xref: /openbmc/linux/drivers/tty/serial/amba-pl011.c (revision 97da55fc)
1 /*
2  *  Driver for AMBA serial ports
3  *
4  *  Based on drivers/char/serial.c, by Linus Torvalds, Theodore Ts'o.
5  *
6  *  Copyright 1999 ARM Limited
7  *  Copyright (C) 2000 Deep Blue Solutions Ltd.
8  *  Copyright (C) 2010 ST-Ericsson SA
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License as published by
12  * the Free Software Foundation; either version 2 of the License, or
13  * (at your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18  * GNU General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public License
21  * along with this program; if not, write to the Free Software
22  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
23  *
24  * This is a generic driver for ARM AMBA-type serial ports.  They
25  * have a lot of 16550-like features, but are not register compatible.
26  * Note that although they do have CTS, DCD and DSR inputs, they do
27  * not have an RI input, nor do they have DTR or RTS outputs.  If
28  * required, these have to be supplied via some other means (eg, GPIO)
29  * and hooked into this driver.
30  */
31 
32 #if defined(CONFIG_SERIAL_AMBA_PL011_CONSOLE) && defined(CONFIG_MAGIC_SYSRQ)
33 #define SUPPORT_SYSRQ
34 #endif
35 
36 #include <linux/module.h>
37 #include <linux/ioport.h>
38 #include <linux/init.h>
39 #include <linux/console.h>
40 #include <linux/sysrq.h>
41 #include <linux/device.h>
42 #include <linux/tty.h>
43 #include <linux/tty_flip.h>
44 #include <linux/serial_core.h>
45 #include <linux/serial.h>
46 #include <linux/amba/bus.h>
47 #include <linux/amba/serial.h>
48 #include <linux/clk.h>
49 #include <linux/slab.h>
50 #include <linux/dmaengine.h>
51 #include <linux/dma-mapping.h>
52 #include <linux/scatterlist.h>
53 #include <linux/delay.h>
54 #include <linux/types.h>
55 #include <linux/of.h>
56 #include <linux/of_device.h>
57 #include <linux/pinctrl/consumer.h>
58 #include <linux/sizes.h>
59 #include <linux/io.h>
60 
61 #define UART_NR			14
62 
63 #define SERIAL_AMBA_MAJOR	204
64 #define SERIAL_AMBA_MINOR	64
65 #define SERIAL_AMBA_NR		UART_NR
66 
67 #define AMBA_ISR_PASS_LIMIT	256
68 
69 #define UART_DR_ERROR		(UART011_DR_OE|UART011_DR_BE|UART011_DR_PE|UART011_DR_FE)
70 #define UART_DUMMY_DR_RX	(1 << 16)
71 
72 /* There is by now at least one vendor with differing details, so handle it */
73 struct vendor_data {
74 	unsigned int		ifls;
75 	unsigned int		fifosize;
76 	unsigned int		lcrh_tx;
77 	unsigned int		lcrh_rx;
78 	bool			oversampling;
79 	bool			dma_threshold;
80 	bool			cts_event_workaround;
81 };
82 
83 static struct vendor_data vendor_arm = {
84 	.ifls			= UART011_IFLS_RX4_8|UART011_IFLS_TX4_8,
85 	.fifosize		= 16,
86 	.lcrh_tx		= UART011_LCRH,
87 	.lcrh_rx		= UART011_LCRH,
88 	.oversampling		= false,
89 	.dma_threshold		= false,
90 	.cts_event_workaround	= false,
91 };
92 
93 static struct vendor_data vendor_st = {
94 	.ifls			= UART011_IFLS_RX_HALF|UART011_IFLS_TX_HALF,
95 	.fifosize		= 64,
96 	.lcrh_tx		= ST_UART011_LCRH_TX,
97 	.lcrh_rx		= ST_UART011_LCRH_RX,
98 	.oversampling		= true,
99 	.dma_threshold		= true,
100 	.cts_event_workaround	= true,
101 };
102 
103 static struct uart_amba_port *amba_ports[UART_NR];
104 
105 /* Deals with DMA transactions */
106 
107 struct pl011_sgbuf {
108 	struct scatterlist sg;
109 	char *buf;
110 };
111 
112 struct pl011_dmarx_data {
113 	struct dma_chan		*chan;
114 	struct completion	complete;
115 	bool			use_buf_b;
116 	struct pl011_sgbuf	sgbuf_a;
117 	struct pl011_sgbuf	sgbuf_b;
118 	dma_cookie_t		cookie;
119 	bool			running;
120 };
121 
122 struct pl011_dmatx_data {
123 	struct dma_chan		*chan;
124 	struct scatterlist	sg;
125 	char			*buf;
126 	bool			queued;
127 };
128 
129 /*
130  * We wrap our port structure around the generic uart_port.
131  */
132 struct uart_amba_port {
133 	struct uart_port	port;
134 	struct clk		*clk;
135 	/* Two optional pin states - default & sleep */
136 	struct pinctrl		*pinctrl;
137 	struct pinctrl_state	*pins_default;
138 	struct pinctrl_state	*pins_sleep;
139 	const struct vendor_data *vendor;
140 	unsigned int		dmacr;		/* dma control reg */
141 	unsigned int		im;		/* interrupt mask */
142 	unsigned int		old_status;
143 	unsigned int		fifosize;	/* vendor-specific */
144 	unsigned int		lcrh_tx;	/* vendor-specific */
145 	unsigned int		lcrh_rx;	/* vendor-specific */
146 	unsigned int		old_cr;		/* state during shutdown */
147 	bool			autorts;
148 	char			type[12];
149 #ifdef CONFIG_DMA_ENGINE
150 	/* DMA stuff */
151 	bool			using_tx_dma;
152 	bool			using_rx_dma;
153 	struct pl011_dmarx_data dmarx;
154 	struct pl011_dmatx_data	dmatx;
155 #endif
156 };
157 
158 /*
159  * Reads up to 256 characters from the FIFO or until it's empty and
160  * inserts them into the TTY layer. Returns the number of characters
161  * read from the FIFO.
162  */
163 static int pl011_fifo_to_tty(struct uart_amba_port *uap)
164 {
165 	u16 status, ch;
166 	unsigned int flag, max_count = 256;
167 	int fifotaken = 0;
168 
169 	while (max_count--) {
170 		status = readw(uap->port.membase + UART01x_FR);
171 		if (status & UART01x_FR_RXFE)
172 			break;
173 
174 		/* Take chars from the FIFO and update status */
175 		ch = readw(uap->port.membase + UART01x_DR) |
176 			UART_DUMMY_DR_RX;
177 		flag = TTY_NORMAL;
178 		uap->port.icount.rx++;
179 		fifotaken++;
180 
181 		if (unlikely(ch & UART_DR_ERROR)) {
182 			if (ch & UART011_DR_BE) {
183 				ch &= ~(UART011_DR_FE | UART011_DR_PE);
184 				uap->port.icount.brk++;
185 				if (uart_handle_break(&uap->port))
186 					continue;
187 			} else if (ch & UART011_DR_PE)
188 				uap->port.icount.parity++;
189 			else if (ch & UART011_DR_FE)
190 				uap->port.icount.frame++;
191 			if (ch & UART011_DR_OE)
192 				uap->port.icount.overrun++;
193 
194 			ch &= uap->port.read_status_mask;
195 
196 			if (ch & UART011_DR_BE)
197 				flag = TTY_BREAK;
198 			else if (ch & UART011_DR_PE)
199 				flag = TTY_PARITY;
200 			else if (ch & UART011_DR_FE)
201 				flag = TTY_FRAME;
202 		}
203 
204 		if (uart_handle_sysrq_char(&uap->port, ch & 255))
205 			continue;
206 
207 		uart_insert_char(&uap->port, ch, UART011_DR_OE, ch, flag);
208 	}
209 
210 	return fifotaken;
211 }
212 
213 
214 /*
215  * All the DMA operation mode stuff goes inside this ifdef.
216  * This assumes that you have a generic DMA device interface,
217  * no custom DMA interfaces are supported.
218  */
219 #ifdef CONFIG_DMA_ENGINE
220 
221 #define PL011_DMA_BUFFER_SIZE PAGE_SIZE
222 
223 static int pl011_sgbuf_init(struct dma_chan *chan, struct pl011_sgbuf *sg,
224 	enum dma_data_direction dir)
225 {
226 	sg->buf = kmalloc(PL011_DMA_BUFFER_SIZE, GFP_KERNEL);
227 	if (!sg->buf)
228 		return -ENOMEM;
229 
230 	sg_init_one(&sg->sg, sg->buf, PL011_DMA_BUFFER_SIZE);
231 
232 	if (dma_map_sg(chan->device->dev, &sg->sg, 1, dir) != 1) {
233 		kfree(sg->buf);
234 		return -EINVAL;
235 	}
236 	return 0;
237 }
238 
239 static void pl011_sgbuf_free(struct dma_chan *chan, struct pl011_sgbuf *sg,
240 	enum dma_data_direction dir)
241 {
242 	if (sg->buf) {
243 		dma_unmap_sg(chan->device->dev, &sg->sg, 1, dir);
244 		kfree(sg->buf);
245 	}
246 }
247 
248 static void pl011_dma_probe_initcall(struct uart_amba_port *uap)
249 {
250 	/* DMA is the sole user of the platform data right now */
251 	struct amba_pl011_data *plat = uap->port.dev->platform_data;
252 	struct dma_slave_config tx_conf = {
253 		.dst_addr = uap->port.mapbase + UART01x_DR,
254 		.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
255 		.direction = DMA_MEM_TO_DEV,
256 		.dst_maxburst = uap->fifosize >> 1,
257 		.device_fc = false,
258 	};
259 	struct dma_chan *chan;
260 	dma_cap_mask_t mask;
261 
262 	/* We need platform data */
263 	if (!plat || !plat->dma_filter) {
264 		dev_info(uap->port.dev, "no DMA platform data\n");
265 		return;
266 	}
267 
268 	/* Try to acquire a generic DMA engine slave TX channel */
269 	dma_cap_zero(mask);
270 	dma_cap_set(DMA_SLAVE, mask);
271 
272 	chan = dma_request_channel(mask, plat->dma_filter, plat->dma_tx_param);
273 	if (!chan) {
274 		dev_err(uap->port.dev, "no TX DMA channel!\n");
275 		return;
276 	}
277 
278 	dmaengine_slave_config(chan, &tx_conf);
279 	uap->dmatx.chan = chan;
280 
281 	dev_info(uap->port.dev, "DMA channel TX %s\n",
282 		 dma_chan_name(uap->dmatx.chan));
283 
284 	/* Optionally make use of an RX channel as well */
285 	if (plat->dma_rx_param) {
286 		struct dma_slave_config rx_conf = {
287 			.src_addr = uap->port.mapbase + UART01x_DR,
288 			.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
289 			.direction = DMA_DEV_TO_MEM,
290 			.src_maxburst = uap->fifosize >> 1,
291 			.device_fc = false,
292 		};
293 
294 		chan = dma_request_channel(mask, plat->dma_filter, plat->dma_rx_param);
295 		if (!chan) {
296 			dev_err(uap->port.dev, "no RX DMA channel!\n");
297 			return;
298 		}
299 
300 		dmaengine_slave_config(chan, &rx_conf);
301 		uap->dmarx.chan = chan;
302 
303 		dev_info(uap->port.dev, "DMA channel RX %s\n",
304 			 dma_chan_name(uap->dmarx.chan));
305 	}
306 }
307 
308 #ifndef MODULE
309 /*
310  * Stack up the UARTs and let the above initcall be done at device
311  * initcall time, because the serial driver is called as an arch
312  * initcall, and at this time the DMA subsystem is not yet registered.
313  * At this point the driver will switch over to using DMA where desired.
314  */
315 struct dma_uap {
316 	struct list_head node;
317 	struct uart_amba_port *uap;
318 };
319 
320 static LIST_HEAD(pl011_dma_uarts);
321 
322 static int __init pl011_dma_initcall(void)
323 {
324 	struct list_head *node, *tmp;
325 
326 	list_for_each_safe(node, tmp, &pl011_dma_uarts) {
327 		struct dma_uap *dmau = list_entry(node, struct dma_uap, node);
328 		pl011_dma_probe_initcall(dmau->uap);
329 		list_del(node);
330 		kfree(dmau);
331 	}
332 	return 0;
333 }
334 
335 device_initcall(pl011_dma_initcall);
336 
337 static void pl011_dma_probe(struct uart_amba_port *uap)
338 {
339 	struct dma_uap *dmau = kzalloc(sizeof(struct dma_uap), GFP_KERNEL);
340 	if (dmau) {
341 		dmau->uap = uap;
342 		list_add_tail(&dmau->node, &pl011_dma_uarts);
343 	}
344 }
345 #else
346 static void pl011_dma_probe(struct uart_amba_port *uap)
347 {
348 	pl011_dma_probe_initcall(uap);
349 }
350 #endif
351 
352 static void pl011_dma_remove(struct uart_amba_port *uap)
353 {
354 	/* TODO: remove the initcall if it has not yet executed */
355 	if (uap->dmatx.chan)
356 		dma_release_channel(uap->dmatx.chan);
357 	if (uap->dmarx.chan)
358 		dma_release_channel(uap->dmarx.chan);
359 }
360 
361 /* Forward declare this for the refill routine */
362 static int pl011_dma_tx_refill(struct uart_amba_port *uap);
363 
364 /*
365  * The current DMA TX buffer has been sent.
366  * Try to queue up another DMA buffer.
367  */
368 static void pl011_dma_tx_callback(void *data)
369 {
370 	struct uart_amba_port *uap = data;
371 	struct pl011_dmatx_data *dmatx = &uap->dmatx;
372 	unsigned long flags;
373 	u16 dmacr;
374 
375 	spin_lock_irqsave(&uap->port.lock, flags);
376 	if (uap->dmatx.queued)
377 		dma_unmap_sg(dmatx->chan->device->dev, &dmatx->sg, 1,
378 			     DMA_TO_DEVICE);
379 
380 	dmacr = uap->dmacr;
381 	uap->dmacr = dmacr & ~UART011_TXDMAE;
382 	writew(uap->dmacr, uap->port.membase + UART011_DMACR);
383 
384 	/*
385 	 * If TX DMA was disabled, it means that we've stopped the DMA for
386 	 * some reason (eg, XOFF received, or we want to send an X-char.)
387 	 *
388 	 * Note: we need to be careful here of a potential race between DMA
389 	 * and the rest of the driver - if the driver disables TX DMA while
390 	 * a TX buffer completing, we must update the tx queued status to
391 	 * get further refills (hence we check dmacr).
392 	 */
393 	if (!(dmacr & UART011_TXDMAE) || uart_tx_stopped(&uap->port) ||
394 	    uart_circ_empty(&uap->port.state->xmit)) {
395 		uap->dmatx.queued = false;
396 		spin_unlock_irqrestore(&uap->port.lock, flags);
397 		return;
398 	}
399 
400 	if (pl011_dma_tx_refill(uap) <= 0) {
401 		/*
402 		 * We didn't queue a DMA buffer for some reason, but we
403 		 * have data pending to be sent.  Re-enable the TX IRQ.
404 		 */
405 		uap->im |= UART011_TXIM;
406 		writew(uap->im, uap->port.membase + UART011_IMSC);
407 	}
408 	spin_unlock_irqrestore(&uap->port.lock, flags);
409 }
410 
411 /*
412  * Try to refill the TX DMA buffer.
413  * Locking: called with port lock held and IRQs disabled.
414  * Returns:
415  *   1 if we queued up a TX DMA buffer.
416  *   0 if we didn't want to handle this by DMA
417  *  <0 on error
418  */
419 static int pl011_dma_tx_refill(struct uart_amba_port *uap)
420 {
421 	struct pl011_dmatx_data *dmatx = &uap->dmatx;
422 	struct dma_chan *chan = dmatx->chan;
423 	struct dma_device *dma_dev = chan->device;
424 	struct dma_async_tx_descriptor *desc;
425 	struct circ_buf *xmit = &uap->port.state->xmit;
426 	unsigned int count;
427 
428 	/*
429 	 * Try to avoid the overhead involved in using DMA if the
430 	 * transaction fits in the first half of the FIFO, by using
431 	 * the standard interrupt handling.  This ensures that we
432 	 * issue a uart_write_wakeup() at the appropriate time.
433 	 */
434 	count = uart_circ_chars_pending(xmit);
435 	if (count < (uap->fifosize >> 1)) {
436 		uap->dmatx.queued = false;
437 		return 0;
438 	}
439 
440 	/*
441 	 * Bodge: don't send the last character by DMA, as this
442 	 * will prevent XON from notifying us to restart DMA.
443 	 */
444 	count -= 1;
445 
446 	/* Else proceed to copy the TX chars to the DMA buffer and fire DMA */
447 	if (count > PL011_DMA_BUFFER_SIZE)
448 		count = PL011_DMA_BUFFER_SIZE;
449 
450 	if (xmit->tail < xmit->head)
451 		memcpy(&dmatx->buf[0], &xmit->buf[xmit->tail], count);
452 	else {
453 		size_t first = UART_XMIT_SIZE - xmit->tail;
454 		size_t second = xmit->head;
455 
456 		memcpy(&dmatx->buf[0], &xmit->buf[xmit->tail], first);
457 		if (second)
458 			memcpy(&dmatx->buf[first], &xmit->buf[0], second);
459 	}
460 
461 	dmatx->sg.length = count;
462 
463 	if (dma_map_sg(dma_dev->dev, &dmatx->sg, 1, DMA_TO_DEVICE) != 1) {
464 		uap->dmatx.queued = false;
465 		dev_dbg(uap->port.dev, "unable to map TX DMA\n");
466 		return -EBUSY;
467 	}
468 
469 	desc = dmaengine_prep_slave_sg(chan, &dmatx->sg, 1, DMA_MEM_TO_DEV,
470 					     DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
471 	if (!desc) {
472 		dma_unmap_sg(dma_dev->dev, &dmatx->sg, 1, DMA_TO_DEVICE);
473 		uap->dmatx.queued = false;
474 		/*
475 		 * If DMA cannot be used right now, we complete this
476 		 * transaction via IRQ and let the TTY layer retry.
477 		 */
478 		dev_dbg(uap->port.dev, "TX DMA busy\n");
479 		return -EBUSY;
480 	}
481 
482 	/* Some data to go along to the callback */
483 	desc->callback = pl011_dma_tx_callback;
484 	desc->callback_param = uap;
485 
486 	/* All errors should happen at prepare time */
487 	dmaengine_submit(desc);
488 
489 	/* Fire the DMA transaction */
490 	dma_dev->device_issue_pending(chan);
491 
492 	uap->dmacr |= UART011_TXDMAE;
493 	writew(uap->dmacr, uap->port.membase + UART011_DMACR);
494 	uap->dmatx.queued = true;
495 
496 	/*
497 	 * Now we know that DMA will fire, so advance the ring buffer
498 	 * with the stuff we just dispatched.
499 	 */
500 	xmit->tail = (xmit->tail + count) & (UART_XMIT_SIZE - 1);
501 	uap->port.icount.tx += count;
502 
503 	if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
504 		uart_write_wakeup(&uap->port);
505 
506 	return 1;
507 }
508 
509 /*
510  * We received a transmit interrupt without a pending X-char but with
511  * pending characters.
512  * Locking: called with port lock held and IRQs disabled.
513  * Returns:
514  *   false if we want to use PIO to transmit
515  *   true if we queued a DMA buffer
516  */
517 static bool pl011_dma_tx_irq(struct uart_amba_port *uap)
518 {
519 	if (!uap->using_tx_dma)
520 		return false;
521 
522 	/*
523 	 * If we already have a TX buffer queued, but received a
524 	 * TX interrupt, it will be because we've just sent an X-char.
525 	 * Ensure the TX DMA is enabled and the TX IRQ is disabled.
526 	 */
527 	if (uap->dmatx.queued) {
528 		uap->dmacr |= UART011_TXDMAE;
529 		writew(uap->dmacr, uap->port.membase + UART011_DMACR);
530 		uap->im &= ~UART011_TXIM;
531 		writew(uap->im, uap->port.membase + UART011_IMSC);
532 		return true;
533 	}
534 
535 	/*
536 	 * We don't have a TX buffer queued, so try to queue one.
537 	 * If we successfully queued a buffer, mask the TX IRQ.
538 	 */
539 	if (pl011_dma_tx_refill(uap) > 0) {
540 		uap->im &= ~UART011_TXIM;
541 		writew(uap->im, uap->port.membase + UART011_IMSC);
542 		return true;
543 	}
544 	return false;
545 }
546 
547 /*
548  * Stop the DMA transmit (eg, due to received XOFF).
549  * Locking: called with port lock held and IRQs disabled.
550  */
551 static inline void pl011_dma_tx_stop(struct uart_amba_port *uap)
552 {
553 	if (uap->dmatx.queued) {
554 		uap->dmacr &= ~UART011_TXDMAE;
555 		writew(uap->dmacr, uap->port.membase + UART011_DMACR);
556 	}
557 }
558 
559 /*
560  * Try to start a DMA transmit, or in the case of an XON/OFF
561  * character queued for send, try to get that character out ASAP.
562  * Locking: called with port lock held and IRQs disabled.
563  * Returns:
564  *   false if we want the TX IRQ to be enabled
565  *   true if we have a buffer queued
566  */
567 static inline bool pl011_dma_tx_start(struct uart_amba_port *uap)
568 {
569 	u16 dmacr;
570 
571 	if (!uap->using_tx_dma)
572 		return false;
573 
574 	if (!uap->port.x_char) {
575 		/* no X-char, try to push chars out in DMA mode */
576 		bool ret = true;
577 
578 		if (!uap->dmatx.queued) {
579 			if (pl011_dma_tx_refill(uap) > 0) {
580 				uap->im &= ~UART011_TXIM;
581 				ret = true;
582 			} else {
583 				uap->im |= UART011_TXIM;
584 				ret = false;
585 			}
586 			writew(uap->im, uap->port.membase + UART011_IMSC);
587 		} else if (!(uap->dmacr & UART011_TXDMAE)) {
588 			uap->dmacr |= UART011_TXDMAE;
589 			writew(uap->dmacr,
590 				       uap->port.membase + UART011_DMACR);
591 		}
592 		return ret;
593 	}
594 
595 	/*
596 	 * We have an X-char to send.  Disable DMA to prevent it loading
597 	 * the TX fifo, and then see if we can stuff it into the FIFO.
598 	 */
599 	dmacr = uap->dmacr;
600 	uap->dmacr &= ~UART011_TXDMAE;
601 	writew(uap->dmacr, uap->port.membase + UART011_DMACR);
602 
603 	if (readw(uap->port.membase + UART01x_FR) & UART01x_FR_TXFF) {
604 		/*
605 		 * No space in the FIFO, so enable the transmit interrupt
606 		 * so we know when there is space.  Note that once we've
607 		 * loaded the character, we should just re-enable DMA.
608 		 */
609 		return false;
610 	}
611 
612 	writew(uap->port.x_char, uap->port.membase + UART01x_DR);
613 	uap->port.icount.tx++;
614 	uap->port.x_char = 0;
615 
616 	/* Success - restore the DMA state */
617 	uap->dmacr = dmacr;
618 	writew(dmacr, uap->port.membase + UART011_DMACR);
619 
620 	return true;
621 }
622 
623 /*
624  * Flush the transmit buffer.
625  * Locking: called with port lock held and IRQs disabled.
626  */
627 static void pl011_dma_flush_buffer(struct uart_port *port)
628 {
629 	struct uart_amba_port *uap = (struct uart_amba_port *)port;
630 
631 	if (!uap->using_tx_dma)
632 		return;
633 
634 	/* Avoid deadlock with the DMA engine callback */
635 	spin_unlock(&uap->port.lock);
636 	dmaengine_terminate_all(uap->dmatx.chan);
637 	spin_lock(&uap->port.lock);
638 	if (uap->dmatx.queued) {
639 		dma_unmap_sg(uap->dmatx.chan->device->dev, &uap->dmatx.sg, 1,
640 			     DMA_TO_DEVICE);
641 		uap->dmatx.queued = false;
642 		uap->dmacr &= ~UART011_TXDMAE;
643 		writew(uap->dmacr, uap->port.membase + UART011_DMACR);
644 	}
645 }
646 
647 static void pl011_dma_rx_callback(void *data);
648 
649 static int pl011_dma_rx_trigger_dma(struct uart_amba_port *uap)
650 {
651 	struct dma_chan *rxchan = uap->dmarx.chan;
652 	struct pl011_dmarx_data *dmarx = &uap->dmarx;
653 	struct dma_async_tx_descriptor *desc;
654 	struct pl011_sgbuf *sgbuf;
655 
656 	if (!rxchan)
657 		return -EIO;
658 
659 	/* Start the RX DMA job */
660 	sgbuf = uap->dmarx.use_buf_b ?
661 		&uap->dmarx.sgbuf_b : &uap->dmarx.sgbuf_a;
662 	desc = dmaengine_prep_slave_sg(rxchan, &sgbuf->sg, 1,
663 					DMA_DEV_TO_MEM,
664 					DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
665 	/*
666 	 * If the DMA engine is busy and cannot prepare a
667 	 * channel, no big deal, the driver will fall back
668 	 * to interrupt mode as a result of this error code.
669 	 */
670 	if (!desc) {
671 		uap->dmarx.running = false;
672 		dmaengine_terminate_all(rxchan);
673 		return -EBUSY;
674 	}
675 
676 	/* Some data to go along to the callback */
677 	desc->callback = pl011_dma_rx_callback;
678 	desc->callback_param = uap;
679 	dmarx->cookie = dmaengine_submit(desc);
680 	dma_async_issue_pending(rxchan);
681 
682 	uap->dmacr |= UART011_RXDMAE;
683 	writew(uap->dmacr, uap->port.membase + UART011_DMACR);
684 	uap->dmarx.running = true;
685 
686 	uap->im &= ~UART011_RXIM;
687 	writew(uap->im, uap->port.membase + UART011_IMSC);
688 
689 	return 0;
690 }
691 
692 /*
693  * This is called when either the DMA job is complete, or
694  * the FIFO timeout interrupt occurred. This must be called
695  * with the port spinlock uap->port.lock held.
696  */
697 static void pl011_dma_rx_chars(struct uart_amba_port *uap,
698 			       u32 pending, bool use_buf_b,
699 			       bool readfifo)
700 {
701 	struct tty_port *port = &uap->port.state->port;
702 	struct pl011_sgbuf *sgbuf = use_buf_b ?
703 		&uap->dmarx.sgbuf_b : &uap->dmarx.sgbuf_a;
704 	struct device *dev = uap->dmarx.chan->device->dev;
705 	int dma_count = 0;
706 	u32 fifotaken = 0; /* only used for vdbg() */
707 
708 	/* Pick everything from the DMA first */
709 	if (pending) {
710 		/* Sync in buffer */
711 		dma_sync_sg_for_cpu(dev, &sgbuf->sg, 1, DMA_FROM_DEVICE);
712 
713 		/*
714 		 * First take all chars in the DMA pipe, then look in the FIFO.
715 		 * Note that tty_insert_flip_buf() tries to take as many chars
716 		 * as it can.
717 		 */
718 		dma_count = tty_insert_flip_string(port, sgbuf->buf, pending);
719 
720 		/* Return buffer to device */
721 		dma_sync_sg_for_device(dev, &sgbuf->sg, 1, DMA_FROM_DEVICE);
722 
723 		uap->port.icount.rx += dma_count;
724 		if (dma_count < pending)
725 			dev_warn(uap->port.dev,
726 				 "couldn't insert all characters (TTY is full?)\n");
727 	}
728 
729 	/*
730 	 * Only continue with trying to read the FIFO if all DMA chars have
731 	 * been taken first.
732 	 */
733 	if (dma_count == pending && readfifo) {
734 		/* Clear any error flags */
735 		writew(UART011_OEIS | UART011_BEIS | UART011_PEIS | UART011_FEIS,
736 		       uap->port.membase + UART011_ICR);
737 
738 		/*
739 		 * If we read all the DMA'd characters, and we had an
740 		 * incomplete buffer, that could be due to an rx error, or
741 		 * maybe we just timed out. Read any pending chars and check
742 		 * the error status.
743 		 *
744 		 * Error conditions will only occur in the FIFO, these will
745 		 * trigger an immediate interrupt and stop the DMA job, so we
746 		 * will always find the error in the FIFO, never in the DMA
747 		 * buffer.
748 		 */
749 		fifotaken = pl011_fifo_to_tty(uap);
750 	}
751 
752 	spin_unlock(&uap->port.lock);
753 	dev_vdbg(uap->port.dev,
754 		 "Took %d chars from DMA buffer and %d chars from the FIFO\n",
755 		 dma_count, fifotaken);
756 	tty_flip_buffer_push(port);
757 	spin_lock(&uap->port.lock);
758 }
759 
760 static void pl011_dma_rx_irq(struct uart_amba_port *uap)
761 {
762 	struct pl011_dmarx_data *dmarx = &uap->dmarx;
763 	struct dma_chan *rxchan = dmarx->chan;
764 	struct pl011_sgbuf *sgbuf = dmarx->use_buf_b ?
765 		&dmarx->sgbuf_b : &dmarx->sgbuf_a;
766 	size_t pending;
767 	struct dma_tx_state state;
768 	enum dma_status dmastat;
769 
770 	/*
771 	 * Pause the transfer so we can trust the current counter,
772 	 * do this before we pause the PL011 block, else we may
773 	 * overflow the FIFO.
774 	 */
775 	if (dmaengine_pause(rxchan))
776 		dev_err(uap->port.dev, "unable to pause DMA transfer\n");
777 	dmastat = rxchan->device->device_tx_status(rxchan,
778 						   dmarx->cookie, &state);
779 	if (dmastat != DMA_PAUSED)
780 		dev_err(uap->port.dev, "unable to pause DMA transfer\n");
781 
782 	/* Disable RX DMA - incoming data will wait in the FIFO */
783 	uap->dmacr &= ~UART011_RXDMAE;
784 	writew(uap->dmacr, uap->port.membase + UART011_DMACR);
785 	uap->dmarx.running = false;
786 
787 	pending = sgbuf->sg.length - state.residue;
788 	BUG_ON(pending > PL011_DMA_BUFFER_SIZE);
789 	/* Then we terminate the transfer - we now know our residue */
790 	dmaengine_terminate_all(rxchan);
791 
792 	/*
793 	 * This will take the chars we have so far and insert
794 	 * into the framework.
795 	 */
796 	pl011_dma_rx_chars(uap, pending, dmarx->use_buf_b, true);
797 
798 	/* Switch buffer & re-trigger DMA job */
799 	dmarx->use_buf_b = !dmarx->use_buf_b;
800 	if (pl011_dma_rx_trigger_dma(uap)) {
801 		dev_dbg(uap->port.dev, "could not retrigger RX DMA job "
802 			"fall back to interrupt mode\n");
803 		uap->im |= UART011_RXIM;
804 		writew(uap->im, uap->port.membase + UART011_IMSC);
805 	}
806 }
807 
808 static void pl011_dma_rx_callback(void *data)
809 {
810 	struct uart_amba_port *uap = data;
811 	struct pl011_dmarx_data *dmarx = &uap->dmarx;
812 	struct dma_chan *rxchan = dmarx->chan;
813 	bool lastbuf = dmarx->use_buf_b;
814 	struct pl011_sgbuf *sgbuf = dmarx->use_buf_b ?
815 		&dmarx->sgbuf_b : &dmarx->sgbuf_a;
816 	size_t pending;
817 	struct dma_tx_state state;
818 	int ret;
819 
820 	/*
821 	 * This completion interrupt occurs typically when the
822 	 * RX buffer is totally stuffed but no timeout has yet
823 	 * occurred. When that happens, we just want the RX
824 	 * routine to flush out the secondary DMA buffer while
825 	 * we immediately trigger the next DMA job.
826 	 */
827 	spin_lock_irq(&uap->port.lock);
828 	/*
829 	 * Rx data can be taken by the UART interrupts during
830 	 * the DMA irq handler. So we check the residue here.
831 	 */
832 	rxchan->device->device_tx_status(rxchan, dmarx->cookie, &state);
833 	pending = sgbuf->sg.length - state.residue;
834 	BUG_ON(pending > PL011_DMA_BUFFER_SIZE);
835 	/* Then we terminate the transfer - we now know our residue */
836 	dmaengine_terminate_all(rxchan);
837 
838 	uap->dmarx.running = false;
839 	dmarx->use_buf_b = !lastbuf;
840 	ret = pl011_dma_rx_trigger_dma(uap);
841 
842 	pl011_dma_rx_chars(uap, pending, lastbuf, false);
843 	spin_unlock_irq(&uap->port.lock);
844 	/*
845 	 * Do this check after we picked the DMA chars so we don't
846 	 * get some IRQ immediately from RX.
847 	 */
848 	if (ret) {
849 		dev_dbg(uap->port.dev, "could not retrigger RX DMA job "
850 			"fall back to interrupt mode\n");
851 		uap->im |= UART011_RXIM;
852 		writew(uap->im, uap->port.membase + UART011_IMSC);
853 	}
854 }
855 
856 /*
857  * Stop accepting received characters, when we're shutting down or
858  * suspending this port.
859  * Locking: called with port lock held and IRQs disabled.
860  */
861 static inline void pl011_dma_rx_stop(struct uart_amba_port *uap)
862 {
863 	/* FIXME.  Just disable the DMA enable */
864 	uap->dmacr &= ~UART011_RXDMAE;
865 	writew(uap->dmacr, uap->port.membase + UART011_DMACR);
866 }
867 
868 static void pl011_dma_startup(struct uart_amba_port *uap)
869 {
870 	int ret;
871 
872 	if (!uap->dmatx.chan)
873 		return;
874 
875 	uap->dmatx.buf = kmalloc(PL011_DMA_BUFFER_SIZE, GFP_KERNEL);
876 	if (!uap->dmatx.buf) {
877 		dev_err(uap->port.dev, "no memory for DMA TX buffer\n");
878 		uap->port.fifosize = uap->fifosize;
879 		return;
880 	}
881 
882 	sg_init_one(&uap->dmatx.sg, uap->dmatx.buf, PL011_DMA_BUFFER_SIZE);
883 
884 	/* The DMA buffer is now the FIFO the TTY subsystem can use */
885 	uap->port.fifosize = PL011_DMA_BUFFER_SIZE;
886 	uap->using_tx_dma = true;
887 
888 	if (!uap->dmarx.chan)
889 		goto skip_rx;
890 
891 	/* Allocate and map DMA RX buffers */
892 	ret = pl011_sgbuf_init(uap->dmarx.chan, &uap->dmarx.sgbuf_a,
893 			       DMA_FROM_DEVICE);
894 	if (ret) {
895 		dev_err(uap->port.dev, "failed to init DMA %s: %d\n",
896 			"RX buffer A", ret);
897 		goto skip_rx;
898 	}
899 
900 	ret = pl011_sgbuf_init(uap->dmarx.chan, &uap->dmarx.sgbuf_b,
901 			       DMA_FROM_DEVICE);
902 	if (ret) {
903 		dev_err(uap->port.dev, "failed to init DMA %s: %d\n",
904 			"RX buffer B", ret);
905 		pl011_sgbuf_free(uap->dmarx.chan, &uap->dmarx.sgbuf_a,
906 				 DMA_FROM_DEVICE);
907 		goto skip_rx;
908 	}
909 
910 	uap->using_rx_dma = true;
911 
912 skip_rx:
913 	/* Turn on DMA error (RX/TX will be enabled on demand) */
914 	uap->dmacr |= UART011_DMAONERR;
915 	writew(uap->dmacr, uap->port.membase + UART011_DMACR);
916 
917 	/*
918 	 * ST Micro variants has some specific dma burst threshold
919 	 * compensation. Set this to 16 bytes, so burst will only
920 	 * be issued above/below 16 bytes.
921 	 */
922 	if (uap->vendor->dma_threshold)
923 		writew(ST_UART011_DMAWM_RX_16 | ST_UART011_DMAWM_TX_16,
924 			       uap->port.membase + ST_UART011_DMAWM);
925 
926 	if (uap->using_rx_dma) {
927 		if (pl011_dma_rx_trigger_dma(uap))
928 			dev_dbg(uap->port.dev, "could not trigger initial "
929 				"RX DMA job, fall back to interrupt mode\n");
930 	}
931 }
932 
933 static void pl011_dma_shutdown(struct uart_amba_port *uap)
934 {
935 	if (!(uap->using_tx_dma || uap->using_rx_dma))
936 		return;
937 
938 	/* Disable RX and TX DMA */
939 	while (readw(uap->port.membase + UART01x_FR) & UART01x_FR_BUSY)
940 		barrier();
941 
942 	spin_lock_irq(&uap->port.lock);
943 	uap->dmacr &= ~(UART011_DMAONERR | UART011_RXDMAE | UART011_TXDMAE);
944 	writew(uap->dmacr, uap->port.membase + UART011_DMACR);
945 	spin_unlock_irq(&uap->port.lock);
946 
947 	if (uap->using_tx_dma) {
948 		/* In theory, this should already be done by pl011_dma_flush_buffer */
949 		dmaengine_terminate_all(uap->dmatx.chan);
950 		if (uap->dmatx.queued) {
951 			dma_unmap_sg(uap->dmatx.chan->device->dev, &uap->dmatx.sg, 1,
952 				     DMA_TO_DEVICE);
953 			uap->dmatx.queued = false;
954 		}
955 
956 		kfree(uap->dmatx.buf);
957 		uap->using_tx_dma = false;
958 	}
959 
960 	if (uap->using_rx_dma) {
961 		dmaengine_terminate_all(uap->dmarx.chan);
962 		/* Clean up the RX DMA */
963 		pl011_sgbuf_free(uap->dmarx.chan, &uap->dmarx.sgbuf_a, DMA_FROM_DEVICE);
964 		pl011_sgbuf_free(uap->dmarx.chan, &uap->dmarx.sgbuf_b, DMA_FROM_DEVICE);
965 		uap->using_rx_dma = false;
966 	}
967 }
968 
969 static inline bool pl011_dma_rx_available(struct uart_amba_port *uap)
970 {
971 	return uap->using_rx_dma;
972 }
973 
974 static inline bool pl011_dma_rx_running(struct uart_amba_port *uap)
975 {
976 	return uap->using_rx_dma && uap->dmarx.running;
977 }
978 
979 
980 #else
981 /* Blank functions if the DMA engine is not available */
982 static inline void pl011_dma_probe(struct uart_amba_port *uap)
983 {
984 }
985 
986 static inline void pl011_dma_remove(struct uart_amba_port *uap)
987 {
988 }
989 
990 static inline void pl011_dma_startup(struct uart_amba_port *uap)
991 {
992 }
993 
994 static inline void pl011_dma_shutdown(struct uart_amba_port *uap)
995 {
996 }
997 
998 static inline bool pl011_dma_tx_irq(struct uart_amba_port *uap)
999 {
1000 	return false;
1001 }
1002 
1003 static inline void pl011_dma_tx_stop(struct uart_amba_port *uap)
1004 {
1005 }
1006 
1007 static inline bool pl011_dma_tx_start(struct uart_amba_port *uap)
1008 {
1009 	return false;
1010 }
1011 
1012 static inline void pl011_dma_rx_irq(struct uart_amba_port *uap)
1013 {
1014 }
1015 
1016 static inline void pl011_dma_rx_stop(struct uart_amba_port *uap)
1017 {
1018 }
1019 
1020 static inline int pl011_dma_rx_trigger_dma(struct uart_amba_port *uap)
1021 {
1022 	return -EIO;
1023 }
1024 
1025 static inline bool pl011_dma_rx_available(struct uart_amba_port *uap)
1026 {
1027 	return false;
1028 }
1029 
1030 static inline bool pl011_dma_rx_running(struct uart_amba_port *uap)
1031 {
1032 	return false;
1033 }
1034 
1035 #define pl011_dma_flush_buffer	NULL
1036 #endif
1037 
1038 static void pl011_stop_tx(struct uart_port *port)
1039 {
1040 	struct uart_amba_port *uap = (struct uart_amba_port *)port;
1041 
1042 	uap->im &= ~UART011_TXIM;
1043 	writew(uap->im, uap->port.membase + UART011_IMSC);
1044 	pl011_dma_tx_stop(uap);
1045 }
1046 
1047 static void pl011_start_tx(struct uart_port *port)
1048 {
1049 	struct uart_amba_port *uap = (struct uart_amba_port *)port;
1050 
1051 	if (!pl011_dma_tx_start(uap)) {
1052 		uap->im |= UART011_TXIM;
1053 		writew(uap->im, uap->port.membase + UART011_IMSC);
1054 	}
1055 }
1056 
1057 static void pl011_stop_rx(struct uart_port *port)
1058 {
1059 	struct uart_amba_port *uap = (struct uart_amba_port *)port;
1060 
1061 	uap->im &= ~(UART011_RXIM|UART011_RTIM|UART011_FEIM|
1062 		     UART011_PEIM|UART011_BEIM|UART011_OEIM);
1063 	writew(uap->im, uap->port.membase + UART011_IMSC);
1064 
1065 	pl011_dma_rx_stop(uap);
1066 }
1067 
1068 static void pl011_enable_ms(struct uart_port *port)
1069 {
1070 	struct uart_amba_port *uap = (struct uart_amba_port *)port;
1071 
1072 	uap->im |= UART011_RIMIM|UART011_CTSMIM|UART011_DCDMIM|UART011_DSRMIM;
1073 	writew(uap->im, uap->port.membase + UART011_IMSC);
1074 }
1075 
1076 static void pl011_rx_chars(struct uart_amba_port *uap)
1077 {
1078 	pl011_fifo_to_tty(uap);
1079 
1080 	spin_unlock(&uap->port.lock);
1081 	tty_flip_buffer_push(&uap->port.state->port);
1082 	/*
1083 	 * If we were temporarily out of DMA mode for a while,
1084 	 * attempt to switch back to DMA mode again.
1085 	 */
1086 	if (pl011_dma_rx_available(uap)) {
1087 		if (pl011_dma_rx_trigger_dma(uap)) {
1088 			dev_dbg(uap->port.dev, "could not trigger RX DMA job "
1089 				"fall back to interrupt mode again\n");
1090 			uap->im |= UART011_RXIM;
1091 		} else
1092 			uap->im &= ~UART011_RXIM;
1093 		writew(uap->im, uap->port.membase + UART011_IMSC);
1094 	}
1095 	spin_lock(&uap->port.lock);
1096 }
1097 
1098 static void pl011_tx_chars(struct uart_amba_port *uap)
1099 {
1100 	struct circ_buf *xmit = &uap->port.state->xmit;
1101 	int count;
1102 
1103 	if (uap->port.x_char) {
1104 		writew(uap->port.x_char, uap->port.membase + UART01x_DR);
1105 		uap->port.icount.tx++;
1106 		uap->port.x_char = 0;
1107 		return;
1108 	}
1109 	if (uart_circ_empty(xmit) || uart_tx_stopped(&uap->port)) {
1110 		pl011_stop_tx(&uap->port);
1111 		return;
1112 	}
1113 
1114 	/* If we are using DMA mode, try to send some characters. */
1115 	if (pl011_dma_tx_irq(uap))
1116 		return;
1117 
1118 	count = uap->fifosize >> 1;
1119 	do {
1120 		writew(xmit->buf[xmit->tail], uap->port.membase + UART01x_DR);
1121 		xmit->tail = (xmit->tail + 1) & (UART_XMIT_SIZE - 1);
1122 		uap->port.icount.tx++;
1123 		if (uart_circ_empty(xmit))
1124 			break;
1125 	} while (--count > 0);
1126 
1127 	if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
1128 		uart_write_wakeup(&uap->port);
1129 
1130 	if (uart_circ_empty(xmit))
1131 		pl011_stop_tx(&uap->port);
1132 }
1133 
1134 static void pl011_modem_status(struct uart_amba_port *uap)
1135 {
1136 	unsigned int status, delta;
1137 
1138 	status = readw(uap->port.membase + UART01x_FR) & UART01x_FR_MODEM_ANY;
1139 
1140 	delta = status ^ uap->old_status;
1141 	uap->old_status = status;
1142 
1143 	if (!delta)
1144 		return;
1145 
1146 	if (delta & UART01x_FR_DCD)
1147 		uart_handle_dcd_change(&uap->port, status & UART01x_FR_DCD);
1148 
1149 	if (delta & UART01x_FR_DSR)
1150 		uap->port.icount.dsr++;
1151 
1152 	if (delta & UART01x_FR_CTS)
1153 		uart_handle_cts_change(&uap->port, status & UART01x_FR_CTS);
1154 
1155 	wake_up_interruptible(&uap->port.state->port.delta_msr_wait);
1156 }
1157 
1158 static irqreturn_t pl011_int(int irq, void *dev_id)
1159 {
1160 	struct uart_amba_port *uap = dev_id;
1161 	unsigned long flags;
1162 	unsigned int status, pass_counter = AMBA_ISR_PASS_LIMIT;
1163 	int handled = 0;
1164 	unsigned int dummy_read;
1165 
1166 	spin_lock_irqsave(&uap->port.lock, flags);
1167 
1168 	status = readw(uap->port.membase + UART011_MIS);
1169 	if (status) {
1170 		do {
1171 			if (uap->vendor->cts_event_workaround) {
1172 				/* workaround to make sure that all bits are unlocked.. */
1173 				writew(0x00, uap->port.membase + UART011_ICR);
1174 
1175 				/*
1176 				 * WA: introduce 26ns(1 uart clk) delay before W1C;
1177 				 * single apb access will incur 2 pclk(133.12Mhz) delay,
1178 				 * so add 2 dummy reads
1179 				 */
1180 				dummy_read = readw(uap->port.membase + UART011_ICR);
1181 				dummy_read = readw(uap->port.membase + UART011_ICR);
1182 			}
1183 
1184 			writew(status & ~(UART011_TXIS|UART011_RTIS|
1185 					  UART011_RXIS),
1186 			       uap->port.membase + UART011_ICR);
1187 
1188 			if (status & (UART011_RTIS|UART011_RXIS)) {
1189 				if (pl011_dma_rx_running(uap))
1190 					pl011_dma_rx_irq(uap);
1191 				else
1192 					pl011_rx_chars(uap);
1193 			}
1194 			if (status & (UART011_DSRMIS|UART011_DCDMIS|
1195 				      UART011_CTSMIS|UART011_RIMIS))
1196 				pl011_modem_status(uap);
1197 			if (status & UART011_TXIS)
1198 				pl011_tx_chars(uap);
1199 
1200 			if (pass_counter-- == 0)
1201 				break;
1202 
1203 			status = readw(uap->port.membase + UART011_MIS);
1204 		} while (status != 0);
1205 		handled = 1;
1206 	}
1207 
1208 	spin_unlock_irqrestore(&uap->port.lock, flags);
1209 
1210 	return IRQ_RETVAL(handled);
1211 }
1212 
1213 static unsigned int pl011_tx_empty(struct uart_port *port)
1214 {
1215 	struct uart_amba_port *uap = (struct uart_amba_port *)port;
1216 	unsigned int status = readw(uap->port.membase + UART01x_FR);
1217 	return status & (UART01x_FR_BUSY|UART01x_FR_TXFF) ? 0 : TIOCSER_TEMT;
1218 }
1219 
1220 static unsigned int pl011_get_mctrl(struct uart_port *port)
1221 {
1222 	struct uart_amba_port *uap = (struct uart_amba_port *)port;
1223 	unsigned int result = 0;
1224 	unsigned int status = readw(uap->port.membase + UART01x_FR);
1225 
1226 #define TIOCMBIT(uartbit, tiocmbit)	\
1227 	if (status & uartbit)		\
1228 		result |= tiocmbit
1229 
1230 	TIOCMBIT(UART01x_FR_DCD, TIOCM_CAR);
1231 	TIOCMBIT(UART01x_FR_DSR, TIOCM_DSR);
1232 	TIOCMBIT(UART01x_FR_CTS, TIOCM_CTS);
1233 	TIOCMBIT(UART011_FR_RI, TIOCM_RNG);
1234 #undef TIOCMBIT
1235 	return result;
1236 }
1237 
1238 static void pl011_set_mctrl(struct uart_port *port, unsigned int mctrl)
1239 {
1240 	struct uart_amba_port *uap = (struct uart_amba_port *)port;
1241 	unsigned int cr;
1242 
1243 	cr = readw(uap->port.membase + UART011_CR);
1244 
1245 #define	TIOCMBIT(tiocmbit, uartbit)		\
1246 	if (mctrl & tiocmbit)		\
1247 		cr |= uartbit;		\
1248 	else				\
1249 		cr &= ~uartbit
1250 
1251 	TIOCMBIT(TIOCM_RTS, UART011_CR_RTS);
1252 	TIOCMBIT(TIOCM_DTR, UART011_CR_DTR);
1253 	TIOCMBIT(TIOCM_OUT1, UART011_CR_OUT1);
1254 	TIOCMBIT(TIOCM_OUT2, UART011_CR_OUT2);
1255 	TIOCMBIT(TIOCM_LOOP, UART011_CR_LBE);
1256 
1257 	if (uap->autorts) {
1258 		/* We need to disable auto-RTS if we want to turn RTS off */
1259 		TIOCMBIT(TIOCM_RTS, UART011_CR_RTSEN);
1260 	}
1261 #undef TIOCMBIT
1262 
1263 	writew(cr, uap->port.membase + UART011_CR);
1264 }
1265 
1266 static void pl011_break_ctl(struct uart_port *port, int break_state)
1267 {
1268 	struct uart_amba_port *uap = (struct uart_amba_port *)port;
1269 	unsigned long flags;
1270 	unsigned int lcr_h;
1271 
1272 	spin_lock_irqsave(&uap->port.lock, flags);
1273 	lcr_h = readw(uap->port.membase + uap->lcrh_tx);
1274 	if (break_state == -1)
1275 		lcr_h |= UART01x_LCRH_BRK;
1276 	else
1277 		lcr_h &= ~UART01x_LCRH_BRK;
1278 	writew(lcr_h, uap->port.membase + uap->lcrh_tx);
1279 	spin_unlock_irqrestore(&uap->port.lock, flags);
1280 }
1281 
1282 #ifdef CONFIG_CONSOLE_POLL
1283 
1284 static void pl011_quiesce_irqs(struct uart_port *port)
1285 {
1286 	struct uart_amba_port *uap = (struct uart_amba_port *)port;
1287 	unsigned char __iomem *regs = uap->port.membase;
1288 
1289 	writew(readw(regs + UART011_MIS), regs + UART011_ICR);
1290 	/*
1291 	 * There is no way to clear TXIM as this is "ready to transmit IRQ", so
1292 	 * we simply mask it. start_tx() will unmask it.
1293 	 *
1294 	 * Note we can race with start_tx(), and if the race happens, the
1295 	 * polling user might get another interrupt just after we clear it.
1296 	 * But it should be OK and can happen even w/o the race, e.g.
1297 	 * controller immediately got some new data and raised the IRQ.
1298 	 *
1299 	 * And whoever uses polling routines assumes that it manages the device
1300 	 * (including tx queue), so we're also fine with start_tx()'s caller
1301 	 * side.
1302 	 */
1303 	writew(readw(regs + UART011_IMSC) & ~UART011_TXIM, regs + UART011_IMSC);
1304 }
1305 
1306 static int pl011_get_poll_char(struct uart_port *port)
1307 {
1308 	struct uart_amba_port *uap = (struct uart_amba_port *)port;
1309 	unsigned int status;
1310 
1311 	/*
1312 	 * The caller might need IRQs lowered, e.g. if used with KDB NMI
1313 	 * debugger.
1314 	 */
1315 	pl011_quiesce_irqs(port);
1316 
1317 	status = readw(uap->port.membase + UART01x_FR);
1318 	if (status & UART01x_FR_RXFE)
1319 		return NO_POLL_CHAR;
1320 
1321 	return readw(uap->port.membase + UART01x_DR);
1322 }
1323 
1324 static void pl011_put_poll_char(struct uart_port *port,
1325 			 unsigned char ch)
1326 {
1327 	struct uart_amba_port *uap = (struct uart_amba_port *)port;
1328 
1329 	while (readw(uap->port.membase + UART01x_FR) & UART01x_FR_TXFF)
1330 		barrier();
1331 
1332 	writew(ch, uap->port.membase + UART01x_DR);
1333 }
1334 
1335 #endif /* CONFIG_CONSOLE_POLL */
1336 
1337 static int pl011_hwinit(struct uart_port *port)
1338 {
1339 	struct uart_amba_port *uap = (struct uart_amba_port *)port;
1340 	int retval;
1341 
1342 	/* Optionaly enable pins to be muxed in and configured */
1343 	if (!IS_ERR(uap->pins_default)) {
1344 		retval = pinctrl_select_state(uap->pinctrl, uap->pins_default);
1345 		if (retval)
1346 			dev_err(port->dev,
1347 				"could not set default pins\n");
1348 	}
1349 
1350 	/*
1351 	 * Try to enable the clock producer.
1352 	 */
1353 	retval = clk_prepare_enable(uap->clk);
1354 	if (retval)
1355 		goto out;
1356 
1357 	uap->port.uartclk = clk_get_rate(uap->clk);
1358 
1359 	/* Clear pending error and receive interrupts */
1360 	writew(UART011_OEIS | UART011_BEIS | UART011_PEIS | UART011_FEIS |
1361 	       UART011_RTIS | UART011_RXIS, uap->port.membase + UART011_ICR);
1362 
1363 	/*
1364 	 * Save interrupts enable mask, and enable RX interrupts in case if
1365 	 * the interrupt is used for NMI entry.
1366 	 */
1367 	uap->im = readw(uap->port.membase + UART011_IMSC);
1368 	writew(UART011_RTIM | UART011_RXIM, uap->port.membase + UART011_IMSC);
1369 
1370 	if (uap->port.dev->platform_data) {
1371 		struct amba_pl011_data *plat;
1372 
1373 		plat = uap->port.dev->platform_data;
1374 		if (plat->init)
1375 			plat->init();
1376 	}
1377 	return 0;
1378  out:
1379 	return retval;
1380 }
1381 
1382 static int pl011_startup(struct uart_port *port)
1383 {
1384 	struct uart_amba_port *uap = (struct uart_amba_port *)port;
1385 	unsigned int cr;
1386 	int retval;
1387 
1388 	retval = pl011_hwinit(port);
1389 	if (retval)
1390 		goto clk_dis;
1391 
1392 	writew(uap->im, uap->port.membase + UART011_IMSC);
1393 
1394 	/*
1395 	 * Allocate the IRQ
1396 	 */
1397 	retval = request_irq(uap->port.irq, pl011_int, 0, "uart-pl011", uap);
1398 	if (retval)
1399 		goto clk_dis;
1400 
1401 	writew(uap->vendor->ifls, uap->port.membase + UART011_IFLS);
1402 
1403 	/*
1404 	 * Provoke TX FIFO interrupt into asserting.
1405 	 */
1406 	cr = UART01x_CR_UARTEN | UART011_CR_TXE | UART011_CR_LBE;
1407 	writew(cr, uap->port.membase + UART011_CR);
1408 	writew(0, uap->port.membase + UART011_FBRD);
1409 	writew(1, uap->port.membase + UART011_IBRD);
1410 	writew(0, uap->port.membase + uap->lcrh_rx);
1411 	if (uap->lcrh_tx != uap->lcrh_rx) {
1412 		int i;
1413 		/*
1414 		 * Wait 10 PCLKs before writing LCRH_TX register,
1415 		 * to get this delay write read only register 10 times
1416 		 */
1417 		for (i = 0; i < 10; ++i)
1418 			writew(0xff, uap->port.membase + UART011_MIS);
1419 		writew(0, uap->port.membase + uap->lcrh_tx);
1420 	}
1421 	writew(0, uap->port.membase + UART01x_DR);
1422 	while (readw(uap->port.membase + UART01x_FR) & UART01x_FR_BUSY)
1423 		barrier();
1424 
1425 	/* restore RTS and DTR */
1426 	cr = uap->old_cr & (UART011_CR_RTS | UART011_CR_DTR);
1427 	cr |= UART01x_CR_UARTEN | UART011_CR_RXE | UART011_CR_TXE;
1428 	writew(cr, uap->port.membase + UART011_CR);
1429 
1430 	/*
1431 	 * initialise the old status of the modem signals
1432 	 */
1433 	uap->old_status = readw(uap->port.membase + UART01x_FR) & UART01x_FR_MODEM_ANY;
1434 
1435 	/* Startup DMA */
1436 	pl011_dma_startup(uap);
1437 
1438 	/*
1439 	 * Finally, enable interrupts, only timeouts when using DMA
1440 	 * if initial RX DMA job failed, start in interrupt mode
1441 	 * as well.
1442 	 */
1443 	spin_lock_irq(&uap->port.lock);
1444 	/* Clear out any spuriously appearing RX interrupts */
1445 	 writew(UART011_RTIS | UART011_RXIS,
1446 		uap->port.membase + UART011_ICR);
1447 	uap->im = UART011_RTIM;
1448 	if (!pl011_dma_rx_running(uap))
1449 		uap->im |= UART011_RXIM;
1450 	writew(uap->im, uap->port.membase + UART011_IMSC);
1451 	spin_unlock_irq(&uap->port.lock);
1452 
1453 	return 0;
1454 
1455  clk_dis:
1456 	clk_disable_unprepare(uap->clk);
1457 	return retval;
1458 }
1459 
1460 static void pl011_shutdown_channel(struct uart_amba_port *uap,
1461 					unsigned int lcrh)
1462 {
1463       unsigned long val;
1464 
1465       val = readw(uap->port.membase + lcrh);
1466       val &= ~(UART01x_LCRH_BRK | UART01x_LCRH_FEN);
1467       writew(val, uap->port.membase + lcrh);
1468 }
1469 
1470 static void pl011_shutdown(struct uart_port *port)
1471 {
1472 	struct uart_amba_port *uap = (struct uart_amba_port *)port;
1473 	unsigned int cr;
1474 	int retval;
1475 
1476 	/*
1477 	 * disable all interrupts
1478 	 */
1479 	spin_lock_irq(&uap->port.lock);
1480 	uap->im = 0;
1481 	writew(uap->im, uap->port.membase + UART011_IMSC);
1482 	writew(0xffff, uap->port.membase + UART011_ICR);
1483 	spin_unlock_irq(&uap->port.lock);
1484 
1485 	pl011_dma_shutdown(uap);
1486 
1487 	/*
1488 	 * Free the interrupt
1489 	 */
1490 	free_irq(uap->port.irq, uap);
1491 
1492 	/*
1493 	 * disable the port
1494 	 * disable the port. It should not disable RTS and DTR.
1495 	 * Also RTS and DTR state should be preserved to restore
1496 	 * it during startup().
1497 	 */
1498 	uap->autorts = false;
1499 	cr = readw(uap->port.membase + UART011_CR);
1500 	uap->old_cr = cr;
1501 	cr &= UART011_CR_RTS | UART011_CR_DTR;
1502 	cr |= UART01x_CR_UARTEN | UART011_CR_TXE;
1503 	writew(cr, uap->port.membase + UART011_CR);
1504 
1505 	/*
1506 	 * disable break condition and fifos
1507 	 */
1508 	pl011_shutdown_channel(uap, uap->lcrh_rx);
1509 	if (uap->lcrh_rx != uap->lcrh_tx)
1510 		pl011_shutdown_channel(uap, uap->lcrh_tx);
1511 
1512 	/*
1513 	 * Shut down the clock producer
1514 	 */
1515 	clk_disable_unprepare(uap->clk);
1516 	/* Optionally let pins go into sleep states */
1517 	if (!IS_ERR(uap->pins_sleep)) {
1518 		retval = pinctrl_select_state(uap->pinctrl, uap->pins_sleep);
1519 		if (retval)
1520 			dev_err(port->dev,
1521 				"could not set pins to sleep state\n");
1522 	}
1523 
1524 
1525 	if (uap->port.dev->platform_data) {
1526 		struct amba_pl011_data *plat;
1527 
1528 		plat = uap->port.dev->platform_data;
1529 		if (plat->exit)
1530 			plat->exit();
1531 	}
1532 
1533 }
1534 
1535 static void
1536 pl011_set_termios(struct uart_port *port, struct ktermios *termios,
1537 		     struct ktermios *old)
1538 {
1539 	struct uart_amba_port *uap = (struct uart_amba_port *)port;
1540 	unsigned int lcr_h, old_cr;
1541 	unsigned long flags;
1542 	unsigned int baud, quot, clkdiv;
1543 
1544 	if (uap->vendor->oversampling)
1545 		clkdiv = 8;
1546 	else
1547 		clkdiv = 16;
1548 
1549 	/*
1550 	 * Ask the core to calculate the divisor for us.
1551 	 */
1552 	baud = uart_get_baud_rate(port, termios, old, 0,
1553 				  port->uartclk / clkdiv);
1554 
1555 	if (baud > port->uartclk/16)
1556 		quot = DIV_ROUND_CLOSEST(port->uartclk * 8, baud);
1557 	else
1558 		quot = DIV_ROUND_CLOSEST(port->uartclk * 4, baud);
1559 
1560 	switch (termios->c_cflag & CSIZE) {
1561 	case CS5:
1562 		lcr_h = UART01x_LCRH_WLEN_5;
1563 		break;
1564 	case CS6:
1565 		lcr_h = UART01x_LCRH_WLEN_6;
1566 		break;
1567 	case CS7:
1568 		lcr_h = UART01x_LCRH_WLEN_7;
1569 		break;
1570 	default: // CS8
1571 		lcr_h = UART01x_LCRH_WLEN_8;
1572 		break;
1573 	}
1574 	if (termios->c_cflag & CSTOPB)
1575 		lcr_h |= UART01x_LCRH_STP2;
1576 	if (termios->c_cflag & PARENB) {
1577 		lcr_h |= UART01x_LCRH_PEN;
1578 		if (!(termios->c_cflag & PARODD))
1579 			lcr_h |= UART01x_LCRH_EPS;
1580 	}
1581 	if (uap->fifosize > 1)
1582 		lcr_h |= UART01x_LCRH_FEN;
1583 
1584 	spin_lock_irqsave(&port->lock, flags);
1585 
1586 	/*
1587 	 * Update the per-port timeout.
1588 	 */
1589 	uart_update_timeout(port, termios->c_cflag, baud);
1590 
1591 	port->read_status_mask = UART011_DR_OE | 255;
1592 	if (termios->c_iflag & INPCK)
1593 		port->read_status_mask |= UART011_DR_FE | UART011_DR_PE;
1594 	if (termios->c_iflag & (BRKINT | PARMRK))
1595 		port->read_status_mask |= UART011_DR_BE;
1596 
1597 	/*
1598 	 * Characters to ignore
1599 	 */
1600 	port->ignore_status_mask = 0;
1601 	if (termios->c_iflag & IGNPAR)
1602 		port->ignore_status_mask |= UART011_DR_FE | UART011_DR_PE;
1603 	if (termios->c_iflag & IGNBRK) {
1604 		port->ignore_status_mask |= UART011_DR_BE;
1605 		/*
1606 		 * If we're ignoring parity and break indicators,
1607 		 * ignore overruns too (for real raw support).
1608 		 */
1609 		if (termios->c_iflag & IGNPAR)
1610 			port->ignore_status_mask |= UART011_DR_OE;
1611 	}
1612 
1613 	/*
1614 	 * Ignore all characters if CREAD is not set.
1615 	 */
1616 	if ((termios->c_cflag & CREAD) == 0)
1617 		port->ignore_status_mask |= UART_DUMMY_DR_RX;
1618 
1619 	if (UART_ENABLE_MS(port, termios->c_cflag))
1620 		pl011_enable_ms(port);
1621 
1622 	/* first, disable everything */
1623 	old_cr = readw(port->membase + UART011_CR);
1624 	writew(0, port->membase + UART011_CR);
1625 
1626 	if (termios->c_cflag & CRTSCTS) {
1627 		if (old_cr & UART011_CR_RTS)
1628 			old_cr |= UART011_CR_RTSEN;
1629 
1630 		old_cr |= UART011_CR_CTSEN;
1631 		uap->autorts = true;
1632 	} else {
1633 		old_cr &= ~(UART011_CR_CTSEN | UART011_CR_RTSEN);
1634 		uap->autorts = false;
1635 	}
1636 
1637 	if (uap->vendor->oversampling) {
1638 		if (baud > port->uartclk / 16)
1639 			old_cr |= ST_UART011_CR_OVSFACT;
1640 		else
1641 			old_cr &= ~ST_UART011_CR_OVSFACT;
1642 	}
1643 
1644 	/*
1645 	 * Workaround for the ST Micro oversampling variants to
1646 	 * increase the bitrate slightly, by lowering the divisor,
1647 	 * to avoid delayed sampling of start bit at high speeds,
1648 	 * else we see data corruption.
1649 	 */
1650 	if (uap->vendor->oversampling) {
1651 		if ((baud >= 3000000) && (baud < 3250000) && (quot > 1))
1652 			quot -= 1;
1653 		else if ((baud > 3250000) && (quot > 2))
1654 			quot -= 2;
1655 	}
1656 	/* Set baud rate */
1657 	writew(quot & 0x3f, port->membase + UART011_FBRD);
1658 	writew(quot >> 6, port->membase + UART011_IBRD);
1659 
1660 	/*
1661 	 * ----------v----------v----------v----------v-----
1662 	 * NOTE: lcrh_tx and lcrh_rx MUST BE WRITTEN AFTER
1663 	 * UART011_FBRD & UART011_IBRD.
1664 	 * ----------^----------^----------^----------^-----
1665 	 */
1666 	writew(lcr_h, port->membase + uap->lcrh_rx);
1667 	if (uap->lcrh_rx != uap->lcrh_tx) {
1668 		int i;
1669 		/*
1670 		 * Wait 10 PCLKs before writing LCRH_TX register,
1671 		 * to get this delay write read only register 10 times
1672 		 */
1673 		for (i = 0; i < 10; ++i)
1674 			writew(0xff, uap->port.membase + UART011_MIS);
1675 		writew(lcr_h, port->membase + uap->lcrh_tx);
1676 	}
1677 	writew(old_cr, port->membase + UART011_CR);
1678 
1679 	spin_unlock_irqrestore(&port->lock, flags);
1680 }
1681 
1682 static const char *pl011_type(struct uart_port *port)
1683 {
1684 	struct uart_amba_port *uap = (struct uart_amba_port *)port;
1685 	return uap->port.type == PORT_AMBA ? uap->type : NULL;
1686 }
1687 
1688 /*
1689  * Release the memory region(s) being used by 'port'
1690  */
1691 static void pl011_release_port(struct uart_port *port)
1692 {
1693 	release_mem_region(port->mapbase, SZ_4K);
1694 }
1695 
1696 /*
1697  * Request the memory region(s) being used by 'port'
1698  */
1699 static int pl011_request_port(struct uart_port *port)
1700 {
1701 	return request_mem_region(port->mapbase, SZ_4K, "uart-pl011")
1702 			!= NULL ? 0 : -EBUSY;
1703 }
1704 
1705 /*
1706  * Configure/autoconfigure the port.
1707  */
1708 static void pl011_config_port(struct uart_port *port, int flags)
1709 {
1710 	if (flags & UART_CONFIG_TYPE) {
1711 		port->type = PORT_AMBA;
1712 		pl011_request_port(port);
1713 	}
1714 }
1715 
1716 /*
1717  * verify the new serial_struct (for TIOCSSERIAL).
1718  */
1719 static int pl011_verify_port(struct uart_port *port, struct serial_struct *ser)
1720 {
1721 	int ret = 0;
1722 	if (ser->type != PORT_UNKNOWN && ser->type != PORT_AMBA)
1723 		ret = -EINVAL;
1724 	if (ser->irq < 0 || ser->irq >= nr_irqs)
1725 		ret = -EINVAL;
1726 	if (ser->baud_base < 9600)
1727 		ret = -EINVAL;
1728 	return ret;
1729 }
1730 
1731 static struct uart_ops amba_pl011_pops = {
1732 	.tx_empty	= pl011_tx_empty,
1733 	.set_mctrl	= pl011_set_mctrl,
1734 	.get_mctrl	= pl011_get_mctrl,
1735 	.stop_tx	= pl011_stop_tx,
1736 	.start_tx	= pl011_start_tx,
1737 	.stop_rx	= pl011_stop_rx,
1738 	.enable_ms	= pl011_enable_ms,
1739 	.break_ctl	= pl011_break_ctl,
1740 	.startup	= pl011_startup,
1741 	.shutdown	= pl011_shutdown,
1742 	.flush_buffer	= pl011_dma_flush_buffer,
1743 	.set_termios	= pl011_set_termios,
1744 	.type		= pl011_type,
1745 	.release_port	= pl011_release_port,
1746 	.request_port	= pl011_request_port,
1747 	.config_port	= pl011_config_port,
1748 	.verify_port	= pl011_verify_port,
1749 #ifdef CONFIG_CONSOLE_POLL
1750 	.poll_init     = pl011_hwinit,
1751 	.poll_get_char = pl011_get_poll_char,
1752 	.poll_put_char = pl011_put_poll_char,
1753 #endif
1754 };
1755 
1756 static struct uart_amba_port *amba_ports[UART_NR];
1757 
1758 #ifdef CONFIG_SERIAL_AMBA_PL011_CONSOLE
1759 
1760 static void pl011_console_putchar(struct uart_port *port, int ch)
1761 {
1762 	struct uart_amba_port *uap = (struct uart_amba_port *)port;
1763 
1764 	while (readw(uap->port.membase + UART01x_FR) & UART01x_FR_TXFF)
1765 		barrier();
1766 	writew(ch, uap->port.membase + UART01x_DR);
1767 }
1768 
1769 static void
1770 pl011_console_write(struct console *co, const char *s, unsigned int count)
1771 {
1772 	struct uart_amba_port *uap = amba_ports[co->index];
1773 	unsigned int status, old_cr, new_cr;
1774 	unsigned long flags;
1775 	int locked = 1;
1776 
1777 	clk_enable(uap->clk);
1778 
1779 	local_irq_save(flags);
1780 	if (uap->port.sysrq)
1781 		locked = 0;
1782 	else if (oops_in_progress)
1783 		locked = spin_trylock(&uap->port.lock);
1784 	else
1785 		spin_lock(&uap->port.lock);
1786 
1787 	/*
1788 	 *	First save the CR then disable the interrupts
1789 	 */
1790 	old_cr = readw(uap->port.membase + UART011_CR);
1791 	new_cr = old_cr & ~UART011_CR_CTSEN;
1792 	new_cr |= UART01x_CR_UARTEN | UART011_CR_TXE;
1793 	writew(new_cr, uap->port.membase + UART011_CR);
1794 
1795 	uart_console_write(&uap->port, s, count, pl011_console_putchar);
1796 
1797 	/*
1798 	 *	Finally, wait for transmitter to become empty
1799 	 *	and restore the TCR
1800 	 */
1801 	do {
1802 		status = readw(uap->port.membase + UART01x_FR);
1803 	} while (status & UART01x_FR_BUSY);
1804 	writew(old_cr, uap->port.membase + UART011_CR);
1805 
1806 	if (locked)
1807 		spin_unlock(&uap->port.lock);
1808 	local_irq_restore(flags);
1809 
1810 	clk_disable(uap->clk);
1811 }
1812 
1813 static void __init
1814 pl011_console_get_options(struct uart_amba_port *uap, int *baud,
1815 			     int *parity, int *bits)
1816 {
1817 	if (readw(uap->port.membase + UART011_CR) & UART01x_CR_UARTEN) {
1818 		unsigned int lcr_h, ibrd, fbrd;
1819 
1820 		lcr_h = readw(uap->port.membase + uap->lcrh_tx);
1821 
1822 		*parity = 'n';
1823 		if (lcr_h & UART01x_LCRH_PEN) {
1824 			if (lcr_h & UART01x_LCRH_EPS)
1825 				*parity = 'e';
1826 			else
1827 				*parity = 'o';
1828 		}
1829 
1830 		if ((lcr_h & 0x60) == UART01x_LCRH_WLEN_7)
1831 			*bits = 7;
1832 		else
1833 			*bits = 8;
1834 
1835 		ibrd = readw(uap->port.membase + UART011_IBRD);
1836 		fbrd = readw(uap->port.membase + UART011_FBRD);
1837 
1838 		*baud = uap->port.uartclk * 4 / (64 * ibrd + fbrd);
1839 
1840 		if (uap->vendor->oversampling) {
1841 			if (readw(uap->port.membase + UART011_CR)
1842 				  & ST_UART011_CR_OVSFACT)
1843 				*baud *= 2;
1844 		}
1845 	}
1846 }
1847 
1848 static int __init pl011_console_setup(struct console *co, char *options)
1849 {
1850 	struct uart_amba_port *uap;
1851 	int baud = 38400;
1852 	int bits = 8;
1853 	int parity = 'n';
1854 	int flow = 'n';
1855 	int ret;
1856 
1857 	/*
1858 	 * Check whether an invalid uart number has been specified, and
1859 	 * if so, search for the first available port that does have
1860 	 * console support.
1861 	 */
1862 	if (co->index >= UART_NR)
1863 		co->index = 0;
1864 	uap = amba_ports[co->index];
1865 	if (!uap)
1866 		return -ENODEV;
1867 
1868 	/* Allow pins to be muxed in and configured */
1869 	if (!IS_ERR(uap->pins_default)) {
1870 		ret = pinctrl_select_state(uap->pinctrl, uap->pins_default);
1871 		if (ret)
1872 			dev_err(uap->port.dev,
1873 				"could not set default pins\n");
1874 	}
1875 
1876 	ret = clk_prepare(uap->clk);
1877 	if (ret)
1878 		return ret;
1879 
1880 	if (uap->port.dev->platform_data) {
1881 		struct amba_pl011_data *plat;
1882 
1883 		plat = uap->port.dev->platform_data;
1884 		if (plat->init)
1885 			plat->init();
1886 	}
1887 
1888 	uap->port.uartclk = clk_get_rate(uap->clk);
1889 
1890 	if (options)
1891 		uart_parse_options(options, &baud, &parity, &bits, &flow);
1892 	else
1893 		pl011_console_get_options(uap, &baud, &parity, &bits);
1894 
1895 	return uart_set_options(&uap->port, co, baud, parity, bits, flow);
1896 }
1897 
1898 static struct uart_driver amba_reg;
1899 static struct console amba_console = {
1900 	.name		= "ttyAMA",
1901 	.write		= pl011_console_write,
1902 	.device		= uart_console_device,
1903 	.setup		= pl011_console_setup,
1904 	.flags		= CON_PRINTBUFFER,
1905 	.index		= -1,
1906 	.data		= &amba_reg,
1907 };
1908 
1909 #define AMBA_CONSOLE	(&amba_console)
1910 #else
1911 #define AMBA_CONSOLE	NULL
1912 #endif
1913 
1914 static struct uart_driver amba_reg = {
1915 	.owner			= THIS_MODULE,
1916 	.driver_name		= "ttyAMA",
1917 	.dev_name		= "ttyAMA",
1918 	.major			= SERIAL_AMBA_MAJOR,
1919 	.minor			= SERIAL_AMBA_MINOR,
1920 	.nr			= UART_NR,
1921 	.cons			= AMBA_CONSOLE,
1922 };
1923 
1924 static int pl011_probe_dt_alias(int index, struct device *dev)
1925 {
1926 	struct device_node *np;
1927 	static bool seen_dev_with_alias = false;
1928 	static bool seen_dev_without_alias = false;
1929 	int ret = index;
1930 
1931 	if (!IS_ENABLED(CONFIG_OF))
1932 		return ret;
1933 
1934 	np = dev->of_node;
1935 	if (!np)
1936 		return ret;
1937 
1938 	ret = of_alias_get_id(np, "serial");
1939 	if (IS_ERR_VALUE(ret)) {
1940 		seen_dev_without_alias = true;
1941 		ret = index;
1942 	} else {
1943 		seen_dev_with_alias = true;
1944 		if (ret >= ARRAY_SIZE(amba_ports) || amba_ports[ret] != NULL) {
1945 			dev_warn(dev, "requested serial port %d  not available.\n", ret);
1946 			ret = index;
1947 		}
1948 	}
1949 
1950 	if (seen_dev_with_alias && seen_dev_without_alias)
1951 		dev_warn(dev, "aliased and non-aliased serial devices found in device tree. Serial port enumeration may be unpredictable.\n");
1952 
1953 	return ret;
1954 }
1955 
1956 static int pl011_probe(struct amba_device *dev, const struct amba_id *id)
1957 {
1958 	struct uart_amba_port *uap;
1959 	struct vendor_data *vendor = id->data;
1960 	void __iomem *base;
1961 	int i, ret;
1962 
1963 	for (i = 0; i < ARRAY_SIZE(amba_ports); i++)
1964 		if (amba_ports[i] == NULL)
1965 			break;
1966 
1967 	if (i == ARRAY_SIZE(amba_ports)) {
1968 		ret = -EBUSY;
1969 		goto out;
1970 	}
1971 
1972 	uap = devm_kzalloc(&dev->dev, sizeof(struct uart_amba_port),
1973 			   GFP_KERNEL);
1974 	if (uap == NULL) {
1975 		ret = -ENOMEM;
1976 		goto out;
1977 	}
1978 
1979 	i = pl011_probe_dt_alias(i, &dev->dev);
1980 
1981 	base = devm_ioremap(&dev->dev, dev->res.start,
1982 			    resource_size(&dev->res));
1983 	if (!base) {
1984 		ret = -ENOMEM;
1985 		goto out;
1986 	}
1987 
1988 	uap->pinctrl = devm_pinctrl_get(&dev->dev);
1989 	if (IS_ERR(uap->pinctrl)) {
1990 		ret = PTR_ERR(uap->pinctrl);
1991 		goto out;
1992 	}
1993 	uap->pins_default = pinctrl_lookup_state(uap->pinctrl,
1994 						 PINCTRL_STATE_DEFAULT);
1995 	if (IS_ERR(uap->pins_default))
1996 		dev_err(&dev->dev, "could not get default pinstate\n");
1997 
1998 	uap->pins_sleep = pinctrl_lookup_state(uap->pinctrl,
1999 					       PINCTRL_STATE_SLEEP);
2000 	if (IS_ERR(uap->pins_sleep))
2001 		dev_dbg(&dev->dev, "could not get sleep pinstate\n");
2002 
2003 	uap->clk = devm_clk_get(&dev->dev, NULL);
2004 	if (IS_ERR(uap->clk)) {
2005 		ret = PTR_ERR(uap->clk);
2006 		goto out;
2007 	}
2008 
2009 	uap->vendor = vendor;
2010 	uap->lcrh_rx = vendor->lcrh_rx;
2011 	uap->lcrh_tx = vendor->lcrh_tx;
2012 	uap->old_cr = 0;
2013 	uap->fifosize = vendor->fifosize;
2014 	uap->port.dev = &dev->dev;
2015 	uap->port.mapbase = dev->res.start;
2016 	uap->port.membase = base;
2017 	uap->port.iotype = UPIO_MEM;
2018 	uap->port.irq = dev->irq[0];
2019 	uap->port.fifosize = uap->fifosize;
2020 	uap->port.ops = &amba_pl011_pops;
2021 	uap->port.flags = UPF_BOOT_AUTOCONF;
2022 	uap->port.line = i;
2023 	pl011_dma_probe(uap);
2024 
2025 	/* Ensure interrupts from this UART are masked and cleared */
2026 	writew(0, uap->port.membase + UART011_IMSC);
2027 	writew(0xffff, uap->port.membase + UART011_ICR);
2028 
2029 	snprintf(uap->type, sizeof(uap->type), "PL011 rev%u", amba_rev(dev));
2030 
2031 	amba_ports[i] = uap;
2032 
2033 	amba_set_drvdata(dev, uap);
2034 	ret = uart_add_one_port(&amba_reg, &uap->port);
2035 	if (ret) {
2036 		amba_set_drvdata(dev, NULL);
2037 		amba_ports[i] = NULL;
2038 		pl011_dma_remove(uap);
2039 	}
2040  out:
2041 	return ret;
2042 }
2043 
2044 static int pl011_remove(struct amba_device *dev)
2045 {
2046 	struct uart_amba_port *uap = amba_get_drvdata(dev);
2047 	int i;
2048 
2049 	amba_set_drvdata(dev, NULL);
2050 
2051 	uart_remove_one_port(&amba_reg, &uap->port);
2052 
2053 	for (i = 0; i < ARRAY_SIZE(amba_ports); i++)
2054 		if (amba_ports[i] == uap)
2055 			amba_ports[i] = NULL;
2056 
2057 	pl011_dma_remove(uap);
2058 	return 0;
2059 }
2060 
2061 #ifdef CONFIG_PM
2062 static int pl011_suspend(struct amba_device *dev, pm_message_t state)
2063 {
2064 	struct uart_amba_port *uap = amba_get_drvdata(dev);
2065 
2066 	if (!uap)
2067 		return -EINVAL;
2068 
2069 	return uart_suspend_port(&amba_reg, &uap->port);
2070 }
2071 
2072 static int pl011_resume(struct amba_device *dev)
2073 {
2074 	struct uart_amba_port *uap = amba_get_drvdata(dev);
2075 
2076 	if (!uap)
2077 		return -EINVAL;
2078 
2079 	return uart_resume_port(&amba_reg, &uap->port);
2080 }
2081 #endif
2082 
2083 static struct amba_id pl011_ids[] = {
2084 	{
2085 		.id	= 0x00041011,
2086 		.mask	= 0x000fffff,
2087 		.data	= &vendor_arm,
2088 	},
2089 	{
2090 		.id	= 0x00380802,
2091 		.mask	= 0x00ffffff,
2092 		.data	= &vendor_st,
2093 	},
2094 	{ 0, 0 },
2095 };
2096 
2097 MODULE_DEVICE_TABLE(amba, pl011_ids);
2098 
2099 static struct amba_driver pl011_driver = {
2100 	.drv = {
2101 		.name	= "uart-pl011",
2102 	},
2103 	.id_table	= pl011_ids,
2104 	.probe		= pl011_probe,
2105 	.remove		= pl011_remove,
2106 #ifdef CONFIG_PM
2107 	.suspend	= pl011_suspend,
2108 	.resume		= pl011_resume,
2109 #endif
2110 };
2111 
2112 static int __init pl011_init(void)
2113 {
2114 	int ret;
2115 	printk(KERN_INFO "Serial: AMBA PL011 UART driver\n");
2116 
2117 	ret = uart_register_driver(&amba_reg);
2118 	if (ret == 0) {
2119 		ret = amba_driver_register(&pl011_driver);
2120 		if (ret)
2121 			uart_unregister_driver(&amba_reg);
2122 	}
2123 	return ret;
2124 }
2125 
2126 static void __exit pl011_exit(void)
2127 {
2128 	amba_driver_unregister(&pl011_driver);
2129 	uart_unregister_driver(&amba_reg);
2130 }
2131 
2132 /*
2133  * While this can be a module, if builtin it's most likely the console
2134  * So let's leave module_exit but move module_init to an earlier place
2135  */
2136 arch_initcall(pl011_init);
2137 module_exit(pl011_exit);
2138 
2139 MODULE_AUTHOR("ARM Ltd/Deep Blue Solutions Ltd");
2140 MODULE_DESCRIPTION("ARM AMBA serial port driver");
2141 MODULE_LICENSE("GPL");
2142