xref: /openbmc/linux/drivers/tty/serial/amba-pl011.c (revision 711aab1d)
1 /*
2  *  Driver for AMBA serial ports
3  *
4  *  Based on drivers/char/serial.c, by Linus Torvalds, Theodore Ts'o.
5  *
6  *  Copyright 1999 ARM Limited
7  *  Copyright (C) 2000 Deep Blue Solutions Ltd.
8  *  Copyright (C) 2010 ST-Ericsson SA
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License as published by
12  * the Free Software Foundation; either version 2 of the License, or
13  * (at your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18  * GNU General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public License
21  * along with this program; if not, write to the Free Software
22  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
23  *
24  * This is a generic driver for ARM AMBA-type serial ports.  They
25  * have a lot of 16550-like features, but are not register compatible.
26  * Note that although they do have CTS, DCD and DSR inputs, they do
27  * not have an RI input, nor do they have DTR or RTS outputs.  If
28  * required, these have to be supplied via some other means (eg, GPIO)
29  * and hooked into this driver.
30  */
31 
32 
33 #if defined(CONFIG_SERIAL_AMBA_PL011_CONSOLE) && defined(CONFIG_MAGIC_SYSRQ)
34 #define SUPPORT_SYSRQ
35 #endif
36 
37 #include <linux/module.h>
38 #include <linux/ioport.h>
39 #include <linux/init.h>
40 #include <linux/console.h>
41 #include <linux/sysrq.h>
42 #include <linux/device.h>
43 #include <linux/tty.h>
44 #include <linux/tty_flip.h>
45 #include <linux/serial_core.h>
46 #include <linux/serial.h>
47 #include <linux/amba/bus.h>
48 #include <linux/amba/serial.h>
49 #include <linux/clk.h>
50 #include <linux/slab.h>
51 #include <linux/dmaengine.h>
52 #include <linux/dma-mapping.h>
53 #include <linux/scatterlist.h>
54 #include <linux/delay.h>
55 #include <linux/types.h>
56 #include <linux/of.h>
57 #include <linux/of_device.h>
58 #include <linux/pinctrl/consumer.h>
59 #include <linux/sizes.h>
60 #include <linux/io.h>
61 #include <linux/acpi.h>
62 
63 #include "amba-pl011.h"
64 
65 #define UART_NR			14
66 
67 #define SERIAL_AMBA_MAJOR	204
68 #define SERIAL_AMBA_MINOR	64
69 #define SERIAL_AMBA_NR		UART_NR
70 
71 #define AMBA_ISR_PASS_LIMIT	256
72 
73 #define UART_DR_ERROR		(UART011_DR_OE|UART011_DR_BE|UART011_DR_PE|UART011_DR_FE)
74 #define UART_DUMMY_DR_RX	(1 << 16)
75 
76 static u16 pl011_std_offsets[REG_ARRAY_SIZE] = {
77 	[REG_DR] = UART01x_DR,
78 	[REG_FR] = UART01x_FR,
79 	[REG_LCRH_RX] = UART011_LCRH,
80 	[REG_LCRH_TX] = UART011_LCRH,
81 	[REG_IBRD] = UART011_IBRD,
82 	[REG_FBRD] = UART011_FBRD,
83 	[REG_CR] = UART011_CR,
84 	[REG_IFLS] = UART011_IFLS,
85 	[REG_IMSC] = UART011_IMSC,
86 	[REG_RIS] = UART011_RIS,
87 	[REG_MIS] = UART011_MIS,
88 	[REG_ICR] = UART011_ICR,
89 	[REG_DMACR] = UART011_DMACR,
90 };
91 
92 /* There is by now at least one vendor with differing details, so handle it */
93 struct vendor_data {
94 	const u16		*reg_offset;
95 	unsigned int		ifls;
96 	unsigned int		fr_busy;
97 	unsigned int		fr_dsr;
98 	unsigned int		fr_cts;
99 	unsigned int		fr_ri;
100 	unsigned int		inv_fr;
101 	bool			access_32b;
102 	bool			oversampling;
103 	bool			dma_threshold;
104 	bool			cts_event_workaround;
105 	bool			always_enabled;
106 	bool			fixed_options;
107 
108 	unsigned int (*get_fifosize)(struct amba_device *dev);
109 };
110 
111 static unsigned int get_fifosize_arm(struct amba_device *dev)
112 {
113 	return amba_rev(dev) < 3 ? 16 : 32;
114 }
115 
116 static struct vendor_data vendor_arm = {
117 	.reg_offset		= pl011_std_offsets,
118 	.ifls			= UART011_IFLS_RX4_8|UART011_IFLS_TX4_8,
119 	.fr_busy		= UART01x_FR_BUSY,
120 	.fr_dsr			= UART01x_FR_DSR,
121 	.fr_cts			= UART01x_FR_CTS,
122 	.fr_ri			= UART011_FR_RI,
123 	.oversampling		= false,
124 	.dma_threshold		= false,
125 	.cts_event_workaround	= false,
126 	.always_enabled		= false,
127 	.fixed_options		= false,
128 	.get_fifosize		= get_fifosize_arm,
129 };
130 
131 static const struct vendor_data vendor_sbsa = {
132 	.reg_offset		= pl011_std_offsets,
133 	.fr_busy		= UART01x_FR_BUSY,
134 	.fr_dsr			= UART01x_FR_DSR,
135 	.fr_cts			= UART01x_FR_CTS,
136 	.fr_ri			= UART011_FR_RI,
137 	.access_32b		= true,
138 	.oversampling		= false,
139 	.dma_threshold		= false,
140 	.cts_event_workaround	= false,
141 	.always_enabled		= true,
142 	.fixed_options		= true,
143 };
144 
145 #ifdef CONFIG_ACPI_SPCR_TABLE
146 static const struct vendor_data vendor_qdt_qdf2400_e44 = {
147 	.reg_offset		= pl011_std_offsets,
148 	.fr_busy		= UART011_FR_TXFE,
149 	.fr_dsr			= UART01x_FR_DSR,
150 	.fr_cts			= UART01x_FR_CTS,
151 	.fr_ri			= UART011_FR_RI,
152 	.inv_fr			= UART011_FR_TXFE,
153 	.access_32b		= true,
154 	.oversampling		= false,
155 	.dma_threshold		= false,
156 	.cts_event_workaround	= false,
157 	.always_enabled		= true,
158 	.fixed_options		= true,
159 };
160 #endif
161 
162 static u16 pl011_st_offsets[REG_ARRAY_SIZE] = {
163 	[REG_DR] = UART01x_DR,
164 	[REG_ST_DMAWM] = ST_UART011_DMAWM,
165 	[REG_ST_TIMEOUT] = ST_UART011_TIMEOUT,
166 	[REG_FR] = UART01x_FR,
167 	[REG_LCRH_RX] = ST_UART011_LCRH_RX,
168 	[REG_LCRH_TX] = ST_UART011_LCRH_TX,
169 	[REG_IBRD] = UART011_IBRD,
170 	[REG_FBRD] = UART011_FBRD,
171 	[REG_CR] = UART011_CR,
172 	[REG_IFLS] = UART011_IFLS,
173 	[REG_IMSC] = UART011_IMSC,
174 	[REG_RIS] = UART011_RIS,
175 	[REG_MIS] = UART011_MIS,
176 	[REG_ICR] = UART011_ICR,
177 	[REG_DMACR] = UART011_DMACR,
178 	[REG_ST_XFCR] = ST_UART011_XFCR,
179 	[REG_ST_XON1] = ST_UART011_XON1,
180 	[REG_ST_XON2] = ST_UART011_XON2,
181 	[REG_ST_XOFF1] = ST_UART011_XOFF1,
182 	[REG_ST_XOFF2] = ST_UART011_XOFF2,
183 	[REG_ST_ITCR] = ST_UART011_ITCR,
184 	[REG_ST_ITIP] = ST_UART011_ITIP,
185 	[REG_ST_ABCR] = ST_UART011_ABCR,
186 	[REG_ST_ABIMSC] = ST_UART011_ABIMSC,
187 };
188 
189 static unsigned int get_fifosize_st(struct amba_device *dev)
190 {
191 	return 64;
192 }
193 
194 static struct vendor_data vendor_st = {
195 	.reg_offset		= pl011_st_offsets,
196 	.ifls			= UART011_IFLS_RX_HALF|UART011_IFLS_TX_HALF,
197 	.fr_busy		= UART01x_FR_BUSY,
198 	.fr_dsr			= UART01x_FR_DSR,
199 	.fr_cts			= UART01x_FR_CTS,
200 	.fr_ri			= UART011_FR_RI,
201 	.oversampling		= true,
202 	.dma_threshold		= true,
203 	.cts_event_workaround	= true,
204 	.always_enabled		= false,
205 	.fixed_options		= false,
206 	.get_fifosize		= get_fifosize_st,
207 };
208 
209 static const u16 pl011_zte_offsets[REG_ARRAY_SIZE] = {
210 	[REG_DR] = ZX_UART011_DR,
211 	[REG_FR] = ZX_UART011_FR,
212 	[REG_LCRH_RX] = ZX_UART011_LCRH,
213 	[REG_LCRH_TX] = ZX_UART011_LCRH,
214 	[REG_IBRD] = ZX_UART011_IBRD,
215 	[REG_FBRD] = ZX_UART011_FBRD,
216 	[REG_CR] = ZX_UART011_CR,
217 	[REG_IFLS] = ZX_UART011_IFLS,
218 	[REG_IMSC] = ZX_UART011_IMSC,
219 	[REG_RIS] = ZX_UART011_RIS,
220 	[REG_MIS] = ZX_UART011_MIS,
221 	[REG_ICR] = ZX_UART011_ICR,
222 	[REG_DMACR] = ZX_UART011_DMACR,
223 };
224 
225 static unsigned int get_fifosize_zte(struct amba_device *dev)
226 {
227 	return 16;
228 }
229 
230 static struct vendor_data vendor_zte = {
231 	.reg_offset		= pl011_zte_offsets,
232 	.access_32b		= true,
233 	.ifls			= UART011_IFLS_RX4_8|UART011_IFLS_TX4_8,
234 	.fr_busy		= ZX_UART01x_FR_BUSY,
235 	.fr_dsr			= ZX_UART01x_FR_DSR,
236 	.fr_cts			= ZX_UART01x_FR_CTS,
237 	.fr_ri			= ZX_UART011_FR_RI,
238 	.get_fifosize		= get_fifosize_zte,
239 };
240 
241 /* Deals with DMA transactions */
242 
243 struct pl011_sgbuf {
244 	struct scatterlist sg;
245 	char *buf;
246 };
247 
248 struct pl011_dmarx_data {
249 	struct dma_chan		*chan;
250 	struct completion	complete;
251 	bool			use_buf_b;
252 	struct pl011_sgbuf	sgbuf_a;
253 	struct pl011_sgbuf	sgbuf_b;
254 	dma_cookie_t		cookie;
255 	bool			running;
256 	struct timer_list	timer;
257 	unsigned int last_residue;
258 	unsigned long last_jiffies;
259 	bool auto_poll_rate;
260 	unsigned int poll_rate;
261 	unsigned int poll_timeout;
262 };
263 
264 struct pl011_dmatx_data {
265 	struct dma_chan		*chan;
266 	struct scatterlist	sg;
267 	char			*buf;
268 	bool			queued;
269 };
270 
271 /*
272  * We wrap our port structure around the generic uart_port.
273  */
274 struct uart_amba_port {
275 	struct uart_port	port;
276 	const u16		*reg_offset;
277 	struct clk		*clk;
278 	const struct vendor_data *vendor;
279 	unsigned int		dmacr;		/* dma control reg */
280 	unsigned int		im;		/* interrupt mask */
281 	unsigned int		old_status;
282 	unsigned int		fifosize;	/* vendor-specific */
283 	unsigned int		old_cr;		/* state during shutdown */
284 	bool			autorts;
285 	unsigned int		fixed_baud;	/* vendor-set fixed baud rate */
286 	char			type[12];
287 #ifdef CONFIG_DMA_ENGINE
288 	/* DMA stuff */
289 	bool			using_tx_dma;
290 	bool			using_rx_dma;
291 	struct pl011_dmarx_data dmarx;
292 	struct pl011_dmatx_data	dmatx;
293 	bool			dma_probed;
294 #endif
295 };
296 
297 static unsigned int pl011_reg_to_offset(const struct uart_amba_port *uap,
298 	unsigned int reg)
299 {
300 	return uap->reg_offset[reg];
301 }
302 
303 static unsigned int pl011_read(const struct uart_amba_port *uap,
304 	unsigned int reg)
305 {
306 	void __iomem *addr = uap->port.membase + pl011_reg_to_offset(uap, reg);
307 
308 	return (uap->port.iotype == UPIO_MEM32) ?
309 		readl_relaxed(addr) : readw_relaxed(addr);
310 }
311 
312 static void pl011_write(unsigned int val, const struct uart_amba_port *uap,
313 	unsigned int reg)
314 {
315 	void __iomem *addr = uap->port.membase + pl011_reg_to_offset(uap, reg);
316 
317 	if (uap->port.iotype == UPIO_MEM32)
318 		writel_relaxed(val, addr);
319 	else
320 		writew_relaxed(val, addr);
321 }
322 
323 /*
324  * Reads up to 256 characters from the FIFO or until it's empty and
325  * inserts them into the TTY layer. Returns the number of characters
326  * read from the FIFO.
327  */
328 static int pl011_fifo_to_tty(struct uart_amba_port *uap)
329 {
330 	u16 status;
331 	unsigned int ch, flag, max_count = 256;
332 	int fifotaken = 0;
333 
334 	while (max_count--) {
335 		status = pl011_read(uap, REG_FR);
336 		if (status & UART01x_FR_RXFE)
337 			break;
338 
339 		/* Take chars from the FIFO and update status */
340 		ch = pl011_read(uap, REG_DR) | UART_DUMMY_DR_RX;
341 		flag = TTY_NORMAL;
342 		uap->port.icount.rx++;
343 		fifotaken++;
344 
345 		if (unlikely(ch & UART_DR_ERROR)) {
346 			if (ch & UART011_DR_BE) {
347 				ch &= ~(UART011_DR_FE | UART011_DR_PE);
348 				uap->port.icount.brk++;
349 				if (uart_handle_break(&uap->port))
350 					continue;
351 			} else if (ch & UART011_DR_PE)
352 				uap->port.icount.parity++;
353 			else if (ch & UART011_DR_FE)
354 				uap->port.icount.frame++;
355 			if (ch & UART011_DR_OE)
356 				uap->port.icount.overrun++;
357 
358 			ch &= uap->port.read_status_mask;
359 
360 			if (ch & UART011_DR_BE)
361 				flag = TTY_BREAK;
362 			else if (ch & UART011_DR_PE)
363 				flag = TTY_PARITY;
364 			else if (ch & UART011_DR_FE)
365 				flag = TTY_FRAME;
366 		}
367 
368 		if (uart_handle_sysrq_char(&uap->port, ch & 255))
369 			continue;
370 
371 		uart_insert_char(&uap->port, ch, UART011_DR_OE, ch, flag);
372 	}
373 
374 	return fifotaken;
375 }
376 
377 
378 /*
379  * All the DMA operation mode stuff goes inside this ifdef.
380  * This assumes that you have a generic DMA device interface,
381  * no custom DMA interfaces are supported.
382  */
383 #ifdef CONFIG_DMA_ENGINE
384 
385 #define PL011_DMA_BUFFER_SIZE PAGE_SIZE
386 
387 static int pl011_sgbuf_init(struct dma_chan *chan, struct pl011_sgbuf *sg,
388 	enum dma_data_direction dir)
389 {
390 	dma_addr_t dma_addr;
391 
392 	sg->buf = dma_alloc_coherent(chan->device->dev,
393 		PL011_DMA_BUFFER_SIZE, &dma_addr, GFP_KERNEL);
394 	if (!sg->buf)
395 		return -ENOMEM;
396 
397 	sg_init_table(&sg->sg, 1);
398 	sg_set_page(&sg->sg, phys_to_page(dma_addr),
399 		PL011_DMA_BUFFER_SIZE, offset_in_page(dma_addr));
400 	sg_dma_address(&sg->sg) = dma_addr;
401 	sg_dma_len(&sg->sg) = PL011_DMA_BUFFER_SIZE;
402 
403 	return 0;
404 }
405 
406 static void pl011_sgbuf_free(struct dma_chan *chan, struct pl011_sgbuf *sg,
407 	enum dma_data_direction dir)
408 {
409 	if (sg->buf) {
410 		dma_free_coherent(chan->device->dev,
411 			PL011_DMA_BUFFER_SIZE, sg->buf,
412 			sg_dma_address(&sg->sg));
413 	}
414 }
415 
416 static void pl011_dma_probe(struct uart_amba_port *uap)
417 {
418 	/* DMA is the sole user of the platform data right now */
419 	struct amba_pl011_data *plat = dev_get_platdata(uap->port.dev);
420 	struct device *dev = uap->port.dev;
421 	struct dma_slave_config tx_conf = {
422 		.dst_addr = uap->port.mapbase +
423 				 pl011_reg_to_offset(uap, REG_DR),
424 		.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
425 		.direction = DMA_MEM_TO_DEV,
426 		.dst_maxburst = uap->fifosize >> 1,
427 		.device_fc = false,
428 	};
429 	struct dma_chan *chan;
430 	dma_cap_mask_t mask;
431 
432 	uap->dma_probed = true;
433 	chan = dma_request_slave_channel_reason(dev, "tx");
434 	if (IS_ERR(chan)) {
435 		if (PTR_ERR(chan) == -EPROBE_DEFER) {
436 			uap->dma_probed = false;
437 			return;
438 		}
439 
440 		/* We need platform data */
441 		if (!plat || !plat->dma_filter) {
442 			dev_info(uap->port.dev, "no DMA platform data\n");
443 			return;
444 		}
445 
446 		/* Try to acquire a generic DMA engine slave TX channel */
447 		dma_cap_zero(mask);
448 		dma_cap_set(DMA_SLAVE, mask);
449 
450 		chan = dma_request_channel(mask, plat->dma_filter,
451 						plat->dma_tx_param);
452 		if (!chan) {
453 			dev_err(uap->port.dev, "no TX DMA channel!\n");
454 			return;
455 		}
456 	}
457 
458 	dmaengine_slave_config(chan, &tx_conf);
459 	uap->dmatx.chan = chan;
460 
461 	dev_info(uap->port.dev, "DMA channel TX %s\n",
462 		 dma_chan_name(uap->dmatx.chan));
463 
464 	/* Optionally make use of an RX channel as well */
465 	chan = dma_request_slave_channel(dev, "rx");
466 
467 	if (!chan && plat && plat->dma_rx_param) {
468 		chan = dma_request_channel(mask, plat->dma_filter, plat->dma_rx_param);
469 
470 		if (!chan) {
471 			dev_err(uap->port.dev, "no RX DMA channel!\n");
472 			return;
473 		}
474 	}
475 
476 	if (chan) {
477 		struct dma_slave_config rx_conf = {
478 			.src_addr = uap->port.mapbase +
479 				pl011_reg_to_offset(uap, REG_DR),
480 			.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
481 			.direction = DMA_DEV_TO_MEM,
482 			.src_maxburst = uap->fifosize >> 2,
483 			.device_fc = false,
484 		};
485 		struct dma_slave_caps caps;
486 
487 		/*
488 		 * Some DMA controllers provide information on their capabilities.
489 		 * If the controller does, check for suitable residue processing
490 		 * otherwise assime all is well.
491 		 */
492 		if (0 == dma_get_slave_caps(chan, &caps)) {
493 			if (caps.residue_granularity ==
494 					DMA_RESIDUE_GRANULARITY_DESCRIPTOR) {
495 				dma_release_channel(chan);
496 				dev_info(uap->port.dev,
497 					"RX DMA disabled - no residue processing\n");
498 				return;
499 			}
500 		}
501 		dmaengine_slave_config(chan, &rx_conf);
502 		uap->dmarx.chan = chan;
503 
504 		uap->dmarx.auto_poll_rate = false;
505 		if (plat && plat->dma_rx_poll_enable) {
506 			/* Set poll rate if specified. */
507 			if (plat->dma_rx_poll_rate) {
508 				uap->dmarx.auto_poll_rate = false;
509 				uap->dmarx.poll_rate = plat->dma_rx_poll_rate;
510 			} else {
511 				/*
512 				 * 100 ms defaults to poll rate if not
513 				 * specified. This will be adjusted with
514 				 * the baud rate at set_termios.
515 				 */
516 				uap->dmarx.auto_poll_rate = true;
517 				uap->dmarx.poll_rate =  100;
518 			}
519 			/* 3 secs defaults poll_timeout if not specified. */
520 			if (plat->dma_rx_poll_timeout)
521 				uap->dmarx.poll_timeout =
522 					plat->dma_rx_poll_timeout;
523 			else
524 				uap->dmarx.poll_timeout = 3000;
525 		} else if (!plat && dev->of_node) {
526 			uap->dmarx.auto_poll_rate = of_property_read_bool(
527 						dev->of_node, "auto-poll");
528 			if (uap->dmarx.auto_poll_rate) {
529 				u32 x;
530 
531 				if (0 == of_property_read_u32(dev->of_node,
532 						"poll-rate-ms", &x))
533 					uap->dmarx.poll_rate = x;
534 				else
535 					uap->dmarx.poll_rate = 100;
536 				if (0 == of_property_read_u32(dev->of_node,
537 						"poll-timeout-ms", &x))
538 					uap->dmarx.poll_timeout = x;
539 				else
540 					uap->dmarx.poll_timeout = 3000;
541 			}
542 		}
543 		dev_info(uap->port.dev, "DMA channel RX %s\n",
544 			 dma_chan_name(uap->dmarx.chan));
545 	}
546 }
547 
548 static void pl011_dma_remove(struct uart_amba_port *uap)
549 {
550 	if (uap->dmatx.chan)
551 		dma_release_channel(uap->dmatx.chan);
552 	if (uap->dmarx.chan)
553 		dma_release_channel(uap->dmarx.chan);
554 }
555 
556 /* Forward declare these for the refill routine */
557 static int pl011_dma_tx_refill(struct uart_amba_port *uap);
558 static void pl011_start_tx_pio(struct uart_amba_port *uap);
559 
560 /*
561  * The current DMA TX buffer has been sent.
562  * Try to queue up another DMA buffer.
563  */
564 static void pl011_dma_tx_callback(void *data)
565 {
566 	struct uart_amba_port *uap = data;
567 	struct pl011_dmatx_data *dmatx = &uap->dmatx;
568 	unsigned long flags;
569 	u16 dmacr;
570 
571 	spin_lock_irqsave(&uap->port.lock, flags);
572 	if (uap->dmatx.queued)
573 		dma_unmap_sg(dmatx->chan->device->dev, &dmatx->sg, 1,
574 			     DMA_TO_DEVICE);
575 
576 	dmacr = uap->dmacr;
577 	uap->dmacr = dmacr & ~UART011_TXDMAE;
578 	pl011_write(uap->dmacr, uap, REG_DMACR);
579 
580 	/*
581 	 * If TX DMA was disabled, it means that we've stopped the DMA for
582 	 * some reason (eg, XOFF received, or we want to send an X-char.)
583 	 *
584 	 * Note: we need to be careful here of a potential race between DMA
585 	 * and the rest of the driver - if the driver disables TX DMA while
586 	 * a TX buffer completing, we must update the tx queued status to
587 	 * get further refills (hence we check dmacr).
588 	 */
589 	if (!(dmacr & UART011_TXDMAE) || uart_tx_stopped(&uap->port) ||
590 	    uart_circ_empty(&uap->port.state->xmit)) {
591 		uap->dmatx.queued = false;
592 		spin_unlock_irqrestore(&uap->port.lock, flags);
593 		return;
594 	}
595 
596 	if (pl011_dma_tx_refill(uap) <= 0)
597 		/*
598 		 * We didn't queue a DMA buffer for some reason, but we
599 		 * have data pending to be sent.  Re-enable the TX IRQ.
600 		 */
601 		pl011_start_tx_pio(uap);
602 
603 	spin_unlock_irqrestore(&uap->port.lock, flags);
604 }
605 
606 /*
607  * Try to refill the TX DMA buffer.
608  * Locking: called with port lock held and IRQs disabled.
609  * Returns:
610  *   1 if we queued up a TX DMA buffer.
611  *   0 if we didn't want to handle this by DMA
612  *  <0 on error
613  */
614 static int pl011_dma_tx_refill(struct uart_amba_port *uap)
615 {
616 	struct pl011_dmatx_data *dmatx = &uap->dmatx;
617 	struct dma_chan *chan = dmatx->chan;
618 	struct dma_device *dma_dev = chan->device;
619 	struct dma_async_tx_descriptor *desc;
620 	struct circ_buf *xmit = &uap->port.state->xmit;
621 	unsigned int count;
622 
623 	/*
624 	 * Try to avoid the overhead involved in using DMA if the
625 	 * transaction fits in the first half of the FIFO, by using
626 	 * the standard interrupt handling.  This ensures that we
627 	 * issue a uart_write_wakeup() at the appropriate time.
628 	 */
629 	count = uart_circ_chars_pending(xmit);
630 	if (count < (uap->fifosize >> 1)) {
631 		uap->dmatx.queued = false;
632 		return 0;
633 	}
634 
635 	/*
636 	 * Bodge: don't send the last character by DMA, as this
637 	 * will prevent XON from notifying us to restart DMA.
638 	 */
639 	count -= 1;
640 
641 	/* Else proceed to copy the TX chars to the DMA buffer and fire DMA */
642 	if (count > PL011_DMA_BUFFER_SIZE)
643 		count = PL011_DMA_BUFFER_SIZE;
644 
645 	if (xmit->tail < xmit->head)
646 		memcpy(&dmatx->buf[0], &xmit->buf[xmit->tail], count);
647 	else {
648 		size_t first = UART_XMIT_SIZE - xmit->tail;
649 		size_t second;
650 
651 		if (first > count)
652 			first = count;
653 		second = count - first;
654 
655 		memcpy(&dmatx->buf[0], &xmit->buf[xmit->tail], first);
656 		if (second)
657 			memcpy(&dmatx->buf[first], &xmit->buf[0], second);
658 	}
659 
660 	dmatx->sg.length = count;
661 
662 	if (dma_map_sg(dma_dev->dev, &dmatx->sg, 1, DMA_TO_DEVICE) != 1) {
663 		uap->dmatx.queued = false;
664 		dev_dbg(uap->port.dev, "unable to map TX DMA\n");
665 		return -EBUSY;
666 	}
667 
668 	desc = dmaengine_prep_slave_sg(chan, &dmatx->sg, 1, DMA_MEM_TO_DEV,
669 					     DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
670 	if (!desc) {
671 		dma_unmap_sg(dma_dev->dev, &dmatx->sg, 1, DMA_TO_DEVICE);
672 		uap->dmatx.queued = false;
673 		/*
674 		 * If DMA cannot be used right now, we complete this
675 		 * transaction via IRQ and let the TTY layer retry.
676 		 */
677 		dev_dbg(uap->port.dev, "TX DMA busy\n");
678 		return -EBUSY;
679 	}
680 
681 	/* Some data to go along to the callback */
682 	desc->callback = pl011_dma_tx_callback;
683 	desc->callback_param = uap;
684 
685 	/* All errors should happen at prepare time */
686 	dmaengine_submit(desc);
687 
688 	/* Fire the DMA transaction */
689 	dma_dev->device_issue_pending(chan);
690 
691 	uap->dmacr |= UART011_TXDMAE;
692 	pl011_write(uap->dmacr, uap, REG_DMACR);
693 	uap->dmatx.queued = true;
694 
695 	/*
696 	 * Now we know that DMA will fire, so advance the ring buffer
697 	 * with the stuff we just dispatched.
698 	 */
699 	xmit->tail = (xmit->tail + count) & (UART_XMIT_SIZE - 1);
700 	uap->port.icount.tx += count;
701 
702 	if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
703 		uart_write_wakeup(&uap->port);
704 
705 	return 1;
706 }
707 
708 /*
709  * We received a transmit interrupt without a pending X-char but with
710  * pending characters.
711  * Locking: called with port lock held and IRQs disabled.
712  * Returns:
713  *   false if we want to use PIO to transmit
714  *   true if we queued a DMA buffer
715  */
716 static bool pl011_dma_tx_irq(struct uart_amba_port *uap)
717 {
718 	if (!uap->using_tx_dma)
719 		return false;
720 
721 	/*
722 	 * If we already have a TX buffer queued, but received a
723 	 * TX interrupt, it will be because we've just sent an X-char.
724 	 * Ensure the TX DMA is enabled and the TX IRQ is disabled.
725 	 */
726 	if (uap->dmatx.queued) {
727 		uap->dmacr |= UART011_TXDMAE;
728 		pl011_write(uap->dmacr, uap, REG_DMACR);
729 		uap->im &= ~UART011_TXIM;
730 		pl011_write(uap->im, uap, REG_IMSC);
731 		return true;
732 	}
733 
734 	/*
735 	 * We don't have a TX buffer queued, so try to queue one.
736 	 * If we successfully queued a buffer, mask the TX IRQ.
737 	 */
738 	if (pl011_dma_tx_refill(uap) > 0) {
739 		uap->im &= ~UART011_TXIM;
740 		pl011_write(uap->im, uap, REG_IMSC);
741 		return true;
742 	}
743 	return false;
744 }
745 
746 /*
747  * Stop the DMA transmit (eg, due to received XOFF).
748  * Locking: called with port lock held and IRQs disabled.
749  */
750 static inline void pl011_dma_tx_stop(struct uart_amba_port *uap)
751 {
752 	if (uap->dmatx.queued) {
753 		uap->dmacr &= ~UART011_TXDMAE;
754 		pl011_write(uap->dmacr, uap, REG_DMACR);
755 	}
756 }
757 
758 /*
759  * Try to start a DMA transmit, or in the case of an XON/OFF
760  * character queued for send, try to get that character out ASAP.
761  * Locking: called with port lock held and IRQs disabled.
762  * Returns:
763  *   false if we want the TX IRQ to be enabled
764  *   true if we have a buffer queued
765  */
766 static inline bool pl011_dma_tx_start(struct uart_amba_port *uap)
767 {
768 	u16 dmacr;
769 
770 	if (!uap->using_tx_dma)
771 		return false;
772 
773 	if (!uap->port.x_char) {
774 		/* no X-char, try to push chars out in DMA mode */
775 		bool ret = true;
776 
777 		if (!uap->dmatx.queued) {
778 			if (pl011_dma_tx_refill(uap) > 0) {
779 				uap->im &= ~UART011_TXIM;
780 				pl011_write(uap->im, uap, REG_IMSC);
781 			} else
782 				ret = false;
783 		} else if (!(uap->dmacr & UART011_TXDMAE)) {
784 			uap->dmacr |= UART011_TXDMAE;
785 			pl011_write(uap->dmacr, uap, REG_DMACR);
786 		}
787 		return ret;
788 	}
789 
790 	/*
791 	 * We have an X-char to send.  Disable DMA to prevent it loading
792 	 * the TX fifo, and then see if we can stuff it into the FIFO.
793 	 */
794 	dmacr = uap->dmacr;
795 	uap->dmacr &= ~UART011_TXDMAE;
796 	pl011_write(uap->dmacr, uap, REG_DMACR);
797 
798 	if (pl011_read(uap, REG_FR) & UART01x_FR_TXFF) {
799 		/*
800 		 * No space in the FIFO, so enable the transmit interrupt
801 		 * so we know when there is space.  Note that once we've
802 		 * loaded the character, we should just re-enable DMA.
803 		 */
804 		return false;
805 	}
806 
807 	pl011_write(uap->port.x_char, uap, REG_DR);
808 	uap->port.icount.tx++;
809 	uap->port.x_char = 0;
810 
811 	/* Success - restore the DMA state */
812 	uap->dmacr = dmacr;
813 	pl011_write(dmacr, uap, REG_DMACR);
814 
815 	return true;
816 }
817 
818 /*
819  * Flush the transmit buffer.
820  * Locking: called with port lock held and IRQs disabled.
821  */
822 static void pl011_dma_flush_buffer(struct uart_port *port)
823 __releases(&uap->port.lock)
824 __acquires(&uap->port.lock)
825 {
826 	struct uart_amba_port *uap =
827 	    container_of(port, struct uart_amba_port, port);
828 
829 	if (!uap->using_tx_dma)
830 		return;
831 
832 	/* Avoid deadlock with the DMA engine callback */
833 	spin_unlock(&uap->port.lock);
834 	dmaengine_terminate_all(uap->dmatx.chan);
835 	spin_lock(&uap->port.lock);
836 	if (uap->dmatx.queued) {
837 		dma_unmap_sg(uap->dmatx.chan->device->dev, &uap->dmatx.sg, 1,
838 			     DMA_TO_DEVICE);
839 		uap->dmatx.queued = false;
840 		uap->dmacr &= ~UART011_TXDMAE;
841 		pl011_write(uap->dmacr, uap, REG_DMACR);
842 	}
843 }
844 
845 static void pl011_dma_rx_callback(void *data);
846 
847 static int pl011_dma_rx_trigger_dma(struct uart_amba_port *uap)
848 {
849 	struct dma_chan *rxchan = uap->dmarx.chan;
850 	struct pl011_dmarx_data *dmarx = &uap->dmarx;
851 	struct dma_async_tx_descriptor *desc;
852 	struct pl011_sgbuf *sgbuf;
853 
854 	if (!rxchan)
855 		return -EIO;
856 
857 	/* Start the RX DMA job */
858 	sgbuf = uap->dmarx.use_buf_b ?
859 		&uap->dmarx.sgbuf_b : &uap->dmarx.sgbuf_a;
860 	desc = dmaengine_prep_slave_sg(rxchan, &sgbuf->sg, 1,
861 					DMA_DEV_TO_MEM,
862 					DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
863 	/*
864 	 * If the DMA engine is busy and cannot prepare a
865 	 * channel, no big deal, the driver will fall back
866 	 * to interrupt mode as a result of this error code.
867 	 */
868 	if (!desc) {
869 		uap->dmarx.running = false;
870 		dmaengine_terminate_all(rxchan);
871 		return -EBUSY;
872 	}
873 
874 	/* Some data to go along to the callback */
875 	desc->callback = pl011_dma_rx_callback;
876 	desc->callback_param = uap;
877 	dmarx->cookie = dmaengine_submit(desc);
878 	dma_async_issue_pending(rxchan);
879 
880 	uap->dmacr |= UART011_RXDMAE;
881 	pl011_write(uap->dmacr, uap, REG_DMACR);
882 	uap->dmarx.running = true;
883 
884 	uap->im &= ~UART011_RXIM;
885 	pl011_write(uap->im, uap, REG_IMSC);
886 
887 	return 0;
888 }
889 
890 /*
891  * This is called when either the DMA job is complete, or
892  * the FIFO timeout interrupt occurred. This must be called
893  * with the port spinlock uap->port.lock held.
894  */
895 static void pl011_dma_rx_chars(struct uart_amba_port *uap,
896 			       u32 pending, bool use_buf_b,
897 			       bool readfifo)
898 {
899 	struct tty_port *port = &uap->port.state->port;
900 	struct pl011_sgbuf *sgbuf = use_buf_b ?
901 		&uap->dmarx.sgbuf_b : &uap->dmarx.sgbuf_a;
902 	int dma_count = 0;
903 	u32 fifotaken = 0; /* only used for vdbg() */
904 
905 	struct pl011_dmarx_data *dmarx = &uap->dmarx;
906 	int dmataken = 0;
907 
908 	if (uap->dmarx.poll_rate) {
909 		/* The data can be taken by polling */
910 		dmataken = sgbuf->sg.length - dmarx->last_residue;
911 		/* Recalculate the pending size */
912 		if (pending >= dmataken)
913 			pending -= dmataken;
914 	}
915 
916 	/* Pick the remain data from the DMA */
917 	if (pending) {
918 
919 		/*
920 		 * First take all chars in the DMA pipe, then look in the FIFO.
921 		 * Note that tty_insert_flip_buf() tries to take as many chars
922 		 * as it can.
923 		 */
924 		dma_count = tty_insert_flip_string(port, sgbuf->buf + dmataken,
925 				pending);
926 
927 		uap->port.icount.rx += dma_count;
928 		if (dma_count < pending)
929 			dev_warn(uap->port.dev,
930 				 "couldn't insert all characters (TTY is full?)\n");
931 	}
932 
933 	/* Reset the last_residue for Rx DMA poll */
934 	if (uap->dmarx.poll_rate)
935 		dmarx->last_residue = sgbuf->sg.length;
936 
937 	/*
938 	 * Only continue with trying to read the FIFO if all DMA chars have
939 	 * been taken first.
940 	 */
941 	if (dma_count == pending && readfifo) {
942 		/* Clear any error flags */
943 		pl011_write(UART011_OEIS | UART011_BEIS | UART011_PEIS |
944 			    UART011_FEIS, uap, REG_ICR);
945 
946 		/*
947 		 * If we read all the DMA'd characters, and we had an
948 		 * incomplete buffer, that could be due to an rx error, or
949 		 * maybe we just timed out. Read any pending chars and check
950 		 * the error status.
951 		 *
952 		 * Error conditions will only occur in the FIFO, these will
953 		 * trigger an immediate interrupt and stop the DMA job, so we
954 		 * will always find the error in the FIFO, never in the DMA
955 		 * buffer.
956 		 */
957 		fifotaken = pl011_fifo_to_tty(uap);
958 	}
959 
960 	spin_unlock(&uap->port.lock);
961 	dev_vdbg(uap->port.dev,
962 		 "Took %d chars from DMA buffer and %d chars from the FIFO\n",
963 		 dma_count, fifotaken);
964 	tty_flip_buffer_push(port);
965 	spin_lock(&uap->port.lock);
966 }
967 
968 static void pl011_dma_rx_irq(struct uart_amba_port *uap)
969 {
970 	struct pl011_dmarx_data *dmarx = &uap->dmarx;
971 	struct dma_chan *rxchan = dmarx->chan;
972 	struct pl011_sgbuf *sgbuf = dmarx->use_buf_b ?
973 		&dmarx->sgbuf_b : &dmarx->sgbuf_a;
974 	size_t pending;
975 	struct dma_tx_state state;
976 	enum dma_status dmastat;
977 
978 	/*
979 	 * Pause the transfer so we can trust the current counter,
980 	 * do this before we pause the PL011 block, else we may
981 	 * overflow the FIFO.
982 	 */
983 	if (dmaengine_pause(rxchan))
984 		dev_err(uap->port.dev, "unable to pause DMA transfer\n");
985 	dmastat = rxchan->device->device_tx_status(rxchan,
986 						   dmarx->cookie, &state);
987 	if (dmastat != DMA_PAUSED)
988 		dev_err(uap->port.dev, "unable to pause DMA transfer\n");
989 
990 	/* Disable RX DMA - incoming data will wait in the FIFO */
991 	uap->dmacr &= ~UART011_RXDMAE;
992 	pl011_write(uap->dmacr, uap, REG_DMACR);
993 	uap->dmarx.running = false;
994 
995 	pending = sgbuf->sg.length - state.residue;
996 	BUG_ON(pending > PL011_DMA_BUFFER_SIZE);
997 	/* Then we terminate the transfer - we now know our residue */
998 	dmaengine_terminate_all(rxchan);
999 
1000 	/*
1001 	 * This will take the chars we have so far and insert
1002 	 * into the framework.
1003 	 */
1004 	pl011_dma_rx_chars(uap, pending, dmarx->use_buf_b, true);
1005 
1006 	/* Switch buffer & re-trigger DMA job */
1007 	dmarx->use_buf_b = !dmarx->use_buf_b;
1008 	if (pl011_dma_rx_trigger_dma(uap)) {
1009 		dev_dbg(uap->port.dev, "could not retrigger RX DMA job "
1010 			"fall back to interrupt mode\n");
1011 		uap->im |= UART011_RXIM;
1012 		pl011_write(uap->im, uap, REG_IMSC);
1013 	}
1014 }
1015 
1016 static void pl011_dma_rx_callback(void *data)
1017 {
1018 	struct uart_amba_port *uap = data;
1019 	struct pl011_dmarx_data *dmarx = &uap->dmarx;
1020 	struct dma_chan *rxchan = dmarx->chan;
1021 	bool lastbuf = dmarx->use_buf_b;
1022 	struct pl011_sgbuf *sgbuf = dmarx->use_buf_b ?
1023 		&dmarx->sgbuf_b : &dmarx->sgbuf_a;
1024 	size_t pending;
1025 	struct dma_tx_state state;
1026 	int ret;
1027 
1028 	/*
1029 	 * This completion interrupt occurs typically when the
1030 	 * RX buffer is totally stuffed but no timeout has yet
1031 	 * occurred. When that happens, we just want the RX
1032 	 * routine to flush out the secondary DMA buffer while
1033 	 * we immediately trigger the next DMA job.
1034 	 */
1035 	spin_lock_irq(&uap->port.lock);
1036 	/*
1037 	 * Rx data can be taken by the UART interrupts during
1038 	 * the DMA irq handler. So we check the residue here.
1039 	 */
1040 	rxchan->device->device_tx_status(rxchan, dmarx->cookie, &state);
1041 	pending = sgbuf->sg.length - state.residue;
1042 	BUG_ON(pending > PL011_DMA_BUFFER_SIZE);
1043 	/* Then we terminate the transfer - we now know our residue */
1044 	dmaengine_terminate_all(rxchan);
1045 
1046 	uap->dmarx.running = false;
1047 	dmarx->use_buf_b = !lastbuf;
1048 	ret = pl011_dma_rx_trigger_dma(uap);
1049 
1050 	pl011_dma_rx_chars(uap, pending, lastbuf, false);
1051 	spin_unlock_irq(&uap->port.lock);
1052 	/*
1053 	 * Do this check after we picked the DMA chars so we don't
1054 	 * get some IRQ immediately from RX.
1055 	 */
1056 	if (ret) {
1057 		dev_dbg(uap->port.dev, "could not retrigger RX DMA job "
1058 			"fall back to interrupt mode\n");
1059 		uap->im |= UART011_RXIM;
1060 		pl011_write(uap->im, uap, REG_IMSC);
1061 	}
1062 }
1063 
1064 /*
1065  * Stop accepting received characters, when we're shutting down or
1066  * suspending this port.
1067  * Locking: called with port lock held and IRQs disabled.
1068  */
1069 static inline void pl011_dma_rx_stop(struct uart_amba_port *uap)
1070 {
1071 	/* FIXME.  Just disable the DMA enable */
1072 	uap->dmacr &= ~UART011_RXDMAE;
1073 	pl011_write(uap->dmacr, uap, REG_DMACR);
1074 }
1075 
1076 /*
1077  * Timer handler for Rx DMA polling.
1078  * Every polling, It checks the residue in the dma buffer and transfer
1079  * data to the tty. Also, last_residue is updated for the next polling.
1080  */
1081 static void pl011_dma_rx_poll(unsigned long args)
1082 {
1083 	struct uart_amba_port *uap = (struct uart_amba_port *)args;
1084 	struct tty_port *port = &uap->port.state->port;
1085 	struct pl011_dmarx_data *dmarx = &uap->dmarx;
1086 	struct dma_chan *rxchan = uap->dmarx.chan;
1087 	unsigned long flags = 0;
1088 	unsigned int dmataken = 0;
1089 	unsigned int size = 0;
1090 	struct pl011_sgbuf *sgbuf;
1091 	int dma_count;
1092 	struct dma_tx_state state;
1093 
1094 	sgbuf = dmarx->use_buf_b ? &uap->dmarx.sgbuf_b : &uap->dmarx.sgbuf_a;
1095 	rxchan->device->device_tx_status(rxchan, dmarx->cookie, &state);
1096 	if (likely(state.residue < dmarx->last_residue)) {
1097 		dmataken = sgbuf->sg.length - dmarx->last_residue;
1098 		size = dmarx->last_residue - state.residue;
1099 		dma_count = tty_insert_flip_string(port, sgbuf->buf + dmataken,
1100 				size);
1101 		if (dma_count == size)
1102 			dmarx->last_residue =  state.residue;
1103 		dmarx->last_jiffies = jiffies;
1104 	}
1105 	tty_flip_buffer_push(port);
1106 
1107 	/*
1108 	 * If no data is received in poll_timeout, the driver will fall back
1109 	 * to interrupt mode. We will retrigger DMA at the first interrupt.
1110 	 */
1111 	if (jiffies_to_msecs(jiffies - dmarx->last_jiffies)
1112 			> uap->dmarx.poll_timeout) {
1113 
1114 		spin_lock_irqsave(&uap->port.lock, flags);
1115 		pl011_dma_rx_stop(uap);
1116 		uap->im |= UART011_RXIM;
1117 		pl011_write(uap->im, uap, REG_IMSC);
1118 		spin_unlock_irqrestore(&uap->port.lock, flags);
1119 
1120 		uap->dmarx.running = false;
1121 		dmaengine_terminate_all(rxchan);
1122 		del_timer(&uap->dmarx.timer);
1123 	} else {
1124 		mod_timer(&uap->dmarx.timer,
1125 			jiffies + msecs_to_jiffies(uap->dmarx.poll_rate));
1126 	}
1127 }
1128 
1129 static void pl011_dma_startup(struct uart_amba_port *uap)
1130 {
1131 	int ret;
1132 
1133 	if (!uap->dma_probed)
1134 		pl011_dma_probe(uap);
1135 
1136 	if (!uap->dmatx.chan)
1137 		return;
1138 
1139 	uap->dmatx.buf = kmalloc(PL011_DMA_BUFFER_SIZE, GFP_KERNEL | __GFP_DMA);
1140 	if (!uap->dmatx.buf) {
1141 		dev_err(uap->port.dev, "no memory for DMA TX buffer\n");
1142 		uap->port.fifosize = uap->fifosize;
1143 		return;
1144 	}
1145 
1146 	sg_init_one(&uap->dmatx.sg, uap->dmatx.buf, PL011_DMA_BUFFER_SIZE);
1147 
1148 	/* The DMA buffer is now the FIFO the TTY subsystem can use */
1149 	uap->port.fifosize = PL011_DMA_BUFFER_SIZE;
1150 	uap->using_tx_dma = true;
1151 
1152 	if (!uap->dmarx.chan)
1153 		goto skip_rx;
1154 
1155 	/* Allocate and map DMA RX buffers */
1156 	ret = pl011_sgbuf_init(uap->dmarx.chan, &uap->dmarx.sgbuf_a,
1157 			       DMA_FROM_DEVICE);
1158 	if (ret) {
1159 		dev_err(uap->port.dev, "failed to init DMA %s: %d\n",
1160 			"RX buffer A", ret);
1161 		goto skip_rx;
1162 	}
1163 
1164 	ret = pl011_sgbuf_init(uap->dmarx.chan, &uap->dmarx.sgbuf_b,
1165 			       DMA_FROM_DEVICE);
1166 	if (ret) {
1167 		dev_err(uap->port.dev, "failed to init DMA %s: %d\n",
1168 			"RX buffer B", ret);
1169 		pl011_sgbuf_free(uap->dmarx.chan, &uap->dmarx.sgbuf_a,
1170 				 DMA_FROM_DEVICE);
1171 		goto skip_rx;
1172 	}
1173 
1174 	uap->using_rx_dma = true;
1175 
1176 skip_rx:
1177 	/* Turn on DMA error (RX/TX will be enabled on demand) */
1178 	uap->dmacr |= UART011_DMAONERR;
1179 	pl011_write(uap->dmacr, uap, REG_DMACR);
1180 
1181 	/*
1182 	 * ST Micro variants has some specific dma burst threshold
1183 	 * compensation. Set this to 16 bytes, so burst will only
1184 	 * be issued above/below 16 bytes.
1185 	 */
1186 	if (uap->vendor->dma_threshold)
1187 		pl011_write(ST_UART011_DMAWM_RX_16 | ST_UART011_DMAWM_TX_16,
1188 			    uap, REG_ST_DMAWM);
1189 
1190 	if (uap->using_rx_dma) {
1191 		if (pl011_dma_rx_trigger_dma(uap))
1192 			dev_dbg(uap->port.dev, "could not trigger initial "
1193 				"RX DMA job, fall back to interrupt mode\n");
1194 		if (uap->dmarx.poll_rate) {
1195 			init_timer(&(uap->dmarx.timer));
1196 			uap->dmarx.timer.function = pl011_dma_rx_poll;
1197 			uap->dmarx.timer.data = (unsigned long)uap;
1198 			mod_timer(&uap->dmarx.timer,
1199 				jiffies +
1200 				msecs_to_jiffies(uap->dmarx.poll_rate));
1201 			uap->dmarx.last_residue = PL011_DMA_BUFFER_SIZE;
1202 			uap->dmarx.last_jiffies = jiffies;
1203 		}
1204 	}
1205 }
1206 
1207 static void pl011_dma_shutdown(struct uart_amba_port *uap)
1208 {
1209 	if (!(uap->using_tx_dma || uap->using_rx_dma))
1210 		return;
1211 
1212 	/* Disable RX and TX DMA */
1213 	while (pl011_read(uap, REG_FR) & uap->vendor->fr_busy)
1214 		cpu_relax();
1215 
1216 	spin_lock_irq(&uap->port.lock);
1217 	uap->dmacr &= ~(UART011_DMAONERR | UART011_RXDMAE | UART011_TXDMAE);
1218 	pl011_write(uap->dmacr, uap, REG_DMACR);
1219 	spin_unlock_irq(&uap->port.lock);
1220 
1221 	if (uap->using_tx_dma) {
1222 		/* In theory, this should already be done by pl011_dma_flush_buffer */
1223 		dmaengine_terminate_all(uap->dmatx.chan);
1224 		if (uap->dmatx.queued) {
1225 			dma_unmap_sg(uap->dmatx.chan->device->dev, &uap->dmatx.sg, 1,
1226 				     DMA_TO_DEVICE);
1227 			uap->dmatx.queued = false;
1228 		}
1229 
1230 		kfree(uap->dmatx.buf);
1231 		uap->using_tx_dma = false;
1232 	}
1233 
1234 	if (uap->using_rx_dma) {
1235 		dmaengine_terminate_all(uap->dmarx.chan);
1236 		/* Clean up the RX DMA */
1237 		pl011_sgbuf_free(uap->dmarx.chan, &uap->dmarx.sgbuf_a, DMA_FROM_DEVICE);
1238 		pl011_sgbuf_free(uap->dmarx.chan, &uap->dmarx.sgbuf_b, DMA_FROM_DEVICE);
1239 		if (uap->dmarx.poll_rate)
1240 			del_timer_sync(&uap->dmarx.timer);
1241 		uap->using_rx_dma = false;
1242 	}
1243 }
1244 
1245 static inline bool pl011_dma_rx_available(struct uart_amba_port *uap)
1246 {
1247 	return uap->using_rx_dma;
1248 }
1249 
1250 static inline bool pl011_dma_rx_running(struct uart_amba_port *uap)
1251 {
1252 	return uap->using_rx_dma && uap->dmarx.running;
1253 }
1254 
1255 #else
1256 /* Blank functions if the DMA engine is not available */
1257 static inline void pl011_dma_probe(struct uart_amba_port *uap)
1258 {
1259 }
1260 
1261 static inline void pl011_dma_remove(struct uart_amba_port *uap)
1262 {
1263 }
1264 
1265 static inline void pl011_dma_startup(struct uart_amba_port *uap)
1266 {
1267 }
1268 
1269 static inline void pl011_dma_shutdown(struct uart_amba_port *uap)
1270 {
1271 }
1272 
1273 static inline bool pl011_dma_tx_irq(struct uart_amba_port *uap)
1274 {
1275 	return false;
1276 }
1277 
1278 static inline void pl011_dma_tx_stop(struct uart_amba_port *uap)
1279 {
1280 }
1281 
1282 static inline bool pl011_dma_tx_start(struct uart_amba_port *uap)
1283 {
1284 	return false;
1285 }
1286 
1287 static inline void pl011_dma_rx_irq(struct uart_amba_port *uap)
1288 {
1289 }
1290 
1291 static inline void pl011_dma_rx_stop(struct uart_amba_port *uap)
1292 {
1293 }
1294 
1295 static inline int pl011_dma_rx_trigger_dma(struct uart_amba_port *uap)
1296 {
1297 	return -EIO;
1298 }
1299 
1300 static inline bool pl011_dma_rx_available(struct uart_amba_port *uap)
1301 {
1302 	return false;
1303 }
1304 
1305 static inline bool pl011_dma_rx_running(struct uart_amba_port *uap)
1306 {
1307 	return false;
1308 }
1309 
1310 #define pl011_dma_flush_buffer	NULL
1311 #endif
1312 
1313 static void pl011_stop_tx(struct uart_port *port)
1314 {
1315 	struct uart_amba_port *uap =
1316 	    container_of(port, struct uart_amba_port, port);
1317 
1318 	uap->im &= ~UART011_TXIM;
1319 	pl011_write(uap->im, uap, REG_IMSC);
1320 	pl011_dma_tx_stop(uap);
1321 }
1322 
1323 static bool pl011_tx_chars(struct uart_amba_port *uap, bool from_irq);
1324 
1325 /* Start TX with programmed I/O only (no DMA) */
1326 static void pl011_start_tx_pio(struct uart_amba_port *uap)
1327 {
1328 	if (pl011_tx_chars(uap, false)) {
1329 		uap->im |= UART011_TXIM;
1330 		pl011_write(uap->im, uap, REG_IMSC);
1331 	}
1332 }
1333 
1334 static void pl011_start_tx(struct uart_port *port)
1335 {
1336 	struct uart_amba_port *uap =
1337 	    container_of(port, struct uart_amba_port, port);
1338 
1339 	if (!pl011_dma_tx_start(uap))
1340 		pl011_start_tx_pio(uap);
1341 }
1342 
1343 static void pl011_stop_rx(struct uart_port *port)
1344 {
1345 	struct uart_amba_port *uap =
1346 	    container_of(port, struct uart_amba_port, port);
1347 
1348 	uap->im &= ~(UART011_RXIM|UART011_RTIM|UART011_FEIM|
1349 		     UART011_PEIM|UART011_BEIM|UART011_OEIM);
1350 	pl011_write(uap->im, uap, REG_IMSC);
1351 
1352 	pl011_dma_rx_stop(uap);
1353 }
1354 
1355 static void pl011_enable_ms(struct uart_port *port)
1356 {
1357 	struct uart_amba_port *uap =
1358 	    container_of(port, struct uart_amba_port, port);
1359 
1360 	uap->im |= UART011_RIMIM|UART011_CTSMIM|UART011_DCDMIM|UART011_DSRMIM;
1361 	pl011_write(uap->im, uap, REG_IMSC);
1362 }
1363 
1364 static void pl011_rx_chars(struct uart_amba_port *uap)
1365 __releases(&uap->port.lock)
1366 __acquires(&uap->port.lock)
1367 {
1368 	pl011_fifo_to_tty(uap);
1369 
1370 	spin_unlock(&uap->port.lock);
1371 	tty_flip_buffer_push(&uap->port.state->port);
1372 	/*
1373 	 * If we were temporarily out of DMA mode for a while,
1374 	 * attempt to switch back to DMA mode again.
1375 	 */
1376 	if (pl011_dma_rx_available(uap)) {
1377 		if (pl011_dma_rx_trigger_dma(uap)) {
1378 			dev_dbg(uap->port.dev, "could not trigger RX DMA job "
1379 				"fall back to interrupt mode again\n");
1380 			uap->im |= UART011_RXIM;
1381 			pl011_write(uap->im, uap, REG_IMSC);
1382 		} else {
1383 #ifdef CONFIG_DMA_ENGINE
1384 			/* Start Rx DMA poll */
1385 			if (uap->dmarx.poll_rate) {
1386 				uap->dmarx.last_jiffies = jiffies;
1387 				uap->dmarx.last_residue	= PL011_DMA_BUFFER_SIZE;
1388 				mod_timer(&uap->dmarx.timer,
1389 					jiffies +
1390 					msecs_to_jiffies(uap->dmarx.poll_rate));
1391 			}
1392 #endif
1393 		}
1394 	}
1395 	spin_lock(&uap->port.lock);
1396 }
1397 
1398 static bool pl011_tx_char(struct uart_amba_port *uap, unsigned char c,
1399 			  bool from_irq)
1400 {
1401 	if (unlikely(!from_irq) &&
1402 	    pl011_read(uap, REG_FR) & UART01x_FR_TXFF)
1403 		return false; /* unable to transmit character */
1404 
1405 	pl011_write(c, uap, REG_DR);
1406 	uap->port.icount.tx++;
1407 
1408 	return true;
1409 }
1410 
1411 /* Returns true if tx interrupts have to be (kept) enabled  */
1412 static bool pl011_tx_chars(struct uart_amba_port *uap, bool from_irq)
1413 {
1414 	struct circ_buf *xmit = &uap->port.state->xmit;
1415 	int count = uap->fifosize >> 1;
1416 
1417 	if (uap->port.x_char) {
1418 		if (!pl011_tx_char(uap, uap->port.x_char, from_irq))
1419 			return true;
1420 		uap->port.x_char = 0;
1421 		--count;
1422 	}
1423 	if (uart_circ_empty(xmit) || uart_tx_stopped(&uap->port)) {
1424 		pl011_stop_tx(&uap->port);
1425 		return false;
1426 	}
1427 
1428 	/* If we are using DMA mode, try to send some characters. */
1429 	if (pl011_dma_tx_irq(uap))
1430 		return true;
1431 
1432 	do {
1433 		if (likely(from_irq) && count-- == 0)
1434 			break;
1435 
1436 		if (!pl011_tx_char(uap, xmit->buf[xmit->tail], from_irq))
1437 			break;
1438 
1439 		xmit->tail = (xmit->tail + 1) & (UART_XMIT_SIZE - 1);
1440 	} while (!uart_circ_empty(xmit));
1441 
1442 	if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
1443 		uart_write_wakeup(&uap->port);
1444 
1445 	if (uart_circ_empty(xmit)) {
1446 		pl011_stop_tx(&uap->port);
1447 		return false;
1448 	}
1449 	return true;
1450 }
1451 
1452 static void pl011_modem_status(struct uart_amba_port *uap)
1453 {
1454 	unsigned int status, delta;
1455 
1456 	status = pl011_read(uap, REG_FR) & UART01x_FR_MODEM_ANY;
1457 
1458 	delta = status ^ uap->old_status;
1459 	uap->old_status = status;
1460 
1461 	if (!delta)
1462 		return;
1463 
1464 	if (delta & UART01x_FR_DCD)
1465 		uart_handle_dcd_change(&uap->port, status & UART01x_FR_DCD);
1466 
1467 	if (delta & uap->vendor->fr_dsr)
1468 		uap->port.icount.dsr++;
1469 
1470 	if (delta & uap->vendor->fr_cts)
1471 		uart_handle_cts_change(&uap->port,
1472 				       status & uap->vendor->fr_cts);
1473 
1474 	wake_up_interruptible(&uap->port.state->port.delta_msr_wait);
1475 }
1476 
1477 static void check_apply_cts_event_workaround(struct uart_amba_port *uap)
1478 {
1479 	unsigned int dummy_read;
1480 
1481 	if (!uap->vendor->cts_event_workaround)
1482 		return;
1483 
1484 	/* workaround to make sure that all bits are unlocked.. */
1485 	pl011_write(0x00, uap, REG_ICR);
1486 
1487 	/*
1488 	 * WA: introduce 26ns(1 uart clk) delay before W1C;
1489 	 * single apb access will incur 2 pclk(133.12Mhz) delay,
1490 	 * so add 2 dummy reads
1491 	 */
1492 	dummy_read = pl011_read(uap, REG_ICR);
1493 	dummy_read = pl011_read(uap, REG_ICR);
1494 }
1495 
1496 static irqreturn_t pl011_int(int irq, void *dev_id)
1497 {
1498 	struct uart_amba_port *uap = dev_id;
1499 	unsigned long flags;
1500 	unsigned int status, pass_counter = AMBA_ISR_PASS_LIMIT;
1501 	u16 imsc;
1502 	int handled = 0;
1503 
1504 	spin_lock_irqsave(&uap->port.lock, flags);
1505 	imsc = pl011_read(uap, REG_IMSC);
1506 	status = pl011_read(uap, REG_RIS) & imsc;
1507 	if (status) {
1508 		do {
1509 			check_apply_cts_event_workaround(uap);
1510 
1511 			pl011_write(status & ~(UART011_TXIS|UART011_RTIS|
1512 					       UART011_RXIS),
1513 				    uap, REG_ICR);
1514 
1515 			if (status & (UART011_RTIS|UART011_RXIS)) {
1516 				if (pl011_dma_rx_running(uap))
1517 					pl011_dma_rx_irq(uap);
1518 				else
1519 					pl011_rx_chars(uap);
1520 			}
1521 			if (status & (UART011_DSRMIS|UART011_DCDMIS|
1522 				      UART011_CTSMIS|UART011_RIMIS))
1523 				pl011_modem_status(uap);
1524 			if (status & UART011_TXIS)
1525 				pl011_tx_chars(uap, true);
1526 
1527 			if (pass_counter-- == 0)
1528 				break;
1529 
1530 			status = pl011_read(uap, REG_RIS) & imsc;
1531 		} while (status != 0);
1532 		handled = 1;
1533 	}
1534 
1535 	spin_unlock_irqrestore(&uap->port.lock, flags);
1536 
1537 	return IRQ_RETVAL(handled);
1538 }
1539 
1540 static unsigned int pl011_tx_empty(struct uart_port *port)
1541 {
1542 	struct uart_amba_port *uap =
1543 	    container_of(port, struct uart_amba_port, port);
1544 
1545 	/* Allow feature register bits to be inverted to work around errata */
1546 	unsigned int status = pl011_read(uap, REG_FR) ^ uap->vendor->inv_fr;
1547 
1548 	return status & (uap->vendor->fr_busy | UART01x_FR_TXFF) ?
1549 							0 : TIOCSER_TEMT;
1550 }
1551 
1552 static unsigned int pl011_get_mctrl(struct uart_port *port)
1553 {
1554 	struct uart_amba_port *uap =
1555 	    container_of(port, struct uart_amba_port, port);
1556 	unsigned int result = 0;
1557 	unsigned int status = pl011_read(uap, REG_FR);
1558 
1559 #define TIOCMBIT(uartbit, tiocmbit)	\
1560 	if (status & uartbit)		\
1561 		result |= tiocmbit
1562 
1563 	TIOCMBIT(UART01x_FR_DCD, TIOCM_CAR);
1564 	TIOCMBIT(uap->vendor->fr_dsr, TIOCM_DSR);
1565 	TIOCMBIT(uap->vendor->fr_cts, TIOCM_CTS);
1566 	TIOCMBIT(uap->vendor->fr_ri, TIOCM_RNG);
1567 #undef TIOCMBIT
1568 	return result;
1569 }
1570 
1571 static void pl011_set_mctrl(struct uart_port *port, unsigned int mctrl)
1572 {
1573 	struct uart_amba_port *uap =
1574 	    container_of(port, struct uart_amba_port, port);
1575 	unsigned int cr;
1576 
1577 	cr = pl011_read(uap, REG_CR);
1578 
1579 #define	TIOCMBIT(tiocmbit, uartbit)		\
1580 	if (mctrl & tiocmbit)		\
1581 		cr |= uartbit;		\
1582 	else				\
1583 		cr &= ~uartbit
1584 
1585 	TIOCMBIT(TIOCM_RTS, UART011_CR_RTS);
1586 	TIOCMBIT(TIOCM_DTR, UART011_CR_DTR);
1587 	TIOCMBIT(TIOCM_OUT1, UART011_CR_OUT1);
1588 	TIOCMBIT(TIOCM_OUT2, UART011_CR_OUT2);
1589 	TIOCMBIT(TIOCM_LOOP, UART011_CR_LBE);
1590 
1591 	if (uap->autorts) {
1592 		/* We need to disable auto-RTS if we want to turn RTS off */
1593 		TIOCMBIT(TIOCM_RTS, UART011_CR_RTSEN);
1594 	}
1595 #undef TIOCMBIT
1596 
1597 	pl011_write(cr, uap, REG_CR);
1598 }
1599 
1600 static void pl011_break_ctl(struct uart_port *port, int break_state)
1601 {
1602 	struct uart_amba_port *uap =
1603 	    container_of(port, struct uart_amba_port, port);
1604 	unsigned long flags;
1605 	unsigned int lcr_h;
1606 
1607 	spin_lock_irqsave(&uap->port.lock, flags);
1608 	lcr_h = pl011_read(uap, REG_LCRH_TX);
1609 	if (break_state == -1)
1610 		lcr_h |= UART01x_LCRH_BRK;
1611 	else
1612 		lcr_h &= ~UART01x_LCRH_BRK;
1613 	pl011_write(lcr_h, uap, REG_LCRH_TX);
1614 	spin_unlock_irqrestore(&uap->port.lock, flags);
1615 }
1616 
1617 #ifdef CONFIG_CONSOLE_POLL
1618 
1619 static void pl011_quiesce_irqs(struct uart_port *port)
1620 {
1621 	struct uart_amba_port *uap =
1622 	    container_of(port, struct uart_amba_port, port);
1623 
1624 	pl011_write(pl011_read(uap, REG_MIS), uap, REG_ICR);
1625 	/*
1626 	 * There is no way to clear TXIM as this is "ready to transmit IRQ", so
1627 	 * we simply mask it. start_tx() will unmask it.
1628 	 *
1629 	 * Note we can race with start_tx(), and if the race happens, the
1630 	 * polling user might get another interrupt just after we clear it.
1631 	 * But it should be OK and can happen even w/o the race, e.g.
1632 	 * controller immediately got some new data and raised the IRQ.
1633 	 *
1634 	 * And whoever uses polling routines assumes that it manages the device
1635 	 * (including tx queue), so we're also fine with start_tx()'s caller
1636 	 * side.
1637 	 */
1638 	pl011_write(pl011_read(uap, REG_IMSC) & ~UART011_TXIM, uap,
1639 		    REG_IMSC);
1640 }
1641 
1642 static int pl011_get_poll_char(struct uart_port *port)
1643 {
1644 	struct uart_amba_port *uap =
1645 	    container_of(port, struct uart_amba_port, port);
1646 	unsigned int status;
1647 
1648 	/*
1649 	 * The caller might need IRQs lowered, e.g. if used with KDB NMI
1650 	 * debugger.
1651 	 */
1652 	pl011_quiesce_irqs(port);
1653 
1654 	status = pl011_read(uap, REG_FR);
1655 	if (status & UART01x_FR_RXFE)
1656 		return NO_POLL_CHAR;
1657 
1658 	return pl011_read(uap, REG_DR);
1659 }
1660 
1661 static void pl011_put_poll_char(struct uart_port *port,
1662 			 unsigned char ch)
1663 {
1664 	struct uart_amba_port *uap =
1665 	    container_of(port, struct uart_amba_port, port);
1666 
1667 	while (pl011_read(uap, REG_FR) & UART01x_FR_TXFF)
1668 		cpu_relax();
1669 
1670 	pl011_write(ch, uap, REG_DR);
1671 }
1672 
1673 #endif /* CONFIG_CONSOLE_POLL */
1674 
1675 static int pl011_hwinit(struct uart_port *port)
1676 {
1677 	struct uart_amba_port *uap =
1678 	    container_of(port, struct uart_amba_port, port);
1679 	int retval;
1680 
1681 	/* Optionaly enable pins to be muxed in and configured */
1682 	pinctrl_pm_select_default_state(port->dev);
1683 
1684 	/*
1685 	 * Try to enable the clock producer.
1686 	 */
1687 	retval = clk_prepare_enable(uap->clk);
1688 	if (retval)
1689 		return retval;
1690 
1691 	uap->port.uartclk = clk_get_rate(uap->clk);
1692 
1693 	/* Clear pending error and receive interrupts */
1694 	pl011_write(UART011_OEIS | UART011_BEIS | UART011_PEIS |
1695 		    UART011_FEIS | UART011_RTIS | UART011_RXIS,
1696 		    uap, REG_ICR);
1697 
1698 	/*
1699 	 * Save interrupts enable mask, and enable RX interrupts in case if
1700 	 * the interrupt is used for NMI entry.
1701 	 */
1702 	uap->im = pl011_read(uap, REG_IMSC);
1703 	pl011_write(UART011_RTIM | UART011_RXIM, uap, REG_IMSC);
1704 
1705 	if (dev_get_platdata(uap->port.dev)) {
1706 		struct amba_pl011_data *plat;
1707 
1708 		plat = dev_get_platdata(uap->port.dev);
1709 		if (plat->init)
1710 			plat->init();
1711 	}
1712 	return 0;
1713 }
1714 
1715 static bool pl011_split_lcrh(const struct uart_amba_port *uap)
1716 {
1717 	return pl011_reg_to_offset(uap, REG_LCRH_RX) !=
1718 	       pl011_reg_to_offset(uap, REG_LCRH_TX);
1719 }
1720 
1721 static void pl011_write_lcr_h(struct uart_amba_port *uap, unsigned int lcr_h)
1722 {
1723 	pl011_write(lcr_h, uap, REG_LCRH_RX);
1724 	if (pl011_split_lcrh(uap)) {
1725 		int i;
1726 		/*
1727 		 * Wait 10 PCLKs before writing LCRH_TX register,
1728 		 * to get this delay write read only register 10 times
1729 		 */
1730 		for (i = 0; i < 10; ++i)
1731 			pl011_write(0xff, uap, REG_MIS);
1732 		pl011_write(lcr_h, uap, REG_LCRH_TX);
1733 	}
1734 }
1735 
1736 static int pl011_allocate_irq(struct uart_amba_port *uap)
1737 {
1738 	pl011_write(uap->im, uap, REG_IMSC);
1739 
1740 	return request_irq(uap->port.irq, pl011_int, 0, "uart-pl011", uap);
1741 }
1742 
1743 /*
1744  * Enable interrupts, only timeouts when using DMA
1745  * if initial RX DMA job failed, start in interrupt mode
1746  * as well.
1747  */
1748 static void pl011_enable_interrupts(struct uart_amba_port *uap)
1749 {
1750 	spin_lock_irq(&uap->port.lock);
1751 
1752 	/* Clear out any spuriously appearing RX interrupts */
1753 	pl011_write(UART011_RTIS | UART011_RXIS, uap, REG_ICR);
1754 	uap->im = UART011_RTIM;
1755 	if (!pl011_dma_rx_running(uap))
1756 		uap->im |= UART011_RXIM;
1757 	pl011_write(uap->im, uap, REG_IMSC);
1758 	spin_unlock_irq(&uap->port.lock);
1759 }
1760 
1761 static int pl011_startup(struct uart_port *port)
1762 {
1763 	struct uart_amba_port *uap =
1764 	    container_of(port, struct uart_amba_port, port);
1765 	unsigned int cr;
1766 	int retval;
1767 
1768 	retval = pl011_hwinit(port);
1769 	if (retval)
1770 		goto clk_dis;
1771 
1772 	retval = pl011_allocate_irq(uap);
1773 	if (retval)
1774 		goto clk_dis;
1775 
1776 	pl011_write(uap->vendor->ifls, uap, REG_IFLS);
1777 
1778 	spin_lock_irq(&uap->port.lock);
1779 
1780 	/* restore RTS and DTR */
1781 	cr = uap->old_cr & (UART011_CR_RTS | UART011_CR_DTR);
1782 	cr |= UART01x_CR_UARTEN | UART011_CR_RXE | UART011_CR_TXE;
1783 	pl011_write(cr, uap, REG_CR);
1784 
1785 	spin_unlock_irq(&uap->port.lock);
1786 
1787 	/*
1788 	 * initialise the old status of the modem signals
1789 	 */
1790 	uap->old_status = pl011_read(uap, REG_FR) & UART01x_FR_MODEM_ANY;
1791 
1792 	/* Startup DMA */
1793 	pl011_dma_startup(uap);
1794 
1795 	pl011_enable_interrupts(uap);
1796 
1797 	return 0;
1798 
1799  clk_dis:
1800 	clk_disable_unprepare(uap->clk);
1801 	return retval;
1802 }
1803 
1804 static int sbsa_uart_startup(struct uart_port *port)
1805 {
1806 	struct uart_amba_port *uap =
1807 		container_of(port, struct uart_amba_port, port);
1808 	int retval;
1809 
1810 	retval = pl011_hwinit(port);
1811 	if (retval)
1812 		return retval;
1813 
1814 	retval = pl011_allocate_irq(uap);
1815 	if (retval)
1816 		return retval;
1817 
1818 	/* The SBSA UART does not support any modem status lines. */
1819 	uap->old_status = 0;
1820 
1821 	pl011_enable_interrupts(uap);
1822 
1823 	return 0;
1824 }
1825 
1826 static void pl011_shutdown_channel(struct uart_amba_port *uap,
1827 					unsigned int lcrh)
1828 {
1829       unsigned long val;
1830 
1831       val = pl011_read(uap, lcrh);
1832       val &= ~(UART01x_LCRH_BRK | UART01x_LCRH_FEN);
1833       pl011_write(val, uap, lcrh);
1834 }
1835 
1836 /*
1837  * disable the port. It should not disable RTS and DTR.
1838  * Also RTS and DTR state should be preserved to restore
1839  * it during startup().
1840  */
1841 static void pl011_disable_uart(struct uart_amba_port *uap)
1842 {
1843 	unsigned int cr;
1844 
1845 	uap->autorts = false;
1846 	spin_lock_irq(&uap->port.lock);
1847 	cr = pl011_read(uap, REG_CR);
1848 	uap->old_cr = cr;
1849 	cr &= UART011_CR_RTS | UART011_CR_DTR;
1850 	cr |= UART01x_CR_UARTEN | UART011_CR_TXE;
1851 	pl011_write(cr, uap, REG_CR);
1852 	spin_unlock_irq(&uap->port.lock);
1853 
1854 	/*
1855 	 * disable break condition and fifos
1856 	 */
1857 	pl011_shutdown_channel(uap, REG_LCRH_RX);
1858 	if (pl011_split_lcrh(uap))
1859 		pl011_shutdown_channel(uap, REG_LCRH_TX);
1860 }
1861 
1862 static void pl011_disable_interrupts(struct uart_amba_port *uap)
1863 {
1864 	spin_lock_irq(&uap->port.lock);
1865 
1866 	/* mask all interrupts and clear all pending ones */
1867 	uap->im = 0;
1868 	pl011_write(uap->im, uap, REG_IMSC);
1869 	pl011_write(0xffff, uap, REG_ICR);
1870 
1871 	spin_unlock_irq(&uap->port.lock);
1872 }
1873 
1874 static void pl011_shutdown(struct uart_port *port)
1875 {
1876 	struct uart_amba_port *uap =
1877 		container_of(port, struct uart_amba_port, port);
1878 
1879 	pl011_disable_interrupts(uap);
1880 
1881 	pl011_dma_shutdown(uap);
1882 
1883 	free_irq(uap->port.irq, uap);
1884 
1885 	pl011_disable_uart(uap);
1886 
1887 	/*
1888 	 * Shut down the clock producer
1889 	 */
1890 	clk_disable_unprepare(uap->clk);
1891 	/* Optionally let pins go into sleep states */
1892 	pinctrl_pm_select_sleep_state(port->dev);
1893 
1894 	if (dev_get_platdata(uap->port.dev)) {
1895 		struct amba_pl011_data *plat;
1896 
1897 		plat = dev_get_platdata(uap->port.dev);
1898 		if (plat->exit)
1899 			plat->exit();
1900 	}
1901 
1902 	if (uap->port.ops->flush_buffer)
1903 		uap->port.ops->flush_buffer(port);
1904 }
1905 
1906 static void sbsa_uart_shutdown(struct uart_port *port)
1907 {
1908 	struct uart_amba_port *uap =
1909 		container_of(port, struct uart_amba_port, port);
1910 
1911 	pl011_disable_interrupts(uap);
1912 
1913 	free_irq(uap->port.irq, uap);
1914 
1915 	if (uap->port.ops->flush_buffer)
1916 		uap->port.ops->flush_buffer(port);
1917 }
1918 
1919 static void
1920 pl011_setup_status_masks(struct uart_port *port, struct ktermios *termios)
1921 {
1922 	port->read_status_mask = UART011_DR_OE | 255;
1923 	if (termios->c_iflag & INPCK)
1924 		port->read_status_mask |= UART011_DR_FE | UART011_DR_PE;
1925 	if (termios->c_iflag & (IGNBRK | BRKINT | PARMRK))
1926 		port->read_status_mask |= UART011_DR_BE;
1927 
1928 	/*
1929 	 * Characters to ignore
1930 	 */
1931 	port->ignore_status_mask = 0;
1932 	if (termios->c_iflag & IGNPAR)
1933 		port->ignore_status_mask |= UART011_DR_FE | UART011_DR_PE;
1934 	if (termios->c_iflag & IGNBRK) {
1935 		port->ignore_status_mask |= UART011_DR_BE;
1936 		/*
1937 		 * If we're ignoring parity and break indicators,
1938 		 * ignore overruns too (for real raw support).
1939 		 */
1940 		if (termios->c_iflag & IGNPAR)
1941 			port->ignore_status_mask |= UART011_DR_OE;
1942 	}
1943 
1944 	/*
1945 	 * Ignore all characters if CREAD is not set.
1946 	 */
1947 	if ((termios->c_cflag & CREAD) == 0)
1948 		port->ignore_status_mask |= UART_DUMMY_DR_RX;
1949 }
1950 
1951 static void
1952 pl011_set_termios(struct uart_port *port, struct ktermios *termios,
1953 		     struct ktermios *old)
1954 {
1955 	struct uart_amba_port *uap =
1956 	    container_of(port, struct uart_amba_port, port);
1957 	unsigned int lcr_h, old_cr;
1958 	unsigned long flags;
1959 	unsigned int baud, quot, clkdiv;
1960 
1961 	if (uap->vendor->oversampling)
1962 		clkdiv = 8;
1963 	else
1964 		clkdiv = 16;
1965 
1966 	/*
1967 	 * Ask the core to calculate the divisor for us.
1968 	 */
1969 	baud = uart_get_baud_rate(port, termios, old, 0,
1970 				  port->uartclk / clkdiv);
1971 #ifdef CONFIG_DMA_ENGINE
1972 	/*
1973 	 * Adjust RX DMA polling rate with baud rate if not specified.
1974 	 */
1975 	if (uap->dmarx.auto_poll_rate)
1976 		uap->dmarx.poll_rate = DIV_ROUND_UP(10000000, baud);
1977 #endif
1978 
1979 	if (baud > port->uartclk/16)
1980 		quot = DIV_ROUND_CLOSEST(port->uartclk * 8, baud);
1981 	else
1982 		quot = DIV_ROUND_CLOSEST(port->uartclk * 4, baud);
1983 
1984 	switch (termios->c_cflag & CSIZE) {
1985 	case CS5:
1986 		lcr_h = UART01x_LCRH_WLEN_5;
1987 		break;
1988 	case CS6:
1989 		lcr_h = UART01x_LCRH_WLEN_6;
1990 		break;
1991 	case CS7:
1992 		lcr_h = UART01x_LCRH_WLEN_7;
1993 		break;
1994 	default: // CS8
1995 		lcr_h = UART01x_LCRH_WLEN_8;
1996 		break;
1997 	}
1998 	if (termios->c_cflag & CSTOPB)
1999 		lcr_h |= UART01x_LCRH_STP2;
2000 	if (termios->c_cflag & PARENB) {
2001 		lcr_h |= UART01x_LCRH_PEN;
2002 		if (!(termios->c_cflag & PARODD))
2003 			lcr_h |= UART01x_LCRH_EPS;
2004 		if (termios->c_cflag & CMSPAR)
2005 			lcr_h |= UART011_LCRH_SPS;
2006 	}
2007 	if (uap->fifosize > 1)
2008 		lcr_h |= UART01x_LCRH_FEN;
2009 
2010 	spin_lock_irqsave(&port->lock, flags);
2011 
2012 	/*
2013 	 * Update the per-port timeout.
2014 	 */
2015 	uart_update_timeout(port, termios->c_cflag, baud);
2016 
2017 	pl011_setup_status_masks(port, termios);
2018 
2019 	if (UART_ENABLE_MS(port, termios->c_cflag))
2020 		pl011_enable_ms(port);
2021 
2022 	/* first, disable everything */
2023 	old_cr = pl011_read(uap, REG_CR);
2024 	pl011_write(0, uap, REG_CR);
2025 
2026 	if (termios->c_cflag & CRTSCTS) {
2027 		if (old_cr & UART011_CR_RTS)
2028 			old_cr |= UART011_CR_RTSEN;
2029 
2030 		old_cr |= UART011_CR_CTSEN;
2031 		uap->autorts = true;
2032 	} else {
2033 		old_cr &= ~(UART011_CR_CTSEN | UART011_CR_RTSEN);
2034 		uap->autorts = false;
2035 	}
2036 
2037 	if (uap->vendor->oversampling) {
2038 		if (baud > port->uartclk / 16)
2039 			old_cr |= ST_UART011_CR_OVSFACT;
2040 		else
2041 			old_cr &= ~ST_UART011_CR_OVSFACT;
2042 	}
2043 
2044 	/*
2045 	 * Workaround for the ST Micro oversampling variants to
2046 	 * increase the bitrate slightly, by lowering the divisor,
2047 	 * to avoid delayed sampling of start bit at high speeds,
2048 	 * else we see data corruption.
2049 	 */
2050 	if (uap->vendor->oversampling) {
2051 		if ((baud >= 3000000) && (baud < 3250000) && (quot > 1))
2052 			quot -= 1;
2053 		else if ((baud > 3250000) && (quot > 2))
2054 			quot -= 2;
2055 	}
2056 	/* Set baud rate */
2057 	pl011_write(quot & 0x3f, uap, REG_FBRD);
2058 	pl011_write(quot >> 6, uap, REG_IBRD);
2059 
2060 	/*
2061 	 * ----------v----------v----------v----------v-----
2062 	 * NOTE: REG_LCRH_TX and REG_LCRH_RX MUST BE WRITTEN AFTER
2063 	 * REG_FBRD & REG_IBRD.
2064 	 * ----------^----------^----------^----------^-----
2065 	 */
2066 	pl011_write_lcr_h(uap, lcr_h);
2067 	pl011_write(old_cr, uap, REG_CR);
2068 
2069 	spin_unlock_irqrestore(&port->lock, flags);
2070 }
2071 
2072 static void
2073 sbsa_uart_set_termios(struct uart_port *port, struct ktermios *termios,
2074 		      struct ktermios *old)
2075 {
2076 	struct uart_amba_port *uap =
2077 	    container_of(port, struct uart_amba_port, port);
2078 	unsigned long flags;
2079 
2080 	tty_termios_encode_baud_rate(termios, uap->fixed_baud, uap->fixed_baud);
2081 
2082 	/* The SBSA UART only supports 8n1 without hardware flow control. */
2083 	termios->c_cflag &= ~(CSIZE | CSTOPB | PARENB | PARODD);
2084 	termios->c_cflag &= ~(CMSPAR | CRTSCTS);
2085 	termios->c_cflag |= CS8 | CLOCAL;
2086 
2087 	spin_lock_irqsave(&port->lock, flags);
2088 	uart_update_timeout(port, CS8, uap->fixed_baud);
2089 	pl011_setup_status_masks(port, termios);
2090 	spin_unlock_irqrestore(&port->lock, flags);
2091 }
2092 
2093 static const char *pl011_type(struct uart_port *port)
2094 {
2095 	struct uart_amba_port *uap =
2096 	    container_of(port, struct uart_amba_port, port);
2097 	return uap->port.type == PORT_AMBA ? uap->type : NULL;
2098 }
2099 
2100 /*
2101  * Release the memory region(s) being used by 'port'
2102  */
2103 static void pl011_release_port(struct uart_port *port)
2104 {
2105 	release_mem_region(port->mapbase, SZ_4K);
2106 }
2107 
2108 /*
2109  * Request the memory region(s) being used by 'port'
2110  */
2111 static int pl011_request_port(struct uart_port *port)
2112 {
2113 	return request_mem_region(port->mapbase, SZ_4K, "uart-pl011")
2114 			!= NULL ? 0 : -EBUSY;
2115 }
2116 
2117 /*
2118  * Configure/autoconfigure the port.
2119  */
2120 static void pl011_config_port(struct uart_port *port, int flags)
2121 {
2122 	if (flags & UART_CONFIG_TYPE) {
2123 		port->type = PORT_AMBA;
2124 		pl011_request_port(port);
2125 	}
2126 }
2127 
2128 /*
2129  * verify the new serial_struct (for TIOCSSERIAL).
2130  */
2131 static int pl011_verify_port(struct uart_port *port, struct serial_struct *ser)
2132 {
2133 	int ret = 0;
2134 	if (ser->type != PORT_UNKNOWN && ser->type != PORT_AMBA)
2135 		ret = -EINVAL;
2136 	if (ser->irq < 0 || ser->irq >= nr_irqs)
2137 		ret = -EINVAL;
2138 	if (ser->baud_base < 9600)
2139 		ret = -EINVAL;
2140 	return ret;
2141 }
2142 
2143 static const struct uart_ops amba_pl011_pops = {
2144 	.tx_empty	= pl011_tx_empty,
2145 	.set_mctrl	= pl011_set_mctrl,
2146 	.get_mctrl	= pl011_get_mctrl,
2147 	.stop_tx	= pl011_stop_tx,
2148 	.start_tx	= pl011_start_tx,
2149 	.stop_rx	= pl011_stop_rx,
2150 	.enable_ms	= pl011_enable_ms,
2151 	.break_ctl	= pl011_break_ctl,
2152 	.startup	= pl011_startup,
2153 	.shutdown	= pl011_shutdown,
2154 	.flush_buffer	= pl011_dma_flush_buffer,
2155 	.set_termios	= pl011_set_termios,
2156 	.type		= pl011_type,
2157 	.release_port	= pl011_release_port,
2158 	.request_port	= pl011_request_port,
2159 	.config_port	= pl011_config_port,
2160 	.verify_port	= pl011_verify_port,
2161 #ifdef CONFIG_CONSOLE_POLL
2162 	.poll_init     = pl011_hwinit,
2163 	.poll_get_char = pl011_get_poll_char,
2164 	.poll_put_char = pl011_put_poll_char,
2165 #endif
2166 };
2167 
2168 static void sbsa_uart_set_mctrl(struct uart_port *port, unsigned int mctrl)
2169 {
2170 }
2171 
2172 static unsigned int sbsa_uart_get_mctrl(struct uart_port *port)
2173 {
2174 	return 0;
2175 }
2176 
2177 static const struct uart_ops sbsa_uart_pops = {
2178 	.tx_empty	= pl011_tx_empty,
2179 	.set_mctrl	= sbsa_uart_set_mctrl,
2180 	.get_mctrl	= sbsa_uart_get_mctrl,
2181 	.stop_tx	= pl011_stop_tx,
2182 	.start_tx	= pl011_start_tx,
2183 	.stop_rx	= pl011_stop_rx,
2184 	.startup	= sbsa_uart_startup,
2185 	.shutdown	= sbsa_uart_shutdown,
2186 	.set_termios	= sbsa_uart_set_termios,
2187 	.type		= pl011_type,
2188 	.release_port	= pl011_release_port,
2189 	.request_port	= pl011_request_port,
2190 	.config_port	= pl011_config_port,
2191 	.verify_port	= pl011_verify_port,
2192 #ifdef CONFIG_CONSOLE_POLL
2193 	.poll_init     = pl011_hwinit,
2194 	.poll_get_char = pl011_get_poll_char,
2195 	.poll_put_char = pl011_put_poll_char,
2196 #endif
2197 };
2198 
2199 static struct uart_amba_port *amba_ports[UART_NR];
2200 
2201 #ifdef CONFIG_SERIAL_AMBA_PL011_CONSOLE
2202 
2203 static void pl011_console_putchar(struct uart_port *port, int ch)
2204 {
2205 	struct uart_amba_port *uap =
2206 	    container_of(port, struct uart_amba_port, port);
2207 
2208 	while (pl011_read(uap, REG_FR) & UART01x_FR_TXFF)
2209 		cpu_relax();
2210 	pl011_write(ch, uap, REG_DR);
2211 }
2212 
2213 static void
2214 pl011_console_write(struct console *co, const char *s, unsigned int count)
2215 {
2216 	struct uart_amba_port *uap = amba_ports[co->index];
2217 	unsigned int old_cr = 0, new_cr;
2218 	unsigned long flags;
2219 	int locked = 1;
2220 
2221 	clk_enable(uap->clk);
2222 
2223 	local_irq_save(flags);
2224 	if (uap->port.sysrq)
2225 		locked = 0;
2226 	else if (oops_in_progress)
2227 		locked = spin_trylock(&uap->port.lock);
2228 	else
2229 		spin_lock(&uap->port.lock);
2230 
2231 	/*
2232 	 *	First save the CR then disable the interrupts
2233 	 */
2234 	if (!uap->vendor->always_enabled) {
2235 		old_cr = pl011_read(uap, REG_CR);
2236 		new_cr = old_cr & ~UART011_CR_CTSEN;
2237 		new_cr |= UART01x_CR_UARTEN | UART011_CR_TXE;
2238 		pl011_write(new_cr, uap, REG_CR);
2239 	}
2240 
2241 	uart_console_write(&uap->port, s, count, pl011_console_putchar);
2242 
2243 	/*
2244 	 *	Finally, wait for transmitter to become empty and restore the
2245 	 *	TCR. Allow feature register bits to be inverted to work around
2246 	 *	errata.
2247 	 */
2248 	while ((pl011_read(uap, REG_FR) ^ uap->vendor->inv_fr)
2249 						& uap->vendor->fr_busy)
2250 		cpu_relax();
2251 	if (!uap->vendor->always_enabled)
2252 		pl011_write(old_cr, uap, REG_CR);
2253 
2254 	if (locked)
2255 		spin_unlock(&uap->port.lock);
2256 	local_irq_restore(flags);
2257 
2258 	clk_disable(uap->clk);
2259 }
2260 
2261 static void __init
2262 pl011_console_get_options(struct uart_amba_port *uap, int *baud,
2263 			     int *parity, int *bits)
2264 {
2265 	if (pl011_read(uap, REG_CR) & UART01x_CR_UARTEN) {
2266 		unsigned int lcr_h, ibrd, fbrd;
2267 
2268 		lcr_h = pl011_read(uap, REG_LCRH_TX);
2269 
2270 		*parity = 'n';
2271 		if (lcr_h & UART01x_LCRH_PEN) {
2272 			if (lcr_h & UART01x_LCRH_EPS)
2273 				*parity = 'e';
2274 			else
2275 				*parity = 'o';
2276 		}
2277 
2278 		if ((lcr_h & 0x60) == UART01x_LCRH_WLEN_7)
2279 			*bits = 7;
2280 		else
2281 			*bits = 8;
2282 
2283 		ibrd = pl011_read(uap, REG_IBRD);
2284 		fbrd = pl011_read(uap, REG_FBRD);
2285 
2286 		*baud = uap->port.uartclk * 4 / (64 * ibrd + fbrd);
2287 
2288 		if (uap->vendor->oversampling) {
2289 			if (pl011_read(uap, REG_CR)
2290 				  & ST_UART011_CR_OVSFACT)
2291 				*baud *= 2;
2292 		}
2293 	}
2294 }
2295 
2296 static int __init pl011_console_setup(struct console *co, char *options)
2297 {
2298 	struct uart_amba_port *uap;
2299 	int baud = 38400;
2300 	int bits = 8;
2301 	int parity = 'n';
2302 	int flow = 'n';
2303 	int ret;
2304 
2305 	/*
2306 	 * Check whether an invalid uart number has been specified, and
2307 	 * if so, search for the first available port that does have
2308 	 * console support.
2309 	 */
2310 	if (co->index >= UART_NR)
2311 		co->index = 0;
2312 	uap = amba_ports[co->index];
2313 	if (!uap)
2314 		return -ENODEV;
2315 
2316 	/* Allow pins to be muxed in and configured */
2317 	pinctrl_pm_select_default_state(uap->port.dev);
2318 
2319 	ret = clk_prepare(uap->clk);
2320 	if (ret)
2321 		return ret;
2322 
2323 	if (dev_get_platdata(uap->port.dev)) {
2324 		struct amba_pl011_data *plat;
2325 
2326 		plat = dev_get_platdata(uap->port.dev);
2327 		if (plat->init)
2328 			plat->init();
2329 	}
2330 
2331 	uap->port.uartclk = clk_get_rate(uap->clk);
2332 
2333 	if (uap->vendor->fixed_options) {
2334 		baud = uap->fixed_baud;
2335 	} else {
2336 		if (options)
2337 			uart_parse_options(options,
2338 					   &baud, &parity, &bits, &flow);
2339 		else
2340 			pl011_console_get_options(uap, &baud, &parity, &bits);
2341 	}
2342 
2343 	return uart_set_options(&uap->port, co, baud, parity, bits, flow);
2344 }
2345 
2346 /**
2347  *	pl011_console_match - non-standard console matching
2348  *	@co:	  registering console
2349  *	@name:	  name from console command line
2350  *	@idx:	  index from console command line
2351  *	@options: ptr to option string from console command line
2352  *
2353  *	Only attempts to match console command lines of the form:
2354  *	    console=pl011,mmio|mmio32,<addr>[,<options>]
2355  *	    console=pl011,0x<addr>[,<options>]
2356  *	This form is used to register an initial earlycon boot console and
2357  *	replace it with the amba_console at pl011 driver init.
2358  *
2359  *	Performs console setup for a match (as required by interface)
2360  *	If no <options> are specified, then assume the h/w is already setup.
2361  *
2362  *	Returns 0 if console matches; otherwise non-zero to use default matching
2363  */
2364 static int __init pl011_console_match(struct console *co, char *name, int idx,
2365 				      char *options)
2366 {
2367 	unsigned char iotype;
2368 	resource_size_t addr;
2369 	int i;
2370 
2371 	/*
2372 	 * Systems affected by the Qualcomm Technologies QDF2400 E44 erratum
2373 	 * have a distinct console name, so make sure we check for that.
2374 	 * The actual implementation of the erratum occurs in the probe
2375 	 * function.
2376 	 */
2377 	if ((strcmp(name, "qdf2400_e44") != 0) && (strcmp(name, "pl011") != 0))
2378 		return -ENODEV;
2379 
2380 	if (uart_parse_earlycon(options, &iotype, &addr, &options))
2381 		return -ENODEV;
2382 
2383 	if (iotype != UPIO_MEM && iotype != UPIO_MEM32)
2384 		return -ENODEV;
2385 
2386 	/* try to match the port specified on the command line */
2387 	for (i = 0; i < ARRAY_SIZE(amba_ports); i++) {
2388 		struct uart_port *port;
2389 
2390 		if (!amba_ports[i])
2391 			continue;
2392 
2393 		port = &amba_ports[i]->port;
2394 
2395 		if (port->mapbase != addr)
2396 			continue;
2397 
2398 		co->index = i;
2399 		port->cons = co;
2400 		return pl011_console_setup(co, options);
2401 	}
2402 
2403 	return -ENODEV;
2404 }
2405 
2406 static struct uart_driver amba_reg;
2407 static struct console amba_console = {
2408 	.name		= "ttyAMA",
2409 	.write		= pl011_console_write,
2410 	.device		= uart_console_device,
2411 	.setup		= pl011_console_setup,
2412 	.match		= pl011_console_match,
2413 	.flags		= CON_PRINTBUFFER | CON_ANYTIME,
2414 	.index		= -1,
2415 	.data		= &amba_reg,
2416 };
2417 
2418 #define AMBA_CONSOLE	(&amba_console)
2419 
2420 static void qdf2400_e44_putc(struct uart_port *port, int c)
2421 {
2422 	while (readl(port->membase + UART01x_FR) & UART01x_FR_TXFF)
2423 		cpu_relax();
2424 	writel(c, port->membase + UART01x_DR);
2425 	while (!(readl(port->membase + UART01x_FR) & UART011_FR_TXFE))
2426 		cpu_relax();
2427 }
2428 
2429 static void qdf2400_e44_early_write(struct console *con, const char *s, unsigned n)
2430 {
2431 	struct earlycon_device *dev = con->data;
2432 
2433 	uart_console_write(&dev->port, s, n, qdf2400_e44_putc);
2434 }
2435 
2436 static void pl011_putc(struct uart_port *port, int c)
2437 {
2438 	while (readl(port->membase + UART01x_FR) & UART01x_FR_TXFF)
2439 		cpu_relax();
2440 	if (port->iotype == UPIO_MEM32)
2441 		writel(c, port->membase + UART01x_DR);
2442 	else
2443 		writeb(c, port->membase + UART01x_DR);
2444 	while (readl(port->membase + UART01x_FR) & UART01x_FR_BUSY)
2445 		cpu_relax();
2446 }
2447 
2448 static void pl011_early_write(struct console *con, const char *s, unsigned n)
2449 {
2450 	struct earlycon_device *dev = con->data;
2451 
2452 	uart_console_write(&dev->port, s, n, pl011_putc);
2453 }
2454 
2455 /*
2456  * On non-ACPI systems, earlycon is enabled by specifying
2457  * "earlycon=pl011,<address>" on the kernel command line.
2458  *
2459  * On ACPI ARM64 systems, an "early" console is enabled via the SPCR table,
2460  * by specifying only "earlycon" on the command line.  Because it requires
2461  * SPCR, the console starts after ACPI is parsed, which is later than a
2462  * traditional early console.
2463  *
2464  * To get the traditional early console that starts before ACPI is parsed,
2465  * specify the full "earlycon=pl011,<address>" option.
2466  */
2467 static int __init pl011_early_console_setup(struct earlycon_device *device,
2468 					    const char *opt)
2469 {
2470 	if (!device->port.membase)
2471 		return -ENODEV;
2472 
2473 	device->con->write = pl011_early_write;
2474 
2475 	return 0;
2476 }
2477 OF_EARLYCON_DECLARE(pl011, "arm,pl011", pl011_early_console_setup);
2478 OF_EARLYCON_DECLARE(pl011, "arm,sbsa-uart", pl011_early_console_setup);
2479 
2480 /*
2481  * On Qualcomm Datacenter Technologies QDF2400 SOCs affected by
2482  * Erratum 44, traditional earlycon can be enabled by specifying
2483  * "earlycon=qdf2400_e44,<address>".  Any options are ignored.
2484  *
2485  * Alternatively, you can just specify "earlycon", and the early console
2486  * will be enabled with the information from the SPCR table.  In this
2487  * case, the SPCR code will detect the need for the E44 work-around,
2488  * and set the console name to "qdf2400_e44".
2489  */
2490 static int __init
2491 qdf2400_e44_early_console_setup(struct earlycon_device *device,
2492 				const char *opt)
2493 {
2494 	if (!device->port.membase)
2495 		return -ENODEV;
2496 
2497 	device->con->write = qdf2400_e44_early_write;
2498 	return 0;
2499 }
2500 EARLYCON_DECLARE(qdf2400_e44, qdf2400_e44_early_console_setup);
2501 
2502 #else
2503 #define AMBA_CONSOLE	NULL
2504 #endif
2505 
2506 static struct uart_driver amba_reg = {
2507 	.owner			= THIS_MODULE,
2508 	.driver_name		= "ttyAMA",
2509 	.dev_name		= "ttyAMA",
2510 	.major			= SERIAL_AMBA_MAJOR,
2511 	.minor			= SERIAL_AMBA_MINOR,
2512 	.nr			= UART_NR,
2513 	.cons			= AMBA_CONSOLE,
2514 };
2515 
2516 static int pl011_probe_dt_alias(int index, struct device *dev)
2517 {
2518 	struct device_node *np;
2519 	static bool seen_dev_with_alias = false;
2520 	static bool seen_dev_without_alias = false;
2521 	int ret = index;
2522 
2523 	if (!IS_ENABLED(CONFIG_OF))
2524 		return ret;
2525 
2526 	np = dev->of_node;
2527 	if (!np)
2528 		return ret;
2529 
2530 	ret = of_alias_get_id(np, "serial");
2531 	if (ret < 0) {
2532 		seen_dev_without_alias = true;
2533 		ret = index;
2534 	} else {
2535 		seen_dev_with_alias = true;
2536 		if (ret >= ARRAY_SIZE(amba_ports) || amba_ports[ret] != NULL) {
2537 			dev_warn(dev, "requested serial port %d  not available.\n", ret);
2538 			ret = index;
2539 		}
2540 	}
2541 
2542 	if (seen_dev_with_alias && seen_dev_without_alias)
2543 		dev_warn(dev, "aliased and non-aliased serial devices found in device tree. Serial port enumeration may be unpredictable.\n");
2544 
2545 	return ret;
2546 }
2547 
2548 /* unregisters the driver also if no more ports are left */
2549 static void pl011_unregister_port(struct uart_amba_port *uap)
2550 {
2551 	int i;
2552 	bool busy = false;
2553 
2554 	for (i = 0; i < ARRAY_SIZE(amba_ports); i++) {
2555 		if (amba_ports[i] == uap)
2556 			amba_ports[i] = NULL;
2557 		else if (amba_ports[i])
2558 			busy = true;
2559 	}
2560 	pl011_dma_remove(uap);
2561 	if (!busy)
2562 		uart_unregister_driver(&amba_reg);
2563 }
2564 
2565 static int pl011_find_free_port(void)
2566 {
2567 	int i;
2568 
2569 	for (i = 0; i < ARRAY_SIZE(amba_ports); i++)
2570 		if (amba_ports[i] == NULL)
2571 			return i;
2572 
2573 	return -EBUSY;
2574 }
2575 
2576 static int pl011_setup_port(struct device *dev, struct uart_amba_port *uap,
2577 			    struct resource *mmiobase, int index)
2578 {
2579 	void __iomem *base;
2580 
2581 	base = devm_ioremap_resource(dev, mmiobase);
2582 	if (IS_ERR(base))
2583 		return PTR_ERR(base);
2584 
2585 	index = pl011_probe_dt_alias(index, dev);
2586 
2587 	uap->old_cr = 0;
2588 	uap->port.dev = dev;
2589 	uap->port.mapbase = mmiobase->start;
2590 	uap->port.membase = base;
2591 	uap->port.fifosize = uap->fifosize;
2592 	uap->port.flags = UPF_BOOT_AUTOCONF;
2593 	uap->port.line = index;
2594 
2595 	amba_ports[index] = uap;
2596 
2597 	return 0;
2598 }
2599 
2600 static int pl011_register_port(struct uart_amba_port *uap)
2601 {
2602 	int ret;
2603 
2604 	/* Ensure interrupts from this UART are masked and cleared */
2605 	pl011_write(0, uap, REG_IMSC);
2606 	pl011_write(0xffff, uap, REG_ICR);
2607 
2608 	if (!amba_reg.state) {
2609 		ret = uart_register_driver(&amba_reg);
2610 		if (ret < 0) {
2611 			dev_err(uap->port.dev,
2612 				"Failed to register AMBA-PL011 driver\n");
2613 			return ret;
2614 		}
2615 	}
2616 
2617 	ret = uart_add_one_port(&amba_reg, &uap->port);
2618 	if (ret)
2619 		pl011_unregister_port(uap);
2620 
2621 	return ret;
2622 }
2623 
2624 static int pl011_probe(struct amba_device *dev, const struct amba_id *id)
2625 {
2626 	struct uart_amba_port *uap;
2627 	struct vendor_data *vendor = id->data;
2628 	int portnr, ret;
2629 
2630 	portnr = pl011_find_free_port();
2631 	if (portnr < 0)
2632 		return portnr;
2633 
2634 	uap = devm_kzalloc(&dev->dev, sizeof(struct uart_amba_port),
2635 			   GFP_KERNEL);
2636 	if (!uap)
2637 		return -ENOMEM;
2638 
2639 	uap->clk = devm_clk_get(&dev->dev, NULL);
2640 	if (IS_ERR(uap->clk))
2641 		return PTR_ERR(uap->clk);
2642 
2643 	uap->reg_offset = vendor->reg_offset;
2644 	uap->vendor = vendor;
2645 	uap->fifosize = vendor->get_fifosize(dev);
2646 	uap->port.iotype = vendor->access_32b ? UPIO_MEM32 : UPIO_MEM;
2647 	uap->port.irq = dev->irq[0];
2648 	uap->port.ops = &amba_pl011_pops;
2649 
2650 	snprintf(uap->type, sizeof(uap->type), "PL011 rev%u", amba_rev(dev));
2651 
2652 	ret = pl011_setup_port(&dev->dev, uap, &dev->res, portnr);
2653 	if (ret)
2654 		return ret;
2655 
2656 	amba_set_drvdata(dev, uap);
2657 
2658 	return pl011_register_port(uap);
2659 }
2660 
2661 static int pl011_remove(struct amba_device *dev)
2662 {
2663 	struct uart_amba_port *uap = amba_get_drvdata(dev);
2664 
2665 	uart_remove_one_port(&amba_reg, &uap->port);
2666 	pl011_unregister_port(uap);
2667 	return 0;
2668 }
2669 
2670 #ifdef CONFIG_PM_SLEEP
2671 static int pl011_suspend(struct device *dev)
2672 {
2673 	struct uart_amba_port *uap = dev_get_drvdata(dev);
2674 
2675 	if (!uap)
2676 		return -EINVAL;
2677 
2678 	return uart_suspend_port(&amba_reg, &uap->port);
2679 }
2680 
2681 static int pl011_resume(struct device *dev)
2682 {
2683 	struct uart_amba_port *uap = dev_get_drvdata(dev);
2684 
2685 	if (!uap)
2686 		return -EINVAL;
2687 
2688 	return uart_resume_port(&amba_reg, &uap->port);
2689 }
2690 #endif
2691 
2692 static SIMPLE_DEV_PM_OPS(pl011_dev_pm_ops, pl011_suspend, pl011_resume);
2693 
2694 static int sbsa_uart_probe(struct platform_device *pdev)
2695 {
2696 	struct uart_amba_port *uap;
2697 	struct resource *r;
2698 	int portnr, ret;
2699 	int baudrate;
2700 
2701 	/*
2702 	 * Check the mandatory baud rate parameter in the DT node early
2703 	 * so that we can easily exit with the error.
2704 	 */
2705 	if (pdev->dev.of_node) {
2706 		struct device_node *np = pdev->dev.of_node;
2707 
2708 		ret = of_property_read_u32(np, "current-speed", &baudrate);
2709 		if (ret)
2710 			return ret;
2711 	} else {
2712 		baudrate = 115200;
2713 	}
2714 
2715 	portnr = pl011_find_free_port();
2716 	if (portnr < 0)
2717 		return portnr;
2718 
2719 	uap = devm_kzalloc(&pdev->dev, sizeof(struct uart_amba_port),
2720 			   GFP_KERNEL);
2721 	if (!uap)
2722 		return -ENOMEM;
2723 
2724 	ret = platform_get_irq(pdev, 0);
2725 	if (ret < 0) {
2726 		if (ret != -EPROBE_DEFER)
2727 			dev_err(&pdev->dev, "cannot obtain irq\n");
2728 		return ret;
2729 	}
2730 	uap->port.irq	= ret;
2731 
2732 #ifdef CONFIG_ACPI_SPCR_TABLE
2733 	if (qdf2400_e44_present) {
2734 		dev_info(&pdev->dev, "working around QDF2400 SoC erratum 44\n");
2735 		uap->vendor = &vendor_qdt_qdf2400_e44;
2736 	} else
2737 #endif
2738 		uap->vendor = &vendor_sbsa;
2739 
2740 	uap->reg_offset	= uap->vendor->reg_offset;
2741 	uap->fifosize	= 32;
2742 	uap->port.iotype = uap->vendor->access_32b ? UPIO_MEM32 : UPIO_MEM;
2743 	uap->port.ops	= &sbsa_uart_pops;
2744 	uap->fixed_baud = baudrate;
2745 
2746 	snprintf(uap->type, sizeof(uap->type), "SBSA");
2747 
2748 	r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2749 
2750 	ret = pl011_setup_port(&pdev->dev, uap, r, portnr);
2751 	if (ret)
2752 		return ret;
2753 
2754 	platform_set_drvdata(pdev, uap);
2755 
2756 	return pl011_register_port(uap);
2757 }
2758 
2759 static int sbsa_uart_remove(struct platform_device *pdev)
2760 {
2761 	struct uart_amba_port *uap = platform_get_drvdata(pdev);
2762 
2763 	uart_remove_one_port(&amba_reg, &uap->port);
2764 	pl011_unregister_port(uap);
2765 	return 0;
2766 }
2767 
2768 static const struct of_device_id sbsa_uart_of_match[] = {
2769 	{ .compatible = "arm,sbsa-uart", },
2770 	{},
2771 };
2772 MODULE_DEVICE_TABLE(of, sbsa_uart_of_match);
2773 
2774 static const struct acpi_device_id sbsa_uart_acpi_match[] = {
2775 	{ "ARMH0011", 0 },
2776 	{},
2777 };
2778 MODULE_DEVICE_TABLE(acpi, sbsa_uart_acpi_match);
2779 
2780 static struct platform_driver arm_sbsa_uart_platform_driver = {
2781 	.probe		= sbsa_uart_probe,
2782 	.remove		= sbsa_uart_remove,
2783 	.driver	= {
2784 		.name	= "sbsa-uart",
2785 		.of_match_table = of_match_ptr(sbsa_uart_of_match),
2786 		.acpi_match_table = ACPI_PTR(sbsa_uart_acpi_match),
2787 	},
2788 };
2789 
2790 static const struct amba_id pl011_ids[] = {
2791 	{
2792 		.id	= 0x00041011,
2793 		.mask	= 0x000fffff,
2794 		.data	= &vendor_arm,
2795 	},
2796 	{
2797 		.id	= 0x00380802,
2798 		.mask	= 0x00ffffff,
2799 		.data	= &vendor_st,
2800 	},
2801 	{
2802 		.id	= AMBA_LINUX_ID(0x00, 0x1, 0xffe),
2803 		.mask	= 0x00ffffff,
2804 		.data	= &vendor_zte,
2805 	},
2806 	{ 0, 0 },
2807 };
2808 
2809 MODULE_DEVICE_TABLE(amba, pl011_ids);
2810 
2811 static struct amba_driver pl011_driver = {
2812 	.drv = {
2813 		.name	= "uart-pl011",
2814 		.pm	= &pl011_dev_pm_ops,
2815 	},
2816 	.id_table	= pl011_ids,
2817 	.probe		= pl011_probe,
2818 	.remove		= pl011_remove,
2819 };
2820 
2821 static int __init pl011_init(void)
2822 {
2823 	printk(KERN_INFO "Serial: AMBA PL011 UART driver\n");
2824 
2825 	if (platform_driver_register(&arm_sbsa_uart_platform_driver))
2826 		pr_warn("could not register SBSA UART platform driver\n");
2827 	return amba_driver_register(&pl011_driver);
2828 }
2829 
2830 static void __exit pl011_exit(void)
2831 {
2832 	platform_driver_unregister(&arm_sbsa_uart_platform_driver);
2833 	amba_driver_unregister(&pl011_driver);
2834 }
2835 
2836 /*
2837  * While this can be a module, if builtin it's most likely the console
2838  * So let's leave module_exit but move module_init to an earlier place
2839  */
2840 arch_initcall(pl011_init);
2841 module_exit(pl011_exit);
2842 
2843 MODULE_AUTHOR("ARM Ltd/Deep Blue Solutions Ltd");
2844 MODULE_DESCRIPTION("ARM AMBA serial port driver");
2845 MODULE_LICENSE("GPL");
2846