xref: /openbmc/linux/drivers/tty/serial/amba-pl011.c (revision 9bd5910d)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  *  Driver for AMBA serial ports
4  *
5  *  Based on drivers/char/serial.c, by Linus Torvalds, Theodore Ts'o.
6  *
7  *  Copyright 1999 ARM Limited
8  *  Copyright (C) 2000 Deep Blue Solutions Ltd.
9  *  Copyright (C) 2010 ST-Ericsson SA
10  *
11  * This is a generic driver for ARM AMBA-type serial ports.  They
12  * have a lot of 16550-like features, but are not register compatible.
13  * Note that although they do have CTS, DCD and DSR inputs, they do
14  * not have an RI input, nor do they have DTR or RTS outputs.  If
15  * required, these have to be supplied via some other means (eg, GPIO)
16  * and hooked into this driver.
17  */
18 
19 #include <linux/module.h>
20 #include <linux/ioport.h>
21 #include <linux/init.h>
22 #include <linux/console.h>
23 #include <linux/sysrq.h>
24 #include <linux/device.h>
25 #include <linux/tty.h>
26 #include <linux/tty_flip.h>
27 #include <linux/serial_core.h>
28 #include <linux/serial.h>
29 #include <linux/amba/bus.h>
30 #include <linux/amba/serial.h>
31 #include <linux/clk.h>
32 #include <linux/slab.h>
33 #include <linux/dmaengine.h>
34 #include <linux/dma-mapping.h>
35 #include <linux/scatterlist.h>
36 #include <linux/delay.h>
37 #include <linux/types.h>
38 #include <linux/of.h>
39 #include <linux/of_device.h>
40 #include <linux/pinctrl/consumer.h>
41 #include <linux/sizes.h>
42 #include <linux/io.h>
43 #include <linux/acpi.h>
44 
45 #include "amba-pl011.h"
46 
47 #define UART_NR			14
48 
49 #define SERIAL_AMBA_MAJOR	204
50 #define SERIAL_AMBA_MINOR	64
51 #define SERIAL_AMBA_NR		UART_NR
52 
53 #define AMBA_ISR_PASS_LIMIT	256
54 
55 #define UART_DR_ERROR		(UART011_DR_OE|UART011_DR_BE|UART011_DR_PE|UART011_DR_FE)
56 #define UART_DUMMY_DR_RX	(1 << 16)
57 
58 static u16 pl011_std_offsets[REG_ARRAY_SIZE] = {
59 	[REG_DR] = UART01x_DR,
60 	[REG_FR] = UART01x_FR,
61 	[REG_LCRH_RX] = UART011_LCRH,
62 	[REG_LCRH_TX] = UART011_LCRH,
63 	[REG_IBRD] = UART011_IBRD,
64 	[REG_FBRD] = UART011_FBRD,
65 	[REG_CR] = UART011_CR,
66 	[REG_IFLS] = UART011_IFLS,
67 	[REG_IMSC] = UART011_IMSC,
68 	[REG_RIS] = UART011_RIS,
69 	[REG_MIS] = UART011_MIS,
70 	[REG_ICR] = UART011_ICR,
71 	[REG_DMACR] = UART011_DMACR,
72 };
73 
74 /* There is by now at least one vendor with differing details, so handle it */
75 struct vendor_data {
76 	const u16		*reg_offset;
77 	unsigned int		ifls;
78 	unsigned int		fr_busy;
79 	unsigned int		fr_dsr;
80 	unsigned int		fr_cts;
81 	unsigned int		fr_ri;
82 	unsigned int		inv_fr;
83 	bool			access_32b;
84 	bool			oversampling;
85 	bool			dma_threshold;
86 	bool			cts_event_workaround;
87 	bool			always_enabled;
88 	bool			fixed_options;
89 
90 	unsigned int (*get_fifosize)(struct amba_device *dev);
91 };
92 
93 static unsigned int get_fifosize_arm(struct amba_device *dev)
94 {
95 	return amba_rev(dev) < 3 ? 16 : 32;
96 }
97 
98 static struct vendor_data vendor_arm = {
99 	.reg_offset		= pl011_std_offsets,
100 	.ifls			= UART011_IFLS_RX4_8|UART011_IFLS_TX4_8,
101 	.fr_busy		= UART01x_FR_BUSY,
102 	.fr_dsr			= UART01x_FR_DSR,
103 	.fr_cts			= UART01x_FR_CTS,
104 	.fr_ri			= UART011_FR_RI,
105 	.oversampling		= false,
106 	.dma_threshold		= false,
107 	.cts_event_workaround	= false,
108 	.always_enabled		= false,
109 	.fixed_options		= false,
110 	.get_fifosize		= get_fifosize_arm,
111 };
112 
113 static const struct vendor_data vendor_sbsa = {
114 	.reg_offset		= pl011_std_offsets,
115 	.fr_busy		= UART01x_FR_BUSY,
116 	.fr_dsr			= UART01x_FR_DSR,
117 	.fr_cts			= UART01x_FR_CTS,
118 	.fr_ri			= UART011_FR_RI,
119 	.access_32b		= true,
120 	.oversampling		= false,
121 	.dma_threshold		= false,
122 	.cts_event_workaround	= false,
123 	.always_enabled		= true,
124 	.fixed_options		= true,
125 };
126 
127 #ifdef CONFIG_ACPI_SPCR_TABLE
128 static const struct vendor_data vendor_qdt_qdf2400_e44 = {
129 	.reg_offset		= pl011_std_offsets,
130 	.fr_busy		= UART011_FR_TXFE,
131 	.fr_dsr			= UART01x_FR_DSR,
132 	.fr_cts			= UART01x_FR_CTS,
133 	.fr_ri			= UART011_FR_RI,
134 	.inv_fr			= UART011_FR_TXFE,
135 	.access_32b		= true,
136 	.oversampling		= false,
137 	.dma_threshold		= false,
138 	.cts_event_workaround	= false,
139 	.always_enabled		= true,
140 	.fixed_options		= true,
141 };
142 #endif
143 
144 static u16 pl011_st_offsets[REG_ARRAY_SIZE] = {
145 	[REG_DR] = UART01x_DR,
146 	[REG_ST_DMAWM] = ST_UART011_DMAWM,
147 	[REG_ST_TIMEOUT] = ST_UART011_TIMEOUT,
148 	[REG_FR] = UART01x_FR,
149 	[REG_LCRH_RX] = ST_UART011_LCRH_RX,
150 	[REG_LCRH_TX] = ST_UART011_LCRH_TX,
151 	[REG_IBRD] = UART011_IBRD,
152 	[REG_FBRD] = UART011_FBRD,
153 	[REG_CR] = UART011_CR,
154 	[REG_IFLS] = UART011_IFLS,
155 	[REG_IMSC] = UART011_IMSC,
156 	[REG_RIS] = UART011_RIS,
157 	[REG_MIS] = UART011_MIS,
158 	[REG_ICR] = UART011_ICR,
159 	[REG_DMACR] = UART011_DMACR,
160 	[REG_ST_XFCR] = ST_UART011_XFCR,
161 	[REG_ST_XON1] = ST_UART011_XON1,
162 	[REG_ST_XON2] = ST_UART011_XON2,
163 	[REG_ST_XOFF1] = ST_UART011_XOFF1,
164 	[REG_ST_XOFF2] = ST_UART011_XOFF2,
165 	[REG_ST_ITCR] = ST_UART011_ITCR,
166 	[REG_ST_ITIP] = ST_UART011_ITIP,
167 	[REG_ST_ABCR] = ST_UART011_ABCR,
168 	[REG_ST_ABIMSC] = ST_UART011_ABIMSC,
169 };
170 
171 static unsigned int get_fifosize_st(struct amba_device *dev)
172 {
173 	return 64;
174 }
175 
176 static struct vendor_data vendor_st = {
177 	.reg_offset		= pl011_st_offsets,
178 	.ifls			= UART011_IFLS_RX_HALF|UART011_IFLS_TX_HALF,
179 	.fr_busy		= UART01x_FR_BUSY,
180 	.fr_dsr			= UART01x_FR_DSR,
181 	.fr_cts			= UART01x_FR_CTS,
182 	.fr_ri			= UART011_FR_RI,
183 	.oversampling		= true,
184 	.dma_threshold		= true,
185 	.cts_event_workaround	= true,
186 	.always_enabled		= false,
187 	.fixed_options		= false,
188 	.get_fifosize		= get_fifosize_st,
189 };
190 
191 static const u16 pl011_zte_offsets[REG_ARRAY_SIZE] = {
192 	[REG_DR] = ZX_UART011_DR,
193 	[REG_FR] = ZX_UART011_FR,
194 	[REG_LCRH_RX] = ZX_UART011_LCRH,
195 	[REG_LCRH_TX] = ZX_UART011_LCRH,
196 	[REG_IBRD] = ZX_UART011_IBRD,
197 	[REG_FBRD] = ZX_UART011_FBRD,
198 	[REG_CR] = ZX_UART011_CR,
199 	[REG_IFLS] = ZX_UART011_IFLS,
200 	[REG_IMSC] = ZX_UART011_IMSC,
201 	[REG_RIS] = ZX_UART011_RIS,
202 	[REG_MIS] = ZX_UART011_MIS,
203 	[REG_ICR] = ZX_UART011_ICR,
204 	[REG_DMACR] = ZX_UART011_DMACR,
205 };
206 
207 static unsigned int get_fifosize_zte(struct amba_device *dev)
208 {
209 	return 16;
210 }
211 
212 static struct vendor_data vendor_zte = {
213 	.reg_offset		= pl011_zte_offsets,
214 	.access_32b		= true,
215 	.ifls			= UART011_IFLS_RX4_8|UART011_IFLS_TX4_8,
216 	.fr_busy		= ZX_UART01x_FR_BUSY,
217 	.fr_dsr			= ZX_UART01x_FR_DSR,
218 	.fr_cts			= ZX_UART01x_FR_CTS,
219 	.fr_ri			= ZX_UART011_FR_RI,
220 	.get_fifosize		= get_fifosize_zte,
221 };
222 
223 /* Deals with DMA transactions */
224 
225 struct pl011_sgbuf {
226 	struct scatterlist sg;
227 	char *buf;
228 };
229 
230 struct pl011_dmarx_data {
231 	struct dma_chan		*chan;
232 	struct completion	complete;
233 	bool			use_buf_b;
234 	struct pl011_sgbuf	sgbuf_a;
235 	struct pl011_sgbuf	sgbuf_b;
236 	dma_cookie_t		cookie;
237 	bool			running;
238 	struct timer_list	timer;
239 	unsigned int last_residue;
240 	unsigned long last_jiffies;
241 	bool auto_poll_rate;
242 	unsigned int poll_rate;
243 	unsigned int poll_timeout;
244 };
245 
246 struct pl011_dmatx_data {
247 	struct dma_chan		*chan;
248 	struct scatterlist	sg;
249 	char			*buf;
250 	bool			queued;
251 };
252 
253 /*
254  * We wrap our port structure around the generic uart_port.
255  */
256 struct uart_amba_port {
257 	struct uart_port	port;
258 	const u16		*reg_offset;
259 	struct clk		*clk;
260 	const struct vendor_data *vendor;
261 	unsigned int		dmacr;		/* dma control reg */
262 	unsigned int		im;		/* interrupt mask */
263 	unsigned int		old_status;
264 	unsigned int		fifosize;	/* vendor-specific */
265 	unsigned int		old_cr;		/* state during shutdown */
266 	unsigned int		fixed_baud;	/* vendor-set fixed baud rate */
267 	char			type[12];
268 #ifdef CONFIG_DMA_ENGINE
269 	/* DMA stuff */
270 	bool			using_tx_dma;
271 	bool			using_rx_dma;
272 	struct pl011_dmarx_data dmarx;
273 	struct pl011_dmatx_data	dmatx;
274 	bool			dma_probed;
275 #endif
276 };
277 
278 static unsigned int pl011_reg_to_offset(const struct uart_amba_port *uap,
279 	unsigned int reg)
280 {
281 	return uap->reg_offset[reg];
282 }
283 
284 static unsigned int pl011_read(const struct uart_amba_port *uap,
285 	unsigned int reg)
286 {
287 	void __iomem *addr = uap->port.membase + pl011_reg_to_offset(uap, reg);
288 
289 	return (uap->port.iotype == UPIO_MEM32) ?
290 		readl_relaxed(addr) : readw_relaxed(addr);
291 }
292 
293 static void pl011_write(unsigned int val, const struct uart_amba_port *uap,
294 	unsigned int reg)
295 {
296 	void __iomem *addr = uap->port.membase + pl011_reg_to_offset(uap, reg);
297 
298 	if (uap->port.iotype == UPIO_MEM32)
299 		writel_relaxed(val, addr);
300 	else
301 		writew_relaxed(val, addr);
302 }
303 
304 /*
305  * Reads up to 256 characters from the FIFO or until it's empty and
306  * inserts them into the TTY layer. Returns the number of characters
307  * read from the FIFO.
308  */
309 static int pl011_fifo_to_tty(struct uart_amba_port *uap)
310 {
311 	u16 status;
312 	unsigned int ch, flag, fifotaken;
313 
314 	for (fifotaken = 0; fifotaken != 256; fifotaken++) {
315 		status = pl011_read(uap, REG_FR);
316 		if (status & UART01x_FR_RXFE)
317 			break;
318 
319 		/* Take chars from the FIFO and update status */
320 		ch = pl011_read(uap, REG_DR) | UART_DUMMY_DR_RX;
321 		flag = TTY_NORMAL;
322 		uap->port.icount.rx++;
323 
324 		if (unlikely(ch & UART_DR_ERROR)) {
325 			if (ch & UART011_DR_BE) {
326 				ch &= ~(UART011_DR_FE | UART011_DR_PE);
327 				uap->port.icount.brk++;
328 				if (uart_handle_break(&uap->port))
329 					continue;
330 			} else if (ch & UART011_DR_PE)
331 				uap->port.icount.parity++;
332 			else if (ch & UART011_DR_FE)
333 				uap->port.icount.frame++;
334 			if (ch & UART011_DR_OE)
335 				uap->port.icount.overrun++;
336 
337 			ch &= uap->port.read_status_mask;
338 
339 			if (ch & UART011_DR_BE)
340 				flag = TTY_BREAK;
341 			else if (ch & UART011_DR_PE)
342 				flag = TTY_PARITY;
343 			else if (ch & UART011_DR_FE)
344 				flag = TTY_FRAME;
345 		}
346 
347 		if (uart_handle_sysrq_char(&uap->port, ch & 255))
348 			continue;
349 
350 		uart_insert_char(&uap->port, ch, UART011_DR_OE, ch, flag);
351 	}
352 
353 	return fifotaken;
354 }
355 
356 
357 /*
358  * All the DMA operation mode stuff goes inside this ifdef.
359  * This assumes that you have a generic DMA device interface,
360  * no custom DMA interfaces are supported.
361  */
362 #ifdef CONFIG_DMA_ENGINE
363 
364 #define PL011_DMA_BUFFER_SIZE PAGE_SIZE
365 
366 static int pl011_sgbuf_init(struct dma_chan *chan, struct pl011_sgbuf *sg,
367 	enum dma_data_direction dir)
368 {
369 	dma_addr_t dma_addr;
370 
371 	sg->buf = dma_alloc_coherent(chan->device->dev,
372 		PL011_DMA_BUFFER_SIZE, &dma_addr, GFP_KERNEL);
373 	if (!sg->buf)
374 		return -ENOMEM;
375 
376 	sg_init_table(&sg->sg, 1);
377 	sg_set_page(&sg->sg, phys_to_page(dma_addr),
378 		PL011_DMA_BUFFER_SIZE, offset_in_page(dma_addr));
379 	sg_dma_address(&sg->sg) = dma_addr;
380 	sg_dma_len(&sg->sg) = PL011_DMA_BUFFER_SIZE;
381 
382 	return 0;
383 }
384 
385 static void pl011_sgbuf_free(struct dma_chan *chan, struct pl011_sgbuf *sg,
386 	enum dma_data_direction dir)
387 {
388 	if (sg->buf) {
389 		dma_free_coherent(chan->device->dev,
390 			PL011_DMA_BUFFER_SIZE, sg->buf,
391 			sg_dma_address(&sg->sg));
392 	}
393 }
394 
395 static void pl011_dma_probe(struct uart_amba_port *uap)
396 {
397 	/* DMA is the sole user of the platform data right now */
398 	struct amba_pl011_data *plat = dev_get_platdata(uap->port.dev);
399 	struct device *dev = uap->port.dev;
400 	struct dma_slave_config tx_conf = {
401 		.dst_addr = uap->port.mapbase +
402 				 pl011_reg_to_offset(uap, REG_DR),
403 		.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
404 		.direction = DMA_MEM_TO_DEV,
405 		.dst_maxburst = uap->fifosize >> 1,
406 		.device_fc = false,
407 	};
408 	struct dma_chan *chan;
409 	dma_cap_mask_t mask;
410 
411 	uap->dma_probed = true;
412 	chan = dma_request_chan(dev, "tx");
413 	if (IS_ERR(chan)) {
414 		if (PTR_ERR(chan) == -EPROBE_DEFER) {
415 			uap->dma_probed = false;
416 			return;
417 		}
418 
419 		/* We need platform data */
420 		if (!plat || !plat->dma_filter) {
421 			dev_info(uap->port.dev, "no DMA platform data\n");
422 			return;
423 		}
424 
425 		/* Try to acquire a generic DMA engine slave TX channel */
426 		dma_cap_zero(mask);
427 		dma_cap_set(DMA_SLAVE, mask);
428 
429 		chan = dma_request_channel(mask, plat->dma_filter,
430 						plat->dma_tx_param);
431 		if (!chan) {
432 			dev_err(uap->port.dev, "no TX DMA channel!\n");
433 			return;
434 		}
435 	}
436 
437 	dmaengine_slave_config(chan, &tx_conf);
438 	uap->dmatx.chan = chan;
439 
440 	dev_info(uap->port.dev, "DMA channel TX %s\n",
441 		 dma_chan_name(uap->dmatx.chan));
442 
443 	/* Optionally make use of an RX channel as well */
444 	chan = dma_request_slave_channel(dev, "rx");
445 
446 	if (!chan && plat && plat->dma_rx_param) {
447 		chan = dma_request_channel(mask, plat->dma_filter, plat->dma_rx_param);
448 
449 		if (!chan) {
450 			dev_err(uap->port.dev, "no RX DMA channel!\n");
451 			return;
452 		}
453 	}
454 
455 	if (chan) {
456 		struct dma_slave_config rx_conf = {
457 			.src_addr = uap->port.mapbase +
458 				pl011_reg_to_offset(uap, REG_DR),
459 			.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
460 			.direction = DMA_DEV_TO_MEM,
461 			.src_maxburst = uap->fifosize >> 2,
462 			.device_fc = false,
463 		};
464 		struct dma_slave_caps caps;
465 
466 		/*
467 		 * Some DMA controllers provide information on their capabilities.
468 		 * If the controller does, check for suitable residue processing
469 		 * otherwise assime all is well.
470 		 */
471 		if (0 == dma_get_slave_caps(chan, &caps)) {
472 			if (caps.residue_granularity ==
473 					DMA_RESIDUE_GRANULARITY_DESCRIPTOR) {
474 				dma_release_channel(chan);
475 				dev_info(uap->port.dev,
476 					"RX DMA disabled - no residue processing\n");
477 				return;
478 			}
479 		}
480 		dmaengine_slave_config(chan, &rx_conf);
481 		uap->dmarx.chan = chan;
482 
483 		uap->dmarx.auto_poll_rate = false;
484 		if (plat && plat->dma_rx_poll_enable) {
485 			/* Set poll rate if specified. */
486 			if (plat->dma_rx_poll_rate) {
487 				uap->dmarx.auto_poll_rate = false;
488 				uap->dmarx.poll_rate = plat->dma_rx_poll_rate;
489 			} else {
490 				/*
491 				 * 100 ms defaults to poll rate if not
492 				 * specified. This will be adjusted with
493 				 * the baud rate at set_termios.
494 				 */
495 				uap->dmarx.auto_poll_rate = true;
496 				uap->dmarx.poll_rate =  100;
497 			}
498 			/* 3 secs defaults poll_timeout if not specified. */
499 			if (plat->dma_rx_poll_timeout)
500 				uap->dmarx.poll_timeout =
501 					plat->dma_rx_poll_timeout;
502 			else
503 				uap->dmarx.poll_timeout = 3000;
504 		} else if (!plat && dev->of_node) {
505 			uap->dmarx.auto_poll_rate = of_property_read_bool(
506 						dev->of_node, "auto-poll");
507 			if (uap->dmarx.auto_poll_rate) {
508 				u32 x;
509 
510 				if (0 == of_property_read_u32(dev->of_node,
511 						"poll-rate-ms", &x))
512 					uap->dmarx.poll_rate = x;
513 				else
514 					uap->dmarx.poll_rate = 100;
515 				if (0 == of_property_read_u32(dev->of_node,
516 						"poll-timeout-ms", &x))
517 					uap->dmarx.poll_timeout = x;
518 				else
519 					uap->dmarx.poll_timeout = 3000;
520 			}
521 		}
522 		dev_info(uap->port.dev, "DMA channel RX %s\n",
523 			 dma_chan_name(uap->dmarx.chan));
524 	}
525 }
526 
527 static void pl011_dma_remove(struct uart_amba_port *uap)
528 {
529 	if (uap->dmatx.chan)
530 		dma_release_channel(uap->dmatx.chan);
531 	if (uap->dmarx.chan)
532 		dma_release_channel(uap->dmarx.chan);
533 }
534 
535 /* Forward declare these for the refill routine */
536 static int pl011_dma_tx_refill(struct uart_amba_port *uap);
537 static void pl011_start_tx_pio(struct uart_amba_port *uap);
538 
539 /*
540  * The current DMA TX buffer has been sent.
541  * Try to queue up another DMA buffer.
542  */
543 static void pl011_dma_tx_callback(void *data)
544 {
545 	struct uart_amba_port *uap = data;
546 	struct pl011_dmatx_data *dmatx = &uap->dmatx;
547 	unsigned long flags;
548 	u16 dmacr;
549 
550 	spin_lock_irqsave(&uap->port.lock, flags);
551 	if (uap->dmatx.queued)
552 		dma_unmap_sg(dmatx->chan->device->dev, &dmatx->sg, 1,
553 			     DMA_TO_DEVICE);
554 
555 	dmacr = uap->dmacr;
556 	uap->dmacr = dmacr & ~UART011_TXDMAE;
557 	pl011_write(uap->dmacr, uap, REG_DMACR);
558 
559 	/*
560 	 * If TX DMA was disabled, it means that we've stopped the DMA for
561 	 * some reason (eg, XOFF received, or we want to send an X-char.)
562 	 *
563 	 * Note: we need to be careful here of a potential race between DMA
564 	 * and the rest of the driver - if the driver disables TX DMA while
565 	 * a TX buffer completing, we must update the tx queued status to
566 	 * get further refills (hence we check dmacr).
567 	 */
568 	if (!(dmacr & UART011_TXDMAE) || uart_tx_stopped(&uap->port) ||
569 	    uart_circ_empty(&uap->port.state->xmit)) {
570 		uap->dmatx.queued = false;
571 		spin_unlock_irqrestore(&uap->port.lock, flags);
572 		return;
573 	}
574 
575 	if (pl011_dma_tx_refill(uap) <= 0)
576 		/*
577 		 * We didn't queue a DMA buffer for some reason, but we
578 		 * have data pending to be sent.  Re-enable the TX IRQ.
579 		 */
580 		pl011_start_tx_pio(uap);
581 
582 	spin_unlock_irqrestore(&uap->port.lock, flags);
583 }
584 
585 /*
586  * Try to refill the TX DMA buffer.
587  * Locking: called with port lock held and IRQs disabled.
588  * Returns:
589  *   1 if we queued up a TX DMA buffer.
590  *   0 if we didn't want to handle this by DMA
591  *  <0 on error
592  */
593 static int pl011_dma_tx_refill(struct uart_amba_port *uap)
594 {
595 	struct pl011_dmatx_data *dmatx = &uap->dmatx;
596 	struct dma_chan *chan = dmatx->chan;
597 	struct dma_device *dma_dev = chan->device;
598 	struct dma_async_tx_descriptor *desc;
599 	struct circ_buf *xmit = &uap->port.state->xmit;
600 	unsigned int count;
601 
602 	/*
603 	 * Try to avoid the overhead involved in using DMA if the
604 	 * transaction fits in the first half of the FIFO, by using
605 	 * the standard interrupt handling.  This ensures that we
606 	 * issue a uart_write_wakeup() at the appropriate time.
607 	 */
608 	count = uart_circ_chars_pending(xmit);
609 	if (count < (uap->fifosize >> 1)) {
610 		uap->dmatx.queued = false;
611 		return 0;
612 	}
613 
614 	/*
615 	 * Bodge: don't send the last character by DMA, as this
616 	 * will prevent XON from notifying us to restart DMA.
617 	 */
618 	count -= 1;
619 
620 	/* Else proceed to copy the TX chars to the DMA buffer and fire DMA */
621 	if (count > PL011_DMA_BUFFER_SIZE)
622 		count = PL011_DMA_BUFFER_SIZE;
623 
624 	if (xmit->tail < xmit->head)
625 		memcpy(&dmatx->buf[0], &xmit->buf[xmit->tail], count);
626 	else {
627 		size_t first = UART_XMIT_SIZE - xmit->tail;
628 		size_t second;
629 
630 		if (first > count)
631 			first = count;
632 		second = count - first;
633 
634 		memcpy(&dmatx->buf[0], &xmit->buf[xmit->tail], first);
635 		if (second)
636 			memcpy(&dmatx->buf[first], &xmit->buf[0], second);
637 	}
638 
639 	dmatx->sg.length = count;
640 
641 	if (dma_map_sg(dma_dev->dev, &dmatx->sg, 1, DMA_TO_DEVICE) != 1) {
642 		uap->dmatx.queued = false;
643 		dev_dbg(uap->port.dev, "unable to map TX DMA\n");
644 		return -EBUSY;
645 	}
646 
647 	desc = dmaengine_prep_slave_sg(chan, &dmatx->sg, 1, DMA_MEM_TO_DEV,
648 					     DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
649 	if (!desc) {
650 		dma_unmap_sg(dma_dev->dev, &dmatx->sg, 1, DMA_TO_DEVICE);
651 		uap->dmatx.queued = false;
652 		/*
653 		 * If DMA cannot be used right now, we complete this
654 		 * transaction via IRQ and let the TTY layer retry.
655 		 */
656 		dev_dbg(uap->port.dev, "TX DMA busy\n");
657 		return -EBUSY;
658 	}
659 
660 	/* Some data to go along to the callback */
661 	desc->callback = pl011_dma_tx_callback;
662 	desc->callback_param = uap;
663 
664 	/* All errors should happen at prepare time */
665 	dmaengine_submit(desc);
666 
667 	/* Fire the DMA transaction */
668 	dma_dev->device_issue_pending(chan);
669 
670 	uap->dmacr |= UART011_TXDMAE;
671 	pl011_write(uap->dmacr, uap, REG_DMACR);
672 	uap->dmatx.queued = true;
673 
674 	/*
675 	 * Now we know that DMA will fire, so advance the ring buffer
676 	 * with the stuff we just dispatched.
677 	 */
678 	xmit->tail = (xmit->tail + count) & (UART_XMIT_SIZE - 1);
679 	uap->port.icount.tx += count;
680 
681 	if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
682 		uart_write_wakeup(&uap->port);
683 
684 	return 1;
685 }
686 
687 /*
688  * We received a transmit interrupt without a pending X-char but with
689  * pending characters.
690  * Locking: called with port lock held and IRQs disabled.
691  * Returns:
692  *   false if we want to use PIO to transmit
693  *   true if we queued a DMA buffer
694  */
695 static bool pl011_dma_tx_irq(struct uart_amba_port *uap)
696 {
697 	if (!uap->using_tx_dma)
698 		return false;
699 
700 	/*
701 	 * If we already have a TX buffer queued, but received a
702 	 * TX interrupt, it will be because we've just sent an X-char.
703 	 * Ensure the TX DMA is enabled and the TX IRQ is disabled.
704 	 */
705 	if (uap->dmatx.queued) {
706 		uap->dmacr |= UART011_TXDMAE;
707 		pl011_write(uap->dmacr, uap, REG_DMACR);
708 		uap->im &= ~UART011_TXIM;
709 		pl011_write(uap->im, uap, REG_IMSC);
710 		return true;
711 	}
712 
713 	/*
714 	 * We don't have a TX buffer queued, so try to queue one.
715 	 * If we successfully queued a buffer, mask the TX IRQ.
716 	 */
717 	if (pl011_dma_tx_refill(uap) > 0) {
718 		uap->im &= ~UART011_TXIM;
719 		pl011_write(uap->im, uap, REG_IMSC);
720 		return true;
721 	}
722 	return false;
723 }
724 
725 /*
726  * Stop the DMA transmit (eg, due to received XOFF).
727  * Locking: called with port lock held and IRQs disabled.
728  */
729 static inline void pl011_dma_tx_stop(struct uart_amba_port *uap)
730 {
731 	if (uap->dmatx.queued) {
732 		uap->dmacr &= ~UART011_TXDMAE;
733 		pl011_write(uap->dmacr, uap, REG_DMACR);
734 	}
735 }
736 
737 /*
738  * Try to start a DMA transmit, or in the case of an XON/OFF
739  * character queued for send, try to get that character out ASAP.
740  * Locking: called with port lock held and IRQs disabled.
741  * Returns:
742  *   false if we want the TX IRQ to be enabled
743  *   true if we have a buffer queued
744  */
745 static inline bool pl011_dma_tx_start(struct uart_amba_port *uap)
746 {
747 	u16 dmacr;
748 
749 	if (!uap->using_tx_dma)
750 		return false;
751 
752 	if (!uap->port.x_char) {
753 		/* no X-char, try to push chars out in DMA mode */
754 		bool ret = true;
755 
756 		if (!uap->dmatx.queued) {
757 			if (pl011_dma_tx_refill(uap) > 0) {
758 				uap->im &= ~UART011_TXIM;
759 				pl011_write(uap->im, uap, REG_IMSC);
760 			} else
761 				ret = false;
762 		} else if (!(uap->dmacr & UART011_TXDMAE)) {
763 			uap->dmacr |= UART011_TXDMAE;
764 			pl011_write(uap->dmacr, uap, REG_DMACR);
765 		}
766 		return ret;
767 	}
768 
769 	/*
770 	 * We have an X-char to send.  Disable DMA to prevent it loading
771 	 * the TX fifo, and then see if we can stuff it into the FIFO.
772 	 */
773 	dmacr = uap->dmacr;
774 	uap->dmacr &= ~UART011_TXDMAE;
775 	pl011_write(uap->dmacr, uap, REG_DMACR);
776 
777 	if (pl011_read(uap, REG_FR) & UART01x_FR_TXFF) {
778 		/*
779 		 * No space in the FIFO, so enable the transmit interrupt
780 		 * so we know when there is space.  Note that once we've
781 		 * loaded the character, we should just re-enable DMA.
782 		 */
783 		return false;
784 	}
785 
786 	pl011_write(uap->port.x_char, uap, REG_DR);
787 	uap->port.icount.tx++;
788 	uap->port.x_char = 0;
789 
790 	/* Success - restore the DMA state */
791 	uap->dmacr = dmacr;
792 	pl011_write(dmacr, uap, REG_DMACR);
793 
794 	return true;
795 }
796 
797 /*
798  * Flush the transmit buffer.
799  * Locking: called with port lock held and IRQs disabled.
800  */
801 static void pl011_dma_flush_buffer(struct uart_port *port)
802 __releases(&uap->port.lock)
803 __acquires(&uap->port.lock)
804 {
805 	struct uart_amba_port *uap =
806 	    container_of(port, struct uart_amba_port, port);
807 
808 	if (!uap->using_tx_dma)
809 		return;
810 
811 	dmaengine_terminate_async(uap->dmatx.chan);
812 
813 	if (uap->dmatx.queued) {
814 		dma_unmap_sg(uap->dmatx.chan->device->dev, &uap->dmatx.sg, 1,
815 			     DMA_TO_DEVICE);
816 		uap->dmatx.queued = false;
817 		uap->dmacr &= ~UART011_TXDMAE;
818 		pl011_write(uap->dmacr, uap, REG_DMACR);
819 	}
820 }
821 
822 static void pl011_dma_rx_callback(void *data);
823 
824 static int pl011_dma_rx_trigger_dma(struct uart_amba_port *uap)
825 {
826 	struct dma_chan *rxchan = uap->dmarx.chan;
827 	struct pl011_dmarx_data *dmarx = &uap->dmarx;
828 	struct dma_async_tx_descriptor *desc;
829 	struct pl011_sgbuf *sgbuf;
830 
831 	if (!rxchan)
832 		return -EIO;
833 
834 	/* Start the RX DMA job */
835 	sgbuf = uap->dmarx.use_buf_b ?
836 		&uap->dmarx.sgbuf_b : &uap->dmarx.sgbuf_a;
837 	desc = dmaengine_prep_slave_sg(rxchan, &sgbuf->sg, 1,
838 					DMA_DEV_TO_MEM,
839 					DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
840 	/*
841 	 * If the DMA engine is busy and cannot prepare a
842 	 * channel, no big deal, the driver will fall back
843 	 * to interrupt mode as a result of this error code.
844 	 */
845 	if (!desc) {
846 		uap->dmarx.running = false;
847 		dmaengine_terminate_all(rxchan);
848 		return -EBUSY;
849 	}
850 
851 	/* Some data to go along to the callback */
852 	desc->callback = pl011_dma_rx_callback;
853 	desc->callback_param = uap;
854 	dmarx->cookie = dmaengine_submit(desc);
855 	dma_async_issue_pending(rxchan);
856 
857 	uap->dmacr |= UART011_RXDMAE;
858 	pl011_write(uap->dmacr, uap, REG_DMACR);
859 	uap->dmarx.running = true;
860 
861 	uap->im &= ~UART011_RXIM;
862 	pl011_write(uap->im, uap, REG_IMSC);
863 
864 	return 0;
865 }
866 
867 /*
868  * This is called when either the DMA job is complete, or
869  * the FIFO timeout interrupt occurred. This must be called
870  * with the port spinlock uap->port.lock held.
871  */
872 static void pl011_dma_rx_chars(struct uart_amba_port *uap,
873 			       u32 pending, bool use_buf_b,
874 			       bool readfifo)
875 {
876 	struct tty_port *port = &uap->port.state->port;
877 	struct pl011_sgbuf *sgbuf = use_buf_b ?
878 		&uap->dmarx.sgbuf_b : &uap->dmarx.sgbuf_a;
879 	int dma_count = 0;
880 	u32 fifotaken = 0; /* only used for vdbg() */
881 
882 	struct pl011_dmarx_data *dmarx = &uap->dmarx;
883 	int dmataken = 0;
884 
885 	if (uap->dmarx.poll_rate) {
886 		/* The data can be taken by polling */
887 		dmataken = sgbuf->sg.length - dmarx->last_residue;
888 		/* Recalculate the pending size */
889 		if (pending >= dmataken)
890 			pending -= dmataken;
891 	}
892 
893 	/* Pick the remain data from the DMA */
894 	if (pending) {
895 
896 		/*
897 		 * First take all chars in the DMA pipe, then look in the FIFO.
898 		 * Note that tty_insert_flip_buf() tries to take as many chars
899 		 * as it can.
900 		 */
901 		dma_count = tty_insert_flip_string(port, sgbuf->buf + dmataken,
902 				pending);
903 
904 		uap->port.icount.rx += dma_count;
905 		if (dma_count < pending)
906 			dev_warn(uap->port.dev,
907 				 "couldn't insert all characters (TTY is full?)\n");
908 	}
909 
910 	/* Reset the last_residue for Rx DMA poll */
911 	if (uap->dmarx.poll_rate)
912 		dmarx->last_residue = sgbuf->sg.length;
913 
914 	/*
915 	 * Only continue with trying to read the FIFO if all DMA chars have
916 	 * been taken first.
917 	 */
918 	if (dma_count == pending && readfifo) {
919 		/* Clear any error flags */
920 		pl011_write(UART011_OEIS | UART011_BEIS | UART011_PEIS |
921 			    UART011_FEIS, uap, REG_ICR);
922 
923 		/*
924 		 * If we read all the DMA'd characters, and we had an
925 		 * incomplete buffer, that could be due to an rx error, or
926 		 * maybe we just timed out. Read any pending chars and check
927 		 * the error status.
928 		 *
929 		 * Error conditions will only occur in the FIFO, these will
930 		 * trigger an immediate interrupt and stop the DMA job, so we
931 		 * will always find the error in the FIFO, never in the DMA
932 		 * buffer.
933 		 */
934 		fifotaken = pl011_fifo_to_tty(uap);
935 	}
936 
937 	spin_unlock(&uap->port.lock);
938 	dev_vdbg(uap->port.dev,
939 		 "Took %d chars from DMA buffer and %d chars from the FIFO\n",
940 		 dma_count, fifotaken);
941 	tty_flip_buffer_push(port);
942 	spin_lock(&uap->port.lock);
943 }
944 
945 static void pl011_dma_rx_irq(struct uart_amba_port *uap)
946 {
947 	struct pl011_dmarx_data *dmarx = &uap->dmarx;
948 	struct dma_chan *rxchan = dmarx->chan;
949 	struct pl011_sgbuf *sgbuf = dmarx->use_buf_b ?
950 		&dmarx->sgbuf_b : &dmarx->sgbuf_a;
951 	size_t pending;
952 	struct dma_tx_state state;
953 	enum dma_status dmastat;
954 
955 	/*
956 	 * Pause the transfer so we can trust the current counter,
957 	 * do this before we pause the PL011 block, else we may
958 	 * overflow the FIFO.
959 	 */
960 	if (dmaengine_pause(rxchan))
961 		dev_err(uap->port.dev, "unable to pause DMA transfer\n");
962 	dmastat = rxchan->device->device_tx_status(rxchan,
963 						   dmarx->cookie, &state);
964 	if (dmastat != DMA_PAUSED)
965 		dev_err(uap->port.dev, "unable to pause DMA transfer\n");
966 
967 	/* Disable RX DMA - incoming data will wait in the FIFO */
968 	uap->dmacr &= ~UART011_RXDMAE;
969 	pl011_write(uap->dmacr, uap, REG_DMACR);
970 	uap->dmarx.running = false;
971 
972 	pending = sgbuf->sg.length - state.residue;
973 	BUG_ON(pending > PL011_DMA_BUFFER_SIZE);
974 	/* Then we terminate the transfer - we now know our residue */
975 	dmaengine_terminate_all(rxchan);
976 
977 	/*
978 	 * This will take the chars we have so far and insert
979 	 * into the framework.
980 	 */
981 	pl011_dma_rx_chars(uap, pending, dmarx->use_buf_b, true);
982 
983 	/* Switch buffer & re-trigger DMA job */
984 	dmarx->use_buf_b = !dmarx->use_buf_b;
985 	if (pl011_dma_rx_trigger_dma(uap)) {
986 		dev_dbg(uap->port.dev, "could not retrigger RX DMA job "
987 			"fall back to interrupt mode\n");
988 		uap->im |= UART011_RXIM;
989 		pl011_write(uap->im, uap, REG_IMSC);
990 	}
991 }
992 
993 static void pl011_dma_rx_callback(void *data)
994 {
995 	struct uart_amba_port *uap = data;
996 	struct pl011_dmarx_data *dmarx = &uap->dmarx;
997 	struct dma_chan *rxchan = dmarx->chan;
998 	bool lastbuf = dmarx->use_buf_b;
999 	struct pl011_sgbuf *sgbuf = dmarx->use_buf_b ?
1000 		&dmarx->sgbuf_b : &dmarx->sgbuf_a;
1001 	size_t pending;
1002 	struct dma_tx_state state;
1003 	int ret;
1004 
1005 	/*
1006 	 * This completion interrupt occurs typically when the
1007 	 * RX buffer is totally stuffed but no timeout has yet
1008 	 * occurred. When that happens, we just want the RX
1009 	 * routine to flush out the secondary DMA buffer while
1010 	 * we immediately trigger the next DMA job.
1011 	 */
1012 	spin_lock_irq(&uap->port.lock);
1013 	/*
1014 	 * Rx data can be taken by the UART interrupts during
1015 	 * the DMA irq handler. So we check the residue here.
1016 	 */
1017 	rxchan->device->device_tx_status(rxchan, dmarx->cookie, &state);
1018 	pending = sgbuf->sg.length - state.residue;
1019 	BUG_ON(pending > PL011_DMA_BUFFER_SIZE);
1020 	/* Then we terminate the transfer - we now know our residue */
1021 	dmaengine_terminate_all(rxchan);
1022 
1023 	uap->dmarx.running = false;
1024 	dmarx->use_buf_b = !lastbuf;
1025 	ret = pl011_dma_rx_trigger_dma(uap);
1026 
1027 	pl011_dma_rx_chars(uap, pending, lastbuf, false);
1028 	spin_unlock_irq(&uap->port.lock);
1029 	/*
1030 	 * Do this check after we picked the DMA chars so we don't
1031 	 * get some IRQ immediately from RX.
1032 	 */
1033 	if (ret) {
1034 		dev_dbg(uap->port.dev, "could not retrigger RX DMA job "
1035 			"fall back to interrupt mode\n");
1036 		uap->im |= UART011_RXIM;
1037 		pl011_write(uap->im, uap, REG_IMSC);
1038 	}
1039 }
1040 
1041 /*
1042  * Stop accepting received characters, when we're shutting down or
1043  * suspending this port.
1044  * Locking: called with port lock held and IRQs disabled.
1045  */
1046 static inline void pl011_dma_rx_stop(struct uart_amba_port *uap)
1047 {
1048 	/* FIXME.  Just disable the DMA enable */
1049 	uap->dmacr &= ~UART011_RXDMAE;
1050 	pl011_write(uap->dmacr, uap, REG_DMACR);
1051 }
1052 
1053 /*
1054  * Timer handler for Rx DMA polling.
1055  * Every polling, It checks the residue in the dma buffer and transfer
1056  * data to the tty. Also, last_residue is updated for the next polling.
1057  */
1058 static void pl011_dma_rx_poll(struct timer_list *t)
1059 {
1060 	struct uart_amba_port *uap = from_timer(uap, t, dmarx.timer);
1061 	struct tty_port *port = &uap->port.state->port;
1062 	struct pl011_dmarx_data *dmarx = &uap->dmarx;
1063 	struct dma_chan *rxchan = uap->dmarx.chan;
1064 	unsigned long flags = 0;
1065 	unsigned int dmataken = 0;
1066 	unsigned int size = 0;
1067 	struct pl011_sgbuf *sgbuf;
1068 	int dma_count;
1069 	struct dma_tx_state state;
1070 
1071 	sgbuf = dmarx->use_buf_b ? &uap->dmarx.sgbuf_b : &uap->dmarx.sgbuf_a;
1072 	rxchan->device->device_tx_status(rxchan, dmarx->cookie, &state);
1073 	if (likely(state.residue < dmarx->last_residue)) {
1074 		dmataken = sgbuf->sg.length - dmarx->last_residue;
1075 		size = dmarx->last_residue - state.residue;
1076 		dma_count = tty_insert_flip_string(port, sgbuf->buf + dmataken,
1077 				size);
1078 		if (dma_count == size)
1079 			dmarx->last_residue =  state.residue;
1080 		dmarx->last_jiffies = jiffies;
1081 	}
1082 	tty_flip_buffer_push(port);
1083 
1084 	/*
1085 	 * If no data is received in poll_timeout, the driver will fall back
1086 	 * to interrupt mode. We will retrigger DMA at the first interrupt.
1087 	 */
1088 	if (jiffies_to_msecs(jiffies - dmarx->last_jiffies)
1089 			> uap->dmarx.poll_timeout) {
1090 
1091 		spin_lock_irqsave(&uap->port.lock, flags);
1092 		pl011_dma_rx_stop(uap);
1093 		uap->im |= UART011_RXIM;
1094 		pl011_write(uap->im, uap, REG_IMSC);
1095 		spin_unlock_irqrestore(&uap->port.lock, flags);
1096 
1097 		uap->dmarx.running = false;
1098 		dmaengine_terminate_all(rxchan);
1099 		del_timer(&uap->dmarx.timer);
1100 	} else {
1101 		mod_timer(&uap->dmarx.timer,
1102 			jiffies + msecs_to_jiffies(uap->dmarx.poll_rate));
1103 	}
1104 }
1105 
1106 static void pl011_dma_startup(struct uart_amba_port *uap)
1107 {
1108 	int ret;
1109 
1110 	if (!uap->dma_probed)
1111 		pl011_dma_probe(uap);
1112 
1113 	if (!uap->dmatx.chan)
1114 		return;
1115 
1116 	uap->dmatx.buf = kmalloc(PL011_DMA_BUFFER_SIZE, GFP_KERNEL | __GFP_DMA);
1117 	if (!uap->dmatx.buf) {
1118 		dev_err(uap->port.dev, "no memory for DMA TX buffer\n");
1119 		uap->port.fifosize = uap->fifosize;
1120 		return;
1121 	}
1122 
1123 	sg_init_one(&uap->dmatx.sg, uap->dmatx.buf, PL011_DMA_BUFFER_SIZE);
1124 
1125 	/* The DMA buffer is now the FIFO the TTY subsystem can use */
1126 	uap->port.fifosize = PL011_DMA_BUFFER_SIZE;
1127 	uap->using_tx_dma = true;
1128 
1129 	if (!uap->dmarx.chan)
1130 		goto skip_rx;
1131 
1132 	/* Allocate and map DMA RX buffers */
1133 	ret = pl011_sgbuf_init(uap->dmarx.chan, &uap->dmarx.sgbuf_a,
1134 			       DMA_FROM_DEVICE);
1135 	if (ret) {
1136 		dev_err(uap->port.dev, "failed to init DMA %s: %d\n",
1137 			"RX buffer A", ret);
1138 		goto skip_rx;
1139 	}
1140 
1141 	ret = pl011_sgbuf_init(uap->dmarx.chan, &uap->dmarx.sgbuf_b,
1142 			       DMA_FROM_DEVICE);
1143 	if (ret) {
1144 		dev_err(uap->port.dev, "failed to init DMA %s: %d\n",
1145 			"RX buffer B", ret);
1146 		pl011_sgbuf_free(uap->dmarx.chan, &uap->dmarx.sgbuf_a,
1147 				 DMA_FROM_DEVICE);
1148 		goto skip_rx;
1149 	}
1150 
1151 	uap->using_rx_dma = true;
1152 
1153 skip_rx:
1154 	/* Turn on DMA error (RX/TX will be enabled on demand) */
1155 	uap->dmacr |= UART011_DMAONERR;
1156 	pl011_write(uap->dmacr, uap, REG_DMACR);
1157 
1158 	/*
1159 	 * ST Micro variants has some specific dma burst threshold
1160 	 * compensation. Set this to 16 bytes, so burst will only
1161 	 * be issued above/below 16 bytes.
1162 	 */
1163 	if (uap->vendor->dma_threshold)
1164 		pl011_write(ST_UART011_DMAWM_RX_16 | ST_UART011_DMAWM_TX_16,
1165 			    uap, REG_ST_DMAWM);
1166 
1167 	if (uap->using_rx_dma) {
1168 		if (pl011_dma_rx_trigger_dma(uap))
1169 			dev_dbg(uap->port.dev, "could not trigger initial "
1170 				"RX DMA job, fall back to interrupt mode\n");
1171 		if (uap->dmarx.poll_rate) {
1172 			timer_setup(&uap->dmarx.timer, pl011_dma_rx_poll, 0);
1173 			mod_timer(&uap->dmarx.timer,
1174 				jiffies +
1175 				msecs_to_jiffies(uap->dmarx.poll_rate));
1176 			uap->dmarx.last_residue = PL011_DMA_BUFFER_SIZE;
1177 			uap->dmarx.last_jiffies = jiffies;
1178 		}
1179 	}
1180 }
1181 
1182 static void pl011_dma_shutdown(struct uart_amba_port *uap)
1183 {
1184 	if (!(uap->using_tx_dma || uap->using_rx_dma))
1185 		return;
1186 
1187 	/* Disable RX and TX DMA */
1188 	while (pl011_read(uap, REG_FR) & uap->vendor->fr_busy)
1189 		cpu_relax();
1190 
1191 	spin_lock_irq(&uap->port.lock);
1192 	uap->dmacr &= ~(UART011_DMAONERR | UART011_RXDMAE | UART011_TXDMAE);
1193 	pl011_write(uap->dmacr, uap, REG_DMACR);
1194 	spin_unlock_irq(&uap->port.lock);
1195 
1196 	if (uap->using_tx_dma) {
1197 		/* In theory, this should already be done by pl011_dma_flush_buffer */
1198 		dmaengine_terminate_all(uap->dmatx.chan);
1199 		if (uap->dmatx.queued) {
1200 			dma_unmap_sg(uap->dmatx.chan->device->dev, &uap->dmatx.sg, 1,
1201 				     DMA_TO_DEVICE);
1202 			uap->dmatx.queued = false;
1203 		}
1204 
1205 		kfree(uap->dmatx.buf);
1206 		uap->using_tx_dma = false;
1207 	}
1208 
1209 	if (uap->using_rx_dma) {
1210 		dmaengine_terminate_all(uap->dmarx.chan);
1211 		/* Clean up the RX DMA */
1212 		pl011_sgbuf_free(uap->dmarx.chan, &uap->dmarx.sgbuf_a, DMA_FROM_DEVICE);
1213 		pl011_sgbuf_free(uap->dmarx.chan, &uap->dmarx.sgbuf_b, DMA_FROM_DEVICE);
1214 		if (uap->dmarx.poll_rate)
1215 			del_timer_sync(&uap->dmarx.timer);
1216 		uap->using_rx_dma = false;
1217 	}
1218 }
1219 
1220 static inline bool pl011_dma_rx_available(struct uart_amba_port *uap)
1221 {
1222 	return uap->using_rx_dma;
1223 }
1224 
1225 static inline bool pl011_dma_rx_running(struct uart_amba_port *uap)
1226 {
1227 	return uap->using_rx_dma && uap->dmarx.running;
1228 }
1229 
1230 #else
1231 /* Blank functions if the DMA engine is not available */
1232 static inline void pl011_dma_remove(struct uart_amba_port *uap)
1233 {
1234 }
1235 
1236 static inline void pl011_dma_startup(struct uart_amba_port *uap)
1237 {
1238 }
1239 
1240 static inline void pl011_dma_shutdown(struct uart_amba_port *uap)
1241 {
1242 }
1243 
1244 static inline bool pl011_dma_tx_irq(struct uart_amba_port *uap)
1245 {
1246 	return false;
1247 }
1248 
1249 static inline void pl011_dma_tx_stop(struct uart_amba_port *uap)
1250 {
1251 }
1252 
1253 static inline bool pl011_dma_tx_start(struct uart_amba_port *uap)
1254 {
1255 	return false;
1256 }
1257 
1258 static inline void pl011_dma_rx_irq(struct uart_amba_port *uap)
1259 {
1260 }
1261 
1262 static inline void pl011_dma_rx_stop(struct uart_amba_port *uap)
1263 {
1264 }
1265 
1266 static inline int pl011_dma_rx_trigger_dma(struct uart_amba_port *uap)
1267 {
1268 	return -EIO;
1269 }
1270 
1271 static inline bool pl011_dma_rx_available(struct uart_amba_port *uap)
1272 {
1273 	return false;
1274 }
1275 
1276 static inline bool pl011_dma_rx_running(struct uart_amba_port *uap)
1277 {
1278 	return false;
1279 }
1280 
1281 #define pl011_dma_flush_buffer	NULL
1282 #endif
1283 
1284 static void pl011_stop_tx(struct uart_port *port)
1285 {
1286 	struct uart_amba_port *uap =
1287 	    container_of(port, struct uart_amba_port, port);
1288 
1289 	uap->im &= ~UART011_TXIM;
1290 	pl011_write(uap->im, uap, REG_IMSC);
1291 	pl011_dma_tx_stop(uap);
1292 }
1293 
1294 static bool pl011_tx_chars(struct uart_amba_port *uap, bool from_irq);
1295 
1296 /* Start TX with programmed I/O only (no DMA) */
1297 static void pl011_start_tx_pio(struct uart_amba_port *uap)
1298 {
1299 	if (pl011_tx_chars(uap, false)) {
1300 		uap->im |= UART011_TXIM;
1301 		pl011_write(uap->im, uap, REG_IMSC);
1302 	}
1303 }
1304 
1305 static void pl011_start_tx(struct uart_port *port)
1306 {
1307 	struct uart_amba_port *uap =
1308 	    container_of(port, struct uart_amba_port, port);
1309 
1310 	if (!pl011_dma_tx_start(uap))
1311 		pl011_start_tx_pio(uap);
1312 }
1313 
1314 static void pl011_stop_rx(struct uart_port *port)
1315 {
1316 	struct uart_amba_port *uap =
1317 	    container_of(port, struct uart_amba_port, port);
1318 
1319 	uap->im &= ~(UART011_RXIM|UART011_RTIM|UART011_FEIM|
1320 		     UART011_PEIM|UART011_BEIM|UART011_OEIM);
1321 	pl011_write(uap->im, uap, REG_IMSC);
1322 
1323 	pl011_dma_rx_stop(uap);
1324 }
1325 
1326 static void pl011_enable_ms(struct uart_port *port)
1327 {
1328 	struct uart_amba_port *uap =
1329 	    container_of(port, struct uart_amba_port, port);
1330 
1331 	uap->im |= UART011_RIMIM|UART011_CTSMIM|UART011_DCDMIM|UART011_DSRMIM;
1332 	pl011_write(uap->im, uap, REG_IMSC);
1333 }
1334 
1335 static void pl011_rx_chars(struct uart_amba_port *uap)
1336 __releases(&uap->port.lock)
1337 __acquires(&uap->port.lock)
1338 {
1339 	pl011_fifo_to_tty(uap);
1340 
1341 	spin_unlock(&uap->port.lock);
1342 	tty_flip_buffer_push(&uap->port.state->port);
1343 	/*
1344 	 * If we were temporarily out of DMA mode for a while,
1345 	 * attempt to switch back to DMA mode again.
1346 	 */
1347 	if (pl011_dma_rx_available(uap)) {
1348 		if (pl011_dma_rx_trigger_dma(uap)) {
1349 			dev_dbg(uap->port.dev, "could not trigger RX DMA job "
1350 				"fall back to interrupt mode again\n");
1351 			uap->im |= UART011_RXIM;
1352 			pl011_write(uap->im, uap, REG_IMSC);
1353 		} else {
1354 #ifdef CONFIG_DMA_ENGINE
1355 			/* Start Rx DMA poll */
1356 			if (uap->dmarx.poll_rate) {
1357 				uap->dmarx.last_jiffies = jiffies;
1358 				uap->dmarx.last_residue	= PL011_DMA_BUFFER_SIZE;
1359 				mod_timer(&uap->dmarx.timer,
1360 					jiffies +
1361 					msecs_to_jiffies(uap->dmarx.poll_rate));
1362 			}
1363 #endif
1364 		}
1365 	}
1366 	spin_lock(&uap->port.lock);
1367 }
1368 
1369 static bool pl011_tx_char(struct uart_amba_port *uap, unsigned char c,
1370 			  bool from_irq)
1371 {
1372 	if (unlikely(!from_irq) &&
1373 	    pl011_read(uap, REG_FR) & UART01x_FR_TXFF)
1374 		return false; /* unable to transmit character */
1375 
1376 	pl011_write(c, uap, REG_DR);
1377 	uap->port.icount.tx++;
1378 
1379 	return true;
1380 }
1381 
1382 /* Returns true if tx interrupts have to be (kept) enabled  */
1383 static bool pl011_tx_chars(struct uart_amba_port *uap, bool from_irq)
1384 {
1385 	struct circ_buf *xmit = &uap->port.state->xmit;
1386 	int count = uap->fifosize >> 1;
1387 
1388 	if (uap->port.x_char) {
1389 		if (!pl011_tx_char(uap, uap->port.x_char, from_irq))
1390 			return true;
1391 		uap->port.x_char = 0;
1392 		--count;
1393 	}
1394 	if (uart_circ_empty(xmit) || uart_tx_stopped(&uap->port)) {
1395 		pl011_stop_tx(&uap->port);
1396 		return false;
1397 	}
1398 
1399 	/* If we are using DMA mode, try to send some characters. */
1400 	if (pl011_dma_tx_irq(uap))
1401 		return true;
1402 
1403 	do {
1404 		if (likely(from_irq) && count-- == 0)
1405 			break;
1406 
1407 		if (!pl011_tx_char(uap, xmit->buf[xmit->tail], from_irq))
1408 			break;
1409 
1410 		xmit->tail = (xmit->tail + 1) & (UART_XMIT_SIZE - 1);
1411 	} while (!uart_circ_empty(xmit));
1412 
1413 	if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
1414 		uart_write_wakeup(&uap->port);
1415 
1416 	if (uart_circ_empty(xmit)) {
1417 		pl011_stop_tx(&uap->port);
1418 		return false;
1419 	}
1420 	return true;
1421 }
1422 
1423 static void pl011_modem_status(struct uart_amba_port *uap)
1424 {
1425 	unsigned int status, delta;
1426 
1427 	status = pl011_read(uap, REG_FR) & UART01x_FR_MODEM_ANY;
1428 
1429 	delta = status ^ uap->old_status;
1430 	uap->old_status = status;
1431 
1432 	if (!delta)
1433 		return;
1434 
1435 	if (delta & UART01x_FR_DCD)
1436 		uart_handle_dcd_change(&uap->port, status & UART01x_FR_DCD);
1437 
1438 	if (delta & uap->vendor->fr_dsr)
1439 		uap->port.icount.dsr++;
1440 
1441 	if (delta & uap->vendor->fr_cts)
1442 		uart_handle_cts_change(&uap->port,
1443 				       status & uap->vendor->fr_cts);
1444 
1445 	wake_up_interruptible(&uap->port.state->port.delta_msr_wait);
1446 }
1447 
1448 static void check_apply_cts_event_workaround(struct uart_amba_port *uap)
1449 {
1450 	if (!uap->vendor->cts_event_workaround)
1451 		return;
1452 
1453 	/* workaround to make sure that all bits are unlocked.. */
1454 	pl011_write(0x00, uap, REG_ICR);
1455 
1456 	/*
1457 	 * WA: introduce 26ns(1 uart clk) delay before W1C;
1458 	 * single apb access will incur 2 pclk(133.12Mhz) delay,
1459 	 * so add 2 dummy reads
1460 	 */
1461 	pl011_read(uap, REG_ICR);
1462 	pl011_read(uap, REG_ICR);
1463 }
1464 
1465 static irqreturn_t pl011_int(int irq, void *dev_id)
1466 {
1467 	struct uart_amba_port *uap = dev_id;
1468 	unsigned long flags;
1469 	unsigned int status, pass_counter = AMBA_ISR_PASS_LIMIT;
1470 	int handled = 0;
1471 
1472 	spin_lock_irqsave(&uap->port.lock, flags);
1473 	status = pl011_read(uap, REG_RIS) & uap->im;
1474 	if (status) {
1475 		do {
1476 			check_apply_cts_event_workaround(uap);
1477 
1478 			pl011_write(status & ~(UART011_TXIS|UART011_RTIS|
1479 					       UART011_RXIS),
1480 				    uap, REG_ICR);
1481 
1482 			if (status & (UART011_RTIS|UART011_RXIS)) {
1483 				if (pl011_dma_rx_running(uap))
1484 					pl011_dma_rx_irq(uap);
1485 				else
1486 					pl011_rx_chars(uap);
1487 			}
1488 			if (status & (UART011_DSRMIS|UART011_DCDMIS|
1489 				      UART011_CTSMIS|UART011_RIMIS))
1490 				pl011_modem_status(uap);
1491 			if (status & UART011_TXIS)
1492 				pl011_tx_chars(uap, true);
1493 
1494 			if (pass_counter-- == 0)
1495 				break;
1496 
1497 			status = pl011_read(uap, REG_RIS) & uap->im;
1498 		} while (status != 0);
1499 		handled = 1;
1500 	}
1501 
1502 	spin_unlock_irqrestore(&uap->port.lock, flags);
1503 
1504 	return IRQ_RETVAL(handled);
1505 }
1506 
1507 static unsigned int pl011_tx_empty(struct uart_port *port)
1508 {
1509 	struct uart_amba_port *uap =
1510 	    container_of(port, struct uart_amba_port, port);
1511 
1512 	/* Allow feature register bits to be inverted to work around errata */
1513 	unsigned int status = pl011_read(uap, REG_FR) ^ uap->vendor->inv_fr;
1514 
1515 	return status & (uap->vendor->fr_busy | UART01x_FR_TXFF) ?
1516 							0 : TIOCSER_TEMT;
1517 }
1518 
1519 static unsigned int pl011_get_mctrl(struct uart_port *port)
1520 {
1521 	struct uart_amba_port *uap =
1522 	    container_of(port, struct uart_amba_port, port);
1523 	unsigned int result = 0;
1524 	unsigned int status = pl011_read(uap, REG_FR);
1525 
1526 #define TIOCMBIT(uartbit, tiocmbit)	\
1527 	if (status & uartbit)		\
1528 		result |= tiocmbit
1529 
1530 	TIOCMBIT(UART01x_FR_DCD, TIOCM_CAR);
1531 	TIOCMBIT(uap->vendor->fr_dsr, TIOCM_DSR);
1532 	TIOCMBIT(uap->vendor->fr_cts, TIOCM_CTS);
1533 	TIOCMBIT(uap->vendor->fr_ri, TIOCM_RNG);
1534 #undef TIOCMBIT
1535 	return result;
1536 }
1537 
1538 static void pl011_set_mctrl(struct uart_port *port, unsigned int mctrl)
1539 {
1540 	struct uart_amba_port *uap =
1541 	    container_of(port, struct uart_amba_port, port);
1542 	unsigned int cr;
1543 
1544 	cr = pl011_read(uap, REG_CR);
1545 
1546 #define	TIOCMBIT(tiocmbit, uartbit)		\
1547 	if (mctrl & tiocmbit)		\
1548 		cr |= uartbit;		\
1549 	else				\
1550 		cr &= ~uartbit
1551 
1552 	TIOCMBIT(TIOCM_RTS, UART011_CR_RTS);
1553 	TIOCMBIT(TIOCM_DTR, UART011_CR_DTR);
1554 	TIOCMBIT(TIOCM_OUT1, UART011_CR_OUT1);
1555 	TIOCMBIT(TIOCM_OUT2, UART011_CR_OUT2);
1556 	TIOCMBIT(TIOCM_LOOP, UART011_CR_LBE);
1557 
1558 	if (port->status & UPSTAT_AUTORTS) {
1559 		/* We need to disable auto-RTS if we want to turn RTS off */
1560 		TIOCMBIT(TIOCM_RTS, UART011_CR_RTSEN);
1561 	}
1562 #undef TIOCMBIT
1563 
1564 	pl011_write(cr, uap, REG_CR);
1565 }
1566 
1567 static void pl011_break_ctl(struct uart_port *port, int break_state)
1568 {
1569 	struct uart_amba_port *uap =
1570 	    container_of(port, struct uart_amba_port, port);
1571 	unsigned long flags;
1572 	unsigned int lcr_h;
1573 
1574 	spin_lock_irqsave(&uap->port.lock, flags);
1575 	lcr_h = pl011_read(uap, REG_LCRH_TX);
1576 	if (break_state == -1)
1577 		lcr_h |= UART01x_LCRH_BRK;
1578 	else
1579 		lcr_h &= ~UART01x_LCRH_BRK;
1580 	pl011_write(lcr_h, uap, REG_LCRH_TX);
1581 	spin_unlock_irqrestore(&uap->port.lock, flags);
1582 }
1583 
1584 #ifdef CONFIG_CONSOLE_POLL
1585 
1586 static void pl011_quiesce_irqs(struct uart_port *port)
1587 {
1588 	struct uart_amba_port *uap =
1589 	    container_of(port, struct uart_amba_port, port);
1590 
1591 	pl011_write(pl011_read(uap, REG_MIS), uap, REG_ICR);
1592 	/*
1593 	 * There is no way to clear TXIM as this is "ready to transmit IRQ", so
1594 	 * we simply mask it. start_tx() will unmask it.
1595 	 *
1596 	 * Note we can race with start_tx(), and if the race happens, the
1597 	 * polling user might get another interrupt just after we clear it.
1598 	 * But it should be OK and can happen even w/o the race, e.g.
1599 	 * controller immediately got some new data and raised the IRQ.
1600 	 *
1601 	 * And whoever uses polling routines assumes that it manages the device
1602 	 * (including tx queue), so we're also fine with start_tx()'s caller
1603 	 * side.
1604 	 */
1605 	pl011_write(pl011_read(uap, REG_IMSC) & ~UART011_TXIM, uap,
1606 		    REG_IMSC);
1607 }
1608 
1609 static int pl011_get_poll_char(struct uart_port *port)
1610 {
1611 	struct uart_amba_port *uap =
1612 	    container_of(port, struct uart_amba_port, port);
1613 	unsigned int status;
1614 
1615 	/*
1616 	 * The caller might need IRQs lowered, e.g. if used with KDB NMI
1617 	 * debugger.
1618 	 */
1619 	pl011_quiesce_irqs(port);
1620 
1621 	status = pl011_read(uap, REG_FR);
1622 	if (status & UART01x_FR_RXFE)
1623 		return NO_POLL_CHAR;
1624 
1625 	return pl011_read(uap, REG_DR);
1626 }
1627 
1628 static void pl011_put_poll_char(struct uart_port *port,
1629 			 unsigned char ch)
1630 {
1631 	struct uart_amba_port *uap =
1632 	    container_of(port, struct uart_amba_port, port);
1633 
1634 	while (pl011_read(uap, REG_FR) & UART01x_FR_TXFF)
1635 		cpu_relax();
1636 
1637 	pl011_write(ch, uap, REG_DR);
1638 }
1639 
1640 #endif /* CONFIG_CONSOLE_POLL */
1641 
1642 static int pl011_hwinit(struct uart_port *port)
1643 {
1644 	struct uart_amba_port *uap =
1645 	    container_of(port, struct uart_amba_port, port);
1646 	int retval;
1647 
1648 	/* Optionaly enable pins to be muxed in and configured */
1649 	pinctrl_pm_select_default_state(port->dev);
1650 
1651 	/*
1652 	 * Try to enable the clock producer.
1653 	 */
1654 	retval = clk_prepare_enable(uap->clk);
1655 	if (retval)
1656 		return retval;
1657 
1658 	uap->port.uartclk = clk_get_rate(uap->clk);
1659 
1660 	/* Clear pending error and receive interrupts */
1661 	pl011_write(UART011_OEIS | UART011_BEIS | UART011_PEIS |
1662 		    UART011_FEIS | UART011_RTIS | UART011_RXIS,
1663 		    uap, REG_ICR);
1664 
1665 	/*
1666 	 * Save interrupts enable mask, and enable RX interrupts in case if
1667 	 * the interrupt is used for NMI entry.
1668 	 */
1669 	uap->im = pl011_read(uap, REG_IMSC);
1670 	pl011_write(UART011_RTIM | UART011_RXIM, uap, REG_IMSC);
1671 
1672 	if (dev_get_platdata(uap->port.dev)) {
1673 		struct amba_pl011_data *plat;
1674 
1675 		plat = dev_get_platdata(uap->port.dev);
1676 		if (plat->init)
1677 			plat->init();
1678 	}
1679 	return 0;
1680 }
1681 
1682 static bool pl011_split_lcrh(const struct uart_amba_port *uap)
1683 {
1684 	return pl011_reg_to_offset(uap, REG_LCRH_RX) !=
1685 	       pl011_reg_to_offset(uap, REG_LCRH_TX);
1686 }
1687 
1688 static void pl011_write_lcr_h(struct uart_amba_port *uap, unsigned int lcr_h)
1689 {
1690 	pl011_write(lcr_h, uap, REG_LCRH_RX);
1691 	if (pl011_split_lcrh(uap)) {
1692 		int i;
1693 		/*
1694 		 * Wait 10 PCLKs before writing LCRH_TX register,
1695 		 * to get this delay write read only register 10 times
1696 		 */
1697 		for (i = 0; i < 10; ++i)
1698 			pl011_write(0xff, uap, REG_MIS);
1699 		pl011_write(lcr_h, uap, REG_LCRH_TX);
1700 	}
1701 }
1702 
1703 static int pl011_allocate_irq(struct uart_amba_port *uap)
1704 {
1705 	pl011_write(uap->im, uap, REG_IMSC);
1706 
1707 	return request_irq(uap->port.irq, pl011_int, IRQF_SHARED, "uart-pl011", uap);
1708 }
1709 
1710 /*
1711  * Enable interrupts, only timeouts when using DMA
1712  * if initial RX DMA job failed, start in interrupt mode
1713  * as well.
1714  */
1715 static void pl011_enable_interrupts(struct uart_amba_port *uap)
1716 {
1717 	unsigned int i;
1718 
1719 	spin_lock_irq(&uap->port.lock);
1720 
1721 	/* Clear out any spuriously appearing RX interrupts */
1722 	pl011_write(UART011_RTIS | UART011_RXIS, uap, REG_ICR);
1723 
1724 	/*
1725 	 * RXIS is asserted only when the RX FIFO transitions from below
1726 	 * to above the trigger threshold.  If the RX FIFO is already
1727 	 * full to the threshold this can't happen and RXIS will now be
1728 	 * stuck off.  Drain the RX FIFO explicitly to fix this:
1729 	 */
1730 	for (i = 0; i < uap->fifosize * 2; ++i) {
1731 		if (pl011_read(uap, REG_FR) & UART01x_FR_RXFE)
1732 			break;
1733 
1734 		pl011_read(uap, REG_DR);
1735 	}
1736 
1737 	uap->im = UART011_RTIM;
1738 	if (!pl011_dma_rx_running(uap))
1739 		uap->im |= UART011_RXIM;
1740 	pl011_write(uap->im, uap, REG_IMSC);
1741 	spin_unlock_irq(&uap->port.lock);
1742 }
1743 
1744 static int pl011_startup(struct uart_port *port)
1745 {
1746 	struct uart_amba_port *uap =
1747 	    container_of(port, struct uart_amba_port, port);
1748 	unsigned int cr;
1749 	int retval;
1750 
1751 	retval = pl011_hwinit(port);
1752 	if (retval)
1753 		goto clk_dis;
1754 
1755 	retval = pl011_allocate_irq(uap);
1756 	if (retval)
1757 		goto clk_dis;
1758 
1759 	pl011_write(uap->vendor->ifls, uap, REG_IFLS);
1760 
1761 	spin_lock_irq(&uap->port.lock);
1762 
1763 	/* restore RTS and DTR */
1764 	cr = uap->old_cr & (UART011_CR_RTS | UART011_CR_DTR);
1765 	cr |= UART01x_CR_UARTEN | UART011_CR_RXE | UART011_CR_TXE;
1766 	pl011_write(cr, uap, REG_CR);
1767 
1768 	spin_unlock_irq(&uap->port.lock);
1769 
1770 	/*
1771 	 * initialise the old status of the modem signals
1772 	 */
1773 	uap->old_status = pl011_read(uap, REG_FR) & UART01x_FR_MODEM_ANY;
1774 
1775 	/* Startup DMA */
1776 	pl011_dma_startup(uap);
1777 
1778 	pl011_enable_interrupts(uap);
1779 
1780 	return 0;
1781 
1782  clk_dis:
1783 	clk_disable_unprepare(uap->clk);
1784 	return retval;
1785 }
1786 
1787 static int sbsa_uart_startup(struct uart_port *port)
1788 {
1789 	struct uart_amba_port *uap =
1790 		container_of(port, struct uart_amba_port, port);
1791 	int retval;
1792 
1793 	retval = pl011_hwinit(port);
1794 	if (retval)
1795 		return retval;
1796 
1797 	retval = pl011_allocate_irq(uap);
1798 	if (retval)
1799 		return retval;
1800 
1801 	/* The SBSA UART does not support any modem status lines. */
1802 	uap->old_status = 0;
1803 
1804 	pl011_enable_interrupts(uap);
1805 
1806 	return 0;
1807 }
1808 
1809 static void pl011_shutdown_channel(struct uart_amba_port *uap,
1810 					unsigned int lcrh)
1811 {
1812       unsigned long val;
1813 
1814       val = pl011_read(uap, lcrh);
1815       val &= ~(UART01x_LCRH_BRK | UART01x_LCRH_FEN);
1816       pl011_write(val, uap, lcrh);
1817 }
1818 
1819 /*
1820  * disable the port. It should not disable RTS and DTR.
1821  * Also RTS and DTR state should be preserved to restore
1822  * it during startup().
1823  */
1824 static void pl011_disable_uart(struct uart_amba_port *uap)
1825 {
1826 	unsigned int cr;
1827 
1828 	uap->port.status &= ~(UPSTAT_AUTOCTS | UPSTAT_AUTORTS);
1829 	spin_lock_irq(&uap->port.lock);
1830 	cr = pl011_read(uap, REG_CR);
1831 	uap->old_cr = cr;
1832 	cr &= UART011_CR_RTS | UART011_CR_DTR;
1833 	cr |= UART01x_CR_UARTEN | UART011_CR_TXE;
1834 	pl011_write(cr, uap, REG_CR);
1835 	spin_unlock_irq(&uap->port.lock);
1836 
1837 	/*
1838 	 * disable break condition and fifos
1839 	 */
1840 	pl011_shutdown_channel(uap, REG_LCRH_RX);
1841 	if (pl011_split_lcrh(uap))
1842 		pl011_shutdown_channel(uap, REG_LCRH_TX);
1843 }
1844 
1845 static void pl011_disable_interrupts(struct uart_amba_port *uap)
1846 {
1847 	spin_lock_irq(&uap->port.lock);
1848 
1849 	/* mask all interrupts and clear all pending ones */
1850 	uap->im = 0;
1851 	pl011_write(uap->im, uap, REG_IMSC);
1852 	pl011_write(0xffff, uap, REG_ICR);
1853 
1854 	spin_unlock_irq(&uap->port.lock);
1855 }
1856 
1857 static void pl011_shutdown(struct uart_port *port)
1858 {
1859 	struct uart_amba_port *uap =
1860 		container_of(port, struct uart_amba_port, port);
1861 
1862 	pl011_disable_interrupts(uap);
1863 
1864 	pl011_dma_shutdown(uap);
1865 
1866 	free_irq(uap->port.irq, uap);
1867 
1868 	pl011_disable_uart(uap);
1869 
1870 	/*
1871 	 * Shut down the clock producer
1872 	 */
1873 	clk_disable_unprepare(uap->clk);
1874 	/* Optionally let pins go into sleep states */
1875 	pinctrl_pm_select_sleep_state(port->dev);
1876 
1877 	if (dev_get_platdata(uap->port.dev)) {
1878 		struct amba_pl011_data *plat;
1879 
1880 		plat = dev_get_platdata(uap->port.dev);
1881 		if (plat->exit)
1882 			plat->exit();
1883 	}
1884 
1885 	if (uap->port.ops->flush_buffer)
1886 		uap->port.ops->flush_buffer(port);
1887 }
1888 
1889 static void sbsa_uart_shutdown(struct uart_port *port)
1890 {
1891 	struct uart_amba_port *uap =
1892 		container_of(port, struct uart_amba_port, port);
1893 
1894 	pl011_disable_interrupts(uap);
1895 
1896 	free_irq(uap->port.irq, uap);
1897 
1898 	if (uap->port.ops->flush_buffer)
1899 		uap->port.ops->flush_buffer(port);
1900 }
1901 
1902 static void
1903 pl011_setup_status_masks(struct uart_port *port, struct ktermios *termios)
1904 {
1905 	port->read_status_mask = UART011_DR_OE | 255;
1906 	if (termios->c_iflag & INPCK)
1907 		port->read_status_mask |= UART011_DR_FE | UART011_DR_PE;
1908 	if (termios->c_iflag & (IGNBRK | BRKINT | PARMRK))
1909 		port->read_status_mask |= UART011_DR_BE;
1910 
1911 	/*
1912 	 * Characters to ignore
1913 	 */
1914 	port->ignore_status_mask = 0;
1915 	if (termios->c_iflag & IGNPAR)
1916 		port->ignore_status_mask |= UART011_DR_FE | UART011_DR_PE;
1917 	if (termios->c_iflag & IGNBRK) {
1918 		port->ignore_status_mask |= UART011_DR_BE;
1919 		/*
1920 		 * If we're ignoring parity and break indicators,
1921 		 * ignore overruns too (for real raw support).
1922 		 */
1923 		if (termios->c_iflag & IGNPAR)
1924 			port->ignore_status_mask |= UART011_DR_OE;
1925 	}
1926 
1927 	/*
1928 	 * Ignore all characters if CREAD is not set.
1929 	 */
1930 	if ((termios->c_cflag & CREAD) == 0)
1931 		port->ignore_status_mask |= UART_DUMMY_DR_RX;
1932 }
1933 
1934 static void
1935 pl011_set_termios(struct uart_port *port, struct ktermios *termios,
1936 		     struct ktermios *old)
1937 {
1938 	struct uart_amba_port *uap =
1939 	    container_of(port, struct uart_amba_port, port);
1940 	unsigned int lcr_h, old_cr;
1941 	unsigned long flags;
1942 	unsigned int baud, quot, clkdiv;
1943 
1944 	if (uap->vendor->oversampling)
1945 		clkdiv = 8;
1946 	else
1947 		clkdiv = 16;
1948 
1949 	/*
1950 	 * Ask the core to calculate the divisor for us.
1951 	 */
1952 	baud = uart_get_baud_rate(port, termios, old, 0,
1953 				  port->uartclk / clkdiv);
1954 #ifdef CONFIG_DMA_ENGINE
1955 	/*
1956 	 * Adjust RX DMA polling rate with baud rate if not specified.
1957 	 */
1958 	if (uap->dmarx.auto_poll_rate)
1959 		uap->dmarx.poll_rate = DIV_ROUND_UP(10000000, baud);
1960 #endif
1961 
1962 	if (baud > port->uartclk/16)
1963 		quot = DIV_ROUND_CLOSEST(port->uartclk * 8, baud);
1964 	else
1965 		quot = DIV_ROUND_CLOSEST(port->uartclk * 4, baud);
1966 
1967 	switch (termios->c_cflag & CSIZE) {
1968 	case CS5:
1969 		lcr_h = UART01x_LCRH_WLEN_5;
1970 		break;
1971 	case CS6:
1972 		lcr_h = UART01x_LCRH_WLEN_6;
1973 		break;
1974 	case CS7:
1975 		lcr_h = UART01x_LCRH_WLEN_7;
1976 		break;
1977 	default: // CS8
1978 		lcr_h = UART01x_LCRH_WLEN_8;
1979 		break;
1980 	}
1981 	if (termios->c_cflag & CSTOPB)
1982 		lcr_h |= UART01x_LCRH_STP2;
1983 	if (termios->c_cflag & PARENB) {
1984 		lcr_h |= UART01x_LCRH_PEN;
1985 		if (!(termios->c_cflag & PARODD))
1986 			lcr_h |= UART01x_LCRH_EPS;
1987 		if (termios->c_cflag & CMSPAR)
1988 			lcr_h |= UART011_LCRH_SPS;
1989 	}
1990 	if (uap->fifosize > 1)
1991 		lcr_h |= UART01x_LCRH_FEN;
1992 
1993 	spin_lock_irqsave(&port->lock, flags);
1994 
1995 	/*
1996 	 * Update the per-port timeout.
1997 	 */
1998 	uart_update_timeout(port, termios->c_cflag, baud);
1999 
2000 	pl011_setup_status_masks(port, termios);
2001 
2002 	if (UART_ENABLE_MS(port, termios->c_cflag))
2003 		pl011_enable_ms(port);
2004 
2005 	/* first, disable everything */
2006 	old_cr = pl011_read(uap, REG_CR);
2007 	pl011_write(0, uap, REG_CR);
2008 
2009 	if (termios->c_cflag & CRTSCTS) {
2010 		if (old_cr & UART011_CR_RTS)
2011 			old_cr |= UART011_CR_RTSEN;
2012 
2013 		old_cr |= UART011_CR_CTSEN;
2014 		port->status |= UPSTAT_AUTOCTS | UPSTAT_AUTORTS;
2015 	} else {
2016 		old_cr &= ~(UART011_CR_CTSEN | UART011_CR_RTSEN);
2017 		port->status &= ~(UPSTAT_AUTOCTS | UPSTAT_AUTORTS);
2018 	}
2019 
2020 	if (uap->vendor->oversampling) {
2021 		if (baud > port->uartclk / 16)
2022 			old_cr |= ST_UART011_CR_OVSFACT;
2023 		else
2024 			old_cr &= ~ST_UART011_CR_OVSFACT;
2025 	}
2026 
2027 	/*
2028 	 * Workaround for the ST Micro oversampling variants to
2029 	 * increase the bitrate slightly, by lowering the divisor,
2030 	 * to avoid delayed sampling of start bit at high speeds,
2031 	 * else we see data corruption.
2032 	 */
2033 	if (uap->vendor->oversampling) {
2034 		if ((baud >= 3000000) && (baud < 3250000) && (quot > 1))
2035 			quot -= 1;
2036 		else if ((baud > 3250000) && (quot > 2))
2037 			quot -= 2;
2038 	}
2039 	/* Set baud rate */
2040 	pl011_write(quot & 0x3f, uap, REG_FBRD);
2041 	pl011_write(quot >> 6, uap, REG_IBRD);
2042 
2043 	/*
2044 	 * ----------v----------v----------v----------v-----
2045 	 * NOTE: REG_LCRH_TX and REG_LCRH_RX MUST BE WRITTEN AFTER
2046 	 * REG_FBRD & REG_IBRD.
2047 	 * ----------^----------^----------^----------^-----
2048 	 */
2049 	pl011_write_lcr_h(uap, lcr_h);
2050 	pl011_write(old_cr, uap, REG_CR);
2051 
2052 	spin_unlock_irqrestore(&port->lock, flags);
2053 }
2054 
2055 static void
2056 sbsa_uart_set_termios(struct uart_port *port, struct ktermios *termios,
2057 		      struct ktermios *old)
2058 {
2059 	struct uart_amba_port *uap =
2060 	    container_of(port, struct uart_amba_port, port);
2061 	unsigned long flags;
2062 
2063 	tty_termios_encode_baud_rate(termios, uap->fixed_baud, uap->fixed_baud);
2064 
2065 	/* The SBSA UART only supports 8n1 without hardware flow control. */
2066 	termios->c_cflag &= ~(CSIZE | CSTOPB | PARENB | PARODD);
2067 	termios->c_cflag &= ~(CMSPAR | CRTSCTS);
2068 	termios->c_cflag |= CS8 | CLOCAL;
2069 
2070 	spin_lock_irqsave(&port->lock, flags);
2071 	uart_update_timeout(port, CS8, uap->fixed_baud);
2072 	pl011_setup_status_masks(port, termios);
2073 	spin_unlock_irqrestore(&port->lock, flags);
2074 }
2075 
2076 static const char *pl011_type(struct uart_port *port)
2077 {
2078 	struct uart_amba_port *uap =
2079 	    container_of(port, struct uart_amba_port, port);
2080 	return uap->port.type == PORT_AMBA ? uap->type : NULL;
2081 }
2082 
2083 /*
2084  * Release the memory region(s) being used by 'port'
2085  */
2086 static void pl011_release_port(struct uart_port *port)
2087 {
2088 	release_mem_region(port->mapbase, SZ_4K);
2089 }
2090 
2091 /*
2092  * Request the memory region(s) being used by 'port'
2093  */
2094 static int pl011_request_port(struct uart_port *port)
2095 {
2096 	return request_mem_region(port->mapbase, SZ_4K, "uart-pl011")
2097 			!= NULL ? 0 : -EBUSY;
2098 }
2099 
2100 /*
2101  * Configure/autoconfigure the port.
2102  */
2103 static void pl011_config_port(struct uart_port *port, int flags)
2104 {
2105 	if (flags & UART_CONFIG_TYPE) {
2106 		port->type = PORT_AMBA;
2107 		pl011_request_port(port);
2108 	}
2109 }
2110 
2111 /*
2112  * verify the new serial_struct (for TIOCSSERIAL).
2113  */
2114 static int pl011_verify_port(struct uart_port *port, struct serial_struct *ser)
2115 {
2116 	int ret = 0;
2117 	if (ser->type != PORT_UNKNOWN && ser->type != PORT_AMBA)
2118 		ret = -EINVAL;
2119 	if (ser->irq < 0 || ser->irq >= nr_irqs)
2120 		ret = -EINVAL;
2121 	if (ser->baud_base < 9600)
2122 		ret = -EINVAL;
2123 	return ret;
2124 }
2125 
2126 static const struct uart_ops amba_pl011_pops = {
2127 	.tx_empty	= pl011_tx_empty,
2128 	.set_mctrl	= pl011_set_mctrl,
2129 	.get_mctrl	= pl011_get_mctrl,
2130 	.stop_tx	= pl011_stop_tx,
2131 	.start_tx	= pl011_start_tx,
2132 	.stop_rx	= pl011_stop_rx,
2133 	.enable_ms	= pl011_enable_ms,
2134 	.break_ctl	= pl011_break_ctl,
2135 	.startup	= pl011_startup,
2136 	.shutdown	= pl011_shutdown,
2137 	.flush_buffer	= pl011_dma_flush_buffer,
2138 	.set_termios	= pl011_set_termios,
2139 	.type		= pl011_type,
2140 	.release_port	= pl011_release_port,
2141 	.request_port	= pl011_request_port,
2142 	.config_port	= pl011_config_port,
2143 	.verify_port	= pl011_verify_port,
2144 #ifdef CONFIG_CONSOLE_POLL
2145 	.poll_init     = pl011_hwinit,
2146 	.poll_get_char = pl011_get_poll_char,
2147 	.poll_put_char = pl011_put_poll_char,
2148 #endif
2149 };
2150 
2151 static void sbsa_uart_set_mctrl(struct uart_port *port, unsigned int mctrl)
2152 {
2153 }
2154 
2155 static unsigned int sbsa_uart_get_mctrl(struct uart_port *port)
2156 {
2157 	return 0;
2158 }
2159 
2160 static const struct uart_ops sbsa_uart_pops = {
2161 	.tx_empty	= pl011_tx_empty,
2162 	.set_mctrl	= sbsa_uart_set_mctrl,
2163 	.get_mctrl	= sbsa_uart_get_mctrl,
2164 	.stop_tx	= pl011_stop_tx,
2165 	.start_tx	= pl011_start_tx,
2166 	.stop_rx	= pl011_stop_rx,
2167 	.startup	= sbsa_uart_startup,
2168 	.shutdown	= sbsa_uart_shutdown,
2169 	.set_termios	= sbsa_uart_set_termios,
2170 	.type		= pl011_type,
2171 	.release_port	= pl011_release_port,
2172 	.request_port	= pl011_request_port,
2173 	.config_port	= pl011_config_port,
2174 	.verify_port	= pl011_verify_port,
2175 #ifdef CONFIG_CONSOLE_POLL
2176 	.poll_init     = pl011_hwinit,
2177 	.poll_get_char = pl011_get_poll_char,
2178 	.poll_put_char = pl011_put_poll_char,
2179 #endif
2180 };
2181 
2182 static struct uart_amba_port *amba_ports[UART_NR];
2183 
2184 #ifdef CONFIG_SERIAL_AMBA_PL011_CONSOLE
2185 
2186 static void pl011_console_putchar(struct uart_port *port, int ch)
2187 {
2188 	struct uart_amba_port *uap =
2189 	    container_of(port, struct uart_amba_port, port);
2190 
2191 	while (pl011_read(uap, REG_FR) & UART01x_FR_TXFF)
2192 		cpu_relax();
2193 	pl011_write(ch, uap, REG_DR);
2194 }
2195 
2196 static void
2197 pl011_console_write(struct console *co, const char *s, unsigned int count)
2198 {
2199 	struct uart_amba_port *uap = amba_ports[co->index];
2200 	unsigned int old_cr = 0, new_cr;
2201 	unsigned long flags;
2202 	int locked = 1;
2203 
2204 	clk_enable(uap->clk);
2205 
2206 	local_irq_save(flags);
2207 	if (uap->port.sysrq)
2208 		locked = 0;
2209 	else if (oops_in_progress)
2210 		locked = spin_trylock(&uap->port.lock);
2211 	else
2212 		spin_lock(&uap->port.lock);
2213 
2214 	/*
2215 	 *	First save the CR then disable the interrupts
2216 	 */
2217 	if (!uap->vendor->always_enabled) {
2218 		old_cr = pl011_read(uap, REG_CR);
2219 		new_cr = old_cr & ~UART011_CR_CTSEN;
2220 		new_cr |= UART01x_CR_UARTEN | UART011_CR_TXE;
2221 		pl011_write(new_cr, uap, REG_CR);
2222 	}
2223 
2224 	uart_console_write(&uap->port, s, count, pl011_console_putchar);
2225 
2226 	/*
2227 	 *	Finally, wait for transmitter to become empty and restore the
2228 	 *	TCR. Allow feature register bits to be inverted to work around
2229 	 *	errata.
2230 	 */
2231 	while ((pl011_read(uap, REG_FR) ^ uap->vendor->inv_fr)
2232 						& uap->vendor->fr_busy)
2233 		cpu_relax();
2234 	if (!uap->vendor->always_enabled)
2235 		pl011_write(old_cr, uap, REG_CR);
2236 
2237 	if (locked)
2238 		spin_unlock(&uap->port.lock);
2239 	local_irq_restore(flags);
2240 
2241 	clk_disable(uap->clk);
2242 }
2243 
2244 static void __init
2245 pl011_console_get_options(struct uart_amba_port *uap, int *baud,
2246 			     int *parity, int *bits)
2247 {
2248 	if (pl011_read(uap, REG_CR) & UART01x_CR_UARTEN) {
2249 		unsigned int lcr_h, ibrd, fbrd;
2250 
2251 		lcr_h = pl011_read(uap, REG_LCRH_TX);
2252 
2253 		*parity = 'n';
2254 		if (lcr_h & UART01x_LCRH_PEN) {
2255 			if (lcr_h & UART01x_LCRH_EPS)
2256 				*parity = 'e';
2257 			else
2258 				*parity = 'o';
2259 		}
2260 
2261 		if ((lcr_h & 0x60) == UART01x_LCRH_WLEN_7)
2262 			*bits = 7;
2263 		else
2264 			*bits = 8;
2265 
2266 		ibrd = pl011_read(uap, REG_IBRD);
2267 		fbrd = pl011_read(uap, REG_FBRD);
2268 
2269 		*baud = uap->port.uartclk * 4 / (64 * ibrd + fbrd);
2270 
2271 		if (uap->vendor->oversampling) {
2272 			if (pl011_read(uap, REG_CR)
2273 				  & ST_UART011_CR_OVSFACT)
2274 				*baud *= 2;
2275 		}
2276 	}
2277 }
2278 
2279 static int __init pl011_console_setup(struct console *co, char *options)
2280 {
2281 	struct uart_amba_port *uap;
2282 	int baud = 38400;
2283 	int bits = 8;
2284 	int parity = 'n';
2285 	int flow = 'n';
2286 	int ret;
2287 
2288 	/*
2289 	 * Check whether an invalid uart number has been specified, and
2290 	 * if so, search for the first available port that does have
2291 	 * console support.
2292 	 */
2293 	if (co->index >= UART_NR)
2294 		co->index = 0;
2295 	uap = amba_ports[co->index];
2296 	if (!uap)
2297 		return -ENODEV;
2298 
2299 	/* Allow pins to be muxed in and configured */
2300 	pinctrl_pm_select_default_state(uap->port.dev);
2301 
2302 	ret = clk_prepare(uap->clk);
2303 	if (ret)
2304 		return ret;
2305 
2306 	if (dev_get_platdata(uap->port.dev)) {
2307 		struct amba_pl011_data *plat;
2308 
2309 		plat = dev_get_platdata(uap->port.dev);
2310 		if (plat->init)
2311 			plat->init();
2312 	}
2313 
2314 	uap->port.uartclk = clk_get_rate(uap->clk);
2315 
2316 	if (uap->vendor->fixed_options) {
2317 		baud = uap->fixed_baud;
2318 	} else {
2319 		if (options)
2320 			uart_parse_options(options,
2321 					   &baud, &parity, &bits, &flow);
2322 		else
2323 			pl011_console_get_options(uap, &baud, &parity, &bits);
2324 	}
2325 
2326 	return uart_set_options(&uap->port, co, baud, parity, bits, flow);
2327 }
2328 
2329 /**
2330  *	pl011_console_match - non-standard console matching
2331  *	@co:	  registering console
2332  *	@name:	  name from console command line
2333  *	@idx:	  index from console command line
2334  *	@options: ptr to option string from console command line
2335  *
2336  *	Only attempts to match console command lines of the form:
2337  *	    console=pl011,mmio|mmio32,<addr>[,<options>]
2338  *	    console=pl011,0x<addr>[,<options>]
2339  *	This form is used to register an initial earlycon boot console and
2340  *	replace it with the amba_console at pl011 driver init.
2341  *
2342  *	Performs console setup for a match (as required by interface)
2343  *	If no <options> are specified, then assume the h/w is already setup.
2344  *
2345  *	Returns 0 if console matches; otherwise non-zero to use default matching
2346  */
2347 static int __init pl011_console_match(struct console *co, char *name, int idx,
2348 				      char *options)
2349 {
2350 	unsigned char iotype;
2351 	resource_size_t addr;
2352 	int i;
2353 
2354 	/*
2355 	 * Systems affected by the Qualcomm Technologies QDF2400 E44 erratum
2356 	 * have a distinct console name, so make sure we check for that.
2357 	 * The actual implementation of the erratum occurs in the probe
2358 	 * function.
2359 	 */
2360 	if ((strcmp(name, "qdf2400_e44") != 0) && (strcmp(name, "pl011") != 0))
2361 		return -ENODEV;
2362 
2363 	if (uart_parse_earlycon(options, &iotype, &addr, &options))
2364 		return -ENODEV;
2365 
2366 	if (iotype != UPIO_MEM && iotype != UPIO_MEM32)
2367 		return -ENODEV;
2368 
2369 	/* try to match the port specified on the command line */
2370 	for (i = 0; i < ARRAY_SIZE(amba_ports); i++) {
2371 		struct uart_port *port;
2372 
2373 		if (!amba_ports[i])
2374 			continue;
2375 
2376 		port = &amba_ports[i]->port;
2377 
2378 		if (port->mapbase != addr)
2379 			continue;
2380 
2381 		co->index = i;
2382 		port->cons = co;
2383 		return pl011_console_setup(co, options);
2384 	}
2385 
2386 	return -ENODEV;
2387 }
2388 
2389 static struct uart_driver amba_reg;
2390 static struct console amba_console = {
2391 	.name		= "ttyAMA",
2392 	.write		= pl011_console_write,
2393 	.device		= uart_console_device,
2394 	.setup		= pl011_console_setup,
2395 	.match		= pl011_console_match,
2396 	.flags		= CON_PRINTBUFFER | CON_ANYTIME,
2397 	.index		= -1,
2398 	.data		= &amba_reg,
2399 };
2400 
2401 #define AMBA_CONSOLE	(&amba_console)
2402 
2403 static void qdf2400_e44_putc(struct uart_port *port, int c)
2404 {
2405 	while (readl(port->membase + UART01x_FR) & UART01x_FR_TXFF)
2406 		cpu_relax();
2407 	writel(c, port->membase + UART01x_DR);
2408 	while (!(readl(port->membase + UART01x_FR) & UART011_FR_TXFE))
2409 		cpu_relax();
2410 }
2411 
2412 static void qdf2400_e44_early_write(struct console *con, const char *s, unsigned n)
2413 {
2414 	struct earlycon_device *dev = con->data;
2415 
2416 	uart_console_write(&dev->port, s, n, qdf2400_e44_putc);
2417 }
2418 
2419 static void pl011_putc(struct uart_port *port, int c)
2420 {
2421 	while (readl(port->membase + UART01x_FR) & UART01x_FR_TXFF)
2422 		cpu_relax();
2423 	if (port->iotype == UPIO_MEM32)
2424 		writel(c, port->membase + UART01x_DR);
2425 	else
2426 		writeb(c, port->membase + UART01x_DR);
2427 	while (readl(port->membase + UART01x_FR) & UART01x_FR_BUSY)
2428 		cpu_relax();
2429 }
2430 
2431 static void pl011_early_write(struct console *con, const char *s, unsigned n)
2432 {
2433 	struct earlycon_device *dev = con->data;
2434 
2435 	uart_console_write(&dev->port, s, n, pl011_putc);
2436 }
2437 
2438 /*
2439  * On non-ACPI systems, earlycon is enabled by specifying
2440  * "earlycon=pl011,<address>" on the kernel command line.
2441  *
2442  * On ACPI ARM64 systems, an "early" console is enabled via the SPCR table,
2443  * by specifying only "earlycon" on the command line.  Because it requires
2444  * SPCR, the console starts after ACPI is parsed, which is later than a
2445  * traditional early console.
2446  *
2447  * To get the traditional early console that starts before ACPI is parsed,
2448  * specify the full "earlycon=pl011,<address>" option.
2449  */
2450 static int __init pl011_early_console_setup(struct earlycon_device *device,
2451 					    const char *opt)
2452 {
2453 	if (!device->port.membase)
2454 		return -ENODEV;
2455 
2456 	device->con->write = pl011_early_write;
2457 
2458 	return 0;
2459 }
2460 OF_EARLYCON_DECLARE(pl011, "arm,pl011", pl011_early_console_setup);
2461 OF_EARLYCON_DECLARE(pl011, "arm,sbsa-uart", pl011_early_console_setup);
2462 
2463 /*
2464  * On Qualcomm Datacenter Technologies QDF2400 SOCs affected by
2465  * Erratum 44, traditional earlycon can be enabled by specifying
2466  * "earlycon=qdf2400_e44,<address>".  Any options are ignored.
2467  *
2468  * Alternatively, you can just specify "earlycon", and the early console
2469  * will be enabled with the information from the SPCR table.  In this
2470  * case, the SPCR code will detect the need for the E44 work-around,
2471  * and set the console name to "qdf2400_e44".
2472  */
2473 static int __init
2474 qdf2400_e44_early_console_setup(struct earlycon_device *device,
2475 				const char *opt)
2476 {
2477 	if (!device->port.membase)
2478 		return -ENODEV;
2479 
2480 	device->con->write = qdf2400_e44_early_write;
2481 	return 0;
2482 }
2483 EARLYCON_DECLARE(qdf2400_e44, qdf2400_e44_early_console_setup);
2484 
2485 #else
2486 #define AMBA_CONSOLE	NULL
2487 #endif
2488 
2489 static struct uart_driver amba_reg = {
2490 	.owner			= THIS_MODULE,
2491 	.driver_name		= "ttyAMA",
2492 	.dev_name		= "ttyAMA",
2493 	.major			= SERIAL_AMBA_MAJOR,
2494 	.minor			= SERIAL_AMBA_MINOR,
2495 	.nr			= UART_NR,
2496 	.cons			= AMBA_CONSOLE,
2497 };
2498 
2499 static int pl011_probe_dt_alias(int index, struct device *dev)
2500 {
2501 	struct device_node *np;
2502 	static bool seen_dev_with_alias = false;
2503 	static bool seen_dev_without_alias = false;
2504 	int ret = index;
2505 
2506 	if (!IS_ENABLED(CONFIG_OF))
2507 		return ret;
2508 
2509 	np = dev->of_node;
2510 	if (!np)
2511 		return ret;
2512 
2513 	ret = of_alias_get_id(np, "serial");
2514 	if (ret < 0) {
2515 		seen_dev_without_alias = true;
2516 		ret = index;
2517 	} else {
2518 		seen_dev_with_alias = true;
2519 		if (ret >= ARRAY_SIZE(amba_ports) || amba_ports[ret] != NULL) {
2520 			dev_warn(dev, "requested serial port %d  not available.\n", ret);
2521 			ret = index;
2522 		}
2523 	}
2524 
2525 	if (seen_dev_with_alias && seen_dev_without_alias)
2526 		dev_warn(dev, "aliased and non-aliased serial devices found in device tree. Serial port enumeration may be unpredictable.\n");
2527 
2528 	return ret;
2529 }
2530 
2531 /* unregisters the driver also if no more ports are left */
2532 static void pl011_unregister_port(struct uart_amba_port *uap)
2533 {
2534 	int i;
2535 	bool busy = false;
2536 
2537 	for (i = 0; i < ARRAY_SIZE(amba_ports); i++) {
2538 		if (amba_ports[i] == uap)
2539 			amba_ports[i] = NULL;
2540 		else if (amba_ports[i])
2541 			busy = true;
2542 	}
2543 	pl011_dma_remove(uap);
2544 	if (!busy)
2545 		uart_unregister_driver(&amba_reg);
2546 }
2547 
2548 static int pl011_find_free_port(void)
2549 {
2550 	int i;
2551 
2552 	for (i = 0; i < ARRAY_SIZE(amba_ports); i++)
2553 		if (amba_ports[i] == NULL)
2554 			return i;
2555 
2556 	return -EBUSY;
2557 }
2558 
2559 static int pl011_setup_port(struct device *dev, struct uart_amba_port *uap,
2560 			    struct resource *mmiobase, int index)
2561 {
2562 	void __iomem *base;
2563 
2564 	base = devm_ioremap_resource(dev, mmiobase);
2565 	if (IS_ERR(base))
2566 		return PTR_ERR(base);
2567 
2568 	index = pl011_probe_dt_alias(index, dev);
2569 
2570 	uap->old_cr = 0;
2571 	uap->port.dev = dev;
2572 	uap->port.mapbase = mmiobase->start;
2573 	uap->port.membase = base;
2574 	uap->port.fifosize = uap->fifosize;
2575 	uap->port.has_sysrq = IS_ENABLED(CONFIG_SERIAL_AMBA_PL011_CONSOLE);
2576 	uap->port.flags = UPF_BOOT_AUTOCONF;
2577 	uap->port.line = index;
2578 
2579 	amba_ports[index] = uap;
2580 
2581 	return 0;
2582 }
2583 
2584 static int pl011_register_port(struct uart_amba_port *uap)
2585 {
2586 	int ret;
2587 
2588 	/* Ensure interrupts from this UART are masked and cleared */
2589 	pl011_write(0, uap, REG_IMSC);
2590 	pl011_write(0xffff, uap, REG_ICR);
2591 
2592 	if (!amba_reg.state) {
2593 		ret = uart_register_driver(&amba_reg);
2594 		if (ret < 0) {
2595 			dev_err(uap->port.dev,
2596 				"Failed to register AMBA-PL011 driver\n");
2597 			return ret;
2598 		}
2599 	}
2600 
2601 	ret = uart_add_one_port(&amba_reg, &uap->port);
2602 	if (ret)
2603 		pl011_unregister_port(uap);
2604 
2605 	return ret;
2606 }
2607 
2608 static int pl011_probe(struct amba_device *dev, const struct amba_id *id)
2609 {
2610 	struct uart_amba_port *uap;
2611 	struct vendor_data *vendor = id->data;
2612 	int portnr, ret;
2613 
2614 	portnr = pl011_find_free_port();
2615 	if (portnr < 0)
2616 		return portnr;
2617 
2618 	uap = devm_kzalloc(&dev->dev, sizeof(struct uart_amba_port),
2619 			   GFP_KERNEL);
2620 	if (!uap)
2621 		return -ENOMEM;
2622 
2623 	uap->clk = devm_clk_get(&dev->dev, NULL);
2624 	if (IS_ERR(uap->clk))
2625 		return PTR_ERR(uap->clk);
2626 
2627 	uap->reg_offset = vendor->reg_offset;
2628 	uap->vendor = vendor;
2629 	uap->fifosize = vendor->get_fifosize(dev);
2630 	uap->port.iotype = vendor->access_32b ? UPIO_MEM32 : UPIO_MEM;
2631 	uap->port.irq = dev->irq[0];
2632 	uap->port.ops = &amba_pl011_pops;
2633 
2634 	snprintf(uap->type, sizeof(uap->type), "PL011 rev%u", amba_rev(dev));
2635 
2636 	ret = pl011_setup_port(&dev->dev, uap, &dev->res, portnr);
2637 	if (ret)
2638 		return ret;
2639 
2640 	amba_set_drvdata(dev, uap);
2641 
2642 	return pl011_register_port(uap);
2643 }
2644 
2645 static int pl011_remove(struct amba_device *dev)
2646 {
2647 	struct uart_amba_port *uap = amba_get_drvdata(dev);
2648 
2649 	uart_remove_one_port(&amba_reg, &uap->port);
2650 	pl011_unregister_port(uap);
2651 	return 0;
2652 }
2653 
2654 #ifdef CONFIG_PM_SLEEP
2655 static int pl011_suspend(struct device *dev)
2656 {
2657 	struct uart_amba_port *uap = dev_get_drvdata(dev);
2658 
2659 	if (!uap)
2660 		return -EINVAL;
2661 
2662 	return uart_suspend_port(&amba_reg, &uap->port);
2663 }
2664 
2665 static int pl011_resume(struct device *dev)
2666 {
2667 	struct uart_amba_port *uap = dev_get_drvdata(dev);
2668 
2669 	if (!uap)
2670 		return -EINVAL;
2671 
2672 	return uart_resume_port(&amba_reg, &uap->port);
2673 }
2674 #endif
2675 
2676 static SIMPLE_DEV_PM_OPS(pl011_dev_pm_ops, pl011_suspend, pl011_resume);
2677 
2678 static int sbsa_uart_probe(struct platform_device *pdev)
2679 {
2680 	struct uart_amba_port *uap;
2681 	struct resource *r;
2682 	int portnr, ret;
2683 	int baudrate;
2684 
2685 	/*
2686 	 * Check the mandatory baud rate parameter in the DT node early
2687 	 * so that we can easily exit with the error.
2688 	 */
2689 	if (pdev->dev.of_node) {
2690 		struct device_node *np = pdev->dev.of_node;
2691 
2692 		ret = of_property_read_u32(np, "current-speed", &baudrate);
2693 		if (ret)
2694 			return ret;
2695 	} else {
2696 		baudrate = 115200;
2697 	}
2698 
2699 	portnr = pl011_find_free_port();
2700 	if (portnr < 0)
2701 		return portnr;
2702 
2703 	uap = devm_kzalloc(&pdev->dev, sizeof(struct uart_amba_port),
2704 			   GFP_KERNEL);
2705 	if (!uap)
2706 		return -ENOMEM;
2707 
2708 	ret = platform_get_irq(pdev, 0);
2709 	if (ret < 0)
2710 		return ret;
2711 	uap->port.irq	= ret;
2712 
2713 #ifdef CONFIG_ACPI_SPCR_TABLE
2714 	if (qdf2400_e44_present) {
2715 		dev_info(&pdev->dev, "working around QDF2400 SoC erratum 44\n");
2716 		uap->vendor = &vendor_qdt_qdf2400_e44;
2717 	} else
2718 #endif
2719 		uap->vendor = &vendor_sbsa;
2720 
2721 	uap->reg_offset	= uap->vendor->reg_offset;
2722 	uap->fifosize	= 32;
2723 	uap->port.iotype = uap->vendor->access_32b ? UPIO_MEM32 : UPIO_MEM;
2724 	uap->port.ops	= &sbsa_uart_pops;
2725 	uap->fixed_baud = baudrate;
2726 
2727 	snprintf(uap->type, sizeof(uap->type), "SBSA");
2728 
2729 	r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2730 
2731 	ret = pl011_setup_port(&pdev->dev, uap, r, portnr);
2732 	if (ret)
2733 		return ret;
2734 
2735 	platform_set_drvdata(pdev, uap);
2736 
2737 	return pl011_register_port(uap);
2738 }
2739 
2740 static int sbsa_uart_remove(struct platform_device *pdev)
2741 {
2742 	struct uart_amba_port *uap = platform_get_drvdata(pdev);
2743 
2744 	uart_remove_one_port(&amba_reg, &uap->port);
2745 	pl011_unregister_port(uap);
2746 	return 0;
2747 }
2748 
2749 static const struct of_device_id sbsa_uart_of_match[] = {
2750 	{ .compatible = "arm,sbsa-uart", },
2751 	{},
2752 };
2753 MODULE_DEVICE_TABLE(of, sbsa_uart_of_match);
2754 
2755 static const struct acpi_device_id sbsa_uart_acpi_match[] = {
2756 	{ "ARMH0011", 0 },
2757 	{},
2758 };
2759 MODULE_DEVICE_TABLE(acpi, sbsa_uart_acpi_match);
2760 
2761 static struct platform_driver arm_sbsa_uart_platform_driver = {
2762 	.probe		= sbsa_uart_probe,
2763 	.remove		= sbsa_uart_remove,
2764 	.driver	= {
2765 		.name	= "sbsa-uart",
2766 		.pm	= &pl011_dev_pm_ops,
2767 		.of_match_table = of_match_ptr(sbsa_uart_of_match),
2768 		.acpi_match_table = ACPI_PTR(sbsa_uart_acpi_match),
2769 		.suppress_bind_attrs = IS_BUILTIN(CONFIG_SERIAL_AMBA_PL011),
2770 	},
2771 };
2772 
2773 static const struct amba_id pl011_ids[] = {
2774 	{
2775 		.id	= 0x00041011,
2776 		.mask	= 0x000fffff,
2777 		.data	= &vendor_arm,
2778 	},
2779 	{
2780 		.id	= 0x00380802,
2781 		.mask	= 0x00ffffff,
2782 		.data	= &vendor_st,
2783 	},
2784 	{
2785 		.id	= AMBA_LINUX_ID(0x00, 0x1, 0xffe),
2786 		.mask	= 0x00ffffff,
2787 		.data	= &vendor_zte,
2788 	},
2789 	{ 0, 0 },
2790 };
2791 
2792 MODULE_DEVICE_TABLE(amba, pl011_ids);
2793 
2794 static struct amba_driver pl011_driver = {
2795 	.drv = {
2796 		.name	= "uart-pl011",
2797 		.pm	= &pl011_dev_pm_ops,
2798 		.suppress_bind_attrs = IS_BUILTIN(CONFIG_SERIAL_AMBA_PL011),
2799 	},
2800 	.id_table	= pl011_ids,
2801 	.probe		= pl011_probe,
2802 	.remove		= pl011_remove,
2803 };
2804 
2805 static int __init pl011_init(void)
2806 {
2807 	printk(KERN_INFO "Serial: AMBA PL011 UART driver\n");
2808 
2809 	if (platform_driver_register(&arm_sbsa_uart_platform_driver))
2810 		pr_warn("could not register SBSA UART platform driver\n");
2811 	return amba_driver_register(&pl011_driver);
2812 }
2813 
2814 static void __exit pl011_exit(void)
2815 {
2816 	platform_driver_unregister(&arm_sbsa_uart_platform_driver);
2817 	amba_driver_unregister(&pl011_driver);
2818 }
2819 
2820 /*
2821  * While this can be a module, if builtin it's most likely the console
2822  * So let's leave module_exit but move module_init to an earlier place
2823  */
2824 arch_initcall(pl011_init);
2825 module_exit(pl011_exit);
2826 
2827 MODULE_AUTHOR("ARM Ltd/Deep Blue Solutions Ltd");
2828 MODULE_DESCRIPTION("ARM AMBA serial port driver");
2829 MODULE_LICENSE("GPL");
2830