1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Driver for AMBA serial ports 4 * 5 * Based on drivers/char/serial.c, by Linus Torvalds, Theodore Ts'o. 6 * 7 * Copyright 1999 ARM Limited 8 * Copyright (C) 2000 Deep Blue Solutions Ltd. 9 * Copyright (C) 2010 ST-Ericsson SA 10 * 11 * This is a generic driver for ARM AMBA-type serial ports. They 12 * have a lot of 16550-like features, but are not register compatible. 13 * Note that although they do have CTS, DCD and DSR inputs, they do 14 * not have an RI input, nor do they have DTR or RTS outputs. If 15 * required, these have to be supplied via some other means (eg, GPIO) 16 * and hooked into this driver. 17 */ 18 19 20 #if defined(CONFIG_SERIAL_AMBA_PL011_CONSOLE) && defined(CONFIG_MAGIC_SYSRQ) 21 #define SUPPORT_SYSRQ 22 #endif 23 24 #include <linux/module.h> 25 #include <linux/ioport.h> 26 #include <linux/init.h> 27 #include <linux/console.h> 28 #include <linux/sysrq.h> 29 #include <linux/device.h> 30 #include <linux/tty.h> 31 #include <linux/tty_flip.h> 32 #include <linux/serial_core.h> 33 #include <linux/serial.h> 34 #include <linux/amba/bus.h> 35 #include <linux/amba/serial.h> 36 #include <linux/clk.h> 37 #include <linux/slab.h> 38 #include <linux/dmaengine.h> 39 #include <linux/dma-mapping.h> 40 #include <linux/scatterlist.h> 41 #include <linux/delay.h> 42 #include <linux/types.h> 43 #include <linux/of.h> 44 #include <linux/of_device.h> 45 #include <linux/pinctrl/consumer.h> 46 #include <linux/sizes.h> 47 #include <linux/io.h> 48 #include <linux/acpi.h> 49 50 #include "amba-pl011.h" 51 52 #define UART_NR 14 53 54 #define SERIAL_AMBA_MAJOR 204 55 #define SERIAL_AMBA_MINOR 64 56 #define SERIAL_AMBA_NR UART_NR 57 58 #define AMBA_ISR_PASS_LIMIT 256 59 60 #define UART_DR_ERROR (UART011_DR_OE|UART011_DR_BE|UART011_DR_PE|UART011_DR_FE) 61 #define UART_DUMMY_DR_RX (1 << 16) 62 63 static u16 pl011_std_offsets[REG_ARRAY_SIZE] = { 64 [REG_DR] = UART01x_DR, 65 [REG_FR] = UART01x_FR, 66 [REG_LCRH_RX] = UART011_LCRH, 67 [REG_LCRH_TX] = UART011_LCRH, 68 [REG_IBRD] = UART011_IBRD, 69 [REG_FBRD] = UART011_FBRD, 70 [REG_CR] = UART011_CR, 71 [REG_IFLS] = UART011_IFLS, 72 [REG_IMSC] = UART011_IMSC, 73 [REG_RIS] = UART011_RIS, 74 [REG_MIS] = UART011_MIS, 75 [REG_ICR] = UART011_ICR, 76 [REG_DMACR] = UART011_DMACR, 77 }; 78 79 /* There is by now at least one vendor with differing details, so handle it */ 80 struct vendor_data { 81 const u16 *reg_offset; 82 unsigned int ifls; 83 unsigned int fr_busy; 84 unsigned int fr_dsr; 85 unsigned int fr_cts; 86 unsigned int fr_ri; 87 unsigned int inv_fr; 88 bool access_32b; 89 bool oversampling; 90 bool dma_threshold; 91 bool cts_event_workaround; 92 bool always_enabled; 93 bool fixed_options; 94 95 unsigned int (*get_fifosize)(struct amba_device *dev); 96 }; 97 98 static unsigned int get_fifosize_arm(struct amba_device *dev) 99 { 100 return amba_rev(dev) < 3 ? 16 : 32; 101 } 102 103 static struct vendor_data vendor_arm = { 104 .reg_offset = pl011_std_offsets, 105 .ifls = UART011_IFLS_RX4_8|UART011_IFLS_TX4_8, 106 .fr_busy = UART01x_FR_BUSY, 107 .fr_dsr = UART01x_FR_DSR, 108 .fr_cts = UART01x_FR_CTS, 109 .fr_ri = UART011_FR_RI, 110 .oversampling = false, 111 .dma_threshold = false, 112 .cts_event_workaround = false, 113 .always_enabled = false, 114 .fixed_options = false, 115 .get_fifosize = get_fifosize_arm, 116 }; 117 118 static const struct vendor_data vendor_sbsa = { 119 .reg_offset = pl011_std_offsets, 120 .fr_busy = UART01x_FR_BUSY, 121 .fr_dsr = UART01x_FR_DSR, 122 .fr_cts = UART01x_FR_CTS, 123 .fr_ri = UART011_FR_RI, 124 .access_32b = true, 125 .oversampling = false, 126 .dma_threshold = false, 127 .cts_event_workaround = false, 128 .always_enabled = true, 129 .fixed_options = true, 130 }; 131 132 #ifdef CONFIG_ACPI_SPCR_TABLE 133 static const struct vendor_data vendor_qdt_qdf2400_e44 = { 134 .reg_offset = pl011_std_offsets, 135 .fr_busy = UART011_FR_TXFE, 136 .fr_dsr = UART01x_FR_DSR, 137 .fr_cts = UART01x_FR_CTS, 138 .fr_ri = UART011_FR_RI, 139 .inv_fr = UART011_FR_TXFE, 140 .access_32b = true, 141 .oversampling = false, 142 .dma_threshold = false, 143 .cts_event_workaround = false, 144 .always_enabled = true, 145 .fixed_options = true, 146 }; 147 #endif 148 149 static u16 pl011_st_offsets[REG_ARRAY_SIZE] = { 150 [REG_DR] = UART01x_DR, 151 [REG_ST_DMAWM] = ST_UART011_DMAWM, 152 [REG_ST_TIMEOUT] = ST_UART011_TIMEOUT, 153 [REG_FR] = UART01x_FR, 154 [REG_LCRH_RX] = ST_UART011_LCRH_RX, 155 [REG_LCRH_TX] = ST_UART011_LCRH_TX, 156 [REG_IBRD] = UART011_IBRD, 157 [REG_FBRD] = UART011_FBRD, 158 [REG_CR] = UART011_CR, 159 [REG_IFLS] = UART011_IFLS, 160 [REG_IMSC] = UART011_IMSC, 161 [REG_RIS] = UART011_RIS, 162 [REG_MIS] = UART011_MIS, 163 [REG_ICR] = UART011_ICR, 164 [REG_DMACR] = UART011_DMACR, 165 [REG_ST_XFCR] = ST_UART011_XFCR, 166 [REG_ST_XON1] = ST_UART011_XON1, 167 [REG_ST_XON2] = ST_UART011_XON2, 168 [REG_ST_XOFF1] = ST_UART011_XOFF1, 169 [REG_ST_XOFF2] = ST_UART011_XOFF2, 170 [REG_ST_ITCR] = ST_UART011_ITCR, 171 [REG_ST_ITIP] = ST_UART011_ITIP, 172 [REG_ST_ABCR] = ST_UART011_ABCR, 173 [REG_ST_ABIMSC] = ST_UART011_ABIMSC, 174 }; 175 176 static unsigned int get_fifosize_st(struct amba_device *dev) 177 { 178 return 64; 179 } 180 181 static struct vendor_data vendor_st = { 182 .reg_offset = pl011_st_offsets, 183 .ifls = UART011_IFLS_RX_HALF|UART011_IFLS_TX_HALF, 184 .fr_busy = UART01x_FR_BUSY, 185 .fr_dsr = UART01x_FR_DSR, 186 .fr_cts = UART01x_FR_CTS, 187 .fr_ri = UART011_FR_RI, 188 .oversampling = true, 189 .dma_threshold = true, 190 .cts_event_workaround = true, 191 .always_enabled = false, 192 .fixed_options = false, 193 .get_fifosize = get_fifosize_st, 194 }; 195 196 static const u16 pl011_zte_offsets[REG_ARRAY_SIZE] = { 197 [REG_DR] = ZX_UART011_DR, 198 [REG_FR] = ZX_UART011_FR, 199 [REG_LCRH_RX] = ZX_UART011_LCRH, 200 [REG_LCRH_TX] = ZX_UART011_LCRH, 201 [REG_IBRD] = ZX_UART011_IBRD, 202 [REG_FBRD] = ZX_UART011_FBRD, 203 [REG_CR] = ZX_UART011_CR, 204 [REG_IFLS] = ZX_UART011_IFLS, 205 [REG_IMSC] = ZX_UART011_IMSC, 206 [REG_RIS] = ZX_UART011_RIS, 207 [REG_MIS] = ZX_UART011_MIS, 208 [REG_ICR] = ZX_UART011_ICR, 209 [REG_DMACR] = ZX_UART011_DMACR, 210 }; 211 212 static unsigned int get_fifosize_zte(struct amba_device *dev) 213 { 214 return 16; 215 } 216 217 static struct vendor_data vendor_zte = { 218 .reg_offset = pl011_zte_offsets, 219 .access_32b = true, 220 .ifls = UART011_IFLS_RX4_8|UART011_IFLS_TX4_8, 221 .fr_busy = ZX_UART01x_FR_BUSY, 222 .fr_dsr = ZX_UART01x_FR_DSR, 223 .fr_cts = ZX_UART01x_FR_CTS, 224 .fr_ri = ZX_UART011_FR_RI, 225 .get_fifosize = get_fifosize_zte, 226 }; 227 228 /* Deals with DMA transactions */ 229 230 struct pl011_sgbuf { 231 struct scatterlist sg; 232 char *buf; 233 }; 234 235 struct pl011_dmarx_data { 236 struct dma_chan *chan; 237 struct completion complete; 238 bool use_buf_b; 239 struct pl011_sgbuf sgbuf_a; 240 struct pl011_sgbuf sgbuf_b; 241 dma_cookie_t cookie; 242 bool running; 243 struct timer_list timer; 244 unsigned int last_residue; 245 unsigned long last_jiffies; 246 bool auto_poll_rate; 247 unsigned int poll_rate; 248 unsigned int poll_timeout; 249 }; 250 251 struct pl011_dmatx_data { 252 struct dma_chan *chan; 253 struct scatterlist sg; 254 char *buf; 255 bool queued; 256 }; 257 258 /* 259 * We wrap our port structure around the generic uart_port. 260 */ 261 struct uart_amba_port { 262 struct uart_port port; 263 const u16 *reg_offset; 264 struct clk *clk; 265 const struct vendor_data *vendor; 266 unsigned int dmacr; /* dma control reg */ 267 unsigned int im; /* interrupt mask */ 268 unsigned int old_status; 269 unsigned int fifosize; /* vendor-specific */ 270 unsigned int old_cr; /* state during shutdown */ 271 unsigned int fixed_baud; /* vendor-set fixed baud rate */ 272 char type[12]; 273 #ifdef CONFIG_DMA_ENGINE 274 /* DMA stuff */ 275 bool using_tx_dma; 276 bool using_rx_dma; 277 struct pl011_dmarx_data dmarx; 278 struct pl011_dmatx_data dmatx; 279 bool dma_probed; 280 #endif 281 }; 282 283 static unsigned int pl011_reg_to_offset(const struct uart_amba_port *uap, 284 unsigned int reg) 285 { 286 return uap->reg_offset[reg]; 287 } 288 289 static unsigned int pl011_read(const struct uart_amba_port *uap, 290 unsigned int reg) 291 { 292 void __iomem *addr = uap->port.membase + pl011_reg_to_offset(uap, reg); 293 294 return (uap->port.iotype == UPIO_MEM32) ? 295 readl_relaxed(addr) : readw_relaxed(addr); 296 } 297 298 static void pl011_write(unsigned int val, const struct uart_amba_port *uap, 299 unsigned int reg) 300 { 301 void __iomem *addr = uap->port.membase + pl011_reg_to_offset(uap, reg); 302 303 if (uap->port.iotype == UPIO_MEM32) 304 writel_relaxed(val, addr); 305 else 306 writew_relaxed(val, addr); 307 } 308 309 /* 310 * Reads up to 256 characters from the FIFO or until it's empty and 311 * inserts them into the TTY layer. Returns the number of characters 312 * read from the FIFO. 313 */ 314 static int pl011_fifo_to_tty(struct uart_amba_port *uap) 315 { 316 u16 status; 317 unsigned int ch, flag, fifotaken; 318 319 for (fifotaken = 0; fifotaken != 256; fifotaken++) { 320 status = pl011_read(uap, REG_FR); 321 if (status & UART01x_FR_RXFE) 322 break; 323 324 /* Take chars from the FIFO and update status */ 325 ch = pl011_read(uap, REG_DR) | UART_DUMMY_DR_RX; 326 flag = TTY_NORMAL; 327 uap->port.icount.rx++; 328 329 if (unlikely(ch & UART_DR_ERROR)) { 330 if (ch & UART011_DR_BE) { 331 ch &= ~(UART011_DR_FE | UART011_DR_PE); 332 uap->port.icount.brk++; 333 if (uart_handle_break(&uap->port)) 334 continue; 335 } else if (ch & UART011_DR_PE) 336 uap->port.icount.parity++; 337 else if (ch & UART011_DR_FE) 338 uap->port.icount.frame++; 339 if (ch & UART011_DR_OE) 340 uap->port.icount.overrun++; 341 342 ch &= uap->port.read_status_mask; 343 344 if (ch & UART011_DR_BE) 345 flag = TTY_BREAK; 346 else if (ch & UART011_DR_PE) 347 flag = TTY_PARITY; 348 else if (ch & UART011_DR_FE) 349 flag = TTY_FRAME; 350 } 351 352 if (uart_handle_sysrq_char(&uap->port, ch & 255)) 353 continue; 354 355 uart_insert_char(&uap->port, ch, UART011_DR_OE, ch, flag); 356 } 357 358 return fifotaken; 359 } 360 361 362 /* 363 * All the DMA operation mode stuff goes inside this ifdef. 364 * This assumes that you have a generic DMA device interface, 365 * no custom DMA interfaces are supported. 366 */ 367 #ifdef CONFIG_DMA_ENGINE 368 369 #define PL011_DMA_BUFFER_SIZE PAGE_SIZE 370 371 static int pl011_sgbuf_init(struct dma_chan *chan, struct pl011_sgbuf *sg, 372 enum dma_data_direction dir) 373 { 374 dma_addr_t dma_addr; 375 376 sg->buf = dma_alloc_coherent(chan->device->dev, 377 PL011_DMA_BUFFER_SIZE, &dma_addr, GFP_KERNEL); 378 if (!sg->buf) 379 return -ENOMEM; 380 381 sg_init_table(&sg->sg, 1); 382 sg_set_page(&sg->sg, phys_to_page(dma_addr), 383 PL011_DMA_BUFFER_SIZE, offset_in_page(dma_addr)); 384 sg_dma_address(&sg->sg) = dma_addr; 385 sg_dma_len(&sg->sg) = PL011_DMA_BUFFER_SIZE; 386 387 return 0; 388 } 389 390 static void pl011_sgbuf_free(struct dma_chan *chan, struct pl011_sgbuf *sg, 391 enum dma_data_direction dir) 392 { 393 if (sg->buf) { 394 dma_free_coherent(chan->device->dev, 395 PL011_DMA_BUFFER_SIZE, sg->buf, 396 sg_dma_address(&sg->sg)); 397 } 398 } 399 400 static void pl011_dma_probe(struct uart_amba_port *uap) 401 { 402 /* DMA is the sole user of the platform data right now */ 403 struct amba_pl011_data *plat = dev_get_platdata(uap->port.dev); 404 struct device *dev = uap->port.dev; 405 struct dma_slave_config tx_conf = { 406 .dst_addr = uap->port.mapbase + 407 pl011_reg_to_offset(uap, REG_DR), 408 .dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE, 409 .direction = DMA_MEM_TO_DEV, 410 .dst_maxburst = uap->fifosize >> 1, 411 .device_fc = false, 412 }; 413 struct dma_chan *chan; 414 dma_cap_mask_t mask; 415 416 uap->dma_probed = true; 417 chan = dma_request_slave_channel_reason(dev, "tx"); 418 if (IS_ERR(chan)) { 419 if (PTR_ERR(chan) == -EPROBE_DEFER) { 420 uap->dma_probed = false; 421 return; 422 } 423 424 /* We need platform data */ 425 if (!plat || !plat->dma_filter) { 426 dev_info(uap->port.dev, "no DMA platform data\n"); 427 return; 428 } 429 430 /* Try to acquire a generic DMA engine slave TX channel */ 431 dma_cap_zero(mask); 432 dma_cap_set(DMA_SLAVE, mask); 433 434 chan = dma_request_channel(mask, plat->dma_filter, 435 plat->dma_tx_param); 436 if (!chan) { 437 dev_err(uap->port.dev, "no TX DMA channel!\n"); 438 return; 439 } 440 } 441 442 dmaengine_slave_config(chan, &tx_conf); 443 uap->dmatx.chan = chan; 444 445 dev_info(uap->port.dev, "DMA channel TX %s\n", 446 dma_chan_name(uap->dmatx.chan)); 447 448 /* Optionally make use of an RX channel as well */ 449 chan = dma_request_slave_channel(dev, "rx"); 450 451 if (!chan && plat && plat->dma_rx_param) { 452 chan = dma_request_channel(mask, plat->dma_filter, plat->dma_rx_param); 453 454 if (!chan) { 455 dev_err(uap->port.dev, "no RX DMA channel!\n"); 456 return; 457 } 458 } 459 460 if (chan) { 461 struct dma_slave_config rx_conf = { 462 .src_addr = uap->port.mapbase + 463 pl011_reg_to_offset(uap, REG_DR), 464 .src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE, 465 .direction = DMA_DEV_TO_MEM, 466 .src_maxburst = uap->fifosize >> 2, 467 .device_fc = false, 468 }; 469 struct dma_slave_caps caps; 470 471 /* 472 * Some DMA controllers provide information on their capabilities. 473 * If the controller does, check for suitable residue processing 474 * otherwise assime all is well. 475 */ 476 if (0 == dma_get_slave_caps(chan, &caps)) { 477 if (caps.residue_granularity == 478 DMA_RESIDUE_GRANULARITY_DESCRIPTOR) { 479 dma_release_channel(chan); 480 dev_info(uap->port.dev, 481 "RX DMA disabled - no residue processing\n"); 482 return; 483 } 484 } 485 dmaengine_slave_config(chan, &rx_conf); 486 uap->dmarx.chan = chan; 487 488 uap->dmarx.auto_poll_rate = false; 489 if (plat && plat->dma_rx_poll_enable) { 490 /* Set poll rate if specified. */ 491 if (plat->dma_rx_poll_rate) { 492 uap->dmarx.auto_poll_rate = false; 493 uap->dmarx.poll_rate = plat->dma_rx_poll_rate; 494 } else { 495 /* 496 * 100 ms defaults to poll rate if not 497 * specified. This will be adjusted with 498 * the baud rate at set_termios. 499 */ 500 uap->dmarx.auto_poll_rate = true; 501 uap->dmarx.poll_rate = 100; 502 } 503 /* 3 secs defaults poll_timeout if not specified. */ 504 if (plat->dma_rx_poll_timeout) 505 uap->dmarx.poll_timeout = 506 plat->dma_rx_poll_timeout; 507 else 508 uap->dmarx.poll_timeout = 3000; 509 } else if (!plat && dev->of_node) { 510 uap->dmarx.auto_poll_rate = of_property_read_bool( 511 dev->of_node, "auto-poll"); 512 if (uap->dmarx.auto_poll_rate) { 513 u32 x; 514 515 if (0 == of_property_read_u32(dev->of_node, 516 "poll-rate-ms", &x)) 517 uap->dmarx.poll_rate = x; 518 else 519 uap->dmarx.poll_rate = 100; 520 if (0 == of_property_read_u32(dev->of_node, 521 "poll-timeout-ms", &x)) 522 uap->dmarx.poll_timeout = x; 523 else 524 uap->dmarx.poll_timeout = 3000; 525 } 526 } 527 dev_info(uap->port.dev, "DMA channel RX %s\n", 528 dma_chan_name(uap->dmarx.chan)); 529 } 530 } 531 532 static void pl011_dma_remove(struct uart_amba_port *uap) 533 { 534 if (uap->dmatx.chan) 535 dma_release_channel(uap->dmatx.chan); 536 if (uap->dmarx.chan) 537 dma_release_channel(uap->dmarx.chan); 538 } 539 540 /* Forward declare these for the refill routine */ 541 static int pl011_dma_tx_refill(struct uart_amba_port *uap); 542 static void pl011_start_tx_pio(struct uart_amba_port *uap); 543 544 /* 545 * The current DMA TX buffer has been sent. 546 * Try to queue up another DMA buffer. 547 */ 548 static void pl011_dma_tx_callback(void *data) 549 { 550 struct uart_amba_port *uap = data; 551 struct pl011_dmatx_data *dmatx = &uap->dmatx; 552 unsigned long flags; 553 u16 dmacr; 554 555 spin_lock_irqsave(&uap->port.lock, flags); 556 if (uap->dmatx.queued) 557 dma_unmap_sg(dmatx->chan->device->dev, &dmatx->sg, 1, 558 DMA_TO_DEVICE); 559 560 dmacr = uap->dmacr; 561 uap->dmacr = dmacr & ~UART011_TXDMAE; 562 pl011_write(uap->dmacr, uap, REG_DMACR); 563 564 /* 565 * If TX DMA was disabled, it means that we've stopped the DMA for 566 * some reason (eg, XOFF received, or we want to send an X-char.) 567 * 568 * Note: we need to be careful here of a potential race between DMA 569 * and the rest of the driver - if the driver disables TX DMA while 570 * a TX buffer completing, we must update the tx queued status to 571 * get further refills (hence we check dmacr). 572 */ 573 if (!(dmacr & UART011_TXDMAE) || uart_tx_stopped(&uap->port) || 574 uart_circ_empty(&uap->port.state->xmit)) { 575 uap->dmatx.queued = false; 576 spin_unlock_irqrestore(&uap->port.lock, flags); 577 return; 578 } 579 580 if (pl011_dma_tx_refill(uap) <= 0) 581 /* 582 * We didn't queue a DMA buffer for some reason, but we 583 * have data pending to be sent. Re-enable the TX IRQ. 584 */ 585 pl011_start_tx_pio(uap); 586 587 spin_unlock_irqrestore(&uap->port.lock, flags); 588 } 589 590 /* 591 * Try to refill the TX DMA buffer. 592 * Locking: called with port lock held and IRQs disabled. 593 * Returns: 594 * 1 if we queued up a TX DMA buffer. 595 * 0 if we didn't want to handle this by DMA 596 * <0 on error 597 */ 598 static int pl011_dma_tx_refill(struct uart_amba_port *uap) 599 { 600 struct pl011_dmatx_data *dmatx = &uap->dmatx; 601 struct dma_chan *chan = dmatx->chan; 602 struct dma_device *dma_dev = chan->device; 603 struct dma_async_tx_descriptor *desc; 604 struct circ_buf *xmit = &uap->port.state->xmit; 605 unsigned int count; 606 607 /* 608 * Try to avoid the overhead involved in using DMA if the 609 * transaction fits in the first half of the FIFO, by using 610 * the standard interrupt handling. This ensures that we 611 * issue a uart_write_wakeup() at the appropriate time. 612 */ 613 count = uart_circ_chars_pending(xmit); 614 if (count < (uap->fifosize >> 1)) { 615 uap->dmatx.queued = false; 616 return 0; 617 } 618 619 /* 620 * Bodge: don't send the last character by DMA, as this 621 * will prevent XON from notifying us to restart DMA. 622 */ 623 count -= 1; 624 625 /* Else proceed to copy the TX chars to the DMA buffer and fire DMA */ 626 if (count > PL011_DMA_BUFFER_SIZE) 627 count = PL011_DMA_BUFFER_SIZE; 628 629 if (xmit->tail < xmit->head) 630 memcpy(&dmatx->buf[0], &xmit->buf[xmit->tail], count); 631 else { 632 size_t first = UART_XMIT_SIZE - xmit->tail; 633 size_t second; 634 635 if (first > count) 636 first = count; 637 second = count - first; 638 639 memcpy(&dmatx->buf[0], &xmit->buf[xmit->tail], first); 640 if (second) 641 memcpy(&dmatx->buf[first], &xmit->buf[0], second); 642 } 643 644 dmatx->sg.length = count; 645 646 if (dma_map_sg(dma_dev->dev, &dmatx->sg, 1, DMA_TO_DEVICE) != 1) { 647 uap->dmatx.queued = false; 648 dev_dbg(uap->port.dev, "unable to map TX DMA\n"); 649 return -EBUSY; 650 } 651 652 desc = dmaengine_prep_slave_sg(chan, &dmatx->sg, 1, DMA_MEM_TO_DEV, 653 DMA_PREP_INTERRUPT | DMA_CTRL_ACK); 654 if (!desc) { 655 dma_unmap_sg(dma_dev->dev, &dmatx->sg, 1, DMA_TO_DEVICE); 656 uap->dmatx.queued = false; 657 /* 658 * If DMA cannot be used right now, we complete this 659 * transaction via IRQ and let the TTY layer retry. 660 */ 661 dev_dbg(uap->port.dev, "TX DMA busy\n"); 662 return -EBUSY; 663 } 664 665 /* Some data to go along to the callback */ 666 desc->callback = pl011_dma_tx_callback; 667 desc->callback_param = uap; 668 669 /* All errors should happen at prepare time */ 670 dmaengine_submit(desc); 671 672 /* Fire the DMA transaction */ 673 dma_dev->device_issue_pending(chan); 674 675 uap->dmacr |= UART011_TXDMAE; 676 pl011_write(uap->dmacr, uap, REG_DMACR); 677 uap->dmatx.queued = true; 678 679 /* 680 * Now we know that DMA will fire, so advance the ring buffer 681 * with the stuff we just dispatched. 682 */ 683 xmit->tail = (xmit->tail + count) & (UART_XMIT_SIZE - 1); 684 uap->port.icount.tx += count; 685 686 if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS) 687 uart_write_wakeup(&uap->port); 688 689 return 1; 690 } 691 692 /* 693 * We received a transmit interrupt without a pending X-char but with 694 * pending characters. 695 * Locking: called with port lock held and IRQs disabled. 696 * Returns: 697 * false if we want to use PIO to transmit 698 * true if we queued a DMA buffer 699 */ 700 static bool pl011_dma_tx_irq(struct uart_amba_port *uap) 701 { 702 if (!uap->using_tx_dma) 703 return false; 704 705 /* 706 * If we already have a TX buffer queued, but received a 707 * TX interrupt, it will be because we've just sent an X-char. 708 * Ensure the TX DMA is enabled and the TX IRQ is disabled. 709 */ 710 if (uap->dmatx.queued) { 711 uap->dmacr |= UART011_TXDMAE; 712 pl011_write(uap->dmacr, uap, REG_DMACR); 713 uap->im &= ~UART011_TXIM; 714 pl011_write(uap->im, uap, REG_IMSC); 715 return true; 716 } 717 718 /* 719 * We don't have a TX buffer queued, so try to queue one. 720 * If we successfully queued a buffer, mask the TX IRQ. 721 */ 722 if (pl011_dma_tx_refill(uap) > 0) { 723 uap->im &= ~UART011_TXIM; 724 pl011_write(uap->im, uap, REG_IMSC); 725 return true; 726 } 727 return false; 728 } 729 730 /* 731 * Stop the DMA transmit (eg, due to received XOFF). 732 * Locking: called with port lock held and IRQs disabled. 733 */ 734 static inline void pl011_dma_tx_stop(struct uart_amba_port *uap) 735 { 736 if (uap->dmatx.queued) { 737 uap->dmacr &= ~UART011_TXDMAE; 738 pl011_write(uap->dmacr, uap, REG_DMACR); 739 } 740 } 741 742 /* 743 * Try to start a DMA transmit, or in the case of an XON/OFF 744 * character queued for send, try to get that character out ASAP. 745 * Locking: called with port lock held and IRQs disabled. 746 * Returns: 747 * false if we want the TX IRQ to be enabled 748 * true if we have a buffer queued 749 */ 750 static inline bool pl011_dma_tx_start(struct uart_amba_port *uap) 751 { 752 u16 dmacr; 753 754 if (!uap->using_tx_dma) 755 return false; 756 757 if (!uap->port.x_char) { 758 /* no X-char, try to push chars out in DMA mode */ 759 bool ret = true; 760 761 if (!uap->dmatx.queued) { 762 if (pl011_dma_tx_refill(uap) > 0) { 763 uap->im &= ~UART011_TXIM; 764 pl011_write(uap->im, uap, REG_IMSC); 765 } else 766 ret = false; 767 } else if (!(uap->dmacr & UART011_TXDMAE)) { 768 uap->dmacr |= UART011_TXDMAE; 769 pl011_write(uap->dmacr, uap, REG_DMACR); 770 } 771 return ret; 772 } 773 774 /* 775 * We have an X-char to send. Disable DMA to prevent it loading 776 * the TX fifo, and then see if we can stuff it into the FIFO. 777 */ 778 dmacr = uap->dmacr; 779 uap->dmacr &= ~UART011_TXDMAE; 780 pl011_write(uap->dmacr, uap, REG_DMACR); 781 782 if (pl011_read(uap, REG_FR) & UART01x_FR_TXFF) { 783 /* 784 * No space in the FIFO, so enable the transmit interrupt 785 * so we know when there is space. Note that once we've 786 * loaded the character, we should just re-enable DMA. 787 */ 788 return false; 789 } 790 791 pl011_write(uap->port.x_char, uap, REG_DR); 792 uap->port.icount.tx++; 793 uap->port.x_char = 0; 794 795 /* Success - restore the DMA state */ 796 uap->dmacr = dmacr; 797 pl011_write(dmacr, uap, REG_DMACR); 798 799 return true; 800 } 801 802 /* 803 * Flush the transmit buffer. 804 * Locking: called with port lock held and IRQs disabled. 805 */ 806 static void pl011_dma_flush_buffer(struct uart_port *port) 807 __releases(&uap->port.lock) 808 __acquires(&uap->port.lock) 809 { 810 struct uart_amba_port *uap = 811 container_of(port, struct uart_amba_port, port); 812 813 if (!uap->using_tx_dma) 814 return; 815 816 /* Avoid deadlock with the DMA engine callback */ 817 spin_unlock(&uap->port.lock); 818 dmaengine_terminate_all(uap->dmatx.chan); 819 spin_lock(&uap->port.lock); 820 if (uap->dmatx.queued) { 821 dma_unmap_sg(uap->dmatx.chan->device->dev, &uap->dmatx.sg, 1, 822 DMA_TO_DEVICE); 823 uap->dmatx.queued = false; 824 uap->dmacr &= ~UART011_TXDMAE; 825 pl011_write(uap->dmacr, uap, REG_DMACR); 826 } 827 } 828 829 static void pl011_dma_rx_callback(void *data); 830 831 static int pl011_dma_rx_trigger_dma(struct uart_amba_port *uap) 832 { 833 struct dma_chan *rxchan = uap->dmarx.chan; 834 struct pl011_dmarx_data *dmarx = &uap->dmarx; 835 struct dma_async_tx_descriptor *desc; 836 struct pl011_sgbuf *sgbuf; 837 838 if (!rxchan) 839 return -EIO; 840 841 /* Start the RX DMA job */ 842 sgbuf = uap->dmarx.use_buf_b ? 843 &uap->dmarx.sgbuf_b : &uap->dmarx.sgbuf_a; 844 desc = dmaengine_prep_slave_sg(rxchan, &sgbuf->sg, 1, 845 DMA_DEV_TO_MEM, 846 DMA_PREP_INTERRUPT | DMA_CTRL_ACK); 847 /* 848 * If the DMA engine is busy and cannot prepare a 849 * channel, no big deal, the driver will fall back 850 * to interrupt mode as a result of this error code. 851 */ 852 if (!desc) { 853 uap->dmarx.running = false; 854 dmaengine_terminate_all(rxchan); 855 return -EBUSY; 856 } 857 858 /* Some data to go along to the callback */ 859 desc->callback = pl011_dma_rx_callback; 860 desc->callback_param = uap; 861 dmarx->cookie = dmaengine_submit(desc); 862 dma_async_issue_pending(rxchan); 863 864 uap->dmacr |= UART011_RXDMAE; 865 pl011_write(uap->dmacr, uap, REG_DMACR); 866 uap->dmarx.running = true; 867 868 uap->im &= ~UART011_RXIM; 869 pl011_write(uap->im, uap, REG_IMSC); 870 871 return 0; 872 } 873 874 /* 875 * This is called when either the DMA job is complete, or 876 * the FIFO timeout interrupt occurred. This must be called 877 * with the port spinlock uap->port.lock held. 878 */ 879 static void pl011_dma_rx_chars(struct uart_amba_port *uap, 880 u32 pending, bool use_buf_b, 881 bool readfifo) 882 { 883 struct tty_port *port = &uap->port.state->port; 884 struct pl011_sgbuf *sgbuf = use_buf_b ? 885 &uap->dmarx.sgbuf_b : &uap->dmarx.sgbuf_a; 886 int dma_count = 0; 887 u32 fifotaken = 0; /* only used for vdbg() */ 888 889 struct pl011_dmarx_data *dmarx = &uap->dmarx; 890 int dmataken = 0; 891 892 if (uap->dmarx.poll_rate) { 893 /* The data can be taken by polling */ 894 dmataken = sgbuf->sg.length - dmarx->last_residue; 895 /* Recalculate the pending size */ 896 if (pending >= dmataken) 897 pending -= dmataken; 898 } 899 900 /* Pick the remain data from the DMA */ 901 if (pending) { 902 903 /* 904 * First take all chars in the DMA pipe, then look in the FIFO. 905 * Note that tty_insert_flip_buf() tries to take as many chars 906 * as it can. 907 */ 908 dma_count = tty_insert_flip_string(port, sgbuf->buf + dmataken, 909 pending); 910 911 uap->port.icount.rx += dma_count; 912 if (dma_count < pending) 913 dev_warn(uap->port.dev, 914 "couldn't insert all characters (TTY is full?)\n"); 915 } 916 917 /* Reset the last_residue for Rx DMA poll */ 918 if (uap->dmarx.poll_rate) 919 dmarx->last_residue = sgbuf->sg.length; 920 921 /* 922 * Only continue with trying to read the FIFO if all DMA chars have 923 * been taken first. 924 */ 925 if (dma_count == pending && readfifo) { 926 /* Clear any error flags */ 927 pl011_write(UART011_OEIS | UART011_BEIS | UART011_PEIS | 928 UART011_FEIS, uap, REG_ICR); 929 930 /* 931 * If we read all the DMA'd characters, and we had an 932 * incomplete buffer, that could be due to an rx error, or 933 * maybe we just timed out. Read any pending chars and check 934 * the error status. 935 * 936 * Error conditions will only occur in the FIFO, these will 937 * trigger an immediate interrupt and stop the DMA job, so we 938 * will always find the error in the FIFO, never in the DMA 939 * buffer. 940 */ 941 fifotaken = pl011_fifo_to_tty(uap); 942 } 943 944 spin_unlock(&uap->port.lock); 945 dev_vdbg(uap->port.dev, 946 "Took %d chars from DMA buffer and %d chars from the FIFO\n", 947 dma_count, fifotaken); 948 tty_flip_buffer_push(port); 949 spin_lock(&uap->port.lock); 950 } 951 952 static void pl011_dma_rx_irq(struct uart_amba_port *uap) 953 { 954 struct pl011_dmarx_data *dmarx = &uap->dmarx; 955 struct dma_chan *rxchan = dmarx->chan; 956 struct pl011_sgbuf *sgbuf = dmarx->use_buf_b ? 957 &dmarx->sgbuf_b : &dmarx->sgbuf_a; 958 size_t pending; 959 struct dma_tx_state state; 960 enum dma_status dmastat; 961 962 /* 963 * Pause the transfer so we can trust the current counter, 964 * do this before we pause the PL011 block, else we may 965 * overflow the FIFO. 966 */ 967 if (dmaengine_pause(rxchan)) 968 dev_err(uap->port.dev, "unable to pause DMA transfer\n"); 969 dmastat = rxchan->device->device_tx_status(rxchan, 970 dmarx->cookie, &state); 971 if (dmastat != DMA_PAUSED) 972 dev_err(uap->port.dev, "unable to pause DMA transfer\n"); 973 974 /* Disable RX DMA - incoming data will wait in the FIFO */ 975 uap->dmacr &= ~UART011_RXDMAE; 976 pl011_write(uap->dmacr, uap, REG_DMACR); 977 uap->dmarx.running = false; 978 979 pending = sgbuf->sg.length - state.residue; 980 BUG_ON(pending > PL011_DMA_BUFFER_SIZE); 981 /* Then we terminate the transfer - we now know our residue */ 982 dmaengine_terminate_all(rxchan); 983 984 /* 985 * This will take the chars we have so far and insert 986 * into the framework. 987 */ 988 pl011_dma_rx_chars(uap, pending, dmarx->use_buf_b, true); 989 990 /* Switch buffer & re-trigger DMA job */ 991 dmarx->use_buf_b = !dmarx->use_buf_b; 992 if (pl011_dma_rx_trigger_dma(uap)) { 993 dev_dbg(uap->port.dev, "could not retrigger RX DMA job " 994 "fall back to interrupt mode\n"); 995 uap->im |= UART011_RXIM; 996 pl011_write(uap->im, uap, REG_IMSC); 997 } 998 } 999 1000 static void pl011_dma_rx_callback(void *data) 1001 { 1002 struct uart_amba_port *uap = data; 1003 struct pl011_dmarx_data *dmarx = &uap->dmarx; 1004 struct dma_chan *rxchan = dmarx->chan; 1005 bool lastbuf = dmarx->use_buf_b; 1006 struct pl011_sgbuf *sgbuf = dmarx->use_buf_b ? 1007 &dmarx->sgbuf_b : &dmarx->sgbuf_a; 1008 size_t pending; 1009 struct dma_tx_state state; 1010 int ret; 1011 1012 /* 1013 * This completion interrupt occurs typically when the 1014 * RX buffer is totally stuffed but no timeout has yet 1015 * occurred. When that happens, we just want the RX 1016 * routine to flush out the secondary DMA buffer while 1017 * we immediately trigger the next DMA job. 1018 */ 1019 spin_lock_irq(&uap->port.lock); 1020 /* 1021 * Rx data can be taken by the UART interrupts during 1022 * the DMA irq handler. So we check the residue here. 1023 */ 1024 rxchan->device->device_tx_status(rxchan, dmarx->cookie, &state); 1025 pending = sgbuf->sg.length - state.residue; 1026 BUG_ON(pending > PL011_DMA_BUFFER_SIZE); 1027 /* Then we terminate the transfer - we now know our residue */ 1028 dmaengine_terminate_all(rxchan); 1029 1030 uap->dmarx.running = false; 1031 dmarx->use_buf_b = !lastbuf; 1032 ret = pl011_dma_rx_trigger_dma(uap); 1033 1034 pl011_dma_rx_chars(uap, pending, lastbuf, false); 1035 spin_unlock_irq(&uap->port.lock); 1036 /* 1037 * Do this check after we picked the DMA chars so we don't 1038 * get some IRQ immediately from RX. 1039 */ 1040 if (ret) { 1041 dev_dbg(uap->port.dev, "could not retrigger RX DMA job " 1042 "fall back to interrupt mode\n"); 1043 uap->im |= UART011_RXIM; 1044 pl011_write(uap->im, uap, REG_IMSC); 1045 } 1046 } 1047 1048 /* 1049 * Stop accepting received characters, when we're shutting down or 1050 * suspending this port. 1051 * Locking: called with port lock held and IRQs disabled. 1052 */ 1053 static inline void pl011_dma_rx_stop(struct uart_amba_port *uap) 1054 { 1055 /* FIXME. Just disable the DMA enable */ 1056 uap->dmacr &= ~UART011_RXDMAE; 1057 pl011_write(uap->dmacr, uap, REG_DMACR); 1058 } 1059 1060 /* 1061 * Timer handler for Rx DMA polling. 1062 * Every polling, It checks the residue in the dma buffer and transfer 1063 * data to the tty. Also, last_residue is updated for the next polling. 1064 */ 1065 static void pl011_dma_rx_poll(struct timer_list *t) 1066 { 1067 struct uart_amba_port *uap = from_timer(uap, t, dmarx.timer); 1068 struct tty_port *port = &uap->port.state->port; 1069 struct pl011_dmarx_data *dmarx = &uap->dmarx; 1070 struct dma_chan *rxchan = uap->dmarx.chan; 1071 unsigned long flags = 0; 1072 unsigned int dmataken = 0; 1073 unsigned int size = 0; 1074 struct pl011_sgbuf *sgbuf; 1075 int dma_count; 1076 struct dma_tx_state state; 1077 1078 sgbuf = dmarx->use_buf_b ? &uap->dmarx.sgbuf_b : &uap->dmarx.sgbuf_a; 1079 rxchan->device->device_tx_status(rxchan, dmarx->cookie, &state); 1080 if (likely(state.residue < dmarx->last_residue)) { 1081 dmataken = sgbuf->sg.length - dmarx->last_residue; 1082 size = dmarx->last_residue - state.residue; 1083 dma_count = tty_insert_flip_string(port, sgbuf->buf + dmataken, 1084 size); 1085 if (dma_count == size) 1086 dmarx->last_residue = state.residue; 1087 dmarx->last_jiffies = jiffies; 1088 } 1089 tty_flip_buffer_push(port); 1090 1091 /* 1092 * If no data is received in poll_timeout, the driver will fall back 1093 * to interrupt mode. We will retrigger DMA at the first interrupt. 1094 */ 1095 if (jiffies_to_msecs(jiffies - dmarx->last_jiffies) 1096 > uap->dmarx.poll_timeout) { 1097 1098 spin_lock_irqsave(&uap->port.lock, flags); 1099 pl011_dma_rx_stop(uap); 1100 uap->im |= UART011_RXIM; 1101 pl011_write(uap->im, uap, REG_IMSC); 1102 spin_unlock_irqrestore(&uap->port.lock, flags); 1103 1104 uap->dmarx.running = false; 1105 dmaengine_terminate_all(rxchan); 1106 del_timer(&uap->dmarx.timer); 1107 } else { 1108 mod_timer(&uap->dmarx.timer, 1109 jiffies + msecs_to_jiffies(uap->dmarx.poll_rate)); 1110 } 1111 } 1112 1113 static void pl011_dma_startup(struct uart_amba_port *uap) 1114 { 1115 int ret; 1116 1117 if (!uap->dma_probed) 1118 pl011_dma_probe(uap); 1119 1120 if (!uap->dmatx.chan) 1121 return; 1122 1123 uap->dmatx.buf = kmalloc(PL011_DMA_BUFFER_SIZE, GFP_KERNEL | __GFP_DMA); 1124 if (!uap->dmatx.buf) { 1125 dev_err(uap->port.dev, "no memory for DMA TX buffer\n"); 1126 uap->port.fifosize = uap->fifosize; 1127 return; 1128 } 1129 1130 sg_init_one(&uap->dmatx.sg, uap->dmatx.buf, PL011_DMA_BUFFER_SIZE); 1131 1132 /* The DMA buffer is now the FIFO the TTY subsystem can use */ 1133 uap->port.fifosize = PL011_DMA_BUFFER_SIZE; 1134 uap->using_tx_dma = true; 1135 1136 if (!uap->dmarx.chan) 1137 goto skip_rx; 1138 1139 /* Allocate and map DMA RX buffers */ 1140 ret = pl011_sgbuf_init(uap->dmarx.chan, &uap->dmarx.sgbuf_a, 1141 DMA_FROM_DEVICE); 1142 if (ret) { 1143 dev_err(uap->port.dev, "failed to init DMA %s: %d\n", 1144 "RX buffer A", ret); 1145 goto skip_rx; 1146 } 1147 1148 ret = pl011_sgbuf_init(uap->dmarx.chan, &uap->dmarx.sgbuf_b, 1149 DMA_FROM_DEVICE); 1150 if (ret) { 1151 dev_err(uap->port.dev, "failed to init DMA %s: %d\n", 1152 "RX buffer B", ret); 1153 pl011_sgbuf_free(uap->dmarx.chan, &uap->dmarx.sgbuf_a, 1154 DMA_FROM_DEVICE); 1155 goto skip_rx; 1156 } 1157 1158 uap->using_rx_dma = true; 1159 1160 skip_rx: 1161 /* Turn on DMA error (RX/TX will be enabled on demand) */ 1162 uap->dmacr |= UART011_DMAONERR; 1163 pl011_write(uap->dmacr, uap, REG_DMACR); 1164 1165 /* 1166 * ST Micro variants has some specific dma burst threshold 1167 * compensation. Set this to 16 bytes, so burst will only 1168 * be issued above/below 16 bytes. 1169 */ 1170 if (uap->vendor->dma_threshold) 1171 pl011_write(ST_UART011_DMAWM_RX_16 | ST_UART011_DMAWM_TX_16, 1172 uap, REG_ST_DMAWM); 1173 1174 if (uap->using_rx_dma) { 1175 if (pl011_dma_rx_trigger_dma(uap)) 1176 dev_dbg(uap->port.dev, "could not trigger initial " 1177 "RX DMA job, fall back to interrupt mode\n"); 1178 if (uap->dmarx.poll_rate) { 1179 timer_setup(&uap->dmarx.timer, pl011_dma_rx_poll, 0); 1180 mod_timer(&uap->dmarx.timer, 1181 jiffies + 1182 msecs_to_jiffies(uap->dmarx.poll_rate)); 1183 uap->dmarx.last_residue = PL011_DMA_BUFFER_SIZE; 1184 uap->dmarx.last_jiffies = jiffies; 1185 } 1186 } 1187 } 1188 1189 static void pl011_dma_shutdown(struct uart_amba_port *uap) 1190 { 1191 if (!(uap->using_tx_dma || uap->using_rx_dma)) 1192 return; 1193 1194 /* Disable RX and TX DMA */ 1195 while (pl011_read(uap, REG_FR) & uap->vendor->fr_busy) 1196 cpu_relax(); 1197 1198 spin_lock_irq(&uap->port.lock); 1199 uap->dmacr &= ~(UART011_DMAONERR | UART011_RXDMAE | UART011_TXDMAE); 1200 pl011_write(uap->dmacr, uap, REG_DMACR); 1201 spin_unlock_irq(&uap->port.lock); 1202 1203 if (uap->using_tx_dma) { 1204 /* In theory, this should already be done by pl011_dma_flush_buffer */ 1205 dmaengine_terminate_all(uap->dmatx.chan); 1206 if (uap->dmatx.queued) { 1207 dma_unmap_sg(uap->dmatx.chan->device->dev, &uap->dmatx.sg, 1, 1208 DMA_TO_DEVICE); 1209 uap->dmatx.queued = false; 1210 } 1211 1212 kfree(uap->dmatx.buf); 1213 uap->using_tx_dma = false; 1214 } 1215 1216 if (uap->using_rx_dma) { 1217 dmaengine_terminate_all(uap->dmarx.chan); 1218 /* Clean up the RX DMA */ 1219 pl011_sgbuf_free(uap->dmarx.chan, &uap->dmarx.sgbuf_a, DMA_FROM_DEVICE); 1220 pl011_sgbuf_free(uap->dmarx.chan, &uap->dmarx.sgbuf_b, DMA_FROM_DEVICE); 1221 if (uap->dmarx.poll_rate) 1222 del_timer_sync(&uap->dmarx.timer); 1223 uap->using_rx_dma = false; 1224 } 1225 } 1226 1227 static inline bool pl011_dma_rx_available(struct uart_amba_port *uap) 1228 { 1229 return uap->using_rx_dma; 1230 } 1231 1232 static inline bool pl011_dma_rx_running(struct uart_amba_port *uap) 1233 { 1234 return uap->using_rx_dma && uap->dmarx.running; 1235 } 1236 1237 #else 1238 /* Blank functions if the DMA engine is not available */ 1239 static inline void pl011_dma_probe(struct uart_amba_port *uap) 1240 { 1241 } 1242 1243 static inline void pl011_dma_remove(struct uart_amba_port *uap) 1244 { 1245 } 1246 1247 static inline void pl011_dma_startup(struct uart_amba_port *uap) 1248 { 1249 } 1250 1251 static inline void pl011_dma_shutdown(struct uart_amba_port *uap) 1252 { 1253 } 1254 1255 static inline bool pl011_dma_tx_irq(struct uart_amba_port *uap) 1256 { 1257 return false; 1258 } 1259 1260 static inline void pl011_dma_tx_stop(struct uart_amba_port *uap) 1261 { 1262 } 1263 1264 static inline bool pl011_dma_tx_start(struct uart_amba_port *uap) 1265 { 1266 return false; 1267 } 1268 1269 static inline void pl011_dma_rx_irq(struct uart_amba_port *uap) 1270 { 1271 } 1272 1273 static inline void pl011_dma_rx_stop(struct uart_amba_port *uap) 1274 { 1275 } 1276 1277 static inline int pl011_dma_rx_trigger_dma(struct uart_amba_port *uap) 1278 { 1279 return -EIO; 1280 } 1281 1282 static inline bool pl011_dma_rx_available(struct uart_amba_port *uap) 1283 { 1284 return false; 1285 } 1286 1287 static inline bool pl011_dma_rx_running(struct uart_amba_port *uap) 1288 { 1289 return false; 1290 } 1291 1292 #define pl011_dma_flush_buffer NULL 1293 #endif 1294 1295 static void pl011_stop_tx(struct uart_port *port) 1296 { 1297 struct uart_amba_port *uap = 1298 container_of(port, struct uart_amba_port, port); 1299 1300 uap->im &= ~UART011_TXIM; 1301 pl011_write(uap->im, uap, REG_IMSC); 1302 pl011_dma_tx_stop(uap); 1303 } 1304 1305 static bool pl011_tx_chars(struct uart_amba_port *uap, bool from_irq); 1306 1307 /* Start TX with programmed I/O only (no DMA) */ 1308 static void pl011_start_tx_pio(struct uart_amba_port *uap) 1309 { 1310 if (pl011_tx_chars(uap, false)) { 1311 uap->im |= UART011_TXIM; 1312 pl011_write(uap->im, uap, REG_IMSC); 1313 } 1314 } 1315 1316 static void pl011_start_tx(struct uart_port *port) 1317 { 1318 struct uart_amba_port *uap = 1319 container_of(port, struct uart_amba_port, port); 1320 1321 if (!pl011_dma_tx_start(uap)) 1322 pl011_start_tx_pio(uap); 1323 } 1324 1325 static void pl011_stop_rx(struct uart_port *port) 1326 { 1327 struct uart_amba_port *uap = 1328 container_of(port, struct uart_amba_port, port); 1329 1330 uap->im &= ~(UART011_RXIM|UART011_RTIM|UART011_FEIM| 1331 UART011_PEIM|UART011_BEIM|UART011_OEIM); 1332 pl011_write(uap->im, uap, REG_IMSC); 1333 1334 pl011_dma_rx_stop(uap); 1335 } 1336 1337 static void pl011_enable_ms(struct uart_port *port) 1338 { 1339 struct uart_amba_port *uap = 1340 container_of(port, struct uart_amba_port, port); 1341 1342 uap->im |= UART011_RIMIM|UART011_CTSMIM|UART011_DCDMIM|UART011_DSRMIM; 1343 pl011_write(uap->im, uap, REG_IMSC); 1344 } 1345 1346 static void pl011_rx_chars(struct uart_amba_port *uap) 1347 __releases(&uap->port.lock) 1348 __acquires(&uap->port.lock) 1349 { 1350 pl011_fifo_to_tty(uap); 1351 1352 spin_unlock(&uap->port.lock); 1353 tty_flip_buffer_push(&uap->port.state->port); 1354 /* 1355 * If we were temporarily out of DMA mode for a while, 1356 * attempt to switch back to DMA mode again. 1357 */ 1358 if (pl011_dma_rx_available(uap)) { 1359 if (pl011_dma_rx_trigger_dma(uap)) { 1360 dev_dbg(uap->port.dev, "could not trigger RX DMA job " 1361 "fall back to interrupt mode again\n"); 1362 uap->im |= UART011_RXIM; 1363 pl011_write(uap->im, uap, REG_IMSC); 1364 } else { 1365 #ifdef CONFIG_DMA_ENGINE 1366 /* Start Rx DMA poll */ 1367 if (uap->dmarx.poll_rate) { 1368 uap->dmarx.last_jiffies = jiffies; 1369 uap->dmarx.last_residue = PL011_DMA_BUFFER_SIZE; 1370 mod_timer(&uap->dmarx.timer, 1371 jiffies + 1372 msecs_to_jiffies(uap->dmarx.poll_rate)); 1373 } 1374 #endif 1375 } 1376 } 1377 spin_lock(&uap->port.lock); 1378 } 1379 1380 static bool pl011_tx_char(struct uart_amba_port *uap, unsigned char c, 1381 bool from_irq) 1382 { 1383 if (unlikely(!from_irq) && 1384 pl011_read(uap, REG_FR) & UART01x_FR_TXFF) 1385 return false; /* unable to transmit character */ 1386 1387 pl011_write(c, uap, REG_DR); 1388 uap->port.icount.tx++; 1389 1390 return true; 1391 } 1392 1393 /* Returns true if tx interrupts have to be (kept) enabled */ 1394 static bool pl011_tx_chars(struct uart_amba_port *uap, bool from_irq) 1395 { 1396 struct circ_buf *xmit = &uap->port.state->xmit; 1397 int count = uap->fifosize >> 1; 1398 1399 if (uap->port.x_char) { 1400 if (!pl011_tx_char(uap, uap->port.x_char, from_irq)) 1401 return true; 1402 uap->port.x_char = 0; 1403 --count; 1404 } 1405 if (uart_circ_empty(xmit) || uart_tx_stopped(&uap->port)) { 1406 pl011_stop_tx(&uap->port); 1407 return false; 1408 } 1409 1410 /* If we are using DMA mode, try to send some characters. */ 1411 if (pl011_dma_tx_irq(uap)) 1412 return true; 1413 1414 do { 1415 if (likely(from_irq) && count-- == 0) 1416 break; 1417 1418 if (!pl011_tx_char(uap, xmit->buf[xmit->tail], from_irq)) 1419 break; 1420 1421 xmit->tail = (xmit->tail + 1) & (UART_XMIT_SIZE - 1); 1422 } while (!uart_circ_empty(xmit)); 1423 1424 if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS) 1425 uart_write_wakeup(&uap->port); 1426 1427 if (uart_circ_empty(xmit)) { 1428 pl011_stop_tx(&uap->port); 1429 return false; 1430 } 1431 return true; 1432 } 1433 1434 static void pl011_modem_status(struct uart_amba_port *uap) 1435 { 1436 unsigned int status, delta; 1437 1438 status = pl011_read(uap, REG_FR) & UART01x_FR_MODEM_ANY; 1439 1440 delta = status ^ uap->old_status; 1441 uap->old_status = status; 1442 1443 if (!delta) 1444 return; 1445 1446 if (delta & UART01x_FR_DCD) 1447 uart_handle_dcd_change(&uap->port, status & UART01x_FR_DCD); 1448 1449 if (delta & uap->vendor->fr_dsr) 1450 uap->port.icount.dsr++; 1451 1452 if (delta & uap->vendor->fr_cts) 1453 uart_handle_cts_change(&uap->port, 1454 status & uap->vendor->fr_cts); 1455 1456 wake_up_interruptible(&uap->port.state->port.delta_msr_wait); 1457 } 1458 1459 static void check_apply_cts_event_workaround(struct uart_amba_port *uap) 1460 { 1461 unsigned int dummy_read; 1462 1463 if (!uap->vendor->cts_event_workaround) 1464 return; 1465 1466 /* workaround to make sure that all bits are unlocked.. */ 1467 pl011_write(0x00, uap, REG_ICR); 1468 1469 /* 1470 * WA: introduce 26ns(1 uart clk) delay before W1C; 1471 * single apb access will incur 2 pclk(133.12Mhz) delay, 1472 * so add 2 dummy reads 1473 */ 1474 dummy_read = pl011_read(uap, REG_ICR); 1475 dummy_read = pl011_read(uap, REG_ICR); 1476 } 1477 1478 static irqreturn_t pl011_int(int irq, void *dev_id) 1479 { 1480 struct uart_amba_port *uap = dev_id; 1481 unsigned long flags; 1482 unsigned int status, pass_counter = AMBA_ISR_PASS_LIMIT; 1483 int handled = 0; 1484 1485 spin_lock_irqsave(&uap->port.lock, flags); 1486 status = pl011_read(uap, REG_RIS) & uap->im; 1487 if (status) { 1488 do { 1489 check_apply_cts_event_workaround(uap); 1490 1491 pl011_write(status & ~(UART011_TXIS|UART011_RTIS| 1492 UART011_RXIS), 1493 uap, REG_ICR); 1494 1495 if (status & (UART011_RTIS|UART011_RXIS)) { 1496 if (pl011_dma_rx_running(uap)) 1497 pl011_dma_rx_irq(uap); 1498 else 1499 pl011_rx_chars(uap); 1500 } 1501 if (status & (UART011_DSRMIS|UART011_DCDMIS| 1502 UART011_CTSMIS|UART011_RIMIS)) 1503 pl011_modem_status(uap); 1504 if (status & UART011_TXIS) 1505 pl011_tx_chars(uap, true); 1506 1507 if (pass_counter-- == 0) 1508 break; 1509 1510 status = pl011_read(uap, REG_RIS) & uap->im; 1511 } while (status != 0); 1512 handled = 1; 1513 } 1514 1515 spin_unlock_irqrestore(&uap->port.lock, flags); 1516 1517 return IRQ_RETVAL(handled); 1518 } 1519 1520 static unsigned int pl011_tx_empty(struct uart_port *port) 1521 { 1522 struct uart_amba_port *uap = 1523 container_of(port, struct uart_amba_port, port); 1524 1525 /* Allow feature register bits to be inverted to work around errata */ 1526 unsigned int status = pl011_read(uap, REG_FR) ^ uap->vendor->inv_fr; 1527 1528 return status & (uap->vendor->fr_busy | UART01x_FR_TXFF) ? 1529 0 : TIOCSER_TEMT; 1530 } 1531 1532 static unsigned int pl011_get_mctrl(struct uart_port *port) 1533 { 1534 struct uart_amba_port *uap = 1535 container_of(port, struct uart_amba_port, port); 1536 unsigned int result = 0; 1537 unsigned int status = pl011_read(uap, REG_FR); 1538 1539 #define TIOCMBIT(uartbit, tiocmbit) \ 1540 if (status & uartbit) \ 1541 result |= tiocmbit 1542 1543 TIOCMBIT(UART01x_FR_DCD, TIOCM_CAR); 1544 TIOCMBIT(uap->vendor->fr_dsr, TIOCM_DSR); 1545 TIOCMBIT(uap->vendor->fr_cts, TIOCM_CTS); 1546 TIOCMBIT(uap->vendor->fr_ri, TIOCM_RNG); 1547 #undef TIOCMBIT 1548 return result; 1549 } 1550 1551 static void pl011_set_mctrl(struct uart_port *port, unsigned int mctrl) 1552 { 1553 struct uart_amba_port *uap = 1554 container_of(port, struct uart_amba_port, port); 1555 unsigned int cr; 1556 1557 cr = pl011_read(uap, REG_CR); 1558 1559 #define TIOCMBIT(tiocmbit, uartbit) \ 1560 if (mctrl & tiocmbit) \ 1561 cr |= uartbit; \ 1562 else \ 1563 cr &= ~uartbit 1564 1565 TIOCMBIT(TIOCM_RTS, UART011_CR_RTS); 1566 TIOCMBIT(TIOCM_DTR, UART011_CR_DTR); 1567 TIOCMBIT(TIOCM_OUT1, UART011_CR_OUT1); 1568 TIOCMBIT(TIOCM_OUT2, UART011_CR_OUT2); 1569 TIOCMBIT(TIOCM_LOOP, UART011_CR_LBE); 1570 1571 if (port->status & UPSTAT_AUTORTS) { 1572 /* We need to disable auto-RTS if we want to turn RTS off */ 1573 TIOCMBIT(TIOCM_RTS, UART011_CR_RTSEN); 1574 } 1575 #undef TIOCMBIT 1576 1577 pl011_write(cr, uap, REG_CR); 1578 } 1579 1580 static void pl011_break_ctl(struct uart_port *port, int break_state) 1581 { 1582 struct uart_amba_port *uap = 1583 container_of(port, struct uart_amba_port, port); 1584 unsigned long flags; 1585 unsigned int lcr_h; 1586 1587 spin_lock_irqsave(&uap->port.lock, flags); 1588 lcr_h = pl011_read(uap, REG_LCRH_TX); 1589 if (break_state == -1) 1590 lcr_h |= UART01x_LCRH_BRK; 1591 else 1592 lcr_h &= ~UART01x_LCRH_BRK; 1593 pl011_write(lcr_h, uap, REG_LCRH_TX); 1594 spin_unlock_irqrestore(&uap->port.lock, flags); 1595 } 1596 1597 #ifdef CONFIG_CONSOLE_POLL 1598 1599 static void pl011_quiesce_irqs(struct uart_port *port) 1600 { 1601 struct uart_amba_port *uap = 1602 container_of(port, struct uart_amba_port, port); 1603 1604 pl011_write(pl011_read(uap, REG_MIS), uap, REG_ICR); 1605 /* 1606 * There is no way to clear TXIM as this is "ready to transmit IRQ", so 1607 * we simply mask it. start_tx() will unmask it. 1608 * 1609 * Note we can race with start_tx(), and if the race happens, the 1610 * polling user might get another interrupt just after we clear it. 1611 * But it should be OK and can happen even w/o the race, e.g. 1612 * controller immediately got some new data and raised the IRQ. 1613 * 1614 * And whoever uses polling routines assumes that it manages the device 1615 * (including tx queue), so we're also fine with start_tx()'s caller 1616 * side. 1617 */ 1618 pl011_write(pl011_read(uap, REG_IMSC) & ~UART011_TXIM, uap, 1619 REG_IMSC); 1620 } 1621 1622 static int pl011_get_poll_char(struct uart_port *port) 1623 { 1624 struct uart_amba_port *uap = 1625 container_of(port, struct uart_amba_port, port); 1626 unsigned int status; 1627 1628 /* 1629 * The caller might need IRQs lowered, e.g. if used with KDB NMI 1630 * debugger. 1631 */ 1632 pl011_quiesce_irqs(port); 1633 1634 status = pl011_read(uap, REG_FR); 1635 if (status & UART01x_FR_RXFE) 1636 return NO_POLL_CHAR; 1637 1638 return pl011_read(uap, REG_DR); 1639 } 1640 1641 static void pl011_put_poll_char(struct uart_port *port, 1642 unsigned char ch) 1643 { 1644 struct uart_amba_port *uap = 1645 container_of(port, struct uart_amba_port, port); 1646 1647 while (pl011_read(uap, REG_FR) & UART01x_FR_TXFF) 1648 cpu_relax(); 1649 1650 pl011_write(ch, uap, REG_DR); 1651 } 1652 1653 #endif /* CONFIG_CONSOLE_POLL */ 1654 1655 static int pl011_hwinit(struct uart_port *port) 1656 { 1657 struct uart_amba_port *uap = 1658 container_of(port, struct uart_amba_port, port); 1659 int retval; 1660 1661 /* Optionaly enable pins to be muxed in and configured */ 1662 pinctrl_pm_select_default_state(port->dev); 1663 1664 /* 1665 * Try to enable the clock producer. 1666 */ 1667 retval = clk_prepare_enable(uap->clk); 1668 if (retval) 1669 return retval; 1670 1671 uap->port.uartclk = clk_get_rate(uap->clk); 1672 1673 /* Clear pending error and receive interrupts */ 1674 pl011_write(UART011_OEIS | UART011_BEIS | UART011_PEIS | 1675 UART011_FEIS | UART011_RTIS | UART011_RXIS, 1676 uap, REG_ICR); 1677 1678 /* 1679 * Save interrupts enable mask, and enable RX interrupts in case if 1680 * the interrupt is used for NMI entry. 1681 */ 1682 uap->im = pl011_read(uap, REG_IMSC); 1683 pl011_write(UART011_RTIM | UART011_RXIM, uap, REG_IMSC); 1684 1685 if (dev_get_platdata(uap->port.dev)) { 1686 struct amba_pl011_data *plat; 1687 1688 plat = dev_get_platdata(uap->port.dev); 1689 if (plat->init) 1690 plat->init(); 1691 } 1692 return 0; 1693 } 1694 1695 static bool pl011_split_lcrh(const struct uart_amba_port *uap) 1696 { 1697 return pl011_reg_to_offset(uap, REG_LCRH_RX) != 1698 pl011_reg_to_offset(uap, REG_LCRH_TX); 1699 } 1700 1701 static void pl011_write_lcr_h(struct uart_amba_port *uap, unsigned int lcr_h) 1702 { 1703 pl011_write(lcr_h, uap, REG_LCRH_RX); 1704 if (pl011_split_lcrh(uap)) { 1705 int i; 1706 /* 1707 * Wait 10 PCLKs before writing LCRH_TX register, 1708 * to get this delay write read only register 10 times 1709 */ 1710 for (i = 0; i < 10; ++i) 1711 pl011_write(0xff, uap, REG_MIS); 1712 pl011_write(lcr_h, uap, REG_LCRH_TX); 1713 } 1714 } 1715 1716 static int pl011_allocate_irq(struct uart_amba_port *uap) 1717 { 1718 pl011_write(uap->im, uap, REG_IMSC); 1719 1720 return request_irq(uap->port.irq, pl011_int, 0, "uart-pl011", uap); 1721 } 1722 1723 /* 1724 * Enable interrupts, only timeouts when using DMA 1725 * if initial RX DMA job failed, start in interrupt mode 1726 * as well. 1727 */ 1728 static void pl011_enable_interrupts(struct uart_amba_port *uap) 1729 { 1730 unsigned int i; 1731 1732 spin_lock_irq(&uap->port.lock); 1733 1734 /* Clear out any spuriously appearing RX interrupts */ 1735 pl011_write(UART011_RTIS | UART011_RXIS, uap, REG_ICR); 1736 1737 /* 1738 * RXIS is asserted only when the RX FIFO transitions from below 1739 * to above the trigger threshold. If the RX FIFO is already 1740 * full to the threshold this can't happen and RXIS will now be 1741 * stuck off. Drain the RX FIFO explicitly to fix this: 1742 */ 1743 for (i = 0; i < uap->fifosize * 2; ++i) { 1744 if (pl011_read(uap, REG_FR) & UART01x_FR_RXFE) 1745 break; 1746 1747 pl011_read(uap, REG_DR); 1748 } 1749 1750 uap->im = UART011_RTIM; 1751 if (!pl011_dma_rx_running(uap)) 1752 uap->im |= UART011_RXIM; 1753 pl011_write(uap->im, uap, REG_IMSC); 1754 spin_unlock_irq(&uap->port.lock); 1755 } 1756 1757 static int pl011_startup(struct uart_port *port) 1758 { 1759 struct uart_amba_port *uap = 1760 container_of(port, struct uart_amba_port, port); 1761 unsigned int cr; 1762 int retval; 1763 1764 retval = pl011_hwinit(port); 1765 if (retval) 1766 goto clk_dis; 1767 1768 retval = pl011_allocate_irq(uap); 1769 if (retval) 1770 goto clk_dis; 1771 1772 pl011_write(uap->vendor->ifls, uap, REG_IFLS); 1773 1774 spin_lock_irq(&uap->port.lock); 1775 1776 /* restore RTS and DTR */ 1777 cr = uap->old_cr & (UART011_CR_RTS | UART011_CR_DTR); 1778 cr |= UART01x_CR_UARTEN | UART011_CR_RXE | UART011_CR_TXE; 1779 pl011_write(cr, uap, REG_CR); 1780 1781 spin_unlock_irq(&uap->port.lock); 1782 1783 /* 1784 * initialise the old status of the modem signals 1785 */ 1786 uap->old_status = pl011_read(uap, REG_FR) & UART01x_FR_MODEM_ANY; 1787 1788 /* Startup DMA */ 1789 pl011_dma_startup(uap); 1790 1791 pl011_enable_interrupts(uap); 1792 1793 return 0; 1794 1795 clk_dis: 1796 clk_disable_unprepare(uap->clk); 1797 return retval; 1798 } 1799 1800 static int sbsa_uart_startup(struct uart_port *port) 1801 { 1802 struct uart_amba_port *uap = 1803 container_of(port, struct uart_amba_port, port); 1804 int retval; 1805 1806 retval = pl011_hwinit(port); 1807 if (retval) 1808 return retval; 1809 1810 retval = pl011_allocate_irq(uap); 1811 if (retval) 1812 return retval; 1813 1814 /* The SBSA UART does not support any modem status lines. */ 1815 uap->old_status = 0; 1816 1817 pl011_enable_interrupts(uap); 1818 1819 return 0; 1820 } 1821 1822 static void pl011_shutdown_channel(struct uart_amba_port *uap, 1823 unsigned int lcrh) 1824 { 1825 unsigned long val; 1826 1827 val = pl011_read(uap, lcrh); 1828 val &= ~(UART01x_LCRH_BRK | UART01x_LCRH_FEN); 1829 pl011_write(val, uap, lcrh); 1830 } 1831 1832 /* 1833 * disable the port. It should not disable RTS and DTR. 1834 * Also RTS and DTR state should be preserved to restore 1835 * it during startup(). 1836 */ 1837 static void pl011_disable_uart(struct uart_amba_port *uap) 1838 { 1839 unsigned int cr; 1840 1841 uap->port.status &= ~(UPSTAT_AUTOCTS | UPSTAT_AUTORTS); 1842 spin_lock_irq(&uap->port.lock); 1843 cr = pl011_read(uap, REG_CR); 1844 uap->old_cr = cr; 1845 cr &= UART011_CR_RTS | UART011_CR_DTR; 1846 cr |= UART01x_CR_UARTEN | UART011_CR_TXE; 1847 pl011_write(cr, uap, REG_CR); 1848 spin_unlock_irq(&uap->port.lock); 1849 1850 /* 1851 * disable break condition and fifos 1852 */ 1853 pl011_shutdown_channel(uap, REG_LCRH_RX); 1854 if (pl011_split_lcrh(uap)) 1855 pl011_shutdown_channel(uap, REG_LCRH_TX); 1856 } 1857 1858 static void pl011_disable_interrupts(struct uart_amba_port *uap) 1859 { 1860 spin_lock_irq(&uap->port.lock); 1861 1862 /* mask all interrupts and clear all pending ones */ 1863 uap->im = 0; 1864 pl011_write(uap->im, uap, REG_IMSC); 1865 pl011_write(0xffff, uap, REG_ICR); 1866 1867 spin_unlock_irq(&uap->port.lock); 1868 } 1869 1870 static void pl011_shutdown(struct uart_port *port) 1871 { 1872 struct uart_amba_port *uap = 1873 container_of(port, struct uart_amba_port, port); 1874 1875 pl011_disable_interrupts(uap); 1876 1877 pl011_dma_shutdown(uap); 1878 1879 free_irq(uap->port.irq, uap); 1880 1881 pl011_disable_uart(uap); 1882 1883 /* 1884 * Shut down the clock producer 1885 */ 1886 clk_disable_unprepare(uap->clk); 1887 /* Optionally let pins go into sleep states */ 1888 pinctrl_pm_select_sleep_state(port->dev); 1889 1890 if (dev_get_platdata(uap->port.dev)) { 1891 struct amba_pl011_data *plat; 1892 1893 plat = dev_get_platdata(uap->port.dev); 1894 if (plat->exit) 1895 plat->exit(); 1896 } 1897 1898 if (uap->port.ops->flush_buffer) 1899 uap->port.ops->flush_buffer(port); 1900 } 1901 1902 static void sbsa_uart_shutdown(struct uart_port *port) 1903 { 1904 struct uart_amba_port *uap = 1905 container_of(port, struct uart_amba_port, port); 1906 1907 pl011_disable_interrupts(uap); 1908 1909 free_irq(uap->port.irq, uap); 1910 1911 if (uap->port.ops->flush_buffer) 1912 uap->port.ops->flush_buffer(port); 1913 } 1914 1915 static void 1916 pl011_setup_status_masks(struct uart_port *port, struct ktermios *termios) 1917 { 1918 port->read_status_mask = UART011_DR_OE | 255; 1919 if (termios->c_iflag & INPCK) 1920 port->read_status_mask |= UART011_DR_FE | UART011_DR_PE; 1921 if (termios->c_iflag & (IGNBRK | BRKINT | PARMRK)) 1922 port->read_status_mask |= UART011_DR_BE; 1923 1924 /* 1925 * Characters to ignore 1926 */ 1927 port->ignore_status_mask = 0; 1928 if (termios->c_iflag & IGNPAR) 1929 port->ignore_status_mask |= UART011_DR_FE | UART011_DR_PE; 1930 if (termios->c_iflag & IGNBRK) { 1931 port->ignore_status_mask |= UART011_DR_BE; 1932 /* 1933 * If we're ignoring parity and break indicators, 1934 * ignore overruns too (for real raw support). 1935 */ 1936 if (termios->c_iflag & IGNPAR) 1937 port->ignore_status_mask |= UART011_DR_OE; 1938 } 1939 1940 /* 1941 * Ignore all characters if CREAD is not set. 1942 */ 1943 if ((termios->c_cflag & CREAD) == 0) 1944 port->ignore_status_mask |= UART_DUMMY_DR_RX; 1945 } 1946 1947 static void 1948 pl011_set_termios(struct uart_port *port, struct ktermios *termios, 1949 struct ktermios *old) 1950 { 1951 struct uart_amba_port *uap = 1952 container_of(port, struct uart_amba_port, port); 1953 unsigned int lcr_h, old_cr; 1954 unsigned long flags; 1955 unsigned int baud, quot, clkdiv; 1956 1957 if (uap->vendor->oversampling) 1958 clkdiv = 8; 1959 else 1960 clkdiv = 16; 1961 1962 /* 1963 * Ask the core to calculate the divisor for us. 1964 */ 1965 baud = uart_get_baud_rate(port, termios, old, 0, 1966 port->uartclk / clkdiv); 1967 #ifdef CONFIG_DMA_ENGINE 1968 /* 1969 * Adjust RX DMA polling rate with baud rate if not specified. 1970 */ 1971 if (uap->dmarx.auto_poll_rate) 1972 uap->dmarx.poll_rate = DIV_ROUND_UP(10000000, baud); 1973 #endif 1974 1975 if (baud > port->uartclk/16) 1976 quot = DIV_ROUND_CLOSEST(port->uartclk * 8, baud); 1977 else 1978 quot = DIV_ROUND_CLOSEST(port->uartclk * 4, baud); 1979 1980 switch (termios->c_cflag & CSIZE) { 1981 case CS5: 1982 lcr_h = UART01x_LCRH_WLEN_5; 1983 break; 1984 case CS6: 1985 lcr_h = UART01x_LCRH_WLEN_6; 1986 break; 1987 case CS7: 1988 lcr_h = UART01x_LCRH_WLEN_7; 1989 break; 1990 default: // CS8 1991 lcr_h = UART01x_LCRH_WLEN_8; 1992 break; 1993 } 1994 if (termios->c_cflag & CSTOPB) 1995 lcr_h |= UART01x_LCRH_STP2; 1996 if (termios->c_cflag & PARENB) { 1997 lcr_h |= UART01x_LCRH_PEN; 1998 if (!(termios->c_cflag & PARODD)) 1999 lcr_h |= UART01x_LCRH_EPS; 2000 if (termios->c_cflag & CMSPAR) 2001 lcr_h |= UART011_LCRH_SPS; 2002 } 2003 if (uap->fifosize > 1) 2004 lcr_h |= UART01x_LCRH_FEN; 2005 2006 spin_lock_irqsave(&port->lock, flags); 2007 2008 /* 2009 * Update the per-port timeout. 2010 */ 2011 uart_update_timeout(port, termios->c_cflag, baud); 2012 2013 pl011_setup_status_masks(port, termios); 2014 2015 if (UART_ENABLE_MS(port, termios->c_cflag)) 2016 pl011_enable_ms(port); 2017 2018 /* first, disable everything */ 2019 old_cr = pl011_read(uap, REG_CR); 2020 pl011_write(0, uap, REG_CR); 2021 2022 if (termios->c_cflag & CRTSCTS) { 2023 if (old_cr & UART011_CR_RTS) 2024 old_cr |= UART011_CR_RTSEN; 2025 2026 old_cr |= UART011_CR_CTSEN; 2027 port->status |= UPSTAT_AUTOCTS | UPSTAT_AUTORTS; 2028 } else { 2029 old_cr &= ~(UART011_CR_CTSEN | UART011_CR_RTSEN); 2030 port->status &= ~(UPSTAT_AUTOCTS | UPSTAT_AUTORTS); 2031 } 2032 2033 if (uap->vendor->oversampling) { 2034 if (baud > port->uartclk / 16) 2035 old_cr |= ST_UART011_CR_OVSFACT; 2036 else 2037 old_cr &= ~ST_UART011_CR_OVSFACT; 2038 } 2039 2040 /* 2041 * Workaround for the ST Micro oversampling variants to 2042 * increase the bitrate slightly, by lowering the divisor, 2043 * to avoid delayed sampling of start bit at high speeds, 2044 * else we see data corruption. 2045 */ 2046 if (uap->vendor->oversampling) { 2047 if ((baud >= 3000000) && (baud < 3250000) && (quot > 1)) 2048 quot -= 1; 2049 else if ((baud > 3250000) && (quot > 2)) 2050 quot -= 2; 2051 } 2052 /* Set baud rate */ 2053 pl011_write(quot & 0x3f, uap, REG_FBRD); 2054 pl011_write(quot >> 6, uap, REG_IBRD); 2055 2056 /* 2057 * ----------v----------v----------v----------v----- 2058 * NOTE: REG_LCRH_TX and REG_LCRH_RX MUST BE WRITTEN AFTER 2059 * REG_FBRD & REG_IBRD. 2060 * ----------^----------^----------^----------^----- 2061 */ 2062 pl011_write_lcr_h(uap, lcr_h); 2063 pl011_write(old_cr, uap, REG_CR); 2064 2065 spin_unlock_irqrestore(&port->lock, flags); 2066 } 2067 2068 static void 2069 sbsa_uart_set_termios(struct uart_port *port, struct ktermios *termios, 2070 struct ktermios *old) 2071 { 2072 struct uart_amba_port *uap = 2073 container_of(port, struct uart_amba_port, port); 2074 unsigned long flags; 2075 2076 tty_termios_encode_baud_rate(termios, uap->fixed_baud, uap->fixed_baud); 2077 2078 /* The SBSA UART only supports 8n1 without hardware flow control. */ 2079 termios->c_cflag &= ~(CSIZE | CSTOPB | PARENB | PARODD); 2080 termios->c_cflag &= ~(CMSPAR | CRTSCTS); 2081 termios->c_cflag |= CS8 | CLOCAL; 2082 2083 spin_lock_irqsave(&port->lock, flags); 2084 uart_update_timeout(port, CS8, uap->fixed_baud); 2085 pl011_setup_status_masks(port, termios); 2086 spin_unlock_irqrestore(&port->lock, flags); 2087 } 2088 2089 static const char *pl011_type(struct uart_port *port) 2090 { 2091 struct uart_amba_port *uap = 2092 container_of(port, struct uart_amba_port, port); 2093 return uap->port.type == PORT_AMBA ? uap->type : NULL; 2094 } 2095 2096 /* 2097 * Release the memory region(s) being used by 'port' 2098 */ 2099 static void pl011_release_port(struct uart_port *port) 2100 { 2101 release_mem_region(port->mapbase, SZ_4K); 2102 } 2103 2104 /* 2105 * Request the memory region(s) being used by 'port' 2106 */ 2107 static int pl011_request_port(struct uart_port *port) 2108 { 2109 return request_mem_region(port->mapbase, SZ_4K, "uart-pl011") 2110 != NULL ? 0 : -EBUSY; 2111 } 2112 2113 /* 2114 * Configure/autoconfigure the port. 2115 */ 2116 static void pl011_config_port(struct uart_port *port, int flags) 2117 { 2118 if (flags & UART_CONFIG_TYPE) { 2119 port->type = PORT_AMBA; 2120 pl011_request_port(port); 2121 } 2122 } 2123 2124 /* 2125 * verify the new serial_struct (for TIOCSSERIAL). 2126 */ 2127 static int pl011_verify_port(struct uart_port *port, struct serial_struct *ser) 2128 { 2129 int ret = 0; 2130 if (ser->type != PORT_UNKNOWN && ser->type != PORT_AMBA) 2131 ret = -EINVAL; 2132 if (ser->irq < 0 || ser->irq >= nr_irqs) 2133 ret = -EINVAL; 2134 if (ser->baud_base < 9600) 2135 ret = -EINVAL; 2136 return ret; 2137 } 2138 2139 static const struct uart_ops amba_pl011_pops = { 2140 .tx_empty = pl011_tx_empty, 2141 .set_mctrl = pl011_set_mctrl, 2142 .get_mctrl = pl011_get_mctrl, 2143 .stop_tx = pl011_stop_tx, 2144 .start_tx = pl011_start_tx, 2145 .stop_rx = pl011_stop_rx, 2146 .enable_ms = pl011_enable_ms, 2147 .break_ctl = pl011_break_ctl, 2148 .startup = pl011_startup, 2149 .shutdown = pl011_shutdown, 2150 .flush_buffer = pl011_dma_flush_buffer, 2151 .set_termios = pl011_set_termios, 2152 .type = pl011_type, 2153 .release_port = pl011_release_port, 2154 .request_port = pl011_request_port, 2155 .config_port = pl011_config_port, 2156 .verify_port = pl011_verify_port, 2157 #ifdef CONFIG_CONSOLE_POLL 2158 .poll_init = pl011_hwinit, 2159 .poll_get_char = pl011_get_poll_char, 2160 .poll_put_char = pl011_put_poll_char, 2161 #endif 2162 }; 2163 2164 static void sbsa_uart_set_mctrl(struct uart_port *port, unsigned int mctrl) 2165 { 2166 } 2167 2168 static unsigned int sbsa_uart_get_mctrl(struct uart_port *port) 2169 { 2170 return 0; 2171 } 2172 2173 static const struct uart_ops sbsa_uart_pops = { 2174 .tx_empty = pl011_tx_empty, 2175 .set_mctrl = sbsa_uart_set_mctrl, 2176 .get_mctrl = sbsa_uart_get_mctrl, 2177 .stop_tx = pl011_stop_tx, 2178 .start_tx = pl011_start_tx, 2179 .stop_rx = pl011_stop_rx, 2180 .startup = sbsa_uart_startup, 2181 .shutdown = sbsa_uart_shutdown, 2182 .set_termios = sbsa_uart_set_termios, 2183 .type = pl011_type, 2184 .release_port = pl011_release_port, 2185 .request_port = pl011_request_port, 2186 .config_port = pl011_config_port, 2187 .verify_port = pl011_verify_port, 2188 #ifdef CONFIG_CONSOLE_POLL 2189 .poll_init = pl011_hwinit, 2190 .poll_get_char = pl011_get_poll_char, 2191 .poll_put_char = pl011_put_poll_char, 2192 #endif 2193 }; 2194 2195 static struct uart_amba_port *amba_ports[UART_NR]; 2196 2197 #ifdef CONFIG_SERIAL_AMBA_PL011_CONSOLE 2198 2199 static void pl011_console_putchar(struct uart_port *port, int ch) 2200 { 2201 struct uart_amba_port *uap = 2202 container_of(port, struct uart_amba_port, port); 2203 2204 while (pl011_read(uap, REG_FR) & UART01x_FR_TXFF) 2205 cpu_relax(); 2206 pl011_write(ch, uap, REG_DR); 2207 } 2208 2209 static void 2210 pl011_console_write(struct console *co, const char *s, unsigned int count) 2211 { 2212 struct uart_amba_port *uap = amba_ports[co->index]; 2213 unsigned int old_cr = 0, new_cr; 2214 unsigned long flags; 2215 int locked = 1; 2216 2217 clk_enable(uap->clk); 2218 2219 local_irq_save(flags); 2220 if (uap->port.sysrq) 2221 locked = 0; 2222 else if (oops_in_progress) 2223 locked = spin_trylock(&uap->port.lock); 2224 else 2225 spin_lock(&uap->port.lock); 2226 2227 /* 2228 * First save the CR then disable the interrupts 2229 */ 2230 if (!uap->vendor->always_enabled) { 2231 old_cr = pl011_read(uap, REG_CR); 2232 new_cr = old_cr & ~UART011_CR_CTSEN; 2233 new_cr |= UART01x_CR_UARTEN | UART011_CR_TXE; 2234 pl011_write(new_cr, uap, REG_CR); 2235 } 2236 2237 uart_console_write(&uap->port, s, count, pl011_console_putchar); 2238 2239 /* 2240 * Finally, wait for transmitter to become empty and restore the 2241 * TCR. Allow feature register bits to be inverted to work around 2242 * errata. 2243 */ 2244 while ((pl011_read(uap, REG_FR) ^ uap->vendor->inv_fr) 2245 & uap->vendor->fr_busy) 2246 cpu_relax(); 2247 if (!uap->vendor->always_enabled) 2248 pl011_write(old_cr, uap, REG_CR); 2249 2250 if (locked) 2251 spin_unlock(&uap->port.lock); 2252 local_irq_restore(flags); 2253 2254 clk_disable(uap->clk); 2255 } 2256 2257 static void __init 2258 pl011_console_get_options(struct uart_amba_port *uap, int *baud, 2259 int *parity, int *bits) 2260 { 2261 if (pl011_read(uap, REG_CR) & UART01x_CR_UARTEN) { 2262 unsigned int lcr_h, ibrd, fbrd; 2263 2264 lcr_h = pl011_read(uap, REG_LCRH_TX); 2265 2266 *parity = 'n'; 2267 if (lcr_h & UART01x_LCRH_PEN) { 2268 if (lcr_h & UART01x_LCRH_EPS) 2269 *parity = 'e'; 2270 else 2271 *parity = 'o'; 2272 } 2273 2274 if ((lcr_h & 0x60) == UART01x_LCRH_WLEN_7) 2275 *bits = 7; 2276 else 2277 *bits = 8; 2278 2279 ibrd = pl011_read(uap, REG_IBRD); 2280 fbrd = pl011_read(uap, REG_FBRD); 2281 2282 *baud = uap->port.uartclk * 4 / (64 * ibrd + fbrd); 2283 2284 if (uap->vendor->oversampling) { 2285 if (pl011_read(uap, REG_CR) 2286 & ST_UART011_CR_OVSFACT) 2287 *baud *= 2; 2288 } 2289 } 2290 } 2291 2292 static int __init pl011_console_setup(struct console *co, char *options) 2293 { 2294 struct uart_amba_port *uap; 2295 int baud = 38400; 2296 int bits = 8; 2297 int parity = 'n'; 2298 int flow = 'n'; 2299 int ret; 2300 2301 /* 2302 * Check whether an invalid uart number has been specified, and 2303 * if so, search for the first available port that does have 2304 * console support. 2305 */ 2306 if (co->index >= UART_NR) 2307 co->index = 0; 2308 uap = amba_ports[co->index]; 2309 if (!uap) 2310 return -ENODEV; 2311 2312 /* Allow pins to be muxed in and configured */ 2313 pinctrl_pm_select_default_state(uap->port.dev); 2314 2315 ret = clk_prepare(uap->clk); 2316 if (ret) 2317 return ret; 2318 2319 if (dev_get_platdata(uap->port.dev)) { 2320 struct amba_pl011_data *plat; 2321 2322 plat = dev_get_platdata(uap->port.dev); 2323 if (plat->init) 2324 plat->init(); 2325 } 2326 2327 uap->port.uartclk = clk_get_rate(uap->clk); 2328 2329 if (uap->vendor->fixed_options) { 2330 baud = uap->fixed_baud; 2331 } else { 2332 if (options) 2333 uart_parse_options(options, 2334 &baud, &parity, &bits, &flow); 2335 else 2336 pl011_console_get_options(uap, &baud, &parity, &bits); 2337 } 2338 2339 return uart_set_options(&uap->port, co, baud, parity, bits, flow); 2340 } 2341 2342 /** 2343 * pl011_console_match - non-standard console matching 2344 * @co: registering console 2345 * @name: name from console command line 2346 * @idx: index from console command line 2347 * @options: ptr to option string from console command line 2348 * 2349 * Only attempts to match console command lines of the form: 2350 * console=pl011,mmio|mmio32,<addr>[,<options>] 2351 * console=pl011,0x<addr>[,<options>] 2352 * This form is used to register an initial earlycon boot console and 2353 * replace it with the amba_console at pl011 driver init. 2354 * 2355 * Performs console setup for a match (as required by interface) 2356 * If no <options> are specified, then assume the h/w is already setup. 2357 * 2358 * Returns 0 if console matches; otherwise non-zero to use default matching 2359 */ 2360 static int __init pl011_console_match(struct console *co, char *name, int idx, 2361 char *options) 2362 { 2363 unsigned char iotype; 2364 resource_size_t addr; 2365 int i; 2366 2367 /* 2368 * Systems affected by the Qualcomm Technologies QDF2400 E44 erratum 2369 * have a distinct console name, so make sure we check for that. 2370 * The actual implementation of the erratum occurs in the probe 2371 * function. 2372 */ 2373 if ((strcmp(name, "qdf2400_e44") != 0) && (strcmp(name, "pl011") != 0)) 2374 return -ENODEV; 2375 2376 if (uart_parse_earlycon(options, &iotype, &addr, &options)) 2377 return -ENODEV; 2378 2379 if (iotype != UPIO_MEM && iotype != UPIO_MEM32) 2380 return -ENODEV; 2381 2382 /* try to match the port specified on the command line */ 2383 for (i = 0; i < ARRAY_SIZE(amba_ports); i++) { 2384 struct uart_port *port; 2385 2386 if (!amba_ports[i]) 2387 continue; 2388 2389 port = &amba_ports[i]->port; 2390 2391 if (port->mapbase != addr) 2392 continue; 2393 2394 co->index = i; 2395 port->cons = co; 2396 return pl011_console_setup(co, options); 2397 } 2398 2399 return -ENODEV; 2400 } 2401 2402 static struct uart_driver amba_reg; 2403 static struct console amba_console = { 2404 .name = "ttyAMA", 2405 .write = pl011_console_write, 2406 .device = uart_console_device, 2407 .setup = pl011_console_setup, 2408 .match = pl011_console_match, 2409 .flags = CON_PRINTBUFFER | CON_ANYTIME, 2410 .index = -1, 2411 .data = &amba_reg, 2412 }; 2413 2414 #define AMBA_CONSOLE (&amba_console) 2415 2416 static void qdf2400_e44_putc(struct uart_port *port, int c) 2417 { 2418 while (readl(port->membase + UART01x_FR) & UART01x_FR_TXFF) 2419 cpu_relax(); 2420 writel(c, port->membase + UART01x_DR); 2421 while (!(readl(port->membase + UART01x_FR) & UART011_FR_TXFE)) 2422 cpu_relax(); 2423 } 2424 2425 static void qdf2400_e44_early_write(struct console *con, const char *s, unsigned n) 2426 { 2427 struct earlycon_device *dev = con->data; 2428 2429 uart_console_write(&dev->port, s, n, qdf2400_e44_putc); 2430 } 2431 2432 static void pl011_putc(struct uart_port *port, int c) 2433 { 2434 while (readl(port->membase + UART01x_FR) & UART01x_FR_TXFF) 2435 cpu_relax(); 2436 if (port->iotype == UPIO_MEM32) 2437 writel(c, port->membase + UART01x_DR); 2438 else 2439 writeb(c, port->membase + UART01x_DR); 2440 while (readl(port->membase + UART01x_FR) & UART01x_FR_BUSY) 2441 cpu_relax(); 2442 } 2443 2444 static void pl011_early_write(struct console *con, const char *s, unsigned n) 2445 { 2446 struct earlycon_device *dev = con->data; 2447 2448 uart_console_write(&dev->port, s, n, pl011_putc); 2449 } 2450 2451 /* 2452 * On non-ACPI systems, earlycon is enabled by specifying 2453 * "earlycon=pl011,<address>" on the kernel command line. 2454 * 2455 * On ACPI ARM64 systems, an "early" console is enabled via the SPCR table, 2456 * by specifying only "earlycon" on the command line. Because it requires 2457 * SPCR, the console starts after ACPI is parsed, which is later than a 2458 * traditional early console. 2459 * 2460 * To get the traditional early console that starts before ACPI is parsed, 2461 * specify the full "earlycon=pl011,<address>" option. 2462 */ 2463 static int __init pl011_early_console_setup(struct earlycon_device *device, 2464 const char *opt) 2465 { 2466 if (!device->port.membase) 2467 return -ENODEV; 2468 2469 device->con->write = pl011_early_write; 2470 2471 return 0; 2472 } 2473 OF_EARLYCON_DECLARE(pl011, "arm,pl011", pl011_early_console_setup); 2474 OF_EARLYCON_DECLARE(pl011, "arm,sbsa-uart", pl011_early_console_setup); 2475 2476 /* 2477 * On Qualcomm Datacenter Technologies QDF2400 SOCs affected by 2478 * Erratum 44, traditional earlycon can be enabled by specifying 2479 * "earlycon=qdf2400_e44,<address>". Any options are ignored. 2480 * 2481 * Alternatively, you can just specify "earlycon", and the early console 2482 * will be enabled with the information from the SPCR table. In this 2483 * case, the SPCR code will detect the need for the E44 work-around, 2484 * and set the console name to "qdf2400_e44". 2485 */ 2486 static int __init 2487 qdf2400_e44_early_console_setup(struct earlycon_device *device, 2488 const char *opt) 2489 { 2490 if (!device->port.membase) 2491 return -ENODEV; 2492 2493 device->con->write = qdf2400_e44_early_write; 2494 return 0; 2495 } 2496 EARLYCON_DECLARE(qdf2400_e44, qdf2400_e44_early_console_setup); 2497 2498 #else 2499 #define AMBA_CONSOLE NULL 2500 #endif 2501 2502 static struct uart_driver amba_reg = { 2503 .owner = THIS_MODULE, 2504 .driver_name = "ttyAMA", 2505 .dev_name = "ttyAMA", 2506 .major = SERIAL_AMBA_MAJOR, 2507 .minor = SERIAL_AMBA_MINOR, 2508 .nr = UART_NR, 2509 .cons = AMBA_CONSOLE, 2510 }; 2511 2512 static int pl011_probe_dt_alias(int index, struct device *dev) 2513 { 2514 struct device_node *np; 2515 static bool seen_dev_with_alias = false; 2516 static bool seen_dev_without_alias = false; 2517 int ret = index; 2518 2519 if (!IS_ENABLED(CONFIG_OF)) 2520 return ret; 2521 2522 np = dev->of_node; 2523 if (!np) 2524 return ret; 2525 2526 ret = of_alias_get_id(np, "serial"); 2527 if (ret < 0) { 2528 seen_dev_without_alias = true; 2529 ret = index; 2530 } else { 2531 seen_dev_with_alias = true; 2532 if (ret >= ARRAY_SIZE(amba_ports) || amba_ports[ret] != NULL) { 2533 dev_warn(dev, "requested serial port %d not available.\n", ret); 2534 ret = index; 2535 } 2536 } 2537 2538 if (seen_dev_with_alias && seen_dev_without_alias) 2539 dev_warn(dev, "aliased and non-aliased serial devices found in device tree. Serial port enumeration may be unpredictable.\n"); 2540 2541 return ret; 2542 } 2543 2544 /* unregisters the driver also if no more ports are left */ 2545 static void pl011_unregister_port(struct uart_amba_port *uap) 2546 { 2547 int i; 2548 bool busy = false; 2549 2550 for (i = 0; i < ARRAY_SIZE(amba_ports); i++) { 2551 if (amba_ports[i] == uap) 2552 amba_ports[i] = NULL; 2553 else if (amba_ports[i]) 2554 busy = true; 2555 } 2556 pl011_dma_remove(uap); 2557 if (!busy) 2558 uart_unregister_driver(&amba_reg); 2559 } 2560 2561 static int pl011_find_free_port(void) 2562 { 2563 int i; 2564 2565 for (i = 0; i < ARRAY_SIZE(amba_ports); i++) 2566 if (amba_ports[i] == NULL) 2567 return i; 2568 2569 return -EBUSY; 2570 } 2571 2572 static int pl011_setup_port(struct device *dev, struct uart_amba_port *uap, 2573 struct resource *mmiobase, int index) 2574 { 2575 void __iomem *base; 2576 2577 base = devm_ioremap_resource(dev, mmiobase); 2578 if (IS_ERR(base)) 2579 return PTR_ERR(base); 2580 2581 index = pl011_probe_dt_alias(index, dev); 2582 2583 uap->old_cr = 0; 2584 uap->port.dev = dev; 2585 uap->port.mapbase = mmiobase->start; 2586 uap->port.membase = base; 2587 uap->port.fifosize = uap->fifosize; 2588 uap->port.flags = UPF_BOOT_AUTOCONF; 2589 uap->port.line = index; 2590 2591 amba_ports[index] = uap; 2592 2593 return 0; 2594 } 2595 2596 static int pl011_register_port(struct uart_amba_port *uap) 2597 { 2598 int ret; 2599 2600 /* Ensure interrupts from this UART are masked and cleared */ 2601 pl011_write(0, uap, REG_IMSC); 2602 pl011_write(0xffff, uap, REG_ICR); 2603 2604 if (!amba_reg.state) { 2605 ret = uart_register_driver(&amba_reg); 2606 if (ret < 0) { 2607 dev_err(uap->port.dev, 2608 "Failed to register AMBA-PL011 driver\n"); 2609 return ret; 2610 } 2611 } 2612 2613 ret = uart_add_one_port(&amba_reg, &uap->port); 2614 if (ret) 2615 pl011_unregister_port(uap); 2616 2617 return ret; 2618 } 2619 2620 static int pl011_probe(struct amba_device *dev, const struct amba_id *id) 2621 { 2622 struct uart_amba_port *uap; 2623 struct vendor_data *vendor = id->data; 2624 int portnr, ret; 2625 2626 portnr = pl011_find_free_port(); 2627 if (portnr < 0) 2628 return portnr; 2629 2630 uap = devm_kzalloc(&dev->dev, sizeof(struct uart_amba_port), 2631 GFP_KERNEL); 2632 if (!uap) 2633 return -ENOMEM; 2634 2635 uap->clk = devm_clk_get(&dev->dev, NULL); 2636 if (IS_ERR(uap->clk)) 2637 return PTR_ERR(uap->clk); 2638 2639 uap->reg_offset = vendor->reg_offset; 2640 uap->vendor = vendor; 2641 uap->fifosize = vendor->get_fifosize(dev); 2642 uap->port.iotype = vendor->access_32b ? UPIO_MEM32 : UPIO_MEM; 2643 uap->port.irq = dev->irq[0]; 2644 uap->port.ops = &amba_pl011_pops; 2645 2646 snprintf(uap->type, sizeof(uap->type), "PL011 rev%u", amba_rev(dev)); 2647 2648 ret = pl011_setup_port(&dev->dev, uap, &dev->res, portnr); 2649 if (ret) 2650 return ret; 2651 2652 amba_set_drvdata(dev, uap); 2653 2654 return pl011_register_port(uap); 2655 } 2656 2657 static int pl011_remove(struct amba_device *dev) 2658 { 2659 struct uart_amba_port *uap = amba_get_drvdata(dev); 2660 2661 uart_remove_one_port(&amba_reg, &uap->port); 2662 pl011_unregister_port(uap); 2663 return 0; 2664 } 2665 2666 #ifdef CONFIG_PM_SLEEP 2667 static int pl011_suspend(struct device *dev) 2668 { 2669 struct uart_amba_port *uap = dev_get_drvdata(dev); 2670 2671 if (!uap) 2672 return -EINVAL; 2673 2674 return uart_suspend_port(&amba_reg, &uap->port); 2675 } 2676 2677 static int pl011_resume(struct device *dev) 2678 { 2679 struct uart_amba_port *uap = dev_get_drvdata(dev); 2680 2681 if (!uap) 2682 return -EINVAL; 2683 2684 return uart_resume_port(&amba_reg, &uap->port); 2685 } 2686 #endif 2687 2688 static SIMPLE_DEV_PM_OPS(pl011_dev_pm_ops, pl011_suspend, pl011_resume); 2689 2690 static int sbsa_uart_probe(struct platform_device *pdev) 2691 { 2692 struct uart_amba_port *uap; 2693 struct resource *r; 2694 int portnr, ret; 2695 int baudrate; 2696 2697 /* 2698 * Check the mandatory baud rate parameter in the DT node early 2699 * so that we can easily exit with the error. 2700 */ 2701 if (pdev->dev.of_node) { 2702 struct device_node *np = pdev->dev.of_node; 2703 2704 ret = of_property_read_u32(np, "current-speed", &baudrate); 2705 if (ret) 2706 return ret; 2707 } else { 2708 baudrate = 115200; 2709 } 2710 2711 portnr = pl011_find_free_port(); 2712 if (portnr < 0) 2713 return portnr; 2714 2715 uap = devm_kzalloc(&pdev->dev, sizeof(struct uart_amba_port), 2716 GFP_KERNEL); 2717 if (!uap) 2718 return -ENOMEM; 2719 2720 ret = platform_get_irq(pdev, 0); 2721 if (ret < 0) { 2722 if (ret != -EPROBE_DEFER) 2723 dev_err(&pdev->dev, "cannot obtain irq\n"); 2724 return ret; 2725 } 2726 uap->port.irq = ret; 2727 2728 #ifdef CONFIG_ACPI_SPCR_TABLE 2729 if (qdf2400_e44_present) { 2730 dev_info(&pdev->dev, "working around QDF2400 SoC erratum 44\n"); 2731 uap->vendor = &vendor_qdt_qdf2400_e44; 2732 } else 2733 #endif 2734 uap->vendor = &vendor_sbsa; 2735 2736 uap->reg_offset = uap->vendor->reg_offset; 2737 uap->fifosize = 32; 2738 uap->port.iotype = uap->vendor->access_32b ? UPIO_MEM32 : UPIO_MEM; 2739 uap->port.ops = &sbsa_uart_pops; 2740 uap->fixed_baud = baudrate; 2741 2742 snprintf(uap->type, sizeof(uap->type), "SBSA"); 2743 2744 r = platform_get_resource(pdev, IORESOURCE_MEM, 0); 2745 2746 ret = pl011_setup_port(&pdev->dev, uap, r, portnr); 2747 if (ret) 2748 return ret; 2749 2750 platform_set_drvdata(pdev, uap); 2751 2752 return pl011_register_port(uap); 2753 } 2754 2755 static int sbsa_uart_remove(struct platform_device *pdev) 2756 { 2757 struct uart_amba_port *uap = platform_get_drvdata(pdev); 2758 2759 uart_remove_one_port(&amba_reg, &uap->port); 2760 pl011_unregister_port(uap); 2761 return 0; 2762 } 2763 2764 static const struct of_device_id sbsa_uart_of_match[] = { 2765 { .compatible = "arm,sbsa-uart", }, 2766 {}, 2767 }; 2768 MODULE_DEVICE_TABLE(of, sbsa_uart_of_match); 2769 2770 static const struct acpi_device_id sbsa_uart_acpi_match[] = { 2771 { "ARMH0011", 0 }, 2772 {}, 2773 }; 2774 MODULE_DEVICE_TABLE(acpi, sbsa_uart_acpi_match); 2775 2776 static struct platform_driver arm_sbsa_uart_platform_driver = { 2777 .probe = sbsa_uart_probe, 2778 .remove = sbsa_uart_remove, 2779 .driver = { 2780 .name = "sbsa-uart", 2781 .of_match_table = of_match_ptr(sbsa_uart_of_match), 2782 .acpi_match_table = ACPI_PTR(sbsa_uart_acpi_match), 2783 }, 2784 }; 2785 2786 static const struct amba_id pl011_ids[] = { 2787 { 2788 .id = 0x00041011, 2789 .mask = 0x000fffff, 2790 .data = &vendor_arm, 2791 }, 2792 { 2793 .id = 0x00380802, 2794 .mask = 0x00ffffff, 2795 .data = &vendor_st, 2796 }, 2797 { 2798 .id = AMBA_LINUX_ID(0x00, 0x1, 0xffe), 2799 .mask = 0x00ffffff, 2800 .data = &vendor_zte, 2801 }, 2802 { 0, 0 }, 2803 }; 2804 2805 MODULE_DEVICE_TABLE(amba, pl011_ids); 2806 2807 static struct amba_driver pl011_driver = { 2808 .drv = { 2809 .name = "uart-pl011", 2810 .pm = &pl011_dev_pm_ops, 2811 }, 2812 .id_table = pl011_ids, 2813 .probe = pl011_probe, 2814 .remove = pl011_remove, 2815 }; 2816 2817 static int __init pl011_init(void) 2818 { 2819 printk(KERN_INFO "Serial: AMBA PL011 UART driver\n"); 2820 2821 if (platform_driver_register(&arm_sbsa_uart_platform_driver)) 2822 pr_warn("could not register SBSA UART platform driver\n"); 2823 return amba_driver_register(&pl011_driver); 2824 } 2825 2826 static void __exit pl011_exit(void) 2827 { 2828 platform_driver_unregister(&arm_sbsa_uart_platform_driver); 2829 amba_driver_unregister(&pl011_driver); 2830 } 2831 2832 /* 2833 * While this can be a module, if builtin it's most likely the console 2834 * So let's leave module_exit but move module_init to an earlier place 2835 */ 2836 arch_initcall(pl011_init); 2837 module_exit(pl011_exit); 2838 2839 MODULE_AUTHOR("ARM Ltd/Deep Blue Solutions Ltd"); 2840 MODULE_DESCRIPTION("ARM AMBA serial port driver"); 2841 MODULE_LICENSE("GPL"); 2842