xref: /openbmc/linux/drivers/tty/serial/amba-pl011.c (revision 7a846d3c43b0b6d04300be9ba666b102b57a391a)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  *  Driver for AMBA serial ports
4  *
5  *  Based on drivers/char/serial.c, by Linus Torvalds, Theodore Ts'o.
6  *
7  *  Copyright 1999 ARM Limited
8  *  Copyright (C) 2000 Deep Blue Solutions Ltd.
9  *  Copyright (C) 2010 ST-Ericsson SA
10  *
11  * This is a generic driver for ARM AMBA-type serial ports.  They
12  * have a lot of 16550-like features, but are not register compatible.
13  * Note that although they do have CTS, DCD and DSR inputs, they do
14  * not have an RI input, nor do they have DTR or RTS outputs.  If
15  * required, these have to be supplied via some other means (eg, GPIO)
16  * and hooked into this driver.
17  */
18 
19 
20 #if defined(CONFIG_SERIAL_AMBA_PL011_CONSOLE) && defined(CONFIG_MAGIC_SYSRQ)
21 #define SUPPORT_SYSRQ
22 #endif
23 
24 #include <linux/module.h>
25 #include <linux/ioport.h>
26 #include <linux/init.h>
27 #include <linux/console.h>
28 #include <linux/sysrq.h>
29 #include <linux/device.h>
30 #include <linux/tty.h>
31 #include <linux/tty_flip.h>
32 #include <linux/serial_core.h>
33 #include <linux/serial.h>
34 #include <linux/amba/bus.h>
35 #include <linux/amba/serial.h>
36 #include <linux/clk.h>
37 #include <linux/slab.h>
38 #include <linux/dmaengine.h>
39 #include <linux/dma-mapping.h>
40 #include <linux/scatterlist.h>
41 #include <linux/delay.h>
42 #include <linux/types.h>
43 #include <linux/of.h>
44 #include <linux/of_device.h>
45 #include <linux/pinctrl/consumer.h>
46 #include <linux/sizes.h>
47 #include <linux/io.h>
48 #include <linux/acpi.h>
49 
50 #include "amba-pl011.h"
51 
52 #define UART_NR			14
53 
54 #define SERIAL_AMBA_MAJOR	204
55 #define SERIAL_AMBA_MINOR	64
56 #define SERIAL_AMBA_NR		UART_NR
57 
58 #define AMBA_ISR_PASS_LIMIT	256
59 
60 #define UART_DR_ERROR		(UART011_DR_OE|UART011_DR_BE|UART011_DR_PE|UART011_DR_FE)
61 #define UART_DUMMY_DR_RX	(1 << 16)
62 
63 static u16 pl011_std_offsets[REG_ARRAY_SIZE] = {
64 	[REG_DR] = UART01x_DR,
65 	[REG_FR] = UART01x_FR,
66 	[REG_LCRH_RX] = UART011_LCRH,
67 	[REG_LCRH_TX] = UART011_LCRH,
68 	[REG_IBRD] = UART011_IBRD,
69 	[REG_FBRD] = UART011_FBRD,
70 	[REG_CR] = UART011_CR,
71 	[REG_IFLS] = UART011_IFLS,
72 	[REG_IMSC] = UART011_IMSC,
73 	[REG_RIS] = UART011_RIS,
74 	[REG_MIS] = UART011_MIS,
75 	[REG_ICR] = UART011_ICR,
76 	[REG_DMACR] = UART011_DMACR,
77 };
78 
79 /* There is by now at least one vendor with differing details, so handle it */
80 struct vendor_data {
81 	const u16		*reg_offset;
82 	unsigned int		ifls;
83 	unsigned int		fr_busy;
84 	unsigned int		fr_dsr;
85 	unsigned int		fr_cts;
86 	unsigned int		fr_ri;
87 	unsigned int		inv_fr;
88 	bool			access_32b;
89 	bool			oversampling;
90 	bool			dma_threshold;
91 	bool			cts_event_workaround;
92 	bool			always_enabled;
93 	bool			fixed_options;
94 
95 	unsigned int (*get_fifosize)(struct amba_device *dev);
96 };
97 
98 static unsigned int get_fifosize_arm(struct amba_device *dev)
99 {
100 	return amba_rev(dev) < 3 ? 16 : 32;
101 }
102 
103 static struct vendor_data vendor_arm = {
104 	.reg_offset		= pl011_std_offsets,
105 	.ifls			= UART011_IFLS_RX4_8|UART011_IFLS_TX4_8,
106 	.fr_busy		= UART01x_FR_BUSY,
107 	.fr_dsr			= UART01x_FR_DSR,
108 	.fr_cts			= UART01x_FR_CTS,
109 	.fr_ri			= UART011_FR_RI,
110 	.oversampling		= false,
111 	.dma_threshold		= false,
112 	.cts_event_workaround	= false,
113 	.always_enabled		= false,
114 	.fixed_options		= false,
115 	.get_fifosize		= get_fifosize_arm,
116 };
117 
118 static const struct vendor_data vendor_sbsa = {
119 	.reg_offset		= pl011_std_offsets,
120 	.fr_busy		= UART01x_FR_BUSY,
121 	.fr_dsr			= UART01x_FR_DSR,
122 	.fr_cts			= UART01x_FR_CTS,
123 	.fr_ri			= UART011_FR_RI,
124 	.access_32b		= true,
125 	.oversampling		= false,
126 	.dma_threshold		= false,
127 	.cts_event_workaround	= false,
128 	.always_enabled		= true,
129 	.fixed_options		= true,
130 };
131 
132 #ifdef CONFIG_ACPI_SPCR_TABLE
133 static const struct vendor_data vendor_qdt_qdf2400_e44 = {
134 	.reg_offset		= pl011_std_offsets,
135 	.fr_busy		= UART011_FR_TXFE,
136 	.fr_dsr			= UART01x_FR_DSR,
137 	.fr_cts			= UART01x_FR_CTS,
138 	.fr_ri			= UART011_FR_RI,
139 	.inv_fr			= UART011_FR_TXFE,
140 	.access_32b		= true,
141 	.oversampling		= false,
142 	.dma_threshold		= false,
143 	.cts_event_workaround	= false,
144 	.always_enabled		= true,
145 	.fixed_options		= true,
146 };
147 #endif
148 
149 static u16 pl011_st_offsets[REG_ARRAY_SIZE] = {
150 	[REG_DR] = UART01x_DR,
151 	[REG_ST_DMAWM] = ST_UART011_DMAWM,
152 	[REG_ST_TIMEOUT] = ST_UART011_TIMEOUT,
153 	[REG_FR] = UART01x_FR,
154 	[REG_LCRH_RX] = ST_UART011_LCRH_RX,
155 	[REG_LCRH_TX] = ST_UART011_LCRH_TX,
156 	[REG_IBRD] = UART011_IBRD,
157 	[REG_FBRD] = UART011_FBRD,
158 	[REG_CR] = UART011_CR,
159 	[REG_IFLS] = UART011_IFLS,
160 	[REG_IMSC] = UART011_IMSC,
161 	[REG_RIS] = UART011_RIS,
162 	[REG_MIS] = UART011_MIS,
163 	[REG_ICR] = UART011_ICR,
164 	[REG_DMACR] = UART011_DMACR,
165 	[REG_ST_XFCR] = ST_UART011_XFCR,
166 	[REG_ST_XON1] = ST_UART011_XON1,
167 	[REG_ST_XON2] = ST_UART011_XON2,
168 	[REG_ST_XOFF1] = ST_UART011_XOFF1,
169 	[REG_ST_XOFF2] = ST_UART011_XOFF2,
170 	[REG_ST_ITCR] = ST_UART011_ITCR,
171 	[REG_ST_ITIP] = ST_UART011_ITIP,
172 	[REG_ST_ABCR] = ST_UART011_ABCR,
173 	[REG_ST_ABIMSC] = ST_UART011_ABIMSC,
174 };
175 
176 static unsigned int get_fifosize_st(struct amba_device *dev)
177 {
178 	return 64;
179 }
180 
181 static struct vendor_data vendor_st = {
182 	.reg_offset		= pl011_st_offsets,
183 	.ifls			= UART011_IFLS_RX_HALF|UART011_IFLS_TX_HALF,
184 	.fr_busy		= UART01x_FR_BUSY,
185 	.fr_dsr			= UART01x_FR_DSR,
186 	.fr_cts			= UART01x_FR_CTS,
187 	.fr_ri			= UART011_FR_RI,
188 	.oversampling		= true,
189 	.dma_threshold		= true,
190 	.cts_event_workaround	= true,
191 	.always_enabled		= false,
192 	.fixed_options		= false,
193 	.get_fifosize		= get_fifosize_st,
194 };
195 
196 static const u16 pl011_zte_offsets[REG_ARRAY_SIZE] = {
197 	[REG_DR] = ZX_UART011_DR,
198 	[REG_FR] = ZX_UART011_FR,
199 	[REG_LCRH_RX] = ZX_UART011_LCRH,
200 	[REG_LCRH_TX] = ZX_UART011_LCRH,
201 	[REG_IBRD] = ZX_UART011_IBRD,
202 	[REG_FBRD] = ZX_UART011_FBRD,
203 	[REG_CR] = ZX_UART011_CR,
204 	[REG_IFLS] = ZX_UART011_IFLS,
205 	[REG_IMSC] = ZX_UART011_IMSC,
206 	[REG_RIS] = ZX_UART011_RIS,
207 	[REG_MIS] = ZX_UART011_MIS,
208 	[REG_ICR] = ZX_UART011_ICR,
209 	[REG_DMACR] = ZX_UART011_DMACR,
210 };
211 
212 static unsigned int get_fifosize_zte(struct amba_device *dev)
213 {
214 	return 16;
215 }
216 
217 static struct vendor_data vendor_zte = {
218 	.reg_offset		= pl011_zte_offsets,
219 	.access_32b		= true,
220 	.ifls			= UART011_IFLS_RX4_8|UART011_IFLS_TX4_8,
221 	.fr_busy		= ZX_UART01x_FR_BUSY,
222 	.fr_dsr			= ZX_UART01x_FR_DSR,
223 	.fr_cts			= ZX_UART01x_FR_CTS,
224 	.fr_ri			= ZX_UART011_FR_RI,
225 	.get_fifosize		= get_fifosize_zte,
226 };
227 
228 /* Deals with DMA transactions */
229 
230 struct pl011_sgbuf {
231 	struct scatterlist sg;
232 	char *buf;
233 };
234 
235 struct pl011_dmarx_data {
236 	struct dma_chan		*chan;
237 	struct completion	complete;
238 	bool			use_buf_b;
239 	struct pl011_sgbuf	sgbuf_a;
240 	struct pl011_sgbuf	sgbuf_b;
241 	dma_cookie_t		cookie;
242 	bool			running;
243 	struct timer_list	timer;
244 	unsigned int last_residue;
245 	unsigned long last_jiffies;
246 	bool auto_poll_rate;
247 	unsigned int poll_rate;
248 	unsigned int poll_timeout;
249 };
250 
251 struct pl011_dmatx_data {
252 	struct dma_chan		*chan;
253 	struct scatterlist	sg;
254 	char			*buf;
255 	bool			queued;
256 };
257 
258 /*
259  * We wrap our port structure around the generic uart_port.
260  */
261 struct uart_amba_port {
262 	struct uart_port	port;
263 	const u16		*reg_offset;
264 	struct clk		*clk;
265 	const struct vendor_data *vendor;
266 	unsigned int		dmacr;		/* dma control reg */
267 	unsigned int		im;		/* interrupt mask */
268 	unsigned int		old_status;
269 	unsigned int		fifosize;	/* vendor-specific */
270 	unsigned int		old_cr;		/* state during shutdown */
271 	unsigned int		fixed_baud;	/* vendor-set fixed baud rate */
272 	char			type[12];
273 #ifdef CONFIG_DMA_ENGINE
274 	/* DMA stuff */
275 	bool			using_tx_dma;
276 	bool			using_rx_dma;
277 	struct pl011_dmarx_data dmarx;
278 	struct pl011_dmatx_data	dmatx;
279 	bool			dma_probed;
280 #endif
281 };
282 
283 static unsigned int pl011_reg_to_offset(const struct uart_amba_port *uap,
284 	unsigned int reg)
285 {
286 	return uap->reg_offset[reg];
287 }
288 
289 static unsigned int pl011_read(const struct uart_amba_port *uap,
290 	unsigned int reg)
291 {
292 	void __iomem *addr = uap->port.membase + pl011_reg_to_offset(uap, reg);
293 
294 	return (uap->port.iotype == UPIO_MEM32) ?
295 		readl_relaxed(addr) : readw_relaxed(addr);
296 }
297 
298 static void pl011_write(unsigned int val, const struct uart_amba_port *uap,
299 	unsigned int reg)
300 {
301 	void __iomem *addr = uap->port.membase + pl011_reg_to_offset(uap, reg);
302 
303 	if (uap->port.iotype == UPIO_MEM32)
304 		writel_relaxed(val, addr);
305 	else
306 		writew_relaxed(val, addr);
307 }
308 
309 /*
310  * Reads up to 256 characters from the FIFO or until it's empty and
311  * inserts them into the TTY layer. Returns the number of characters
312  * read from the FIFO.
313  */
314 static int pl011_fifo_to_tty(struct uart_amba_port *uap)
315 {
316 	u16 status;
317 	unsigned int ch, flag, fifotaken;
318 
319 	for (fifotaken = 0; fifotaken != 256; fifotaken++) {
320 		status = pl011_read(uap, REG_FR);
321 		if (status & UART01x_FR_RXFE)
322 			break;
323 
324 		/* Take chars from the FIFO and update status */
325 		ch = pl011_read(uap, REG_DR) | UART_DUMMY_DR_RX;
326 		flag = TTY_NORMAL;
327 		uap->port.icount.rx++;
328 
329 		if (unlikely(ch & UART_DR_ERROR)) {
330 			if (ch & UART011_DR_BE) {
331 				ch &= ~(UART011_DR_FE | UART011_DR_PE);
332 				uap->port.icount.brk++;
333 				if (uart_handle_break(&uap->port))
334 					continue;
335 			} else if (ch & UART011_DR_PE)
336 				uap->port.icount.parity++;
337 			else if (ch & UART011_DR_FE)
338 				uap->port.icount.frame++;
339 			if (ch & UART011_DR_OE)
340 				uap->port.icount.overrun++;
341 
342 			ch &= uap->port.read_status_mask;
343 
344 			if (ch & UART011_DR_BE)
345 				flag = TTY_BREAK;
346 			else if (ch & UART011_DR_PE)
347 				flag = TTY_PARITY;
348 			else if (ch & UART011_DR_FE)
349 				flag = TTY_FRAME;
350 		}
351 
352 		if (uart_handle_sysrq_char(&uap->port, ch & 255))
353 			continue;
354 
355 		uart_insert_char(&uap->port, ch, UART011_DR_OE, ch, flag);
356 	}
357 
358 	return fifotaken;
359 }
360 
361 
362 /*
363  * All the DMA operation mode stuff goes inside this ifdef.
364  * This assumes that you have a generic DMA device interface,
365  * no custom DMA interfaces are supported.
366  */
367 #ifdef CONFIG_DMA_ENGINE
368 
369 #define PL011_DMA_BUFFER_SIZE PAGE_SIZE
370 
371 static int pl011_sgbuf_init(struct dma_chan *chan, struct pl011_sgbuf *sg,
372 	enum dma_data_direction dir)
373 {
374 	dma_addr_t dma_addr;
375 
376 	sg->buf = dma_alloc_coherent(chan->device->dev,
377 		PL011_DMA_BUFFER_SIZE, &dma_addr, GFP_KERNEL);
378 	if (!sg->buf)
379 		return -ENOMEM;
380 
381 	sg_init_table(&sg->sg, 1);
382 	sg_set_page(&sg->sg, phys_to_page(dma_addr),
383 		PL011_DMA_BUFFER_SIZE, offset_in_page(dma_addr));
384 	sg_dma_address(&sg->sg) = dma_addr;
385 	sg_dma_len(&sg->sg) = PL011_DMA_BUFFER_SIZE;
386 
387 	return 0;
388 }
389 
390 static void pl011_sgbuf_free(struct dma_chan *chan, struct pl011_sgbuf *sg,
391 	enum dma_data_direction dir)
392 {
393 	if (sg->buf) {
394 		dma_free_coherent(chan->device->dev,
395 			PL011_DMA_BUFFER_SIZE, sg->buf,
396 			sg_dma_address(&sg->sg));
397 	}
398 }
399 
400 static void pl011_dma_probe(struct uart_amba_port *uap)
401 {
402 	/* DMA is the sole user of the platform data right now */
403 	struct amba_pl011_data *plat = dev_get_platdata(uap->port.dev);
404 	struct device *dev = uap->port.dev;
405 	struct dma_slave_config tx_conf = {
406 		.dst_addr = uap->port.mapbase +
407 				 pl011_reg_to_offset(uap, REG_DR),
408 		.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
409 		.direction = DMA_MEM_TO_DEV,
410 		.dst_maxburst = uap->fifosize >> 1,
411 		.device_fc = false,
412 	};
413 	struct dma_chan *chan;
414 	dma_cap_mask_t mask;
415 
416 	uap->dma_probed = true;
417 	chan = dma_request_slave_channel_reason(dev, "tx");
418 	if (IS_ERR(chan)) {
419 		if (PTR_ERR(chan) == -EPROBE_DEFER) {
420 			uap->dma_probed = false;
421 			return;
422 		}
423 
424 		/* We need platform data */
425 		if (!plat || !plat->dma_filter) {
426 			dev_info(uap->port.dev, "no DMA platform data\n");
427 			return;
428 		}
429 
430 		/* Try to acquire a generic DMA engine slave TX channel */
431 		dma_cap_zero(mask);
432 		dma_cap_set(DMA_SLAVE, mask);
433 
434 		chan = dma_request_channel(mask, plat->dma_filter,
435 						plat->dma_tx_param);
436 		if (!chan) {
437 			dev_err(uap->port.dev, "no TX DMA channel!\n");
438 			return;
439 		}
440 	}
441 
442 	dmaengine_slave_config(chan, &tx_conf);
443 	uap->dmatx.chan = chan;
444 
445 	dev_info(uap->port.dev, "DMA channel TX %s\n",
446 		 dma_chan_name(uap->dmatx.chan));
447 
448 	/* Optionally make use of an RX channel as well */
449 	chan = dma_request_slave_channel(dev, "rx");
450 
451 	if (!chan && plat && plat->dma_rx_param) {
452 		chan = dma_request_channel(mask, plat->dma_filter, plat->dma_rx_param);
453 
454 		if (!chan) {
455 			dev_err(uap->port.dev, "no RX DMA channel!\n");
456 			return;
457 		}
458 	}
459 
460 	if (chan) {
461 		struct dma_slave_config rx_conf = {
462 			.src_addr = uap->port.mapbase +
463 				pl011_reg_to_offset(uap, REG_DR),
464 			.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
465 			.direction = DMA_DEV_TO_MEM,
466 			.src_maxburst = uap->fifosize >> 2,
467 			.device_fc = false,
468 		};
469 		struct dma_slave_caps caps;
470 
471 		/*
472 		 * Some DMA controllers provide information on their capabilities.
473 		 * If the controller does, check for suitable residue processing
474 		 * otherwise assime all is well.
475 		 */
476 		if (0 == dma_get_slave_caps(chan, &caps)) {
477 			if (caps.residue_granularity ==
478 					DMA_RESIDUE_GRANULARITY_DESCRIPTOR) {
479 				dma_release_channel(chan);
480 				dev_info(uap->port.dev,
481 					"RX DMA disabled - no residue processing\n");
482 				return;
483 			}
484 		}
485 		dmaengine_slave_config(chan, &rx_conf);
486 		uap->dmarx.chan = chan;
487 
488 		uap->dmarx.auto_poll_rate = false;
489 		if (plat && plat->dma_rx_poll_enable) {
490 			/* Set poll rate if specified. */
491 			if (plat->dma_rx_poll_rate) {
492 				uap->dmarx.auto_poll_rate = false;
493 				uap->dmarx.poll_rate = plat->dma_rx_poll_rate;
494 			} else {
495 				/*
496 				 * 100 ms defaults to poll rate if not
497 				 * specified. This will be adjusted with
498 				 * the baud rate at set_termios.
499 				 */
500 				uap->dmarx.auto_poll_rate = true;
501 				uap->dmarx.poll_rate =  100;
502 			}
503 			/* 3 secs defaults poll_timeout if not specified. */
504 			if (plat->dma_rx_poll_timeout)
505 				uap->dmarx.poll_timeout =
506 					plat->dma_rx_poll_timeout;
507 			else
508 				uap->dmarx.poll_timeout = 3000;
509 		} else if (!plat && dev->of_node) {
510 			uap->dmarx.auto_poll_rate = of_property_read_bool(
511 						dev->of_node, "auto-poll");
512 			if (uap->dmarx.auto_poll_rate) {
513 				u32 x;
514 
515 				if (0 == of_property_read_u32(dev->of_node,
516 						"poll-rate-ms", &x))
517 					uap->dmarx.poll_rate = x;
518 				else
519 					uap->dmarx.poll_rate = 100;
520 				if (0 == of_property_read_u32(dev->of_node,
521 						"poll-timeout-ms", &x))
522 					uap->dmarx.poll_timeout = x;
523 				else
524 					uap->dmarx.poll_timeout = 3000;
525 			}
526 		}
527 		dev_info(uap->port.dev, "DMA channel RX %s\n",
528 			 dma_chan_name(uap->dmarx.chan));
529 	}
530 }
531 
532 static void pl011_dma_remove(struct uart_amba_port *uap)
533 {
534 	if (uap->dmatx.chan)
535 		dma_release_channel(uap->dmatx.chan);
536 	if (uap->dmarx.chan)
537 		dma_release_channel(uap->dmarx.chan);
538 }
539 
540 /* Forward declare these for the refill routine */
541 static int pl011_dma_tx_refill(struct uart_amba_port *uap);
542 static void pl011_start_tx_pio(struct uart_amba_port *uap);
543 
544 /*
545  * The current DMA TX buffer has been sent.
546  * Try to queue up another DMA buffer.
547  */
548 static void pl011_dma_tx_callback(void *data)
549 {
550 	struct uart_amba_port *uap = data;
551 	struct pl011_dmatx_data *dmatx = &uap->dmatx;
552 	unsigned long flags;
553 	u16 dmacr;
554 
555 	spin_lock_irqsave(&uap->port.lock, flags);
556 	if (uap->dmatx.queued)
557 		dma_unmap_sg(dmatx->chan->device->dev, &dmatx->sg, 1,
558 			     DMA_TO_DEVICE);
559 
560 	dmacr = uap->dmacr;
561 	uap->dmacr = dmacr & ~UART011_TXDMAE;
562 	pl011_write(uap->dmacr, uap, REG_DMACR);
563 
564 	/*
565 	 * If TX DMA was disabled, it means that we've stopped the DMA for
566 	 * some reason (eg, XOFF received, or we want to send an X-char.)
567 	 *
568 	 * Note: we need to be careful here of a potential race between DMA
569 	 * and the rest of the driver - if the driver disables TX DMA while
570 	 * a TX buffer completing, we must update the tx queued status to
571 	 * get further refills (hence we check dmacr).
572 	 */
573 	if (!(dmacr & UART011_TXDMAE) || uart_tx_stopped(&uap->port) ||
574 	    uart_circ_empty(&uap->port.state->xmit)) {
575 		uap->dmatx.queued = false;
576 		spin_unlock_irqrestore(&uap->port.lock, flags);
577 		return;
578 	}
579 
580 	if (pl011_dma_tx_refill(uap) <= 0)
581 		/*
582 		 * We didn't queue a DMA buffer for some reason, but we
583 		 * have data pending to be sent.  Re-enable the TX IRQ.
584 		 */
585 		pl011_start_tx_pio(uap);
586 
587 	spin_unlock_irqrestore(&uap->port.lock, flags);
588 }
589 
590 /*
591  * Try to refill the TX DMA buffer.
592  * Locking: called with port lock held and IRQs disabled.
593  * Returns:
594  *   1 if we queued up a TX DMA buffer.
595  *   0 if we didn't want to handle this by DMA
596  *  <0 on error
597  */
598 static int pl011_dma_tx_refill(struct uart_amba_port *uap)
599 {
600 	struct pl011_dmatx_data *dmatx = &uap->dmatx;
601 	struct dma_chan *chan = dmatx->chan;
602 	struct dma_device *dma_dev = chan->device;
603 	struct dma_async_tx_descriptor *desc;
604 	struct circ_buf *xmit = &uap->port.state->xmit;
605 	unsigned int count;
606 
607 	/*
608 	 * Try to avoid the overhead involved in using DMA if the
609 	 * transaction fits in the first half of the FIFO, by using
610 	 * the standard interrupt handling.  This ensures that we
611 	 * issue a uart_write_wakeup() at the appropriate time.
612 	 */
613 	count = uart_circ_chars_pending(xmit);
614 	if (count < (uap->fifosize >> 1)) {
615 		uap->dmatx.queued = false;
616 		return 0;
617 	}
618 
619 	/*
620 	 * Bodge: don't send the last character by DMA, as this
621 	 * will prevent XON from notifying us to restart DMA.
622 	 */
623 	count -= 1;
624 
625 	/* Else proceed to copy the TX chars to the DMA buffer and fire DMA */
626 	if (count > PL011_DMA_BUFFER_SIZE)
627 		count = PL011_DMA_BUFFER_SIZE;
628 
629 	if (xmit->tail < xmit->head)
630 		memcpy(&dmatx->buf[0], &xmit->buf[xmit->tail], count);
631 	else {
632 		size_t first = UART_XMIT_SIZE - xmit->tail;
633 		size_t second;
634 
635 		if (first > count)
636 			first = count;
637 		second = count - first;
638 
639 		memcpy(&dmatx->buf[0], &xmit->buf[xmit->tail], first);
640 		if (second)
641 			memcpy(&dmatx->buf[first], &xmit->buf[0], second);
642 	}
643 
644 	dmatx->sg.length = count;
645 
646 	if (dma_map_sg(dma_dev->dev, &dmatx->sg, 1, DMA_TO_DEVICE) != 1) {
647 		uap->dmatx.queued = false;
648 		dev_dbg(uap->port.dev, "unable to map TX DMA\n");
649 		return -EBUSY;
650 	}
651 
652 	desc = dmaengine_prep_slave_sg(chan, &dmatx->sg, 1, DMA_MEM_TO_DEV,
653 					     DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
654 	if (!desc) {
655 		dma_unmap_sg(dma_dev->dev, &dmatx->sg, 1, DMA_TO_DEVICE);
656 		uap->dmatx.queued = false;
657 		/*
658 		 * If DMA cannot be used right now, we complete this
659 		 * transaction via IRQ and let the TTY layer retry.
660 		 */
661 		dev_dbg(uap->port.dev, "TX DMA busy\n");
662 		return -EBUSY;
663 	}
664 
665 	/* Some data to go along to the callback */
666 	desc->callback = pl011_dma_tx_callback;
667 	desc->callback_param = uap;
668 
669 	/* All errors should happen at prepare time */
670 	dmaengine_submit(desc);
671 
672 	/* Fire the DMA transaction */
673 	dma_dev->device_issue_pending(chan);
674 
675 	uap->dmacr |= UART011_TXDMAE;
676 	pl011_write(uap->dmacr, uap, REG_DMACR);
677 	uap->dmatx.queued = true;
678 
679 	/*
680 	 * Now we know that DMA will fire, so advance the ring buffer
681 	 * with the stuff we just dispatched.
682 	 */
683 	xmit->tail = (xmit->tail + count) & (UART_XMIT_SIZE - 1);
684 	uap->port.icount.tx += count;
685 
686 	if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
687 		uart_write_wakeup(&uap->port);
688 
689 	return 1;
690 }
691 
692 /*
693  * We received a transmit interrupt without a pending X-char but with
694  * pending characters.
695  * Locking: called with port lock held and IRQs disabled.
696  * Returns:
697  *   false if we want to use PIO to transmit
698  *   true if we queued a DMA buffer
699  */
700 static bool pl011_dma_tx_irq(struct uart_amba_port *uap)
701 {
702 	if (!uap->using_tx_dma)
703 		return false;
704 
705 	/*
706 	 * If we already have a TX buffer queued, but received a
707 	 * TX interrupt, it will be because we've just sent an X-char.
708 	 * Ensure the TX DMA is enabled and the TX IRQ is disabled.
709 	 */
710 	if (uap->dmatx.queued) {
711 		uap->dmacr |= UART011_TXDMAE;
712 		pl011_write(uap->dmacr, uap, REG_DMACR);
713 		uap->im &= ~UART011_TXIM;
714 		pl011_write(uap->im, uap, REG_IMSC);
715 		return true;
716 	}
717 
718 	/*
719 	 * We don't have a TX buffer queued, so try to queue one.
720 	 * If we successfully queued a buffer, mask the TX IRQ.
721 	 */
722 	if (pl011_dma_tx_refill(uap) > 0) {
723 		uap->im &= ~UART011_TXIM;
724 		pl011_write(uap->im, uap, REG_IMSC);
725 		return true;
726 	}
727 	return false;
728 }
729 
730 /*
731  * Stop the DMA transmit (eg, due to received XOFF).
732  * Locking: called with port lock held and IRQs disabled.
733  */
734 static inline void pl011_dma_tx_stop(struct uart_amba_port *uap)
735 {
736 	if (uap->dmatx.queued) {
737 		uap->dmacr &= ~UART011_TXDMAE;
738 		pl011_write(uap->dmacr, uap, REG_DMACR);
739 	}
740 }
741 
742 /*
743  * Try to start a DMA transmit, or in the case of an XON/OFF
744  * character queued for send, try to get that character out ASAP.
745  * Locking: called with port lock held and IRQs disabled.
746  * Returns:
747  *   false if we want the TX IRQ to be enabled
748  *   true if we have a buffer queued
749  */
750 static inline bool pl011_dma_tx_start(struct uart_amba_port *uap)
751 {
752 	u16 dmacr;
753 
754 	if (!uap->using_tx_dma)
755 		return false;
756 
757 	if (!uap->port.x_char) {
758 		/* no X-char, try to push chars out in DMA mode */
759 		bool ret = true;
760 
761 		if (!uap->dmatx.queued) {
762 			if (pl011_dma_tx_refill(uap) > 0) {
763 				uap->im &= ~UART011_TXIM;
764 				pl011_write(uap->im, uap, REG_IMSC);
765 			} else
766 				ret = false;
767 		} else if (!(uap->dmacr & UART011_TXDMAE)) {
768 			uap->dmacr |= UART011_TXDMAE;
769 			pl011_write(uap->dmacr, uap, REG_DMACR);
770 		}
771 		return ret;
772 	}
773 
774 	/*
775 	 * We have an X-char to send.  Disable DMA to prevent it loading
776 	 * the TX fifo, and then see if we can stuff it into the FIFO.
777 	 */
778 	dmacr = uap->dmacr;
779 	uap->dmacr &= ~UART011_TXDMAE;
780 	pl011_write(uap->dmacr, uap, REG_DMACR);
781 
782 	if (pl011_read(uap, REG_FR) & UART01x_FR_TXFF) {
783 		/*
784 		 * No space in the FIFO, so enable the transmit interrupt
785 		 * so we know when there is space.  Note that once we've
786 		 * loaded the character, we should just re-enable DMA.
787 		 */
788 		return false;
789 	}
790 
791 	pl011_write(uap->port.x_char, uap, REG_DR);
792 	uap->port.icount.tx++;
793 	uap->port.x_char = 0;
794 
795 	/* Success - restore the DMA state */
796 	uap->dmacr = dmacr;
797 	pl011_write(dmacr, uap, REG_DMACR);
798 
799 	return true;
800 }
801 
802 /*
803  * Flush the transmit buffer.
804  * Locking: called with port lock held and IRQs disabled.
805  */
806 static void pl011_dma_flush_buffer(struct uart_port *port)
807 __releases(&uap->port.lock)
808 __acquires(&uap->port.lock)
809 {
810 	struct uart_amba_port *uap =
811 	    container_of(port, struct uart_amba_port, port);
812 
813 	if (!uap->using_tx_dma)
814 		return;
815 
816 	/* Avoid deadlock with the DMA engine callback */
817 	spin_unlock(&uap->port.lock);
818 	dmaengine_terminate_all(uap->dmatx.chan);
819 	spin_lock(&uap->port.lock);
820 	if (uap->dmatx.queued) {
821 		dma_unmap_sg(uap->dmatx.chan->device->dev, &uap->dmatx.sg, 1,
822 			     DMA_TO_DEVICE);
823 		uap->dmatx.queued = false;
824 		uap->dmacr &= ~UART011_TXDMAE;
825 		pl011_write(uap->dmacr, uap, REG_DMACR);
826 	}
827 }
828 
829 static void pl011_dma_rx_callback(void *data);
830 
831 static int pl011_dma_rx_trigger_dma(struct uart_amba_port *uap)
832 {
833 	struct dma_chan *rxchan = uap->dmarx.chan;
834 	struct pl011_dmarx_data *dmarx = &uap->dmarx;
835 	struct dma_async_tx_descriptor *desc;
836 	struct pl011_sgbuf *sgbuf;
837 
838 	if (!rxchan)
839 		return -EIO;
840 
841 	/* Start the RX DMA job */
842 	sgbuf = uap->dmarx.use_buf_b ?
843 		&uap->dmarx.sgbuf_b : &uap->dmarx.sgbuf_a;
844 	desc = dmaengine_prep_slave_sg(rxchan, &sgbuf->sg, 1,
845 					DMA_DEV_TO_MEM,
846 					DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
847 	/*
848 	 * If the DMA engine is busy and cannot prepare a
849 	 * channel, no big deal, the driver will fall back
850 	 * to interrupt mode as a result of this error code.
851 	 */
852 	if (!desc) {
853 		uap->dmarx.running = false;
854 		dmaengine_terminate_all(rxchan);
855 		return -EBUSY;
856 	}
857 
858 	/* Some data to go along to the callback */
859 	desc->callback = pl011_dma_rx_callback;
860 	desc->callback_param = uap;
861 	dmarx->cookie = dmaengine_submit(desc);
862 	dma_async_issue_pending(rxchan);
863 
864 	uap->dmacr |= UART011_RXDMAE;
865 	pl011_write(uap->dmacr, uap, REG_DMACR);
866 	uap->dmarx.running = true;
867 
868 	uap->im &= ~UART011_RXIM;
869 	pl011_write(uap->im, uap, REG_IMSC);
870 
871 	return 0;
872 }
873 
874 /*
875  * This is called when either the DMA job is complete, or
876  * the FIFO timeout interrupt occurred. This must be called
877  * with the port spinlock uap->port.lock held.
878  */
879 static void pl011_dma_rx_chars(struct uart_amba_port *uap,
880 			       u32 pending, bool use_buf_b,
881 			       bool readfifo)
882 {
883 	struct tty_port *port = &uap->port.state->port;
884 	struct pl011_sgbuf *sgbuf = use_buf_b ?
885 		&uap->dmarx.sgbuf_b : &uap->dmarx.sgbuf_a;
886 	int dma_count = 0;
887 	u32 fifotaken = 0; /* only used for vdbg() */
888 
889 	struct pl011_dmarx_data *dmarx = &uap->dmarx;
890 	int dmataken = 0;
891 
892 	if (uap->dmarx.poll_rate) {
893 		/* The data can be taken by polling */
894 		dmataken = sgbuf->sg.length - dmarx->last_residue;
895 		/* Recalculate the pending size */
896 		if (pending >= dmataken)
897 			pending -= dmataken;
898 	}
899 
900 	/* Pick the remain data from the DMA */
901 	if (pending) {
902 
903 		/*
904 		 * First take all chars in the DMA pipe, then look in the FIFO.
905 		 * Note that tty_insert_flip_buf() tries to take as many chars
906 		 * as it can.
907 		 */
908 		dma_count = tty_insert_flip_string(port, sgbuf->buf + dmataken,
909 				pending);
910 
911 		uap->port.icount.rx += dma_count;
912 		if (dma_count < pending)
913 			dev_warn(uap->port.dev,
914 				 "couldn't insert all characters (TTY is full?)\n");
915 	}
916 
917 	/* Reset the last_residue for Rx DMA poll */
918 	if (uap->dmarx.poll_rate)
919 		dmarx->last_residue = sgbuf->sg.length;
920 
921 	/*
922 	 * Only continue with trying to read the FIFO if all DMA chars have
923 	 * been taken first.
924 	 */
925 	if (dma_count == pending && readfifo) {
926 		/* Clear any error flags */
927 		pl011_write(UART011_OEIS | UART011_BEIS | UART011_PEIS |
928 			    UART011_FEIS, uap, REG_ICR);
929 
930 		/*
931 		 * If we read all the DMA'd characters, and we had an
932 		 * incomplete buffer, that could be due to an rx error, or
933 		 * maybe we just timed out. Read any pending chars and check
934 		 * the error status.
935 		 *
936 		 * Error conditions will only occur in the FIFO, these will
937 		 * trigger an immediate interrupt and stop the DMA job, so we
938 		 * will always find the error in the FIFO, never in the DMA
939 		 * buffer.
940 		 */
941 		fifotaken = pl011_fifo_to_tty(uap);
942 	}
943 
944 	spin_unlock(&uap->port.lock);
945 	dev_vdbg(uap->port.dev,
946 		 "Took %d chars from DMA buffer and %d chars from the FIFO\n",
947 		 dma_count, fifotaken);
948 	tty_flip_buffer_push(port);
949 	spin_lock(&uap->port.lock);
950 }
951 
952 static void pl011_dma_rx_irq(struct uart_amba_port *uap)
953 {
954 	struct pl011_dmarx_data *dmarx = &uap->dmarx;
955 	struct dma_chan *rxchan = dmarx->chan;
956 	struct pl011_sgbuf *sgbuf = dmarx->use_buf_b ?
957 		&dmarx->sgbuf_b : &dmarx->sgbuf_a;
958 	size_t pending;
959 	struct dma_tx_state state;
960 	enum dma_status dmastat;
961 
962 	/*
963 	 * Pause the transfer so we can trust the current counter,
964 	 * do this before we pause the PL011 block, else we may
965 	 * overflow the FIFO.
966 	 */
967 	if (dmaengine_pause(rxchan))
968 		dev_err(uap->port.dev, "unable to pause DMA transfer\n");
969 	dmastat = rxchan->device->device_tx_status(rxchan,
970 						   dmarx->cookie, &state);
971 	if (dmastat != DMA_PAUSED)
972 		dev_err(uap->port.dev, "unable to pause DMA transfer\n");
973 
974 	/* Disable RX DMA - incoming data will wait in the FIFO */
975 	uap->dmacr &= ~UART011_RXDMAE;
976 	pl011_write(uap->dmacr, uap, REG_DMACR);
977 	uap->dmarx.running = false;
978 
979 	pending = sgbuf->sg.length - state.residue;
980 	BUG_ON(pending > PL011_DMA_BUFFER_SIZE);
981 	/* Then we terminate the transfer - we now know our residue */
982 	dmaengine_terminate_all(rxchan);
983 
984 	/*
985 	 * This will take the chars we have so far and insert
986 	 * into the framework.
987 	 */
988 	pl011_dma_rx_chars(uap, pending, dmarx->use_buf_b, true);
989 
990 	/* Switch buffer & re-trigger DMA job */
991 	dmarx->use_buf_b = !dmarx->use_buf_b;
992 	if (pl011_dma_rx_trigger_dma(uap)) {
993 		dev_dbg(uap->port.dev, "could not retrigger RX DMA job "
994 			"fall back to interrupt mode\n");
995 		uap->im |= UART011_RXIM;
996 		pl011_write(uap->im, uap, REG_IMSC);
997 	}
998 }
999 
1000 static void pl011_dma_rx_callback(void *data)
1001 {
1002 	struct uart_amba_port *uap = data;
1003 	struct pl011_dmarx_data *dmarx = &uap->dmarx;
1004 	struct dma_chan *rxchan = dmarx->chan;
1005 	bool lastbuf = dmarx->use_buf_b;
1006 	struct pl011_sgbuf *sgbuf = dmarx->use_buf_b ?
1007 		&dmarx->sgbuf_b : &dmarx->sgbuf_a;
1008 	size_t pending;
1009 	struct dma_tx_state state;
1010 	int ret;
1011 
1012 	/*
1013 	 * This completion interrupt occurs typically when the
1014 	 * RX buffer is totally stuffed but no timeout has yet
1015 	 * occurred. When that happens, we just want the RX
1016 	 * routine to flush out the secondary DMA buffer while
1017 	 * we immediately trigger the next DMA job.
1018 	 */
1019 	spin_lock_irq(&uap->port.lock);
1020 	/*
1021 	 * Rx data can be taken by the UART interrupts during
1022 	 * the DMA irq handler. So we check the residue here.
1023 	 */
1024 	rxchan->device->device_tx_status(rxchan, dmarx->cookie, &state);
1025 	pending = sgbuf->sg.length - state.residue;
1026 	BUG_ON(pending > PL011_DMA_BUFFER_SIZE);
1027 	/* Then we terminate the transfer - we now know our residue */
1028 	dmaengine_terminate_all(rxchan);
1029 
1030 	uap->dmarx.running = false;
1031 	dmarx->use_buf_b = !lastbuf;
1032 	ret = pl011_dma_rx_trigger_dma(uap);
1033 
1034 	pl011_dma_rx_chars(uap, pending, lastbuf, false);
1035 	spin_unlock_irq(&uap->port.lock);
1036 	/*
1037 	 * Do this check after we picked the DMA chars so we don't
1038 	 * get some IRQ immediately from RX.
1039 	 */
1040 	if (ret) {
1041 		dev_dbg(uap->port.dev, "could not retrigger RX DMA job "
1042 			"fall back to interrupt mode\n");
1043 		uap->im |= UART011_RXIM;
1044 		pl011_write(uap->im, uap, REG_IMSC);
1045 	}
1046 }
1047 
1048 /*
1049  * Stop accepting received characters, when we're shutting down or
1050  * suspending this port.
1051  * Locking: called with port lock held and IRQs disabled.
1052  */
1053 static inline void pl011_dma_rx_stop(struct uart_amba_port *uap)
1054 {
1055 	/* FIXME.  Just disable the DMA enable */
1056 	uap->dmacr &= ~UART011_RXDMAE;
1057 	pl011_write(uap->dmacr, uap, REG_DMACR);
1058 }
1059 
1060 /*
1061  * Timer handler for Rx DMA polling.
1062  * Every polling, It checks the residue in the dma buffer and transfer
1063  * data to the tty. Also, last_residue is updated for the next polling.
1064  */
1065 static void pl011_dma_rx_poll(struct timer_list *t)
1066 {
1067 	struct uart_amba_port *uap = from_timer(uap, t, dmarx.timer);
1068 	struct tty_port *port = &uap->port.state->port;
1069 	struct pl011_dmarx_data *dmarx = &uap->dmarx;
1070 	struct dma_chan *rxchan = uap->dmarx.chan;
1071 	unsigned long flags = 0;
1072 	unsigned int dmataken = 0;
1073 	unsigned int size = 0;
1074 	struct pl011_sgbuf *sgbuf;
1075 	int dma_count;
1076 	struct dma_tx_state state;
1077 
1078 	sgbuf = dmarx->use_buf_b ? &uap->dmarx.sgbuf_b : &uap->dmarx.sgbuf_a;
1079 	rxchan->device->device_tx_status(rxchan, dmarx->cookie, &state);
1080 	if (likely(state.residue < dmarx->last_residue)) {
1081 		dmataken = sgbuf->sg.length - dmarx->last_residue;
1082 		size = dmarx->last_residue - state.residue;
1083 		dma_count = tty_insert_flip_string(port, sgbuf->buf + dmataken,
1084 				size);
1085 		if (dma_count == size)
1086 			dmarx->last_residue =  state.residue;
1087 		dmarx->last_jiffies = jiffies;
1088 	}
1089 	tty_flip_buffer_push(port);
1090 
1091 	/*
1092 	 * If no data is received in poll_timeout, the driver will fall back
1093 	 * to interrupt mode. We will retrigger DMA at the first interrupt.
1094 	 */
1095 	if (jiffies_to_msecs(jiffies - dmarx->last_jiffies)
1096 			> uap->dmarx.poll_timeout) {
1097 
1098 		spin_lock_irqsave(&uap->port.lock, flags);
1099 		pl011_dma_rx_stop(uap);
1100 		uap->im |= UART011_RXIM;
1101 		pl011_write(uap->im, uap, REG_IMSC);
1102 		spin_unlock_irqrestore(&uap->port.lock, flags);
1103 
1104 		uap->dmarx.running = false;
1105 		dmaengine_terminate_all(rxchan);
1106 		del_timer(&uap->dmarx.timer);
1107 	} else {
1108 		mod_timer(&uap->dmarx.timer,
1109 			jiffies + msecs_to_jiffies(uap->dmarx.poll_rate));
1110 	}
1111 }
1112 
1113 static void pl011_dma_startup(struct uart_amba_port *uap)
1114 {
1115 	int ret;
1116 
1117 	if (!uap->dma_probed)
1118 		pl011_dma_probe(uap);
1119 
1120 	if (!uap->dmatx.chan)
1121 		return;
1122 
1123 	uap->dmatx.buf = kmalloc(PL011_DMA_BUFFER_SIZE, GFP_KERNEL | __GFP_DMA);
1124 	if (!uap->dmatx.buf) {
1125 		dev_err(uap->port.dev, "no memory for DMA TX buffer\n");
1126 		uap->port.fifosize = uap->fifosize;
1127 		return;
1128 	}
1129 
1130 	sg_init_one(&uap->dmatx.sg, uap->dmatx.buf, PL011_DMA_BUFFER_SIZE);
1131 
1132 	/* The DMA buffer is now the FIFO the TTY subsystem can use */
1133 	uap->port.fifosize = PL011_DMA_BUFFER_SIZE;
1134 	uap->using_tx_dma = true;
1135 
1136 	if (!uap->dmarx.chan)
1137 		goto skip_rx;
1138 
1139 	/* Allocate and map DMA RX buffers */
1140 	ret = pl011_sgbuf_init(uap->dmarx.chan, &uap->dmarx.sgbuf_a,
1141 			       DMA_FROM_DEVICE);
1142 	if (ret) {
1143 		dev_err(uap->port.dev, "failed to init DMA %s: %d\n",
1144 			"RX buffer A", ret);
1145 		goto skip_rx;
1146 	}
1147 
1148 	ret = pl011_sgbuf_init(uap->dmarx.chan, &uap->dmarx.sgbuf_b,
1149 			       DMA_FROM_DEVICE);
1150 	if (ret) {
1151 		dev_err(uap->port.dev, "failed to init DMA %s: %d\n",
1152 			"RX buffer B", ret);
1153 		pl011_sgbuf_free(uap->dmarx.chan, &uap->dmarx.sgbuf_a,
1154 				 DMA_FROM_DEVICE);
1155 		goto skip_rx;
1156 	}
1157 
1158 	uap->using_rx_dma = true;
1159 
1160 skip_rx:
1161 	/* Turn on DMA error (RX/TX will be enabled on demand) */
1162 	uap->dmacr |= UART011_DMAONERR;
1163 	pl011_write(uap->dmacr, uap, REG_DMACR);
1164 
1165 	/*
1166 	 * ST Micro variants has some specific dma burst threshold
1167 	 * compensation. Set this to 16 bytes, so burst will only
1168 	 * be issued above/below 16 bytes.
1169 	 */
1170 	if (uap->vendor->dma_threshold)
1171 		pl011_write(ST_UART011_DMAWM_RX_16 | ST_UART011_DMAWM_TX_16,
1172 			    uap, REG_ST_DMAWM);
1173 
1174 	if (uap->using_rx_dma) {
1175 		if (pl011_dma_rx_trigger_dma(uap))
1176 			dev_dbg(uap->port.dev, "could not trigger initial "
1177 				"RX DMA job, fall back to interrupt mode\n");
1178 		if (uap->dmarx.poll_rate) {
1179 			timer_setup(&uap->dmarx.timer, pl011_dma_rx_poll, 0);
1180 			mod_timer(&uap->dmarx.timer,
1181 				jiffies +
1182 				msecs_to_jiffies(uap->dmarx.poll_rate));
1183 			uap->dmarx.last_residue = PL011_DMA_BUFFER_SIZE;
1184 			uap->dmarx.last_jiffies = jiffies;
1185 		}
1186 	}
1187 }
1188 
1189 static void pl011_dma_shutdown(struct uart_amba_port *uap)
1190 {
1191 	if (!(uap->using_tx_dma || uap->using_rx_dma))
1192 		return;
1193 
1194 	/* Disable RX and TX DMA */
1195 	while (pl011_read(uap, REG_FR) & uap->vendor->fr_busy)
1196 		cpu_relax();
1197 
1198 	spin_lock_irq(&uap->port.lock);
1199 	uap->dmacr &= ~(UART011_DMAONERR | UART011_RXDMAE | UART011_TXDMAE);
1200 	pl011_write(uap->dmacr, uap, REG_DMACR);
1201 	spin_unlock_irq(&uap->port.lock);
1202 
1203 	if (uap->using_tx_dma) {
1204 		/* In theory, this should already be done by pl011_dma_flush_buffer */
1205 		dmaengine_terminate_all(uap->dmatx.chan);
1206 		if (uap->dmatx.queued) {
1207 			dma_unmap_sg(uap->dmatx.chan->device->dev, &uap->dmatx.sg, 1,
1208 				     DMA_TO_DEVICE);
1209 			uap->dmatx.queued = false;
1210 		}
1211 
1212 		kfree(uap->dmatx.buf);
1213 		uap->using_tx_dma = false;
1214 	}
1215 
1216 	if (uap->using_rx_dma) {
1217 		dmaengine_terminate_all(uap->dmarx.chan);
1218 		/* Clean up the RX DMA */
1219 		pl011_sgbuf_free(uap->dmarx.chan, &uap->dmarx.sgbuf_a, DMA_FROM_DEVICE);
1220 		pl011_sgbuf_free(uap->dmarx.chan, &uap->dmarx.sgbuf_b, DMA_FROM_DEVICE);
1221 		if (uap->dmarx.poll_rate)
1222 			del_timer_sync(&uap->dmarx.timer);
1223 		uap->using_rx_dma = false;
1224 	}
1225 }
1226 
1227 static inline bool pl011_dma_rx_available(struct uart_amba_port *uap)
1228 {
1229 	return uap->using_rx_dma;
1230 }
1231 
1232 static inline bool pl011_dma_rx_running(struct uart_amba_port *uap)
1233 {
1234 	return uap->using_rx_dma && uap->dmarx.running;
1235 }
1236 
1237 #else
1238 /* Blank functions if the DMA engine is not available */
1239 static inline void pl011_dma_probe(struct uart_amba_port *uap)
1240 {
1241 }
1242 
1243 static inline void pl011_dma_remove(struct uart_amba_port *uap)
1244 {
1245 }
1246 
1247 static inline void pl011_dma_startup(struct uart_amba_port *uap)
1248 {
1249 }
1250 
1251 static inline void pl011_dma_shutdown(struct uart_amba_port *uap)
1252 {
1253 }
1254 
1255 static inline bool pl011_dma_tx_irq(struct uart_amba_port *uap)
1256 {
1257 	return false;
1258 }
1259 
1260 static inline void pl011_dma_tx_stop(struct uart_amba_port *uap)
1261 {
1262 }
1263 
1264 static inline bool pl011_dma_tx_start(struct uart_amba_port *uap)
1265 {
1266 	return false;
1267 }
1268 
1269 static inline void pl011_dma_rx_irq(struct uart_amba_port *uap)
1270 {
1271 }
1272 
1273 static inline void pl011_dma_rx_stop(struct uart_amba_port *uap)
1274 {
1275 }
1276 
1277 static inline int pl011_dma_rx_trigger_dma(struct uart_amba_port *uap)
1278 {
1279 	return -EIO;
1280 }
1281 
1282 static inline bool pl011_dma_rx_available(struct uart_amba_port *uap)
1283 {
1284 	return false;
1285 }
1286 
1287 static inline bool pl011_dma_rx_running(struct uart_amba_port *uap)
1288 {
1289 	return false;
1290 }
1291 
1292 #define pl011_dma_flush_buffer	NULL
1293 #endif
1294 
1295 static void pl011_stop_tx(struct uart_port *port)
1296 {
1297 	struct uart_amba_port *uap =
1298 	    container_of(port, struct uart_amba_port, port);
1299 
1300 	uap->im &= ~UART011_TXIM;
1301 	pl011_write(uap->im, uap, REG_IMSC);
1302 	pl011_dma_tx_stop(uap);
1303 }
1304 
1305 static bool pl011_tx_chars(struct uart_amba_port *uap, bool from_irq);
1306 
1307 /* Start TX with programmed I/O only (no DMA) */
1308 static void pl011_start_tx_pio(struct uart_amba_port *uap)
1309 {
1310 	if (pl011_tx_chars(uap, false)) {
1311 		uap->im |= UART011_TXIM;
1312 		pl011_write(uap->im, uap, REG_IMSC);
1313 	}
1314 }
1315 
1316 static void pl011_start_tx(struct uart_port *port)
1317 {
1318 	struct uart_amba_port *uap =
1319 	    container_of(port, struct uart_amba_port, port);
1320 
1321 	if (!pl011_dma_tx_start(uap))
1322 		pl011_start_tx_pio(uap);
1323 }
1324 
1325 static void pl011_stop_rx(struct uart_port *port)
1326 {
1327 	struct uart_amba_port *uap =
1328 	    container_of(port, struct uart_amba_port, port);
1329 
1330 	uap->im &= ~(UART011_RXIM|UART011_RTIM|UART011_FEIM|
1331 		     UART011_PEIM|UART011_BEIM|UART011_OEIM);
1332 	pl011_write(uap->im, uap, REG_IMSC);
1333 
1334 	pl011_dma_rx_stop(uap);
1335 }
1336 
1337 static void pl011_enable_ms(struct uart_port *port)
1338 {
1339 	struct uart_amba_port *uap =
1340 	    container_of(port, struct uart_amba_port, port);
1341 
1342 	uap->im |= UART011_RIMIM|UART011_CTSMIM|UART011_DCDMIM|UART011_DSRMIM;
1343 	pl011_write(uap->im, uap, REG_IMSC);
1344 }
1345 
1346 static void pl011_rx_chars(struct uart_amba_port *uap)
1347 __releases(&uap->port.lock)
1348 __acquires(&uap->port.lock)
1349 {
1350 	pl011_fifo_to_tty(uap);
1351 
1352 	spin_unlock(&uap->port.lock);
1353 	tty_flip_buffer_push(&uap->port.state->port);
1354 	/*
1355 	 * If we were temporarily out of DMA mode for a while,
1356 	 * attempt to switch back to DMA mode again.
1357 	 */
1358 	if (pl011_dma_rx_available(uap)) {
1359 		if (pl011_dma_rx_trigger_dma(uap)) {
1360 			dev_dbg(uap->port.dev, "could not trigger RX DMA job "
1361 				"fall back to interrupt mode again\n");
1362 			uap->im |= UART011_RXIM;
1363 			pl011_write(uap->im, uap, REG_IMSC);
1364 		} else {
1365 #ifdef CONFIG_DMA_ENGINE
1366 			/* Start Rx DMA poll */
1367 			if (uap->dmarx.poll_rate) {
1368 				uap->dmarx.last_jiffies = jiffies;
1369 				uap->dmarx.last_residue	= PL011_DMA_BUFFER_SIZE;
1370 				mod_timer(&uap->dmarx.timer,
1371 					jiffies +
1372 					msecs_to_jiffies(uap->dmarx.poll_rate));
1373 			}
1374 #endif
1375 		}
1376 	}
1377 	spin_lock(&uap->port.lock);
1378 }
1379 
1380 static bool pl011_tx_char(struct uart_amba_port *uap, unsigned char c,
1381 			  bool from_irq)
1382 {
1383 	if (unlikely(!from_irq) &&
1384 	    pl011_read(uap, REG_FR) & UART01x_FR_TXFF)
1385 		return false; /* unable to transmit character */
1386 
1387 	pl011_write(c, uap, REG_DR);
1388 	uap->port.icount.tx++;
1389 
1390 	return true;
1391 }
1392 
1393 /* Returns true if tx interrupts have to be (kept) enabled  */
1394 static bool pl011_tx_chars(struct uart_amba_port *uap, bool from_irq)
1395 {
1396 	struct circ_buf *xmit = &uap->port.state->xmit;
1397 	int count = uap->fifosize >> 1;
1398 
1399 	if (uap->port.x_char) {
1400 		if (!pl011_tx_char(uap, uap->port.x_char, from_irq))
1401 			return true;
1402 		uap->port.x_char = 0;
1403 		--count;
1404 	}
1405 	if (uart_circ_empty(xmit) || uart_tx_stopped(&uap->port)) {
1406 		pl011_stop_tx(&uap->port);
1407 		return false;
1408 	}
1409 
1410 	/* If we are using DMA mode, try to send some characters. */
1411 	if (pl011_dma_tx_irq(uap))
1412 		return true;
1413 
1414 	do {
1415 		if (likely(from_irq) && count-- == 0)
1416 			break;
1417 
1418 		if (!pl011_tx_char(uap, xmit->buf[xmit->tail], from_irq))
1419 			break;
1420 
1421 		xmit->tail = (xmit->tail + 1) & (UART_XMIT_SIZE - 1);
1422 	} while (!uart_circ_empty(xmit));
1423 
1424 	if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
1425 		uart_write_wakeup(&uap->port);
1426 
1427 	if (uart_circ_empty(xmit)) {
1428 		pl011_stop_tx(&uap->port);
1429 		return false;
1430 	}
1431 	return true;
1432 }
1433 
1434 static void pl011_modem_status(struct uart_amba_port *uap)
1435 {
1436 	unsigned int status, delta;
1437 
1438 	status = pl011_read(uap, REG_FR) & UART01x_FR_MODEM_ANY;
1439 
1440 	delta = status ^ uap->old_status;
1441 	uap->old_status = status;
1442 
1443 	if (!delta)
1444 		return;
1445 
1446 	if (delta & UART01x_FR_DCD)
1447 		uart_handle_dcd_change(&uap->port, status & UART01x_FR_DCD);
1448 
1449 	if (delta & uap->vendor->fr_dsr)
1450 		uap->port.icount.dsr++;
1451 
1452 	if (delta & uap->vendor->fr_cts)
1453 		uart_handle_cts_change(&uap->port,
1454 				       status & uap->vendor->fr_cts);
1455 
1456 	wake_up_interruptible(&uap->port.state->port.delta_msr_wait);
1457 }
1458 
1459 static void check_apply_cts_event_workaround(struct uart_amba_port *uap)
1460 {
1461 	unsigned int dummy_read;
1462 
1463 	if (!uap->vendor->cts_event_workaround)
1464 		return;
1465 
1466 	/* workaround to make sure that all bits are unlocked.. */
1467 	pl011_write(0x00, uap, REG_ICR);
1468 
1469 	/*
1470 	 * WA: introduce 26ns(1 uart clk) delay before W1C;
1471 	 * single apb access will incur 2 pclk(133.12Mhz) delay,
1472 	 * so add 2 dummy reads
1473 	 */
1474 	dummy_read = pl011_read(uap, REG_ICR);
1475 	dummy_read = pl011_read(uap, REG_ICR);
1476 }
1477 
1478 static irqreturn_t pl011_int(int irq, void *dev_id)
1479 {
1480 	struct uart_amba_port *uap = dev_id;
1481 	unsigned long flags;
1482 	unsigned int status, pass_counter = AMBA_ISR_PASS_LIMIT;
1483 	int handled = 0;
1484 
1485 	spin_lock_irqsave(&uap->port.lock, flags);
1486 	status = pl011_read(uap, REG_RIS) & uap->im;
1487 	if (status) {
1488 		do {
1489 			check_apply_cts_event_workaround(uap);
1490 
1491 			pl011_write(status & ~(UART011_TXIS|UART011_RTIS|
1492 					       UART011_RXIS),
1493 				    uap, REG_ICR);
1494 
1495 			if (status & (UART011_RTIS|UART011_RXIS)) {
1496 				if (pl011_dma_rx_running(uap))
1497 					pl011_dma_rx_irq(uap);
1498 				else
1499 					pl011_rx_chars(uap);
1500 			}
1501 			if (status & (UART011_DSRMIS|UART011_DCDMIS|
1502 				      UART011_CTSMIS|UART011_RIMIS))
1503 				pl011_modem_status(uap);
1504 			if (status & UART011_TXIS)
1505 				pl011_tx_chars(uap, true);
1506 
1507 			if (pass_counter-- == 0)
1508 				break;
1509 
1510 			status = pl011_read(uap, REG_RIS) & uap->im;
1511 		} while (status != 0);
1512 		handled = 1;
1513 	}
1514 
1515 	spin_unlock_irqrestore(&uap->port.lock, flags);
1516 
1517 	return IRQ_RETVAL(handled);
1518 }
1519 
1520 static unsigned int pl011_tx_empty(struct uart_port *port)
1521 {
1522 	struct uart_amba_port *uap =
1523 	    container_of(port, struct uart_amba_port, port);
1524 
1525 	/* Allow feature register bits to be inverted to work around errata */
1526 	unsigned int status = pl011_read(uap, REG_FR) ^ uap->vendor->inv_fr;
1527 
1528 	return status & (uap->vendor->fr_busy | UART01x_FR_TXFF) ?
1529 							0 : TIOCSER_TEMT;
1530 }
1531 
1532 static unsigned int pl011_get_mctrl(struct uart_port *port)
1533 {
1534 	struct uart_amba_port *uap =
1535 	    container_of(port, struct uart_amba_port, port);
1536 	unsigned int result = 0;
1537 	unsigned int status = pl011_read(uap, REG_FR);
1538 
1539 #define TIOCMBIT(uartbit, tiocmbit)	\
1540 	if (status & uartbit)		\
1541 		result |= tiocmbit
1542 
1543 	TIOCMBIT(UART01x_FR_DCD, TIOCM_CAR);
1544 	TIOCMBIT(uap->vendor->fr_dsr, TIOCM_DSR);
1545 	TIOCMBIT(uap->vendor->fr_cts, TIOCM_CTS);
1546 	TIOCMBIT(uap->vendor->fr_ri, TIOCM_RNG);
1547 #undef TIOCMBIT
1548 	return result;
1549 }
1550 
1551 static void pl011_set_mctrl(struct uart_port *port, unsigned int mctrl)
1552 {
1553 	struct uart_amba_port *uap =
1554 	    container_of(port, struct uart_amba_port, port);
1555 	unsigned int cr;
1556 
1557 	cr = pl011_read(uap, REG_CR);
1558 
1559 #define	TIOCMBIT(tiocmbit, uartbit)		\
1560 	if (mctrl & tiocmbit)		\
1561 		cr |= uartbit;		\
1562 	else				\
1563 		cr &= ~uartbit
1564 
1565 	TIOCMBIT(TIOCM_RTS, UART011_CR_RTS);
1566 	TIOCMBIT(TIOCM_DTR, UART011_CR_DTR);
1567 	TIOCMBIT(TIOCM_OUT1, UART011_CR_OUT1);
1568 	TIOCMBIT(TIOCM_OUT2, UART011_CR_OUT2);
1569 	TIOCMBIT(TIOCM_LOOP, UART011_CR_LBE);
1570 
1571 	if (port->status & UPSTAT_AUTORTS) {
1572 		/* We need to disable auto-RTS if we want to turn RTS off */
1573 		TIOCMBIT(TIOCM_RTS, UART011_CR_RTSEN);
1574 	}
1575 #undef TIOCMBIT
1576 
1577 	pl011_write(cr, uap, REG_CR);
1578 }
1579 
1580 static void pl011_break_ctl(struct uart_port *port, int break_state)
1581 {
1582 	struct uart_amba_port *uap =
1583 	    container_of(port, struct uart_amba_port, port);
1584 	unsigned long flags;
1585 	unsigned int lcr_h;
1586 
1587 	spin_lock_irqsave(&uap->port.lock, flags);
1588 	lcr_h = pl011_read(uap, REG_LCRH_TX);
1589 	if (break_state == -1)
1590 		lcr_h |= UART01x_LCRH_BRK;
1591 	else
1592 		lcr_h &= ~UART01x_LCRH_BRK;
1593 	pl011_write(lcr_h, uap, REG_LCRH_TX);
1594 	spin_unlock_irqrestore(&uap->port.lock, flags);
1595 }
1596 
1597 #ifdef CONFIG_CONSOLE_POLL
1598 
1599 static void pl011_quiesce_irqs(struct uart_port *port)
1600 {
1601 	struct uart_amba_port *uap =
1602 	    container_of(port, struct uart_amba_port, port);
1603 
1604 	pl011_write(pl011_read(uap, REG_MIS), uap, REG_ICR);
1605 	/*
1606 	 * There is no way to clear TXIM as this is "ready to transmit IRQ", so
1607 	 * we simply mask it. start_tx() will unmask it.
1608 	 *
1609 	 * Note we can race with start_tx(), and if the race happens, the
1610 	 * polling user might get another interrupt just after we clear it.
1611 	 * But it should be OK and can happen even w/o the race, e.g.
1612 	 * controller immediately got some new data and raised the IRQ.
1613 	 *
1614 	 * And whoever uses polling routines assumes that it manages the device
1615 	 * (including tx queue), so we're also fine with start_tx()'s caller
1616 	 * side.
1617 	 */
1618 	pl011_write(pl011_read(uap, REG_IMSC) & ~UART011_TXIM, uap,
1619 		    REG_IMSC);
1620 }
1621 
1622 static int pl011_get_poll_char(struct uart_port *port)
1623 {
1624 	struct uart_amba_port *uap =
1625 	    container_of(port, struct uart_amba_port, port);
1626 	unsigned int status;
1627 
1628 	/*
1629 	 * The caller might need IRQs lowered, e.g. if used with KDB NMI
1630 	 * debugger.
1631 	 */
1632 	pl011_quiesce_irqs(port);
1633 
1634 	status = pl011_read(uap, REG_FR);
1635 	if (status & UART01x_FR_RXFE)
1636 		return NO_POLL_CHAR;
1637 
1638 	return pl011_read(uap, REG_DR);
1639 }
1640 
1641 static void pl011_put_poll_char(struct uart_port *port,
1642 			 unsigned char ch)
1643 {
1644 	struct uart_amba_port *uap =
1645 	    container_of(port, struct uart_amba_port, port);
1646 
1647 	while (pl011_read(uap, REG_FR) & UART01x_FR_TXFF)
1648 		cpu_relax();
1649 
1650 	pl011_write(ch, uap, REG_DR);
1651 }
1652 
1653 #endif /* CONFIG_CONSOLE_POLL */
1654 
1655 static int pl011_hwinit(struct uart_port *port)
1656 {
1657 	struct uart_amba_port *uap =
1658 	    container_of(port, struct uart_amba_port, port);
1659 	int retval;
1660 
1661 	/* Optionaly enable pins to be muxed in and configured */
1662 	pinctrl_pm_select_default_state(port->dev);
1663 
1664 	/*
1665 	 * Try to enable the clock producer.
1666 	 */
1667 	retval = clk_prepare_enable(uap->clk);
1668 	if (retval)
1669 		return retval;
1670 
1671 	uap->port.uartclk = clk_get_rate(uap->clk);
1672 
1673 	/* Clear pending error and receive interrupts */
1674 	pl011_write(UART011_OEIS | UART011_BEIS | UART011_PEIS |
1675 		    UART011_FEIS | UART011_RTIS | UART011_RXIS,
1676 		    uap, REG_ICR);
1677 
1678 	/*
1679 	 * Save interrupts enable mask, and enable RX interrupts in case if
1680 	 * the interrupt is used for NMI entry.
1681 	 */
1682 	uap->im = pl011_read(uap, REG_IMSC);
1683 	pl011_write(UART011_RTIM | UART011_RXIM, uap, REG_IMSC);
1684 
1685 	if (dev_get_platdata(uap->port.dev)) {
1686 		struct amba_pl011_data *plat;
1687 
1688 		plat = dev_get_platdata(uap->port.dev);
1689 		if (plat->init)
1690 			plat->init();
1691 	}
1692 	return 0;
1693 }
1694 
1695 static bool pl011_split_lcrh(const struct uart_amba_port *uap)
1696 {
1697 	return pl011_reg_to_offset(uap, REG_LCRH_RX) !=
1698 	       pl011_reg_to_offset(uap, REG_LCRH_TX);
1699 }
1700 
1701 static void pl011_write_lcr_h(struct uart_amba_port *uap, unsigned int lcr_h)
1702 {
1703 	pl011_write(lcr_h, uap, REG_LCRH_RX);
1704 	if (pl011_split_lcrh(uap)) {
1705 		int i;
1706 		/*
1707 		 * Wait 10 PCLKs before writing LCRH_TX register,
1708 		 * to get this delay write read only register 10 times
1709 		 */
1710 		for (i = 0; i < 10; ++i)
1711 			pl011_write(0xff, uap, REG_MIS);
1712 		pl011_write(lcr_h, uap, REG_LCRH_TX);
1713 	}
1714 }
1715 
1716 static int pl011_allocate_irq(struct uart_amba_port *uap)
1717 {
1718 	pl011_write(uap->im, uap, REG_IMSC);
1719 
1720 	return request_irq(uap->port.irq, pl011_int, 0, "uart-pl011", uap);
1721 }
1722 
1723 /*
1724  * Enable interrupts, only timeouts when using DMA
1725  * if initial RX DMA job failed, start in interrupt mode
1726  * as well.
1727  */
1728 static void pl011_enable_interrupts(struct uart_amba_port *uap)
1729 {
1730 	unsigned int i;
1731 
1732 	spin_lock_irq(&uap->port.lock);
1733 
1734 	/* Clear out any spuriously appearing RX interrupts */
1735 	pl011_write(UART011_RTIS | UART011_RXIS, uap, REG_ICR);
1736 
1737 	/*
1738 	 * RXIS is asserted only when the RX FIFO transitions from below
1739 	 * to above the trigger threshold.  If the RX FIFO is already
1740 	 * full to the threshold this can't happen and RXIS will now be
1741 	 * stuck off.  Drain the RX FIFO explicitly to fix this:
1742 	 */
1743 	for (i = 0; i < uap->fifosize * 2; ++i) {
1744 		if (pl011_read(uap, REG_FR) & UART01x_FR_RXFE)
1745 			break;
1746 
1747 		pl011_read(uap, REG_DR);
1748 	}
1749 
1750 	uap->im = UART011_RTIM;
1751 	if (!pl011_dma_rx_running(uap))
1752 		uap->im |= UART011_RXIM;
1753 	pl011_write(uap->im, uap, REG_IMSC);
1754 	spin_unlock_irq(&uap->port.lock);
1755 }
1756 
1757 static int pl011_startup(struct uart_port *port)
1758 {
1759 	struct uart_amba_port *uap =
1760 	    container_of(port, struct uart_amba_port, port);
1761 	unsigned int cr;
1762 	int retval;
1763 
1764 	retval = pl011_hwinit(port);
1765 	if (retval)
1766 		goto clk_dis;
1767 
1768 	retval = pl011_allocate_irq(uap);
1769 	if (retval)
1770 		goto clk_dis;
1771 
1772 	pl011_write(uap->vendor->ifls, uap, REG_IFLS);
1773 
1774 	spin_lock_irq(&uap->port.lock);
1775 
1776 	/* restore RTS and DTR */
1777 	cr = uap->old_cr & (UART011_CR_RTS | UART011_CR_DTR);
1778 	cr |= UART01x_CR_UARTEN | UART011_CR_RXE | UART011_CR_TXE;
1779 	pl011_write(cr, uap, REG_CR);
1780 
1781 	spin_unlock_irq(&uap->port.lock);
1782 
1783 	/*
1784 	 * initialise the old status of the modem signals
1785 	 */
1786 	uap->old_status = pl011_read(uap, REG_FR) & UART01x_FR_MODEM_ANY;
1787 
1788 	/* Startup DMA */
1789 	pl011_dma_startup(uap);
1790 
1791 	pl011_enable_interrupts(uap);
1792 
1793 	return 0;
1794 
1795  clk_dis:
1796 	clk_disable_unprepare(uap->clk);
1797 	return retval;
1798 }
1799 
1800 static int sbsa_uart_startup(struct uart_port *port)
1801 {
1802 	struct uart_amba_port *uap =
1803 		container_of(port, struct uart_amba_port, port);
1804 	int retval;
1805 
1806 	retval = pl011_hwinit(port);
1807 	if (retval)
1808 		return retval;
1809 
1810 	retval = pl011_allocate_irq(uap);
1811 	if (retval)
1812 		return retval;
1813 
1814 	/* The SBSA UART does not support any modem status lines. */
1815 	uap->old_status = 0;
1816 
1817 	pl011_enable_interrupts(uap);
1818 
1819 	return 0;
1820 }
1821 
1822 static void pl011_shutdown_channel(struct uart_amba_port *uap,
1823 					unsigned int lcrh)
1824 {
1825       unsigned long val;
1826 
1827       val = pl011_read(uap, lcrh);
1828       val &= ~(UART01x_LCRH_BRK | UART01x_LCRH_FEN);
1829       pl011_write(val, uap, lcrh);
1830 }
1831 
1832 /*
1833  * disable the port. It should not disable RTS and DTR.
1834  * Also RTS and DTR state should be preserved to restore
1835  * it during startup().
1836  */
1837 static void pl011_disable_uart(struct uart_amba_port *uap)
1838 {
1839 	unsigned int cr;
1840 
1841 	uap->port.status &= ~(UPSTAT_AUTOCTS | UPSTAT_AUTORTS);
1842 	spin_lock_irq(&uap->port.lock);
1843 	cr = pl011_read(uap, REG_CR);
1844 	uap->old_cr = cr;
1845 	cr &= UART011_CR_RTS | UART011_CR_DTR;
1846 	cr |= UART01x_CR_UARTEN | UART011_CR_TXE;
1847 	pl011_write(cr, uap, REG_CR);
1848 	spin_unlock_irq(&uap->port.lock);
1849 
1850 	/*
1851 	 * disable break condition and fifos
1852 	 */
1853 	pl011_shutdown_channel(uap, REG_LCRH_RX);
1854 	if (pl011_split_lcrh(uap))
1855 		pl011_shutdown_channel(uap, REG_LCRH_TX);
1856 }
1857 
1858 static void pl011_disable_interrupts(struct uart_amba_port *uap)
1859 {
1860 	spin_lock_irq(&uap->port.lock);
1861 
1862 	/* mask all interrupts and clear all pending ones */
1863 	uap->im = 0;
1864 	pl011_write(uap->im, uap, REG_IMSC);
1865 	pl011_write(0xffff, uap, REG_ICR);
1866 
1867 	spin_unlock_irq(&uap->port.lock);
1868 }
1869 
1870 static void pl011_shutdown(struct uart_port *port)
1871 {
1872 	struct uart_amba_port *uap =
1873 		container_of(port, struct uart_amba_port, port);
1874 
1875 	pl011_disable_interrupts(uap);
1876 
1877 	pl011_dma_shutdown(uap);
1878 
1879 	free_irq(uap->port.irq, uap);
1880 
1881 	pl011_disable_uart(uap);
1882 
1883 	/*
1884 	 * Shut down the clock producer
1885 	 */
1886 	clk_disable_unprepare(uap->clk);
1887 	/* Optionally let pins go into sleep states */
1888 	pinctrl_pm_select_sleep_state(port->dev);
1889 
1890 	if (dev_get_platdata(uap->port.dev)) {
1891 		struct amba_pl011_data *plat;
1892 
1893 		plat = dev_get_platdata(uap->port.dev);
1894 		if (plat->exit)
1895 			plat->exit();
1896 	}
1897 
1898 	if (uap->port.ops->flush_buffer)
1899 		uap->port.ops->flush_buffer(port);
1900 }
1901 
1902 static void sbsa_uart_shutdown(struct uart_port *port)
1903 {
1904 	struct uart_amba_port *uap =
1905 		container_of(port, struct uart_amba_port, port);
1906 
1907 	pl011_disable_interrupts(uap);
1908 
1909 	free_irq(uap->port.irq, uap);
1910 
1911 	if (uap->port.ops->flush_buffer)
1912 		uap->port.ops->flush_buffer(port);
1913 }
1914 
1915 static void
1916 pl011_setup_status_masks(struct uart_port *port, struct ktermios *termios)
1917 {
1918 	port->read_status_mask = UART011_DR_OE | 255;
1919 	if (termios->c_iflag & INPCK)
1920 		port->read_status_mask |= UART011_DR_FE | UART011_DR_PE;
1921 	if (termios->c_iflag & (IGNBRK | BRKINT | PARMRK))
1922 		port->read_status_mask |= UART011_DR_BE;
1923 
1924 	/*
1925 	 * Characters to ignore
1926 	 */
1927 	port->ignore_status_mask = 0;
1928 	if (termios->c_iflag & IGNPAR)
1929 		port->ignore_status_mask |= UART011_DR_FE | UART011_DR_PE;
1930 	if (termios->c_iflag & IGNBRK) {
1931 		port->ignore_status_mask |= UART011_DR_BE;
1932 		/*
1933 		 * If we're ignoring parity and break indicators,
1934 		 * ignore overruns too (for real raw support).
1935 		 */
1936 		if (termios->c_iflag & IGNPAR)
1937 			port->ignore_status_mask |= UART011_DR_OE;
1938 	}
1939 
1940 	/*
1941 	 * Ignore all characters if CREAD is not set.
1942 	 */
1943 	if ((termios->c_cflag & CREAD) == 0)
1944 		port->ignore_status_mask |= UART_DUMMY_DR_RX;
1945 }
1946 
1947 static void
1948 pl011_set_termios(struct uart_port *port, struct ktermios *termios,
1949 		     struct ktermios *old)
1950 {
1951 	struct uart_amba_port *uap =
1952 	    container_of(port, struct uart_amba_port, port);
1953 	unsigned int lcr_h, old_cr;
1954 	unsigned long flags;
1955 	unsigned int baud, quot, clkdiv;
1956 
1957 	if (uap->vendor->oversampling)
1958 		clkdiv = 8;
1959 	else
1960 		clkdiv = 16;
1961 
1962 	/*
1963 	 * Ask the core to calculate the divisor for us.
1964 	 */
1965 	baud = uart_get_baud_rate(port, termios, old, 0,
1966 				  port->uartclk / clkdiv);
1967 #ifdef CONFIG_DMA_ENGINE
1968 	/*
1969 	 * Adjust RX DMA polling rate with baud rate if not specified.
1970 	 */
1971 	if (uap->dmarx.auto_poll_rate)
1972 		uap->dmarx.poll_rate = DIV_ROUND_UP(10000000, baud);
1973 #endif
1974 
1975 	if (baud > port->uartclk/16)
1976 		quot = DIV_ROUND_CLOSEST(port->uartclk * 8, baud);
1977 	else
1978 		quot = DIV_ROUND_CLOSEST(port->uartclk * 4, baud);
1979 
1980 	switch (termios->c_cflag & CSIZE) {
1981 	case CS5:
1982 		lcr_h = UART01x_LCRH_WLEN_5;
1983 		break;
1984 	case CS6:
1985 		lcr_h = UART01x_LCRH_WLEN_6;
1986 		break;
1987 	case CS7:
1988 		lcr_h = UART01x_LCRH_WLEN_7;
1989 		break;
1990 	default: // CS8
1991 		lcr_h = UART01x_LCRH_WLEN_8;
1992 		break;
1993 	}
1994 	if (termios->c_cflag & CSTOPB)
1995 		lcr_h |= UART01x_LCRH_STP2;
1996 	if (termios->c_cflag & PARENB) {
1997 		lcr_h |= UART01x_LCRH_PEN;
1998 		if (!(termios->c_cflag & PARODD))
1999 			lcr_h |= UART01x_LCRH_EPS;
2000 		if (termios->c_cflag & CMSPAR)
2001 			lcr_h |= UART011_LCRH_SPS;
2002 	}
2003 	if (uap->fifosize > 1)
2004 		lcr_h |= UART01x_LCRH_FEN;
2005 
2006 	spin_lock_irqsave(&port->lock, flags);
2007 
2008 	/*
2009 	 * Update the per-port timeout.
2010 	 */
2011 	uart_update_timeout(port, termios->c_cflag, baud);
2012 
2013 	pl011_setup_status_masks(port, termios);
2014 
2015 	if (UART_ENABLE_MS(port, termios->c_cflag))
2016 		pl011_enable_ms(port);
2017 
2018 	/* first, disable everything */
2019 	old_cr = pl011_read(uap, REG_CR);
2020 	pl011_write(0, uap, REG_CR);
2021 
2022 	if (termios->c_cflag & CRTSCTS) {
2023 		if (old_cr & UART011_CR_RTS)
2024 			old_cr |= UART011_CR_RTSEN;
2025 
2026 		old_cr |= UART011_CR_CTSEN;
2027 		port->status |= UPSTAT_AUTOCTS | UPSTAT_AUTORTS;
2028 	} else {
2029 		old_cr &= ~(UART011_CR_CTSEN | UART011_CR_RTSEN);
2030 		port->status &= ~(UPSTAT_AUTOCTS | UPSTAT_AUTORTS);
2031 	}
2032 
2033 	if (uap->vendor->oversampling) {
2034 		if (baud > port->uartclk / 16)
2035 			old_cr |= ST_UART011_CR_OVSFACT;
2036 		else
2037 			old_cr &= ~ST_UART011_CR_OVSFACT;
2038 	}
2039 
2040 	/*
2041 	 * Workaround for the ST Micro oversampling variants to
2042 	 * increase the bitrate slightly, by lowering the divisor,
2043 	 * to avoid delayed sampling of start bit at high speeds,
2044 	 * else we see data corruption.
2045 	 */
2046 	if (uap->vendor->oversampling) {
2047 		if ((baud >= 3000000) && (baud < 3250000) && (quot > 1))
2048 			quot -= 1;
2049 		else if ((baud > 3250000) && (quot > 2))
2050 			quot -= 2;
2051 	}
2052 	/* Set baud rate */
2053 	pl011_write(quot & 0x3f, uap, REG_FBRD);
2054 	pl011_write(quot >> 6, uap, REG_IBRD);
2055 
2056 	/*
2057 	 * ----------v----------v----------v----------v-----
2058 	 * NOTE: REG_LCRH_TX and REG_LCRH_RX MUST BE WRITTEN AFTER
2059 	 * REG_FBRD & REG_IBRD.
2060 	 * ----------^----------^----------^----------^-----
2061 	 */
2062 	pl011_write_lcr_h(uap, lcr_h);
2063 	pl011_write(old_cr, uap, REG_CR);
2064 
2065 	spin_unlock_irqrestore(&port->lock, flags);
2066 }
2067 
2068 static void
2069 sbsa_uart_set_termios(struct uart_port *port, struct ktermios *termios,
2070 		      struct ktermios *old)
2071 {
2072 	struct uart_amba_port *uap =
2073 	    container_of(port, struct uart_amba_port, port);
2074 	unsigned long flags;
2075 
2076 	tty_termios_encode_baud_rate(termios, uap->fixed_baud, uap->fixed_baud);
2077 
2078 	/* The SBSA UART only supports 8n1 without hardware flow control. */
2079 	termios->c_cflag &= ~(CSIZE | CSTOPB | PARENB | PARODD);
2080 	termios->c_cflag &= ~(CMSPAR | CRTSCTS);
2081 	termios->c_cflag |= CS8 | CLOCAL;
2082 
2083 	spin_lock_irqsave(&port->lock, flags);
2084 	uart_update_timeout(port, CS8, uap->fixed_baud);
2085 	pl011_setup_status_masks(port, termios);
2086 	spin_unlock_irqrestore(&port->lock, flags);
2087 }
2088 
2089 static const char *pl011_type(struct uart_port *port)
2090 {
2091 	struct uart_amba_port *uap =
2092 	    container_of(port, struct uart_amba_port, port);
2093 	return uap->port.type == PORT_AMBA ? uap->type : NULL;
2094 }
2095 
2096 /*
2097  * Release the memory region(s) being used by 'port'
2098  */
2099 static void pl011_release_port(struct uart_port *port)
2100 {
2101 	release_mem_region(port->mapbase, SZ_4K);
2102 }
2103 
2104 /*
2105  * Request the memory region(s) being used by 'port'
2106  */
2107 static int pl011_request_port(struct uart_port *port)
2108 {
2109 	return request_mem_region(port->mapbase, SZ_4K, "uart-pl011")
2110 			!= NULL ? 0 : -EBUSY;
2111 }
2112 
2113 /*
2114  * Configure/autoconfigure the port.
2115  */
2116 static void pl011_config_port(struct uart_port *port, int flags)
2117 {
2118 	if (flags & UART_CONFIG_TYPE) {
2119 		port->type = PORT_AMBA;
2120 		pl011_request_port(port);
2121 	}
2122 }
2123 
2124 /*
2125  * verify the new serial_struct (for TIOCSSERIAL).
2126  */
2127 static int pl011_verify_port(struct uart_port *port, struct serial_struct *ser)
2128 {
2129 	int ret = 0;
2130 	if (ser->type != PORT_UNKNOWN && ser->type != PORT_AMBA)
2131 		ret = -EINVAL;
2132 	if (ser->irq < 0 || ser->irq >= nr_irqs)
2133 		ret = -EINVAL;
2134 	if (ser->baud_base < 9600)
2135 		ret = -EINVAL;
2136 	return ret;
2137 }
2138 
2139 static const struct uart_ops amba_pl011_pops = {
2140 	.tx_empty	= pl011_tx_empty,
2141 	.set_mctrl	= pl011_set_mctrl,
2142 	.get_mctrl	= pl011_get_mctrl,
2143 	.stop_tx	= pl011_stop_tx,
2144 	.start_tx	= pl011_start_tx,
2145 	.stop_rx	= pl011_stop_rx,
2146 	.enable_ms	= pl011_enable_ms,
2147 	.break_ctl	= pl011_break_ctl,
2148 	.startup	= pl011_startup,
2149 	.shutdown	= pl011_shutdown,
2150 	.flush_buffer	= pl011_dma_flush_buffer,
2151 	.set_termios	= pl011_set_termios,
2152 	.type		= pl011_type,
2153 	.release_port	= pl011_release_port,
2154 	.request_port	= pl011_request_port,
2155 	.config_port	= pl011_config_port,
2156 	.verify_port	= pl011_verify_port,
2157 #ifdef CONFIG_CONSOLE_POLL
2158 	.poll_init     = pl011_hwinit,
2159 	.poll_get_char = pl011_get_poll_char,
2160 	.poll_put_char = pl011_put_poll_char,
2161 #endif
2162 };
2163 
2164 static void sbsa_uart_set_mctrl(struct uart_port *port, unsigned int mctrl)
2165 {
2166 }
2167 
2168 static unsigned int sbsa_uart_get_mctrl(struct uart_port *port)
2169 {
2170 	return 0;
2171 }
2172 
2173 static const struct uart_ops sbsa_uart_pops = {
2174 	.tx_empty	= pl011_tx_empty,
2175 	.set_mctrl	= sbsa_uart_set_mctrl,
2176 	.get_mctrl	= sbsa_uart_get_mctrl,
2177 	.stop_tx	= pl011_stop_tx,
2178 	.start_tx	= pl011_start_tx,
2179 	.stop_rx	= pl011_stop_rx,
2180 	.startup	= sbsa_uart_startup,
2181 	.shutdown	= sbsa_uart_shutdown,
2182 	.set_termios	= sbsa_uart_set_termios,
2183 	.type		= pl011_type,
2184 	.release_port	= pl011_release_port,
2185 	.request_port	= pl011_request_port,
2186 	.config_port	= pl011_config_port,
2187 	.verify_port	= pl011_verify_port,
2188 #ifdef CONFIG_CONSOLE_POLL
2189 	.poll_init     = pl011_hwinit,
2190 	.poll_get_char = pl011_get_poll_char,
2191 	.poll_put_char = pl011_put_poll_char,
2192 #endif
2193 };
2194 
2195 static struct uart_amba_port *amba_ports[UART_NR];
2196 
2197 #ifdef CONFIG_SERIAL_AMBA_PL011_CONSOLE
2198 
2199 static void pl011_console_putchar(struct uart_port *port, int ch)
2200 {
2201 	struct uart_amba_port *uap =
2202 	    container_of(port, struct uart_amba_port, port);
2203 
2204 	while (pl011_read(uap, REG_FR) & UART01x_FR_TXFF)
2205 		cpu_relax();
2206 	pl011_write(ch, uap, REG_DR);
2207 }
2208 
2209 static void
2210 pl011_console_write(struct console *co, const char *s, unsigned int count)
2211 {
2212 	struct uart_amba_port *uap = amba_ports[co->index];
2213 	unsigned int old_cr = 0, new_cr;
2214 	unsigned long flags;
2215 	int locked = 1;
2216 
2217 	clk_enable(uap->clk);
2218 
2219 	local_irq_save(flags);
2220 	if (uap->port.sysrq)
2221 		locked = 0;
2222 	else if (oops_in_progress)
2223 		locked = spin_trylock(&uap->port.lock);
2224 	else
2225 		spin_lock(&uap->port.lock);
2226 
2227 	/*
2228 	 *	First save the CR then disable the interrupts
2229 	 */
2230 	if (!uap->vendor->always_enabled) {
2231 		old_cr = pl011_read(uap, REG_CR);
2232 		new_cr = old_cr & ~UART011_CR_CTSEN;
2233 		new_cr |= UART01x_CR_UARTEN | UART011_CR_TXE;
2234 		pl011_write(new_cr, uap, REG_CR);
2235 	}
2236 
2237 	uart_console_write(&uap->port, s, count, pl011_console_putchar);
2238 
2239 	/*
2240 	 *	Finally, wait for transmitter to become empty and restore the
2241 	 *	TCR. Allow feature register bits to be inverted to work around
2242 	 *	errata.
2243 	 */
2244 	while ((pl011_read(uap, REG_FR) ^ uap->vendor->inv_fr)
2245 						& uap->vendor->fr_busy)
2246 		cpu_relax();
2247 	if (!uap->vendor->always_enabled)
2248 		pl011_write(old_cr, uap, REG_CR);
2249 
2250 	if (locked)
2251 		spin_unlock(&uap->port.lock);
2252 	local_irq_restore(flags);
2253 
2254 	clk_disable(uap->clk);
2255 }
2256 
2257 static void __init
2258 pl011_console_get_options(struct uart_amba_port *uap, int *baud,
2259 			     int *parity, int *bits)
2260 {
2261 	if (pl011_read(uap, REG_CR) & UART01x_CR_UARTEN) {
2262 		unsigned int lcr_h, ibrd, fbrd;
2263 
2264 		lcr_h = pl011_read(uap, REG_LCRH_TX);
2265 
2266 		*parity = 'n';
2267 		if (lcr_h & UART01x_LCRH_PEN) {
2268 			if (lcr_h & UART01x_LCRH_EPS)
2269 				*parity = 'e';
2270 			else
2271 				*parity = 'o';
2272 		}
2273 
2274 		if ((lcr_h & 0x60) == UART01x_LCRH_WLEN_7)
2275 			*bits = 7;
2276 		else
2277 			*bits = 8;
2278 
2279 		ibrd = pl011_read(uap, REG_IBRD);
2280 		fbrd = pl011_read(uap, REG_FBRD);
2281 
2282 		*baud = uap->port.uartclk * 4 / (64 * ibrd + fbrd);
2283 
2284 		if (uap->vendor->oversampling) {
2285 			if (pl011_read(uap, REG_CR)
2286 				  & ST_UART011_CR_OVSFACT)
2287 				*baud *= 2;
2288 		}
2289 	}
2290 }
2291 
2292 static int __init pl011_console_setup(struct console *co, char *options)
2293 {
2294 	struct uart_amba_port *uap;
2295 	int baud = 38400;
2296 	int bits = 8;
2297 	int parity = 'n';
2298 	int flow = 'n';
2299 	int ret;
2300 
2301 	/*
2302 	 * Check whether an invalid uart number has been specified, and
2303 	 * if so, search for the first available port that does have
2304 	 * console support.
2305 	 */
2306 	if (co->index >= UART_NR)
2307 		co->index = 0;
2308 	uap = amba_ports[co->index];
2309 	if (!uap)
2310 		return -ENODEV;
2311 
2312 	/* Allow pins to be muxed in and configured */
2313 	pinctrl_pm_select_default_state(uap->port.dev);
2314 
2315 	ret = clk_prepare(uap->clk);
2316 	if (ret)
2317 		return ret;
2318 
2319 	if (dev_get_platdata(uap->port.dev)) {
2320 		struct amba_pl011_data *plat;
2321 
2322 		plat = dev_get_platdata(uap->port.dev);
2323 		if (plat->init)
2324 			plat->init();
2325 	}
2326 
2327 	uap->port.uartclk = clk_get_rate(uap->clk);
2328 
2329 	if (uap->vendor->fixed_options) {
2330 		baud = uap->fixed_baud;
2331 	} else {
2332 		if (options)
2333 			uart_parse_options(options,
2334 					   &baud, &parity, &bits, &flow);
2335 		else
2336 			pl011_console_get_options(uap, &baud, &parity, &bits);
2337 	}
2338 
2339 	return uart_set_options(&uap->port, co, baud, parity, bits, flow);
2340 }
2341 
2342 /**
2343  *	pl011_console_match - non-standard console matching
2344  *	@co:	  registering console
2345  *	@name:	  name from console command line
2346  *	@idx:	  index from console command line
2347  *	@options: ptr to option string from console command line
2348  *
2349  *	Only attempts to match console command lines of the form:
2350  *	    console=pl011,mmio|mmio32,<addr>[,<options>]
2351  *	    console=pl011,0x<addr>[,<options>]
2352  *	This form is used to register an initial earlycon boot console and
2353  *	replace it with the amba_console at pl011 driver init.
2354  *
2355  *	Performs console setup for a match (as required by interface)
2356  *	If no <options> are specified, then assume the h/w is already setup.
2357  *
2358  *	Returns 0 if console matches; otherwise non-zero to use default matching
2359  */
2360 static int __init pl011_console_match(struct console *co, char *name, int idx,
2361 				      char *options)
2362 {
2363 	unsigned char iotype;
2364 	resource_size_t addr;
2365 	int i;
2366 
2367 	/*
2368 	 * Systems affected by the Qualcomm Technologies QDF2400 E44 erratum
2369 	 * have a distinct console name, so make sure we check for that.
2370 	 * The actual implementation of the erratum occurs in the probe
2371 	 * function.
2372 	 */
2373 	if ((strcmp(name, "qdf2400_e44") != 0) && (strcmp(name, "pl011") != 0))
2374 		return -ENODEV;
2375 
2376 	if (uart_parse_earlycon(options, &iotype, &addr, &options))
2377 		return -ENODEV;
2378 
2379 	if (iotype != UPIO_MEM && iotype != UPIO_MEM32)
2380 		return -ENODEV;
2381 
2382 	/* try to match the port specified on the command line */
2383 	for (i = 0; i < ARRAY_SIZE(amba_ports); i++) {
2384 		struct uart_port *port;
2385 
2386 		if (!amba_ports[i])
2387 			continue;
2388 
2389 		port = &amba_ports[i]->port;
2390 
2391 		if (port->mapbase != addr)
2392 			continue;
2393 
2394 		co->index = i;
2395 		port->cons = co;
2396 		return pl011_console_setup(co, options);
2397 	}
2398 
2399 	return -ENODEV;
2400 }
2401 
2402 static struct uart_driver amba_reg;
2403 static struct console amba_console = {
2404 	.name		= "ttyAMA",
2405 	.write		= pl011_console_write,
2406 	.device		= uart_console_device,
2407 	.setup		= pl011_console_setup,
2408 	.match		= pl011_console_match,
2409 	.flags		= CON_PRINTBUFFER | CON_ANYTIME,
2410 	.index		= -1,
2411 	.data		= &amba_reg,
2412 };
2413 
2414 #define AMBA_CONSOLE	(&amba_console)
2415 
2416 static void qdf2400_e44_putc(struct uart_port *port, int c)
2417 {
2418 	while (readl(port->membase + UART01x_FR) & UART01x_FR_TXFF)
2419 		cpu_relax();
2420 	writel(c, port->membase + UART01x_DR);
2421 	while (!(readl(port->membase + UART01x_FR) & UART011_FR_TXFE))
2422 		cpu_relax();
2423 }
2424 
2425 static void qdf2400_e44_early_write(struct console *con, const char *s, unsigned n)
2426 {
2427 	struct earlycon_device *dev = con->data;
2428 
2429 	uart_console_write(&dev->port, s, n, qdf2400_e44_putc);
2430 }
2431 
2432 static void pl011_putc(struct uart_port *port, int c)
2433 {
2434 	while (readl(port->membase + UART01x_FR) & UART01x_FR_TXFF)
2435 		cpu_relax();
2436 	if (port->iotype == UPIO_MEM32)
2437 		writel(c, port->membase + UART01x_DR);
2438 	else
2439 		writeb(c, port->membase + UART01x_DR);
2440 	while (readl(port->membase + UART01x_FR) & UART01x_FR_BUSY)
2441 		cpu_relax();
2442 }
2443 
2444 static void pl011_early_write(struct console *con, const char *s, unsigned n)
2445 {
2446 	struct earlycon_device *dev = con->data;
2447 
2448 	uart_console_write(&dev->port, s, n, pl011_putc);
2449 }
2450 
2451 /*
2452  * On non-ACPI systems, earlycon is enabled by specifying
2453  * "earlycon=pl011,<address>" on the kernel command line.
2454  *
2455  * On ACPI ARM64 systems, an "early" console is enabled via the SPCR table,
2456  * by specifying only "earlycon" on the command line.  Because it requires
2457  * SPCR, the console starts after ACPI is parsed, which is later than a
2458  * traditional early console.
2459  *
2460  * To get the traditional early console that starts before ACPI is parsed,
2461  * specify the full "earlycon=pl011,<address>" option.
2462  */
2463 static int __init pl011_early_console_setup(struct earlycon_device *device,
2464 					    const char *opt)
2465 {
2466 	if (!device->port.membase)
2467 		return -ENODEV;
2468 
2469 	device->con->write = pl011_early_write;
2470 
2471 	return 0;
2472 }
2473 OF_EARLYCON_DECLARE(pl011, "arm,pl011", pl011_early_console_setup);
2474 OF_EARLYCON_DECLARE(pl011, "arm,sbsa-uart", pl011_early_console_setup);
2475 
2476 /*
2477  * On Qualcomm Datacenter Technologies QDF2400 SOCs affected by
2478  * Erratum 44, traditional earlycon can be enabled by specifying
2479  * "earlycon=qdf2400_e44,<address>".  Any options are ignored.
2480  *
2481  * Alternatively, you can just specify "earlycon", and the early console
2482  * will be enabled with the information from the SPCR table.  In this
2483  * case, the SPCR code will detect the need for the E44 work-around,
2484  * and set the console name to "qdf2400_e44".
2485  */
2486 static int __init
2487 qdf2400_e44_early_console_setup(struct earlycon_device *device,
2488 				const char *opt)
2489 {
2490 	if (!device->port.membase)
2491 		return -ENODEV;
2492 
2493 	device->con->write = qdf2400_e44_early_write;
2494 	return 0;
2495 }
2496 EARLYCON_DECLARE(qdf2400_e44, qdf2400_e44_early_console_setup);
2497 
2498 #else
2499 #define AMBA_CONSOLE	NULL
2500 #endif
2501 
2502 static struct uart_driver amba_reg = {
2503 	.owner			= THIS_MODULE,
2504 	.driver_name		= "ttyAMA",
2505 	.dev_name		= "ttyAMA",
2506 	.major			= SERIAL_AMBA_MAJOR,
2507 	.minor			= SERIAL_AMBA_MINOR,
2508 	.nr			= UART_NR,
2509 	.cons			= AMBA_CONSOLE,
2510 };
2511 
2512 static int pl011_probe_dt_alias(int index, struct device *dev)
2513 {
2514 	struct device_node *np;
2515 	static bool seen_dev_with_alias = false;
2516 	static bool seen_dev_without_alias = false;
2517 	int ret = index;
2518 
2519 	if (!IS_ENABLED(CONFIG_OF))
2520 		return ret;
2521 
2522 	np = dev->of_node;
2523 	if (!np)
2524 		return ret;
2525 
2526 	ret = of_alias_get_id(np, "serial");
2527 	if (ret < 0) {
2528 		seen_dev_without_alias = true;
2529 		ret = index;
2530 	} else {
2531 		seen_dev_with_alias = true;
2532 		if (ret >= ARRAY_SIZE(amba_ports) || amba_ports[ret] != NULL) {
2533 			dev_warn(dev, "requested serial port %d  not available.\n", ret);
2534 			ret = index;
2535 		}
2536 	}
2537 
2538 	if (seen_dev_with_alias && seen_dev_without_alias)
2539 		dev_warn(dev, "aliased and non-aliased serial devices found in device tree. Serial port enumeration may be unpredictable.\n");
2540 
2541 	return ret;
2542 }
2543 
2544 /* unregisters the driver also if no more ports are left */
2545 static void pl011_unregister_port(struct uart_amba_port *uap)
2546 {
2547 	int i;
2548 	bool busy = false;
2549 
2550 	for (i = 0; i < ARRAY_SIZE(amba_ports); i++) {
2551 		if (amba_ports[i] == uap)
2552 			amba_ports[i] = NULL;
2553 		else if (amba_ports[i])
2554 			busy = true;
2555 	}
2556 	pl011_dma_remove(uap);
2557 	if (!busy)
2558 		uart_unregister_driver(&amba_reg);
2559 }
2560 
2561 static int pl011_find_free_port(void)
2562 {
2563 	int i;
2564 
2565 	for (i = 0; i < ARRAY_SIZE(amba_ports); i++)
2566 		if (amba_ports[i] == NULL)
2567 			return i;
2568 
2569 	return -EBUSY;
2570 }
2571 
2572 static int pl011_setup_port(struct device *dev, struct uart_amba_port *uap,
2573 			    struct resource *mmiobase, int index)
2574 {
2575 	void __iomem *base;
2576 
2577 	base = devm_ioremap_resource(dev, mmiobase);
2578 	if (IS_ERR(base))
2579 		return PTR_ERR(base);
2580 
2581 	index = pl011_probe_dt_alias(index, dev);
2582 
2583 	uap->old_cr = 0;
2584 	uap->port.dev = dev;
2585 	uap->port.mapbase = mmiobase->start;
2586 	uap->port.membase = base;
2587 	uap->port.fifosize = uap->fifosize;
2588 	uap->port.flags = UPF_BOOT_AUTOCONF;
2589 	uap->port.line = index;
2590 
2591 	amba_ports[index] = uap;
2592 
2593 	return 0;
2594 }
2595 
2596 static int pl011_register_port(struct uart_amba_port *uap)
2597 {
2598 	int ret;
2599 
2600 	/* Ensure interrupts from this UART are masked and cleared */
2601 	pl011_write(0, uap, REG_IMSC);
2602 	pl011_write(0xffff, uap, REG_ICR);
2603 
2604 	if (!amba_reg.state) {
2605 		ret = uart_register_driver(&amba_reg);
2606 		if (ret < 0) {
2607 			dev_err(uap->port.dev,
2608 				"Failed to register AMBA-PL011 driver\n");
2609 			return ret;
2610 		}
2611 	}
2612 
2613 	ret = uart_add_one_port(&amba_reg, &uap->port);
2614 	if (ret)
2615 		pl011_unregister_port(uap);
2616 
2617 	return ret;
2618 }
2619 
2620 static int pl011_probe(struct amba_device *dev, const struct amba_id *id)
2621 {
2622 	struct uart_amba_port *uap;
2623 	struct vendor_data *vendor = id->data;
2624 	int portnr, ret;
2625 
2626 	portnr = pl011_find_free_port();
2627 	if (portnr < 0)
2628 		return portnr;
2629 
2630 	uap = devm_kzalloc(&dev->dev, sizeof(struct uart_amba_port),
2631 			   GFP_KERNEL);
2632 	if (!uap)
2633 		return -ENOMEM;
2634 
2635 	uap->clk = devm_clk_get(&dev->dev, NULL);
2636 	if (IS_ERR(uap->clk))
2637 		return PTR_ERR(uap->clk);
2638 
2639 	uap->reg_offset = vendor->reg_offset;
2640 	uap->vendor = vendor;
2641 	uap->fifosize = vendor->get_fifosize(dev);
2642 	uap->port.iotype = vendor->access_32b ? UPIO_MEM32 : UPIO_MEM;
2643 	uap->port.irq = dev->irq[0];
2644 	uap->port.ops = &amba_pl011_pops;
2645 
2646 	snprintf(uap->type, sizeof(uap->type), "PL011 rev%u", amba_rev(dev));
2647 
2648 	ret = pl011_setup_port(&dev->dev, uap, &dev->res, portnr);
2649 	if (ret)
2650 		return ret;
2651 
2652 	amba_set_drvdata(dev, uap);
2653 
2654 	return pl011_register_port(uap);
2655 }
2656 
2657 static int pl011_remove(struct amba_device *dev)
2658 {
2659 	struct uart_amba_port *uap = amba_get_drvdata(dev);
2660 
2661 	uart_remove_one_port(&amba_reg, &uap->port);
2662 	pl011_unregister_port(uap);
2663 	return 0;
2664 }
2665 
2666 #ifdef CONFIG_PM_SLEEP
2667 static int pl011_suspend(struct device *dev)
2668 {
2669 	struct uart_amba_port *uap = dev_get_drvdata(dev);
2670 
2671 	if (!uap)
2672 		return -EINVAL;
2673 
2674 	return uart_suspend_port(&amba_reg, &uap->port);
2675 }
2676 
2677 static int pl011_resume(struct device *dev)
2678 {
2679 	struct uart_amba_port *uap = dev_get_drvdata(dev);
2680 
2681 	if (!uap)
2682 		return -EINVAL;
2683 
2684 	return uart_resume_port(&amba_reg, &uap->port);
2685 }
2686 #endif
2687 
2688 static SIMPLE_DEV_PM_OPS(pl011_dev_pm_ops, pl011_suspend, pl011_resume);
2689 
2690 static int sbsa_uart_probe(struct platform_device *pdev)
2691 {
2692 	struct uart_amba_port *uap;
2693 	struct resource *r;
2694 	int portnr, ret;
2695 	int baudrate;
2696 
2697 	/*
2698 	 * Check the mandatory baud rate parameter in the DT node early
2699 	 * so that we can easily exit with the error.
2700 	 */
2701 	if (pdev->dev.of_node) {
2702 		struct device_node *np = pdev->dev.of_node;
2703 
2704 		ret = of_property_read_u32(np, "current-speed", &baudrate);
2705 		if (ret)
2706 			return ret;
2707 	} else {
2708 		baudrate = 115200;
2709 	}
2710 
2711 	portnr = pl011_find_free_port();
2712 	if (portnr < 0)
2713 		return portnr;
2714 
2715 	uap = devm_kzalloc(&pdev->dev, sizeof(struct uart_amba_port),
2716 			   GFP_KERNEL);
2717 	if (!uap)
2718 		return -ENOMEM;
2719 
2720 	ret = platform_get_irq(pdev, 0);
2721 	if (ret < 0) {
2722 		if (ret != -EPROBE_DEFER)
2723 			dev_err(&pdev->dev, "cannot obtain irq\n");
2724 		return ret;
2725 	}
2726 	uap->port.irq	= ret;
2727 
2728 #ifdef CONFIG_ACPI_SPCR_TABLE
2729 	if (qdf2400_e44_present) {
2730 		dev_info(&pdev->dev, "working around QDF2400 SoC erratum 44\n");
2731 		uap->vendor = &vendor_qdt_qdf2400_e44;
2732 	} else
2733 #endif
2734 		uap->vendor = &vendor_sbsa;
2735 
2736 	uap->reg_offset	= uap->vendor->reg_offset;
2737 	uap->fifosize	= 32;
2738 	uap->port.iotype = uap->vendor->access_32b ? UPIO_MEM32 : UPIO_MEM;
2739 	uap->port.ops	= &sbsa_uart_pops;
2740 	uap->fixed_baud = baudrate;
2741 
2742 	snprintf(uap->type, sizeof(uap->type), "SBSA");
2743 
2744 	r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2745 
2746 	ret = pl011_setup_port(&pdev->dev, uap, r, portnr);
2747 	if (ret)
2748 		return ret;
2749 
2750 	platform_set_drvdata(pdev, uap);
2751 
2752 	return pl011_register_port(uap);
2753 }
2754 
2755 static int sbsa_uart_remove(struct platform_device *pdev)
2756 {
2757 	struct uart_amba_port *uap = platform_get_drvdata(pdev);
2758 
2759 	uart_remove_one_port(&amba_reg, &uap->port);
2760 	pl011_unregister_port(uap);
2761 	return 0;
2762 }
2763 
2764 static const struct of_device_id sbsa_uart_of_match[] = {
2765 	{ .compatible = "arm,sbsa-uart", },
2766 	{},
2767 };
2768 MODULE_DEVICE_TABLE(of, sbsa_uart_of_match);
2769 
2770 static const struct acpi_device_id sbsa_uart_acpi_match[] = {
2771 	{ "ARMH0011", 0 },
2772 	{},
2773 };
2774 MODULE_DEVICE_TABLE(acpi, sbsa_uart_acpi_match);
2775 
2776 static struct platform_driver arm_sbsa_uart_platform_driver = {
2777 	.probe		= sbsa_uart_probe,
2778 	.remove		= sbsa_uart_remove,
2779 	.driver	= {
2780 		.name	= "sbsa-uart",
2781 		.of_match_table = of_match_ptr(sbsa_uart_of_match),
2782 		.acpi_match_table = ACPI_PTR(sbsa_uart_acpi_match),
2783 	},
2784 };
2785 
2786 static const struct amba_id pl011_ids[] = {
2787 	{
2788 		.id	= 0x00041011,
2789 		.mask	= 0x000fffff,
2790 		.data	= &vendor_arm,
2791 	},
2792 	{
2793 		.id	= 0x00380802,
2794 		.mask	= 0x00ffffff,
2795 		.data	= &vendor_st,
2796 	},
2797 	{
2798 		.id	= AMBA_LINUX_ID(0x00, 0x1, 0xffe),
2799 		.mask	= 0x00ffffff,
2800 		.data	= &vendor_zte,
2801 	},
2802 	{ 0, 0 },
2803 };
2804 
2805 MODULE_DEVICE_TABLE(amba, pl011_ids);
2806 
2807 static struct amba_driver pl011_driver = {
2808 	.drv = {
2809 		.name	= "uart-pl011",
2810 		.pm	= &pl011_dev_pm_ops,
2811 	},
2812 	.id_table	= pl011_ids,
2813 	.probe		= pl011_probe,
2814 	.remove		= pl011_remove,
2815 };
2816 
2817 static int __init pl011_init(void)
2818 {
2819 	printk(KERN_INFO "Serial: AMBA PL011 UART driver\n");
2820 
2821 	if (platform_driver_register(&arm_sbsa_uart_platform_driver))
2822 		pr_warn("could not register SBSA UART platform driver\n");
2823 	return amba_driver_register(&pl011_driver);
2824 }
2825 
2826 static void __exit pl011_exit(void)
2827 {
2828 	platform_driver_unregister(&arm_sbsa_uart_platform_driver);
2829 	amba_driver_unregister(&pl011_driver);
2830 }
2831 
2832 /*
2833  * While this can be a module, if builtin it's most likely the console
2834  * So let's leave module_exit but move module_init to an earlier place
2835  */
2836 arch_initcall(pl011_init);
2837 module_exit(pl011_exit);
2838 
2839 MODULE_AUTHOR("ARM Ltd/Deep Blue Solutions Ltd");
2840 MODULE_DESCRIPTION("ARM AMBA serial port driver");
2841 MODULE_LICENSE("GPL");
2842