xref: /openbmc/linux/drivers/tty/serial/amba-pl011.c (revision 82003e04)
1 /*
2  *  Driver for AMBA serial ports
3  *
4  *  Based on drivers/char/serial.c, by Linus Torvalds, Theodore Ts'o.
5  *
6  *  Copyright 1999 ARM Limited
7  *  Copyright (C) 2000 Deep Blue Solutions Ltd.
8  *  Copyright (C) 2010 ST-Ericsson SA
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License as published by
12  * the Free Software Foundation; either version 2 of the License, or
13  * (at your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18  * GNU General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public License
21  * along with this program; if not, write to the Free Software
22  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
23  *
24  * This is a generic driver for ARM AMBA-type serial ports.  They
25  * have a lot of 16550-like features, but are not register compatible.
26  * Note that although they do have CTS, DCD and DSR inputs, they do
27  * not have an RI input, nor do they have DTR or RTS outputs.  If
28  * required, these have to be supplied via some other means (eg, GPIO)
29  * and hooked into this driver.
30  */
31 
32 
33 #if defined(CONFIG_SERIAL_AMBA_PL011_CONSOLE) && defined(CONFIG_MAGIC_SYSRQ)
34 #define SUPPORT_SYSRQ
35 #endif
36 
37 #include <linux/module.h>
38 #include <linux/ioport.h>
39 #include <linux/init.h>
40 #include <linux/console.h>
41 #include <linux/sysrq.h>
42 #include <linux/device.h>
43 #include <linux/tty.h>
44 #include <linux/tty_flip.h>
45 #include <linux/serial_core.h>
46 #include <linux/serial.h>
47 #include <linux/amba/bus.h>
48 #include <linux/amba/serial.h>
49 #include <linux/clk.h>
50 #include <linux/slab.h>
51 #include <linux/dmaengine.h>
52 #include <linux/dma-mapping.h>
53 #include <linux/scatterlist.h>
54 #include <linux/delay.h>
55 #include <linux/types.h>
56 #include <linux/of.h>
57 #include <linux/of_device.h>
58 #include <linux/pinctrl/consumer.h>
59 #include <linux/sizes.h>
60 #include <linux/io.h>
61 #include <linux/acpi.h>
62 
63 #include "amba-pl011.h"
64 
65 #define UART_NR			14
66 
67 #define SERIAL_AMBA_MAJOR	204
68 #define SERIAL_AMBA_MINOR	64
69 #define SERIAL_AMBA_NR		UART_NR
70 
71 #define AMBA_ISR_PASS_LIMIT	256
72 
73 #define UART_DR_ERROR		(UART011_DR_OE|UART011_DR_BE|UART011_DR_PE|UART011_DR_FE)
74 #define UART_DUMMY_DR_RX	(1 << 16)
75 
76 static u16 pl011_std_offsets[REG_ARRAY_SIZE] = {
77 	[REG_DR] = UART01x_DR,
78 	[REG_FR] = UART01x_FR,
79 	[REG_LCRH_RX] = UART011_LCRH,
80 	[REG_LCRH_TX] = UART011_LCRH,
81 	[REG_IBRD] = UART011_IBRD,
82 	[REG_FBRD] = UART011_FBRD,
83 	[REG_CR] = UART011_CR,
84 	[REG_IFLS] = UART011_IFLS,
85 	[REG_IMSC] = UART011_IMSC,
86 	[REG_RIS] = UART011_RIS,
87 	[REG_MIS] = UART011_MIS,
88 	[REG_ICR] = UART011_ICR,
89 	[REG_DMACR] = UART011_DMACR,
90 };
91 
92 /* There is by now at least one vendor with differing details, so handle it */
93 struct vendor_data {
94 	const u16		*reg_offset;
95 	unsigned int		ifls;
96 	unsigned int		fr_busy;
97 	unsigned int		fr_dsr;
98 	unsigned int		fr_cts;
99 	unsigned int		fr_ri;
100 	bool			access_32b;
101 	bool			oversampling;
102 	bool			dma_threshold;
103 	bool			cts_event_workaround;
104 	bool			always_enabled;
105 	bool			fixed_options;
106 
107 	unsigned int (*get_fifosize)(struct amba_device *dev);
108 };
109 
110 static unsigned int get_fifosize_arm(struct amba_device *dev)
111 {
112 	return amba_rev(dev) < 3 ? 16 : 32;
113 }
114 
115 static struct vendor_data vendor_arm = {
116 	.reg_offset		= pl011_std_offsets,
117 	.ifls			= UART011_IFLS_RX4_8|UART011_IFLS_TX4_8,
118 	.fr_busy		= UART01x_FR_BUSY,
119 	.fr_dsr			= UART01x_FR_DSR,
120 	.fr_cts			= UART01x_FR_CTS,
121 	.fr_ri			= UART011_FR_RI,
122 	.oversampling		= false,
123 	.dma_threshold		= false,
124 	.cts_event_workaround	= false,
125 	.always_enabled		= false,
126 	.fixed_options		= false,
127 	.get_fifosize		= get_fifosize_arm,
128 };
129 
130 static struct vendor_data vendor_sbsa = {
131 	.reg_offset		= pl011_std_offsets,
132 	.fr_busy		= UART01x_FR_BUSY,
133 	.fr_dsr			= UART01x_FR_DSR,
134 	.fr_cts			= UART01x_FR_CTS,
135 	.fr_ri			= UART011_FR_RI,
136 	.access_32b		= true,
137 	.oversampling		= false,
138 	.dma_threshold		= false,
139 	.cts_event_workaround	= false,
140 	.always_enabled		= true,
141 	.fixed_options		= true,
142 };
143 
144 static u16 pl011_st_offsets[REG_ARRAY_SIZE] = {
145 	[REG_DR] = UART01x_DR,
146 	[REG_ST_DMAWM] = ST_UART011_DMAWM,
147 	[REG_ST_TIMEOUT] = ST_UART011_TIMEOUT,
148 	[REG_FR] = UART01x_FR,
149 	[REG_LCRH_RX] = ST_UART011_LCRH_RX,
150 	[REG_LCRH_TX] = ST_UART011_LCRH_TX,
151 	[REG_IBRD] = UART011_IBRD,
152 	[REG_FBRD] = UART011_FBRD,
153 	[REG_CR] = UART011_CR,
154 	[REG_IFLS] = UART011_IFLS,
155 	[REG_IMSC] = UART011_IMSC,
156 	[REG_RIS] = UART011_RIS,
157 	[REG_MIS] = UART011_MIS,
158 	[REG_ICR] = UART011_ICR,
159 	[REG_DMACR] = UART011_DMACR,
160 	[REG_ST_XFCR] = ST_UART011_XFCR,
161 	[REG_ST_XON1] = ST_UART011_XON1,
162 	[REG_ST_XON2] = ST_UART011_XON2,
163 	[REG_ST_XOFF1] = ST_UART011_XOFF1,
164 	[REG_ST_XOFF2] = ST_UART011_XOFF2,
165 	[REG_ST_ITCR] = ST_UART011_ITCR,
166 	[REG_ST_ITIP] = ST_UART011_ITIP,
167 	[REG_ST_ABCR] = ST_UART011_ABCR,
168 	[REG_ST_ABIMSC] = ST_UART011_ABIMSC,
169 };
170 
171 static unsigned int get_fifosize_st(struct amba_device *dev)
172 {
173 	return 64;
174 }
175 
176 static struct vendor_data vendor_st = {
177 	.reg_offset		= pl011_st_offsets,
178 	.ifls			= UART011_IFLS_RX_HALF|UART011_IFLS_TX_HALF,
179 	.fr_busy		= UART01x_FR_BUSY,
180 	.fr_dsr			= UART01x_FR_DSR,
181 	.fr_cts			= UART01x_FR_CTS,
182 	.fr_ri			= UART011_FR_RI,
183 	.oversampling		= true,
184 	.dma_threshold		= true,
185 	.cts_event_workaround	= true,
186 	.always_enabled		= false,
187 	.fixed_options		= false,
188 	.get_fifosize		= get_fifosize_st,
189 };
190 
191 static const u16 pl011_zte_offsets[REG_ARRAY_SIZE] = {
192 	[REG_DR] = ZX_UART011_DR,
193 	[REG_FR] = ZX_UART011_FR,
194 	[REG_LCRH_RX] = ZX_UART011_LCRH,
195 	[REG_LCRH_TX] = ZX_UART011_LCRH,
196 	[REG_IBRD] = ZX_UART011_IBRD,
197 	[REG_FBRD] = ZX_UART011_FBRD,
198 	[REG_CR] = ZX_UART011_CR,
199 	[REG_IFLS] = ZX_UART011_IFLS,
200 	[REG_IMSC] = ZX_UART011_IMSC,
201 	[REG_RIS] = ZX_UART011_RIS,
202 	[REG_MIS] = ZX_UART011_MIS,
203 	[REG_ICR] = ZX_UART011_ICR,
204 	[REG_DMACR] = ZX_UART011_DMACR,
205 };
206 
207 static unsigned int get_fifosize_zte(struct amba_device *dev)
208 {
209 	return 16;
210 }
211 
212 static struct vendor_data vendor_zte = {
213 	.reg_offset		= pl011_zte_offsets,
214 	.access_32b		= true,
215 	.ifls			= UART011_IFLS_RX4_8|UART011_IFLS_TX4_8,
216 	.fr_busy		= ZX_UART01x_FR_BUSY,
217 	.fr_dsr			= ZX_UART01x_FR_DSR,
218 	.fr_cts			= ZX_UART01x_FR_CTS,
219 	.fr_ri			= ZX_UART011_FR_RI,
220 	.get_fifosize		= get_fifosize_zte,
221 };
222 
223 /* Deals with DMA transactions */
224 
225 struct pl011_sgbuf {
226 	struct scatterlist sg;
227 	char *buf;
228 };
229 
230 struct pl011_dmarx_data {
231 	struct dma_chan		*chan;
232 	struct completion	complete;
233 	bool			use_buf_b;
234 	struct pl011_sgbuf	sgbuf_a;
235 	struct pl011_sgbuf	sgbuf_b;
236 	dma_cookie_t		cookie;
237 	bool			running;
238 	struct timer_list	timer;
239 	unsigned int last_residue;
240 	unsigned long last_jiffies;
241 	bool auto_poll_rate;
242 	unsigned int poll_rate;
243 	unsigned int poll_timeout;
244 };
245 
246 struct pl011_dmatx_data {
247 	struct dma_chan		*chan;
248 	struct scatterlist	sg;
249 	char			*buf;
250 	bool			queued;
251 };
252 
253 /*
254  * We wrap our port structure around the generic uart_port.
255  */
256 struct uart_amba_port {
257 	struct uart_port	port;
258 	const u16		*reg_offset;
259 	struct clk		*clk;
260 	const struct vendor_data *vendor;
261 	unsigned int		dmacr;		/* dma control reg */
262 	unsigned int		im;		/* interrupt mask */
263 	unsigned int		old_status;
264 	unsigned int		fifosize;	/* vendor-specific */
265 	unsigned int		old_cr;		/* state during shutdown */
266 	bool			autorts;
267 	unsigned int		fixed_baud;	/* vendor-set fixed baud rate */
268 	char			type[12];
269 #ifdef CONFIG_DMA_ENGINE
270 	/* DMA stuff */
271 	bool			using_tx_dma;
272 	bool			using_rx_dma;
273 	struct pl011_dmarx_data dmarx;
274 	struct pl011_dmatx_data	dmatx;
275 	bool			dma_probed;
276 #endif
277 };
278 
279 static unsigned int pl011_reg_to_offset(const struct uart_amba_port *uap,
280 	unsigned int reg)
281 {
282 	return uap->reg_offset[reg];
283 }
284 
285 static unsigned int pl011_read(const struct uart_amba_port *uap,
286 	unsigned int reg)
287 {
288 	void __iomem *addr = uap->port.membase + pl011_reg_to_offset(uap, reg);
289 
290 	return (uap->port.iotype == UPIO_MEM32) ?
291 		readl_relaxed(addr) : readw_relaxed(addr);
292 }
293 
294 static void pl011_write(unsigned int val, const struct uart_amba_port *uap,
295 	unsigned int reg)
296 {
297 	void __iomem *addr = uap->port.membase + pl011_reg_to_offset(uap, reg);
298 
299 	if (uap->port.iotype == UPIO_MEM32)
300 		writel_relaxed(val, addr);
301 	else
302 		writew_relaxed(val, addr);
303 }
304 
305 /*
306  * Reads up to 256 characters from the FIFO or until it's empty and
307  * inserts them into the TTY layer. Returns the number of characters
308  * read from the FIFO.
309  */
310 static int pl011_fifo_to_tty(struct uart_amba_port *uap)
311 {
312 	u16 status;
313 	unsigned int ch, flag, max_count = 256;
314 	int fifotaken = 0;
315 
316 	while (max_count--) {
317 		status = pl011_read(uap, REG_FR);
318 		if (status & UART01x_FR_RXFE)
319 			break;
320 
321 		/* Take chars from the FIFO and update status */
322 		ch = pl011_read(uap, REG_DR) | UART_DUMMY_DR_RX;
323 		flag = TTY_NORMAL;
324 		uap->port.icount.rx++;
325 		fifotaken++;
326 
327 		if (unlikely(ch & UART_DR_ERROR)) {
328 			if (ch & UART011_DR_BE) {
329 				ch &= ~(UART011_DR_FE | UART011_DR_PE);
330 				uap->port.icount.brk++;
331 				if (uart_handle_break(&uap->port))
332 					continue;
333 			} else if (ch & UART011_DR_PE)
334 				uap->port.icount.parity++;
335 			else if (ch & UART011_DR_FE)
336 				uap->port.icount.frame++;
337 			if (ch & UART011_DR_OE)
338 				uap->port.icount.overrun++;
339 
340 			ch &= uap->port.read_status_mask;
341 
342 			if (ch & UART011_DR_BE)
343 				flag = TTY_BREAK;
344 			else if (ch & UART011_DR_PE)
345 				flag = TTY_PARITY;
346 			else if (ch & UART011_DR_FE)
347 				flag = TTY_FRAME;
348 		}
349 
350 		if (uart_handle_sysrq_char(&uap->port, ch & 255))
351 			continue;
352 
353 		uart_insert_char(&uap->port, ch, UART011_DR_OE, ch, flag);
354 	}
355 
356 	return fifotaken;
357 }
358 
359 
360 /*
361  * All the DMA operation mode stuff goes inside this ifdef.
362  * This assumes that you have a generic DMA device interface,
363  * no custom DMA interfaces are supported.
364  */
365 #ifdef CONFIG_DMA_ENGINE
366 
367 #define PL011_DMA_BUFFER_SIZE PAGE_SIZE
368 
369 static int pl011_sgbuf_init(struct dma_chan *chan, struct pl011_sgbuf *sg,
370 	enum dma_data_direction dir)
371 {
372 	dma_addr_t dma_addr;
373 
374 	sg->buf = dma_alloc_coherent(chan->device->dev,
375 		PL011_DMA_BUFFER_SIZE, &dma_addr, GFP_KERNEL);
376 	if (!sg->buf)
377 		return -ENOMEM;
378 
379 	sg_init_table(&sg->sg, 1);
380 	sg_set_page(&sg->sg, phys_to_page(dma_addr),
381 		PL011_DMA_BUFFER_SIZE, offset_in_page(dma_addr));
382 	sg_dma_address(&sg->sg) = dma_addr;
383 	sg_dma_len(&sg->sg) = PL011_DMA_BUFFER_SIZE;
384 
385 	return 0;
386 }
387 
388 static void pl011_sgbuf_free(struct dma_chan *chan, struct pl011_sgbuf *sg,
389 	enum dma_data_direction dir)
390 {
391 	if (sg->buf) {
392 		dma_free_coherent(chan->device->dev,
393 			PL011_DMA_BUFFER_SIZE, sg->buf,
394 			sg_dma_address(&sg->sg));
395 	}
396 }
397 
398 static void pl011_dma_probe(struct uart_amba_port *uap)
399 {
400 	/* DMA is the sole user of the platform data right now */
401 	struct amba_pl011_data *plat = dev_get_platdata(uap->port.dev);
402 	struct device *dev = uap->port.dev;
403 	struct dma_slave_config tx_conf = {
404 		.dst_addr = uap->port.mapbase +
405 				 pl011_reg_to_offset(uap, REG_DR),
406 		.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
407 		.direction = DMA_MEM_TO_DEV,
408 		.dst_maxburst = uap->fifosize >> 1,
409 		.device_fc = false,
410 	};
411 	struct dma_chan *chan;
412 	dma_cap_mask_t mask;
413 
414 	uap->dma_probed = true;
415 	chan = dma_request_slave_channel_reason(dev, "tx");
416 	if (IS_ERR(chan)) {
417 		if (PTR_ERR(chan) == -EPROBE_DEFER) {
418 			uap->dma_probed = false;
419 			return;
420 		}
421 
422 		/* We need platform data */
423 		if (!plat || !plat->dma_filter) {
424 			dev_info(uap->port.dev, "no DMA platform data\n");
425 			return;
426 		}
427 
428 		/* Try to acquire a generic DMA engine slave TX channel */
429 		dma_cap_zero(mask);
430 		dma_cap_set(DMA_SLAVE, mask);
431 
432 		chan = dma_request_channel(mask, plat->dma_filter,
433 						plat->dma_tx_param);
434 		if (!chan) {
435 			dev_err(uap->port.dev, "no TX DMA channel!\n");
436 			return;
437 		}
438 	}
439 
440 	dmaengine_slave_config(chan, &tx_conf);
441 	uap->dmatx.chan = chan;
442 
443 	dev_info(uap->port.dev, "DMA channel TX %s\n",
444 		 dma_chan_name(uap->dmatx.chan));
445 
446 	/* Optionally make use of an RX channel as well */
447 	chan = dma_request_slave_channel(dev, "rx");
448 
449 	if (!chan && plat && plat->dma_rx_param) {
450 		chan = dma_request_channel(mask, plat->dma_filter, plat->dma_rx_param);
451 
452 		if (!chan) {
453 			dev_err(uap->port.dev, "no RX DMA channel!\n");
454 			return;
455 		}
456 	}
457 
458 	if (chan) {
459 		struct dma_slave_config rx_conf = {
460 			.src_addr = uap->port.mapbase +
461 				pl011_reg_to_offset(uap, REG_DR),
462 			.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
463 			.direction = DMA_DEV_TO_MEM,
464 			.src_maxburst = uap->fifosize >> 2,
465 			.device_fc = false,
466 		};
467 		struct dma_slave_caps caps;
468 
469 		/*
470 		 * Some DMA controllers provide information on their capabilities.
471 		 * If the controller does, check for suitable residue processing
472 		 * otherwise assime all is well.
473 		 */
474 		if (0 == dma_get_slave_caps(chan, &caps)) {
475 			if (caps.residue_granularity ==
476 					DMA_RESIDUE_GRANULARITY_DESCRIPTOR) {
477 				dma_release_channel(chan);
478 				dev_info(uap->port.dev,
479 					"RX DMA disabled - no residue processing\n");
480 				return;
481 			}
482 		}
483 		dmaengine_slave_config(chan, &rx_conf);
484 		uap->dmarx.chan = chan;
485 
486 		uap->dmarx.auto_poll_rate = false;
487 		if (plat && plat->dma_rx_poll_enable) {
488 			/* Set poll rate if specified. */
489 			if (plat->dma_rx_poll_rate) {
490 				uap->dmarx.auto_poll_rate = false;
491 				uap->dmarx.poll_rate = plat->dma_rx_poll_rate;
492 			} else {
493 				/*
494 				 * 100 ms defaults to poll rate if not
495 				 * specified. This will be adjusted with
496 				 * the baud rate at set_termios.
497 				 */
498 				uap->dmarx.auto_poll_rate = true;
499 				uap->dmarx.poll_rate =  100;
500 			}
501 			/* 3 secs defaults poll_timeout if not specified. */
502 			if (plat->dma_rx_poll_timeout)
503 				uap->dmarx.poll_timeout =
504 					plat->dma_rx_poll_timeout;
505 			else
506 				uap->dmarx.poll_timeout = 3000;
507 		} else if (!plat && dev->of_node) {
508 			uap->dmarx.auto_poll_rate = of_property_read_bool(
509 						dev->of_node, "auto-poll");
510 			if (uap->dmarx.auto_poll_rate) {
511 				u32 x;
512 
513 				if (0 == of_property_read_u32(dev->of_node,
514 						"poll-rate-ms", &x))
515 					uap->dmarx.poll_rate = x;
516 				else
517 					uap->dmarx.poll_rate = 100;
518 				if (0 == of_property_read_u32(dev->of_node,
519 						"poll-timeout-ms", &x))
520 					uap->dmarx.poll_timeout = x;
521 				else
522 					uap->dmarx.poll_timeout = 3000;
523 			}
524 		}
525 		dev_info(uap->port.dev, "DMA channel RX %s\n",
526 			 dma_chan_name(uap->dmarx.chan));
527 	}
528 }
529 
530 static void pl011_dma_remove(struct uart_amba_port *uap)
531 {
532 	if (uap->dmatx.chan)
533 		dma_release_channel(uap->dmatx.chan);
534 	if (uap->dmarx.chan)
535 		dma_release_channel(uap->dmarx.chan);
536 }
537 
538 /* Forward declare these for the refill routine */
539 static int pl011_dma_tx_refill(struct uart_amba_port *uap);
540 static void pl011_start_tx_pio(struct uart_amba_port *uap);
541 
542 /*
543  * The current DMA TX buffer has been sent.
544  * Try to queue up another DMA buffer.
545  */
546 static void pl011_dma_tx_callback(void *data)
547 {
548 	struct uart_amba_port *uap = data;
549 	struct pl011_dmatx_data *dmatx = &uap->dmatx;
550 	unsigned long flags;
551 	u16 dmacr;
552 
553 	spin_lock_irqsave(&uap->port.lock, flags);
554 	if (uap->dmatx.queued)
555 		dma_unmap_sg(dmatx->chan->device->dev, &dmatx->sg, 1,
556 			     DMA_TO_DEVICE);
557 
558 	dmacr = uap->dmacr;
559 	uap->dmacr = dmacr & ~UART011_TXDMAE;
560 	pl011_write(uap->dmacr, uap, REG_DMACR);
561 
562 	/*
563 	 * If TX DMA was disabled, it means that we've stopped the DMA for
564 	 * some reason (eg, XOFF received, or we want to send an X-char.)
565 	 *
566 	 * Note: we need to be careful here of a potential race between DMA
567 	 * and the rest of the driver - if the driver disables TX DMA while
568 	 * a TX buffer completing, we must update the tx queued status to
569 	 * get further refills (hence we check dmacr).
570 	 */
571 	if (!(dmacr & UART011_TXDMAE) || uart_tx_stopped(&uap->port) ||
572 	    uart_circ_empty(&uap->port.state->xmit)) {
573 		uap->dmatx.queued = false;
574 		spin_unlock_irqrestore(&uap->port.lock, flags);
575 		return;
576 	}
577 
578 	if (pl011_dma_tx_refill(uap) <= 0)
579 		/*
580 		 * We didn't queue a DMA buffer for some reason, but we
581 		 * have data pending to be sent.  Re-enable the TX IRQ.
582 		 */
583 		pl011_start_tx_pio(uap);
584 
585 	spin_unlock_irqrestore(&uap->port.lock, flags);
586 }
587 
588 /*
589  * Try to refill the TX DMA buffer.
590  * Locking: called with port lock held and IRQs disabled.
591  * Returns:
592  *   1 if we queued up a TX DMA buffer.
593  *   0 if we didn't want to handle this by DMA
594  *  <0 on error
595  */
596 static int pl011_dma_tx_refill(struct uart_amba_port *uap)
597 {
598 	struct pl011_dmatx_data *dmatx = &uap->dmatx;
599 	struct dma_chan *chan = dmatx->chan;
600 	struct dma_device *dma_dev = chan->device;
601 	struct dma_async_tx_descriptor *desc;
602 	struct circ_buf *xmit = &uap->port.state->xmit;
603 	unsigned int count;
604 
605 	/*
606 	 * Try to avoid the overhead involved in using DMA if the
607 	 * transaction fits in the first half of the FIFO, by using
608 	 * the standard interrupt handling.  This ensures that we
609 	 * issue a uart_write_wakeup() at the appropriate time.
610 	 */
611 	count = uart_circ_chars_pending(xmit);
612 	if (count < (uap->fifosize >> 1)) {
613 		uap->dmatx.queued = false;
614 		return 0;
615 	}
616 
617 	/*
618 	 * Bodge: don't send the last character by DMA, as this
619 	 * will prevent XON from notifying us to restart DMA.
620 	 */
621 	count -= 1;
622 
623 	/* Else proceed to copy the TX chars to the DMA buffer and fire DMA */
624 	if (count > PL011_DMA_BUFFER_SIZE)
625 		count = PL011_DMA_BUFFER_SIZE;
626 
627 	if (xmit->tail < xmit->head)
628 		memcpy(&dmatx->buf[0], &xmit->buf[xmit->tail], count);
629 	else {
630 		size_t first = UART_XMIT_SIZE - xmit->tail;
631 		size_t second;
632 
633 		if (first > count)
634 			first = count;
635 		second = count - first;
636 
637 		memcpy(&dmatx->buf[0], &xmit->buf[xmit->tail], first);
638 		if (second)
639 			memcpy(&dmatx->buf[first], &xmit->buf[0], second);
640 	}
641 
642 	dmatx->sg.length = count;
643 
644 	if (dma_map_sg(dma_dev->dev, &dmatx->sg, 1, DMA_TO_DEVICE) != 1) {
645 		uap->dmatx.queued = false;
646 		dev_dbg(uap->port.dev, "unable to map TX DMA\n");
647 		return -EBUSY;
648 	}
649 
650 	desc = dmaengine_prep_slave_sg(chan, &dmatx->sg, 1, DMA_MEM_TO_DEV,
651 					     DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
652 	if (!desc) {
653 		dma_unmap_sg(dma_dev->dev, &dmatx->sg, 1, DMA_TO_DEVICE);
654 		uap->dmatx.queued = false;
655 		/*
656 		 * If DMA cannot be used right now, we complete this
657 		 * transaction via IRQ and let the TTY layer retry.
658 		 */
659 		dev_dbg(uap->port.dev, "TX DMA busy\n");
660 		return -EBUSY;
661 	}
662 
663 	/* Some data to go along to the callback */
664 	desc->callback = pl011_dma_tx_callback;
665 	desc->callback_param = uap;
666 
667 	/* All errors should happen at prepare time */
668 	dmaengine_submit(desc);
669 
670 	/* Fire the DMA transaction */
671 	dma_dev->device_issue_pending(chan);
672 
673 	uap->dmacr |= UART011_TXDMAE;
674 	pl011_write(uap->dmacr, uap, REG_DMACR);
675 	uap->dmatx.queued = true;
676 
677 	/*
678 	 * Now we know that DMA will fire, so advance the ring buffer
679 	 * with the stuff we just dispatched.
680 	 */
681 	xmit->tail = (xmit->tail + count) & (UART_XMIT_SIZE - 1);
682 	uap->port.icount.tx += count;
683 
684 	if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
685 		uart_write_wakeup(&uap->port);
686 
687 	return 1;
688 }
689 
690 /*
691  * We received a transmit interrupt without a pending X-char but with
692  * pending characters.
693  * Locking: called with port lock held and IRQs disabled.
694  * Returns:
695  *   false if we want to use PIO to transmit
696  *   true if we queued a DMA buffer
697  */
698 static bool pl011_dma_tx_irq(struct uart_amba_port *uap)
699 {
700 	if (!uap->using_tx_dma)
701 		return false;
702 
703 	/*
704 	 * If we already have a TX buffer queued, but received a
705 	 * TX interrupt, it will be because we've just sent an X-char.
706 	 * Ensure the TX DMA is enabled and the TX IRQ is disabled.
707 	 */
708 	if (uap->dmatx.queued) {
709 		uap->dmacr |= UART011_TXDMAE;
710 		pl011_write(uap->dmacr, uap, REG_DMACR);
711 		uap->im &= ~UART011_TXIM;
712 		pl011_write(uap->im, uap, REG_IMSC);
713 		return true;
714 	}
715 
716 	/*
717 	 * We don't have a TX buffer queued, so try to queue one.
718 	 * If we successfully queued a buffer, mask the TX IRQ.
719 	 */
720 	if (pl011_dma_tx_refill(uap) > 0) {
721 		uap->im &= ~UART011_TXIM;
722 		pl011_write(uap->im, uap, REG_IMSC);
723 		return true;
724 	}
725 	return false;
726 }
727 
728 /*
729  * Stop the DMA transmit (eg, due to received XOFF).
730  * Locking: called with port lock held and IRQs disabled.
731  */
732 static inline void pl011_dma_tx_stop(struct uart_amba_port *uap)
733 {
734 	if (uap->dmatx.queued) {
735 		uap->dmacr &= ~UART011_TXDMAE;
736 		pl011_write(uap->dmacr, uap, REG_DMACR);
737 	}
738 }
739 
740 /*
741  * Try to start a DMA transmit, or in the case of an XON/OFF
742  * character queued for send, try to get that character out ASAP.
743  * Locking: called with port lock held and IRQs disabled.
744  * Returns:
745  *   false if we want the TX IRQ to be enabled
746  *   true if we have a buffer queued
747  */
748 static inline bool pl011_dma_tx_start(struct uart_amba_port *uap)
749 {
750 	u16 dmacr;
751 
752 	if (!uap->using_tx_dma)
753 		return false;
754 
755 	if (!uap->port.x_char) {
756 		/* no X-char, try to push chars out in DMA mode */
757 		bool ret = true;
758 
759 		if (!uap->dmatx.queued) {
760 			if (pl011_dma_tx_refill(uap) > 0) {
761 				uap->im &= ~UART011_TXIM;
762 				pl011_write(uap->im, uap, REG_IMSC);
763 			} else
764 				ret = false;
765 		} else if (!(uap->dmacr & UART011_TXDMAE)) {
766 			uap->dmacr |= UART011_TXDMAE;
767 			pl011_write(uap->dmacr, uap, REG_DMACR);
768 		}
769 		return ret;
770 	}
771 
772 	/*
773 	 * We have an X-char to send.  Disable DMA to prevent it loading
774 	 * the TX fifo, and then see if we can stuff it into the FIFO.
775 	 */
776 	dmacr = uap->dmacr;
777 	uap->dmacr &= ~UART011_TXDMAE;
778 	pl011_write(uap->dmacr, uap, REG_DMACR);
779 
780 	if (pl011_read(uap, REG_FR) & UART01x_FR_TXFF) {
781 		/*
782 		 * No space in the FIFO, so enable the transmit interrupt
783 		 * so we know when there is space.  Note that once we've
784 		 * loaded the character, we should just re-enable DMA.
785 		 */
786 		return false;
787 	}
788 
789 	pl011_write(uap->port.x_char, uap, REG_DR);
790 	uap->port.icount.tx++;
791 	uap->port.x_char = 0;
792 
793 	/* Success - restore the DMA state */
794 	uap->dmacr = dmacr;
795 	pl011_write(dmacr, uap, REG_DMACR);
796 
797 	return true;
798 }
799 
800 /*
801  * Flush the transmit buffer.
802  * Locking: called with port lock held and IRQs disabled.
803  */
804 static void pl011_dma_flush_buffer(struct uart_port *port)
805 __releases(&uap->port.lock)
806 __acquires(&uap->port.lock)
807 {
808 	struct uart_amba_port *uap =
809 	    container_of(port, struct uart_amba_port, port);
810 
811 	if (!uap->using_tx_dma)
812 		return;
813 
814 	/* Avoid deadlock with the DMA engine callback */
815 	spin_unlock(&uap->port.lock);
816 	dmaengine_terminate_all(uap->dmatx.chan);
817 	spin_lock(&uap->port.lock);
818 	if (uap->dmatx.queued) {
819 		dma_unmap_sg(uap->dmatx.chan->device->dev, &uap->dmatx.sg, 1,
820 			     DMA_TO_DEVICE);
821 		uap->dmatx.queued = false;
822 		uap->dmacr &= ~UART011_TXDMAE;
823 		pl011_write(uap->dmacr, uap, REG_DMACR);
824 	}
825 }
826 
827 static void pl011_dma_rx_callback(void *data);
828 
829 static int pl011_dma_rx_trigger_dma(struct uart_amba_port *uap)
830 {
831 	struct dma_chan *rxchan = uap->dmarx.chan;
832 	struct pl011_dmarx_data *dmarx = &uap->dmarx;
833 	struct dma_async_tx_descriptor *desc;
834 	struct pl011_sgbuf *sgbuf;
835 
836 	if (!rxchan)
837 		return -EIO;
838 
839 	/* Start the RX DMA job */
840 	sgbuf = uap->dmarx.use_buf_b ?
841 		&uap->dmarx.sgbuf_b : &uap->dmarx.sgbuf_a;
842 	desc = dmaengine_prep_slave_sg(rxchan, &sgbuf->sg, 1,
843 					DMA_DEV_TO_MEM,
844 					DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
845 	/*
846 	 * If the DMA engine is busy and cannot prepare a
847 	 * channel, no big deal, the driver will fall back
848 	 * to interrupt mode as a result of this error code.
849 	 */
850 	if (!desc) {
851 		uap->dmarx.running = false;
852 		dmaengine_terminate_all(rxchan);
853 		return -EBUSY;
854 	}
855 
856 	/* Some data to go along to the callback */
857 	desc->callback = pl011_dma_rx_callback;
858 	desc->callback_param = uap;
859 	dmarx->cookie = dmaengine_submit(desc);
860 	dma_async_issue_pending(rxchan);
861 
862 	uap->dmacr |= UART011_RXDMAE;
863 	pl011_write(uap->dmacr, uap, REG_DMACR);
864 	uap->dmarx.running = true;
865 
866 	uap->im &= ~UART011_RXIM;
867 	pl011_write(uap->im, uap, REG_IMSC);
868 
869 	return 0;
870 }
871 
872 /*
873  * This is called when either the DMA job is complete, or
874  * the FIFO timeout interrupt occurred. This must be called
875  * with the port spinlock uap->port.lock held.
876  */
877 static void pl011_dma_rx_chars(struct uart_amba_port *uap,
878 			       u32 pending, bool use_buf_b,
879 			       bool readfifo)
880 {
881 	struct tty_port *port = &uap->port.state->port;
882 	struct pl011_sgbuf *sgbuf = use_buf_b ?
883 		&uap->dmarx.sgbuf_b : &uap->dmarx.sgbuf_a;
884 	int dma_count = 0;
885 	u32 fifotaken = 0; /* only used for vdbg() */
886 
887 	struct pl011_dmarx_data *dmarx = &uap->dmarx;
888 	int dmataken = 0;
889 
890 	if (uap->dmarx.poll_rate) {
891 		/* The data can be taken by polling */
892 		dmataken = sgbuf->sg.length - dmarx->last_residue;
893 		/* Recalculate the pending size */
894 		if (pending >= dmataken)
895 			pending -= dmataken;
896 	}
897 
898 	/* Pick the remain data from the DMA */
899 	if (pending) {
900 
901 		/*
902 		 * First take all chars in the DMA pipe, then look in the FIFO.
903 		 * Note that tty_insert_flip_buf() tries to take as many chars
904 		 * as it can.
905 		 */
906 		dma_count = tty_insert_flip_string(port, sgbuf->buf + dmataken,
907 				pending);
908 
909 		uap->port.icount.rx += dma_count;
910 		if (dma_count < pending)
911 			dev_warn(uap->port.dev,
912 				 "couldn't insert all characters (TTY is full?)\n");
913 	}
914 
915 	/* Reset the last_residue for Rx DMA poll */
916 	if (uap->dmarx.poll_rate)
917 		dmarx->last_residue = sgbuf->sg.length;
918 
919 	/*
920 	 * Only continue with trying to read the FIFO if all DMA chars have
921 	 * been taken first.
922 	 */
923 	if (dma_count == pending && readfifo) {
924 		/* Clear any error flags */
925 		pl011_write(UART011_OEIS | UART011_BEIS | UART011_PEIS |
926 			    UART011_FEIS, uap, REG_ICR);
927 
928 		/*
929 		 * If we read all the DMA'd characters, and we had an
930 		 * incomplete buffer, that could be due to an rx error, or
931 		 * maybe we just timed out. Read any pending chars and check
932 		 * the error status.
933 		 *
934 		 * Error conditions will only occur in the FIFO, these will
935 		 * trigger an immediate interrupt and stop the DMA job, so we
936 		 * will always find the error in the FIFO, never in the DMA
937 		 * buffer.
938 		 */
939 		fifotaken = pl011_fifo_to_tty(uap);
940 	}
941 
942 	spin_unlock(&uap->port.lock);
943 	dev_vdbg(uap->port.dev,
944 		 "Took %d chars from DMA buffer and %d chars from the FIFO\n",
945 		 dma_count, fifotaken);
946 	tty_flip_buffer_push(port);
947 	spin_lock(&uap->port.lock);
948 }
949 
950 static void pl011_dma_rx_irq(struct uart_amba_port *uap)
951 {
952 	struct pl011_dmarx_data *dmarx = &uap->dmarx;
953 	struct dma_chan *rxchan = dmarx->chan;
954 	struct pl011_sgbuf *sgbuf = dmarx->use_buf_b ?
955 		&dmarx->sgbuf_b : &dmarx->sgbuf_a;
956 	size_t pending;
957 	struct dma_tx_state state;
958 	enum dma_status dmastat;
959 
960 	/*
961 	 * Pause the transfer so we can trust the current counter,
962 	 * do this before we pause the PL011 block, else we may
963 	 * overflow the FIFO.
964 	 */
965 	if (dmaengine_pause(rxchan))
966 		dev_err(uap->port.dev, "unable to pause DMA transfer\n");
967 	dmastat = rxchan->device->device_tx_status(rxchan,
968 						   dmarx->cookie, &state);
969 	if (dmastat != DMA_PAUSED)
970 		dev_err(uap->port.dev, "unable to pause DMA transfer\n");
971 
972 	/* Disable RX DMA - incoming data will wait in the FIFO */
973 	uap->dmacr &= ~UART011_RXDMAE;
974 	pl011_write(uap->dmacr, uap, REG_DMACR);
975 	uap->dmarx.running = false;
976 
977 	pending = sgbuf->sg.length - state.residue;
978 	BUG_ON(pending > PL011_DMA_BUFFER_SIZE);
979 	/* Then we terminate the transfer - we now know our residue */
980 	dmaengine_terminate_all(rxchan);
981 
982 	/*
983 	 * This will take the chars we have so far and insert
984 	 * into the framework.
985 	 */
986 	pl011_dma_rx_chars(uap, pending, dmarx->use_buf_b, true);
987 
988 	/* Switch buffer & re-trigger DMA job */
989 	dmarx->use_buf_b = !dmarx->use_buf_b;
990 	if (pl011_dma_rx_trigger_dma(uap)) {
991 		dev_dbg(uap->port.dev, "could not retrigger RX DMA job "
992 			"fall back to interrupt mode\n");
993 		uap->im |= UART011_RXIM;
994 		pl011_write(uap->im, uap, REG_IMSC);
995 	}
996 }
997 
998 static void pl011_dma_rx_callback(void *data)
999 {
1000 	struct uart_amba_port *uap = data;
1001 	struct pl011_dmarx_data *dmarx = &uap->dmarx;
1002 	struct dma_chan *rxchan = dmarx->chan;
1003 	bool lastbuf = dmarx->use_buf_b;
1004 	struct pl011_sgbuf *sgbuf = dmarx->use_buf_b ?
1005 		&dmarx->sgbuf_b : &dmarx->sgbuf_a;
1006 	size_t pending;
1007 	struct dma_tx_state state;
1008 	int ret;
1009 
1010 	/*
1011 	 * This completion interrupt occurs typically when the
1012 	 * RX buffer is totally stuffed but no timeout has yet
1013 	 * occurred. When that happens, we just want the RX
1014 	 * routine to flush out the secondary DMA buffer while
1015 	 * we immediately trigger the next DMA job.
1016 	 */
1017 	spin_lock_irq(&uap->port.lock);
1018 	/*
1019 	 * Rx data can be taken by the UART interrupts during
1020 	 * the DMA irq handler. So we check the residue here.
1021 	 */
1022 	rxchan->device->device_tx_status(rxchan, dmarx->cookie, &state);
1023 	pending = sgbuf->sg.length - state.residue;
1024 	BUG_ON(pending > PL011_DMA_BUFFER_SIZE);
1025 	/* Then we terminate the transfer - we now know our residue */
1026 	dmaengine_terminate_all(rxchan);
1027 
1028 	uap->dmarx.running = false;
1029 	dmarx->use_buf_b = !lastbuf;
1030 	ret = pl011_dma_rx_trigger_dma(uap);
1031 
1032 	pl011_dma_rx_chars(uap, pending, lastbuf, false);
1033 	spin_unlock_irq(&uap->port.lock);
1034 	/*
1035 	 * Do this check after we picked the DMA chars so we don't
1036 	 * get some IRQ immediately from RX.
1037 	 */
1038 	if (ret) {
1039 		dev_dbg(uap->port.dev, "could not retrigger RX DMA job "
1040 			"fall back to interrupt mode\n");
1041 		uap->im |= UART011_RXIM;
1042 		pl011_write(uap->im, uap, REG_IMSC);
1043 	}
1044 }
1045 
1046 /*
1047  * Stop accepting received characters, when we're shutting down or
1048  * suspending this port.
1049  * Locking: called with port lock held and IRQs disabled.
1050  */
1051 static inline void pl011_dma_rx_stop(struct uart_amba_port *uap)
1052 {
1053 	/* FIXME.  Just disable the DMA enable */
1054 	uap->dmacr &= ~UART011_RXDMAE;
1055 	pl011_write(uap->dmacr, uap, REG_DMACR);
1056 }
1057 
1058 /*
1059  * Timer handler for Rx DMA polling.
1060  * Every polling, It checks the residue in the dma buffer and transfer
1061  * data to the tty. Also, last_residue is updated for the next polling.
1062  */
1063 static void pl011_dma_rx_poll(unsigned long args)
1064 {
1065 	struct uart_amba_port *uap = (struct uart_amba_port *)args;
1066 	struct tty_port *port = &uap->port.state->port;
1067 	struct pl011_dmarx_data *dmarx = &uap->dmarx;
1068 	struct dma_chan *rxchan = uap->dmarx.chan;
1069 	unsigned long flags = 0;
1070 	unsigned int dmataken = 0;
1071 	unsigned int size = 0;
1072 	struct pl011_sgbuf *sgbuf;
1073 	int dma_count;
1074 	struct dma_tx_state state;
1075 
1076 	sgbuf = dmarx->use_buf_b ? &uap->dmarx.sgbuf_b : &uap->dmarx.sgbuf_a;
1077 	rxchan->device->device_tx_status(rxchan, dmarx->cookie, &state);
1078 	if (likely(state.residue < dmarx->last_residue)) {
1079 		dmataken = sgbuf->sg.length - dmarx->last_residue;
1080 		size = dmarx->last_residue - state.residue;
1081 		dma_count = tty_insert_flip_string(port, sgbuf->buf + dmataken,
1082 				size);
1083 		if (dma_count == size)
1084 			dmarx->last_residue =  state.residue;
1085 		dmarx->last_jiffies = jiffies;
1086 	}
1087 	tty_flip_buffer_push(port);
1088 
1089 	/*
1090 	 * If no data is received in poll_timeout, the driver will fall back
1091 	 * to interrupt mode. We will retrigger DMA at the first interrupt.
1092 	 */
1093 	if (jiffies_to_msecs(jiffies - dmarx->last_jiffies)
1094 			> uap->dmarx.poll_timeout) {
1095 
1096 		spin_lock_irqsave(&uap->port.lock, flags);
1097 		pl011_dma_rx_stop(uap);
1098 		uap->im |= UART011_RXIM;
1099 		pl011_write(uap->im, uap, REG_IMSC);
1100 		spin_unlock_irqrestore(&uap->port.lock, flags);
1101 
1102 		uap->dmarx.running = false;
1103 		dmaengine_terminate_all(rxchan);
1104 		del_timer(&uap->dmarx.timer);
1105 	} else {
1106 		mod_timer(&uap->dmarx.timer,
1107 			jiffies + msecs_to_jiffies(uap->dmarx.poll_rate));
1108 	}
1109 }
1110 
1111 static void pl011_dma_startup(struct uart_amba_port *uap)
1112 {
1113 	int ret;
1114 
1115 	if (!uap->dma_probed)
1116 		pl011_dma_probe(uap);
1117 
1118 	if (!uap->dmatx.chan)
1119 		return;
1120 
1121 	uap->dmatx.buf = kmalloc(PL011_DMA_BUFFER_SIZE, GFP_KERNEL | __GFP_DMA);
1122 	if (!uap->dmatx.buf) {
1123 		dev_err(uap->port.dev, "no memory for DMA TX buffer\n");
1124 		uap->port.fifosize = uap->fifosize;
1125 		return;
1126 	}
1127 
1128 	sg_init_one(&uap->dmatx.sg, uap->dmatx.buf, PL011_DMA_BUFFER_SIZE);
1129 
1130 	/* The DMA buffer is now the FIFO the TTY subsystem can use */
1131 	uap->port.fifosize = PL011_DMA_BUFFER_SIZE;
1132 	uap->using_tx_dma = true;
1133 
1134 	if (!uap->dmarx.chan)
1135 		goto skip_rx;
1136 
1137 	/* Allocate and map DMA RX buffers */
1138 	ret = pl011_sgbuf_init(uap->dmarx.chan, &uap->dmarx.sgbuf_a,
1139 			       DMA_FROM_DEVICE);
1140 	if (ret) {
1141 		dev_err(uap->port.dev, "failed to init DMA %s: %d\n",
1142 			"RX buffer A", ret);
1143 		goto skip_rx;
1144 	}
1145 
1146 	ret = pl011_sgbuf_init(uap->dmarx.chan, &uap->dmarx.sgbuf_b,
1147 			       DMA_FROM_DEVICE);
1148 	if (ret) {
1149 		dev_err(uap->port.dev, "failed to init DMA %s: %d\n",
1150 			"RX buffer B", ret);
1151 		pl011_sgbuf_free(uap->dmarx.chan, &uap->dmarx.sgbuf_a,
1152 				 DMA_FROM_DEVICE);
1153 		goto skip_rx;
1154 	}
1155 
1156 	uap->using_rx_dma = true;
1157 
1158 skip_rx:
1159 	/* Turn on DMA error (RX/TX will be enabled on demand) */
1160 	uap->dmacr |= UART011_DMAONERR;
1161 	pl011_write(uap->dmacr, uap, REG_DMACR);
1162 
1163 	/*
1164 	 * ST Micro variants has some specific dma burst threshold
1165 	 * compensation. Set this to 16 bytes, so burst will only
1166 	 * be issued above/below 16 bytes.
1167 	 */
1168 	if (uap->vendor->dma_threshold)
1169 		pl011_write(ST_UART011_DMAWM_RX_16 | ST_UART011_DMAWM_TX_16,
1170 			    uap, REG_ST_DMAWM);
1171 
1172 	if (uap->using_rx_dma) {
1173 		if (pl011_dma_rx_trigger_dma(uap))
1174 			dev_dbg(uap->port.dev, "could not trigger initial "
1175 				"RX DMA job, fall back to interrupt mode\n");
1176 		if (uap->dmarx.poll_rate) {
1177 			init_timer(&(uap->dmarx.timer));
1178 			uap->dmarx.timer.function = pl011_dma_rx_poll;
1179 			uap->dmarx.timer.data = (unsigned long)uap;
1180 			mod_timer(&uap->dmarx.timer,
1181 				jiffies +
1182 				msecs_to_jiffies(uap->dmarx.poll_rate));
1183 			uap->dmarx.last_residue = PL011_DMA_BUFFER_SIZE;
1184 			uap->dmarx.last_jiffies = jiffies;
1185 		}
1186 	}
1187 }
1188 
1189 static void pl011_dma_shutdown(struct uart_amba_port *uap)
1190 {
1191 	if (!(uap->using_tx_dma || uap->using_rx_dma))
1192 		return;
1193 
1194 	/* Disable RX and TX DMA */
1195 	while (pl011_read(uap, REG_FR) & uap->vendor->fr_busy)
1196 		cpu_relax();
1197 
1198 	spin_lock_irq(&uap->port.lock);
1199 	uap->dmacr &= ~(UART011_DMAONERR | UART011_RXDMAE | UART011_TXDMAE);
1200 	pl011_write(uap->dmacr, uap, REG_DMACR);
1201 	spin_unlock_irq(&uap->port.lock);
1202 
1203 	if (uap->using_tx_dma) {
1204 		/* In theory, this should already be done by pl011_dma_flush_buffer */
1205 		dmaengine_terminate_all(uap->dmatx.chan);
1206 		if (uap->dmatx.queued) {
1207 			dma_unmap_sg(uap->dmatx.chan->device->dev, &uap->dmatx.sg, 1,
1208 				     DMA_TO_DEVICE);
1209 			uap->dmatx.queued = false;
1210 		}
1211 
1212 		kfree(uap->dmatx.buf);
1213 		uap->using_tx_dma = false;
1214 	}
1215 
1216 	if (uap->using_rx_dma) {
1217 		dmaengine_terminate_all(uap->dmarx.chan);
1218 		/* Clean up the RX DMA */
1219 		pl011_sgbuf_free(uap->dmarx.chan, &uap->dmarx.sgbuf_a, DMA_FROM_DEVICE);
1220 		pl011_sgbuf_free(uap->dmarx.chan, &uap->dmarx.sgbuf_b, DMA_FROM_DEVICE);
1221 		if (uap->dmarx.poll_rate)
1222 			del_timer_sync(&uap->dmarx.timer);
1223 		uap->using_rx_dma = false;
1224 	}
1225 }
1226 
1227 static inline bool pl011_dma_rx_available(struct uart_amba_port *uap)
1228 {
1229 	return uap->using_rx_dma;
1230 }
1231 
1232 static inline bool pl011_dma_rx_running(struct uart_amba_port *uap)
1233 {
1234 	return uap->using_rx_dma && uap->dmarx.running;
1235 }
1236 
1237 #else
1238 /* Blank functions if the DMA engine is not available */
1239 static inline void pl011_dma_probe(struct uart_amba_port *uap)
1240 {
1241 }
1242 
1243 static inline void pl011_dma_remove(struct uart_amba_port *uap)
1244 {
1245 }
1246 
1247 static inline void pl011_dma_startup(struct uart_amba_port *uap)
1248 {
1249 }
1250 
1251 static inline void pl011_dma_shutdown(struct uart_amba_port *uap)
1252 {
1253 }
1254 
1255 static inline bool pl011_dma_tx_irq(struct uart_amba_port *uap)
1256 {
1257 	return false;
1258 }
1259 
1260 static inline void pl011_dma_tx_stop(struct uart_amba_port *uap)
1261 {
1262 }
1263 
1264 static inline bool pl011_dma_tx_start(struct uart_amba_port *uap)
1265 {
1266 	return false;
1267 }
1268 
1269 static inline void pl011_dma_rx_irq(struct uart_amba_port *uap)
1270 {
1271 }
1272 
1273 static inline void pl011_dma_rx_stop(struct uart_amba_port *uap)
1274 {
1275 }
1276 
1277 static inline int pl011_dma_rx_trigger_dma(struct uart_amba_port *uap)
1278 {
1279 	return -EIO;
1280 }
1281 
1282 static inline bool pl011_dma_rx_available(struct uart_amba_port *uap)
1283 {
1284 	return false;
1285 }
1286 
1287 static inline bool pl011_dma_rx_running(struct uart_amba_port *uap)
1288 {
1289 	return false;
1290 }
1291 
1292 #define pl011_dma_flush_buffer	NULL
1293 #endif
1294 
1295 static void pl011_stop_tx(struct uart_port *port)
1296 {
1297 	struct uart_amba_port *uap =
1298 	    container_of(port, struct uart_amba_port, port);
1299 
1300 	uap->im &= ~UART011_TXIM;
1301 	pl011_write(uap->im, uap, REG_IMSC);
1302 	pl011_dma_tx_stop(uap);
1303 }
1304 
1305 static void pl011_tx_chars(struct uart_amba_port *uap, bool from_irq);
1306 
1307 /* Start TX with programmed I/O only (no DMA) */
1308 static void pl011_start_tx_pio(struct uart_amba_port *uap)
1309 {
1310 	uap->im |= UART011_TXIM;
1311 	pl011_write(uap->im, uap, REG_IMSC);
1312 	pl011_tx_chars(uap, false);
1313 }
1314 
1315 static void pl011_start_tx(struct uart_port *port)
1316 {
1317 	struct uart_amba_port *uap =
1318 	    container_of(port, struct uart_amba_port, port);
1319 
1320 	if (!pl011_dma_tx_start(uap))
1321 		pl011_start_tx_pio(uap);
1322 }
1323 
1324 static void pl011_stop_rx(struct uart_port *port)
1325 {
1326 	struct uart_amba_port *uap =
1327 	    container_of(port, struct uart_amba_port, port);
1328 
1329 	uap->im &= ~(UART011_RXIM|UART011_RTIM|UART011_FEIM|
1330 		     UART011_PEIM|UART011_BEIM|UART011_OEIM);
1331 	pl011_write(uap->im, uap, REG_IMSC);
1332 
1333 	pl011_dma_rx_stop(uap);
1334 }
1335 
1336 static void pl011_enable_ms(struct uart_port *port)
1337 {
1338 	struct uart_amba_port *uap =
1339 	    container_of(port, struct uart_amba_port, port);
1340 
1341 	uap->im |= UART011_RIMIM|UART011_CTSMIM|UART011_DCDMIM|UART011_DSRMIM;
1342 	pl011_write(uap->im, uap, REG_IMSC);
1343 }
1344 
1345 static void pl011_rx_chars(struct uart_amba_port *uap)
1346 __releases(&uap->port.lock)
1347 __acquires(&uap->port.lock)
1348 {
1349 	pl011_fifo_to_tty(uap);
1350 
1351 	spin_unlock(&uap->port.lock);
1352 	tty_flip_buffer_push(&uap->port.state->port);
1353 	/*
1354 	 * If we were temporarily out of DMA mode for a while,
1355 	 * attempt to switch back to DMA mode again.
1356 	 */
1357 	if (pl011_dma_rx_available(uap)) {
1358 		if (pl011_dma_rx_trigger_dma(uap)) {
1359 			dev_dbg(uap->port.dev, "could not trigger RX DMA job "
1360 				"fall back to interrupt mode again\n");
1361 			uap->im |= UART011_RXIM;
1362 			pl011_write(uap->im, uap, REG_IMSC);
1363 		} else {
1364 #ifdef CONFIG_DMA_ENGINE
1365 			/* Start Rx DMA poll */
1366 			if (uap->dmarx.poll_rate) {
1367 				uap->dmarx.last_jiffies = jiffies;
1368 				uap->dmarx.last_residue	= PL011_DMA_BUFFER_SIZE;
1369 				mod_timer(&uap->dmarx.timer,
1370 					jiffies +
1371 					msecs_to_jiffies(uap->dmarx.poll_rate));
1372 			}
1373 #endif
1374 		}
1375 	}
1376 	spin_lock(&uap->port.lock);
1377 }
1378 
1379 static bool pl011_tx_char(struct uart_amba_port *uap, unsigned char c,
1380 			  bool from_irq)
1381 {
1382 	if (unlikely(!from_irq) &&
1383 	    pl011_read(uap, REG_FR) & UART01x_FR_TXFF)
1384 		return false; /* unable to transmit character */
1385 
1386 	pl011_write(c, uap, REG_DR);
1387 	uap->port.icount.tx++;
1388 
1389 	return true;
1390 }
1391 
1392 static void pl011_tx_chars(struct uart_amba_port *uap, bool from_irq)
1393 {
1394 	struct circ_buf *xmit = &uap->port.state->xmit;
1395 	int count = uap->fifosize >> 1;
1396 
1397 	if (uap->port.x_char) {
1398 		if (!pl011_tx_char(uap, uap->port.x_char, from_irq))
1399 			return;
1400 		uap->port.x_char = 0;
1401 		--count;
1402 	}
1403 	if (uart_circ_empty(xmit) || uart_tx_stopped(&uap->port)) {
1404 		pl011_stop_tx(&uap->port);
1405 		return;
1406 	}
1407 
1408 	/* If we are using DMA mode, try to send some characters. */
1409 	if (pl011_dma_tx_irq(uap))
1410 		return;
1411 
1412 	do {
1413 		if (likely(from_irq) && count-- == 0)
1414 			break;
1415 
1416 		if (!pl011_tx_char(uap, xmit->buf[xmit->tail], from_irq))
1417 			break;
1418 
1419 		xmit->tail = (xmit->tail + 1) & (UART_XMIT_SIZE - 1);
1420 	} while (!uart_circ_empty(xmit));
1421 
1422 	if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
1423 		uart_write_wakeup(&uap->port);
1424 
1425 	if (uart_circ_empty(xmit))
1426 		pl011_stop_tx(&uap->port);
1427 }
1428 
1429 static void pl011_modem_status(struct uart_amba_port *uap)
1430 {
1431 	unsigned int status, delta;
1432 
1433 	status = pl011_read(uap, REG_FR) & UART01x_FR_MODEM_ANY;
1434 
1435 	delta = status ^ uap->old_status;
1436 	uap->old_status = status;
1437 
1438 	if (!delta)
1439 		return;
1440 
1441 	if (delta & UART01x_FR_DCD)
1442 		uart_handle_dcd_change(&uap->port, status & UART01x_FR_DCD);
1443 
1444 	if (delta & uap->vendor->fr_dsr)
1445 		uap->port.icount.dsr++;
1446 
1447 	if (delta & uap->vendor->fr_cts)
1448 		uart_handle_cts_change(&uap->port,
1449 				       status & uap->vendor->fr_cts);
1450 
1451 	wake_up_interruptible(&uap->port.state->port.delta_msr_wait);
1452 }
1453 
1454 static void check_apply_cts_event_workaround(struct uart_amba_port *uap)
1455 {
1456 	unsigned int dummy_read;
1457 
1458 	if (!uap->vendor->cts_event_workaround)
1459 		return;
1460 
1461 	/* workaround to make sure that all bits are unlocked.. */
1462 	pl011_write(0x00, uap, REG_ICR);
1463 
1464 	/*
1465 	 * WA: introduce 26ns(1 uart clk) delay before W1C;
1466 	 * single apb access will incur 2 pclk(133.12Mhz) delay,
1467 	 * so add 2 dummy reads
1468 	 */
1469 	dummy_read = pl011_read(uap, REG_ICR);
1470 	dummy_read = pl011_read(uap, REG_ICR);
1471 }
1472 
1473 static irqreturn_t pl011_int(int irq, void *dev_id)
1474 {
1475 	struct uart_amba_port *uap = dev_id;
1476 	unsigned long flags;
1477 	unsigned int status, pass_counter = AMBA_ISR_PASS_LIMIT;
1478 	u16 imsc;
1479 	int handled = 0;
1480 
1481 	spin_lock_irqsave(&uap->port.lock, flags);
1482 	imsc = pl011_read(uap, REG_IMSC);
1483 	status = pl011_read(uap, REG_RIS) & imsc;
1484 	if (status) {
1485 		do {
1486 			check_apply_cts_event_workaround(uap);
1487 
1488 			pl011_write(status & ~(UART011_TXIS|UART011_RTIS|
1489 					       UART011_RXIS),
1490 				    uap, REG_ICR);
1491 
1492 			if (status & (UART011_RTIS|UART011_RXIS)) {
1493 				if (pl011_dma_rx_running(uap))
1494 					pl011_dma_rx_irq(uap);
1495 				else
1496 					pl011_rx_chars(uap);
1497 			}
1498 			if (status & (UART011_DSRMIS|UART011_DCDMIS|
1499 				      UART011_CTSMIS|UART011_RIMIS))
1500 				pl011_modem_status(uap);
1501 			if (status & UART011_TXIS)
1502 				pl011_tx_chars(uap, true);
1503 
1504 			if (pass_counter-- == 0)
1505 				break;
1506 
1507 			status = pl011_read(uap, REG_RIS) & imsc;
1508 		} while (status != 0);
1509 		handled = 1;
1510 	}
1511 
1512 	spin_unlock_irqrestore(&uap->port.lock, flags);
1513 
1514 	return IRQ_RETVAL(handled);
1515 }
1516 
1517 static unsigned int pl011_tx_empty(struct uart_port *port)
1518 {
1519 	struct uart_amba_port *uap =
1520 	    container_of(port, struct uart_amba_port, port);
1521 	unsigned int status = pl011_read(uap, REG_FR);
1522 	return status & (uap->vendor->fr_busy | UART01x_FR_TXFF) ?
1523 							0 : TIOCSER_TEMT;
1524 }
1525 
1526 static unsigned int pl011_get_mctrl(struct uart_port *port)
1527 {
1528 	struct uart_amba_port *uap =
1529 	    container_of(port, struct uart_amba_port, port);
1530 	unsigned int result = 0;
1531 	unsigned int status = pl011_read(uap, REG_FR);
1532 
1533 #define TIOCMBIT(uartbit, tiocmbit)	\
1534 	if (status & uartbit)		\
1535 		result |= tiocmbit
1536 
1537 	TIOCMBIT(UART01x_FR_DCD, TIOCM_CAR);
1538 	TIOCMBIT(uap->vendor->fr_dsr, TIOCM_DSR);
1539 	TIOCMBIT(uap->vendor->fr_cts, TIOCM_CTS);
1540 	TIOCMBIT(uap->vendor->fr_ri, TIOCM_RNG);
1541 #undef TIOCMBIT
1542 	return result;
1543 }
1544 
1545 static void pl011_set_mctrl(struct uart_port *port, unsigned int mctrl)
1546 {
1547 	struct uart_amba_port *uap =
1548 	    container_of(port, struct uart_amba_port, port);
1549 	unsigned int cr;
1550 
1551 	cr = pl011_read(uap, REG_CR);
1552 
1553 #define	TIOCMBIT(tiocmbit, uartbit)		\
1554 	if (mctrl & tiocmbit)		\
1555 		cr |= uartbit;		\
1556 	else				\
1557 		cr &= ~uartbit
1558 
1559 	TIOCMBIT(TIOCM_RTS, UART011_CR_RTS);
1560 	TIOCMBIT(TIOCM_DTR, UART011_CR_DTR);
1561 	TIOCMBIT(TIOCM_OUT1, UART011_CR_OUT1);
1562 	TIOCMBIT(TIOCM_OUT2, UART011_CR_OUT2);
1563 	TIOCMBIT(TIOCM_LOOP, UART011_CR_LBE);
1564 
1565 	if (uap->autorts) {
1566 		/* We need to disable auto-RTS if we want to turn RTS off */
1567 		TIOCMBIT(TIOCM_RTS, UART011_CR_RTSEN);
1568 	}
1569 #undef TIOCMBIT
1570 
1571 	pl011_write(cr, uap, REG_CR);
1572 }
1573 
1574 static void pl011_break_ctl(struct uart_port *port, int break_state)
1575 {
1576 	struct uart_amba_port *uap =
1577 	    container_of(port, struct uart_amba_port, port);
1578 	unsigned long flags;
1579 	unsigned int lcr_h;
1580 
1581 	spin_lock_irqsave(&uap->port.lock, flags);
1582 	lcr_h = pl011_read(uap, REG_LCRH_TX);
1583 	if (break_state == -1)
1584 		lcr_h |= UART01x_LCRH_BRK;
1585 	else
1586 		lcr_h &= ~UART01x_LCRH_BRK;
1587 	pl011_write(lcr_h, uap, REG_LCRH_TX);
1588 	spin_unlock_irqrestore(&uap->port.lock, flags);
1589 }
1590 
1591 #ifdef CONFIG_CONSOLE_POLL
1592 
1593 static void pl011_quiesce_irqs(struct uart_port *port)
1594 {
1595 	struct uart_amba_port *uap =
1596 	    container_of(port, struct uart_amba_port, port);
1597 
1598 	pl011_write(pl011_read(uap, REG_MIS), uap, REG_ICR);
1599 	/*
1600 	 * There is no way to clear TXIM as this is "ready to transmit IRQ", so
1601 	 * we simply mask it. start_tx() will unmask it.
1602 	 *
1603 	 * Note we can race with start_tx(), and if the race happens, the
1604 	 * polling user might get another interrupt just after we clear it.
1605 	 * But it should be OK and can happen even w/o the race, e.g.
1606 	 * controller immediately got some new data and raised the IRQ.
1607 	 *
1608 	 * And whoever uses polling routines assumes that it manages the device
1609 	 * (including tx queue), so we're also fine with start_tx()'s caller
1610 	 * side.
1611 	 */
1612 	pl011_write(pl011_read(uap, REG_IMSC) & ~UART011_TXIM, uap,
1613 		    REG_IMSC);
1614 }
1615 
1616 static int pl011_get_poll_char(struct uart_port *port)
1617 {
1618 	struct uart_amba_port *uap =
1619 	    container_of(port, struct uart_amba_port, port);
1620 	unsigned int status;
1621 
1622 	/*
1623 	 * The caller might need IRQs lowered, e.g. if used with KDB NMI
1624 	 * debugger.
1625 	 */
1626 	pl011_quiesce_irqs(port);
1627 
1628 	status = pl011_read(uap, REG_FR);
1629 	if (status & UART01x_FR_RXFE)
1630 		return NO_POLL_CHAR;
1631 
1632 	return pl011_read(uap, REG_DR);
1633 }
1634 
1635 static void pl011_put_poll_char(struct uart_port *port,
1636 			 unsigned char ch)
1637 {
1638 	struct uart_amba_port *uap =
1639 	    container_of(port, struct uart_amba_port, port);
1640 
1641 	while (pl011_read(uap, REG_FR) & UART01x_FR_TXFF)
1642 		cpu_relax();
1643 
1644 	pl011_write(ch, uap, REG_DR);
1645 }
1646 
1647 #endif /* CONFIG_CONSOLE_POLL */
1648 
1649 static int pl011_hwinit(struct uart_port *port)
1650 {
1651 	struct uart_amba_port *uap =
1652 	    container_of(port, struct uart_amba_port, port);
1653 	int retval;
1654 
1655 	/* Optionaly enable pins to be muxed in and configured */
1656 	pinctrl_pm_select_default_state(port->dev);
1657 
1658 	/*
1659 	 * Try to enable the clock producer.
1660 	 */
1661 	retval = clk_prepare_enable(uap->clk);
1662 	if (retval)
1663 		return retval;
1664 
1665 	uap->port.uartclk = clk_get_rate(uap->clk);
1666 
1667 	/* Clear pending error and receive interrupts */
1668 	pl011_write(UART011_OEIS | UART011_BEIS | UART011_PEIS |
1669 		    UART011_FEIS | UART011_RTIS | UART011_RXIS,
1670 		    uap, REG_ICR);
1671 
1672 	/*
1673 	 * Save interrupts enable mask, and enable RX interrupts in case if
1674 	 * the interrupt is used for NMI entry.
1675 	 */
1676 	uap->im = pl011_read(uap, REG_IMSC);
1677 	pl011_write(UART011_RTIM | UART011_RXIM, uap, REG_IMSC);
1678 
1679 	if (dev_get_platdata(uap->port.dev)) {
1680 		struct amba_pl011_data *plat;
1681 
1682 		plat = dev_get_platdata(uap->port.dev);
1683 		if (plat->init)
1684 			plat->init();
1685 	}
1686 	return 0;
1687 }
1688 
1689 static bool pl011_split_lcrh(const struct uart_amba_port *uap)
1690 {
1691 	return pl011_reg_to_offset(uap, REG_LCRH_RX) !=
1692 	       pl011_reg_to_offset(uap, REG_LCRH_TX);
1693 }
1694 
1695 static void pl011_write_lcr_h(struct uart_amba_port *uap, unsigned int lcr_h)
1696 {
1697 	pl011_write(lcr_h, uap, REG_LCRH_RX);
1698 	if (pl011_split_lcrh(uap)) {
1699 		int i;
1700 		/*
1701 		 * Wait 10 PCLKs before writing LCRH_TX register,
1702 		 * to get this delay write read only register 10 times
1703 		 */
1704 		for (i = 0; i < 10; ++i)
1705 			pl011_write(0xff, uap, REG_MIS);
1706 		pl011_write(lcr_h, uap, REG_LCRH_TX);
1707 	}
1708 }
1709 
1710 static int pl011_allocate_irq(struct uart_amba_port *uap)
1711 {
1712 	pl011_write(uap->im, uap, REG_IMSC);
1713 
1714 	return request_irq(uap->port.irq, pl011_int, 0, "uart-pl011", uap);
1715 }
1716 
1717 /*
1718  * Enable interrupts, only timeouts when using DMA
1719  * if initial RX DMA job failed, start in interrupt mode
1720  * as well.
1721  */
1722 static void pl011_enable_interrupts(struct uart_amba_port *uap)
1723 {
1724 	spin_lock_irq(&uap->port.lock);
1725 
1726 	/* Clear out any spuriously appearing RX interrupts */
1727 	pl011_write(UART011_RTIS | UART011_RXIS, uap, REG_ICR);
1728 	uap->im = UART011_RTIM;
1729 	if (!pl011_dma_rx_running(uap))
1730 		uap->im |= UART011_RXIM;
1731 	pl011_write(uap->im, uap, REG_IMSC);
1732 	spin_unlock_irq(&uap->port.lock);
1733 }
1734 
1735 static int pl011_startup(struct uart_port *port)
1736 {
1737 	struct uart_amba_port *uap =
1738 	    container_of(port, struct uart_amba_port, port);
1739 	unsigned int cr;
1740 	int retval;
1741 
1742 	retval = pl011_hwinit(port);
1743 	if (retval)
1744 		goto clk_dis;
1745 
1746 	retval = pl011_allocate_irq(uap);
1747 	if (retval)
1748 		goto clk_dis;
1749 
1750 	pl011_write(uap->vendor->ifls, uap, REG_IFLS);
1751 
1752 	spin_lock_irq(&uap->port.lock);
1753 
1754 	/* restore RTS and DTR */
1755 	cr = uap->old_cr & (UART011_CR_RTS | UART011_CR_DTR);
1756 	cr |= UART01x_CR_UARTEN | UART011_CR_RXE | UART011_CR_TXE;
1757 	pl011_write(cr, uap, REG_CR);
1758 
1759 	spin_unlock_irq(&uap->port.lock);
1760 
1761 	/*
1762 	 * initialise the old status of the modem signals
1763 	 */
1764 	uap->old_status = pl011_read(uap, REG_FR) & UART01x_FR_MODEM_ANY;
1765 
1766 	/* Startup DMA */
1767 	pl011_dma_startup(uap);
1768 
1769 	pl011_enable_interrupts(uap);
1770 
1771 	return 0;
1772 
1773  clk_dis:
1774 	clk_disable_unprepare(uap->clk);
1775 	return retval;
1776 }
1777 
1778 static int sbsa_uart_startup(struct uart_port *port)
1779 {
1780 	struct uart_amba_port *uap =
1781 		container_of(port, struct uart_amba_port, port);
1782 	int retval;
1783 
1784 	retval = pl011_hwinit(port);
1785 	if (retval)
1786 		return retval;
1787 
1788 	retval = pl011_allocate_irq(uap);
1789 	if (retval)
1790 		return retval;
1791 
1792 	/* The SBSA UART does not support any modem status lines. */
1793 	uap->old_status = 0;
1794 
1795 	pl011_enable_interrupts(uap);
1796 
1797 	return 0;
1798 }
1799 
1800 static void pl011_shutdown_channel(struct uart_amba_port *uap,
1801 					unsigned int lcrh)
1802 {
1803       unsigned long val;
1804 
1805       val = pl011_read(uap, lcrh);
1806       val &= ~(UART01x_LCRH_BRK | UART01x_LCRH_FEN);
1807       pl011_write(val, uap, lcrh);
1808 }
1809 
1810 /*
1811  * disable the port. It should not disable RTS and DTR.
1812  * Also RTS and DTR state should be preserved to restore
1813  * it during startup().
1814  */
1815 static void pl011_disable_uart(struct uart_amba_port *uap)
1816 {
1817 	unsigned int cr;
1818 
1819 	uap->autorts = false;
1820 	spin_lock_irq(&uap->port.lock);
1821 	cr = pl011_read(uap, REG_CR);
1822 	uap->old_cr = cr;
1823 	cr &= UART011_CR_RTS | UART011_CR_DTR;
1824 	cr |= UART01x_CR_UARTEN | UART011_CR_TXE;
1825 	pl011_write(cr, uap, REG_CR);
1826 	spin_unlock_irq(&uap->port.lock);
1827 
1828 	/*
1829 	 * disable break condition and fifos
1830 	 */
1831 	pl011_shutdown_channel(uap, REG_LCRH_RX);
1832 	if (pl011_split_lcrh(uap))
1833 		pl011_shutdown_channel(uap, REG_LCRH_TX);
1834 }
1835 
1836 static void pl011_disable_interrupts(struct uart_amba_port *uap)
1837 {
1838 	spin_lock_irq(&uap->port.lock);
1839 
1840 	/* mask all interrupts and clear all pending ones */
1841 	uap->im = 0;
1842 	pl011_write(uap->im, uap, REG_IMSC);
1843 	pl011_write(0xffff, uap, REG_ICR);
1844 
1845 	spin_unlock_irq(&uap->port.lock);
1846 }
1847 
1848 static void pl011_shutdown(struct uart_port *port)
1849 {
1850 	struct uart_amba_port *uap =
1851 		container_of(port, struct uart_amba_port, port);
1852 
1853 	pl011_disable_interrupts(uap);
1854 
1855 	pl011_dma_shutdown(uap);
1856 
1857 	free_irq(uap->port.irq, uap);
1858 
1859 	pl011_disable_uart(uap);
1860 
1861 	/*
1862 	 * Shut down the clock producer
1863 	 */
1864 	clk_disable_unprepare(uap->clk);
1865 	/* Optionally let pins go into sleep states */
1866 	pinctrl_pm_select_sleep_state(port->dev);
1867 
1868 	if (dev_get_platdata(uap->port.dev)) {
1869 		struct amba_pl011_data *plat;
1870 
1871 		plat = dev_get_platdata(uap->port.dev);
1872 		if (plat->exit)
1873 			plat->exit();
1874 	}
1875 
1876 	if (uap->port.ops->flush_buffer)
1877 		uap->port.ops->flush_buffer(port);
1878 }
1879 
1880 static void sbsa_uart_shutdown(struct uart_port *port)
1881 {
1882 	struct uart_amba_port *uap =
1883 		container_of(port, struct uart_amba_port, port);
1884 
1885 	pl011_disable_interrupts(uap);
1886 
1887 	free_irq(uap->port.irq, uap);
1888 
1889 	if (uap->port.ops->flush_buffer)
1890 		uap->port.ops->flush_buffer(port);
1891 }
1892 
1893 static void
1894 pl011_setup_status_masks(struct uart_port *port, struct ktermios *termios)
1895 {
1896 	port->read_status_mask = UART011_DR_OE | 255;
1897 	if (termios->c_iflag & INPCK)
1898 		port->read_status_mask |= UART011_DR_FE | UART011_DR_PE;
1899 	if (termios->c_iflag & (IGNBRK | BRKINT | PARMRK))
1900 		port->read_status_mask |= UART011_DR_BE;
1901 
1902 	/*
1903 	 * Characters to ignore
1904 	 */
1905 	port->ignore_status_mask = 0;
1906 	if (termios->c_iflag & IGNPAR)
1907 		port->ignore_status_mask |= UART011_DR_FE | UART011_DR_PE;
1908 	if (termios->c_iflag & IGNBRK) {
1909 		port->ignore_status_mask |= UART011_DR_BE;
1910 		/*
1911 		 * If we're ignoring parity and break indicators,
1912 		 * ignore overruns too (for real raw support).
1913 		 */
1914 		if (termios->c_iflag & IGNPAR)
1915 			port->ignore_status_mask |= UART011_DR_OE;
1916 	}
1917 
1918 	/*
1919 	 * Ignore all characters if CREAD is not set.
1920 	 */
1921 	if ((termios->c_cflag & CREAD) == 0)
1922 		port->ignore_status_mask |= UART_DUMMY_DR_RX;
1923 }
1924 
1925 static void
1926 pl011_set_termios(struct uart_port *port, struct ktermios *termios,
1927 		     struct ktermios *old)
1928 {
1929 	struct uart_amba_port *uap =
1930 	    container_of(port, struct uart_amba_port, port);
1931 	unsigned int lcr_h, old_cr;
1932 	unsigned long flags;
1933 	unsigned int baud, quot, clkdiv;
1934 
1935 	if (uap->vendor->oversampling)
1936 		clkdiv = 8;
1937 	else
1938 		clkdiv = 16;
1939 
1940 	/*
1941 	 * Ask the core to calculate the divisor for us.
1942 	 */
1943 	baud = uart_get_baud_rate(port, termios, old, 0,
1944 				  port->uartclk / clkdiv);
1945 #ifdef CONFIG_DMA_ENGINE
1946 	/*
1947 	 * Adjust RX DMA polling rate with baud rate if not specified.
1948 	 */
1949 	if (uap->dmarx.auto_poll_rate)
1950 		uap->dmarx.poll_rate = DIV_ROUND_UP(10000000, baud);
1951 #endif
1952 
1953 	if (baud > port->uartclk/16)
1954 		quot = DIV_ROUND_CLOSEST(port->uartclk * 8, baud);
1955 	else
1956 		quot = DIV_ROUND_CLOSEST(port->uartclk * 4, baud);
1957 
1958 	switch (termios->c_cflag & CSIZE) {
1959 	case CS5:
1960 		lcr_h = UART01x_LCRH_WLEN_5;
1961 		break;
1962 	case CS6:
1963 		lcr_h = UART01x_LCRH_WLEN_6;
1964 		break;
1965 	case CS7:
1966 		lcr_h = UART01x_LCRH_WLEN_7;
1967 		break;
1968 	default: // CS8
1969 		lcr_h = UART01x_LCRH_WLEN_8;
1970 		break;
1971 	}
1972 	if (termios->c_cflag & CSTOPB)
1973 		lcr_h |= UART01x_LCRH_STP2;
1974 	if (termios->c_cflag & PARENB) {
1975 		lcr_h |= UART01x_LCRH_PEN;
1976 		if (!(termios->c_cflag & PARODD))
1977 			lcr_h |= UART01x_LCRH_EPS;
1978 		if (termios->c_cflag & CMSPAR)
1979 			lcr_h |= UART011_LCRH_SPS;
1980 	}
1981 	if (uap->fifosize > 1)
1982 		lcr_h |= UART01x_LCRH_FEN;
1983 
1984 	spin_lock_irqsave(&port->lock, flags);
1985 
1986 	/*
1987 	 * Update the per-port timeout.
1988 	 */
1989 	uart_update_timeout(port, termios->c_cflag, baud);
1990 
1991 	pl011_setup_status_masks(port, termios);
1992 
1993 	if (UART_ENABLE_MS(port, termios->c_cflag))
1994 		pl011_enable_ms(port);
1995 
1996 	/* first, disable everything */
1997 	old_cr = pl011_read(uap, REG_CR);
1998 	pl011_write(0, uap, REG_CR);
1999 
2000 	if (termios->c_cflag & CRTSCTS) {
2001 		if (old_cr & UART011_CR_RTS)
2002 			old_cr |= UART011_CR_RTSEN;
2003 
2004 		old_cr |= UART011_CR_CTSEN;
2005 		uap->autorts = true;
2006 	} else {
2007 		old_cr &= ~(UART011_CR_CTSEN | UART011_CR_RTSEN);
2008 		uap->autorts = false;
2009 	}
2010 
2011 	if (uap->vendor->oversampling) {
2012 		if (baud > port->uartclk / 16)
2013 			old_cr |= ST_UART011_CR_OVSFACT;
2014 		else
2015 			old_cr &= ~ST_UART011_CR_OVSFACT;
2016 	}
2017 
2018 	/*
2019 	 * Workaround for the ST Micro oversampling variants to
2020 	 * increase the bitrate slightly, by lowering the divisor,
2021 	 * to avoid delayed sampling of start bit at high speeds,
2022 	 * else we see data corruption.
2023 	 */
2024 	if (uap->vendor->oversampling) {
2025 		if ((baud >= 3000000) && (baud < 3250000) && (quot > 1))
2026 			quot -= 1;
2027 		else if ((baud > 3250000) && (quot > 2))
2028 			quot -= 2;
2029 	}
2030 	/* Set baud rate */
2031 	pl011_write(quot & 0x3f, uap, REG_FBRD);
2032 	pl011_write(quot >> 6, uap, REG_IBRD);
2033 
2034 	/*
2035 	 * ----------v----------v----------v----------v-----
2036 	 * NOTE: REG_LCRH_TX and REG_LCRH_RX MUST BE WRITTEN AFTER
2037 	 * REG_FBRD & REG_IBRD.
2038 	 * ----------^----------^----------^----------^-----
2039 	 */
2040 	pl011_write_lcr_h(uap, lcr_h);
2041 	pl011_write(old_cr, uap, REG_CR);
2042 
2043 	spin_unlock_irqrestore(&port->lock, flags);
2044 }
2045 
2046 static void
2047 sbsa_uart_set_termios(struct uart_port *port, struct ktermios *termios,
2048 		      struct ktermios *old)
2049 {
2050 	struct uart_amba_port *uap =
2051 	    container_of(port, struct uart_amba_port, port);
2052 	unsigned long flags;
2053 
2054 	tty_termios_encode_baud_rate(termios, uap->fixed_baud, uap->fixed_baud);
2055 
2056 	/* The SBSA UART only supports 8n1 without hardware flow control. */
2057 	termios->c_cflag &= ~(CSIZE | CSTOPB | PARENB | PARODD);
2058 	termios->c_cflag &= ~(CMSPAR | CRTSCTS);
2059 	termios->c_cflag |= CS8 | CLOCAL;
2060 
2061 	spin_lock_irqsave(&port->lock, flags);
2062 	uart_update_timeout(port, CS8, uap->fixed_baud);
2063 	pl011_setup_status_masks(port, termios);
2064 	spin_unlock_irqrestore(&port->lock, flags);
2065 }
2066 
2067 static const char *pl011_type(struct uart_port *port)
2068 {
2069 	struct uart_amba_port *uap =
2070 	    container_of(port, struct uart_amba_port, port);
2071 	return uap->port.type == PORT_AMBA ? uap->type : NULL;
2072 }
2073 
2074 /*
2075  * Release the memory region(s) being used by 'port'
2076  */
2077 static void pl011_release_port(struct uart_port *port)
2078 {
2079 	release_mem_region(port->mapbase, SZ_4K);
2080 }
2081 
2082 /*
2083  * Request the memory region(s) being used by 'port'
2084  */
2085 static int pl011_request_port(struct uart_port *port)
2086 {
2087 	return request_mem_region(port->mapbase, SZ_4K, "uart-pl011")
2088 			!= NULL ? 0 : -EBUSY;
2089 }
2090 
2091 /*
2092  * Configure/autoconfigure the port.
2093  */
2094 static void pl011_config_port(struct uart_port *port, int flags)
2095 {
2096 	if (flags & UART_CONFIG_TYPE) {
2097 		port->type = PORT_AMBA;
2098 		pl011_request_port(port);
2099 	}
2100 }
2101 
2102 /*
2103  * verify the new serial_struct (for TIOCSSERIAL).
2104  */
2105 static int pl011_verify_port(struct uart_port *port, struct serial_struct *ser)
2106 {
2107 	int ret = 0;
2108 	if (ser->type != PORT_UNKNOWN && ser->type != PORT_AMBA)
2109 		ret = -EINVAL;
2110 	if (ser->irq < 0 || ser->irq >= nr_irqs)
2111 		ret = -EINVAL;
2112 	if (ser->baud_base < 9600)
2113 		ret = -EINVAL;
2114 	return ret;
2115 }
2116 
2117 static struct uart_ops amba_pl011_pops = {
2118 	.tx_empty	= pl011_tx_empty,
2119 	.set_mctrl	= pl011_set_mctrl,
2120 	.get_mctrl	= pl011_get_mctrl,
2121 	.stop_tx	= pl011_stop_tx,
2122 	.start_tx	= pl011_start_tx,
2123 	.stop_rx	= pl011_stop_rx,
2124 	.enable_ms	= pl011_enable_ms,
2125 	.break_ctl	= pl011_break_ctl,
2126 	.startup	= pl011_startup,
2127 	.shutdown	= pl011_shutdown,
2128 	.flush_buffer	= pl011_dma_flush_buffer,
2129 	.set_termios	= pl011_set_termios,
2130 	.type		= pl011_type,
2131 	.release_port	= pl011_release_port,
2132 	.request_port	= pl011_request_port,
2133 	.config_port	= pl011_config_port,
2134 	.verify_port	= pl011_verify_port,
2135 #ifdef CONFIG_CONSOLE_POLL
2136 	.poll_init     = pl011_hwinit,
2137 	.poll_get_char = pl011_get_poll_char,
2138 	.poll_put_char = pl011_put_poll_char,
2139 #endif
2140 };
2141 
2142 static void sbsa_uart_set_mctrl(struct uart_port *port, unsigned int mctrl)
2143 {
2144 }
2145 
2146 static unsigned int sbsa_uart_get_mctrl(struct uart_port *port)
2147 {
2148 	return 0;
2149 }
2150 
2151 static const struct uart_ops sbsa_uart_pops = {
2152 	.tx_empty	= pl011_tx_empty,
2153 	.set_mctrl	= sbsa_uart_set_mctrl,
2154 	.get_mctrl	= sbsa_uart_get_mctrl,
2155 	.stop_tx	= pl011_stop_tx,
2156 	.start_tx	= pl011_start_tx,
2157 	.stop_rx	= pl011_stop_rx,
2158 	.startup	= sbsa_uart_startup,
2159 	.shutdown	= sbsa_uart_shutdown,
2160 	.set_termios	= sbsa_uart_set_termios,
2161 	.type		= pl011_type,
2162 	.release_port	= pl011_release_port,
2163 	.request_port	= pl011_request_port,
2164 	.config_port	= pl011_config_port,
2165 	.verify_port	= pl011_verify_port,
2166 #ifdef CONFIG_CONSOLE_POLL
2167 	.poll_init     = pl011_hwinit,
2168 	.poll_get_char = pl011_get_poll_char,
2169 	.poll_put_char = pl011_put_poll_char,
2170 #endif
2171 };
2172 
2173 static struct uart_amba_port *amba_ports[UART_NR];
2174 
2175 #ifdef CONFIG_SERIAL_AMBA_PL011_CONSOLE
2176 
2177 static void pl011_console_putchar(struct uart_port *port, int ch)
2178 {
2179 	struct uart_amba_port *uap =
2180 	    container_of(port, struct uart_amba_port, port);
2181 
2182 	while (pl011_read(uap, REG_FR) & UART01x_FR_TXFF)
2183 		cpu_relax();
2184 	pl011_write(ch, uap, REG_DR);
2185 }
2186 
2187 static void
2188 pl011_console_write(struct console *co, const char *s, unsigned int count)
2189 {
2190 	struct uart_amba_port *uap = amba_ports[co->index];
2191 	unsigned int old_cr = 0, new_cr;
2192 	unsigned long flags;
2193 	int locked = 1;
2194 
2195 	clk_enable(uap->clk);
2196 
2197 	local_irq_save(flags);
2198 	if (uap->port.sysrq)
2199 		locked = 0;
2200 	else if (oops_in_progress)
2201 		locked = spin_trylock(&uap->port.lock);
2202 	else
2203 		spin_lock(&uap->port.lock);
2204 
2205 	/*
2206 	 *	First save the CR then disable the interrupts
2207 	 */
2208 	if (!uap->vendor->always_enabled) {
2209 		old_cr = pl011_read(uap, REG_CR);
2210 		new_cr = old_cr & ~UART011_CR_CTSEN;
2211 		new_cr |= UART01x_CR_UARTEN | UART011_CR_TXE;
2212 		pl011_write(new_cr, uap, REG_CR);
2213 	}
2214 
2215 	uart_console_write(&uap->port, s, count, pl011_console_putchar);
2216 
2217 	/*
2218 	 *	Finally, wait for transmitter to become empty
2219 	 *	and restore the TCR
2220 	 */
2221 	while (pl011_read(uap, REG_FR) & uap->vendor->fr_busy)
2222 		cpu_relax();
2223 	if (!uap->vendor->always_enabled)
2224 		pl011_write(old_cr, uap, REG_CR);
2225 
2226 	if (locked)
2227 		spin_unlock(&uap->port.lock);
2228 	local_irq_restore(flags);
2229 
2230 	clk_disable(uap->clk);
2231 }
2232 
2233 static void __init
2234 pl011_console_get_options(struct uart_amba_port *uap, int *baud,
2235 			     int *parity, int *bits)
2236 {
2237 	if (pl011_read(uap, REG_CR) & UART01x_CR_UARTEN) {
2238 		unsigned int lcr_h, ibrd, fbrd;
2239 
2240 		lcr_h = pl011_read(uap, REG_LCRH_TX);
2241 
2242 		*parity = 'n';
2243 		if (lcr_h & UART01x_LCRH_PEN) {
2244 			if (lcr_h & UART01x_LCRH_EPS)
2245 				*parity = 'e';
2246 			else
2247 				*parity = 'o';
2248 		}
2249 
2250 		if ((lcr_h & 0x60) == UART01x_LCRH_WLEN_7)
2251 			*bits = 7;
2252 		else
2253 			*bits = 8;
2254 
2255 		ibrd = pl011_read(uap, REG_IBRD);
2256 		fbrd = pl011_read(uap, REG_FBRD);
2257 
2258 		*baud = uap->port.uartclk * 4 / (64 * ibrd + fbrd);
2259 
2260 		if (uap->vendor->oversampling) {
2261 			if (pl011_read(uap, REG_CR)
2262 				  & ST_UART011_CR_OVSFACT)
2263 				*baud *= 2;
2264 		}
2265 	}
2266 }
2267 
2268 static int __init pl011_console_setup(struct console *co, char *options)
2269 {
2270 	struct uart_amba_port *uap;
2271 	int baud = 38400;
2272 	int bits = 8;
2273 	int parity = 'n';
2274 	int flow = 'n';
2275 	int ret;
2276 
2277 	/*
2278 	 * Check whether an invalid uart number has been specified, and
2279 	 * if so, search for the first available port that does have
2280 	 * console support.
2281 	 */
2282 	if (co->index >= UART_NR)
2283 		co->index = 0;
2284 	uap = amba_ports[co->index];
2285 	if (!uap)
2286 		return -ENODEV;
2287 
2288 	/* Allow pins to be muxed in and configured */
2289 	pinctrl_pm_select_default_state(uap->port.dev);
2290 
2291 	ret = clk_prepare(uap->clk);
2292 	if (ret)
2293 		return ret;
2294 
2295 	if (dev_get_platdata(uap->port.dev)) {
2296 		struct amba_pl011_data *plat;
2297 
2298 		plat = dev_get_platdata(uap->port.dev);
2299 		if (plat->init)
2300 			plat->init();
2301 	}
2302 
2303 	uap->port.uartclk = clk_get_rate(uap->clk);
2304 
2305 	if (uap->vendor->fixed_options) {
2306 		baud = uap->fixed_baud;
2307 	} else {
2308 		if (options)
2309 			uart_parse_options(options,
2310 					   &baud, &parity, &bits, &flow);
2311 		else
2312 			pl011_console_get_options(uap, &baud, &parity, &bits);
2313 	}
2314 
2315 	return uart_set_options(&uap->port, co, baud, parity, bits, flow);
2316 }
2317 
2318 static struct uart_driver amba_reg;
2319 static struct console amba_console = {
2320 	.name		= "ttyAMA",
2321 	.write		= pl011_console_write,
2322 	.device		= uart_console_device,
2323 	.setup		= pl011_console_setup,
2324 	.flags		= CON_PRINTBUFFER,
2325 	.index		= -1,
2326 	.data		= &amba_reg,
2327 };
2328 
2329 #define AMBA_CONSOLE	(&amba_console)
2330 
2331 static void pl011_putc(struct uart_port *port, int c)
2332 {
2333 	while (readl(port->membase + UART01x_FR) & UART01x_FR_TXFF)
2334 		cpu_relax();
2335 	if (port->iotype == UPIO_MEM32)
2336 		writel(c, port->membase + UART01x_DR);
2337 	else
2338 		writeb(c, port->membase + UART01x_DR);
2339 	while (readl(port->membase + UART01x_FR) & UART01x_FR_BUSY)
2340 		cpu_relax();
2341 }
2342 
2343 static void pl011_early_write(struct console *con, const char *s, unsigned n)
2344 {
2345 	struct earlycon_device *dev = con->data;
2346 
2347 	uart_console_write(&dev->port, s, n, pl011_putc);
2348 }
2349 
2350 static int __init pl011_early_console_setup(struct earlycon_device *device,
2351 					    const char *opt)
2352 {
2353 	if (!device->port.membase)
2354 		return -ENODEV;
2355 
2356 	device->con->write = pl011_early_write;
2357 	return 0;
2358 }
2359 OF_EARLYCON_DECLARE(pl011, "arm,pl011", pl011_early_console_setup);
2360 
2361 #else
2362 #define AMBA_CONSOLE	NULL
2363 #endif
2364 
2365 static struct uart_driver amba_reg = {
2366 	.owner			= THIS_MODULE,
2367 	.driver_name		= "ttyAMA",
2368 	.dev_name		= "ttyAMA",
2369 	.major			= SERIAL_AMBA_MAJOR,
2370 	.minor			= SERIAL_AMBA_MINOR,
2371 	.nr			= UART_NR,
2372 	.cons			= AMBA_CONSOLE,
2373 };
2374 
2375 static int pl011_probe_dt_alias(int index, struct device *dev)
2376 {
2377 	struct device_node *np;
2378 	static bool seen_dev_with_alias = false;
2379 	static bool seen_dev_without_alias = false;
2380 	int ret = index;
2381 
2382 	if (!IS_ENABLED(CONFIG_OF))
2383 		return ret;
2384 
2385 	np = dev->of_node;
2386 	if (!np)
2387 		return ret;
2388 
2389 	ret = of_alias_get_id(np, "serial");
2390 	if (ret < 0) {
2391 		seen_dev_without_alias = true;
2392 		ret = index;
2393 	} else {
2394 		seen_dev_with_alias = true;
2395 		if (ret >= ARRAY_SIZE(amba_ports) || amba_ports[ret] != NULL) {
2396 			dev_warn(dev, "requested serial port %d  not available.\n", ret);
2397 			ret = index;
2398 		}
2399 	}
2400 
2401 	if (seen_dev_with_alias && seen_dev_without_alias)
2402 		dev_warn(dev, "aliased and non-aliased serial devices found in device tree. Serial port enumeration may be unpredictable.\n");
2403 
2404 	return ret;
2405 }
2406 
2407 /* unregisters the driver also if no more ports are left */
2408 static void pl011_unregister_port(struct uart_amba_port *uap)
2409 {
2410 	int i;
2411 	bool busy = false;
2412 
2413 	for (i = 0; i < ARRAY_SIZE(amba_ports); i++) {
2414 		if (amba_ports[i] == uap)
2415 			amba_ports[i] = NULL;
2416 		else if (amba_ports[i])
2417 			busy = true;
2418 	}
2419 	pl011_dma_remove(uap);
2420 	if (!busy)
2421 		uart_unregister_driver(&amba_reg);
2422 }
2423 
2424 static int pl011_find_free_port(void)
2425 {
2426 	int i;
2427 
2428 	for (i = 0; i < ARRAY_SIZE(amba_ports); i++)
2429 		if (amba_ports[i] == NULL)
2430 			return i;
2431 
2432 	return -EBUSY;
2433 }
2434 
2435 static int pl011_setup_port(struct device *dev, struct uart_amba_port *uap,
2436 			    struct resource *mmiobase, int index)
2437 {
2438 	void __iomem *base;
2439 
2440 	base = devm_ioremap_resource(dev, mmiobase);
2441 	if (IS_ERR(base))
2442 		return PTR_ERR(base);
2443 
2444 	index = pl011_probe_dt_alias(index, dev);
2445 
2446 	uap->old_cr = 0;
2447 	uap->port.dev = dev;
2448 	uap->port.mapbase = mmiobase->start;
2449 	uap->port.membase = base;
2450 	uap->port.fifosize = uap->fifosize;
2451 	uap->port.flags = UPF_BOOT_AUTOCONF;
2452 	uap->port.line = index;
2453 
2454 	amba_ports[index] = uap;
2455 
2456 	return 0;
2457 }
2458 
2459 static int pl011_register_port(struct uart_amba_port *uap)
2460 {
2461 	int ret;
2462 
2463 	/* Ensure interrupts from this UART are masked and cleared */
2464 	pl011_write(0, uap, REG_IMSC);
2465 	pl011_write(0xffff, uap, REG_ICR);
2466 
2467 	if (!amba_reg.state) {
2468 		ret = uart_register_driver(&amba_reg);
2469 		if (ret < 0) {
2470 			dev_err(uap->port.dev,
2471 				"Failed to register AMBA-PL011 driver\n");
2472 			return ret;
2473 		}
2474 	}
2475 
2476 	ret = uart_add_one_port(&amba_reg, &uap->port);
2477 	if (ret)
2478 		pl011_unregister_port(uap);
2479 
2480 	return ret;
2481 }
2482 
2483 static int pl011_probe(struct amba_device *dev, const struct amba_id *id)
2484 {
2485 	struct uart_amba_port *uap;
2486 	struct vendor_data *vendor = id->data;
2487 	int portnr, ret;
2488 
2489 	portnr = pl011_find_free_port();
2490 	if (portnr < 0)
2491 		return portnr;
2492 
2493 	uap = devm_kzalloc(&dev->dev, sizeof(struct uart_amba_port),
2494 			   GFP_KERNEL);
2495 	if (!uap)
2496 		return -ENOMEM;
2497 
2498 	uap->clk = devm_clk_get(&dev->dev, NULL);
2499 	if (IS_ERR(uap->clk))
2500 		return PTR_ERR(uap->clk);
2501 
2502 	uap->reg_offset = vendor->reg_offset;
2503 	uap->vendor = vendor;
2504 	uap->fifosize = vendor->get_fifosize(dev);
2505 	uap->port.iotype = vendor->access_32b ? UPIO_MEM32 : UPIO_MEM;
2506 	uap->port.irq = dev->irq[0];
2507 	uap->port.ops = &amba_pl011_pops;
2508 
2509 	snprintf(uap->type, sizeof(uap->type), "PL011 rev%u", amba_rev(dev));
2510 
2511 	ret = pl011_setup_port(&dev->dev, uap, &dev->res, portnr);
2512 	if (ret)
2513 		return ret;
2514 
2515 	amba_set_drvdata(dev, uap);
2516 
2517 	return pl011_register_port(uap);
2518 }
2519 
2520 static int pl011_remove(struct amba_device *dev)
2521 {
2522 	struct uart_amba_port *uap = amba_get_drvdata(dev);
2523 
2524 	uart_remove_one_port(&amba_reg, &uap->port);
2525 	pl011_unregister_port(uap);
2526 	return 0;
2527 }
2528 
2529 #ifdef CONFIG_PM_SLEEP
2530 static int pl011_suspend(struct device *dev)
2531 {
2532 	struct uart_amba_port *uap = dev_get_drvdata(dev);
2533 
2534 	if (!uap)
2535 		return -EINVAL;
2536 
2537 	return uart_suspend_port(&amba_reg, &uap->port);
2538 }
2539 
2540 static int pl011_resume(struct device *dev)
2541 {
2542 	struct uart_amba_port *uap = dev_get_drvdata(dev);
2543 
2544 	if (!uap)
2545 		return -EINVAL;
2546 
2547 	return uart_resume_port(&amba_reg, &uap->port);
2548 }
2549 #endif
2550 
2551 static SIMPLE_DEV_PM_OPS(pl011_dev_pm_ops, pl011_suspend, pl011_resume);
2552 
2553 static int sbsa_uart_probe(struct platform_device *pdev)
2554 {
2555 	struct uart_amba_port *uap;
2556 	struct resource *r;
2557 	int portnr, ret;
2558 	int baudrate;
2559 
2560 	/*
2561 	 * Check the mandatory baud rate parameter in the DT node early
2562 	 * so that we can easily exit with the error.
2563 	 */
2564 	if (pdev->dev.of_node) {
2565 		struct device_node *np = pdev->dev.of_node;
2566 
2567 		ret = of_property_read_u32(np, "current-speed", &baudrate);
2568 		if (ret)
2569 			return ret;
2570 	} else {
2571 		baudrate = 115200;
2572 	}
2573 
2574 	portnr = pl011_find_free_port();
2575 	if (portnr < 0)
2576 		return portnr;
2577 
2578 	uap = devm_kzalloc(&pdev->dev, sizeof(struct uart_amba_port),
2579 			   GFP_KERNEL);
2580 	if (!uap)
2581 		return -ENOMEM;
2582 
2583 	ret = platform_get_irq(pdev, 0);
2584 	if (ret < 0) {
2585 		if (ret != -EPROBE_DEFER)
2586 			dev_err(&pdev->dev, "cannot obtain irq\n");
2587 		return ret;
2588 	}
2589 	uap->port.irq	= ret;
2590 
2591 	uap->reg_offset	= vendor_sbsa.reg_offset;
2592 	uap->vendor	= &vendor_sbsa;
2593 	uap->fifosize	= 32;
2594 	uap->port.iotype = vendor_sbsa.access_32b ? UPIO_MEM32 : UPIO_MEM;
2595 	uap->port.ops	= &sbsa_uart_pops;
2596 	uap->fixed_baud = baudrate;
2597 
2598 	snprintf(uap->type, sizeof(uap->type), "SBSA");
2599 
2600 	r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2601 
2602 	ret = pl011_setup_port(&pdev->dev, uap, r, portnr);
2603 	if (ret)
2604 		return ret;
2605 
2606 	platform_set_drvdata(pdev, uap);
2607 
2608 	return pl011_register_port(uap);
2609 }
2610 
2611 static int sbsa_uart_remove(struct platform_device *pdev)
2612 {
2613 	struct uart_amba_port *uap = platform_get_drvdata(pdev);
2614 
2615 	uart_remove_one_port(&amba_reg, &uap->port);
2616 	pl011_unregister_port(uap);
2617 	return 0;
2618 }
2619 
2620 static const struct of_device_id sbsa_uart_of_match[] = {
2621 	{ .compatible = "arm,sbsa-uart", },
2622 	{},
2623 };
2624 MODULE_DEVICE_TABLE(of, sbsa_uart_of_match);
2625 
2626 static const struct acpi_device_id sbsa_uart_acpi_match[] = {
2627 	{ "ARMH0011", 0 },
2628 	{},
2629 };
2630 MODULE_DEVICE_TABLE(acpi, sbsa_uart_acpi_match);
2631 
2632 static struct platform_driver arm_sbsa_uart_platform_driver = {
2633 	.probe		= sbsa_uart_probe,
2634 	.remove		= sbsa_uart_remove,
2635 	.driver	= {
2636 		.name	= "sbsa-uart",
2637 		.of_match_table = of_match_ptr(sbsa_uart_of_match),
2638 		.acpi_match_table = ACPI_PTR(sbsa_uart_acpi_match),
2639 	},
2640 };
2641 
2642 static struct amba_id pl011_ids[] = {
2643 	{
2644 		.id	= 0x00041011,
2645 		.mask	= 0x000fffff,
2646 		.data	= &vendor_arm,
2647 	},
2648 	{
2649 		.id	= 0x00380802,
2650 		.mask	= 0x00ffffff,
2651 		.data	= &vendor_st,
2652 	},
2653 	{
2654 		.id	= AMBA_LINUX_ID(0x00, 0x1, 0xffe),
2655 		.mask	= 0x00ffffff,
2656 		.data	= &vendor_zte,
2657 	},
2658 	{ 0, 0 },
2659 };
2660 
2661 MODULE_DEVICE_TABLE(amba, pl011_ids);
2662 
2663 static struct amba_driver pl011_driver = {
2664 	.drv = {
2665 		.name	= "uart-pl011",
2666 		.pm	= &pl011_dev_pm_ops,
2667 	},
2668 	.id_table	= pl011_ids,
2669 	.probe		= pl011_probe,
2670 	.remove		= pl011_remove,
2671 };
2672 
2673 static int __init pl011_init(void)
2674 {
2675 	printk(KERN_INFO "Serial: AMBA PL011 UART driver\n");
2676 
2677 	if (platform_driver_register(&arm_sbsa_uart_platform_driver))
2678 		pr_warn("could not register SBSA UART platform driver\n");
2679 	return amba_driver_register(&pl011_driver);
2680 }
2681 
2682 static void __exit pl011_exit(void)
2683 {
2684 	platform_driver_unregister(&arm_sbsa_uart_platform_driver);
2685 	amba_driver_unregister(&pl011_driver);
2686 }
2687 
2688 /*
2689  * While this can be a module, if builtin it's most likely the console
2690  * So let's leave module_exit but move module_init to an earlier place
2691  */
2692 arch_initcall(pl011_init);
2693 module_exit(pl011_exit);
2694 
2695 MODULE_AUTHOR("ARM Ltd/Deep Blue Solutions Ltd");
2696 MODULE_DESCRIPTION("ARM AMBA serial port driver");
2697 MODULE_LICENSE("GPL");
2698