xref: /openbmc/linux/drivers/tty/serial/amba-pl011.c (revision 9cfc5c90)
1 /*
2  *  Driver for AMBA serial ports
3  *
4  *  Based on drivers/char/serial.c, by Linus Torvalds, Theodore Ts'o.
5  *
6  *  Copyright 1999 ARM Limited
7  *  Copyright (C) 2000 Deep Blue Solutions Ltd.
8  *  Copyright (C) 2010 ST-Ericsson SA
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License as published by
12  * the Free Software Foundation; either version 2 of the License, or
13  * (at your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18  * GNU General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public License
21  * along with this program; if not, write to the Free Software
22  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
23  *
24  * This is a generic driver for ARM AMBA-type serial ports.  They
25  * have a lot of 16550-like features, but are not register compatible.
26  * Note that although they do have CTS, DCD and DSR inputs, they do
27  * not have an RI input, nor do they have DTR or RTS outputs.  If
28  * required, these have to be supplied via some other means (eg, GPIO)
29  * and hooked into this driver.
30  */
31 
32 
33 #if defined(CONFIG_SERIAL_AMBA_PL011_CONSOLE) && defined(CONFIG_MAGIC_SYSRQ)
34 #define SUPPORT_SYSRQ
35 #endif
36 
37 #include <linux/module.h>
38 #include <linux/ioport.h>
39 #include <linux/init.h>
40 #include <linux/console.h>
41 #include <linux/sysrq.h>
42 #include <linux/device.h>
43 #include <linux/tty.h>
44 #include <linux/tty_flip.h>
45 #include <linux/serial_core.h>
46 #include <linux/serial.h>
47 #include <linux/amba/bus.h>
48 #include <linux/amba/serial.h>
49 #include <linux/clk.h>
50 #include <linux/slab.h>
51 #include <linux/dmaengine.h>
52 #include <linux/dma-mapping.h>
53 #include <linux/scatterlist.h>
54 #include <linux/delay.h>
55 #include <linux/types.h>
56 #include <linux/of.h>
57 #include <linux/of_device.h>
58 #include <linux/pinctrl/consumer.h>
59 #include <linux/sizes.h>
60 #include <linux/io.h>
61 #include <linux/acpi.h>
62 
63 #define UART_NR			14
64 
65 #define SERIAL_AMBA_MAJOR	204
66 #define SERIAL_AMBA_MINOR	64
67 #define SERIAL_AMBA_NR		UART_NR
68 
69 #define AMBA_ISR_PASS_LIMIT	256
70 
71 #define UART_DR_ERROR		(UART011_DR_OE|UART011_DR_BE|UART011_DR_PE|UART011_DR_FE)
72 #define UART_DUMMY_DR_RX	(1 << 16)
73 
74 /* There is by now at least one vendor with differing details, so handle it */
75 struct vendor_data {
76 	unsigned int		ifls;
77 	unsigned int		lcrh_tx;
78 	unsigned int		lcrh_rx;
79 	bool			oversampling;
80 	bool			dma_threshold;
81 	bool			cts_event_workaround;
82 	bool			always_enabled;
83 	bool			fixed_options;
84 
85 	unsigned int (*get_fifosize)(struct amba_device *dev);
86 };
87 
88 static unsigned int get_fifosize_arm(struct amba_device *dev)
89 {
90 	return amba_rev(dev) < 3 ? 16 : 32;
91 }
92 
93 static struct vendor_data vendor_arm = {
94 	.ifls			= UART011_IFLS_RX4_8|UART011_IFLS_TX4_8,
95 	.lcrh_tx		= UART011_LCRH,
96 	.lcrh_rx		= UART011_LCRH,
97 	.oversampling		= false,
98 	.dma_threshold		= false,
99 	.cts_event_workaround	= false,
100 	.always_enabled		= false,
101 	.fixed_options		= false,
102 	.get_fifosize		= get_fifosize_arm,
103 };
104 
105 static struct vendor_data vendor_sbsa = {
106 	.oversampling		= false,
107 	.dma_threshold		= false,
108 	.cts_event_workaround	= false,
109 	.always_enabled		= true,
110 	.fixed_options		= true,
111 };
112 
113 static unsigned int get_fifosize_st(struct amba_device *dev)
114 {
115 	return 64;
116 }
117 
118 static struct vendor_data vendor_st = {
119 	.ifls			= UART011_IFLS_RX_HALF|UART011_IFLS_TX_HALF,
120 	.lcrh_tx		= ST_UART011_LCRH_TX,
121 	.lcrh_rx		= ST_UART011_LCRH_RX,
122 	.oversampling		= true,
123 	.dma_threshold		= true,
124 	.cts_event_workaround	= true,
125 	.always_enabled		= false,
126 	.fixed_options		= false,
127 	.get_fifosize		= get_fifosize_st,
128 };
129 
130 /* Deals with DMA transactions */
131 
132 struct pl011_sgbuf {
133 	struct scatterlist sg;
134 	char *buf;
135 };
136 
137 struct pl011_dmarx_data {
138 	struct dma_chan		*chan;
139 	struct completion	complete;
140 	bool			use_buf_b;
141 	struct pl011_sgbuf	sgbuf_a;
142 	struct pl011_sgbuf	sgbuf_b;
143 	dma_cookie_t		cookie;
144 	bool			running;
145 	struct timer_list	timer;
146 	unsigned int last_residue;
147 	unsigned long last_jiffies;
148 	bool auto_poll_rate;
149 	unsigned int poll_rate;
150 	unsigned int poll_timeout;
151 };
152 
153 struct pl011_dmatx_data {
154 	struct dma_chan		*chan;
155 	struct scatterlist	sg;
156 	char			*buf;
157 	bool			queued;
158 };
159 
160 /*
161  * We wrap our port structure around the generic uart_port.
162  */
163 struct uart_amba_port {
164 	struct uart_port	port;
165 	struct clk		*clk;
166 	const struct vendor_data *vendor;
167 	unsigned int		dmacr;		/* dma control reg */
168 	unsigned int		im;		/* interrupt mask */
169 	unsigned int		old_status;
170 	unsigned int		fifosize;	/* vendor-specific */
171 	unsigned int		lcrh_tx;	/* vendor-specific */
172 	unsigned int		lcrh_rx;	/* vendor-specific */
173 	unsigned int		old_cr;		/* state during shutdown */
174 	bool			autorts;
175 	unsigned int		fixed_baud;	/* vendor-set fixed baud rate */
176 	char			type[12];
177 #ifdef CONFIG_DMA_ENGINE
178 	/* DMA stuff */
179 	bool			using_tx_dma;
180 	bool			using_rx_dma;
181 	struct pl011_dmarx_data dmarx;
182 	struct pl011_dmatx_data	dmatx;
183 	bool			dma_probed;
184 #endif
185 };
186 
187 /*
188  * Reads up to 256 characters from the FIFO or until it's empty and
189  * inserts them into the TTY layer. Returns the number of characters
190  * read from the FIFO.
191  */
192 static int pl011_fifo_to_tty(struct uart_amba_port *uap)
193 {
194 	u16 status;
195 	unsigned int ch, flag, max_count = 256;
196 	int fifotaken = 0;
197 
198 	while (max_count--) {
199 		status = readw(uap->port.membase + UART01x_FR);
200 		if (status & UART01x_FR_RXFE)
201 			break;
202 
203 		/* Take chars from the FIFO and update status */
204 		ch = readw(uap->port.membase + UART01x_DR) |
205 			UART_DUMMY_DR_RX;
206 		flag = TTY_NORMAL;
207 		uap->port.icount.rx++;
208 		fifotaken++;
209 
210 		if (unlikely(ch & UART_DR_ERROR)) {
211 			if (ch & UART011_DR_BE) {
212 				ch &= ~(UART011_DR_FE | UART011_DR_PE);
213 				uap->port.icount.brk++;
214 				if (uart_handle_break(&uap->port))
215 					continue;
216 			} else if (ch & UART011_DR_PE)
217 				uap->port.icount.parity++;
218 			else if (ch & UART011_DR_FE)
219 				uap->port.icount.frame++;
220 			if (ch & UART011_DR_OE)
221 				uap->port.icount.overrun++;
222 
223 			ch &= uap->port.read_status_mask;
224 
225 			if (ch & UART011_DR_BE)
226 				flag = TTY_BREAK;
227 			else if (ch & UART011_DR_PE)
228 				flag = TTY_PARITY;
229 			else if (ch & UART011_DR_FE)
230 				flag = TTY_FRAME;
231 		}
232 
233 		if (uart_handle_sysrq_char(&uap->port, ch & 255))
234 			continue;
235 
236 		uart_insert_char(&uap->port, ch, UART011_DR_OE, ch, flag);
237 	}
238 
239 	return fifotaken;
240 }
241 
242 
243 /*
244  * All the DMA operation mode stuff goes inside this ifdef.
245  * This assumes that you have a generic DMA device interface,
246  * no custom DMA interfaces are supported.
247  */
248 #ifdef CONFIG_DMA_ENGINE
249 
250 #define PL011_DMA_BUFFER_SIZE PAGE_SIZE
251 
252 static int pl011_sgbuf_init(struct dma_chan *chan, struct pl011_sgbuf *sg,
253 	enum dma_data_direction dir)
254 {
255 	dma_addr_t dma_addr;
256 
257 	sg->buf = dma_alloc_coherent(chan->device->dev,
258 		PL011_DMA_BUFFER_SIZE, &dma_addr, GFP_KERNEL);
259 	if (!sg->buf)
260 		return -ENOMEM;
261 
262 	sg_init_table(&sg->sg, 1);
263 	sg_set_page(&sg->sg, phys_to_page(dma_addr),
264 		PL011_DMA_BUFFER_SIZE, offset_in_page(dma_addr));
265 	sg_dma_address(&sg->sg) = dma_addr;
266 	sg_dma_len(&sg->sg) = PL011_DMA_BUFFER_SIZE;
267 
268 	return 0;
269 }
270 
271 static void pl011_sgbuf_free(struct dma_chan *chan, struct pl011_sgbuf *sg,
272 	enum dma_data_direction dir)
273 {
274 	if (sg->buf) {
275 		dma_free_coherent(chan->device->dev,
276 			PL011_DMA_BUFFER_SIZE, sg->buf,
277 			sg_dma_address(&sg->sg));
278 	}
279 }
280 
281 static void pl011_dma_probe(struct uart_amba_port *uap)
282 {
283 	/* DMA is the sole user of the platform data right now */
284 	struct amba_pl011_data *plat = dev_get_platdata(uap->port.dev);
285 	struct device *dev = uap->port.dev;
286 	struct dma_slave_config tx_conf = {
287 		.dst_addr = uap->port.mapbase + UART01x_DR,
288 		.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
289 		.direction = DMA_MEM_TO_DEV,
290 		.dst_maxburst = uap->fifosize >> 1,
291 		.device_fc = false,
292 	};
293 	struct dma_chan *chan;
294 	dma_cap_mask_t mask;
295 
296 	uap->dma_probed = true;
297 	chan = dma_request_slave_channel_reason(dev, "tx");
298 	if (IS_ERR(chan)) {
299 		if (PTR_ERR(chan) == -EPROBE_DEFER) {
300 			uap->dma_probed = false;
301 			return;
302 		}
303 
304 		/* We need platform data */
305 		if (!plat || !plat->dma_filter) {
306 			dev_info(uap->port.dev, "no DMA platform data\n");
307 			return;
308 		}
309 
310 		/* Try to acquire a generic DMA engine slave TX channel */
311 		dma_cap_zero(mask);
312 		dma_cap_set(DMA_SLAVE, mask);
313 
314 		chan = dma_request_channel(mask, plat->dma_filter,
315 						plat->dma_tx_param);
316 		if (!chan) {
317 			dev_err(uap->port.dev, "no TX DMA channel!\n");
318 			return;
319 		}
320 	}
321 
322 	dmaengine_slave_config(chan, &tx_conf);
323 	uap->dmatx.chan = chan;
324 
325 	dev_info(uap->port.dev, "DMA channel TX %s\n",
326 		 dma_chan_name(uap->dmatx.chan));
327 
328 	/* Optionally make use of an RX channel as well */
329 	chan = dma_request_slave_channel(dev, "rx");
330 
331 	if (!chan && plat->dma_rx_param) {
332 		chan = dma_request_channel(mask, plat->dma_filter, plat->dma_rx_param);
333 
334 		if (!chan) {
335 			dev_err(uap->port.dev, "no RX DMA channel!\n");
336 			return;
337 		}
338 	}
339 
340 	if (chan) {
341 		struct dma_slave_config rx_conf = {
342 			.src_addr = uap->port.mapbase + UART01x_DR,
343 			.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
344 			.direction = DMA_DEV_TO_MEM,
345 			.src_maxburst = uap->fifosize >> 2,
346 			.device_fc = false,
347 		};
348 		struct dma_slave_caps caps;
349 
350 		/*
351 		 * Some DMA controllers provide information on their capabilities.
352 		 * If the controller does, check for suitable residue processing
353 		 * otherwise assime all is well.
354 		 */
355 		if (0 == dma_get_slave_caps(chan, &caps)) {
356 			if (caps.residue_granularity ==
357 					DMA_RESIDUE_GRANULARITY_DESCRIPTOR) {
358 				dma_release_channel(chan);
359 				dev_info(uap->port.dev,
360 					"RX DMA disabled - no residue processing\n");
361 				return;
362 			}
363 		}
364 		dmaengine_slave_config(chan, &rx_conf);
365 		uap->dmarx.chan = chan;
366 
367 		uap->dmarx.auto_poll_rate = false;
368 		if (plat && plat->dma_rx_poll_enable) {
369 			/* Set poll rate if specified. */
370 			if (plat->dma_rx_poll_rate) {
371 				uap->dmarx.auto_poll_rate = false;
372 				uap->dmarx.poll_rate = plat->dma_rx_poll_rate;
373 			} else {
374 				/*
375 				 * 100 ms defaults to poll rate if not
376 				 * specified. This will be adjusted with
377 				 * the baud rate at set_termios.
378 				 */
379 				uap->dmarx.auto_poll_rate = true;
380 				uap->dmarx.poll_rate =  100;
381 			}
382 			/* 3 secs defaults poll_timeout if not specified. */
383 			if (plat->dma_rx_poll_timeout)
384 				uap->dmarx.poll_timeout =
385 					plat->dma_rx_poll_timeout;
386 			else
387 				uap->dmarx.poll_timeout = 3000;
388 		} else if (!plat && dev->of_node) {
389 			uap->dmarx.auto_poll_rate = of_property_read_bool(
390 						dev->of_node, "auto-poll");
391 			if (uap->dmarx.auto_poll_rate) {
392 				u32 x;
393 
394 				if (0 == of_property_read_u32(dev->of_node,
395 						"poll-rate-ms", &x))
396 					uap->dmarx.poll_rate = x;
397 				else
398 					uap->dmarx.poll_rate = 100;
399 				if (0 == of_property_read_u32(dev->of_node,
400 						"poll-timeout-ms", &x))
401 					uap->dmarx.poll_timeout = x;
402 				else
403 					uap->dmarx.poll_timeout = 3000;
404 			}
405 		}
406 		dev_info(uap->port.dev, "DMA channel RX %s\n",
407 			 dma_chan_name(uap->dmarx.chan));
408 	}
409 }
410 
411 static void pl011_dma_remove(struct uart_amba_port *uap)
412 {
413 	if (uap->dmatx.chan)
414 		dma_release_channel(uap->dmatx.chan);
415 	if (uap->dmarx.chan)
416 		dma_release_channel(uap->dmarx.chan);
417 }
418 
419 /* Forward declare these for the refill routine */
420 static int pl011_dma_tx_refill(struct uart_amba_port *uap);
421 static void pl011_start_tx_pio(struct uart_amba_port *uap);
422 
423 /*
424  * The current DMA TX buffer has been sent.
425  * Try to queue up another DMA buffer.
426  */
427 static void pl011_dma_tx_callback(void *data)
428 {
429 	struct uart_amba_port *uap = data;
430 	struct pl011_dmatx_data *dmatx = &uap->dmatx;
431 	unsigned long flags;
432 	u16 dmacr;
433 
434 	spin_lock_irqsave(&uap->port.lock, flags);
435 	if (uap->dmatx.queued)
436 		dma_unmap_sg(dmatx->chan->device->dev, &dmatx->sg, 1,
437 			     DMA_TO_DEVICE);
438 
439 	dmacr = uap->dmacr;
440 	uap->dmacr = dmacr & ~UART011_TXDMAE;
441 	writew(uap->dmacr, uap->port.membase + UART011_DMACR);
442 
443 	/*
444 	 * If TX DMA was disabled, it means that we've stopped the DMA for
445 	 * some reason (eg, XOFF received, or we want to send an X-char.)
446 	 *
447 	 * Note: we need to be careful here of a potential race between DMA
448 	 * and the rest of the driver - if the driver disables TX DMA while
449 	 * a TX buffer completing, we must update the tx queued status to
450 	 * get further refills (hence we check dmacr).
451 	 */
452 	if (!(dmacr & UART011_TXDMAE) || uart_tx_stopped(&uap->port) ||
453 	    uart_circ_empty(&uap->port.state->xmit)) {
454 		uap->dmatx.queued = false;
455 		spin_unlock_irqrestore(&uap->port.lock, flags);
456 		return;
457 	}
458 
459 	if (pl011_dma_tx_refill(uap) <= 0)
460 		/*
461 		 * We didn't queue a DMA buffer for some reason, but we
462 		 * have data pending to be sent.  Re-enable the TX IRQ.
463 		 */
464 		pl011_start_tx_pio(uap);
465 
466 	spin_unlock_irqrestore(&uap->port.lock, flags);
467 }
468 
469 /*
470  * Try to refill the TX DMA buffer.
471  * Locking: called with port lock held and IRQs disabled.
472  * Returns:
473  *   1 if we queued up a TX DMA buffer.
474  *   0 if we didn't want to handle this by DMA
475  *  <0 on error
476  */
477 static int pl011_dma_tx_refill(struct uart_amba_port *uap)
478 {
479 	struct pl011_dmatx_data *dmatx = &uap->dmatx;
480 	struct dma_chan *chan = dmatx->chan;
481 	struct dma_device *dma_dev = chan->device;
482 	struct dma_async_tx_descriptor *desc;
483 	struct circ_buf *xmit = &uap->port.state->xmit;
484 	unsigned int count;
485 
486 	/*
487 	 * Try to avoid the overhead involved in using DMA if the
488 	 * transaction fits in the first half of the FIFO, by using
489 	 * the standard interrupt handling.  This ensures that we
490 	 * issue a uart_write_wakeup() at the appropriate time.
491 	 */
492 	count = uart_circ_chars_pending(xmit);
493 	if (count < (uap->fifosize >> 1)) {
494 		uap->dmatx.queued = false;
495 		return 0;
496 	}
497 
498 	/*
499 	 * Bodge: don't send the last character by DMA, as this
500 	 * will prevent XON from notifying us to restart DMA.
501 	 */
502 	count -= 1;
503 
504 	/* Else proceed to copy the TX chars to the DMA buffer and fire DMA */
505 	if (count > PL011_DMA_BUFFER_SIZE)
506 		count = PL011_DMA_BUFFER_SIZE;
507 
508 	if (xmit->tail < xmit->head)
509 		memcpy(&dmatx->buf[0], &xmit->buf[xmit->tail], count);
510 	else {
511 		size_t first = UART_XMIT_SIZE - xmit->tail;
512 		size_t second;
513 
514 		if (first > count)
515 			first = count;
516 		second = count - first;
517 
518 		memcpy(&dmatx->buf[0], &xmit->buf[xmit->tail], first);
519 		if (second)
520 			memcpy(&dmatx->buf[first], &xmit->buf[0], second);
521 	}
522 
523 	dmatx->sg.length = count;
524 
525 	if (dma_map_sg(dma_dev->dev, &dmatx->sg, 1, DMA_TO_DEVICE) != 1) {
526 		uap->dmatx.queued = false;
527 		dev_dbg(uap->port.dev, "unable to map TX DMA\n");
528 		return -EBUSY;
529 	}
530 
531 	desc = dmaengine_prep_slave_sg(chan, &dmatx->sg, 1, DMA_MEM_TO_DEV,
532 					     DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
533 	if (!desc) {
534 		dma_unmap_sg(dma_dev->dev, &dmatx->sg, 1, DMA_TO_DEVICE);
535 		uap->dmatx.queued = false;
536 		/*
537 		 * If DMA cannot be used right now, we complete this
538 		 * transaction via IRQ and let the TTY layer retry.
539 		 */
540 		dev_dbg(uap->port.dev, "TX DMA busy\n");
541 		return -EBUSY;
542 	}
543 
544 	/* Some data to go along to the callback */
545 	desc->callback = pl011_dma_tx_callback;
546 	desc->callback_param = uap;
547 
548 	/* All errors should happen at prepare time */
549 	dmaengine_submit(desc);
550 
551 	/* Fire the DMA transaction */
552 	dma_dev->device_issue_pending(chan);
553 
554 	uap->dmacr |= UART011_TXDMAE;
555 	writew(uap->dmacr, uap->port.membase + UART011_DMACR);
556 	uap->dmatx.queued = true;
557 
558 	/*
559 	 * Now we know that DMA will fire, so advance the ring buffer
560 	 * with the stuff we just dispatched.
561 	 */
562 	xmit->tail = (xmit->tail + count) & (UART_XMIT_SIZE - 1);
563 	uap->port.icount.tx += count;
564 
565 	if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
566 		uart_write_wakeup(&uap->port);
567 
568 	return 1;
569 }
570 
571 /*
572  * We received a transmit interrupt without a pending X-char but with
573  * pending characters.
574  * Locking: called with port lock held and IRQs disabled.
575  * Returns:
576  *   false if we want to use PIO to transmit
577  *   true if we queued a DMA buffer
578  */
579 static bool pl011_dma_tx_irq(struct uart_amba_port *uap)
580 {
581 	if (!uap->using_tx_dma)
582 		return false;
583 
584 	/*
585 	 * If we already have a TX buffer queued, but received a
586 	 * TX interrupt, it will be because we've just sent an X-char.
587 	 * Ensure the TX DMA is enabled and the TX IRQ is disabled.
588 	 */
589 	if (uap->dmatx.queued) {
590 		uap->dmacr |= UART011_TXDMAE;
591 		writew(uap->dmacr, uap->port.membase + UART011_DMACR);
592 		uap->im &= ~UART011_TXIM;
593 		writew(uap->im, uap->port.membase + UART011_IMSC);
594 		return true;
595 	}
596 
597 	/*
598 	 * We don't have a TX buffer queued, so try to queue one.
599 	 * If we successfully queued a buffer, mask the TX IRQ.
600 	 */
601 	if (pl011_dma_tx_refill(uap) > 0) {
602 		uap->im &= ~UART011_TXIM;
603 		writew(uap->im, uap->port.membase + UART011_IMSC);
604 		return true;
605 	}
606 	return false;
607 }
608 
609 /*
610  * Stop the DMA transmit (eg, due to received XOFF).
611  * Locking: called with port lock held and IRQs disabled.
612  */
613 static inline void pl011_dma_tx_stop(struct uart_amba_port *uap)
614 {
615 	if (uap->dmatx.queued) {
616 		uap->dmacr &= ~UART011_TXDMAE;
617 		writew(uap->dmacr, uap->port.membase + UART011_DMACR);
618 	}
619 }
620 
621 /*
622  * Try to start a DMA transmit, or in the case of an XON/OFF
623  * character queued for send, try to get that character out ASAP.
624  * Locking: called with port lock held and IRQs disabled.
625  * Returns:
626  *   false if we want the TX IRQ to be enabled
627  *   true if we have a buffer queued
628  */
629 static inline bool pl011_dma_tx_start(struct uart_amba_port *uap)
630 {
631 	u16 dmacr;
632 
633 	if (!uap->using_tx_dma)
634 		return false;
635 
636 	if (!uap->port.x_char) {
637 		/* no X-char, try to push chars out in DMA mode */
638 		bool ret = true;
639 
640 		if (!uap->dmatx.queued) {
641 			if (pl011_dma_tx_refill(uap) > 0) {
642 				uap->im &= ~UART011_TXIM;
643 				writew(uap->im, uap->port.membase +
644 				       UART011_IMSC);
645 			} else
646 				ret = false;
647 		} else if (!(uap->dmacr & UART011_TXDMAE)) {
648 			uap->dmacr |= UART011_TXDMAE;
649 			writew(uap->dmacr,
650 				       uap->port.membase + UART011_DMACR);
651 		}
652 		return ret;
653 	}
654 
655 	/*
656 	 * We have an X-char to send.  Disable DMA to prevent it loading
657 	 * the TX fifo, and then see if we can stuff it into the FIFO.
658 	 */
659 	dmacr = uap->dmacr;
660 	uap->dmacr &= ~UART011_TXDMAE;
661 	writew(uap->dmacr, uap->port.membase + UART011_DMACR);
662 
663 	if (readw(uap->port.membase + UART01x_FR) & UART01x_FR_TXFF) {
664 		/*
665 		 * No space in the FIFO, so enable the transmit interrupt
666 		 * so we know when there is space.  Note that once we've
667 		 * loaded the character, we should just re-enable DMA.
668 		 */
669 		return false;
670 	}
671 
672 	writew(uap->port.x_char, uap->port.membase + UART01x_DR);
673 	uap->port.icount.tx++;
674 	uap->port.x_char = 0;
675 
676 	/* Success - restore the DMA state */
677 	uap->dmacr = dmacr;
678 	writew(dmacr, uap->port.membase + UART011_DMACR);
679 
680 	return true;
681 }
682 
683 /*
684  * Flush the transmit buffer.
685  * Locking: called with port lock held and IRQs disabled.
686  */
687 static void pl011_dma_flush_buffer(struct uart_port *port)
688 __releases(&uap->port.lock)
689 __acquires(&uap->port.lock)
690 {
691 	struct uart_amba_port *uap =
692 	    container_of(port, struct uart_amba_port, port);
693 
694 	if (!uap->using_tx_dma)
695 		return;
696 
697 	/* Avoid deadlock with the DMA engine callback */
698 	spin_unlock(&uap->port.lock);
699 	dmaengine_terminate_all(uap->dmatx.chan);
700 	spin_lock(&uap->port.lock);
701 	if (uap->dmatx.queued) {
702 		dma_unmap_sg(uap->dmatx.chan->device->dev, &uap->dmatx.sg, 1,
703 			     DMA_TO_DEVICE);
704 		uap->dmatx.queued = false;
705 		uap->dmacr &= ~UART011_TXDMAE;
706 		writew(uap->dmacr, uap->port.membase + UART011_DMACR);
707 	}
708 }
709 
710 static void pl011_dma_rx_callback(void *data);
711 
712 static int pl011_dma_rx_trigger_dma(struct uart_amba_port *uap)
713 {
714 	struct dma_chan *rxchan = uap->dmarx.chan;
715 	struct pl011_dmarx_data *dmarx = &uap->dmarx;
716 	struct dma_async_tx_descriptor *desc;
717 	struct pl011_sgbuf *sgbuf;
718 
719 	if (!rxchan)
720 		return -EIO;
721 
722 	/* Start the RX DMA job */
723 	sgbuf = uap->dmarx.use_buf_b ?
724 		&uap->dmarx.sgbuf_b : &uap->dmarx.sgbuf_a;
725 	desc = dmaengine_prep_slave_sg(rxchan, &sgbuf->sg, 1,
726 					DMA_DEV_TO_MEM,
727 					DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
728 	/*
729 	 * If the DMA engine is busy and cannot prepare a
730 	 * channel, no big deal, the driver will fall back
731 	 * to interrupt mode as a result of this error code.
732 	 */
733 	if (!desc) {
734 		uap->dmarx.running = false;
735 		dmaengine_terminate_all(rxchan);
736 		return -EBUSY;
737 	}
738 
739 	/* Some data to go along to the callback */
740 	desc->callback = pl011_dma_rx_callback;
741 	desc->callback_param = uap;
742 	dmarx->cookie = dmaengine_submit(desc);
743 	dma_async_issue_pending(rxchan);
744 
745 	uap->dmacr |= UART011_RXDMAE;
746 	writew(uap->dmacr, uap->port.membase + UART011_DMACR);
747 	uap->dmarx.running = true;
748 
749 	uap->im &= ~UART011_RXIM;
750 	writew(uap->im, uap->port.membase + UART011_IMSC);
751 
752 	return 0;
753 }
754 
755 /*
756  * This is called when either the DMA job is complete, or
757  * the FIFO timeout interrupt occurred. This must be called
758  * with the port spinlock uap->port.lock held.
759  */
760 static void pl011_dma_rx_chars(struct uart_amba_port *uap,
761 			       u32 pending, bool use_buf_b,
762 			       bool readfifo)
763 {
764 	struct tty_port *port = &uap->port.state->port;
765 	struct pl011_sgbuf *sgbuf = use_buf_b ?
766 		&uap->dmarx.sgbuf_b : &uap->dmarx.sgbuf_a;
767 	int dma_count = 0;
768 	u32 fifotaken = 0; /* only used for vdbg() */
769 
770 	struct pl011_dmarx_data *dmarx = &uap->dmarx;
771 	int dmataken = 0;
772 
773 	if (uap->dmarx.poll_rate) {
774 		/* The data can be taken by polling */
775 		dmataken = sgbuf->sg.length - dmarx->last_residue;
776 		/* Recalculate the pending size */
777 		if (pending >= dmataken)
778 			pending -= dmataken;
779 	}
780 
781 	/* Pick the remain data from the DMA */
782 	if (pending) {
783 
784 		/*
785 		 * First take all chars in the DMA pipe, then look in the FIFO.
786 		 * Note that tty_insert_flip_buf() tries to take as many chars
787 		 * as it can.
788 		 */
789 		dma_count = tty_insert_flip_string(port, sgbuf->buf + dmataken,
790 				pending);
791 
792 		uap->port.icount.rx += dma_count;
793 		if (dma_count < pending)
794 			dev_warn(uap->port.dev,
795 				 "couldn't insert all characters (TTY is full?)\n");
796 	}
797 
798 	/* Reset the last_residue for Rx DMA poll */
799 	if (uap->dmarx.poll_rate)
800 		dmarx->last_residue = sgbuf->sg.length;
801 
802 	/*
803 	 * Only continue with trying to read the FIFO if all DMA chars have
804 	 * been taken first.
805 	 */
806 	if (dma_count == pending && readfifo) {
807 		/* Clear any error flags */
808 		writew(UART011_OEIS | UART011_BEIS | UART011_PEIS | UART011_FEIS,
809 		       uap->port.membase + UART011_ICR);
810 
811 		/*
812 		 * If we read all the DMA'd characters, and we had an
813 		 * incomplete buffer, that could be due to an rx error, or
814 		 * maybe we just timed out. Read any pending chars and check
815 		 * the error status.
816 		 *
817 		 * Error conditions will only occur in the FIFO, these will
818 		 * trigger an immediate interrupt and stop the DMA job, so we
819 		 * will always find the error in the FIFO, never in the DMA
820 		 * buffer.
821 		 */
822 		fifotaken = pl011_fifo_to_tty(uap);
823 	}
824 
825 	spin_unlock(&uap->port.lock);
826 	dev_vdbg(uap->port.dev,
827 		 "Took %d chars from DMA buffer and %d chars from the FIFO\n",
828 		 dma_count, fifotaken);
829 	tty_flip_buffer_push(port);
830 	spin_lock(&uap->port.lock);
831 }
832 
833 static void pl011_dma_rx_irq(struct uart_amba_port *uap)
834 {
835 	struct pl011_dmarx_data *dmarx = &uap->dmarx;
836 	struct dma_chan *rxchan = dmarx->chan;
837 	struct pl011_sgbuf *sgbuf = dmarx->use_buf_b ?
838 		&dmarx->sgbuf_b : &dmarx->sgbuf_a;
839 	size_t pending;
840 	struct dma_tx_state state;
841 	enum dma_status dmastat;
842 
843 	/*
844 	 * Pause the transfer so we can trust the current counter,
845 	 * do this before we pause the PL011 block, else we may
846 	 * overflow the FIFO.
847 	 */
848 	if (dmaengine_pause(rxchan))
849 		dev_err(uap->port.dev, "unable to pause DMA transfer\n");
850 	dmastat = rxchan->device->device_tx_status(rxchan,
851 						   dmarx->cookie, &state);
852 	if (dmastat != DMA_PAUSED)
853 		dev_err(uap->port.dev, "unable to pause DMA transfer\n");
854 
855 	/* Disable RX DMA - incoming data will wait in the FIFO */
856 	uap->dmacr &= ~UART011_RXDMAE;
857 	writew(uap->dmacr, uap->port.membase + UART011_DMACR);
858 	uap->dmarx.running = false;
859 
860 	pending = sgbuf->sg.length - state.residue;
861 	BUG_ON(pending > PL011_DMA_BUFFER_SIZE);
862 	/* Then we terminate the transfer - we now know our residue */
863 	dmaengine_terminate_all(rxchan);
864 
865 	/*
866 	 * This will take the chars we have so far and insert
867 	 * into the framework.
868 	 */
869 	pl011_dma_rx_chars(uap, pending, dmarx->use_buf_b, true);
870 
871 	/* Switch buffer & re-trigger DMA job */
872 	dmarx->use_buf_b = !dmarx->use_buf_b;
873 	if (pl011_dma_rx_trigger_dma(uap)) {
874 		dev_dbg(uap->port.dev, "could not retrigger RX DMA job "
875 			"fall back to interrupt mode\n");
876 		uap->im |= UART011_RXIM;
877 		writew(uap->im, uap->port.membase + UART011_IMSC);
878 	}
879 }
880 
881 static void pl011_dma_rx_callback(void *data)
882 {
883 	struct uart_amba_port *uap = data;
884 	struct pl011_dmarx_data *dmarx = &uap->dmarx;
885 	struct dma_chan *rxchan = dmarx->chan;
886 	bool lastbuf = dmarx->use_buf_b;
887 	struct pl011_sgbuf *sgbuf = dmarx->use_buf_b ?
888 		&dmarx->sgbuf_b : &dmarx->sgbuf_a;
889 	size_t pending;
890 	struct dma_tx_state state;
891 	int ret;
892 
893 	/*
894 	 * This completion interrupt occurs typically when the
895 	 * RX buffer is totally stuffed but no timeout has yet
896 	 * occurred. When that happens, we just want the RX
897 	 * routine to flush out the secondary DMA buffer while
898 	 * we immediately trigger the next DMA job.
899 	 */
900 	spin_lock_irq(&uap->port.lock);
901 	/*
902 	 * Rx data can be taken by the UART interrupts during
903 	 * the DMA irq handler. So we check the residue here.
904 	 */
905 	rxchan->device->device_tx_status(rxchan, dmarx->cookie, &state);
906 	pending = sgbuf->sg.length - state.residue;
907 	BUG_ON(pending > PL011_DMA_BUFFER_SIZE);
908 	/* Then we terminate the transfer - we now know our residue */
909 	dmaengine_terminate_all(rxchan);
910 
911 	uap->dmarx.running = false;
912 	dmarx->use_buf_b = !lastbuf;
913 	ret = pl011_dma_rx_trigger_dma(uap);
914 
915 	pl011_dma_rx_chars(uap, pending, lastbuf, false);
916 	spin_unlock_irq(&uap->port.lock);
917 	/*
918 	 * Do this check after we picked the DMA chars so we don't
919 	 * get some IRQ immediately from RX.
920 	 */
921 	if (ret) {
922 		dev_dbg(uap->port.dev, "could not retrigger RX DMA job "
923 			"fall back to interrupt mode\n");
924 		uap->im |= UART011_RXIM;
925 		writew(uap->im, uap->port.membase + UART011_IMSC);
926 	}
927 }
928 
929 /*
930  * Stop accepting received characters, when we're shutting down or
931  * suspending this port.
932  * Locking: called with port lock held and IRQs disabled.
933  */
934 static inline void pl011_dma_rx_stop(struct uart_amba_port *uap)
935 {
936 	/* FIXME.  Just disable the DMA enable */
937 	uap->dmacr &= ~UART011_RXDMAE;
938 	writew(uap->dmacr, uap->port.membase + UART011_DMACR);
939 }
940 
941 /*
942  * Timer handler for Rx DMA polling.
943  * Every polling, It checks the residue in the dma buffer and transfer
944  * data to the tty. Also, last_residue is updated for the next polling.
945  */
946 static void pl011_dma_rx_poll(unsigned long args)
947 {
948 	struct uart_amba_port *uap = (struct uart_amba_port *)args;
949 	struct tty_port *port = &uap->port.state->port;
950 	struct pl011_dmarx_data *dmarx = &uap->dmarx;
951 	struct dma_chan *rxchan = uap->dmarx.chan;
952 	unsigned long flags = 0;
953 	unsigned int dmataken = 0;
954 	unsigned int size = 0;
955 	struct pl011_sgbuf *sgbuf;
956 	int dma_count;
957 	struct dma_tx_state state;
958 
959 	sgbuf = dmarx->use_buf_b ? &uap->dmarx.sgbuf_b : &uap->dmarx.sgbuf_a;
960 	rxchan->device->device_tx_status(rxchan, dmarx->cookie, &state);
961 	if (likely(state.residue < dmarx->last_residue)) {
962 		dmataken = sgbuf->sg.length - dmarx->last_residue;
963 		size = dmarx->last_residue - state.residue;
964 		dma_count = tty_insert_flip_string(port, sgbuf->buf + dmataken,
965 				size);
966 		if (dma_count == size)
967 			dmarx->last_residue =  state.residue;
968 		dmarx->last_jiffies = jiffies;
969 	}
970 	tty_flip_buffer_push(port);
971 
972 	/*
973 	 * If no data is received in poll_timeout, the driver will fall back
974 	 * to interrupt mode. We will retrigger DMA at the first interrupt.
975 	 */
976 	if (jiffies_to_msecs(jiffies - dmarx->last_jiffies)
977 			> uap->dmarx.poll_timeout) {
978 
979 		spin_lock_irqsave(&uap->port.lock, flags);
980 		pl011_dma_rx_stop(uap);
981 		uap->im |= UART011_RXIM;
982 		writew(uap->im, uap->port.membase + UART011_IMSC);
983 		spin_unlock_irqrestore(&uap->port.lock, flags);
984 
985 		uap->dmarx.running = false;
986 		dmaengine_terminate_all(rxchan);
987 		del_timer(&uap->dmarx.timer);
988 	} else {
989 		mod_timer(&uap->dmarx.timer,
990 			jiffies + msecs_to_jiffies(uap->dmarx.poll_rate));
991 	}
992 }
993 
994 static void pl011_dma_startup(struct uart_amba_port *uap)
995 {
996 	int ret;
997 
998 	if (!uap->dma_probed)
999 		pl011_dma_probe(uap);
1000 
1001 	if (!uap->dmatx.chan)
1002 		return;
1003 
1004 	uap->dmatx.buf = kmalloc(PL011_DMA_BUFFER_SIZE, GFP_KERNEL | __GFP_DMA);
1005 	if (!uap->dmatx.buf) {
1006 		dev_err(uap->port.dev, "no memory for DMA TX buffer\n");
1007 		uap->port.fifosize = uap->fifosize;
1008 		return;
1009 	}
1010 
1011 	sg_init_one(&uap->dmatx.sg, uap->dmatx.buf, PL011_DMA_BUFFER_SIZE);
1012 
1013 	/* The DMA buffer is now the FIFO the TTY subsystem can use */
1014 	uap->port.fifosize = PL011_DMA_BUFFER_SIZE;
1015 	uap->using_tx_dma = true;
1016 
1017 	if (!uap->dmarx.chan)
1018 		goto skip_rx;
1019 
1020 	/* Allocate and map DMA RX buffers */
1021 	ret = pl011_sgbuf_init(uap->dmarx.chan, &uap->dmarx.sgbuf_a,
1022 			       DMA_FROM_DEVICE);
1023 	if (ret) {
1024 		dev_err(uap->port.dev, "failed to init DMA %s: %d\n",
1025 			"RX buffer A", ret);
1026 		goto skip_rx;
1027 	}
1028 
1029 	ret = pl011_sgbuf_init(uap->dmarx.chan, &uap->dmarx.sgbuf_b,
1030 			       DMA_FROM_DEVICE);
1031 	if (ret) {
1032 		dev_err(uap->port.dev, "failed to init DMA %s: %d\n",
1033 			"RX buffer B", ret);
1034 		pl011_sgbuf_free(uap->dmarx.chan, &uap->dmarx.sgbuf_a,
1035 				 DMA_FROM_DEVICE);
1036 		goto skip_rx;
1037 	}
1038 
1039 	uap->using_rx_dma = true;
1040 
1041 skip_rx:
1042 	/* Turn on DMA error (RX/TX will be enabled on demand) */
1043 	uap->dmacr |= UART011_DMAONERR;
1044 	writew(uap->dmacr, uap->port.membase + UART011_DMACR);
1045 
1046 	/*
1047 	 * ST Micro variants has some specific dma burst threshold
1048 	 * compensation. Set this to 16 bytes, so burst will only
1049 	 * be issued above/below 16 bytes.
1050 	 */
1051 	if (uap->vendor->dma_threshold)
1052 		writew(ST_UART011_DMAWM_RX_16 | ST_UART011_DMAWM_TX_16,
1053 			       uap->port.membase + ST_UART011_DMAWM);
1054 
1055 	if (uap->using_rx_dma) {
1056 		if (pl011_dma_rx_trigger_dma(uap))
1057 			dev_dbg(uap->port.dev, "could not trigger initial "
1058 				"RX DMA job, fall back to interrupt mode\n");
1059 		if (uap->dmarx.poll_rate) {
1060 			init_timer(&(uap->dmarx.timer));
1061 			uap->dmarx.timer.function = pl011_dma_rx_poll;
1062 			uap->dmarx.timer.data = (unsigned long)uap;
1063 			mod_timer(&uap->dmarx.timer,
1064 				jiffies +
1065 				msecs_to_jiffies(uap->dmarx.poll_rate));
1066 			uap->dmarx.last_residue = PL011_DMA_BUFFER_SIZE;
1067 			uap->dmarx.last_jiffies = jiffies;
1068 		}
1069 	}
1070 }
1071 
1072 static void pl011_dma_shutdown(struct uart_amba_port *uap)
1073 {
1074 	if (!(uap->using_tx_dma || uap->using_rx_dma))
1075 		return;
1076 
1077 	/* Disable RX and TX DMA */
1078 	while (readw(uap->port.membase + UART01x_FR) & UART01x_FR_BUSY)
1079 		barrier();
1080 
1081 	spin_lock_irq(&uap->port.lock);
1082 	uap->dmacr &= ~(UART011_DMAONERR | UART011_RXDMAE | UART011_TXDMAE);
1083 	writew(uap->dmacr, uap->port.membase + UART011_DMACR);
1084 	spin_unlock_irq(&uap->port.lock);
1085 
1086 	if (uap->using_tx_dma) {
1087 		/* In theory, this should already be done by pl011_dma_flush_buffer */
1088 		dmaengine_terminate_all(uap->dmatx.chan);
1089 		if (uap->dmatx.queued) {
1090 			dma_unmap_sg(uap->dmatx.chan->device->dev, &uap->dmatx.sg, 1,
1091 				     DMA_TO_DEVICE);
1092 			uap->dmatx.queued = false;
1093 		}
1094 
1095 		kfree(uap->dmatx.buf);
1096 		uap->using_tx_dma = false;
1097 	}
1098 
1099 	if (uap->using_rx_dma) {
1100 		dmaengine_terminate_all(uap->dmarx.chan);
1101 		/* Clean up the RX DMA */
1102 		pl011_sgbuf_free(uap->dmarx.chan, &uap->dmarx.sgbuf_a, DMA_FROM_DEVICE);
1103 		pl011_sgbuf_free(uap->dmarx.chan, &uap->dmarx.sgbuf_b, DMA_FROM_DEVICE);
1104 		if (uap->dmarx.poll_rate)
1105 			del_timer_sync(&uap->dmarx.timer);
1106 		uap->using_rx_dma = false;
1107 	}
1108 }
1109 
1110 static inline bool pl011_dma_rx_available(struct uart_amba_port *uap)
1111 {
1112 	return uap->using_rx_dma;
1113 }
1114 
1115 static inline bool pl011_dma_rx_running(struct uart_amba_port *uap)
1116 {
1117 	return uap->using_rx_dma && uap->dmarx.running;
1118 }
1119 
1120 #else
1121 /* Blank functions if the DMA engine is not available */
1122 static inline void pl011_dma_probe(struct uart_amba_port *uap)
1123 {
1124 }
1125 
1126 static inline void pl011_dma_remove(struct uart_amba_port *uap)
1127 {
1128 }
1129 
1130 static inline void pl011_dma_startup(struct uart_amba_port *uap)
1131 {
1132 }
1133 
1134 static inline void pl011_dma_shutdown(struct uart_amba_port *uap)
1135 {
1136 }
1137 
1138 static inline bool pl011_dma_tx_irq(struct uart_amba_port *uap)
1139 {
1140 	return false;
1141 }
1142 
1143 static inline void pl011_dma_tx_stop(struct uart_amba_port *uap)
1144 {
1145 }
1146 
1147 static inline bool pl011_dma_tx_start(struct uart_amba_port *uap)
1148 {
1149 	return false;
1150 }
1151 
1152 static inline void pl011_dma_rx_irq(struct uart_amba_port *uap)
1153 {
1154 }
1155 
1156 static inline void pl011_dma_rx_stop(struct uart_amba_port *uap)
1157 {
1158 }
1159 
1160 static inline int pl011_dma_rx_trigger_dma(struct uart_amba_port *uap)
1161 {
1162 	return -EIO;
1163 }
1164 
1165 static inline bool pl011_dma_rx_available(struct uart_amba_port *uap)
1166 {
1167 	return false;
1168 }
1169 
1170 static inline bool pl011_dma_rx_running(struct uart_amba_port *uap)
1171 {
1172 	return false;
1173 }
1174 
1175 #define pl011_dma_flush_buffer	NULL
1176 #endif
1177 
1178 static void pl011_stop_tx(struct uart_port *port)
1179 {
1180 	struct uart_amba_port *uap =
1181 	    container_of(port, struct uart_amba_port, port);
1182 
1183 	uap->im &= ~UART011_TXIM;
1184 	writew(uap->im, uap->port.membase + UART011_IMSC);
1185 	pl011_dma_tx_stop(uap);
1186 }
1187 
1188 static void pl011_tx_chars(struct uart_amba_port *uap, bool from_irq);
1189 
1190 /* Start TX with programmed I/O only (no DMA) */
1191 static void pl011_start_tx_pio(struct uart_amba_port *uap)
1192 {
1193 	uap->im |= UART011_TXIM;
1194 	writew(uap->im, uap->port.membase + UART011_IMSC);
1195 	pl011_tx_chars(uap, false);
1196 }
1197 
1198 static void pl011_start_tx(struct uart_port *port)
1199 {
1200 	struct uart_amba_port *uap =
1201 	    container_of(port, struct uart_amba_port, port);
1202 
1203 	if (!pl011_dma_tx_start(uap))
1204 		pl011_start_tx_pio(uap);
1205 }
1206 
1207 static void pl011_stop_rx(struct uart_port *port)
1208 {
1209 	struct uart_amba_port *uap =
1210 	    container_of(port, struct uart_amba_port, port);
1211 
1212 	uap->im &= ~(UART011_RXIM|UART011_RTIM|UART011_FEIM|
1213 		     UART011_PEIM|UART011_BEIM|UART011_OEIM);
1214 	writew(uap->im, uap->port.membase + UART011_IMSC);
1215 
1216 	pl011_dma_rx_stop(uap);
1217 }
1218 
1219 static void pl011_enable_ms(struct uart_port *port)
1220 {
1221 	struct uart_amba_port *uap =
1222 	    container_of(port, struct uart_amba_port, port);
1223 
1224 	uap->im |= UART011_RIMIM|UART011_CTSMIM|UART011_DCDMIM|UART011_DSRMIM;
1225 	writew(uap->im, uap->port.membase + UART011_IMSC);
1226 }
1227 
1228 static void pl011_rx_chars(struct uart_amba_port *uap)
1229 __releases(&uap->port.lock)
1230 __acquires(&uap->port.lock)
1231 {
1232 	pl011_fifo_to_tty(uap);
1233 
1234 	spin_unlock(&uap->port.lock);
1235 	tty_flip_buffer_push(&uap->port.state->port);
1236 	/*
1237 	 * If we were temporarily out of DMA mode for a while,
1238 	 * attempt to switch back to DMA mode again.
1239 	 */
1240 	if (pl011_dma_rx_available(uap)) {
1241 		if (pl011_dma_rx_trigger_dma(uap)) {
1242 			dev_dbg(uap->port.dev, "could not trigger RX DMA job "
1243 				"fall back to interrupt mode again\n");
1244 			uap->im |= UART011_RXIM;
1245 			writew(uap->im, uap->port.membase + UART011_IMSC);
1246 		} else {
1247 #ifdef CONFIG_DMA_ENGINE
1248 			/* Start Rx DMA poll */
1249 			if (uap->dmarx.poll_rate) {
1250 				uap->dmarx.last_jiffies = jiffies;
1251 				uap->dmarx.last_residue	= PL011_DMA_BUFFER_SIZE;
1252 				mod_timer(&uap->dmarx.timer,
1253 					jiffies +
1254 					msecs_to_jiffies(uap->dmarx.poll_rate));
1255 			}
1256 #endif
1257 		}
1258 	}
1259 	spin_lock(&uap->port.lock);
1260 }
1261 
1262 static bool pl011_tx_char(struct uart_amba_port *uap, unsigned char c,
1263 			  bool from_irq)
1264 {
1265 	if (unlikely(!from_irq) &&
1266 	    readw(uap->port.membase + UART01x_FR) & UART01x_FR_TXFF)
1267 		return false; /* unable to transmit character */
1268 
1269 	writew(c, uap->port.membase + UART01x_DR);
1270 	uap->port.icount.tx++;
1271 
1272 	return true;
1273 }
1274 
1275 static void pl011_tx_chars(struct uart_amba_port *uap, bool from_irq)
1276 {
1277 	struct circ_buf *xmit = &uap->port.state->xmit;
1278 	int count = uap->fifosize >> 1;
1279 
1280 	if (uap->port.x_char) {
1281 		if (!pl011_tx_char(uap, uap->port.x_char, from_irq))
1282 			return;
1283 		uap->port.x_char = 0;
1284 		--count;
1285 	}
1286 	if (uart_circ_empty(xmit) || uart_tx_stopped(&uap->port)) {
1287 		pl011_stop_tx(&uap->port);
1288 		return;
1289 	}
1290 
1291 	/* If we are using DMA mode, try to send some characters. */
1292 	if (pl011_dma_tx_irq(uap))
1293 		return;
1294 
1295 	do {
1296 		if (likely(from_irq) && count-- == 0)
1297 			break;
1298 
1299 		if (!pl011_tx_char(uap, xmit->buf[xmit->tail], from_irq))
1300 			break;
1301 
1302 		xmit->tail = (xmit->tail + 1) & (UART_XMIT_SIZE - 1);
1303 	} while (!uart_circ_empty(xmit));
1304 
1305 	if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
1306 		uart_write_wakeup(&uap->port);
1307 
1308 	if (uart_circ_empty(xmit))
1309 		pl011_stop_tx(&uap->port);
1310 }
1311 
1312 static void pl011_modem_status(struct uart_amba_port *uap)
1313 {
1314 	unsigned int status, delta;
1315 
1316 	status = readw(uap->port.membase + UART01x_FR) & UART01x_FR_MODEM_ANY;
1317 
1318 	delta = status ^ uap->old_status;
1319 	uap->old_status = status;
1320 
1321 	if (!delta)
1322 		return;
1323 
1324 	if (delta & UART01x_FR_DCD)
1325 		uart_handle_dcd_change(&uap->port, status & UART01x_FR_DCD);
1326 
1327 	if (delta & UART01x_FR_DSR)
1328 		uap->port.icount.dsr++;
1329 
1330 	if (delta & UART01x_FR_CTS)
1331 		uart_handle_cts_change(&uap->port, status & UART01x_FR_CTS);
1332 
1333 	wake_up_interruptible(&uap->port.state->port.delta_msr_wait);
1334 }
1335 
1336 static void check_apply_cts_event_workaround(struct uart_amba_port *uap)
1337 {
1338 	unsigned int dummy_read;
1339 
1340 	if (!uap->vendor->cts_event_workaround)
1341 		return;
1342 
1343 	/* workaround to make sure that all bits are unlocked.. */
1344 	writew(0x00, uap->port.membase + UART011_ICR);
1345 
1346 	/*
1347 	 * WA: introduce 26ns(1 uart clk) delay before W1C;
1348 	 * single apb access will incur 2 pclk(133.12Mhz) delay,
1349 	 * so add 2 dummy reads
1350 	 */
1351 	dummy_read = readw(uap->port.membase + UART011_ICR);
1352 	dummy_read = readw(uap->port.membase + UART011_ICR);
1353 }
1354 
1355 static irqreturn_t pl011_int(int irq, void *dev_id)
1356 {
1357 	struct uart_amba_port *uap = dev_id;
1358 	unsigned long flags;
1359 	unsigned int status, pass_counter = AMBA_ISR_PASS_LIMIT;
1360 	u16 imsc;
1361 	int handled = 0;
1362 
1363 	spin_lock_irqsave(&uap->port.lock, flags);
1364 	imsc = readw(uap->port.membase + UART011_IMSC);
1365 	status = readw(uap->port.membase + UART011_RIS) & imsc;
1366 	if (status) {
1367 		do {
1368 			check_apply_cts_event_workaround(uap);
1369 
1370 			writew(status & ~(UART011_TXIS|UART011_RTIS|
1371 					  UART011_RXIS),
1372 			       uap->port.membase + UART011_ICR);
1373 
1374 			if (status & (UART011_RTIS|UART011_RXIS)) {
1375 				if (pl011_dma_rx_running(uap))
1376 					pl011_dma_rx_irq(uap);
1377 				else
1378 					pl011_rx_chars(uap);
1379 			}
1380 			if (status & (UART011_DSRMIS|UART011_DCDMIS|
1381 				      UART011_CTSMIS|UART011_RIMIS))
1382 				pl011_modem_status(uap);
1383 			if (status & UART011_TXIS)
1384 				pl011_tx_chars(uap, true);
1385 
1386 			if (pass_counter-- == 0)
1387 				break;
1388 
1389 			status = readw(uap->port.membase + UART011_RIS) & imsc;
1390 		} while (status != 0);
1391 		handled = 1;
1392 	}
1393 
1394 	spin_unlock_irqrestore(&uap->port.lock, flags);
1395 
1396 	return IRQ_RETVAL(handled);
1397 }
1398 
1399 static unsigned int pl011_tx_empty(struct uart_port *port)
1400 {
1401 	struct uart_amba_port *uap =
1402 	    container_of(port, struct uart_amba_port, port);
1403 	unsigned int status = readw(uap->port.membase + UART01x_FR);
1404 	return status & (UART01x_FR_BUSY|UART01x_FR_TXFF) ? 0 : TIOCSER_TEMT;
1405 }
1406 
1407 static unsigned int pl011_get_mctrl(struct uart_port *port)
1408 {
1409 	struct uart_amba_port *uap =
1410 	    container_of(port, struct uart_amba_port, port);
1411 	unsigned int result = 0;
1412 	unsigned int status = readw(uap->port.membase + UART01x_FR);
1413 
1414 #define TIOCMBIT(uartbit, tiocmbit)	\
1415 	if (status & uartbit)		\
1416 		result |= tiocmbit
1417 
1418 	TIOCMBIT(UART01x_FR_DCD, TIOCM_CAR);
1419 	TIOCMBIT(UART01x_FR_DSR, TIOCM_DSR);
1420 	TIOCMBIT(UART01x_FR_CTS, TIOCM_CTS);
1421 	TIOCMBIT(UART011_FR_RI, TIOCM_RNG);
1422 #undef TIOCMBIT
1423 	return result;
1424 }
1425 
1426 static void pl011_set_mctrl(struct uart_port *port, unsigned int mctrl)
1427 {
1428 	struct uart_amba_port *uap =
1429 	    container_of(port, struct uart_amba_port, port);
1430 	unsigned int cr;
1431 
1432 	cr = readw(uap->port.membase + UART011_CR);
1433 
1434 #define	TIOCMBIT(tiocmbit, uartbit)		\
1435 	if (mctrl & tiocmbit)		\
1436 		cr |= uartbit;		\
1437 	else				\
1438 		cr &= ~uartbit
1439 
1440 	TIOCMBIT(TIOCM_RTS, UART011_CR_RTS);
1441 	TIOCMBIT(TIOCM_DTR, UART011_CR_DTR);
1442 	TIOCMBIT(TIOCM_OUT1, UART011_CR_OUT1);
1443 	TIOCMBIT(TIOCM_OUT2, UART011_CR_OUT2);
1444 	TIOCMBIT(TIOCM_LOOP, UART011_CR_LBE);
1445 
1446 	if (uap->autorts) {
1447 		/* We need to disable auto-RTS if we want to turn RTS off */
1448 		TIOCMBIT(TIOCM_RTS, UART011_CR_RTSEN);
1449 	}
1450 #undef TIOCMBIT
1451 
1452 	writew(cr, uap->port.membase + UART011_CR);
1453 }
1454 
1455 static void pl011_break_ctl(struct uart_port *port, int break_state)
1456 {
1457 	struct uart_amba_port *uap =
1458 	    container_of(port, struct uart_amba_port, port);
1459 	unsigned long flags;
1460 	unsigned int lcr_h;
1461 
1462 	spin_lock_irqsave(&uap->port.lock, flags);
1463 	lcr_h = readw(uap->port.membase + uap->lcrh_tx);
1464 	if (break_state == -1)
1465 		lcr_h |= UART01x_LCRH_BRK;
1466 	else
1467 		lcr_h &= ~UART01x_LCRH_BRK;
1468 	writew(lcr_h, uap->port.membase + uap->lcrh_tx);
1469 	spin_unlock_irqrestore(&uap->port.lock, flags);
1470 }
1471 
1472 #ifdef CONFIG_CONSOLE_POLL
1473 
1474 static void pl011_quiesce_irqs(struct uart_port *port)
1475 {
1476 	struct uart_amba_port *uap =
1477 	    container_of(port, struct uart_amba_port, port);
1478 	unsigned char __iomem *regs = uap->port.membase;
1479 
1480 	writew(readw(regs + UART011_MIS), regs + UART011_ICR);
1481 	/*
1482 	 * There is no way to clear TXIM as this is "ready to transmit IRQ", so
1483 	 * we simply mask it. start_tx() will unmask it.
1484 	 *
1485 	 * Note we can race with start_tx(), and if the race happens, the
1486 	 * polling user might get another interrupt just after we clear it.
1487 	 * But it should be OK and can happen even w/o the race, e.g.
1488 	 * controller immediately got some new data and raised the IRQ.
1489 	 *
1490 	 * And whoever uses polling routines assumes that it manages the device
1491 	 * (including tx queue), so we're also fine with start_tx()'s caller
1492 	 * side.
1493 	 */
1494 	writew(readw(regs + UART011_IMSC) & ~UART011_TXIM, regs + UART011_IMSC);
1495 }
1496 
1497 static int pl011_get_poll_char(struct uart_port *port)
1498 {
1499 	struct uart_amba_port *uap =
1500 	    container_of(port, struct uart_amba_port, port);
1501 	unsigned int status;
1502 
1503 	/*
1504 	 * The caller might need IRQs lowered, e.g. if used with KDB NMI
1505 	 * debugger.
1506 	 */
1507 	pl011_quiesce_irqs(port);
1508 
1509 	status = readw(uap->port.membase + UART01x_FR);
1510 	if (status & UART01x_FR_RXFE)
1511 		return NO_POLL_CHAR;
1512 
1513 	return readw(uap->port.membase + UART01x_DR);
1514 }
1515 
1516 static void pl011_put_poll_char(struct uart_port *port,
1517 			 unsigned char ch)
1518 {
1519 	struct uart_amba_port *uap =
1520 	    container_of(port, struct uart_amba_port, port);
1521 
1522 	while (readw(uap->port.membase + UART01x_FR) & UART01x_FR_TXFF)
1523 		barrier();
1524 
1525 	writew(ch, uap->port.membase + UART01x_DR);
1526 }
1527 
1528 #endif /* CONFIG_CONSOLE_POLL */
1529 
1530 static int pl011_hwinit(struct uart_port *port)
1531 {
1532 	struct uart_amba_port *uap =
1533 	    container_of(port, struct uart_amba_port, port);
1534 	int retval;
1535 
1536 	/* Optionaly enable pins to be muxed in and configured */
1537 	pinctrl_pm_select_default_state(port->dev);
1538 
1539 	/*
1540 	 * Try to enable the clock producer.
1541 	 */
1542 	retval = clk_prepare_enable(uap->clk);
1543 	if (retval)
1544 		return retval;
1545 
1546 	uap->port.uartclk = clk_get_rate(uap->clk);
1547 
1548 	/* Clear pending error and receive interrupts */
1549 	writew(UART011_OEIS | UART011_BEIS | UART011_PEIS | UART011_FEIS |
1550 	       UART011_RTIS | UART011_RXIS, uap->port.membase + UART011_ICR);
1551 
1552 	/*
1553 	 * Save interrupts enable mask, and enable RX interrupts in case if
1554 	 * the interrupt is used for NMI entry.
1555 	 */
1556 	uap->im = readw(uap->port.membase + UART011_IMSC);
1557 	writew(UART011_RTIM | UART011_RXIM, uap->port.membase + UART011_IMSC);
1558 
1559 	if (dev_get_platdata(uap->port.dev)) {
1560 		struct amba_pl011_data *plat;
1561 
1562 		plat = dev_get_platdata(uap->port.dev);
1563 		if (plat->init)
1564 			plat->init();
1565 	}
1566 	return 0;
1567 }
1568 
1569 static void pl011_write_lcr_h(struct uart_amba_port *uap, unsigned int lcr_h)
1570 {
1571 	writew(lcr_h, uap->port.membase + uap->lcrh_rx);
1572 	if (uap->lcrh_rx != uap->lcrh_tx) {
1573 		int i;
1574 		/*
1575 		 * Wait 10 PCLKs before writing LCRH_TX register,
1576 		 * to get this delay write read only register 10 times
1577 		 */
1578 		for (i = 0; i < 10; ++i)
1579 			writew(0xff, uap->port.membase + UART011_MIS);
1580 		writew(lcr_h, uap->port.membase + uap->lcrh_tx);
1581 	}
1582 }
1583 
1584 static int pl011_allocate_irq(struct uart_amba_port *uap)
1585 {
1586 	writew(uap->im, uap->port.membase + UART011_IMSC);
1587 
1588 	return request_irq(uap->port.irq, pl011_int, 0, "uart-pl011", uap);
1589 }
1590 
1591 /*
1592  * Enable interrupts, only timeouts when using DMA
1593  * if initial RX DMA job failed, start in interrupt mode
1594  * as well.
1595  */
1596 static void pl011_enable_interrupts(struct uart_amba_port *uap)
1597 {
1598 	spin_lock_irq(&uap->port.lock);
1599 
1600 	/* Clear out any spuriously appearing RX interrupts */
1601 	writew(UART011_RTIS | UART011_RXIS,
1602 	       uap->port.membase + UART011_ICR);
1603 	uap->im = UART011_RTIM;
1604 	if (!pl011_dma_rx_running(uap))
1605 		uap->im |= UART011_RXIM;
1606 	writew(uap->im, uap->port.membase + UART011_IMSC);
1607 	spin_unlock_irq(&uap->port.lock);
1608 }
1609 
1610 static int pl011_startup(struct uart_port *port)
1611 {
1612 	struct uart_amba_port *uap =
1613 	    container_of(port, struct uart_amba_port, port);
1614 	unsigned int cr;
1615 	int retval;
1616 
1617 	retval = pl011_hwinit(port);
1618 	if (retval)
1619 		goto clk_dis;
1620 
1621 	retval = pl011_allocate_irq(uap);
1622 	if (retval)
1623 		goto clk_dis;
1624 
1625 	writew(uap->vendor->ifls, uap->port.membase + UART011_IFLS);
1626 
1627 	spin_lock_irq(&uap->port.lock);
1628 
1629 	/* restore RTS and DTR */
1630 	cr = uap->old_cr & (UART011_CR_RTS | UART011_CR_DTR);
1631 	cr |= UART01x_CR_UARTEN | UART011_CR_RXE | UART011_CR_TXE;
1632 	writew(cr, uap->port.membase + UART011_CR);
1633 
1634 	spin_unlock_irq(&uap->port.lock);
1635 
1636 	/*
1637 	 * initialise the old status of the modem signals
1638 	 */
1639 	uap->old_status = readw(uap->port.membase + UART01x_FR) & UART01x_FR_MODEM_ANY;
1640 
1641 	/* Startup DMA */
1642 	pl011_dma_startup(uap);
1643 
1644 	pl011_enable_interrupts(uap);
1645 
1646 	return 0;
1647 
1648  clk_dis:
1649 	clk_disable_unprepare(uap->clk);
1650 	return retval;
1651 }
1652 
1653 static int sbsa_uart_startup(struct uart_port *port)
1654 {
1655 	struct uart_amba_port *uap =
1656 		container_of(port, struct uart_amba_port, port);
1657 	int retval;
1658 
1659 	retval = pl011_hwinit(port);
1660 	if (retval)
1661 		return retval;
1662 
1663 	retval = pl011_allocate_irq(uap);
1664 	if (retval)
1665 		return retval;
1666 
1667 	/* The SBSA UART does not support any modem status lines. */
1668 	uap->old_status = 0;
1669 
1670 	pl011_enable_interrupts(uap);
1671 
1672 	return 0;
1673 }
1674 
1675 static void pl011_shutdown_channel(struct uart_amba_port *uap,
1676 					unsigned int lcrh)
1677 {
1678       unsigned long val;
1679 
1680       val = readw(uap->port.membase + lcrh);
1681       val &= ~(UART01x_LCRH_BRK | UART01x_LCRH_FEN);
1682       writew(val, uap->port.membase + lcrh);
1683 }
1684 
1685 /*
1686  * disable the port. It should not disable RTS and DTR.
1687  * Also RTS and DTR state should be preserved to restore
1688  * it during startup().
1689  */
1690 static void pl011_disable_uart(struct uart_amba_port *uap)
1691 {
1692 	unsigned int cr;
1693 
1694 	uap->autorts = false;
1695 	spin_lock_irq(&uap->port.lock);
1696 	cr = readw(uap->port.membase + UART011_CR);
1697 	uap->old_cr = cr;
1698 	cr &= UART011_CR_RTS | UART011_CR_DTR;
1699 	cr |= UART01x_CR_UARTEN | UART011_CR_TXE;
1700 	writew(cr, uap->port.membase + UART011_CR);
1701 	spin_unlock_irq(&uap->port.lock);
1702 
1703 	/*
1704 	 * disable break condition and fifos
1705 	 */
1706 	pl011_shutdown_channel(uap, uap->lcrh_rx);
1707 	if (uap->lcrh_rx != uap->lcrh_tx)
1708 		pl011_shutdown_channel(uap, uap->lcrh_tx);
1709 }
1710 
1711 static void pl011_disable_interrupts(struct uart_amba_port *uap)
1712 {
1713 	spin_lock_irq(&uap->port.lock);
1714 
1715 	/* mask all interrupts and clear all pending ones */
1716 	uap->im = 0;
1717 	writew(uap->im, uap->port.membase + UART011_IMSC);
1718 	writew(0xffff, uap->port.membase + UART011_ICR);
1719 
1720 	spin_unlock_irq(&uap->port.lock);
1721 }
1722 
1723 static void pl011_shutdown(struct uart_port *port)
1724 {
1725 	struct uart_amba_port *uap =
1726 		container_of(port, struct uart_amba_port, port);
1727 
1728 	pl011_disable_interrupts(uap);
1729 
1730 	pl011_dma_shutdown(uap);
1731 
1732 	free_irq(uap->port.irq, uap);
1733 
1734 	pl011_disable_uart(uap);
1735 
1736 	/*
1737 	 * Shut down the clock producer
1738 	 */
1739 	clk_disable_unprepare(uap->clk);
1740 	/* Optionally let pins go into sleep states */
1741 	pinctrl_pm_select_sleep_state(port->dev);
1742 
1743 	if (dev_get_platdata(uap->port.dev)) {
1744 		struct amba_pl011_data *plat;
1745 
1746 		plat = dev_get_platdata(uap->port.dev);
1747 		if (plat->exit)
1748 			plat->exit();
1749 	}
1750 
1751 	if (uap->port.ops->flush_buffer)
1752 		uap->port.ops->flush_buffer(port);
1753 }
1754 
1755 static void sbsa_uart_shutdown(struct uart_port *port)
1756 {
1757 	struct uart_amba_port *uap =
1758 		container_of(port, struct uart_amba_port, port);
1759 
1760 	pl011_disable_interrupts(uap);
1761 
1762 	free_irq(uap->port.irq, uap);
1763 
1764 	if (uap->port.ops->flush_buffer)
1765 		uap->port.ops->flush_buffer(port);
1766 }
1767 
1768 static void
1769 pl011_setup_status_masks(struct uart_port *port, struct ktermios *termios)
1770 {
1771 	port->read_status_mask = UART011_DR_OE | 255;
1772 	if (termios->c_iflag & INPCK)
1773 		port->read_status_mask |= UART011_DR_FE | UART011_DR_PE;
1774 	if (termios->c_iflag & (IGNBRK | BRKINT | PARMRK))
1775 		port->read_status_mask |= UART011_DR_BE;
1776 
1777 	/*
1778 	 * Characters to ignore
1779 	 */
1780 	port->ignore_status_mask = 0;
1781 	if (termios->c_iflag & IGNPAR)
1782 		port->ignore_status_mask |= UART011_DR_FE | UART011_DR_PE;
1783 	if (termios->c_iflag & IGNBRK) {
1784 		port->ignore_status_mask |= UART011_DR_BE;
1785 		/*
1786 		 * If we're ignoring parity and break indicators,
1787 		 * ignore overruns too (for real raw support).
1788 		 */
1789 		if (termios->c_iflag & IGNPAR)
1790 			port->ignore_status_mask |= UART011_DR_OE;
1791 	}
1792 
1793 	/*
1794 	 * Ignore all characters if CREAD is not set.
1795 	 */
1796 	if ((termios->c_cflag & CREAD) == 0)
1797 		port->ignore_status_mask |= UART_DUMMY_DR_RX;
1798 }
1799 
1800 static void
1801 pl011_set_termios(struct uart_port *port, struct ktermios *termios,
1802 		     struct ktermios *old)
1803 {
1804 	struct uart_amba_port *uap =
1805 	    container_of(port, struct uart_amba_port, port);
1806 	unsigned int lcr_h, old_cr;
1807 	unsigned long flags;
1808 	unsigned int baud, quot, clkdiv;
1809 
1810 	if (uap->vendor->oversampling)
1811 		clkdiv = 8;
1812 	else
1813 		clkdiv = 16;
1814 
1815 	/*
1816 	 * Ask the core to calculate the divisor for us.
1817 	 */
1818 	baud = uart_get_baud_rate(port, termios, old, 0,
1819 				  port->uartclk / clkdiv);
1820 #ifdef CONFIG_DMA_ENGINE
1821 	/*
1822 	 * Adjust RX DMA polling rate with baud rate if not specified.
1823 	 */
1824 	if (uap->dmarx.auto_poll_rate)
1825 		uap->dmarx.poll_rate = DIV_ROUND_UP(10000000, baud);
1826 #endif
1827 
1828 	if (baud > port->uartclk/16)
1829 		quot = DIV_ROUND_CLOSEST(port->uartclk * 8, baud);
1830 	else
1831 		quot = DIV_ROUND_CLOSEST(port->uartclk * 4, baud);
1832 
1833 	switch (termios->c_cflag & CSIZE) {
1834 	case CS5:
1835 		lcr_h = UART01x_LCRH_WLEN_5;
1836 		break;
1837 	case CS6:
1838 		lcr_h = UART01x_LCRH_WLEN_6;
1839 		break;
1840 	case CS7:
1841 		lcr_h = UART01x_LCRH_WLEN_7;
1842 		break;
1843 	default: // CS8
1844 		lcr_h = UART01x_LCRH_WLEN_8;
1845 		break;
1846 	}
1847 	if (termios->c_cflag & CSTOPB)
1848 		lcr_h |= UART01x_LCRH_STP2;
1849 	if (termios->c_cflag & PARENB) {
1850 		lcr_h |= UART01x_LCRH_PEN;
1851 		if (!(termios->c_cflag & PARODD))
1852 			lcr_h |= UART01x_LCRH_EPS;
1853 	}
1854 	if (uap->fifosize > 1)
1855 		lcr_h |= UART01x_LCRH_FEN;
1856 
1857 	spin_lock_irqsave(&port->lock, flags);
1858 
1859 	/*
1860 	 * Update the per-port timeout.
1861 	 */
1862 	uart_update_timeout(port, termios->c_cflag, baud);
1863 
1864 	pl011_setup_status_masks(port, termios);
1865 
1866 	if (UART_ENABLE_MS(port, termios->c_cflag))
1867 		pl011_enable_ms(port);
1868 
1869 	/* first, disable everything */
1870 	old_cr = readw(port->membase + UART011_CR);
1871 	writew(0, port->membase + UART011_CR);
1872 
1873 	if (termios->c_cflag & CRTSCTS) {
1874 		if (old_cr & UART011_CR_RTS)
1875 			old_cr |= UART011_CR_RTSEN;
1876 
1877 		old_cr |= UART011_CR_CTSEN;
1878 		uap->autorts = true;
1879 	} else {
1880 		old_cr &= ~(UART011_CR_CTSEN | UART011_CR_RTSEN);
1881 		uap->autorts = false;
1882 	}
1883 
1884 	if (uap->vendor->oversampling) {
1885 		if (baud > port->uartclk / 16)
1886 			old_cr |= ST_UART011_CR_OVSFACT;
1887 		else
1888 			old_cr &= ~ST_UART011_CR_OVSFACT;
1889 	}
1890 
1891 	/*
1892 	 * Workaround for the ST Micro oversampling variants to
1893 	 * increase the bitrate slightly, by lowering the divisor,
1894 	 * to avoid delayed sampling of start bit at high speeds,
1895 	 * else we see data corruption.
1896 	 */
1897 	if (uap->vendor->oversampling) {
1898 		if ((baud >= 3000000) && (baud < 3250000) && (quot > 1))
1899 			quot -= 1;
1900 		else if ((baud > 3250000) && (quot > 2))
1901 			quot -= 2;
1902 	}
1903 	/* Set baud rate */
1904 	writew(quot & 0x3f, port->membase + UART011_FBRD);
1905 	writew(quot >> 6, port->membase + UART011_IBRD);
1906 
1907 	/*
1908 	 * ----------v----------v----------v----------v-----
1909 	 * NOTE: lcrh_tx and lcrh_rx MUST BE WRITTEN AFTER
1910 	 * UART011_FBRD & UART011_IBRD.
1911 	 * ----------^----------^----------^----------^-----
1912 	 */
1913 	pl011_write_lcr_h(uap, lcr_h);
1914 	writew(old_cr, port->membase + UART011_CR);
1915 
1916 	spin_unlock_irqrestore(&port->lock, flags);
1917 }
1918 
1919 static void
1920 sbsa_uart_set_termios(struct uart_port *port, struct ktermios *termios,
1921 		      struct ktermios *old)
1922 {
1923 	struct uart_amba_port *uap =
1924 	    container_of(port, struct uart_amba_port, port);
1925 	unsigned long flags;
1926 
1927 	tty_termios_encode_baud_rate(termios, uap->fixed_baud, uap->fixed_baud);
1928 
1929 	/* The SBSA UART only supports 8n1 without hardware flow control. */
1930 	termios->c_cflag &= ~(CSIZE | CSTOPB | PARENB | PARODD);
1931 	termios->c_cflag &= ~(CMSPAR | CRTSCTS);
1932 	termios->c_cflag |= CS8 | CLOCAL;
1933 
1934 	spin_lock_irqsave(&port->lock, flags);
1935 	uart_update_timeout(port, CS8, uap->fixed_baud);
1936 	pl011_setup_status_masks(port, termios);
1937 	spin_unlock_irqrestore(&port->lock, flags);
1938 }
1939 
1940 static const char *pl011_type(struct uart_port *port)
1941 {
1942 	struct uart_amba_port *uap =
1943 	    container_of(port, struct uart_amba_port, port);
1944 	return uap->port.type == PORT_AMBA ? uap->type : NULL;
1945 }
1946 
1947 /*
1948  * Release the memory region(s) being used by 'port'
1949  */
1950 static void pl011_release_port(struct uart_port *port)
1951 {
1952 	release_mem_region(port->mapbase, SZ_4K);
1953 }
1954 
1955 /*
1956  * Request the memory region(s) being used by 'port'
1957  */
1958 static int pl011_request_port(struct uart_port *port)
1959 {
1960 	return request_mem_region(port->mapbase, SZ_4K, "uart-pl011")
1961 			!= NULL ? 0 : -EBUSY;
1962 }
1963 
1964 /*
1965  * Configure/autoconfigure the port.
1966  */
1967 static void pl011_config_port(struct uart_port *port, int flags)
1968 {
1969 	if (flags & UART_CONFIG_TYPE) {
1970 		port->type = PORT_AMBA;
1971 		pl011_request_port(port);
1972 	}
1973 }
1974 
1975 /*
1976  * verify the new serial_struct (for TIOCSSERIAL).
1977  */
1978 static int pl011_verify_port(struct uart_port *port, struct serial_struct *ser)
1979 {
1980 	int ret = 0;
1981 	if (ser->type != PORT_UNKNOWN && ser->type != PORT_AMBA)
1982 		ret = -EINVAL;
1983 	if (ser->irq < 0 || ser->irq >= nr_irqs)
1984 		ret = -EINVAL;
1985 	if (ser->baud_base < 9600)
1986 		ret = -EINVAL;
1987 	return ret;
1988 }
1989 
1990 static struct uart_ops amba_pl011_pops = {
1991 	.tx_empty	= pl011_tx_empty,
1992 	.set_mctrl	= pl011_set_mctrl,
1993 	.get_mctrl	= pl011_get_mctrl,
1994 	.stop_tx	= pl011_stop_tx,
1995 	.start_tx	= pl011_start_tx,
1996 	.stop_rx	= pl011_stop_rx,
1997 	.enable_ms	= pl011_enable_ms,
1998 	.break_ctl	= pl011_break_ctl,
1999 	.startup	= pl011_startup,
2000 	.shutdown	= pl011_shutdown,
2001 	.flush_buffer	= pl011_dma_flush_buffer,
2002 	.set_termios	= pl011_set_termios,
2003 	.type		= pl011_type,
2004 	.release_port	= pl011_release_port,
2005 	.request_port	= pl011_request_port,
2006 	.config_port	= pl011_config_port,
2007 	.verify_port	= pl011_verify_port,
2008 #ifdef CONFIG_CONSOLE_POLL
2009 	.poll_init     = pl011_hwinit,
2010 	.poll_get_char = pl011_get_poll_char,
2011 	.poll_put_char = pl011_put_poll_char,
2012 #endif
2013 };
2014 
2015 static void sbsa_uart_set_mctrl(struct uart_port *port, unsigned int mctrl)
2016 {
2017 }
2018 
2019 static unsigned int sbsa_uart_get_mctrl(struct uart_port *port)
2020 {
2021 	return 0;
2022 }
2023 
2024 static const struct uart_ops sbsa_uart_pops = {
2025 	.tx_empty	= pl011_tx_empty,
2026 	.set_mctrl	= sbsa_uart_set_mctrl,
2027 	.get_mctrl	= sbsa_uart_get_mctrl,
2028 	.stop_tx	= pl011_stop_tx,
2029 	.start_tx	= pl011_start_tx,
2030 	.stop_rx	= pl011_stop_rx,
2031 	.startup	= sbsa_uart_startup,
2032 	.shutdown	= sbsa_uart_shutdown,
2033 	.set_termios	= sbsa_uart_set_termios,
2034 	.type		= pl011_type,
2035 	.release_port	= pl011_release_port,
2036 	.request_port	= pl011_request_port,
2037 	.config_port	= pl011_config_port,
2038 	.verify_port	= pl011_verify_port,
2039 #ifdef CONFIG_CONSOLE_POLL
2040 	.poll_init     = pl011_hwinit,
2041 	.poll_get_char = pl011_get_poll_char,
2042 	.poll_put_char = pl011_put_poll_char,
2043 #endif
2044 };
2045 
2046 static struct uart_amba_port *amba_ports[UART_NR];
2047 
2048 #ifdef CONFIG_SERIAL_AMBA_PL011_CONSOLE
2049 
2050 static void pl011_console_putchar(struct uart_port *port, int ch)
2051 {
2052 	struct uart_amba_port *uap =
2053 	    container_of(port, struct uart_amba_port, port);
2054 
2055 	while (readw(uap->port.membase + UART01x_FR) & UART01x_FR_TXFF)
2056 		barrier();
2057 	writew(ch, uap->port.membase + UART01x_DR);
2058 }
2059 
2060 static void
2061 pl011_console_write(struct console *co, const char *s, unsigned int count)
2062 {
2063 	struct uart_amba_port *uap = amba_ports[co->index];
2064 	unsigned int status, old_cr = 0, new_cr;
2065 	unsigned long flags;
2066 	int locked = 1;
2067 
2068 	clk_enable(uap->clk);
2069 
2070 	local_irq_save(flags);
2071 	if (uap->port.sysrq)
2072 		locked = 0;
2073 	else if (oops_in_progress)
2074 		locked = spin_trylock(&uap->port.lock);
2075 	else
2076 		spin_lock(&uap->port.lock);
2077 
2078 	/*
2079 	 *	First save the CR then disable the interrupts
2080 	 */
2081 	if (!uap->vendor->always_enabled) {
2082 		old_cr = readw(uap->port.membase + UART011_CR);
2083 		new_cr = old_cr & ~UART011_CR_CTSEN;
2084 		new_cr |= UART01x_CR_UARTEN | UART011_CR_TXE;
2085 		writew(new_cr, uap->port.membase + UART011_CR);
2086 	}
2087 
2088 	uart_console_write(&uap->port, s, count, pl011_console_putchar);
2089 
2090 	/*
2091 	 *	Finally, wait for transmitter to become empty
2092 	 *	and restore the TCR
2093 	 */
2094 	do {
2095 		status = readw(uap->port.membase + UART01x_FR);
2096 	} while (status & UART01x_FR_BUSY);
2097 	if (!uap->vendor->always_enabled)
2098 		writew(old_cr, uap->port.membase + UART011_CR);
2099 
2100 	if (locked)
2101 		spin_unlock(&uap->port.lock);
2102 	local_irq_restore(flags);
2103 
2104 	clk_disable(uap->clk);
2105 }
2106 
2107 static void __init
2108 pl011_console_get_options(struct uart_amba_port *uap, int *baud,
2109 			     int *parity, int *bits)
2110 {
2111 	if (readw(uap->port.membase + UART011_CR) & UART01x_CR_UARTEN) {
2112 		unsigned int lcr_h, ibrd, fbrd;
2113 
2114 		lcr_h = readw(uap->port.membase + uap->lcrh_tx);
2115 
2116 		*parity = 'n';
2117 		if (lcr_h & UART01x_LCRH_PEN) {
2118 			if (lcr_h & UART01x_LCRH_EPS)
2119 				*parity = 'e';
2120 			else
2121 				*parity = 'o';
2122 		}
2123 
2124 		if ((lcr_h & 0x60) == UART01x_LCRH_WLEN_7)
2125 			*bits = 7;
2126 		else
2127 			*bits = 8;
2128 
2129 		ibrd = readw(uap->port.membase + UART011_IBRD);
2130 		fbrd = readw(uap->port.membase + UART011_FBRD);
2131 
2132 		*baud = uap->port.uartclk * 4 / (64 * ibrd + fbrd);
2133 
2134 		if (uap->vendor->oversampling) {
2135 			if (readw(uap->port.membase + UART011_CR)
2136 				  & ST_UART011_CR_OVSFACT)
2137 				*baud *= 2;
2138 		}
2139 	}
2140 }
2141 
2142 static int __init pl011_console_setup(struct console *co, char *options)
2143 {
2144 	struct uart_amba_port *uap;
2145 	int baud = 38400;
2146 	int bits = 8;
2147 	int parity = 'n';
2148 	int flow = 'n';
2149 	int ret;
2150 
2151 	/*
2152 	 * Check whether an invalid uart number has been specified, and
2153 	 * if so, search for the first available port that does have
2154 	 * console support.
2155 	 */
2156 	if (co->index >= UART_NR)
2157 		co->index = 0;
2158 	uap = amba_ports[co->index];
2159 	if (!uap)
2160 		return -ENODEV;
2161 
2162 	/* Allow pins to be muxed in and configured */
2163 	pinctrl_pm_select_default_state(uap->port.dev);
2164 
2165 	ret = clk_prepare(uap->clk);
2166 	if (ret)
2167 		return ret;
2168 
2169 	if (dev_get_platdata(uap->port.dev)) {
2170 		struct amba_pl011_data *plat;
2171 
2172 		plat = dev_get_platdata(uap->port.dev);
2173 		if (plat->init)
2174 			plat->init();
2175 	}
2176 
2177 	uap->port.uartclk = clk_get_rate(uap->clk);
2178 
2179 	if (uap->vendor->fixed_options) {
2180 		baud = uap->fixed_baud;
2181 	} else {
2182 		if (options)
2183 			uart_parse_options(options,
2184 					   &baud, &parity, &bits, &flow);
2185 		else
2186 			pl011_console_get_options(uap, &baud, &parity, &bits);
2187 	}
2188 
2189 	return uart_set_options(&uap->port, co, baud, parity, bits, flow);
2190 }
2191 
2192 static struct uart_driver amba_reg;
2193 static struct console amba_console = {
2194 	.name		= "ttyAMA",
2195 	.write		= pl011_console_write,
2196 	.device		= uart_console_device,
2197 	.setup		= pl011_console_setup,
2198 	.flags		= CON_PRINTBUFFER,
2199 	.index		= -1,
2200 	.data		= &amba_reg,
2201 };
2202 
2203 #define AMBA_CONSOLE	(&amba_console)
2204 
2205 static void pl011_putc(struct uart_port *port, int c)
2206 {
2207 	while (readl(port->membase + UART01x_FR) & UART01x_FR_TXFF)
2208 		;
2209 	writeb(c, port->membase + UART01x_DR);
2210 	while (readl(port->membase + UART01x_FR) & UART01x_FR_BUSY)
2211 		;
2212 }
2213 
2214 static void pl011_early_write(struct console *con, const char *s, unsigned n)
2215 {
2216 	struct earlycon_device *dev = con->data;
2217 
2218 	uart_console_write(&dev->port, s, n, pl011_putc);
2219 }
2220 
2221 static int __init pl011_early_console_setup(struct earlycon_device *device,
2222 					    const char *opt)
2223 {
2224 	if (!device->port.membase)
2225 		return -ENODEV;
2226 
2227 	device->con->write = pl011_early_write;
2228 	return 0;
2229 }
2230 EARLYCON_DECLARE(pl011, pl011_early_console_setup);
2231 OF_EARLYCON_DECLARE(pl011, "arm,pl011", pl011_early_console_setup);
2232 
2233 #else
2234 #define AMBA_CONSOLE	NULL
2235 #endif
2236 
2237 static struct uart_driver amba_reg = {
2238 	.owner			= THIS_MODULE,
2239 	.driver_name		= "ttyAMA",
2240 	.dev_name		= "ttyAMA",
2241 	.major			= SERIAL_AMBA_MAJOR,
2242 	.minor			= SERIAL_AMBA_MINOR,
2243 	.nr			= UART_NR,
2244 	.cons			= AMBA_CONSOLE,
2245 };
2246 
2247 static int pl011_probe_dt_alias(int index, struct device *dev)
2248 {
2249 	struct device_node *np;
2250 	static bool seen_dev_with_alias = false;
2251 	static bool seen_dev_without_alias = false;
2252 	int ret = index;
2253 
2254 	if (!IS_ENABLED(CONFIG_OF))
2255 		return ret;
2256 
2257 	np = dev->of_node;
2258 	if (!np)
2259 		return ret;
2260 
2261 	ret = of_alias_get_id(np, "serial");
2262 	if (IS_ERR_VALUE(ret)) {
2263 		seen_dev_without_alias = true;
2264 		ret = index;
2265 	} else {
2266 		seen_dev_with_alias = true;
2267 		if (ret >= ARRAY_SIZE(amba_ports) || amba_ports[ret] != NULL) {
2268 			dev_warn(dev, "requested serial port %d  not available.\n", ret);
2269 			ret = index;
2270 		}
2271 	}
2272 
2273 	if (seen_dev_with_alias && seen_dev_without_alias)
2274 		dev_warn(dev, "aliased and non-aliased serial devices found in device tree. Serial port enumeration may be unpredictable.\n");
2275 
2276 	return ret;
2277 }
2278 
2279 /* unregisters the driver also if no more ports are left */
2280 static void pl011_unregister_port(struct uart_amba_port *uap)
2281 {
2282 	int i;
2283 	bool busy = false;
2284 
2285 	for (i = 0; i < ARRAY_SIZE(amba_ports); i++) {
2286 		if (amba_ports[i] == uap)
2287 			amba_ports[i] = NULL;
2288 		else if (amba_ports[i])
2289 			busy = true;
2290 	}
2291 	pl011_dma_remove(uap);
2292 	if (!busy)
2293 		uart_unregister_driver(&amba_reg);
2294 }
2295 
2296 static int pl011_find_free_port(void)
2297 {
2298 	int i;
2299 
2300 	for (i = 0; i < ARRAY_SIZE(amba_ports); i++)
2301 		if (amba_ports[i] == NULL)
2302 			return i;
2303 
2304 	return -EBUSY;
2305 }
2306 
2307 static int pl011_setup_port(struct device *dev, struct uart_amba_port *uap,
2308 			    struct resource *mmiobase, int index)
2309 {
2310 	void __iomem *base;
2311 
2312 	base = devm_ioremap_resource(dev, mmiobase);
2313 	if (IS_ERR(base))
2314 		return PTR_ERR(base);
2315 
2316 	index = pl011_probe_dt_alias(index, dev);
2317 
2318 	uap->old_cr = 0;
2319 	uap->port.dev = dev;
2320 	uap->port.mapbase = mmiobase->start;
2321 	uap->port.membase = base;
2322 	uap->port.iotype = UPIO_MEM;
2323 	uap->port.fifosize = uap->fifosize;
2324 	uap->port.flags = UPF_BOOT_AUTOCONF;
2325 	uap->port.line = index;
2326 
2327 	amba_ports[index] = uap;
2328 
2329 	return 0;
2330 }
2331 
2332 static int pl011_register_port(struct uart_amba_port *uap)
2333 {
2334 	int ret;
2335 
2336 	/* Ensure interrupts from this UART are masked and cleared */
2337 	writew(0, uap->port.membase + UART011_IMSC);
2338 	writew(0xffff, uap->port.membase + UART011_ICR);
2339 
2340 	if (!amba_reg.state) {
2341 		ret = uart_register_driver(&amba_reg);
2342 		if (ret < 0) {
2343 			dev_err(uap->port.dev,
2344 				"Failed to register AMBA-PL011 driver\n");
2345 			return ret;
2346 		}
2347 	}
2348 
2349 	ret = uart_add_one_port(&amba_reg, &uap->port);
2350 	if (ret)
2351 		pl011_unregister_port(uap);
2352 
2353 	return ret;
2354 }
2355 
2356 static int pl011_probe(struct amba_device *dev, const struct amba_id *id)
2357 {
2358 	struct uart_amba_port *uap;
2359 	struct vendor_data *vendor = id->data;
2360 	int portnr, ret;
2361 
2362 	portnr = pl011_find_free_port();
2363 	if (portnr < 0)
2364 		return portnr;
2365 
2366 	uap = devm_kzalloc(&dev->dev, sizeof(struct uart_amba_port),
2367 			   GFP_KERNEL);
2368 	if (!uap)
2369 		return -ENOMEM;
2370 
2371 	uap->clk = devm_clk_get(&dev->dev, NULL);
2372 	if (IS_ERR(uap->clk))
2373 		return PTR_ERR(uap->clk);
2374 
2375 	uap->vendor = vendor;
2376 	uap->lcrh_rx = vendor->lcrh_rx;
2377 	uap->lcrh_tx = vendor->lcrh_tx;
2378 	uap->fifosize = vendor->get_fifosize(dev);
2379 	uap->port.irq = dev->irq[0];
2380 	uap->port.ops = &amba_pl011_pops;
2381 
2382 	snprintf(uap->type, sizeof(uap->type), "PL011 rev%u", amba_rev(dev));
2383 
2384 	ret = pl011_setup_port(&dev->dev, uap, &dev->res, portnr);
2385 	if (ret)
2386 		return ret;
2387 
2388 	amba_set_drvdata(dev, uap);
2389 
2390 	return pl011_register_port(uap);
2391 }
2392 
2393 static int pl011_remove(struct amba_device *dev)
2394 {
2395 	struct uart_amba_port *uap = amba_get_drvdata(dev);
2396 
2397 	uart_remove_one_port(&amba_reg, &uap->port);
2398 	pl011_unregister_port(uap);
2399 	return 0;
2400 }
2401 
2402 #ifdef CONFIG_PM_SLEEP
2403 static int pl011_suspend(struct device *dev)
2404 {
2405 	struct uart_amba_port *uap = dev_get_drvdata(dev);
2406 
2407 	if (!uap)
2408 		return -EINVAL;
2409 
2410 	return uart_suspend_port(&amba_reg, &uap->port);
2411 }
2412 
2413 static int pl011_resume(struct device *dev)
2414 {
2415 	struct uart_amba_port *uap = dev_get_drvdata(dev);
2416 
2417 	if (!uap)
2418 		return -EINVAL;
2419 
2420 	return uart_resume_port(&amba_reg, &uap->port);
2421 }
2422 #endif
2423 
2424 static SIMPLE_DEV_PM_OPS(pl011_dev_pm_ops, pl011_suspend, pl011_resume);
2425 
2426 static int sbsa_uart_probe(struct platform_device *pdev)
2427 {
2428 	struct uart_amba_port *uap;
2429 	struct resource *r;
2430 	int portnr, ret;
2431 	int baudrate;
2432 
2433 	/*
2434 	 * Check the mandatory baud rate parameter in the DT node early
2435 	 * so that we can easily exit with the error.
2436 	 */
2437 	if (pdev->dev.of_node) {
2438 		struct device_node *np = pdev->dev.of_node;
2439 
2440 		ret = of_property_read_u32(np, "current-speed", &baudrate);
2441 		if (ret)
2442 			return ret;
2443 	} else {
2444 		baudrate = 115200;
2445 	}
2446 
2447 	portnr = pl011_find_free_port();
2448 	if (portnr < 0)
2449 		return portnr;
2450 
2451 	uap = devm_kzalloc(&pdev->dev, sizeof(struct uart_amba_port),
2452 			   GFP_KERNEL);
2453 	if (!uap)
2454 		return -ENOMEM;
2455 
2456 	uap->vendor	= &vendor_sbsa;
2457 	uap->fifosize	= 32;
2458 	uap->port.irq	= platform_get_irq(pdev, 0);
2459 	uap->port.ops	= &sbsa_uart_pops;
2460 	uap->fixed_baud = baudrate;
2461 
2462 	snprintf(uap->type, sizeof(uap->type), "SBSA");
2463 
2464 	r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2465 
2466 	ret = pl011_setup_port(&pdev->dev, uap, r, portnr);
2467 	if (ret)
2468 		return ret;
2469 
2470 	platform_set_drvdata(pdev, uap);
2471 
2472 	return pl011_register_port(uap);
2473 }
2474 
2475 static int sbsa_uart_remove(struct platform_device *pdev)
2476 {
2477 	struct uart_amba_port *uap = platform_get_drvdata(pdev);
2478 
2479 	uart_remove_one_port(&amba_reg, &uap->port);
2480 	pl011_unregister_port(uap);
2481 	return 0;
2482 }
2483 
2484 static const struct of_device_id sbsa_uart_of_match[] = {
2485 	{ .compatible = "arm,sbsa-uart", },
2486 	{},
2487 };
2488 MODULE_DEVICE_TABLE(of, sbsa_uart_of_match);
2489 
2490 static const struct acpi_device_id sbsa_uart_acpi_match[] = {
2491 	{ "ARMH0011", 0 },
2492 	{},
2493 };
2494 MODULE_DEVICE_TABLE(acpi, sbsa_uart_acpi_match);
2495 
2496 static struct platform_driver arm_sbsa_uart_platform_driver = {
2497 	.probe		= sbsa_uart_probe,
2498 	.remove		= sbsa_uart_remove,
2499 	.driver	= {
2500 		.name	= "sbsa-uart",
2501 		.of_match_table = of_match_ptr(sbsa_uart_of_match),
2502 		.acpi_match_table = ACPI_PTR(sbsa_uart_acpi_match),
2503 	},
2504 };
2505 
2506 static struct amba_id pl011_ids[] = {
2507 	{
2508 		.id	= 0x00041011,
2509 		.mask	= 0x000fffff,
2510 		.data	= &vendor_arm,
2511 	},
2512 	{
2513 		.id	= 0x00380802,
2514 		.mask	= 0x00ffffff,
2515 		.data	= &vendor_st,
2516 	},
2517 	{ 0, 0 },
2518 };
2519 
2520 MODULE_DEVICE_TABLE(amba, pl011_ids);
2521 
2522 static struct amba_driver pl011_driver = {
2523 	.drv = {
2524 		.name	= "uart-pl011",
2525 		.pm	= &pl011_dev_pm_ops,
2526 	},
2527 	.id_table	= pl011_ids,
2528 	.probe		= pl011_probe,
2529 	.remove		= pl011_remove,
2530 };
2531 
2532 static int __init pl011_init(void)
2533 {
2534 	printk(KERN_INFO "Serial: AMBA PL011 UART driver\n");
2535 
2536 	if (platform_driver_register(&arm_sbsa_uart_platform_driver))
2537 		pr_warn("could not register SBSA UART platform driver\n");
2538 	return amba_driver_register(&pl011_driver);
2539 }
2540 
2541 static void __exit pl011_exit(void)
2542 {
2543 	platform_driver_unregister(&arm_sbsa_uart_platform_driver);
2544 	amba_driver_unregister(&pl011_driver);
2545 }
2546 
2547 /*
2548  * While this can be a module, if builtin it's most likely the console
2549  * So let's leave module_exit but move module_init to an earlier place
2550  */
2551 arch_initcall(pl011_init);
2552 module_exit(pl011_exit);
2553 
2554 MODULE_AUTHOR("ARM Ltd/Deep Blue Solutions Ltd");
2555 MODULE_DESCRIPTION("ARM AMBA serial port driver");
2556 MODULE_LICENSE("GPL");
2557