of(port, struct uart_amba_port, port); 719 720 if (!uap->using_tx_dma) 721 return; 722 723 /* Avoid deadlock with the DMA engine callback */ 724 spin_unlock(&uap->port.lock); 725 dmaengine_terminate_all(uap->dmatx.chan); 726 spin_lock(&uap->port.lock); 727 if (uap->dmatx.queued) { 728 dma_unmap_sg(uap->dmatx.chan->device->dev, &uap->dmatx.sg, 1, 729 DMA_TO_DEVICE); 730 uap->dmatx.queued = false; 731 uap->dmacr &= ~UART011_TXDMAE; 732 writew(uap->dmacr, uap->port.membase + UART011_DMACR); 733 } 734 } 735 736 static void pl011_dma_rx_callback(void *data); 737 738 static int pl011_dma_rx_trigger_dma(struct uart_amba_port *uap) 739 { 740 struct dma_chan *rxchan = uap->dmarx.chan; 741 struct pl011_dmarx_data *dmarx = &uap->dmarx; 742 struct dma_async_tx_descriptor *desc; 743 struct pl011_sgbuf *sgbuf; 744 745 if (!rxchan) 746 return -EIO; 747 748 /* Start the RX DMA job */ 749 sgbuf = uap->dmarx.use_buf_b ? 750 &uap->dmarx.sgbuf_b : &uap->dmarx.sgbuf_a; 751 desc = dmaengine_prep_slave_sg(rxchan, &sgbuf->sg, 1, 752 DMA_DEV_TO_MEM, 753 DMA_PREP_INTERRUPT | DMA_CTRL_ACK); 754 /* 755 * If the DMA engine is busy and cannot prepare a 756 * channel, no big deal, the driver will fall back 757 * to interrupt mode as a result of this error code. 758 */ 759 if (!desc) { 760 uap->dmarx.running = false; 761 dmaengine_terminate_all(rxchan); 762 return -EBUSY; 763 } 764 765 /* Some data to go along to the callback */ 766 desc->callback = pl011_dma_rx_callback; 767 desc->callback_param = uap; 768 dmarx->cookie = dmaengine_submit(desc); 769 dma_async_issue_pending(rxchan); 770 771 uap->dmacr |= UART011_RXDMAE; 772 writew(uap->dmacr, uap->port.membase + UART011_DMACR); 773 uap->dmarx.running = true; 774 775 uap->im &= ~UART011_RXIM; 776 writew(uap->im, uap->port.membase + UART011_IMSC); 777 778 return 0; 779 } 780 781 /* 782 * This is called when either the DMA job is complete, or 783 * the FIFO timeout interrupt occurred. This must be called 784 * with the port spinlock uap->port.lock held. 785 */ 786 static void pl011_dma_rx_chars(struct uart_amba_port *uap, 787 u32 pending, bool use_buf_b, 788 bool readfifo) 789 { 790 struct tty_port *port = &uap->port.state->port; 791 struct pl011_sgbuf *sgbuf = use_buf_b ? 792 &uap->dmarx.sgbuf_b : &uap->dmarx.sgbuf_a; 793 int dma_count = 0; 794 u32 fifotaken = 0; /* only used for vdbg() */ 795 796 struct pl011_dmarx_data *dmarx = &uap->dmarx; 797 int dmataken = 0; 798 799 if (uap->dmarx.poll_rate) { 800 /* The data can be taken by polling */ 801 dmataken = sgbuf->sg.length - dmarx->last_residue; 802 /* Recalculate the pending size */ 803 if (pending >= dmataken) 804 pending -= dmataken; 805 } 806 807 /* Pick the remain data from the DMA */ 808 if (pending) { 809 810 /* 811 * First take all chars in the DMA pipe, then look in the FIFO. 812 * Note that tty_insert_flip_buf() tries to take as many chars 813 * as it can. 814 */ 815 dma_count = tty_insert_flip_string(port, sgbuf->buf + dmataken, 816 pending); 817 818 uap->port.icount.rx += dma_count; 819 if (dma_count < pending) 820 dev_warn(uap->port.dev, 821 "couldn't insert all characters (TTY is full?)\n"); 822 } 823 824 /* Reset the last_residue for Rx DMA poll */ 825 if (uap->dmarx.poll_rate) 826 dmarx->last_residue = sgbuf->sg.length; 827 828 /* 829 * Only continue with trying to read the FIFO if all DMA chars have 830 * been taken first. 831 */ 832 if (dma_count == pending && readfifo) { 833 /* Clear any error flags */ 834 writew(UART011_OEIS | UART011_BEIS | UART011_PEIS | UART011_FEIS, 835 uap->port.membase + UART011_ICR); 836 837 /* 838 * If we read all the DMA'd characters, and we had an 839 * incomplete buffer, that could be due to an rx error, or 840 * maybe we just timed out. Read any pending chars and check 841 * the error status. 842 * 843 * Error conditions will only occur in the FIFO, these will 844 * trigger an immediate interrupt and stop the DMA job, so we 845 * will always find the error in the FIFO, never in the DMA 846 * buffer. 847 */ 848 fifotaken = pl011_fifo_to_tty(uap); 849 } 850 851 spin_unlock(&uap->port.lock); 852 dev_vdbg(uap->port.dev, 853 "Took %d chars from DMA buffer and %d chars from the FIFO\n", 854 dma_count, fifotaken); 855 tty_flip_buffer_push(port); 856 spin_lock(&uap->port.lock); 857 } 858 859 static void pl011_dma_rx_irq(struct uart_amba_port *uap) 860 { 861 struct pl011_dmarx_data *dmarx = &uap->dmarx; 862 struct dma_chan *rxchan = dmarx->chan; 863 struct pl011_sgbuf *sgbuf = dmarx->use_buf_b ? 864 &dmarx->sgbuf_b : &dmarx->sgbuf_a; 865 size_t pending; 866 struct dma_tx_state state; 867 enum dma_status dmastat; 868 869 /* 870 * Pause the transfer so we can trust the current counter, 871 * do this before we pause the PL011 block, else we may 872 * overflow the FIFO. 873 */ 874 if (dmaengine_pause(rxchan)) 875 dev_err(uap->port.dev, "unable to pause DMA transfer\n"); 876 dmastat = rxchan->device->device_tx_status(rxchan, 877 dmarx->cookie, &state); 878 if (dmastat != DMA_PAUSED) 879 dev_err(uap->port.dev, "unable to pause DMA transfer\n"); 880 881 /* Disable RX DMA - incoming data will wait in the FIFO */ 882 uap->dmacr &= ~UART011_RXDMAE; 883 writew(uap->dmacr, uap->port.membase + UART011_DMACR); 884 uap->dmarx.running = false; 885 886 pending = sgbuf->sg.length - state.residue; 887 BUG_ON(pending > PL011_DMA_BUFFER_SIZE); 888 /* Then we terminate the transfer - we now know our residue */ 889 dmaengine_terminate_all(rxchan); 890 891 /* 892 * This will take the chars we have so far and insert 893 * into the framework. 894 */ 895 pl011_dma_rx_chars(uap, pending, dmarx->use_buf_b, true); 896 897 /* Switch buffer & re-trigger DMA job */ 898 dmarx->use_buf_b = !dmarx->use_buf_b; 899 if (pl011_dma_rx_trigger_dma(uap)) { 900 dev_dbg(uap->port.dev, "could not retrigger RX DMA job " 901 "fall back to interrupt mode\n"); 902 uap->im |= UART011_RXIM; 903 writew(uap->im, uap->port.membase + UART011_IMSC); 904 } 905 } 906 907 static void pl011_dma_rx_callback(void *data) 908 { 909 struct uart_amba_port *uap = data; 910 struct pl011_dmarx_data *dmarx = &uap->dmarx; 911 struct dma_chan *rxchan = dmarx->chan; 912 bool lastbuf = dmarx->use_buf_b; 913 struct pl011_sgbuf *sgbuf = dmarx->use_buf_b ? 914 &dmarx->sgbuf_b : &dmarx->sgbuf_a; 915 size_t pending; 916 struct dma_tx_state state; 917 int ret; 918 919 /* 920 * This completion interrupt occurs typically when the 921 * RX buffer is totally stuffed but no timeout has yet 922 * occurred. When that happens, we just want the RX 923 * routine to flush out the secondary DMA buffer while 924 * we immediately trigger the next DMA job. 925 */ 926 spin_lock_irq(&uap->port.lock); 927 /* 928 * Rx data can be taken by the UART interrupts during 929 * the DMA irq handler. So we check the residue here. 930 */ 931 rxchan->device->device_tx_status(rxchan, dmarx->cookie, &state); 932 pending = sgbuf->sg.length - state.residue; 933 BUG_ON(pending > PL011_DMA_BUFFER_SIZE); 934 /* Then we terminate the transfer - we now know our residue */ 935 dmaengine_terminate_all(rxchan); 936 937 uap->dmarx.running = false; 938 dmarx->use_buf_b = !lastbuf; 939 ret = pl011_dma_rx_trigger_dma(uap); 940 941 pl011_dma_rx_chars(uap, pending, lastbuf, false); 942 spin_unlock_irq(&uap->port.lock); 943 /* 944 * Do this check after we picked the DMA chars so we don't 945 * get some IRQ immediately from RX. 946 */ 947 if (ret) { 948 dev_dbg(uap->port.dev, "could not retrigger RX DMA job " 949 "fall back to interrupt mode\n"); 950 uap->im |= UART011_RXIM; 951 writew(uap->im, uap->port.membase + UART011_IMSC); 952 } 953 } 954 955 /* 956 * Stop accepting received characters, when we're shutting down or 957 * suspending this port. 958 * Locking: called with port lock held and IRQs disabled. 959 */ 960 static inline void pl011_dma_rx_stop(struct uart_amba_port *uap) 961 { 962 /* FIXME. Just disable the DMA enable */ 963 uap->dmacr &= ~UART011_RXDMAE; 964 writew(uap->dmacr, uap->port.membase + UART011_DMACR); 965 } 966 967 /* 968 * Timer handler for Rx DMA polling. 969 * Every polling, It checks the residue in the dma buffer and transfer 970 * data to the tty. Also, last_residue is updated for the next polling. 971 */ 972 static void pl011_dma_rx_poll(unsigned long args) 973 { 974 struct uart_amba_port *uap = (struct uart_amba_port *)args; 975 struct tty_port *port = &uap->port.state->port; 976 struct pl011_dmarx_data *dmarx = &uap->dmarx; 977 struct dma_chan *rxchan = uap->dmarx.chan; 978 unsigned long flags = 0; 979 unsigned int dmataken = 0; 980 unsigned int size = 0; 981 struct pl011_sgbuf *sgbuf; 982 int dma_count; 983 struct dma_tx_state state; 984 985 sgbuf = dmarx->use_buf_b ? &uap->dmarx.sgbuf_b : &uap->dmarx.sgbuf_a; 986 rxchan->device->device_tx_status(rxchan, dmarx->cookie, &state); 987 if (likely(state.residue < dmarx->last_residue)) { 988 dmataken = sgbuf->sg.length - dmarx->last_residue; 989 size = dmarx->last_residue - state.residue; 990 dma_count = tty_insert_flip_string(port, sgbuf->buf + dmataken, 991 size); 992 if (dma_count == size) 993 dmarx->last_residue = state.residue; 994 dmarx->last_jiffies = jiffies; 995 } 996 tty_flip_buffer_push(port); 997 998 /* 999 * If no data is received in poll_timeout, the driver will fall back 1000 * to interrupt mode. We will retrigger DMA at the first interrupt. 1001 */ 1002 if (jiffies_to_msecs(jiffies - dmarx->last_jiffies) 1003 > uap->dmarx.poll_timeout) { 1004 1005 spin_lock_irqsave(&uap->port.lock, flags); 1006 pl011_dma_rx_stop(uap); 1007 uap->im |= UART011_RXIM; 1008 writew(uap->im, uap->port.membase + UART011_IMSC); 1009 spin_unlock_irqrestore(&uap->port.lock, flags); 1010 1011 uap->dmarx.running = false; 1012 dmaengine_terminate_all(rxchan); 1013 del_timer(&uap->dmarx.timer); 1014 } else { 1015 mod_timer(&uap->dmarx.timer, 1016 jiffies + msecs_to_jiffies(uap->dmarx.poll_rate)); 1017 } 1018 } 1019 1020 static void pl011_dma_startup(struct uart_amba_port *uap) 1021 { 1022 int ret; 1023 1024 if (!uap->dmatx.chan) 1025 return; 1026 1027 uap->dmatx.buf = kmalloc(PL011_DMA_BUFFER_SIZE, GFP_KERNEL | __GFP_DMA); 1028 if (!uap->dmatx.buf) { 1029 dev_err(uap->port.dev, "no memory for DMA TX buffer\n"); 1030 uap->port.fifosize = uap->fifosize; 1031 return; 1032 } 1033 1034 sg_init_one(&uap->dmatx.sg, uap->dmatx.buf, PL011_DMA_BUFFER_SIZE); 1035 1036 /* The DMA buffer is now the FIFO the TTY subsystem can use */ 1037 uap->port.fifosize = PL011_DMA_BUFFER_SIZE; 1038 uap->using_tx_dma = true; 1039 1040 if (!uap->dmarx.chan) 1041 goto skip_rx; 1042 1043 /* Allocate and map DMA RX buffers */ 1044 ret = pl011_sgbuf_init(uap->dmarx.chan, &uap->dmarx.sgbuf_a, 1045 DMA_FROM_DEVICE); 1046 if (ret) { 1047 dev_err(uap->port.dev, "failed to init DMA %s: %d\n", 1048 "RX buffer A", ret); 1049 goto skip_rx; 1050 } 1051 1052 ret = pl011_sgbuf_init(uap->dmarx.chan, &uap->dmarx.sgbuf_b, 1053 DMA_FROM_DEVICE); 1054 if (ret) { 1055 dev_err(uap->port.dev, "failed to init DMA %s: %d\n", 1056 "RX buffer B", ret); 1057 pl011_sgbuf_free(uap->dmarx.chan, &uap->dmarx.sgbuf_a, 1058 DMA_FROM_DEVICE); 1059 goto skip_rx; 1060 } 1061 1062 uap->using_rx_dma = true; 1063 1064 skip_rx: 1065 /* Turn on DMA error (RX/TX will be enabled on demand) */ 1066 uap->dmacr |= UART011_DMAONERR; 1067 writew(uap->dmacr, uap->port.membase + UART011_DMACR); 1068 1069 /* 1070 * ST Micro variants has some specific dma burst threshold 1071 * compensation. Set this to 16 bytes, so burst will only 1072 * be issued above/below 16 bytes. 1073 */ 1074 if (uap->vendor->dma_threshold) 1075 writew(ST_UART011_DMAWM_RX_16 | ST_UART011_DMAWM_TX_16, 1076 uap->port.membase + ST_UART011_DMAWM); 1077 1078 if (uap->using_rx_dma) { 1079 if (pl011_dma_rx_trigger_dma(uap)) 1080 dev_dbg(uap->port.dev, "could not trigger initial " 1081 "RX DMA job, fall back to interrupt mode\n"); 1082 if (uap->dmarx.poll_rate) { 1083 init_timer(&(uap->dmarx.timer)); 1084 uap->dmarx.timer.function = pl011_dma_rx_poll; 1085 uap->dmarx.timer.data = (unsigned long)uap; 1086 mod_timer(&uap->dmarx.timer, 1087 jiffies + 1088 msecs_to_jiffies(uap->dmarx.poll_rate)); 1089 uap->dmarx.last_residue = PL011_DMA_BUFFER_SIZE; 1090 uap->dmarx.last_jiffies = jiffies; 1091 } 1092 } 1093 } 1094 1095 static void pl011_dma_shutdown(struct uart_amba_port *uap) 1096 { 1097 if (!(uap->using_tx_dma || uap->using_rx_dma)) 1098 return; 1099 1100 /* Disable RX and TX DMA */ 1101 while (readw(uap->port.membase + UART01x_FR) & UART01x_FR_BUSY) 1102 barrier(); 1103 1104 spin_lock_irq(&uap->port.lock); 1105 uap->dmacr &= ~(UART011_DMAONERR | UART011_RXDMAE | UART011_TXDMAE); 1106 writew(uap->dmacr, uap->port.membase + UART011_DMACR); 1107 spin_unlock_irq(&uap->port.lock); 1108 1109 if (uap->using_tx_dma) { 1110 /* In theory, this should already be done by pl011_dma_flush_buffer */ 1111 dmaengine_terminate_all(uap->dmatx.chan); 1112 if (uap->dmatx.queued) { 1113 dma_unmap_sg(uap->dmatx.chan->device->dev, &uap->dmatx.sg, 1, 1114 DMA_TO_DEVICE); 1115 uap->dmatx.queued = false; 1116 } 1117 1118 kfree(uap->dmatx.buf); 1119 uap->using_tx_dma = false; 1120 } 1121 1122 if (uap->using_rx_dma) { 1123 dmaengine_terminate_all(uap->dmarx.chan); 1124 /* Clean up the RX DMA */ 1125 pl011_sgbuf_free(uap->dmarx.chan, &uap->dmarx.sgbuf_a, DMA_FROM_DEVICE); 1126 pl011_sgbuf_free(uap->dmarx.chan, &uap->dmarx.sgbuf_b, DMA_FROM_DEVICE); 1127 if (uap->dmarx.poll_rate) 1128 del_timer_sync(&uap->dmarx.timer); 1129 uap->using_rx_dma = false; 1130 } 1131 } 1132 1133 static inline bool pl011_dma_rx_available(struct uart_amba_port *uap) 1134 { 1135 return uap->using_rx_dma; 1136 } 1137 1138 static inline bool pl011_dma_rx_running(struct uart_amba_port *uap) 1139 { 1140 return uap->using_rx_dma && uap->dmarx.running; 1141 } 1142 1143 #else 1144 /* Blank functions if the DMA engine is not available */ 1145 static inline void pl011_dma_probe(struct device *dev, struct uart_amba_port *uap) 1146 { 1147 } 1148 1149 static inline void pl011_dma_remove(struct uart_amba_port *uap) 1150 { 1151 } 1152 1153 static inline void pl011_dma_startup(struct uart_amba_port *uap) 1154 { 1155 } 1156 1157 static inline void pl011_dma_shutdown(struct uart_amba_port *uap) 1158 { 1159 } 1160 1161 static inline bool pl011_dma_tx_irq(struct uart_amba_port *uap) 1162 { 1163 return false; 1164 } 1165 1166 static inline void pl011_dma_tx_stop(struct uart_amba_port *uap) 1167 { 1168 } 1169 1170 static inline bool pl011_dma_tx_start(struct uart_amba_port *uap) 1171 { 1172 return false; 1173 } 1174 1175 static inline void pl011_dma_rx_irq(struct uart_amba_port *uap) 1176 { 1177 } 1178 1179 static inline void pl011_dma_rx_stop(struct uart_amba_port *uap) 1180 { 1181 } 1182 1183 static inline int pl011_dma_rx_trigger_dma(struct uart_amba_port *uap) 1184 { 1185 return -EIO; 1186 } 1187 1188 static inline bool pl011_dma_rx_available(struct uart_amba_port *uap) 1189 { 1190 return false; 1191 } 1192 1193 static inline bool pl011_dma_rx_running(struct uart_amba_port *uap) 1194 { 1195 return false; 1196 } 1197 1198 #define pl011_dma_flush_buffer NULL 1199 #endif 1200 1201 static void pl011_stop_tx(struct uart_port *port) 1202 { 1203 struct uart_amba_port *uap = 1204 container_of(port, struct uart_amba_port, port); 1205 1206 uap->im &= ~UART011_TXIM; 1207 writew(uap->im, uap->port.membase + UART011_IMSC); 1208 pl011_dma_tx_stop(uap); 1209 } 1210 1211 static void pl011_start_tx(struct uart_port *port) 1212 { 1213 struct uart_amba_port *uap = 1214 container_of(port, struct uart_amba_port, port); 1215 1216 if (!pl011_dma_tx_start(uap)) { 1217 uap->im |= UART011_TXIM; 1218 writew(uap->im, uap->port.membase + UART011_IMSC); 1219 } 1220 } 1221 1222 static void pl011_stop_rx(struct uart_port *port) 1223 { 1224 struct uart_amba_port *uap = 1225 container_of(port, struct uart_amba_port, port); 1226 1227 uap->im &= ~(UART011_RXIM|UART011_RTIM|UART011_FEIM| 1228 UART011_PEIM|UART011_BEIM|UART011_OEIM); 1229 writew(uap->im, uap->port.membase + UART011_IMSC); 1230 1231 pl011_dma_rx_stop(uap); 1232 } 1233 1234 static void pl011_enable_ms(struct uart_port *port) 1235 { 1236 struct uart_amba_port *uap = 1237 container_of(port, struct uart_amba_port, port); 1238 1239 uap->im |= UART011_RIMIM|UART011_CTSMIM|UART011_DCDMIM|UART011_DSRMIM; 1240 writew(uap->im, uap->port.membase + UART011_IMSC); 1241 } 1242 1243 static void pl011_rx_chars(struct uart_amba_port *uap) 1244 __releases(&uap->port.lock) 1245 __acquires(&uap->port.lock) 1246 { 1247 pl011_fifo_to_tty(uap); 1248 1249 spin_unlock(&uap->port.lock); 1250 tty_flip_buffer_push(&uap->port.state->port); 1251 /* 1252 * If we were temporarily out of DMA mode for a while, 1253 * attempt to switch back to DMA mode again. 1254 */ 1255 if (pl011_dma_rx_available(uap)) { 1256 if (pl011_dma_rx_trigger_dma(uap)) { 1257 dev_dbg(uap->port.dev, "could not trigger RX DMA job " 1258 "fall back to interrupt mode again\n"); 1259 uap->im |= UART011_RXIM; 1260 writew(uap->im, uap->port.membase + UART011_IMSC); 1261 } else { 1262 #ifdef CONFIG_DMA_ENGINE 1263 /* Start Rx DMA poll */ 1264 if (uap->dmarx.poll_rate) { 1265 uap->dmarx.last_jiffies = jiffies; 1266 uap->dmarx.last_residue = PL011_DMA_BUFFER_SIZE; 1267 mod_timer(&uap->dmarx.timer, 1268 jiffies + 1269 msecs_to_jiffies(uap->dmarx.poll_rate)); 1270 } 1271 #endif 1272 } 1273 } 1274 spin_lock(&uap->port.lock); 1275 } 1276 1277 static void pl011_tx_chars(struct uart_amba_port *uap) 1278 { 1279 struct circ_buf *xmit = &uap->port.state->xmit; 1280 int count; 1281 1282 if (uap->port.x_char) { 1283 writew(uap->port.x_char, uap->port.membase + UART01x_DR); 1284 uap->port.icount.tx++; 1285 uap->port.x_char = 0; 1286 return; 1287 } 1288 if (uart_circ_empty(xmit) || uart_tx_stopped(&uap->port)) { 1289 pl011_stop_tx(&uap->port); 1290 return; 1291 } 1292 1293 /* If we are using DMA mode, try to send some characters. */ 1294 if (pl011_dma_tx_irq(uap)) 1295 return; 1296 1297 count = uap->fifosize >> 1; 1298 do { 1299 writew(xmit->buf[xmit->tail], uap->port.membase + UART01x_DR); 1300 xmit->tail = (xmit->tail + 1) & (UART_XMIT_SIZE - 1); 1301 uap->port.icount.tx++; 1302 if (uart_circ_empty(xmit)) 1303 break; 1304 } while (--count > 0); 1305 1306 if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS) 1307 uart_write_wakeup(&uap->port); 1308 1309 if (uart_circ_empty(xmit)) 1310 pl011_stop_tx(&uap->port); 1311 } 1312 1313 static void pl011_modem_status(struct uart_amba_port *uap) 1314 { 1315 unsigned int status, delta; 1316 1317 status = readw(uap->port.membase + UART01x_FR) & UART01x_FR_MODEM_ANY; 1318 1319 delta = status ^ uap->old_status; 1320 uap->old_status = status; 1321 1322 if (!delta) 1323 return; 1324 1325 if (delta & UART01x_FR_DCD) 1326 uart_handle_dcd_change(&uap->port, status & UART01x_FR_DCD); 1327 1328 if (delta & UART01x_FR_DSR) 1329 uap->port.icount.dsr++; 1330 1331 if (delta & UART01x_FR_CTS) 1332 uart_handle_cts_change(&uap->port, status & UART01x_FR_CTS); 1333 1334 wake_up_interruptible(&uap->port.state->port.delta_msr_wait); 1335 } 1336 1337 static irqreturn_t pl011_int(int irq, void *dev_id) 1338 { 1339 struct uart_amba_port *uap = dev_id; 1340 unsigned long flags; 1341 unsigned int status, pass_counter = AMBA_ISR_PASS_LIMIT; 1342 int handled = 0; 1343 unsigned int dummy_read; 1344 1345 spin_lock_irqsave(&uap->port.lock, flags); 1346 status = readw(uap->port.membase + UART011_MIS); 1347 if (status) { 1348 do { 1349 if (uap->vendor->cts_event_workaround) { 1350 /* workaround to make sure that all bits are unlocked.. */ 1351 writew(0x00, uap->port.membase + UART011_ICR); 1352 1353 /* 1354 * WA: introduce 26ns(1 uart clk) delay before W1C; 1355 * single apb access will incur 2 pclk(133.12Mhz) delay, 1356 * so add 2 dummy reads 1357 */ 1358 dummy_read = readw(uap->port.membase + UART011_ICR); 1359 dummy_read = readw(uap->port.membase + UART011_ICR); 1360 } 1361 1362 writew(status & ~(UART011_TXIS|UART011_RTIS| 1363 UART011_RXIS), 1364 uap->port.membase + UART011_ICR); 1365 1366 if (status & (UART011_RTIS|UART011_RXIS)) { 1367 if (pl011_dma_rx_running(uap)) 1368 pl011_dma_rx_irq(uap); 1369 else 1370 pl011_rx_chars(uap); 1371 } 1372 if (status & (UART011_DSRMIS|UART011_DCDMIS| 1373 UART011_CTSMIS|UART011_RIMIS)) 1374 pl011_modem_status(uap); 1375 if (status & UART011_TXIS) 1376 pl011_tx_chars(uap); 1377 1378 if (pass_counter-- == 0) 1379 break; 1380 1381 status = readw(uap->port.membase + UART011_MIS); 1382 } while (status != 0); 1383 handled = 1; 1384 } 1385 1386 spin_unlock_irqrestore(&uap->port.lock, flags); 1387 1388 return IRQ_RETVAL(handled); 1389 } 1390 1391 static unsigned int pl011_tx_empty(struct uart_port *port) 1392 { 1393 struct uart_amba_port *uap = 1394 container_of(port, struct uart_amba_port, port); 1395 unsigned int status = readw(uap->port.membase + UART01x_FR); 1396 return status & (UART01x_FR_BUSY|UART01x_FR_TXFF) ? 0 : TIOCSER_TEMT; 1397 } 1398 1399 static unsigned int pl011_get_mctrl(struct uart_port *port) 1400 { 1401 struct uart_amba_port *uap = 1402 container_of(port, struct uart_amba_port, port); 1403 unsigned int result = 0; 1404 unsigned int status = readw(uap->port.membase + UART01x_FR); 1405 1406 #define TIOCMBIT(uartbit, tiocmbit) \ 1407 if (status & uartbit) \ 1408 result |= tiocmbit 1409 1410 TIOCMBIT(UART01x_FR_DCD, TIOCM_CAR); 1411 TIOCMBIT(UART01x_FR_DSR, TIOCM_DSR); 1412 TIOCMBIT(UART01x_FR_CTS, TIOCM_CTS); 1413 TIOCMBIT(UART011_FR_RI, TIOCM_RNG); 1414 #undef TIOCMBIT 1415 return result; 1416 } 1417 1418 static void pl011_set_mctrl(struct uart_port *port, unsigned int mctrl) 1419 { 1420 struct uart_amba_port *uap = 1421 container_of(port, struct uart_amba_port, port); 1422 unsigned int cr; 1423 1424 cr = readw(uap->port.membase + UART011_CR); 1425 1426 #define TIOCMBIT(tiocmbit, uartbit) \ 1427 if (mctrl & tiocmbit) \ 1428 cr |= uartbit; \ 1429 else \ 1430 cr &= ~uartbit 1431 1432 TIOCMBIT(TIOCM_RTS, UART011_CR_RTS); 1433 TIOCMBIT(TIOCM_DTR, UART011_CR_DTR); 1434 TIOCMBIT(TIOCM_OUT1, UART011_CR_OUT1); 1435 TIOCMBIT(TIOCM_OUT2, UART011_CR_OUT2); 1436 TIOCMBIT(TIOCM_LOOP, UART011_CR_LBE); 1437 1438 if (uap->autorts) { 1439 /* We need to disable auto-RTS if we want to turn RTS off */ 1440 TIOCMBIT(TIOCM_RTS, UART011_CR_RTSEN); 1441 } 1442 #undef TIOCMBIT 1443 1444 writew(cr, uap->port.membase + UART011_CR); 1445 } 1446 1447 static void pl011_break_ctl(struct uart_port *port, int break_state) 1448 { 1449 struct uart_amba_port *uap = 1450 container_of(port, struct uart_amba_port, port); 1451 unsigned long flags; 1452 unsigned int lcr_h; 1453 1454 spin_lock_irqsave(&uap->port.lock, flags); 1455 lcr_h = readw(uap->port.membase + uap->lcrh_tx); 1456 if (break_state == -1) 1457 lcr_h |= UART01x_LCRH_BRK; 1458 else 1459 lcr_h &= ~UART01x_LCRH_BRK; 1460 writew(lcr_h, uap->port.membase + uap->lcrh_tx); 1461 spin_unlock_irqrestore(&uap->port.lock, flags); 1462 } 1463 1464 #ifdef CONFIG_CONSOLE_POLL 1465 1466 static void pl011_quiesce_irqs(struct uart_port *port) 1467 { 1468 struct uart_amba_port *uap = 1469 container_of(port, struct uart_amba_port, port); 1470 unsigned char __iomem *regs = uap->port.membase; 1471 1472 writew(readw(regs + UART011_MIS), regs + UART011_ICR); 1473 /* 1474 * There is no way to clear TXIM as this is "ready to transmit IRQ", so 1475 * we simply mask it. start_tx() will unmask it. 1476 * 1477 * Note we can race with start_tx(), and if the race happens, the 1478 * polling user might get another interrupt just after we clear it. 1479 * But it should be OK and can happen even w/o the race, e.g. 1480 * controller immediately got some new data and raised the IRQ. 1481 * 1482 * And whoever uses polling routines assumes that it manages the device 1483 * (including tx queue), so we're also fine with start_tx()'s caller 1484 * side. 1485 */ 1486 writew(readw(regs + UART011_IMSC) & ~UART011_TXIM, regs + UART011_IMSC); 1487 } 1488 1489 static int pl011_get_poll_char(struct uart_port *port) 1490 { 1491 struct uart_amba_port *uap = 1492 container_of(port, struct uart_amba_port, port); 1493 unsigned int status; 1494 1495 /* 1496 * The caller might need IRQs lowered, e.g. if used with KDB NMI 1497 * debugger. 1498 */ 1499 pl011_quiesce_irqs(port); 1500 1501 status = readw(uap->port.membase + UART01x_FR); 1502 if (status & UART01x_FR_RXFE) 1503 return NO_POLL_CHAR; 1504 1505 return readw(uap->port.membase + UART01x_DR); 1506 } 1507 1508 static void pl011_put_poll_char(struct uart_port *port, 1509 unsigned char ch) 1510 { 1511 struct uart_amba_port *uap = 1512 container_of(port, struct uart_amba_port, port); 1513 1514 while (readw(uap->port.membase + UART01x_FR) & UART01x_FR_TXFF) 1515 barrier(); 1516 1517 writew(ch, uap->port.membase + UART01x_DR); 1518 } 1519 1520 #endif /* CONFIG_CONSOLE_POLL */ 1521 1522 static int pl011_hwinit(struct uart_port *port) 1523 { 1524 struct uart_amba_port *uap = 1525 container_of(port, struct uart_amba_port, port); 1526 int retval; 1527 1528 /* Optionaly enable pins to be muxed in and configured */ 1529 pinctrl_pm_select_default_state(port->dev); 1530 1531 /* 1532 * Try to enable the clock producer. 1533 */ 1534 retval = clk_prepare_enable(uap->clk); 1535 if (retval) 1536 return retval; 1537 1538 uap->port.uartclk = clk_get_rate(uap->clk); 1539 1540 /* Clear pending error and receive interrupts */ 1541 writew(UART011_OEIS | UART011_BEIS | UART011_PEIS | UART011_FEIS | 1542 UART011_RTIS | UART011_RXIS, uap->port.membase + UART011_ICR); 1543 1544 /* 1545 * Save interrupts enable mask, and enable RX interrupts in case if 1546 * the interrupt is used for NMI entry. 1547 */ 1548 uap->im = readw(uap->port.membase + UART011_IMSC); 1549 writew(UART011_RTIM | UART011_RXIM, uap->port.membase + UART011_IMSC); 1550 1551 if (dev_get_platdata(uap->port.dev)) { 1552 struct amba_pl011_data *plat; 1553 1554 plat = dev_get_platdata(uap->port.dev); 1555 if (plat->init) 1556 plat->init(); 1557 } 1558 return 0; 1559 } 1560 1561 static void pl011_write_lcr_h(struct uart_amba_port *uap, unsigned int lcr_h) 1562 { 1563 writew(lcr_h, uap->port.membase + uap->lcrh_rx); 1564 if (uap->lcrh_rx != uap->lcrh_tx) { 1565 int i; 1566 /* 1567 * Wait 10 PCLKs before writing LCRH_TX register, 1568 * to get this delay write read only register 10 times 1569 */ 1570 for (i = 0; i < 10; ++i) 1571 writew(0xff, uap->port.membase + UART011_MIS); 1572 writew(lcr_h, uap->port.membase + uap->lcrh_tx); 1573 } 1574 } 1575 1576 static int pl011_startup(struct uart_port *port) 1577 { 1578 struct uart_amba_port *uap = 1579 container_of(port, struct uart_amba_port, port); 1580 unsigned int cr, lcr_h, fbrd, ibrd; 1581 int retval; 1582 1583 retval = pl011_hwinit(port); 1584 if (retval) 1585 goto clk_dis; 1586 1587 writew(uap->im, uap->port.membase + UART011_IMSC); 1588 1589 /* 1590 * Allocate the IRQ 1591 */ 1592 retval = request_irq(uap->port.irq, pl011_int, 0, "uart-pl011", uap); 1593 if (retval) 1594 goto clk_dis; 1595 1596 writew(uap->vendor->ifls, uap->port.membase + UART011_IFLS); 1597 1598 /* 1599 * Provoke TX FIFO interrupt into asserting. Taking care to preserve 1600 * baud rate and data format specified by FBRD, IBRD and LCRH as the 1601 * UART may already be in use as a console. 1602 */ 1603 spin_lock_irq(&uap->port.lock); 1604 1605 fbrd = readw(uap->port.membase + UART011_FBRD); 1606 ibrd = readw(uap->port.membase + UART011_IBRD); 1607 lcr_h = readw(uap->port.membase + uap->lcrh_rx); 1608 1609 cr = UART01x_CR_UARTEN | UART011_CR_TXE | UART011_CR_LBE; 1610 writew(cr, uap->port.membase + UART011_CR); 1611 writew(0, uap->port.membase + UART011_FBRD); 1612 writew(1, uap->port.membase + UART011_IBRD); 1613 pl011_write_lcr_h(uap, 0); 1614 writew(0, uap->port.membase + UART01x_DR); 1615 while (readw(uap->port.membase + UART01x_FR) & UART01x_FR_BUSY) 1616 barrier(); 1617 1618 writew(fbrd, uap->port.membase + UART011_FBRD); 1619 writew(ibrd, uap->port.membase + UART011_IBRD); 1620 pl011_write_lcr_h(uap, lcr_h); 1621 1622 /* restore RTS and DTR */ 1623 cr = uap->old_cr & (UART011_CR_RTS | UART011_CR_DTR); 1624 cr |= UART01x_CR_UARTEN | UART011_CR_RXE | UART011_CR_TXE; 1625 writew(cr, uap->port.membase + UART011_CR); 1626 1627 spin_unlock_irq(&uap->port.lock); 1628 1629 /* 1630 * initialise the old status of the modem signals 1631 */ 1632 uap->old_status = readw(uap->port.membase + UART01x_FR) & UART01x_FR_MODEM_ANY; 1633 1634 /* Startup DMA */ 1635 pl011_dma_startup(uap); 1636 1637 /* 1638 * Finally, enable interrupts, only timeouts when using DMA 1639 * if initial RX DMA job failed, start in interrupt mode 1640 * as well. 1641 */ 1642 spin_lock_irq(&uap->port.lock); 1643 /* Clear out any spuriously appearing RX interrupts */ 1644 writew(UART011_RTIS | UART011_RXIS, 1645 uap->port.membase + UART011_ICR); 1646 uap->im = UART011_RTIM; 1647 if (!pl011_dma_rx_running(uap)) 1648 uap->im |= UART011_RXIM; 1649 writew(uap->im, uap->port.membase + UART011_IMSC); 1650 spin_unlock_irq(&uap->port.lock); 1651 1652 return 0; 1653 1654 clk_dis: 1655 clk_disable_unprepare(uap->clk); 1656 return retval; 1657 } 1658 1659 static void pl011_shutdown_channel(struct uart_amba_port *uap, 1660 unsigned int lcrh) 1661 { 1662 unsigned long val; 1663 1664 val = readw(uap->port.membase + lcrh); 1665 val &= ~(UART01x_LCRH_BRK | UART01x_LCRH_FEN); 1666 writew(val, uap->port.membase + lcrh); 1667 } 1668 1669 static void pl011_shutdown(struct uart_port *port) 1670 { 1671 struct uart_amba_port *uap = 1672 container_of(port, struct uart_amba_port, port); 1673 unsigned int cr; 1674 1675 /* 1676 * disable all interrupts 1677 */ 1678 spin_lock_irq(&uap->port.lock); 1679 uap->im = 0; 1680 writew(uap->im, uap->port.membase + UART011_IMSC); 1681 writew(0xffff, uap->port.membase + UART011_ICR); 1682 spin_unlock_irq(&uap->port.lock); 1683 1684 pl011_dma_shutdown(uap); 1685 1686 /* 1687 * Free the interrupt 1688 */ 1689 free_irq(uap->port.irq, uap); 1690 1691 /* 1692 * disable the port 1693 * disable the port. It should not disable RTS and DTR. 1694 * Also RTS and DTR state should be preserved to restore 1695 * it during startup(). 1696 */ 1697 uap->autorts = false; 1698 spin_lock_irq(&uap->port.lock); 1699 cr = readw(uap->port.membase + UART011_CR); 1700 uap->old_cr = cr; 1701 cr &= UART011_CR_RTS | UART011_CR_DTR; 1702 cr |= UART01x_CR_UARTEN | UART011_CR_TXE; 1703 writew(cr, uap->port.membase + UART011_CR); 1704 spin_unlock_irq(&uap->port.lock); 1705 1706 /* 1707 * disable break condition and fifos 1708 */ 1709 pl011_shutdown_channel(uap, uap->lcrh_rx); 1710 if (uap->lcrh_rx != uap->lcrh_tx) 1711 pl011_shutdown_channel(uap, uap->lcrh_tx); 1712 1713 /* 1714 * Shut down the clock producer 1715 */ 1716 clk_disable_unprepare(uap->clk); 1717 /* Optionally let pins go into sleep states */ 1718 pinctrl_pm_select_sleep_state(port->dev); 1719 1720 if (dev_get_platdata(uap->port.dev)) { 1721 struct amba_pl011_data *plat; 1722 1723 plat = dev_get_platdata(uap->port.dev); 1724 if (plat->exit) 1725 plat->exit(); 1726 } 1727 1728 if (uap->port.ops->flush_buffer) 1729 uap->port.ops->flush_buffer(port); 1730 } 1731 1732 static void 1733 pl011_set_termios(struct uart_port *port, struct ktermios *termios, 1734 struct ktermios *old) 1735 { 1736 struct uart_amba_port *uap = 1737 container_of(port, struct uart_amba_port, port); 1738 unsigned int lcr_h, old_cr; 1739 unsigned long flags; 1740 unsigned int baud, quot, clkdiv; 1741 1742 if (uap->vendor->oversampling) 1743 clkdiv = 8; 1744 else 1745 clkdiv = 16; 1746 1747 /* 1748 * Ask the core to calculate the divisor for us. 1749 */ 1750 baud = uart_get_baud_rate(port, termios, old, 0, 1751 port->uartclk / clkdiv); 1752 #ifdef CONFIG_DMA_ENGINE 1753 /* 1754 * Adjust RX DMA polling rate with baud rate if not specified. 1755 */ 1756 if (uap->dmarx.auto_poll_rate) 1757 uap->dmarx.poll_rate = DIV_ROUND_UP(10000000, baud); 1758 #endif 1759 1760 if (baud > port->uartclk/16) 1761 quot = DIV_ROUND_CLOSEST(port->uartclk * 8, baud); 1762 else 1763 quot = DIV_ROUND_CLOSEST(port->uartclk * 4, baud); 1764 1765 switch (termios->c_cflag & CSIZE) { 1766 case CS5: 1767 lcr_h = UART01x_LCRH_WLEN_5; 1768 break; 1769 case CS6: 1770 lcr_h = UART01x_LCRH_WLEN_6; 1771 break; 1772 case CS7: 1773 lcr_h = UART01x_LCRH_WLEN_7; 1774 break; 1775 default: // CS8 1776 lcr_h = UART01x_LCRH_WLEN_8; 1777 break; 1778 } 1779 if (termios->c_cflag & CSTOPB) 1780 lcr_h |= UART01x_LCRH_STP2; 1781 if (termios->c_cflag & PARENB) { 1782 lcr_h |= UART01x_LCRH_PEN; 1783 if (!(termios->c_cflag & PARODD)) 1784 lcr_h |= UART01x_LCRH_EPS; 1785 } 1786 if (uap->fifosize > 1) 1787 lcr_h |= UART01x_LCRH_FEN; 1788 1789 spin_lock_irqsave(&port->lock, flags); 1790 1791 /* 1792 * Update the per-port timeout. 1793 */ 1794 uart_update_timeout(port, termios->c_cflag, baud); 1795 1796 port->read_status_mask = UART011_DR_OE | 255; 1797 if (termios->c_iflag & INPCK) 1798 port->read_status_mask |= UART011_DR_FE | UART011_DR_PE; 1799 if (termios->c_iflag & (IGNBRK | BRKINT | PARMRK)) 1800 port->read_status_mask |= UART011_DR_BE; 1801 1802 /* 1803 * Characters to ignore 1804 */ 1805 port->ignore_status_mask = 0; 1806 if (termios->c_iflag & IGNPAR) 1807 port->ignore_status_mask |= UART011_DR_FE | UART011_DR_PE; 1808 if (termios->c_iflag & IGNBRK) { 1809 port->ignore_status_mask |= UART011_DR_BE; 1810 /* 1811 * If we're ignoring parity and break indicators, 1812 * ignore overruns too (for real raw support). 1813 */ 1814 if (termios->c_iflag & IGNPAR) 1815 port->ignore_status_mask |= UART011_DR_OE; 1816 } 1817 1818 /* 1819 * Ignore all characters if CREAD is not set. 1820 */ 1821 if ((termios->c_cflag & CREAD) == 0) 1822 port->ignore_status_mask |= UART_DUMMY_DR_RX; 1823 1824 if (UART_ENABLE_MS(port, termios->c_cflag)) 1825 pl011_enable_ms(port); 1826 1827 /* first, disable everything */ 1828 old_cr = readw(port->membase + UART011_CR); 1829 writew(0, port->membase + UART011_CR); 1830 1831 if (termios->c_cflag & CRTSCTS) { 1832 if (old_cr & UART011_CR_RTS) 1833 old_cr |= UART011_CR_RTSEN; 1834 1835 old_cr |= UART011_CR_CTSEN; 1836 uap->autorts = true; 1837 } else { 1838 old_cr &= ~(UART011_CR_CTSEN | UART011_CR_RTSEN); 1839 uap->autorts = false; 1840 } 1841 1842 if (uap->vendor->oversampling) { 1843 if (baud > port->uartclk / 16) 1844 old_cr |= ST_UART011_CR_OVSFACT; 1845 else 1846 old_cr &= ~ST_UART011_CR_OVSFACT; 1847 } 1848 1849 /* 1850 * Workaround for the ST Micro oversampling variants to 1851 * increase the bitrate slightly, by lowering the divisor, 1852 * to avoid delayed sampling of start bit at high speeds, 1853 * else we see data corruption. 1854 */ 1855 if (uap->vendor->oversampling) { 1856 if ((baud >= 3000000) && (baud < 3250000) && (quot > 1)) 1857 quot -= 1; 1858 else if ((baud > 3250000) && (quot > 2)) 1859 quot -= 2; 1860 } 1861 /* Set baud rate */ 1862 writew(quot & 0x3f, port->membase + UART011_FBRD); 1863 writew(quot >> 6, port->membase + UART011_IBRD); 1864 1865 /* 1866 * ----------v----------v----------v----------v----- 1867 * NOTE: lcrh_tx and lcrh_rx MUST BE WRITTEN AFTER 1868 * UART011_FBRD & UART011_IBRD. 1869 * ----------^----------^----------^----------^----- 1870 */ 1871 pl011_write_lcr_h(uap, lcr_h); 1872 writew(old_cr, port->membase + UART011_CR); 1873 1874 spin_unlock_irqrestore(&port->lock, flags); 1875 } 1876 1877 static const char *pl011_type(struct uart_port *port) 1878 { 1879 struct uart_amba_port *uap = 1880 container_of(port, struct uart_amba_port, port); 1881 return uap->port.type == PORT_AMBA ? uap->type : NULL; 1882 } 1883 1884 /* 1885 * Release the memory region(s) being used by 'port' 1886 */ 1887 static void pl011_release_port(struct uart_port *port) 1888 { 1889 release_mem_region(port->mapbase, SZ_4K); 1890 } 1891 1892 /* 1893 * Request the memory region(s) being used by 'port' 1894 */ 1895 static int pl011_request_port(struct uart_port *port) 1896 { 1897 return request_mem_region(port->mapbase, SZ_4K, "uart-pl011") 1898 != NULL ? 0 : -EBUSY; 1899 } 1900 1901 /* 1902 * Configure/autoconfigure the port. 1903 */ 1904 static void pl011_config_port(struct uart_port *port, int flags) 1905 { 1906 if (flags & UART_CONFIG_TYPE) { 1907 port->type = PORT_AMBA; 1908 pl011_request_port(port); 1909 } 1910 } 1911 1912 /* 1913 * verify the new serial_struct (for TIOCSSERIAL). 1914 */ 1915 static int pl011_verify_port(struct uart_port *port, struct serial_struct *ser) 1916 { 1917 int ret = 0; 1918 if (ser->type != PORT_UNKNOWN && ser->type != PORT_AMBA) 1919 ret = -EINVAL; 1920 if (ser->irq < 0 || ser->irq >= nr_irqs) 1921 ret = -EINVAL; 1922 if (ser->baud_base < 9600) 1923 ret = -EINVAL; 1924 return ret; 1925 } 1926 1927 static struct uart_ops amba_pl011_pops = { 1928 .tx_empty = pl011_tx_empty, 1929 .set_mctrl = pl011_set_mctrl, 1930 .get_mctrl = pl011_get_mctrl, 1931 .stop_tx = pl011_stop_tx, 1932 .start_tx = pl011_start_tx, 1933 .stop_rx = pl011_stop_rx, 1934 .enable_ms = pl011_enable_ms, 1935 .break_ctl = pl011_break_ctl, 1936 .startup = pl011_startup, 1937 .shutdown = pl011_shutdown, 1938 .flush_buffer = pl011_dma_flush_buffer, 1939 .set_termios = pl011_set_termios, 1940 .type = pl011_type, 1941 .release_port = pl011_release_port, 1942 .request_port = pl011_request_port, 1943 .config_port = pl011_config_port, 1944 .verify_port = pl011_verify_port, 1945 #ifdef CONFIG_CONSOLE_POLL 1946 .poll_init = pl011_hwinit, 1947 .poll_get_char = pl011_get_poll_char, 1948 .poll_put_char = pl011_put_poll_char, 1949 #endif 1950 }; 1951 1952 static struct uart_amba_port *amba_ports[UART_NR]; 1953 1954 #ifdef CONFIG_SERIAL_AMBA_PL011_CONSOLE 1955 1956 static void pl011_console_putchar(struct uart_port *port, int ch) 1957 { 1958 struct uart_amba_port *uap = 1959 container_of(port, struct uart_amba_port, port); 1960 1961 while (readw(uap->port.membase + UART01x_FR) & UART01x_FR_TXFF) 1962 barrier(); 1963 writew(ch, uap->port.membase + UART01x_DR); 1964 } 1965 1966 static void 1967 pl011_console_write(struct console *co, const char *s, unsigned int count) 1968 { 1969 struct uart_amba_port *uap = amba_ports[co->index]; 1970 unsigned int status, old_cr, new_cr; 1971 unsigned long flags; 1972 int locked = 1; 1973 1974 clk_enable(uap->clk); 1975 1976 local_irq_save(flags); 1977 if (uap->port.sysrq) 1978 locked = 0; 1979 else if (oops_in_progress) 1980 locked = spin_trylock(&uap->port.lock); 1981 else 1982 spin_lock(&uap->port.lock); 1983 1984 /* 1985 * First save the CR then disable the interrupts 1986 */ 1987 old_cr = readw(uap->port.membase + UART011_CR); 1988 new_cr = old_cr & ~UART011_CR_CTSEN; 1989 new_cr |= UART01x_CR_UARTEN | UART011_CR_TXE; 1990 writew(new_cr, uap->port.membase + UART011_CR); 1991 1992 uart_console_write(&uap->port, s, count, pl011_console_putchar); 1993 1994 /* 1995 * Finally, wait for transmitter to become empty 1996 * and restore the TCR 1997 */ 1998 do { 1999 status = readw(uap->port.membase + UART01x_FR); 2000 } while (status & UART01x_FR_BUSY); 2001 writew(old_cr, uap->port.membase + UART011_CR); 2002 2003 if (locked) 2004 spin_unlock(&uap->port.lock); 2005 local_irq_restore(flags); 2006 2007 clk_disable(uap->clk); 2008 } 2009 2010 static void __init 2011 pl011_console_get_options(struct uart_amba_port *uap, int *baud, 2012 int *parity, int *bits) 2013 { 2014 if (readw(uap->port.membase + UART011_CR) & UART01x_CR_UARTEN) { 2015 unsigned int lcr_h, ibrd, fbrd; 2016 2017 lcr_h = readw(uap->port.membase + uap->lcrh_tx); 2018 2019 *parity = 'n'; 2020 if (lcr_h & UART01x_LCRH_PEN) { 2021 if (lcr_h & UART01x_LCRH_EPS) 2022 *parity = 'e'; 2023 else 2024 *parity = 'o'; 2025 } 2026 2027 if ((lcr_h & 0x60) == UART01x_LCRH_WLEN_7) 2028 *bits = 7; 2029 else 2030 *bits = 8; 2031 2032 ibrd = readw(uap->port.membase + UART011_IBRD); 2033 fbrd = readw(uap->port.membase + UART011_FBRD); 2034 2035 *baud = uap->port.uartclk * 4 / (64 * ibrd + fbrd); 2036 2037 if (uap->vendor->oversampling) { 2038 if (readw(uap->port.membase + UART011_CR) 2039 & ST_UART011_CR_OVSFACT) 2040 *baud *= 2; 2041 } 2042 } 2043 } 2044 2045 static int __init pl011_console_setup(struct console *co, char *options) 2046 { 2047 struct uart_amba_port *uap; 2048 int baud = 38400; 2049 int bits = 8; 2050 int parity = 'n'; 2051 int flow = 'n'; 2052 int ret; 2053 2054 /* 2055 * Check whether an invalid uart number has been specified, and 2056 * if so, search for the first available port that does have 2057 * console support. 2058 */ 2059 if (co->index >= UART_NR) 2060 co->index = 0; 2061 uap = amba_ports[co->index]; 2062 if (!uap) 2063 return -ENODEV; 2064 2065 /* Allow pins to be muxed in and configured */ 2066 pinctrl_pm_select_default_state(uap->port.dev); 2067 2068 ret = clk_prepare(uap->clk); 2069 if (ret) 2070 return ret; 2071 2072 if (dev_get_platdata(uap->port.dev)) { 2073 struct amba_pl011_data *plat; 2074 2075 plat = dev_get_platdata(uap->port.dev); 2076 if (plat->init) 2077 plat->init(); 2078 } 2079 2080 uap->port.uartclk = clk_get_rate(uap->clk); 2081 2082 if (options) 2083 uart_parse_options(options, &baud, &parity, &bits, &flow); 2084 else 2085 pl011_console_get_options(uap, &baud, &parity, &bits); 2086 2087 return uart_set_options(&uap->port, co, baud, parity, bits, flow); 2088 } 2089 2090 static struct uart_driver amba_reg; 2091 static struct console amba_console = { 2092 .name = "ttyAMA", 2093 .write = pl011_console_write, 2094 .device = uart_console_device, 2095 .setup = pl011_console_setup, 2096 .flags = CON_PRINTBUFFER, 2097 .index = -1, 2098 .data = &amba_reg, 2099 }; 2100 2101 #define AMBA_CONSOLE (&amba_console) 2102 2103 static void pl011_putc(struct uart_port *port, int c) 2104 { 2105 while (readl(port->membase + UART01x_FR) & UART01x_FR_TXFF) 2106 ; 2107 writeb(c, port->membase + UART01x_DR); 2108 while (readl(port->membase + UART01x_FR) & UART01x_FR_BUSY) 2109 ; 2110 } 2111 2112 static void pl011_early_write(struct console *con, const char *s, unsigned n) 2113 { 2114 struct earlycon_device *dev = con->data; 2115 2116 uart_console_write(&dev->port, s, n, pl011_putc); 2117 } 2118 2119 static int __init pl011_early_console_setup(struct earlycon_device *device, 2120 const char *opt) 2121 { 2122 if (!device->port.membase) 2123 return -ENODEV; 2124 2125 device->con->write = pl011_early_write; 2126 return 0; 2127 } 2128 EARLYCON_DECLARE(pl011, pl011_early_console_setup); 2129 OF_EARLYCON_DECLARE(pl011, "arm,pl011", pl011_early_console_setup); 2130 2131 #else 2132 #define AMBA_CONSOLE NULL 2133 #endif 2134 2135 static struct uart_driver amba_reg = { 2136 .owner = THIS_MODULE, 2137 .driver_name = "ttyAMA", 2138 .dev_name = "ttyAMA", 2139 .major = SERIAL_AMBA_MAJOR, 2140 .minor = SERIAL_AMBA_MINOR, 2141 .nr = UART_NR, 2142 .cons = AMBA_CONSOLE, 2143 }; 2144 2145 static int pl011_probe_dt_alias(int index, struct device *dev) 2146 { 2147 struct device_node *np; 2148 static bool seen_dev_with_alias = false; 2149 static bool seen_dev_without_alias = false; 2150 int ret = index; 2151 2152 if (!IS_ENABLED(CONFIG_OF)) 2153 return ret; 2154 2155 np = dev->of_node; 2156 if (!np) 2157 return ret; 2158 2159 ret = of_alias_get_id(np, "serial"); 2160 if (IS_ERR_VALUE(ret)) { 2161 seen_dev_without_alias = true; 2162 ret = index; 2163 } else { 2164 seen_dev_with_alias = true; 2165 if (ret >= ARRAY_SIZE(amba_ports) || amba_ports[ret] != NULL) { 2166 dev_warn(dev, "requested serial port %d not available.\n", ret); 2167 ret = index; 2168 } 2169 } 2170 2171 if (seen_dev_with_alias && seen_dev_without_alias) 2172 dev_warn(dev, "aliased and non-aliased serial devices found in device tree. Serial port enumeration may be unpredictable.\n"); 2173 2174 return ret; 2175 } 2176 2177 static int pl011_probe(struct amba_device *dev, const struct amba_id *id) 2178 { 2179 struct uart_amba_port *uap; 2180 struct vendor_data *vendor = id->data; 2181 void __iomem *base; 2182 int i, ret; 2183 2184 for (i = 0; i < ARRAY_SIZE(amba_ports); i++) 2185 if (amba_ports[i] == NULL) 2186 break; 2187 2188 if (i == ARRAY_SIZE(amba_ports)) 2189 return -EBUSY; 2190 2191 uap = devm_kzalloc(&dev->dev, sizeof(struct uart_amba_port), 2192 GFP_KERNEL); 2193 if (uap == NULL) 2194 return -ENOMEM; 2195 2196 i = pl011_probe_dt_alias(i, &dev->dev); 2197 2198 base = devm_ioremap(&dev->dev, dev->res.start, 2199 resource_size(&dev->res)); 2200 if (!base) 2201 return -ENOMEM; 2202 2203 uap->clk = devm_clk_get(&dev->dev, NULL); 2204 if (IS_ERR(uap->clk)) 2205 return PTR_ERR(uap->clk); 2206 2207 uap->vendor = vendor; 2208 uap->lcrh_rx = vendor->lcrh_rx; 2209 uap->lcrh_tx = vendor->lcrh_tx; 2210 uap->old_cr = 0; 2211 uap->fifosize = vendor->get_fifosize(dev); 2212 uap->port.dev = &dev->dev; 2213 uap->port.mapbase = dev->res.start; 2214 uap->port.membase = base; 2215 uap->port.iotype = UPIO_MEM; 2216 uap->port.irq = dev->irq[0]; 2217 uap->port.fifosize = uap->fifosize; 2218 uap->port.ops = &amba_pl011_pops; 2219 uap->port.flags = UPF_BOOT_AUTOCONF; 2220 uap->port.line = i; 2221 pl011_dma_probe(&dev->dev, uap); 2222 2223 /* Ensure interrupts from this UART are masked and cleared */ 2224 writew(0, uap->port.membase + UART011_IMSC); 2225 writew(0xffff, uap->port.membase + UART011_ICR); 2226 2227 snprintf(uap->type, sizeof(uap->type), "PL011 rev%u", amba_rev(dev)); 2228 2229 amba_ports[i] = uap; 2230 2231 amba_set_drvdata(dev, uap); 2232 2233 if (!amba_reg.state) { 2234 ret = uart_register_driver(&amba_reg); 2235 if (ret < 0) { 2236 pr_err("Failed to register AMBA-PL011 driver\n"); 2237 return ret; 2238 } 2239 } 2240 2241 ret = uart_add_one_port(&amba_reg, &uap->port); 2242 if (ret) { 2243 amba_ports[i] = NULL; 2244 uart_unregister_driver(&amba_reg); 2245 pl011_dma_remove(uap); 2246 } 2247 2248 return ret; 2249 } 2250 2251 static int pl011_remove(struct amba_device *dev) 2252 { 2253 struct uart_amba_port *uap = amba_get_drvdata(dev); 2254 bool busy = false; 2255 int i; 2256 2257 uart_remove_one_port(&amba_reg, &uap->port); 2258 2259 for (i = 0; i < ARRAY_SIZE(amba_ports); i++) 2260 if (amba_ports[i] == uap) 2261 amba_ports[i] = NULL; 2262 else if (amba_ports[i]) 2263 busy = true; 2264 2265 pl011_dma_remove(uap); 2266 if (!busy) 2267 uart_unregister_driver(&amba_reg); 2268 return 0; 2269 } 2270 2271 #ifdef CONFIG_PM_SLEEP 2272 static int pl011_suspend(struct device *dev) 2273 { 2274 struct uart_amba_port *uap = dev_get_drvdata(dev); 2275 2276 if (!uap) 2277 return -EINVAL; 2278 2279 return uart_suspend_port(&amba_reg, &uap->port); 2280 } 2281 2282 static int pl011_resume(struct device *dev) 2283 { 2284 struct uart_amba_port *uap = dev_get_drvdata(dev); 2285 2286 if (!uap) 2287 return -EINVAL; 2288 2289 return uart_resume_port(&amba_reg, &uap->port); 2290 } 2291 #endif 2292 2293 static SIMPLE_DEV_PM_OPS(pl011_dev_pm_ops, pl011_suspend, pl011_resume); 2294 2295 static struct amba_id pl011_ids[] = { 2296 { 2297 .id = 0x00041011, 2298 .mask = 0x000fffff, 2299 .data = &vendor_arm, 2300 }, 2301 { 2302 .id = 0x00380802, 2303 .mask = 0x00ffffff, 2304 .data = &vendor_st, 2305 }, 2306 { 0, 0 }, 2307 }; 2308 2309 MODULE_DEVICE_TABLE(amba, pl011_ids); 2310 2311 static struct amba_driver pl011_driver = { 2312 .drv = { 2313 .name = "uart-pl011", 2314 .pm = &pl011_dev_pm_ops, 2315 }, 2316 .id_table = pl011_ids, 2317 .probe = pl011_probe, 2318 .remove = pl011_remove, 2319 }; 2320 2321 static int __init pl011_init(void) 2322 { 2323 printk(KERN_INFO "Serial: AMBA PL011 UART driver\n"); 2324 2325 return amba_driver_register(&pl011_driver); 2326 } 2327 2328 static void __exit pl011_exit(void) 2329 { 2330 amba_driver_unregister(&pl011_driver); 2331 } 2332 2333 /* 2334 * While this can be a module, if builtin it's most likely the console 2335 * So let's leave module_exit but move module_init to an earlier place 2336 */ 2337 arch_initcall(pl011_init); 2338 module_exit(pl011_exit); 2339 2340 MODULE_AUTHOR("ARM Ltd/Deep Blue Solutions Ltd"); 2341 MODULE_DESCRIPTION("ARM AMBA serial port driver"); 2342 MODULE_LICENSE("GPL"); 2343