xref: /openbmc/linux/drivers/tty/serial/amba-pl011.c (revision 71501859)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  *  Driver for AMBA serial ports
4  *
5  *  Based on drivers/char/serial.c, by Linus Torvalds, Theodore Ts'o.
6  *
7  *  Copyright 1999 ARM Limited
8  *  Copyright (C) 2000 Deep Blue Solutions Ltd.
9  *  Copyright (C) 2010 ST-Ericsson SA
10  *
11  * This is a generic driver for ARM AMBA-type serial ports.  They
12  * have a lot of 16550-like features, but are not register compatible.
13  * Note that although they do have CTS, DCD and DSR inputs, they do
14  * not have an RI input, nor do they have DTR or RTS outputs.  If
15  * required, these have to be supplied via some other means (eg, GPIO)
16  * and hooked into this driver.
17  */
18 
19 #include <linux/module.h>
20 #include <linux/ioport.h>
21 #include <linux/init.h>
22 #include <linux/console.h>
23 #include <linux/sysrq.h>
24 #include <linux/device.h>
25 #include <linux/tty.h>
26 #include <linux/tty_flip.h>
27 #include <linux/serial_core.h>
28 #include <linux/serial.h>
29 #include <linux/amba/bus.h>
30 #include <linux/amba/serial.h>
31 #include <linux/clk.h>
32 #include <linux/slab.h>
33 #include <linux/dmaengine.h>
34 #include <linux/dma-mapping.h>
35 #include <linux/scatterlist.h>
36 #include <linux/delay.h>
37 #include <linux/types.h>
38 #include <linux/of.h>
39 #include <linux/of_device.h>
40 #include <linux/pinctrl/consumer.h>
41 #include <linux/sizes.h>
42 #include <linux/io.h>
43 #include <linux/acpi.h>
44 
45 #include "amba-pl011.h"
46 
47 #define UART_NR			14
48 
49 #define SERIAL_AMBA_MAJOR	204
50 #define SERIAL_AMBA_MINOR	64
51 #define SERIAL_AMBA_NR		UART_NR
52 
53 #define AMBA_ISR_PASS_LIMIT	256
54 
55 #define UART_DR_ERROR		(UART011_DR_OE|UART011_DR_BE|UART011_DR_PE|UART011_DR_FE)
56 #define UART_DUMMY_DR_RX	(1 << 16)
57 
58 static u16 pl011_std_offsets[REG_ARRAY_SIZE] = {
59 	[REG_DR] = UART01x_DR,
60 	[REG_FR] = UART01x_FR,
61 	[REG_LCRH_RX] = UART011_LCRH,
62 	[REG_LCRH_TX] = UART011_LCRH,
63 	[REG_IBRD] = UART011_IBRD,
64 	[REG_FBRD] = UART011_FBRD,
65 	[REG_CR] = UART011_CR,
66 	[REG_IFLS] = UART011_IFLS,
67 	[REG_IMSC] = UART011_IMSC,
68 	[REG_RIS] = UART011_RIS,
69 	[REG_MIS] = UART011_MIS,
70 	[REG_ICR] = UART011_ICR,
71 	[REG_DMACR] = UART011_DMACR,
72 };
73 
74 /* There is by now at least one vendor with differing details, so handle it */
75 struct vendor_data {
76 	const u16		*reg_offset;
77 	unsigned int		ifls;
78 	unsigned int		fr_busy;
79 	unsigned int		fr_dsr;
80 	unsigned int		fr_cts;
81 	unsigned int		fr_ri;
82 	unsigned int		inv_fr;
83 	bool			access_32b;
84 	bool			oversampling;
85 	bool			dma_threshold;
86 	bool			cts_event_workaround;
87 	bool			always_enabled;
88 	bool			fixed_options;
89 
90 	unsigned int (*get_fifosize)(struct amba_device *dev);
91 };
92 
93 static unsigned int get_fifosize_arm(struct amba_device *dev)
94 {
95 	return amba_rev(dev) < 3 ? 16 : 32;
96 }
97 
98 static struct vendor_data vendor_arm = {
99 	.reg_offset		= pl011_std_offsets,
100 	.ifls			= UART011_IFLS_RX4_8|UART011_IFLS_TX4_8,
101 	.fr_busy		= UART01x_FR_BUSY,
102 	.fr_dsr			= UART01x_FR_DSR,
103 	.fr_cts			= UART01x_FR_CTS,
104 	.fr_ri			= UART011_FR_RI,
105 	.oversampling		= false,
106 	.dma_threshold		= false,
107 	.cts_event_workaround	= false,
108 	.always_enabled		= false,
109 	.fixed_options		= false,
110 	.get_fifosize		= get_fifosize_arm,
111 };
112 
113 static const struct vendor_data vendor_sbsa = {
114 	.reg_offset		= pl011_std_offsets,
115 	.fr_busy		= UART01x_FR_BUSY,
116 	.fr_dsr			= UART01x_FR_DSR,
117 	.fr_cts			= UART01x_FR_CTS,
118 	.fr_ri			= UART011_FR_RI,
119 	.access_32b		= true,
120 	.oversampling		= false,
121 	.dma_threshold		= false,
122 	.cts_event_workaround	= false,
123 	.always_enabled		= true,
124 	.fixed_options		= true,
125 };
126 
127 #ifdef CONFIG_ACPI_SPCR_TABLE
128 static const struct vendor_data vendor_qdt_qdf2400_e44 = {
129 	.reg_offset		= pl011_std_offsets,
130 	.fr_busy		= UART011_FR_TXFE,
131 	.fr_dsr			= UART01x_FR_DSR,
132 	.fr_cts			= UART01x_FR_CTS,
133 	.fr_ri			= UART011_FR_RI,
134 	.inv_fr			= UART011_FR_TXFE,
135 	.access_32b		= true,
136 	.oversampling		= false,
137 	.dma_threshold		= false,
138 	.cts_event_workaround	= false,
139 	.always_enabled		= true,
140 	.fixed_options		= true,
141 };
142 #endif
143 
144 static u16 pl011_st_offsets[REG_ARRAY_SIZE] = {
145 	[REG_DR] = UART01x_DR,
146 	[REG_ST_DMAWM] = ST_UART011_DMAWM,
147 	[REG_ST_TIMEOUT] = ST_UART011_TIMEOUT,
148 	[REG_FR] = UART01x_FR,
149 	[REG_LCRH_RX] = ST_UART011_LCRH_RX,
150 	[REG_LCRH_TX] = ST_UART011_LCRH_TX,
151 	[REG_IBRD] = UART011_IBRD,
152 	[REG_FBRD] = UART011_FBRD,
153 	[REG_CR] = UART011_CR,
154 	[REG_IFLS] = UART011_IFLS,
155 	[REG_IMSC] = UART011_IMSC,
156 	[REG_RIS] = UART011_RIS,
157 	[REG_MIS] = UART011_MIS,
158 	[REG_ICR] = UART011_ICR,
159 	[REG_DMACR] = UART011_DMACR,
160 	[REG_ST_XFCR] = ST_UART011_XFCR,
161 	[REG_ST_XON1] = ST_UART011_XON1,
162 	[REG_ST_XON2] = ST_UART011_XON2,
163 	[REG_ST_XOFF1] = ST_UART011_XOFF1,
164 	[REG_ST_XOFF2] = ST_UART011_XOFF2,
165 	[REG_ST_ITCR] = ST_UART011_ITCR,
166 	[REG_ST_ITIP] = ST_UART011_ITIP,
167 	[REG_ST_ABCR] = ST_UART011_ABCR,
168 	[REG_ST_ABIMSC] = ST_UART011_ABIMSC,
169 };
170 
171 static unsigned int get_fifosize_st(struct amba_device *dev)
172 {
173 	return 64;
174 }
175 
176 static struct vendor_data vendor_st = {
177 	.reg_offset		= pl011_st_offsets,
178 	.ifls			= UART011_IFLS_RX_HALF|UART011_IFLS_TX_HALF,
179 	.fr_busy		= UART01x_FR_BUSY,
180 	.fr_dsr			= UART01x_FR_DSR,
181 	.fr_cts			= UART01x_FR_CTS,
182 	.fr_ri			= UART011_FR_RI,
183 	.oversampling		= true,
184 	.dma_threshold		= true,
185 	.cts_event_workaround	= true,
186 	.always_enabled		= false,
187 	.fixed_options		= false,
188 	.get_fifosize		= get_fifosize_st,
189 };
190 
191 static const u16 pl011_zte_offsets[REG_ARRAY_SIZE] = {
192 	[REG_DR] = ZX_UART011_DR,
193 	[REG_FR] = ZX_UART011_FR,
194 	[REG_LCRH_RX] = ZX_UART011_LCRH,
195 	[REG_LCRH_TX] = ZX_UART011_LCRH,
196 	[REG_IBRD] = ZX_UART011_IBRD,
197 	[REG_FBRD] = ZX_UART011_FBRD,
198 	[REG_CR] = ZX_UART011_CR,
199 	[REG_IFLS] = ZX_UART011_IFLS,
200 	[REG_IMSC] = ZX_UART011_IMSC,
201 	[REG_RIS] = ZX_UART011_RIS,
202 	[REG_MIS] = ZX_UART011_MIS,
203 	[REG_ICR] = ZX_UART011_ICR,
204 	[REG_DMACR] = ZX_UART011_DMACR,
205 };
206 
207 static unsigned int get_fifosize_zte(struct amba_device *dev)
208 {
209 	return 16;
210 }
211 
212 static struct vendor_data vendor_zte = {
213 	.reg_offset		= pl011_zte_offsets,
214 	.access_32b		= true,
215 	.ifls			= UART011_IFLS_RX4_8|UART011_IFLS_TX4_8,
216 	.fr_busy		= ZX_UART01x_FR_BUSY,
217 	.fr_dsr			= ZX_UART01x_FR_DSR,
218 	.fr_cts			= ZX_UART01x_FR_CTS,
219 	.fr_ri			= ZX_UART011_FR_RI,
220 	.get_fifosize		= get_fifosize_zte,
221 };
222 
223 /* Deals with DMA transactions */
224 
225 struct pl011_sgbuf {
226 	struct scatterlist sg;
227 	char *buf;
228 };
229 
230 struct pl011_dmarx_data {
231 	struct dma_chan		*chan;
232 	struct completion	complete;
233 	bool			use_buf_b;
234 	struct pl011_sgbuf	sgbuf_a;
235 	struct pl011_sgbuf	sgbuf_b;
236 	dma_cookie_t		cookie;
237 	bool			running;
238 	struct timer_list	timer;
239 	unsigned int last_residue;
240 	unsigned long last_jiffies;
241 	bool auto_poll_rate;
242 	unsigned int poll_rate;
243 	unsigned int poll_timeout;
244 };
245 
246 struct pl011_dmatx_data {
247 	struct dma_chan		*chan;
248 	struct scatterlist	sg;
249 	char			*buf;
250 	bool			queued;
251 };
252 
253 /*
254  * We wrap our port structure around the generic uart_port.
255  */
256 struct uart_amba_port {
257 	struct uart_port	port;
258 	const u16		*reg_offset;
259 	struct clk		*clk;
260 	const struct vendor_data *vendor;
261 	unsigned int		dmacr;		/* dma control reg */
262 	unsigned int		im;		/* interrupt mask */
263 	unsigned int		old_status;
264 	unsigned int		fifosize;	/* vendor-specific */
265 	unsigned int		old_cr;		/* state during shutdown */
266 	unsigned int		fixed_baud;	/* vendor-set fixed baud rate */
267 	char			type[12];
268 #ifdef CONFIG_DMA_ENGINE
269 	/* DMA stuff */
270 	bool			using_tx_dma;
271 	bool			using_rx_dma;
272 	struct pl011_dmarx_data dmarx;
273 	struct pl011_dmatx_data	dmatx;
274 	bool			dma_probed;
275 #endif
276 };
277 
278 static unsigned int pl011_reg_to_offset(const struct uart_amba_port *uap,
279 	unsigned int reg)
280 {
281 	return uap->reg_offset[reg];
282 }
283 
284 static unsigned int pl011_read(const struct uart_amba_port *uap,
285 	unsigned int reg)
286 {
287 	void __iomem *addr = uap->port.membase + pl011_reg_to_offset(uap, reg);
288 
289 	return (uap->port.iotype == UPIO_MEM32) ?
290 		readl_relaxed(addr) : readw_relaxed(addr);
291 }
292 
293 static void pl011_write(unsigned int val, const struct uart_amba_port *uap,
294 	unsigned int reg)
295 {
296 	void __iomem *addr = uap->port.membase + pl011_reg_to_offset(uap, reg);
297 
298 	if (uap->port.iotype == UPIO_MEM32)
299 		writel_relaxed(val, addr);
300 	else
301 		writew_relaxed(val, addr);
302 }
303 
304 /*
305  * Reads up to 256 characters from the FIFO or until it's empty and
306  * inserts them into the TTY layer. Returns the number of characters
307  * read from the FIFO.
308  */
309 static int pl011_fifo_to_tty(struct uart_amba_port *uap)
310 {
311 	unsigned int ch, flag, fifotaken;
312 	int sysrq;
313 	u16 status;
314 
315 	for (fifotaken = 0; fifotaken != 256; fifotaken++) {
316 		status = pl011_read(uap, REG_FR);
317 		if (status & UART01x_FR_RXFE)
318 			break;
319 
320 		/* Take chars from the FIFO and update status */
321 		ch = pl011_read(uap, REG_DR) | UART_DUMMY_DR_RX;
322 		flag = TTY_NORMAL;
323 		uap->port.icount.rx++;
324 
325 		if (unlikely(ch & UART_DR_ERROR)) {
326 			if (ch & UART011_DR_BE) {
327 				ch &= ~(UART011_DR_FE | UART011_DR_PE);
328 				uap->port.icount.brk++;
329 				if (uart_handle_break(&uap->port))
330 					continue;
331 			} else if (ch & UART011_DR_PE)
332 				uap->port.icount.parity++;
333 			else if (ch & UART011_DR_FE)
334 				uap->port.icount.frame++;
335 			if (ch & UART011_DR_OE)
336 				uap->port.icount.overrun++;
337 
338 			ch &= uap->port.read_status_mask;
339 
340 			if (ch & UART011_DR_BE)
341 				flag = TTY_BREAK;
342 			else if (ch & UART011_DR_PE)
343 				flag = TTY_PARITY;
344 			else if (ch & UART011_DR_FE)
345 				flag = TTY_FRAME;
346 		}
347 
348 		spin_unlock(&uap->port.lock);
349 		sysrq = uart_handle_sysrq_char(&uap->port, ch & 255);
350 		spin_lock(&uap->port.lock);
351 
352 		if (!sysrq)
353 			uart_insert_char(&uap->port, ch, UART011_DR_OE, ch, flag);
354 	}
355 
356 	return fifotaken;
357 }
358 
359 
360 /*
361  * All the DMA operation mode stuff goes inside this ifdef.
362  * This assumes that you have a generic DMA device interface,
363  * no custom DMA interfaces are supported.
364  */
365 #ifdef CONFIG_DMA_ENGINE
366 
367 #define PL011_DMA_BUFFER_SIZE PAGE_SIZE
368 
369 static int pl011_sgbuf_init(struct dma_chan *chan, struct pl011_sgbuf *sg,
370 	enum dma_data_direction dir)
371 {
372 	dma_addr_t dma_addr;
373 
374 	sg->buf = dma_alloc_coherent(chan->device->dev,
375 		PL011_DMA_BUFFER_SIZE, &dma_addr, GFP_KERNEL);
376 	if (!sg->buf)
377 		return -ENOMEM;
378 
379 	sg_init_table(&sg->sg, 1);
380 	sg_set_page(&sg->sg, phys_to_page(dma_addr),
381 		PL011_DMA_BUFFER_SIZE, offset_in_page(dma_addr));
382 	sg_dma_address(&sg->sg) = dma_addr;
383 	sg_dma_len(&sg->sg) = PL011_DMA_BUFFER_SIZE;
384 
385 	return 0;
386 }
387 
388 static void pl011_sgbuf_free(struct dma_chan *chan, struct pl011_sgbuf *sg,
389 	enum dma_data_direction dir)
390 {
391 	if (sg->buf) {
392 		dma_free_coherent(chan->device->dev,
393 			PL011_DMA_BUFFER_SIZE, sg->buf,
394 			sg_dma_address(&sg->sg));
395 	}
396 }
397 
398 static void pl011_dma_probe(struct uart_amba_port *uap)
399 {
400 	/* DMA is the sole user of the platform data right now */
401 	struct amba_pl011_data *plat = dev_get_platdata(uap->port.dev);
402 	struct device *dev = uap->port.dev;
403 	struct dma_slave_config tx_conf = {
404 		.dst_addr = uap->port.mapbase +
405 				 pl011_reg_to_offset(uap, REG_DR),
406 		.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
407 		.direction = DMA_MEM_TO_DEV,
408 		.dst_maxburst = uap->fifosize >> 1,
409 		.device_fc = false,
410 	};
411 	struct dma_chan *chan;
412 	dma_cap_mask_t mask;
413 
414 	uap->dma_probed = true;
415 	chan = dma_request_chan(dev, "tx");
416 	if (IS_ERR(chan)) {
417 		if (PTR_ERR(chan) == -EPROBE_DEFER) {
418 			uap->dma_probed = false;
419 			return;
420 		}
421 
422 		/* We need platform data */
423 		if (!plat || !plat->dma_filter) {
424 			dev_info(uap->port.dev, "no DMA platform data\n");
425 			return;
426 		}
427 
428 		/* Try to acquire a generic DMA engine slave TX channel */
429 		dma_cap_zero(mask);
430 		dma_cap_set(DMA_SLAVE, mask);
431 
432 		chan = dma_request_channel(mask, plat->dma_filter,
433 						plat->dma_tx_param);
434 		if (!chan) {
435 			dev_err(uap->port.dev, "no TX DMA channel!\n");
436 			return;
437 		}
438 	}
439 
440 	dmaengine_slave_config(chan, &tx_conf);
441 	uap->dmatx.chan = chan;
442 
443 	dev_info(uap->port.dev, "DMA channel TX %s\n",
444 		 dma_chan_name(uap->dmatx.chan));
445 
446 	/* Optionally make use of an RX channel as well */
447 	chan = dma_request_slave_channel(dev, "rx");
448 
449 	if (!chan && plat && plat->dma_rx_param) {
450 		chan = dma_request_channel(mask, plat->dma_filter, plat->dma_rx_param);
451 
452 		if (!chan) {
453 			dev_err(uap->port.dev, "no RX DMA channel!\n");
454 			return;
455 		}
456 	}
457 
458 	if (chan) {
459 		struct dma_slave_config rx_conf = {
460 			.src_addr = uap->port.mapbase +
461 				pl011_reg_to_offset(uap, REG_DR),
462 			.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
463 			.direction = DMA_DEV_TO_MEM,
464 			.src_maxburst = uap->fifosize >> 2,
465 			.device_fc = false,
466 		};
467 		struct dma_slave_caps caps;
468 
469 		/*
470 		 * Some DMA controllers provide information on their capabilities.
471 		 * If the controller does, check for suitable residue processing
472 		 * otherwise assime all is well.
473 		 */
474 		if (0 == dma_get_slave_caps(chan, &caps)) {
475 			if (caps.residue_granularity ==
476 					DMA_RESIDUE_GRANULARITY_DESCRIPTOR) {
477 				dma_release_channel(chan);
478 				dev_info(uap->port.dev,
479 					"RX DMA disabled - no residue processing\n");
480 				return;
481 			}
482 		}
483 		dmaengine_slave_config(chan, &rx_conf);
484 		uap->dmarx.chan = chan;
485 
486 		uap->dmarx.auto_poll_rate = false;
487 		if (plat && plat->dma_rx_poll_enable) {
488 			/* Set poll rate if specified. */
489 			if (plat->dma_rx_poll_rate) {
490 				uap->dmarx.auto_poll_rate = false;
491 				uap->dmarx.poll_rate = plat->dma_rx_poll_rate;
492 			} else {
493 				/*
494 				 * 100 ms defaults to poll rate if not
495 				 * specified. This will be adjusted with
496 				 * the baud rate at set_termios.
497 				 */
498 				uap->dmarx.auto_poll_rate = true;
499 				uap->dmarx.poll_rate =  100;
500 			}
501 			/* 3 secs defaults poll_timeout if not specified. */
502 			if (plat->dma_rx_poll_timeout)
503 				uap->dmarx.poll_timeout =
504 					plat->dma_rx_poll_timeout;
505 			else
506 				uap->dmarx.poll_timeout = 3000;
507 		} else if (!plat && dev->of_node) {
508 			uap->dmarx.auto_poll_rate = of_property_read_bool(
509 						dev->of_node, "auto-poll");
510 			if (uap->dmarx.auto_poll_rate) {
511 				u32 x;
512 
513 				if (0 == of_property_read_u32(dev->of_node,
514 						"poll-rate-ms", &x))
515 					uap->dmarx.poll_rate = x;
516 				else
517 					uap->dmarx.poll_rate = 100;
518 				if (0 == of_property_read_u32(dev->of_node,
519 						"poll-timeout-ms", &x))
520 					uap->dmarx.poll_timeout = x;
521 				else
522 					uap->dmarx.poll_timeout = 3000;
523 			}
524 		}
525 		dev_info(uap->port.dev, "DMA channel RX %s\n",
526 			 dma_chan_name(uap->dmarx.chan));
527 	}
528 }
529 
530 static void pl011_dma_remove(struct uart_amba_port *uap)
531 {
532 	if (uap->dmatx.chan)
533 		dma_release_channel(uap->dmatx.chan);
534 	if (uap->dmarx.chan)
535 		dma_release_channel(uap->dmarx.chan);
536 }
537 
538 /* Forward declare these for the refill routine */
539 static int pl011_dma_tx_refill(struct uart_amba_port *uap);
540 static void pl011_start_tx_pio(struct uart_amba_port *uap);
541 
542 /*
543  * The current DMA TX buffer has been sent.
544  * Try to queue up another DMA buffer.
545  */
546 static void pl011_dma_tx_callback(void *data)
547 {
548 	struct uart_amba_port *uap = data;
549 	struct pl011_dmatx_data *dmatx = &uap->dmatx;
550 	unsigned long flags;
551 	u16 dmacr;
552 
553 	spin_lock_irqsave(&uap->port.lock, flags);
554 	if (uap->dmatx.queued)
555 		dma_unmap_sg(dmatx->chan->device->dev, &dmatx->sg, 1,
556 			     DMA_TO_DEVICE);
557 
558 	dmacr = uap->dmacr;
559 	uap->dmacr = dmacr & ~UART011_TXDMAE;
560 	pl011_write(uap->dmacr, uap, REG_DMACR);
561 
562 	/*
563 	 * If TX DMA was disabled, it means that we've stopped the DMA for
564 	 * some reason (eg, XOFF received, or we want to send an X-char.)
565 	 *
566 	 * Note: we need to be careful here of a potential race between DMA
567 	 * and the rest of the driver - if the driver disables TX DMA while
568 	 * a TX buffer completing, we must update the tx queued status to
569 	 * get further refills (hence we check dmacr).
570 	 */
571 	if (!(dmacr & UART011_TXDMAE) || uart_tx_stopped(&uap->port) ||
572 	    uart_circ_empty(&uap->port.state->xmit)) {
573 		uap->dmatx.queued = false;
574 		spin_unlock_irqrestore(&uap->port.lock, flags);
575 		return;
576 	}
577 
578 	if (pl011_dma_tx_refill(uap) <= 0)
579 		/*
580 		 * We didn't queue a DMA buffer for some reason, but we
581 		 * have data pending to be sent.  Re-enable the TX IRQ.
582 		 */
583 		pl011_start_tx_pio(uap);
584 
585 	spin_unlock_irqrestore(&uap->port.lock, flags);
586 }
587 
588 /*
589  * Try to refill the TX DMA buffer.
590  * Locking: called with port lock held and IRQs disabled.
591  * Returns:
592  *   1 if we queued up a TX DMA buffer.
593  *   0 if we didn't want to handle this by DMA
594  *  <0 on error
595  */
596 static int pl011_dma_tx_refill(struct uart_amba_port *uap)
597 {
598 	struct pl011_dmatx_data *dmatx = &uap->dmatx;
599 	struct dma_chan *chan = dmatx->chan;
600 	struct dma_device *dma_dev = chan->device;
601 	struct dma_async_tx_descriptor *desc;
602 	struct circ_buf *xmit = &uap->port.state->xmit;
603 	unsigned int count;
604 
605 	/*
606 	 * Try to avoid the overhead involved in using DMA if the
607 	 * transaction fits in the first half of the FIFO, by using
608 	 * the standard interrupt handling.  This ensures that we
609 	 * issue a uart_write_wakeup() at the appropriate time.
610 	 */
611 	count = uart_circ_chars_pending(xmit);
612 	if (count < (uap->fifosize >> 1)) {
613 		uap->dmatx.queued = false;
614 		return 0;
615 	}
616 
617 	/*
618 	 * Bodge: don't send the last character by DMA, as this
619 	 * will prevent XON from notifying us to restart DMA.
620 	 */
621 	count -= 1;
622 
623 	/* Else proceed to copy the TX chars to the DMA buffer and fire DMA */
624 	if (count > PL011_DMA_BUFFER_SIZE)
625 		count = PL011_DMA_BUFFER_SIZE;
626 
627 	if (xmit->tail < xmit->head)
628 		memcpy(&dmatx->buf[0], &xmit->buf[xmit->tail], count);
629 	else {
630 		size_t first = UART_XMIT_SIZE - xmit->tail;
631 		size_t second;
632 
633 		if (first > count)
634 			first = count;
635 		second = count - first;
636 
637 		memcpy(&dmatx->buf[0], &xmit->buf[xmit->tail], first);
638 		if (second)
639 			memcpy(&dmatx->buf[first], &xmit->buf[0], second);
640 	}
641 
642 	dmatx->sg.length = count;
643 
644 	if (dma_map_sg(dma_dev->dev, &dmatx->sg, 1, DMA_TO_DEVICE) != 1) {
645 		uap->dmatx.queued = false;
646 		dev_dbg(uap->port.dev, "unable to map TX DMA\n");
647 		return -EBUSY;
648 	}
649 
650 	desc = dmaengine_prep_slave_sg(chan, &dmatx->sg, 1, DMA_MEM_TO_DEV,
651 					     DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
652 	if (!desc) {
653 		dma_unmap_sg(dma_dev->dev, &dmatx->sg, 1, DMA_TO_DEVICE);
654 		uap->dmatx.queued = false;
655 		/*
656 		 * If DMA cannot be used right now, we complete this
657 		 * transaction via IRQ and let the TTY layer retry.
658 		 */
659 		dev_dbg(uap->port.dev, "TX DMA busy\n");
660 		return -EBUSY;
661 	}
662 
663 	/* Some data to go along to the callback */
664 	desc->callback = pl011_dma_tx_callback;
665 	desc->callback_param = uap;
666 
667 	/* All errors should happen at prepare time */
668 	dmaengine_submit(desc);
669 
670 	/* Fire the DMA transaction */
671 	dma_dev->device_issue_pending(chan);
672 
673 	uap->dmacr |= UART011_TXDMAE;
674 	pl011_write(uap->dmacr, uap, REG_DMACR);
675 	uap->dmatx.queued = true;
676 
677 	/*
678 	 * Now we know that DMA will fire, so advance the ring buffer
679 	 * with the stuff we just dispatched.
680 	 */
681 	xmit->tail = (xmit->tail + count) & (UART_XMIT_SIZE - 1);
682 	uap->port.icount.tx += count;
683 
684 	if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
685 		uart_write_wakeup(&uap->port);
686 
687 	return 1;
688 }
689 
690 /*
691  * We received a transmit interrupt without a pending X-char but with
692  * pending characters.
693  * Locking: called with port lock held and IRQs disabled.
694  * Returns:
695  *   false if we want to use PIO to transmit
696  *   true if we queued a DMA buffer
697  */
698 static bool pl011_dma_tx_irq(struct uart_amba_port *uap)
699 {
700 	if (!uap->using_tx_dma)
701 		return false;
702 
703 	/*
704 	 * If we already have a TX buffer queued, but received a
705 	 * TX interrupt, it will be because we've just sent an X-char.
706 	 * Ensure the TX DMA is enabled and the TX IRQ is disabled.
707 	 */
708 	if (uap->dmatx.queued) {
709 		uap->dmacr |= UART011_TXDMAE;
710 		pl011_write(uap->dmacr, uap, REG_DMACR);
711 		uap->im &= ~UART011_TXIM;
712 		pl011_write(uap->im, uap, REG_IMSC);
713 		return true;
714 	}
715 
716 	/*
717 	 * We don't have a TX buffer queued, so try to queue one.
718 	 * If we successfully queued a buffer, mask the TX IRQ.
719 	 */
720 	if (pl011_dma_tx_refill(uap) > 0) {
721 		uap->im &= ~UART011_TXIM;
722 		pl011_write(uap->im, uap, REG_IMSC);
723 		return true;
724 	}
725 	return false;
726 }
727 
728 /*
729  * Stop the DMA transmit (eg, due to received XOFF).
730  * Locking: called with port lock held and IRQs disabled.
731  */
732 static inline void pl011_dma_tx_stop(struct uart_amba_port *uap)
733 {
734 	if (uap->dmatx.queued) {
735 		uap->dmacr &= ~UART011_TXDMAE;
736 		pl011_write(uap->dmacr, uap, REG_DMACR);
737 	}
738 }
739 
740 /*
741  * Try to start a DMA transmit, or in the case of an XON/OFF
742  * character queued for send, try to get that character out ASAP.
743  * Locking: called with port lock held and IRQs disabled.
744  * Returns:
745  *   false if we want the TX IRQ to be enabled
746  *   true if we have a buffer queued
747  */
748 static inline bool pl011_dma_tx_start(struct uart_amba_port *uap)
749 {
750 	u16 dmacr;
751 
752 	if (!uap->using_tx_dma)
753 		return false;
754 
755 	if (!uap->port.x_char) {
756 		/* no X-char, try to push chars out in DMA mode */
757 		bool ret = true;
758 
759 		if (!uap->dmatx.queued) {
760 			if (pl011_dma_tx_refill(uap) > 0) {
761 				uap->im &= ~UART011_TXIM;
762 				pl011_write(uap->im, uap, REG_IMSC);
763 			} else
764 				ret = false;
765 		} else if (!(uap->dmacr & UART011_TXDMAE)) {
766 			uap->dmacr |= UART011_TXDMAE;
767 			pl011_write(uap->dmacr, uap, REG_DMACR);
768 		}
769 		return ret;
770 	}
771 
772 	/*
773 	 * We have an X-char to send.  Disable DMA to prevent it loading
774 	 * the TX fifo, and then see if we can stuff it into the FIFO.
775 	 */
776 	dmacr = uap->dmacr;
777 	uap->dmacr &= ~UART011_TXDMAE;
778 	pl011_write(uap->dmacr, uap, REG_DMACR);
779 
780 	if (pl011_read(uap, REG_FR) & UART01x_FR_TXFF) {
781 		/*
782 		 * No space in the FIFO, so enable the transmit interrupt
783 		 * so we know when there is space.  Note that once we've
784 		 * loaded the character, we should just re-enable DMA.
785 		 */
786 		return false;
787 	}
788 
789 	pl011_write(uap->port.x_char, uap, REG_DR);
790 	uap->port.icount.tx++;
791 	uap->port.x_char = 0;
792 
793 	/* Success - restore the DMA state */
794 	uap->dmacr = dmacr;
795 	pl011_write(dmacr, uap, REG_DMACR);
796 
797 	return true;
798 }
799 
800 /*
801  * Flush the transmit buffer.
802  * Locking: called with port lock held and IRQs disabled.
803  */
804 static void pl011_dma_flush_buffer(struct uart_port *port)
805 __releases(&uap->port.lock)
806 __acquires(&uap->port.lock)
807 {
808 	struct uart_amba_port *uap =
809 	    container_of(port, struct uart_amba_port, port);
810 
811 	if (!uap->using_tx_dma)
812 		return;
813 
814 	dmaengine_terminate_async(uap->dmatx.chan);
815 
816 	if (uap->dmatx.queued) {
817 		dma_unmap_sg(uap->dmatx.chan->device->dev, &uap->dmatx.sg, 1,
818 			     DMA_TO_DEVICE);
819 		uap->dmatx.queued = false;
820 		uap->dmacr &= ~UART011_TXDMAE;
821 		pl011_write(uap->dmacr, uap, REG_DMACR);
822 	}
823 }
824 
825 static void pl011_dma_rx_callback(void *data);
826 
827 static int pl011_dma_rx_trigger_dma(struct uart_amba_port *uap)
828 {
829 	struct dma_chan *rxchan = uap->dmarx.chan;
830 	struct pl011_dmarx_data *dmarx = &uap->dmarx;
831 	struct dma_async_tx_descriptor *desc;
832 	struct pl011_sgbuf *sgbuf;
833 
834 	if (!rxchan)
835 		return -EIO;
836 
837 	/* Start the RX DMA job */
838 	sgbuf = uap->dmarx.use_buf_b ?
839 		&uap->dmarx.sgbuf_b : &uap->dmarx.sgbuf_a;
840 	desc = dmaengine_prep_slave_sg(rxchan, &sgbuf->sg, 1,
841 					DMA_DEV_TO_MEM,
842 					DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
843 	/*
844 	 * If the DMA engine is busy and cannot prepare a
845 	 * channel, no big deal, the driver will fall back
846 	 * to interrupt mode as a result of this error code.
847 	 */
848 	if (!desc) {
849 		uap->dmarx.running = false;
850 		dmaengine_terminate_all(rxchan);
851 		return -EBUSY;
852 	}
853 
854 	/* Some data to go along to the callback */
855 	desc->callback = pl011_dma_rx_callback;
856 	desc->callback_param = uap;
857 	dmarx->cookie = dmaengine_submit(desc);
858 	dma_async_issue_pending(rxchan);
859 
860 	uap->dmacr |= UART011_RXDMAE;
861 	pl011_write(uap->dmacr, uap, REG_DMACR);
862 	uap->dmarx.running = true;
863 
864 	uap->im &= ~UART011_RXIM;
865 	pl011_write(uap->im, uap, REG_IMSC);
866 
867 	return 0;
868 }
869 
870 /*
871  * This is called when either the DMA job is complete, or
872  * the FIFO timeout interrupt occurred. This must be called
873  * with the port spinlock uap->port.lock held.
874  */
875 static void pl011_dma_rx_chars(struct uart_amba_port *uap,
876 			       u32 pending, bool use_buf_b,
877 			       bool readfifo)
878 {
879 	struct tty_port *port = &uap->port.state->port;
880 	struct pl011_sgbuf *sgbuf = use_buf_b ?
881 		&uap->dmarx.sgbuf_b : &uap->dmarx.sgbuf_a;
882 	int dma_count = 0;
883 	u32 fifotaken = 0; /* only used for vdbg() */
884 
885 	struct pl011_dmarx_data *dmarx = &uap->dmarx;
886 	int dmataken = 0;
887 
888 	if (uap->dmarx.poll_rate) {
889 		/* The data can be taken by polling */
890 		dmataken = sgbuf->sg.length - dmarx->last_residue;
891 		/* Recalculate the pending size */
892 		if (pending >= dmataken)
893 			pending -= dmataken;
894 	}
895 
896 	/* Pick the remain data from the DMA */
897 	if (pending) {
898 
899 		/*
900 		 * First take all chars in the DMA pipe, then look in the FIFO.
901 		 * Note that tty_insert_flip_buf() tries to take as many chars
902 		 * as it can.
903 		 */
904 		dma_count = tty_insert_flip_string(port, sgbuf->buf + dmataken,
905 				pending);
906 
907 		uap->port.icount.rx += dma_count;
908 		if (dma_count < pending)
909 			dev_warn(uap->port.dev,
910 				 "couldn't insert all characters (TTY is full?)\n");
911 	}
912 
913 	/* Reset the last_residue for Rx DMA poll */
914 	if (uap->dmarx.poll_rate)
915 		dmarx->last_residue = sgbuf->sg.length;
916 
917 	/*
918 	 * Only continue with trying to read the FIFO if all DMA chars have
919 	 * been taken first.
920 	 */
921 	if (dma_count == pending && readfifo) {
922 		/* Clear any error flags */
923 		pl011_write(UART011_OEIS | UART011_BEIS | UART011_PEIS |
924 			    UART011_FEIS, uap, REG_ICR);
925 
926 		/*
927 		 * If we read all the DMA'd characters, and we had an
928 		 * incomplete buffer, that could be due to an rx error, or
929 		 * maybe we just timed out. Read any pending chars and check
930 		 * the error status.
931 		 *
932 		 * Error conditions will only occur in the FIFO, these will
933 		 * trigger an immediate interrupt and stop the DMA job, so we
934 		 * will always find the error in the FIFO, never in the DMA
935 		 * buffer.
936 		 */
937 		fifotaken = pl011_fifo_to_tty(uap);
938 	}
939 
940 	dev_vdbg(uap->port.dev,
941 		 "Took %d chars from DMA buffer and %d chars from the FIFO\n",
942 		 dma_count, fifotaken);
943 	tty_flip_buffer_push(port);
944 }
945 
946 static void pl011_dma_rx_irq(struct uart_amba_port *uap)
947 {
948 	struct pl011_dmarx_data *dmarx = &uap->dmarx;
949 	struct dma_chan *rxchan = dmarx->chan;
950 	struct pl011_sgbuf *sgbuf = dmarx->use_buf_b ?
951 		&dmarx->sgbuf_b : &dmarx->sgbuf_a;
952 	size_t pending;
953 	struct dma_tx_state state;
954 	enum dma_status dmastat;
955 
956 	/*
957 	 * Pause the transfer so we can trust the current counter,
958 	 * do this before we pause the PL011 block, else we may
959 	 * overflow the FIFO.
960 	 */
961 	if (dmaengine_pause(rxchan))
962 		dev_err(uap->port.dev, "unable to pause DMA transfer\n");
963 	dmastat = rxchan->device->device_tx_status(rxchan,
964 						   dmarx->cookie, &state);
965 	if (dmastat != DMA_PAUSED)
966 		dev_err(uap->port.dev, "unable to pause DMA transfer\n");
967 
968 	/* Disable RX DMA - incoming data will wait in the FIFO */
969 	uap->dmacr &= ~UART011_RXDMAE;
970 	pl011_write(uap->dmacr, uap, REG_DMACR);
971 	uap->dmarx.running = false;
972 
973 	pending = sgbuf->sg.length - state.residue;
974 	BUG_ON(pending > PL011_DMA_BUFFER_SIZE);
975 	/* Then we terminate the transfer - we now know our residue */
976 	dmaengine_terminate_all(rxchan);
977 
978 	/*
979 	 * This will take the chars we have so far and insert
980 	 * into the framework.
981 	 */
982 	pl011_dma_rx_chars(uap, pending, dmarx->use_buf_b, true);
983 
984 	/* Switch buffer & re-trigger DMA job */
985 	dmarx->use_buf_b = !dmarx->use_buf_b;
986 	if (pl011_dma_rx_trigger_dma(uap)) {
987 		dev_dbg(uap->port.dev, "could not retrigger RX DMA job "
988 			"fall back to interrupt mode\n");
989 		uap->im |= UART011_RXIM;
990 		pl011_write(uap->im, uap, REG_IMSC);
991 	}
992 }
993 
994 static void pl011_dma_rx_callback(void *data)
995 {
996 	struct uart_amba_port *uap = data;
997 	struct pl011_dmarx_data *dmarx = &uap->dmarx;
998 	struct dma_chan *rxchan = dmarx->chan;
999 	bool lastbuf = dmarx->use_buf_b;
1000 	struct pl011_sgbuf *sgbuf = dmarx->use_buf_b ?
1001 		&dmarx->sgbuf_b : &dmarx->sgbuf_a;
1002 	size_t pending;
1003 	struct dma_tx_state state;
1004 	int ret;
1005 
1006 	/*
1007 	 * This completion interrupt occurs typically when the
1008 	 * RX buffer is totally stuffed but no timeout has yet
1009 	 * occurred. When that happens, we just want the RX
1010 	 * routine to flush out the secondary DMA buffer while
1011 	 * we immediately trigger the next DMA job.
1012 	 */
1013 	spin_lock_irq(&uap->port.lock);
1014 	/*
1015 	 * Rx data can be taken by the UART interrupts during
1016 	 * the DMA irq handler. So we check the residue here.
1017 	 */
1018 	rxchan->device->device_tx_status(rxchan, dmarx->cookie, &state);
1019 	pending = sgbuf->sg.length - state.residue;
1020 	BUG_ON(pending > PL011_DMA_BUFFER_SIZE);
1021 	/* Then we terminate the transfer - we now know our residue */
1022 	dmaengine_terminate_all(rxchan);
1023 
1024 	uap->dmarx.running = false;
1025 	dmarx->use_buf_b = !lastbuf;
1026 	ret = pl011_dma_rx_trigger_dma(uap);
1027 
1028 	pl011_dma_rx_chars(uap, pending, lastbuf, false);
1029 	spin_unlock_irq(&uap->port.lock);
1030 	/*
1031 	 * Do this check after we picked the DMA chars so we don't
1032 	 * get some IRQ immediately from RX.
1033 	 */
1034 	if (ret) {
1035 		dev_dbg(uap->port.dev, "could not retrigger RX DMA job "
1036 			"fall back to interrupt mode\n");
1037 		uap->im |= UART011_RXIM;
1038 		pl011_write(uap->im, uap, REG_IMSC);
1039 	}
1040 }
1041 
1042 /*
1043  * Stop accepting received characters, when we're shutting down or
1044  * suspending this port.
1045  * Locking: called with port lock held and IRQs disabled.
1046  */
1047 static inline void pl011_dma_rx_stop(struct uart_amba_port *uap)
1048 {
1049 	/* FIXME.  Just disable the DMA enable */
1050 	uap->dmacr &= ~UART011_RXDMAE;
1051 	pl011_write(uap->dmacr, uap, REG_DMACR);
1052 }
1053 
1054 /*
1055  * Timer handler for Rx DMA polling.
1056  * Every polling, It checks the residue in the dma buffer and transfer
1057  * data to the tty. Also, last_residue is updated for the next polling.
1058  */
1059 static void pl011_dma_rx_poll(struct timer_list *t)
1060 {
1061 	struct uart_amba_port *uap = from_timer(uap, t, dmarx.timer);
1062 	struct tty_port *port = &uap->port.state->port;
1063 	struct pl011_dmarx_data *dmarx = &uap->dmarx;
1064 	struct dma_chan *rxchan = uap->dmarx.chan;
1065 	unsigned long flags = 0;
1066 	unsigned int dmataken = 0;
1067 	unsigned int size = 0;
1068 	struct pl011_sgbuf *sgbuf;
1069 	int dma_count;
1070 	struct dma_tx_state state;
1071 
1072 	sgbuf = dmarx->use_buf_b ? &uap->dmarx.sgbuf_b : &uap->dmarx.sgbuf_a;
1073 	rxchan->device->device_tx_status(rxchan, dmarx->cookie, &state);
1074 	if (likely(state.residue < dmarx->last_residue)) {
1075 		dmataken = sgbuf->sg.length - dmarx->last_residue;
1076 		size = dmarx->last_residue - state.residue;
1077 		dma_count = tty_insert_flip_string(port, sgbuf->buf + dmataken,
1078 				size);
1079 		if (dma_count == size)
1080 			dmarx->last_residue =  state.residue;
1081 		dmarx->last_jiffies = jiffies;
1082 	}
1083 	tty_flip_buffer_push(port);
1084 
1085 	/*
1086 	 * If no data is received in poll_timeout, the driver will fall back
1087 	 * to interrupt mode. We will retrigger DMA at the first interrupt.
1088 	 */
1089 	if (jiffies_to_msecs(jiffies - dmarx->last_jiffies)
1090 			> uap->dmarx.poll_timeout) {
1091 
1092 		spin_lock_irqsave(&uap->port.lock, flags);
1093 		pl011_dma_rx_stop(uap);
1094 		uap->im |= UART011_RXIM;
1095 		pl011_write(uap->im, uap, REG_IMSC);
1096 		spin_unlock_irqrestore(&uap->port.lock, flags);
1097 
1098 		uap->dmarx.running = false;
1099 		dmaengine_terminate_all(rxchan);
1100 		del_timer(&uap->dmarx.timer);
1101 	} else {
1102 		mod_timer(&uap->dmarx.timer,
1103 			jiffies + msecs_to_jiffies(uap->dmarx.poll_rate));
1104 	}
1105 }
1106 
1107 static void pl011_dma_startup(struct uart_amba_port *uap)
1108 {
1109 	int ret;
1110 
1111 	if (!uap->dma_probed)
1112 		pl011_dma_probe(uap);
1113 
1114 	if (!uap->dmatx.chan)
1115 		return;
1116 
1117 	uap->dmatx.buf = kmalloc(PL011_DMA_BUFFER_SIZE, GFP_KERNEL | __GFP_DMA);
1118 	if (!uap->dmatx.buf) {
1119 		dev_err(uap->port.dev, "no memory for DMA TX buffer\n");
1120 		uap->port.fifosize = uap->fifosize;
1121 		return;
1122 	}
1123 
1124 	sg_init_one(&uap->dmatx.sg, uap->dmatx.buf, PL011_DMA_BUFFER_SIZE);
1125 
1126 	/* The DMA buffer is now the FIFO the TTY subsystem can use */
1127 	uap->port.fifosize = PL011_DMA_BUFFER_SIZE;
1128 	uap->using_tx_dma = true;
1129 
1130 	if (!uap->dmarx.chan)
1131 		goto skip_rx;
1132 
1133 	/* Allocate and map DMA RX buffers */
1134 	ret = pl011_sgbuf_init(uap->dmarx.chan, &uap->dmarx.sgbuf_a,
1135 			       DMA_FROM_DEVICE);
1136 	if (ret) {
1137 		dev_err(uap->port.dev, "failed to init DMA %s: %d\n",
1138 			"RX buffer A", ret);
1139 		goto skip_rx;
1140 	}
1141 
1142 	ret = pl011_sgbuf_init(uap->dmarx.chan, &uap->dmarx.sgbuf_b,
1143 			       DMA_FROM_DEVICE);
1144 	if (ret) {
1145 		dev_err(uap->port.dev, "failed to init DMA %s: %d\n",
1146 			"RX buffer B", ret);
1147 		pl011_sgbuf_free(uap->dmarx.chan, &uap->dmarx.sgbuf_a,
1148 				 DMA_FROM_DEVICE);
1149 		goto skip_rx;
1150 	}
1151 
1152 	uap->using_rx_dma = true;
1153 
1154 skip_rx:
1155 	/* Turn on DMA error (RX/TX will be enabled on demand) */
1156 	uap->dmacr |= UART011_DMAONERR;
1157 	pl011_write(uap->dmacr, uap, REG_DMACR);
1158 
1159 	/*
1160 	 * ST Micro variants has some specific dma burst threshold
1161 	 * compensation. Set this to 16 bytes, so burst will only
1162 	 * be issued above/below 16 bytes.
1163 	 */
1164 	if (uap->vendor->dma_threshold)
1165 		pl011_write(ST_UART011_DMAWM_RX_16 | ST_UART011_DMAWM_TX_16,
1166 			    uap, REG_ST_DMAWM);
1167 
1168 	if (uap->using_rx_dma) {
1169 		if (pl011_dma_rx_trigger_dma(uap))
1170 			dev_dbg(uap->port.dev, "could not trigger initial "
1171 				"RX DMA job, fall back to interrupt mode\n");
1172 		if (uap->dmarx.poll_rate) {
1173 			timer_setup(&uap->dmarx.timer, pl011_dma_rx_poll, 0);
1174 			mod_timer(&uap->dmarx.timer,
1175 				jiffies +
1176 				msecs_to_jiffies(uap->dmarx.poll_rate));
1177 			uap->dmarx.last_residue = PL011_DMA_BUFFER_SIZE;
1178 			uap->dmarx.last_jiffies = jiffies;
1179 		}
1180 	}
1181 }
1182 
1183 static void pl011_dma_shutdown(struct uart_amba_port *uap)
1184 {
1185 	if (!(uap->using_tx_dma || uap->using_rx_dma))
1186 		return;
1187 
1188 	/* Disable RX and TX DMA */
1189 	while (pl011_read(uap, REG_FR) & uap->vendor->fr_busy)
1190 		cpu_relax();
1191 
1192 	spin_lock_irq(&uap->port.lock);
1193 	uap->dmacr &= ~(UART011_DMAONERR | UART011_RXDMAE | UART011_TXDMAE);
1194 	pl011_write(uap->dmacr, uap, REG_DMACR);
1195 	spin_unlock_irq(&uap->port.lock);
1196 
1197 	if (uap->using_tx_dma) {
1198 		/* In theory, this should already be done by pl011_dma_flush_buffer */
1199 		dmaengine_terminate_all(uap->dmatx.chan);
1200 		if (uap->dmatx.queued) {
1201 			dma_unmap_sg(uap->dmatx.chan->device->dev, &uap->dmatx.sg, 1,
1202 				     DMA_TO_DEVICE);
1203 			uap->dmatx.queued = false;
1204 		}
1205 
1206 		kfree(uap->dmatx.buf);
1207 		uap->using_tx_dma = false;
1208 	}
1209 
1210 	if (uap->using_rx_dma) {
1211 		dmaengine_terminate_all(uap->dmarx.chan);
1212 		/* Clean up the RX DMA */
1213 		pl011_sgbuf_free(uap->dmarx.chan, &uap->dmarx.sgbuf_a, DMA_FROM_DEVICE);
1214 		pl011_sgbuf_free(uap->dmarx.chan, &uap->dmarx.sgbuf_b, DMA_FROM_DEVICE);
1215 		if (uap->dmarx.poll_rate)
1216 			del_timer_sync(&uap->dmarx.timer);
1217 		uap->using_rx_dma = false;
1218 	}
1219 }
1220 
1221 static inline bool pl011_dma_rx_available(struct uart_amba_port *uap)
1222 {
1223 	return uap->using_rx_dma;
1224 }
1225 
1226 static inline bool pl011_dma_rx_running(struct uart_amba_port *uap)
1227 {
1228 	return uap->using_rx_dma && uap->dmarx.running;
1229 }
1230 
1231 #else
1232 /* Blank functions if the DMA engine is not available */
1233 static inline void pl011_dma_remove(struct uart_amba_port *uap)
1234 {
1235 }
1236 
1237 static inline void pl011_dma_startup(struct uart_amba_port *uap)
1238 {
1239 }
1240 
1241 static inline void pl011_dma_shutdown(struct uart_amba_port *uap)
1242 {
1243 }
1244 
1245 static inline bool pl011_dma_tx_irq(struct uart_amba_port *uap)
1246 {
1247 	return false;
1248 }
1249 
1250 static inline void pl011_dma_tx_stop(struct uart_amba_port *uap)
1251 {
1252 }
1253 
1254 static inline bool pl011_dma_tx_start(struct uart_amba_port *uap)
1255 {
1256 	return false;
1257 }
1258 
1259 static inline void pl011_dma_rx_irq(struct uart_amba_port *uap)
1260 {
1261 }
1262 
1263 static inline void pl011_dma_rx_stop(struct uart_amba_port *uap)
1264 {
1265 }
1266 
1267 static inline int pl011_dma_rx_trigger_dma(struct uart_amba_port *uap)
1268 {
1269 	return -EIO;
1270 }
1271 
1272 static inline bool pl011_dma_rx_available(struct uart_amba_port *uap)
1273 {
1274 	return false;
1275 }
1276 
1277 static inline bool pl011_dma_rx_running(struct uart_amba_port *uap)
1278 {
1279 	return false;
1280 }
1281 
1282 #define pl011_dma_flush_buffer	NULL
1283 #endif
1284 
1285 static void pl011_stop_tx(struct uart_port *port)
1286 {
1287 	struct uart_amba_port *uap =
1288 	    container_of(port, struct uart_amba_port, port);
1289 
1290 	uap->im &= ~UART011_TXIM;
1291 	pl011_write(uap->im, uap, REG_IMSC);
1292 	pl011_dma_tx_stop(uap);
1293 }
1294 
1295 static bool pl011_tx_chars(struct uart_amba_port *uap, bool from_irq);
1296 
1297 /* Start TX with programmed I/O only (no DMA) */
1298 static void pl011_start_tx_pio(struct uart_amba_port *uap)
1299 {
1300 	if (pl011_tx_chars(uap, false)) {
1301 		uap->im |= UART011_TXIM;
1302 		pl011_write(uap->im, uap, REG_IMSC);
1303 	}
1304 }
1305 
1306 static void pl011_start_tx(struct uart_port *port)
1307 {
1308 	struct uart_amba_port *uap =
1309 	    container_of(port, struct uart_amba_port, port);
1310 
1311 	if (!pl011_dma_tx_start(uap))
1312 		pl011_start_tx_pio(uap);
1313 }
1314 
1315 static void pl011_stop_rx(struct uart_port *port)
1316 {
1317 	struct uart_amba_port *uap =
1318 	    container_of(port, struct uart_amba_port, port);
1319 
1320 	uap->im &= ~(UART011_RXIM|UART011_RTIM|UART011_FEIM|
1321 		     UART011_PEIM|UART011_BEIM|UART011_OEIM);
1322 	pl011_write(uap->im, uap, REG_IMSC);
1323 
1324 	pl011_dma_rx_stop(uap);
1325 }
1326 
1327 static void pl011_enable_ms(struct uart_port *port)
1328 {
1329 	struct uart_amba_port *uap =
1330 	    container_of(port, struct uart_amba_port, port);
1331 
1332 	uap->im |= UART011_RIMIM|UART011_CTSMIM|UART011_DCDMIM|UART011_DSRMIM;
1333 	pl011_write(uap->im, uap, REG_IMSC);
1334 }
1335 
1336 static void pl011_rx_chars(struct uart_amba_port *uap)
1337 __releases(&uap->port.lock)
1338 __acquires(&uap->port.lock)
1339 {
1340 	pl011_fifo_to_tty(uap);
1341 
1342 	spin_unlock(&uap->port.lock);
1343 	tty_flip_buffer_push(&uap->port.state->port);
1344 	/*
1345 	 * If we were temporarily out of DMA mode for a while,
1346 	 * attempt to switch back to DMA mode again.
1347 	 */
1348 	if (pl011_dma_rx_available(uap)) {
1349 		if (pl011_dma_rx_trigger_dma(uap)) {
1350 			dev_dbg(uap->port.dev, "could not trigger RX DMA job "
1351 				"fall back to interrupt mode again\n");
1352 			uap->im |= UART011_RXIM;
1353 			pl011_write(uap->im, uap, REG_IMSC);
1354 		} else {
1355 #ifdef CONFIG_DMA_ENGINE
1356 			/* Start Rx DMA poll */
1357 			if (uap->dmarx.poll_rate) {
1358 				uap->dmarx.last_jiffies = jiffies;
1359 				uap->dmarx.last_residue	= PL011_DMA_BUFFER_SIZE;
1360 				mod_timer(&uap->dmarx.timer,
1361 					jiffies +
1362 					msecs_to_jiffies(uap->dmarx.poll_rate));
1363 			}
1364 #endif
1365 		}
1366 	}
1367 	spin_lock(&uap->port.lock);
1368 }
1369 
1370 static bool pl011_tx_char(struct uart_amba_port *uap, unsigned char c,
1371 			  bool from_irq)
1372 {
1373 	if (unlikely(!from_irq) &&
1374 	    pl011_read(uap, REG_FR) & UART01x_FR_TXFF)
1375 		return false; /* unable to transmit character */
1376 
1377 	pl011_write(c, uap, REG_DR);
1378 	uap->port.icount.tx++;
1379 
1380 	return true;
1381 }
1382 
1383 /* Returns true if tx interrupts have to be (kept) enabled  */
1384 static bool pl011_tx_chars(struct uart_amba_port *uap, bool from_irq)
1385 {
1386 	struct circ_buf *xmit = &uap->port.state->xmit;
1387 	int count = uap->fifosize >> 1;
1388 
1389 	if (uap->port.x_char) {
1390 		if (!pl011_tx_char(uap, uap->port.x_char, from_irq))
1391 			return true;
1392 		uap->port.x_char = 0;
1393 		--count;
1394 	}
1395 	if (uart_circ_empty(xmit) || uart_tx_stopped(&uap->port)) {
1396 		pl011_stop_tx(&uap->port);
1397 		return false;
1398 	}
1399 
1400 	/* If we are using DMA mode, try to send some characters. */
1401 	if (pl011_dma_tx_irq(uap))
1402 		return true;
1403 
1404 	do {
1405 		if (likely(from_irq) && count-- == 0)
1406 			break;
1407 
1408 		if (!pl011_tx_char(uap, xmit->buf[xmit->tail], from_irq))
1409 			break;
1410 
1411 		xmit->tail = (xmit->tail + 1) & (UART_XMIT_SIZE - 1);
1412 	} while (!uart_circ_empty(xmit));
1413 
1414 	if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
1415 		uart_write_wakeup(&uap->port);
1416 
1417 	if (uart_circ_empty(xmit)) {
1418 		pl011_stop_tx(&uap->port);
1419 		return false;
1420 	}
1421 	return true;
1422 }
1423 
1424 static void pl011_modem_status(struct uart_amba_port *uap)
1425 {
1426 	unsigned int status, delta;
1427 
1428 	status = pl011_read(uap, REG_FR) & UART01x_FR_MODEM_ANY;
1429 
1430 	delta = status ^ uap->old_status;
1431 	uap->old_status = status;
1432 
1433 	if (!delta)
1434 		return;
1435 
1436 	if (delta & UART01x_FR_DCD)
1437 		uart_handle_dcd_change(&uap->port, status & UART01x_FR_DCD);
1438 
1439 	if (delta & uap->vendor->fr_dsr)
1440 		uap->port.icount.dsr++;
1441 
1442 	if (delta & uap->vendor->fr_cts)
1443 		uart_handle_cts_change(&uap->port,
1444 				       status & uap->vendor->fr_cts);
1445 
1446 	wake_up_interruptible(&uap->port.state->port.delta_msr_wait);
1447 }
1448 
1449 static void check_apply_cts_event_workaround(struct uart_amba_port *uap)
1450 {
1451 	if (!uap->vendor->cts_event_workaround)
1452 		return;
1453 
1454 	/* workaround to make sure that all bits are unlocked.. */
1455 	pl011_write(0x00, uap, REG_ICR);
1456 
1457 	/*
1458 	 * WA: introduce 26ns(1 uart clk) delay before W1C;
1459 	 * single apb access will incur 2 pclk(133.12Mhz) delay,
1460 	 * so add 2 dummy reads
1461 	 */
1462 	pl011_read(uap, REG_ICR);
1463 	pl011_read(uap, REG_ICR);
1464 }
1465 
1466 static irqreturn_t pl011_int(int irq, void *dev_id)
1467 {
1468 	struct uart_amba_port *uap = dev_id;
1469 	unsigned long flags;
1470 	unsigned int status, pass_counter = AMBA_ISR_PASS_LIMIT;
1471 	int handled = 0;
1472 
1473 	spin_lock_irqsave(&uap->port.lock, flags);
1474 	status = pl011_read(uap, REG_RIS) & uap->im;
1475 	if (status) {
1476 		do {
1477 			check_apply_cts_event_workaround(uap);
1478 
1479 			pl011_write(status & ~(UART011_TXIS|UART011_RTIS|
1480 					       UART011_RXIS),
1481 				    uap, REG_ICR);
1482 
1483 			if (status & (UART011_RTIS|UART011_RXIS)) {
1484 				if (pl011_dma_rx_running(uap))
1485 					pl011_dma_rx_irq(uap);
1486 				else
1487 					pl011_rx_chars(uap);
1488 			}
1489 			if (status & (UART011_DSRMIS|UART011_DCDMIS|
1490 				      UART011_CTSMIS|UART011_RIMIS))
1491 				pl011_modem_status(uap);
1492 			if (status & UART011_TXIS)
1493 				pl011_tx_chars(uap, true);
1494 
1495 			if (pass_counter-- == 0)
1496 				break;
1497 
1498 			status = pl011_read(uap, REG_RIS) & uap->im;
1499 		} while (status != 0);
1500 		handled = 1;
1501 	}
1502 
1503 	spin_unlock_irqrestore(&uap->port.lock, flags);
1504 
1505 	return IRQ_RETVAL(handled);
1506 }
1507 
1508 static unsigned int pl011_tx_empty(struct uart_port *port)
1509 {
1510 	struct uart_amba_port *uap =
1511 	    container_of(port, struct uart_amba_port, port);
1512 
1513 	/* Allow feature register bits to be inverted to work around errata */
1514 	unsigned int status = pl011_read(uap, REG_FR) ^ uap->vendor->inv_fr;
1515 
1516 	return status & (uap->vendor->fr_busy | UART01x_FR_TXFF) ?
1517 							0 : TIOCSER_TEMT;
1518 }
1519 
1520 static unsigned int pl011_get_mctrl(struct uart_port *port)
1521 {
1522 	struct uart_amba_port *uap =
1523 	    container_of(port, struct uart_amba_port, port);
1524 	unsigned int result = 0;
1525 	unsigned int status = pl011_read(uap, REG_FR);
1526 
1527 #define TIOCMBIT(uartbit, tiocmbit)	\
1528 	if (status & uartbit)		\
1529 		result |= tiocmbit
1530 
1531 	TIOCMBIT(UART01x_FR_DCD, TIOCM_CAR);
1532 	TIOCMBIT(uap->vendor->fr_dsr, TIOCM_DSR);
1533 	TIOCMBIT(uap->vendor->fr_cts, TIOCM_CTS);
1534 	TIOCMBIT(uap->vendor->fr_ri, TIOCM_RNG);
1535 #undef TIOCMBIT
1536 	return result;
1537 }
1538 
1539 static void pl011_set_mctrl(struct uart_port *port, unsigned int mctrl)
1540 {
1541 	struct uart_amba_port *uap =
1542 	    container_of(port, struct uart_amba_port, port);
1543 	unsigned int cr;
1544 
1545 	cr = pl011_read(uap, REG_CR);
1546 
1547 #define	TIOCMBIT(tiocmbit, uartbit)		\
1548 	if (mctrl & tiocmbit)		\
1549 		cr |= uartbit;		\
1550 	else				\
1551 		cr &= ~uartbit
1552 
1553 	TIOCMBIT(TIOCM_RTS, UART011_CR_RTS);
1554 	TIOCMBIT(TIOCM_DTR, UART011_CR_DTR);
1555 	TIOCMBIT(TIOCM_OUT1, UART011_CR_OUT1);
1556 	TIOCMBIT(TIOCM_OUT2, UART011_CR_OUT2);
1557 	TIOCMBIT(TIOCM_LOOP, UART011_CR_LBE);
1558 
1559 	if (port->status & UPSTAT_AUTORTS) {
1560 		/* We need to disable auto-RTS if we want to turn RTS off */
1561 		TIOCMBIT(TIOCM_RTS, UART011_CR_RTSEN);
1562 	}
1563 #undef TIOCMBIT
1564 
1565 	pl011_write(cr, uap, REG_CR);
1566 }
1567 
1568 static void pl011_break_ctl(struct uart_port *port, int break_state)
1569 {
1570 	struct uart_amba_port *uap =
1571 	    container_of(port, struct uart_amba_port, port);
1572 	unsigned long flags;
1573 	unsigned int lcr_h;
1574 
1575 	spin_lock_irqsave(&uap->port.lock, flags);
1576 	lcr_h = pl011_read(uap, REG_LCRH_TX);
1577 	if (break_state == -1)
1578 		lcr_h |= UART01x_LCRH_BRK;
1579 	else
1580 		lcr_h &= ~UART01x_LCRH_BRK;
1581 	pl011_write(lcr_h, uap, REG_LCRH_TX);
1582 	spin_unlock_irqrestore(&uap->port.lock, flags);
1583 }
1584 
1585 #ifdef CONFIG_CONSOLE_POLL
1586 
1587 static void pl011_quiesce_irqs(struct uart_port *port)
1588 {
1589 	struct uart_amba_port *uap =
1590 	    container_of(port, struct uart_amba_port, port);
1591 
1592 	pl011_write(pl011_read(uap, REG_MIS), uap, REG_ICR);
1593 	/*
1594 	 * There is no way to clear TXIM as this is "ready to transmit IRQ", so
1595 	 * we simply mask it. start_tx() will unmask it.
1596 	 *
1597 	 * Note we can race with start_tx(), and if the race happens, the
1598 	 * polling user might get another interrupt just after we clear it.
1599 	 * But it should be OK and can happen even w/o the race, e.g.
1600 	 * controller immediately got some new data and raised the IRQ.
1601 	 *
1602 	 * And whoever uses polling routines assumes that it manages the device
1603 	 * (including tx queue), so we're also fine with start_tx()'s caller
1604 	 * side.
1605 	 */
1606 	pl011_write(pl011_read(uap, REG_IMSC) & ~UART011_TXIM, uap,
1607 		    REG_IMSC);
1608 }
1609 
1610 static int pl011_get_poll_char(struct uart_port *port)
1611 {
1612 	struct uart_amba_port *uap =
1613 	    container_of(port, struct uart_amba_port, port);
1614 	unsigned int status;
1615 
1616 	/*
1617 	 * The caller might need IRQs lowered, e.g. if used with KDB NMI
1618 	 * debugger.
1619 	 */
1620 	pl011_quiesce_irqs(port);
1621 
1622 	status = pl011_read(uap, REG_FR);
1623 	if (status & UART01x_FR_RXFE)
1624 		return NO_POLL_CHAR;
1625 
1626 	return pl011_read(uap, REG_DR);
1627 }
1628 
1629 static void pl011_put_poll_char(struct uart_port *port,
1630 			 unsigned char ch)
1631 {
1632 	struct uart_amba_port *uap =
1633 	    container_of(port, struct uart_amba_port, port);
1634 
1635 	while (pl011_read(uap, REG_FR) & UART01x_FR_TXFF)
1636 		cpu_relax();
1637 
1638 	pl011_write(ch, uap, REG_DR);
1639 }
1640 
1641 #endif /* CONFIG_CONSOLE_POLL */
1642 
1643 static int pl011_hwinit(struct uart_port *port)
1644 {
1645 	struct uart_amba_port *uap =
1646 	    container_of(port, struct uart_amba_port, port);
1647 	int retval;
1648 
1649 	/* Optionaly enable pins to be muxed in and configured */
1650 	pinctrl_pm_select_default_state(port->dev);
1651 
1652 	/*
1653 	 * Try to enable the clock producer.
1654 	 */
1655 	retval = clk_prepare_enable(uap->clk);
1656 	if (retval)
1657 		return retval;
1658 
1659 	uap->port.uartclk = clk_get_rate(uap->clk);
1660 
1661 	/* Clear pending error and receive interrupts */
1662 	pl011_write(UART011_OEIS | UART011_BEIS | UART011_PEIS |
1663 		    UART011_FEIS | UART011_RTIS | UART011_RXIS,
1664 		    uap, REG_ICR);
1665 
1666 	/*
1667 	 * Save interrupts enable mask, and enable RX interrupts in case if
1668 	 * the interrupt is used for NMI entry.
1669 	 */
1670 	uap->im = pl011_read(uap, REG_IMSC);
1671 	pl011_write(UART011_RTIM | UART011_RXIM, uap, REG_IMSC);
1672 
1673 	if (dev_get_platdata(uap->port.dev)) {
1674 		struct amba_pl011_data *plat;
1675 
1676 		plat = dev_get_platdata(uap->port.dev);
1677 		if (plat->init)
1678 			plat->init();
1679 	}
1680 	return 0;
1681 }
1682 
1683 static bool pl011_split_lcrh(const struct uart_amba_port *uap)
1684 {
1685 	return pl011_reg_to_offset(uap, REG_LCRH_RX) !=
1686 	       pl011_reg_to_offset(uap, REG_LCRH_TX);
1687 }
1688 
1689 static void pl011_write_lcr_h(struct uart_amba_port *uap, unsigned int lcr_h)
1690 {
1691 	pl011_write(lcr_h, uap, REG_LCRH_RX);
1692 	if (pl011_split_lcrh(uap)) {
1693 		int i;
1694 		/*
1695 		 * Wait 10 PCLKs before writing LCRH_TX register,
1696 		 * to get this delay write read only register 10 times
1697 		 */
1698 		for (i = 0; i < 10; ++i)
1699 			pl011_write(0xff, uap, REG_MIS);
1700 		pl011_write(lcr_h, uap, REG_LCRH_TX);
1701 	}
1702 }
1703 
1704 static int pl011_allocate_irq(struct uart_amba_port *uap)
1705 {
1706 	pl011_write(uap->im, uap, REG_IMSC);
1707 
1708 	return request_irq(uap->port.irq, pl011_int, IRQF_SHARED, "uart-pl011", uap);
1709 }
1710 
1711 /*
1712  * Enable interrupts, only timeouts when using DMA
1713  * if initial RX DMA job failed, start in interrupt mode
1714  * as well.
1715  */
1716 static void pl011_enable_interrupts(struct uart_amba_port *uap)
1717 {
1718 	unsigned int i;
1719 
1720 	spin_lock_irq(&uap->port.lock);
1721 
1722 	/* Clear out any spuriously appearing RX interrupts */
1723 	pl011_write(UART011_RTIS | UART011_RXIS, uap, REG_ICR);
1724 
1725 	/*
1726 	 * RXIS is asserted only when the RX FIFO transitions from below
1727 	 * to above the trigger threshold.  If the RX FIFO is already
1728 	 * full to the threshold this can't happen and RXIS will now be
1729 	 * stuck off.  Drain the RX FIFO explicitly to fix this:
1730 	 */
1731 	for (i = 0; i < uap->fifosize * 2; ++i) {
1732 		if (pl011_read(uap, REG_FR) & UART01x_FR_RXFE)
1733 			break;
1734 
1735 		pl011_read(uap, REG_DR);
1736 	}
1737 
1738 	uap->im = UART011_RTIM;
1739 	if (!pl011_dma_rx_running(uap))
1740 		uap->im |= UART011_RXIM;
1741 	pl011_write(uap->im, uap, REG_IMSC);
1742 	spin_unlock_irq(&uap->port.lock);
1743 }
1744 
1745 static int pl011_startup(struct uart_port *port)
1746 {
1747 	struct uart_amba_port *uap =
1748 	    container_of(port, struct uart_amba_port, port);
1749 	unsigned int cr;
1750 	int retval;
1751 
1752 	retval = pl011_hwinit(port);
1753 	if (retval)
1754 		goto clk_dis;
1755 
1756 	retval = pl011_allocate_irq(uap);
1757 	if (retval)
1758 		goto clk_dis;
1759 
1760 	pl011_write(uap->vendor->ifls, uap, REG_IFLS);
1761 
1762 	spin_lock_irq(&uap->port.lock);
1763 
1764 	/* restore RTS and DTR */
1765 	cr = uap->old_cr & (UART011_CR_RTS | UART011_CR_DTR);
1766 	cr |= UART01x_CR_UARTEN | UART011_CR_RXE | UART011_CR_TXE;
1767 	pl011_write(cr, uap, REG_CR);
1768 
1769 	spin_unlock_irq(&uap->port.lock);
1770 
1771 	/*
1772 	 * initialise the old status of the modem signals
1773 	 */
1774 	uap->old_status = pl011_read(uap, REG_FR) & UART01x_FR_MODEM_ANY;
1775 
1776 	/* Startup DMA */
1777 	pl011_dma_startup(uap);
1778 
1779 	pl011_enable_interrupts(uap);
1780 
1781 	return 0;
1782 
1783  clk_dis:
1784 	clk_disable_unprepare(uap->clk);
1785 	return retval;
1786 }
1787 
1788 static int sbsa_uart_startup(struct uart_port *port)
1789 {
1790 	struct uart_amba_port *uap =
1791 		container_of(port, struct uart_amba_port, port);
1792 	int retval;
1793 
1794 	retval = pl011_hwinit(port);
1795 	if (retval)
1796 		return retval;
1797 
1798 	retval = pl011_allocate_irq(uap);
1799 	if (retval)
1800 		return retval;
1801 
1802 	/* The SBSA UART does not support any modem status lines. */
1803 	uap->old_status = 0;
1804 
1805 	pl011_enable_interrupts(uap);
1806 
1807 	return 0;
1808 }
1809 
1810 static void pl011_shutdown_channel(struct uart_amba_port *uap,
1811 					unsigned int lcrh)
1812 {
1813       unsigned long val;
1814 
1815       val = pl011_read(uap, lcrh);
1816       val &= ~(UART01x_LCRH_BRK | UART01x_LCRH_FEN);
1817       pl011_write(val, uap, lcrh);
1818 }
1819 
1820 /*
1821  * disable the port. It should not disable RTS and DTR.
1822  * Also RTS and DTR state should be preserved to restore
1823  * it during startup().
1824  */
1825 static void pl011_disable_uart(struct uart_amba_port *uap)
1826 {
1827 	unsigned int cr;
1828 
1829 	uap->port.status &= ~(UPSTAT_AUTOCTS | UPSTAT_AUTORTS);
1830 	spin_lock_irq(&uap->port.lock);
1831 	cr = pl011_read(uap, REG_CR);
1832 	uap->old_cr = cr;
1833 	cr &= UART011_CR_RTS | UART011_CR_DTR;
1834 	cr |= UART01x_CR_UARTEN | UART011_CR_TXE;
1835 	pl011_write(cr, uap, REG_CR);
1836 	spin_unlock_irq(&uap->port.lock);
1837 
1838 	/*
1839 	 * disable break condition and fifos
1840 	 */
1841 	pl011_shutdown_channel(uap, REG_LCRH_RX);
1842 	if (pl011_split_lcrh(uap))
1843 		pl011_shutdown_channel(uap, REG_LCRH_TX);
1844 }
1845 
1846 static void pl011_disable_interrupts(struct uart_amba_port *uap)
1847 {
1848 	spin_lock_irq(&uap->port.lock);
1849 
1850 	/* mask all interrupts and clear all pending ones */
1851 	uap->im = 0;
1852 	pl011_write(uap->im, uap, REG_IMSC);
1853 	pl011_write(0xffff, uap, REG_ICR);
1854 
1855 	spin_unlock_irq(&uap->port.lock);
1856 }
1857 
1858 static void pl011_shutdown(struct uart_port *port)
1859 {
1860 	struct uart_amba_port *uap =
1861 		container_of(port, struct uart_amba_port, port);
1862 
1863 	pl011_disable_interrupts(uap);
1864 
1865 	pl011_dma_shutdown(uap);
1866 
1867 	free_irq(uap->port.irq, uap);
1868 
1869 	pl011_disable_uart(uap);
1870 
1871 	/*
1872 	 * Shut down the clock producer
1873 	 */
1874 	clk_disable_unprepare(uap->clk);
1875 	/* Optionally let pins go into sleep states */
1876 	pinctrl_pm_select_sleep_state(port->dev);
1877 
1878 	if (dev_get_platdata(uap->port.dev)) {
1879 		struct amba_pl011_data *plat;
1880 
1881 		plat = dev_get_platdata(uap->port.dev);
1882 		if (plat->exit)
1883 			plat->exit();
1884 	}
1885 
1886 	if (uap->port.ops->flush_buffer)
1887 		uap->port.ops->flush_buffer(port);
1888 }
1889 
1890 static void sbsa_uart_shutdown(struct uart_port *port)
1891 {
1892 	struct uart_amba_port *uap =
1893 		container_of(port, struct uart_amba_port, port);
1894 
1895 	pl011_disable_interrupts(uap);
1896 
1897 	free_irq(uap->port.irq, uap);
1898 
1899 	if (uap->port.ops->flush_buffer)
1900 		uap->port.ops->flush_buffer(port);
1901 }
1902 
1903 static void
1904 pl011_setup_status_masks(struct uart_port *port, struct ktermios *termios)
1905 {
1906 	port->read_status_mask = UART011_DR_OE | 255;
1907 	if (termios->c_iflag & INPCK)
1908 		port->read_status_mask |= UART011_DR_FE | UART011_DR_PE;
1909 	if (termios->c_iflag & (IGNBRK | BRKINT | PARMRK))
1910 		port->read_status_mask |= UART011_DR_BE;
1911 
1912 	/*
1913 	 * Characters to ignore
1914 	 */
1915 	port->ignore_status_mask = 0;
1916 	if (termios->c_iflag & IGNPAR)
1917 		port->ignore_status_mask |= UART011_DR_FE | UART011_DR_PE;
1918 	if (termios->c_iflag & IGNBRK) {
1919 		port->ignore_status_mask |= UART011_DR_BE;
1920 		/*
1921 		 * If we're ignoring parity and break indicators,
1922 		 * ignore overruns too (for real raw support).
1923 		 */
1924 		if (termios->c_iflag & IGNPAR)
1925 			port->ignore_status_mask |= UART011_DR_OE;
1926 	}
1927 
1928 	/*
1929 	 * Ignore all characters if CREAD is not set.
1930 	 */
1931 	if ((termios->c_cflag & CREAD) == 0)
1932 		port->ignore_status_mask |= UART_DUMMY_DR_RX;
1933 }
1934 
1935 static void
1936 pl011_set_termios(struct uart_port *port, struct ktermios *termios,
1937 		     struct ktermios *old)
1938 {
1939 	struct uart_amba_port *uap =
1940 	    container_of(port, struct uart_amba_port, port);
1941 	unsigned int lcr_h, old_cr;
1942 	unsigned long flags;
1943 	unsigned int baud, quot, clkdiv;
1944 
1945 	if (uap->vendor->oversampling)
1946 		clkdiv = 8;
1947 	else
1948 		clkdiv = 16;
1949 
1950 	/*
1951 	 * Ask the core to calculate the divisor for us.
1952 	 */
1953 	baud = uart_get_baud_rate(port, termios, old, 0,
1954 				  port->uartclk / clkdiv);
1955 #ifdef CONFIG_DMA_ENGINE
1956 	/*
1957 	 * Adjust RX DMA polling rate with baud rate if not specified.
1958 	 */
1959 	if (uap->dmarx.auto_poll_rate)
1960 		uap->dmarx.poll_rate = DIV_ROUND_UP(10000000, baud);
1961 #endif
1962 
1963 	if (baud > port->uartclk/16)
1964 		quot = DIV_ROUND_CLOSEST(port->uartclk * 8, baud);
1965 	else
1966 		quot = DIV_ROUND_CLOSEST(port->uartclk * 4, baud);
1967 
1968 	switch (termios->c_cflag & CSIZE) {
1969 	case CS5:
1970 		lcr_h = UART01x_LCRH_WLEN_5;
1971 		break;
1972 	case CS6:
1973 		lcr_h = UART01x_LCRH_WLEN_6;
1974 		break;
1975 	case CS7:
1976 		lcr_h = UART01x_LCRH_WLEN_7;
1977 		break;
1978 	default: // CS8
1979 		lcr_h = UART01x_LCRH_WLEN_8;
1980 		break;
1981 	}
1982 	if (termios->c_cflag & CSTOPB)
1983 		lcr_h |= UART01x_LCRH_STP2;
1984 	if (termios->c_cflag & PARENB) {
1985 		lcr_h |= UART01x_LCRH_PEN;
1986 		if (!(termios->c_cflag & PARODD))
1987 			lcr_h |= UART01x_LCRH_EPS;
1988 		if (termios->c_cflag & CMSPAR)
1989 			lcr_h |= UART011_LCRH_SPS;
1990 	}
1991 	if (uap->fifosize > 1)
1992 		lcr_h |= UART01x_LCRH_FEN;
1993 
1994 	spin_lock_irqsave(&port->lock, flags);
1995 
1996 	/*
1997 	 * Update the per-port timeout.
1998 	 */
1999 	uart_update_timeout(port, termios->c_cflag, baud);
2000 
2001 	pl011_setup_status_masks(port, termios);
2002 
2003 	if (UART_ENABLE_MS(port, termios->c_cflag))
2004 		pl011_enable_ms(port);
2005 
2006 	/* first, disable everything */
2007 	old_cr = pl011_read(uap, REG_CR);
2008 	pl011_write(0, uap, REG_CR);
2009 
2010 	if (termios->c_cflag & CRTSCTS) {
2011 		if (old_cr & UART011_CR_RTS)
2012 			old_cr |= UART011_CR_RTSEN;
2013 
2014 		old_cr |= UART011_CR_CTSEN;
2015 		port->status |= UPSTAT_AUTOCTS | UPSTAT_AUTORTS;
2016 	} else {
2017 		old_cr &= ~(UART011_CR_CTSEN | UART011_CR_RTSEN);
2018 		port->status &= ~(UPSTAT_AUTOCTS | UPSTAT_AUTORTS);
2019 	}
2020 
2021 	if (uap->vendor->oversampling) {
2022 		if (baud > port->uartclk / 16)
2023 			old_cr |= ST_UART011_CR_OVSFACT;
2024 		else
2025 			old_cr &= ~ST_UART011_CR_OVSFACT;
2026 	}
2027 
2028 	/*
2029 	 * Workaround for the ST Micro oversampling variants to
2030 	 * increase the bitrate slightly, by lowering the divisor,
2031 	 * to avoid delayed sampling of start bit at high speeds,
2032 	 * else we see data corruption.
2033 	 */
2034 	if (uap->vendor->oversampling) {
2035 		if ((baud >= 3000000) && (baud < 3250000) && (quot > 1))
2036 			quot -= 1;
2037 		else if ((baud > 3250000) && (quot > 2))
2038 			quot -= 2;
2039 	}
2040 	/* Set baud rate */
2041 	pl011_write(quot & 0x3f, uap, REG_FBRD);
2042 	pl011_write(quot >> 6, uap, REG_IBRD);
2043 
2044 	/*
2045 	 * ----------v----------v----------v----------v-----
2046 	 * NOTE: REG_LCRH_TX and REG_LCRH_RX MUST BE WRITTEN AFTER
2047 	 * REG_FBRD & REG_IBRD.
2048 	 * ----------^----------^----------^----------^-----
2049 	 */
2050 	pl011_write_lcr_h(uap, lcr_h);
2051 	pl011_write(old_cr, uap, REG_CR);
2052 
2053 	spin_unlock_irqrestore(&port->lock, flags);
2054 }
2055 
2056 static void
2057 sbsa_uart_set_termios(struct uart_port *port, struct ktermios *termios,
2058 		      struct ktermios *old)
2059 {
2060 	struct uart_amba_port *uap =
2061 	    container_of(port, struct uart_amba_port, port);
2062 	unsigned long flags;
2063 
2064 	tty_termios_encode_baud_rate(termios, uap->fixed_baud, uap->fixed_baud);
2065 
2066 	/* The SBSA UART only supports 8n1 without hardware flow control. */
2067 	termios->c_cflag &= ~(CSIZE | CSTOPB | PARENB | PARODD);
2068 	termios->c_cflag &= ~(CMSPAR | CRTSCTS);
2069 	termios->c_cflag |= CS8 | CLOCAL;
2070 
2071 	spin_lock_irqsave(&port->lock, flags);
2072 	uart_update_timeout(port, CS8, uap->fixed_baud);
2073 	pl011_setup_status_masks(port, termios);
2074 	spin_unlock_irqrestore(&port->lock, flags);
2075 }
2076 
2077 static const char *pl011_type(struct uart_port *port)
2078 {
2079 	struct uart_amba_port *uap =
2080 	    container_of(port, struct uart_amba_port, port);
2081 	return uap->port.type == PORT_AMBA ? uap->type : NULL;
2082 }
2083 
2084 /*
2085  * Release the memory region(s) being used by 'port'
2086  */
2087 static void pl011_release_port(struct uart_port *port)
2088 {
2089 	release_mem_region(port->mapbase, SZ_4K);
2090 }
2091 
2092 /*
2093  * Request the memory region(s) being used by 'port'
2094  */
2095 static int pl011_request_port(struct uart_port *port)
2096 {
2097 	return request_mem_region(port->mapbase, SZ_4K, "uart-pl011")
2098 			!= NULL ? 0 : -EBUSY;
2099 }
2100 
2101 /*
2102  * Configure/autoconfigure the port.
2103  */
2104 static void pl011_config_port(struct uart_port *port, int flags)
2105 {
2106 	if (flags & UART_CONFIG_TYPE) {
2107 		port->type = PORT_AMBA;
2108 		pl011_request_port(port);
2109 	}
2110 }
2111 
2112 /*
2113  * verify the new serial_struct (for TIOCSSERIAL).
2114  */
2115 static int pl011_verify_port(struct uart_port *port, struct serial_struct *ser)
2116 {
2117 	int ret = 0;
2118 	if (ser->type != PORT_UNKNOWN && ser->type != PORT_AMBA)
2119 		ret = -EINVAL;
2120 	if (ser->irq < 0 || ser->irq >= nr_irqs)
2121 		ret = -EINVAL;
2122 	if (ser->baud_base < 9600)
2123 		ret = -EINVAL;
2124 	return ret;
2125 }
2126 
2127 static const struct uart_ops amba_pl011_pops = {
2128 	.tx_empty	= pl011_tx_empty,
2129 	.set_mctrl	= pl011_set_mctrl,
2130 	.get_mctrl	= pl011_get_mctrl,
2131 	.stop_tx	= pl011_stop_tx,
2132 	.start_tx	= pl011_start_tx,
2133 	.stop_rx	= pl011_stop_rx,
2134 	.enable_ms	= pl011_enable_ms,
2135 	.break_ctl	= pl011_break_ctl,
2136 	.startup	= pl011_startup,
2137 	.shutdown	= pl011_shutdown,
2138 	.flush_buffer	= pl011_dma_flush_buffer,
2139 	.set_termios	= pl011_set_termios,
2140 	.type		= pl011_type,
2141 	.release_port	= pl011_release_port,
2142 	.request_port	= pl011_request_port,
2143 	.config_port	= pl011_config_port,
2144 	.verify_port	= pl011_verify_port,
2145 #ifdef CONFIG_CONSOLE_POLL
2146 	.poll_init     = pl011_hwinit,
2147 	.poll_get_char = pl011_get_poll_char,
2148 	.poll_put_char = pl011_put_poll_char,
2149 #endif
2150 };
2151 
2152 static void sbsa_uart_set_mctrl(struct uart_port *port, unsigned int mctrl)
2153 {
2154 }
2155 
2156 static unsigned int sbsa_uart_get_mctrl(struct uart_port *port)
2157 {
2158 	return 0;
2159 }
2160 
2161 static const struct uart_ops sbsa_uart_pops = {
2162 	.tx_empty	= pl011_tx_empty,
2163 	.set_mctrl	= sbsa_uart_set_mctrl,
2164 	.get_mctrl	= sbsa_uart_get_mctrl,
2165 	.stop_tx	= pl011_stop_tx,
2166 	.start_tx	= pl011_start_tx,
2167 	.stop_rx	= pl011_stop_rx,
2168 	.startup	= sbsa_uart_startup,
2169 	.shutdown	= sbsa_uart_shutdown,
2170 	.set_termios	= sbsa_uart_set_termios,
2171 	.type		= pl011_type,
2172 	.release_port	= pl011_release_port,
2173 	.request_port	= pl011_request_port,
2174 	.config_port	= pl011_config_port,
2175 	.verify_port	= pl011_verify_port,
2176 #ifdef CONFIG_CONSOLE_POLL
2177 	.poll_init     = pl011_hwinit,
2178 	.poll_get_char = pl011_get_poll_char,
2179 	.poll_put_char = pl011_put_poll_char,
2180 #endif
2181 };
2182 
2183 static struct uart_amba_port *amba_ports[UART_NR];
2184 
2185 #ifdef CONFIG_SERIAL_AMBA_PL011_CONSOLE
2186 
2187 static void pl011_console_putchar(struct uart_port *port, int ch)
2188 {
2189 	struct uart_amba_port *uap =
2190 	    container_of(port, struct uart_amba_port, port);
2191 
2192 	while (pl011_read(uap, REG_FR) & UART01x_FR_TXFF)
2193 		cpu_relax();
2194 	pl011_write(ch, uap, REG_DR);
2195 }
2196 
2197 static void
2198 pl011_console_write(struct console *co, const char *s, unsigned int count)
2199 {
2200 	struct uart_amba_port *uap = amba_ports[co->index];
2201 	unsigned int old_cr = 0, new_cr;
2202 	unsigned long flags;
2203 	int locked = 1;
2204 
2205 	clk_enable(uap->clk);
2206 
2207 	local_irq_save(flags);
2208 	if (uap->port.sysrq)
2209 		locked = 0;
2210 	else if (oops_in_progress)
2211 		locked = spin_trylock(&uap->port.lock);
2212 	else
2213 		spin_lock(&uap->port.lock);
2214 
2215 	/*
2216 	 *	First save the CR then disable the interrupts
2217 	 */
2218 	if (!uap->vendor->always_enabled) {
2219 		old_cr = pl011_read(uap, REG_CR);
2220 		new_cr = old_cr & ~UART011_CR_CTSEN;
2221 		new_cr |= UART01x_CR_UARTEN | UART011_CR_TXE;
2222 		pl011_write(new_cr, uap, REG_CR);
2223 	}
2224 
2225 	uart_console_write(&uap->port, s, count, pl011_console_putchar);
2226 
2227 	/*
2228 	 *	Finally, wait for transmitter to become empty and restore the
2229 	 *	TCR. Allow feature register bits to be inverted to work around
2230 	 *	errata.
2231 	 */
2232 	while ((pl011_read(uap, REG_FR) ^ uap->vendor->inv_fr)
2233 						& uap->vendor->fr_busy)
2234 		cpu_relax();
2235 	if (!uap->vendor->always_enabled)
2236 		pl011_write(old_cr, uap, REG_CR);
2237 
2238 	if (locked)
2239 		spin_unlock(&uap->port.lock);
2240 	local_irq_restore(flags);
2241 
2242 	clk_disable(uap->clk);
2243 }
2244 
2245 static void pl011_console_get_options(struct uart_amba_port *uap, int *baud,
2246 				      int *parity, int *bits)
2247 {
2248 	if (pl011_read(uap, REG_CR) & UART01x_CR_UARTEN) {
2249 		unsigned int lcr_h, ibrd, fbrd;
2250 
2251 		lcr_h = pl011_read(uap, REG_LCRH_TX);
2252 
2253 		*parity = 'n';
2254 		if (lcr_h & UART01x_LCRH_PEN) {
2255 			if (lcr_h & UART01x_LCRH_EPS)
2256 				*parity = 'e';
2257 			else
2258 				*parity = 'o';
2259 		}
2260 
2261 		if ((lcr_h & 0x60) == UART01x_LCRH_WLEN_7)
2262 			*bits = 7;
2263 		else
2264 			*bits = 8;
2265 
2266 		ibrd = pl011_read(uap, REG_IBRD);
2267 		fbrd = pl011_read(uap, REG_FBRD);
2268 
2269 		*baud = uap->port.uartclk * 4 / (64 * ibrd + fbrd);
2270 
2271 		if (uap->vendor->oversampling) {
2272 			if (pl011_read(uap, REG_CR)
2273 				  & ST_UART011_CR_OVSFACT)
2274 				*baud *= 2;
2275 		}
2276 	}
2277 }
2278 
2279 static int pl011_console_setup(struct console *co, char *options)
2280 {
2281 	struct uart_amba_port *uap;
2282 	int baud = 38400;
2283 	int bits = 8;
2284 	int parity = 'n';
2285 	int flow = 'n';
2286 	int ret;
2287 
2288 	/*
2289 	 * Check whether an invalid uart number has been specified, and
2290 	 * if so, search for the first available port that does have
2291 	 * console support.
2292 	 */
2293 	if (co->index >= UART_NR)
2294 		co->index = 0;
2295 	uap = amba_ports[co->index];
2296 	if (!uap)
2297 		return -ENODEV;
2298 
2299 	/* Allow pins to be muxed in and configured */
2300 	pinctrl_pm_select_default_state(uap->port.dev);
2301 
2302 	ret = clk_prepare(uap->clk);
2303 	if (ret)
2304 		return ret;
2305 
2306 	if (dev_get_platdata(uap->port.dev)) {
2307 		struct amba_pl011_data *plat;
2308 
2309 		plat = dev_get_platdata(uap->port.dev);
2310 		if (plat->init)
2311 			plat->init();
2312 	}
2313 
2314 	uap->port.uartclk = clk_get_rate(uap->clk);
2315 
2316 	if (uap->vendor->fixed_options) {
2317 		baud = uap->fixed_baud;
2318 	} else {
2319 		if (options)
2320 			uart_parse_options(options,
2321 					   &baud, &parity, &bits, &flow);
2322 		else
2323 			pl011_console_get_options(uap, &baud, &parity, &bits);
2324 	}
2325 
2326 	return uart_set_options(&uap->port, co, baud, parity, bits, flow);
2327 }
2328 
2329 /**
2330  *	pl011_console_match - non-standard console matching
2331  *	@co:	  registering console
2332  *	@name:	  name from console command line
2333  *	@idx:	  index from console command line
2334  *	@options: ptr to option string from console command line
2335  *
2336  *	Only attempts to match console command lines of the form:
2337  *	    console=pl011,mmio|mmio32,<addr>[,<options>]
2338  *	    console=pl011,0x<addr>[,<options>]
2339  *	This form is used to register an initial earlycon boot console and
2340  *	replace it with the amba_console at pl011 driver init.
2341  *
2342  *	Performs console setup for a match (as required by interface)
2343  *	If no <options> are specified, then assume the h/w is already setup.
2344  *
2345  *	Returns 0 if console matches; otherwise non-zero to use default matching
2346  */
2347 static int pl011_console_match(struct console *co, char *name, int idx,
2348 			       char *options)
2349 {
2350 	unsigned char iotype;
2351 	resource_size_t addr;
2352 	int i;
2353 
2354 	/*
2355 	 * Systems affected by the Qualcomm Technologies QDF2400 E44 erratum
2356 	 * have a distinct console name, so make sure we check for that.
2357 	 * The actual implementation of the erratum occurs in the probe
2358 	 * function.
2359 	 */
2360 	if ((strcmp(name, "qdf2400_e44") != 0) && (strcmp(name, "pl011") != 0))
2361 		return -ENODEV;
2362 
2363 	if (uart_parse_earlycon(options, &iotype, &addr, &options))
2364 		return -ENODEV;
2365 
2366 	if (iotype != UPIO_MEM && iotype != UPIO_MEM32)
2367 		return -ENODEV;
2368 
2369 	/* try to match the port specified on the command line */
2370 	for (i = 0; i < ARRAY_SIZE(amba_ports); i++) {
2371 		struct uart_port *port;
2372 
2373 		if (!amba_ports[i])
2374 			continue;
2375 
2376 		port = &amba_ports[i]->port;
2377 
2378 		if (port->mapbase != addr)
2379 			continue;
2380 
2381 		co->index = i;
2382 		port->cons = co;
2383 		return pl011_console_setup(co, options);
2384 	}
2385 
2386 	return -ENODEV;
2387 }
2388 
2389 static struct uart_driver amba_reg;
2390 static struct console amba_console = {
2391 	.name		= "ttyAMA",
2392 	.write		= pl011_console_write,
2393 	.device		= uart_console_device,
2394 	.setup		= pl011_console_setup,
2395 	.match		= pl011_console_match,
2396 	.flags		= CON_PRINTBUFFER | CON_ANYTIME,
2397 	.index		= -1,
2398 	.data		= &amba_reg,
2399 };
2400 
2401 #define AMBA_CONSOLE	(&amba_console)
2402 
2403 static void qdf2400_e44_putc(struct uart_port *port, int c)
2404 {
2405 	while (readl(port->membase + UART01x_FR) & UART01x_FR_TXFF)
2406 		cpu_relax();
2407 	writel(c, port->membase + UART01x_DR);
2408 	while (!(readl(port->membase + UART01x_FR) & UART011_FR_TXFE))
2409 		cpu_relax();
2410 }
2411 
2412 static void qdf2400_e44_early_write(struct console *con, const char *s, unsigned n)
2413 {
2414 	struct earlycon_device *dev = con->data;
2415 
2416 	uart_console_write(&dev->port, s, n, qdf2400_e44_putc);
2417 }
2418 
2419 static void pl011_putc(struct uart_port *port, int c)
2420 {
2421 	while (readl(port->membase + UART01x_FR) & UART01x_FR_TXFF)
2422 		cpu_relax();
2423 	if (port->iotype == UPIO_MEM32)
2424 		writel(c, port->membase + UART01x_DR);
2425 	else
2426 		writeb(c, port->membase + UART01x_DR);
2427 	while (readl(port->membase + UART01x_FR) & UART01x_FR_BUSY)
2428 		cpu_relax();
2429 }
2430 
2431 static void pl011_early_write(struct console *con, const char *s, unsigned n)
2432 {
2433 	struct earlycon_device *dev = con->data;
2434 
2435 	uart_console_write(&dev->port, s, n, pl011_putc);
2436 }
2437 
2438 #ifdef CONFIG_CONSOLE_POLL
2439 static int pl011_getc(struct uart_port *port)
2440 {
2441 	if (readl(port->membase + UART01x_FR) & UART01x_FR_RXFE)
2442 		return NO_POLL_CHAR;
2443 
2444 	if (port->iotype == UPIO_MEM32)
2445 		return readl(port->membase + UART01x_DR);
2446 	else
2447 		return readb(port->membase + UART01x_DR);
2448 }
2449 
2450 static int pl011_early_read(struct console *con, char *s, unsigned int n)
2451 {
2452 	struct earlycon_device *dev = con->data;
2453 	int ch, num_read = 0;
2454 
2455 	while (num_read < n) {
2456 		ch = pl011_getc(&dev->port);
2457 		if (ch == NO_POLL_CHAR)
2458 			break;
2459 
2460 		s[num_read++] = ch;
2461 	}
2462 
2463 	return num_read;
2464 }
2465 #else
2466 #define pl011_early_read NULL
2467 #endif
2468 
2469 /*
2470  * On non-ACPI systems, earlycon is enabled by specifying
2471  * "earlycon=pl011,<address>" on the kernel command line.
2472  *
2473  * On ACPI ARM64 systems, an "early" console is enabled via the SPCR table,
2474  * by specifying only "earlycon" on the command line.  Because it requires
2475  * SPCR, the console starts after ACPI is parsed, which is later than a
2476  * traditional early console.
2477  *
2478  * To get the traditional early console that starts before ACPI is parsed,
2479  * specify the full "earlycon=pl011,<address>" option.
2480  */
2481 static int __init pl011_early_console_setup(struct earlycon_device *device,
2482 					    const char *opt)
2483 {
2484 	if (!device->port.membase)
2485 		return -ENODEV;
2486 
2487 	device->con->write = pl011_early_write;
2488 	device->con->read = pl011_early_read;
2489 
2490 	return 0;
2491 }
2492 OF_EARLYCON_DECLARE(pl011, "arm,pl011", pl011_early_console_setup);
2493 OF_EARLYCON_DECLARE(pl011, "arm,sbsa-uart", pl011_early_console_setup);
2494 
2495 /*
2496  * On Qualcomm Datacenter Technologies QDF2400 SOCs affected by
2497  * Erratum 44, traditional earlycon can be enabled by specifying
2498  * "earlycon=qdf2400_e44,<address>".  Any options are ignored.
2499  *
2500  * Alternatively, you can just specify "earlycon", and the early console
2501  * will be enabled with the information from the SPCR table.  In this
2502  * case, the SPCR code will detect the need for the E44 work-around,
2503  * and set the console name to "qdf2400_e44".
2504  */
2505 static int __init
2506 qdf2400_e44_early_console_setup(struct earlycon_device *device,
2507 				const char *opt)
2508 {
2509 	if (!device->port.membase)
2510 		return -ENODEV;
2511 
2512 	device->con->write = qdf2400_e44_early_write;
2513 	return 0;
2514 }
2515 EARLYCON_DECLARE(qdf2400_e44, qdf2400_e44_early_console_setup);
2516 
2517 #else
2518 #define AMBA_CONSOLE	NULL
2519 #endif
2520 
2521 static struct uart_driver amba_reg = {
2522 	.owner			= THIS_MODULE,
2523 	.driver_name		= "ttyAMA",
2524 	.dev_name		= "ttyAMA",
2525 	.major			= SERIAL_AMBA_MAJOR,
2526 	.minor			= SERIAL_AMBA_MINOR,
2527 	.nr			= UART_NR,
2528 	.cons			= AMBA_CONSOLE,
2529 };
2530 
2531 static int pl011_probe_dt_alias(int index, struct device *dev)
2532 {
2533 	struct device_node *np;
2534 	static bool seen_dev_with_alias = false;
2535 	static bool seen_dev_without_alias = false;
2536 	int ret = index;
2537 
2538 	if (!IS_ENABLED(CONFIG_OF))
2539 		return ret;
2540 
2541 	np = dev->of_node;
2542 	if (!np)
2543 		return ret;
2544 
2545 	ret = of_alias_get_id(np, "serial");
2546 	if (ret < 0) {
2547 		seen_dev_without_alias = true;
2548 		ret = index;
2549 	} else {
2550 		seen_dev_with_alias = true;
2551 		if (ret >= ARRAY_SIZE(amba_ports) || amba_ports[ret] != NULL) {
2552 			dev_warn(dev, "requested serial port %d  not available.\n", ret);
2553 			ret = index;
2554 		}
2555 	}
2556 
2557 	if (seen_dev_with_alias && seen_dev_without_alias)
2558 		dev_warn(dev, "aliased and non-aliased serial devices found in device tree. Serial port enumeration may be unpredictable.\n");
2559 
2560 	return ret;
2561 }
2562 
2563 /* unregisters the driver also if no more ports are left */
2564 static void pl011_unregister_port(struct uart_amba_port *uap)
2565 {
2566 	int i;
2567 	bool busy = false;
2568 
2569 	for (i = 0; i < ARRAY_SIZE(amba_ports); i++) {
2570 		if (amba_ports[i] == uap)
2571 			amba_ports[i] = NULL;
2572 		else if (amba_ports[i])
2573 			busy = true;
2574 	}
2575 	pl011_dma_remove(uap);
2576 	if (!busy)
2577 		uart_unregister_driver(&amba_reg);
2578 }
2579 
2580 static int pl011_find_free_port(void)
2581 {
2582 	int i;
2583 
2584 	for (i = 0; i < ARRAY_SIZE(amba_ports); i++)
2585 		if (amba_ports[i] == NULL)
2586 			return i;
2587 
2588 	return -EBUSY;
2589 }
2590 
2591 static int pl011_setup_port(struct device *dev, struct uart_amba_port *uap,
2592 			    struct resource *mmiobase, int index)
2593 {
2594 	void __iomem *base;
2595 
2596 	base = devm_ioremap_resource(dev, mmiobase);
2597 	if (IS_ERR(base))
2598 		return PTR_ERR(base);
2599 
2600 	index = pl011_probe_dt_alias(index, dev);
2601 
2602 	uap->old_cr = 0;
2603 	uap->port.dev = dev;
2604 	uap->port.mapbase = mmiobase->start;
2605 	uap->port.membase = base;
2606 	uap->port.fifosize = uap->fifosize;
2607 	uap->port.has_sysrq = IS_ENABLED(CONFIG_SERIAL_AMBA_PL011_CONSOLE);
2608 	uap->port.flags = UPF_BOOT_AUTOCONF;
2609 	uap->port.line = index;
2610 
2611 	amba_ports[index] = uap;
2612 
2613 	return 0;
2614 }
2615 
2616 static int pl011_register_port(struct uart_amba_port *uap)
2617 {
2618 	int ret, i;
2619 
2620 	/* Ensure interrupts from this UART are masked and cleared */
2621 	pl011_write(0, uap, REG_IMSC);
2622 	pl011_write(0xffff, uap, REG_ICR);
2623 
2624 	if (!amba_reg.state) {
2625 		ret = uart_register_driver(&amba_reg);
2626 		if (ret < 0) {
2627 			dev_err(uap->port.dev,
2628 				"Failed to register AMBA-PL011 driver\n");
2629 			for (i = 0; i < ARRAY_SIZE(amba_ports); i++)
2630 				if (amba_ports[i] == uap)
2631 					amba_ports[i] = NULL;
2632 			return ret;
2633 		}
2634 	}
2635 
2636 	ret = uart_add_one_port(&amba_reg, &uap->port);
2637 	if (ret)
2638 		pl011_unregister_port(uap);
2639 
2640 	return ret;
2641 }
2642 
2643 static int pl011_probe(struct amba_device *dev, const struct amba_id *id)
2644 {
2645 	struct uart_amba_port *uap;
2646 	struct vendor_data *vendor = id->data;
2647 	int portnr, ret;
2648 
2649 	portnr = pl011_find_free_port();
2650 	if (portnr < 0)
2651 		return portnr;
2652 
2653 	uap = devm_kzalloc(&dev->dev, sizeof(struct uart_amba_port),
2654 			   GFP_KERNEL);
2655 	if (!uap)
2656 		return -ENOMEM;
2657 
2658 	uap->clk = devm_clk_get(&dev->dev, NULL);
2659 	if (IS_ERR(uap->clk))
2660 		return PTR_ERR(uap->clk);
2661 
2662 	uap->reg_offset = vendor->reg_offset;
2663 	uap->vendor = vendor;
2664 	uap->fifosize = vendor->get_fifosize(dev);
2665 	uap->port.iotype = vendor->access_32b ? UPIO_MEM32 : UPIO_MEM;
2666 	uap->port.irq = dev->irq[0];
2667 	uap->port.ops = &amba_pl011_pops;
2668 
2669 	snprintf(uap->type, sizeof(uap->type), "PL011 rev%u", amba_rev(dev));
2670 
2671 	ret = pl011_setup_port(&dev->dev, uap, &dev->res, portnr);
2672 	if (ret)
2673 		return ret;
2674 
2675 	amba_set_drvdata(dev, uap);
2676 
2677 	return pl011_register_port(uap);
2678 }
2679 
2680 static void pl011_remove(struct amba_device *dev)
2681 {
2682 	struct uart_amba_port *uap = amba_get_drvdata(dev);
2683 
2684 	uart_remove_one_port(&amba_reg, &uap->port);
2685 	pl011_unregister_port(uap);
2686 }
2687 
2688 #ifdef CONFIG_PM_SLEEP
2689 static int pl011_suspend(struct device *dev)
2690 {
2691 	struct uart_amba_port *uap = dev_get_drvdata(dev);
2692 
2693 	if (!uap)
2694 		return -EINVAL;
2695 
2696 	return uart_suspend_port(&amba_reg, &uap->port);
2697 }
2698 
2699 static int pl011_resume(struct device *dev)
2700 {
2701 	struct uart_amba_port *uap = dev_get_drvdata(dev);
2702 
2703 	if (!uap)
2704 		return -EINVAL;
2705 
2706 	return uart_resume_port(&amba_reg, &uap->port);
2707 }
2708 #endif
2709 
2710 static SIMPLE_DEV_PM_OPS(pl011_dev_pm_ops, pl011_suspend, pl011_resume);
2711 
2712 static int sbsa_uart_probe(struct platform_device *pdev)
2713 {
2714 	struct uart_amba_port *uap;
2715 	struct resource *r;
2716 	int portnr, ret;
2717 	int baudrate;
2718 
2719 	/*
2720 	 * Check the mandatory baud rate parameter in the DT node early
2721 	 * so that we can easily exit with the error.
2722 	 */
2723 	if (pdev->dev.of_node) {
2724 		struct device_node *np = pdev->dev.of_node;
2725 
2726 		ret = of_property_read_u32(np, "current-speed", &baudrate);
2727 		if (ret)
2728 			return ret;
2729 	} else {
2730 		baudrate = 115200;
2731 	}
2732 
2733 	portnr = pl011_find_free_port();
2734 	if (portnr < 0)
2735 		return portnr;
2736 
2737 	uap = devm_kzalloc(&pdev->dev, sizeof(struct uart_amba_port),
2738 			   GFP_KERNEL);
2739 	if (!uap)
2740 		return -ENOMEM;
2741 
2742 	ret = platform_get_irq(pdev, 0);
2743 	if (ret < 0)
2744 		return ret;
2745 	uap->port.irq	= ret;
2746 
2747 #ifdef CONFIG_ACPI_SPCR_TABLE
2748 	if (qdf2400_e44_present) {
2749 		dev_info(&pdev->dev, "working around QDF2400 SoC erratum 44\n");
2750 		uap->vendor = &vendor_qdt_qdf2400_e44;
2751 	} else
2752 #endif
2753 		uap->vendor = &vendor_sbsa;
2754 
2755 	uap->reg_offset	= uap->vendor->reg_offset;
2756 	uap->fifosize	= 32;
2757 	uap->port.iotype = uap->vendor->access_32b ? UPIO_MEM32 : UPIO_MEM;
2758 	uap->port.ops	= &sbsa_uart_pops;
2759 	uap->fixed_baud = baudrate;
2760 
2761 	snprintf(uap->type, sizeof(uap->type), "SBSA");
2762 
2763 	r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2764 
2765 	ret = pl011_setup_port(&pdev->dev, uap, r, portnr);
2766 	if (ret)
2767 		return ret;
2768 
2769 	platform_set_drvdata(pdev, uap);
2770 
2771 	return pl011_register_port(uap);
2772 }
2773 
2774 static int sbsa_uart_remove(struct platform_device *pdev)
2775 {
2776 	struct uart_amba_port *uap = platform_get_drvdata(pdev);
2777 
2778 	uart_remove_one_port(&amba_reg, &uap->port);
2779 	pl011_unregister_port(uap);
2780 	return 0;
2781 }
2782 
2783 static const struct of_device_id sbsa_uart_of_match[] = {
2784 	{ .compatible = "arm,sbsa-uart", },
2785 	{},
2786 };
2787 MODULE_DEVICE_TABLE(of, sbsa_uart_of_match);
2788 
2789 static const struct acpi_device_id __maybe_unused sbsa_uart_acpi_match[] = {
2790 	{ "ARMH0011", 0 },
2791 	{},
2792 };
2793 MODULE_DEVICE_TABLE(acpi, sbsa_uart_acpi_match);
2794 
2795 static struct platform_driver arm_sbsa_uart_platform_driver = {
2796 	.probe		= sbsa_uart_probe,
2797 	.remove		= sbsa_uart_remove,
2798 	.driver	= {
2799 		.name	= "sbsa-uart",
2800 		.pm	= &pl011_dev_pm_ops,
2801 		.of_match_table = of_match_ptr(sbsa_uart_of_match),
2802 		.acpi_match_table = ACPI_PTR(sbsa_uart_acpi_match),
2803 		.suppress_bind_attrs = IS_BUILTIN(CONFIG_SERIAL_AMBA_PL011),
2804 	},
2805 };
2806 
2807 static const struct amba_id pl011_ids[] = {
2808 	{
2809 		.id	= 0x00041011,
2810 		.mask	= 0x000fffff,
2811 		.data	= &vendor_arm,
2812 	},
2813 	{
2814 		.id	= 0x00380802,
2815 		.mask	= 0x00ffffff,
2816 		.data	= &vendor_st,
2817 	},
2818 	{
2819 		.id	= AMBA_LINUX_ID(0x00, 0x1, 0xffe),
2820 		.mask	= 0x00ffffff,
2821 		.data	= &vendor_zte,
2822 	},
2823 	{ 0, 0 },
2824 };
2825 
2826 MODULE_DEVICE_TABLE(amba, pl011_ids);
2827 
2828 static struct amba_driver pl011_driver = {
2829 	.drv = {
2830 		.name	= "uart-pl011",
2831 		.pm	= &pl011_dev_pm_ops,
2832 		.suppress_bind_attrs = IS_BUILTIN(CONFIG_SERIAL_AMBA_PL011),
2833 	},
2834 	.id_table	= pl011_ids,
2835 	.probe		= pl011_probe,
2836 	.remove		= pl011_remove,
2837 };
2838 
2839 static int __init pl011_init(void)
2840 {
2841 	printk(KERN_INFO "Serial: AMBA PL011 UART driver\n");
2842 
2843 	if (platform_driver_register(&arm_sbsa_uart_platform_driver))
2844 		pr_warn("could not register SBSA UART platform driver\n");
2845 	return amba_driver_register(&pl011_driver);
2846 }
2847 
2848 static void __exit pl011_exit(void)
2849 {
2850 	platform_driver_unregister(&arm_sbsa_uart_platform_driver);
2851 	amba_driver_unregister(&pl011_driver);
2852 }
2853 
2854 /*
2855  * While this can be a module, if builtin it's most likely the console
2856  * So let's leave module_exit but move module_init to an earlier place
2857  */
2858 arch_initcall(pl011_init);
2859 module_exit(pl011_exit);
2860 
2861 MODULE_AUTHOR("ARM Ltd/Deep Blue Solutions Ltd");
2862 MODULE_DESCRIPTION("ARM AMBA serial port driver");
2863 MODULE_LICENSE("GPL");
2864