xref: /openbmc/linux/drivers/tty/serial/amba-pl011.c (revision 6db6b729)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  *  Driver for AMBA serial ports
4  *
5  *  Based on drivers/char/serial.c, by Linus Torvalds, Theodore Ts'o.
6  *
7  *  Copyright 1999 ARM Limited
8  *  Copyright (C) 2000 Deep Blue Solutions Ltd.
9  *  Copyright (C) 2010 ST-Ericsson SA
10  *
11  * This is a generic driver for ARM AMBA-type serial ports.  They
12  * have a lot of 16550-like features, but are not register compatible.
13  * Note that although they do have CTS, DCD and DSR inputs, they do
14  * not have an RI input, nor do they have DTR or RTS outputs.  If
15  * required, these have to be supplied via some other means (eg, GPIO)
16  * and hooked into this driver.
17  */
18 
19 #include <linux/module.h>
20 #include <linux/ioport.h>
21 #include <linux/init.h>
22 #include <linux/console.h>
23 #include <linux/platform_device.h>
24 #include <linux/sysrq.h>
25 #include <linux/device.h>
26 #include <linux/tty.h>
27 #include <linux/tty_flip.h>
28 #include <linux/serial_core.h>
29 #include <linux/serial.h>
30 #include <linux/amba/bus.h>
31 #include <linux/amba/serial.h>
32 #include <linux/clk.h>
33 #include <linux/slab.h>
34 #include <linux/dmaengine.h>
35 #include <linux/dma-mapping.h>
36 #include <linux/scatterlist.h>
37 #include <linux/delay.h>
38 #include <linux/types.h>
39 #include <linux/of.h>
40 #include <linux/pinctrl/consumer.h>
41 #include <linux/sizes.h>
42 #include <linux/io.h>
43 #include <linux/acpi.h>
44 
45 #define UART_NR			14
46 
47 #define SERIAL_AMBA_MAJOR	204
48 #define SERIAL_AMBA_MINOR	64
49 #define SERIAL_AMBA_NR		UART_NR
50 
51 #define AMBA_ISR_PASS_LIMIT	256
52 
53 #define UART_DR_ERROR		(UART011_DR_OE|UART011_DR_BE|UART011_DR_PE|UART011_DR_FE)
54 #define UART_DUMMY_DR_RX	(1 << 16)
55 
56 enum {
57 	REG_DR,
58 	REG_ST_DMAWM,
59 	REG_ST_TIMEOUT,
60 	REG_FR,
61 	REG_LCRH_RX,
62 	REG_LCRH_TX,
63 	REG_IBRD,
64 	REG_FBRD,
65 	REG_CR,
66 	REG_IFLS,
67 	REG_IMSC,
68 	REG_RIS,
69 	REG_MIS,
70 	REG_ICR,
71 	REG_DMACR,
72 	REG_ST_XFCR,
73 	REG_ST_XON1,
74 	REG_ST_XON2,
75 	REG_ST_XOFF1,
76 	REG_ST_XOFF2,
77 	REG_ST_ITCR,
78 	REG_ST_ITIP,
79 	REG_ST_ABCR,
80 	REG_ST_ABIMSC,
81 
82 	/* The size of the array - must be last */
83 	REG_ARRAY_SIZE,
84 };
85 
86 static u16 pl011_std_offsets[REG_ARRAY_SIZE] = {
87 	[REG_DR] = UART01x_DR,
88 	[REG_FR] = UART01x_FR,
89 	[REG_LCRH_RX] = UART011_LCRH,
90 	[REG_LCRH_TX] = UART011_LCRH,
91 	[REG_IBRD] = UART011_IBRD,
92 	[REG_FBRD] = UART011_FBRD,
93 	[REG_CR] = UART011_CR,
94 	[REG_IFLS] = UART011_IFLS,
95 	[REG_IMSC] = UART011_IMSC,
96 	[REG_RIS] = UART011_RIS,
97 	[REG_MIS] = UART011_MIS,
98 	[REG_ICR] = UART011_ICR,
99 	[REG_DMACR] = UART011_DMACR,
100 };
101 
102 /* There is by now at least one vendor with differing details, so handle it */
103 struct vendor_data {
104 	const u16		*reg_offset;
105 	unsigned int		ifls;
106 	unsigned int		fr_busy;
107 	unsigned int		fr_dsr;
108 	unsigned int		fr_cts;
109 	unsigned int		fr_ri;
110 	unsigned int		inv_fr;
111 	bool			access_32b;
112 	bool			oversampling;
113 	bool			dma_threshold;
114 	bool			cts_event_workaround;
115 	bool			always_enabled;
116 	bool			fixed_options;
117 
118 	unsigned int (*get_fifosize)(struct amba_device *dev);
119 };
120 
121 static unsigned int get_fifosize_arm(struct amba_device *dev)
122 {
123 	return amba_rev(dev) < 3 ? 16 : 32;
124 }
125 
126 static struct vendor_data vendor_arm = {
127 	.reg_offset		= pl011_std_offsets,
128 	.ifls			= UART011_IFLS_RX4_8|UART011_IFLS_TX4_8,
129 	.fr_busy		= UART01x_FR_BUSY,
130 	.fr_dsr			= UART01x_FR_DSR,
131 	.fr_cts			= UART01x_FR_CTS,
132 	.fr_ri			= UART011_FR_RI,
133 	.oversampling		= false,
134 	.dma_threshold		= false,
135 	.cts_event_workaround	= false,
136 	.always_enabled		= false,
137 	.fixed_options		= false,
138 	.get_fifosize		= get_fifosize_arm,
139 };
140 
141 static const struct vendor_data vendor_sbsa = {
142 	.reg_offset		= pl011_std_offsets,
143 	.fr_busy		= UART01x_FR_BUSY,
144 	.fr_dsr			= UART01x_FR_DSR,
145 	.fr_cts			= UART01x_FR_CTS,
146 	.fr_ri			= UART011_FR_RI,
147 	.access_32b		= true,
148 	.oversampling		= false,
149 	.dma_threshold		= false,
150 	.cts_event_workaround	= false,
151 	.always_enabled		= true,
152 	.fixed_options		= true,
153 };
154 
155 #ifdef CONFIG_ACPI_SPCR_TABLE
156 static const struct vendor_data vendor_qdt_qdf2400_e44 = {
157 	.reg_offset		= pl011_std_offsets,
158 	.fr_busy		= UART011_FR_TXFE,
159 	.fr_dsr			= UART01x_FR_DSR,
160 	.fr_cts			= UART01x_FR_CTS,
161 	.fr_ri			= UART011_FR_RI,
162 	.inv_fr			= UART011_FR_TXFE,
163 	.access_32b		= true,
164 	.oversampling		= false,
165 	.dma_threshold		= false,
166 	.cts_event_workaround	= false,
167 	.always_enabled		= true,
168 	.fixed_options		= true,
169 };
170 #endif
171 
172 static u16 pl011_st_offsets[REG_ARRAY_SIZE] = {
173 	[REG_DR] = UART01x_DR,
174 	[REG_ST_DMAWM] = ST_UART011_DMAWM,
175 	[REG_ST_TIMEOUT] = ST_UART011_TIMEOUT,
176 	[REG_FR] = UART01x_FR,
177 	[REG_LCRH_RX] = ST_UART011_LCRH_RX,
178 	[REG_LCRH_TX] = ST_UART011_LCRH_TX,
179 	[REG_IBRD] = UART011_IBRD,
180 	[REG_FBRD] = UART011_FBRD,
181 	[REG_CR] = UART011_CR,
182 	[REG_IFLS] = UART011_IFLS,
183 	[REG_IMSC] = UART011_IMSC,
184 	[REG_RIS] = UART011_RIS,
185 	[REG_MIS] = UART011_MIS,
186 	[REG_ICR] = UART011_ICR,
187 	[REG_DMACR] = UART011_DMACR,
188 	[REG_ST_XFCR] = ST_UART011_XFCR,
189 	[REG_ST_XON1] = ST_UART011_XON1,
190 	[REG_ST_XON2] = ST_UART011_XON2,
191 	[REG_ST_XOFF1] = ST_UART011_XOFF1,
192 	[REG_ST_XOFF2] = ST_UART011_XOFF2,
193 	[REG_ST_ITCR] = ST_UART011_ITCR,
194 	[REG_ST_ITIP] = ST_UART011_ITIP,
195 	[REG_ST_ABCR] = ST_UART011_ABCR,
196 	[REG_ST_ABIMSC] = ST_UART011_ABIMSC,
197 };
198 
199 static unsigned int get_fifosize_st(struct amba_device *dev)
200 {
201 	return 64;
202 }
203 
204 static struct vendor_data vendor_st = {
205 	.reg_offset		= pl011_st_offsets,
206 	.ifls			= UART011_IFLS_RX_HALF|UART011_IFLS_TX_HALF,
207 	.fr_busy		= UART01x_FR_BUSY,
208 	.fr_dsr			= UART01x_FR_DSR,
209 	.fr_cts			= UART01x_FR_CTS,
210 	.fr_ri			= UART011_FR_RI,
211 	.oversampling		= true,
212 	.dma_threshold		= true,
213 	.cts_event_workaround	= true,
214 	.always_enabled		= false,
215 	.fixed_options		= false,
216 	.get_fifosize		= get_fifosize_st,
217 };
218 
219 /* Deals with DMA transactions */
220 
221 struct pl011_sgbuf {
222 	struct scatterlist sg;
223 	char *buf;
224 };
225 
226 struct pl011_dmarx_data {
227 	struct dma_chan		*chan;
228 	struct completion	complete;
229 	bool			use_buf_b;
230 	struct pl011_sgbuf	sgbuf_a;
231 	struct pl011_sgbuf	sgbuf_b;
232 	dma_cookie_t		cookie;
233 	bool			running;
234 	struct timer_list	timer;
235 	unsigned int last_residue;
236 	unsigned long last_jiffies;
237 	bool auto_poll_rate;
238 	unsigned int poll_rate;
239 	unsigned int poll_timeout;
240 };
241 
242 struct pl011_dmatx_data {
243 	struct dma_chan		*chan;
244 	struct scatterlist	sg;
245 	char			*buf;
246 	bool			queued;
247 };
248 
249 /*
250  * We wrap our port structure around the generic uart_port.
251  */
252 struct uart_amba_port {
253 	struct uart_port	port;
254 	const u16		*reg_offset;
255 	struct clk		*clk;
256 	const struct vendor_data *vendor;
257 	unsigned int		dmacr;		/* dma control reg */
258 	unsigned int		im;		/* interrupt mask */
259 	unsigned int		old_status;
260 	unsigned int		fifosize;	/* vendor-specific */
261 	unsigned int		fixed_baud;	/* vendor-set fixed baud rate */
262 	char			type[12];
263 	bool			rs485_tx_started;
264 	unsigned int		rs485_tx_drain_interval; /* usecs */
265 #ifdef CONFIG_DMA_ENGINE
266 	/* DMA stuff */
267 	bool			using_tx_dma;
268 	bool			using_rx_dma;
269 	struct pl011_dmarx_data dmarx;
270 	struct pl011_dmatx_data	dmatx;
271 	bool			dma_probed;
272 #endif
273 };
274 
275 static unsigned int pl011_tx_empty(struct uart_port *port);
276 
277 static unsigned int pl011_reg_to_offset(const struct uart_amba_port *uap,
278 	unsigned int reg)
279 {
280 	return uap->reg_offset[reg];
281 }
282 
283 static unsigned int pl011_read(const struct uart_amba_port *uap,
284 	unsigned int reg)
285 {
286 	void __iomem *addr = uap->port.membase + pl011_reg_to_offset(uap, reg);
287 
288 	return (uap->port.iotype == UPIO_MEM32) ?
289 		readl_relaxed(addr) : readw_relaxed(addr);
290 }
291 
292 static void pl011_write(unsigned int val, const struct uart_amba_port *uap,
293 	unsigned int reg)
294 {
295 	void __iomem *addr = uap->port.membase + pl011_reg_to_offset(uap, reg);
296 
297 	if (uap->port.iotype == UPIO_MEM32)
298 		writel_relaxed(val, addr);
299 	else
300 		writew_relaxed(val, addr);
301 }
302 
303 /*
304  * Reads up to 256 characters from the FIFO or until it's empty and
305  * inserts them into the TTY layer. Returns the number of characters
306  * read from the FIFO.
307  */
308 static int pl011_fifo_to_tty(struct uart_amba_port *uap)
309 {
310 	unsigned int ch, fifotaken;
311 	int sysrq;
312 	u16 status;
313 	u8 flag;
314 
315 	for (fifotaken = 0; fifotaken != 256; fifotaken++) {
316 		status = pl011_read(uap, REG_FR);
317 		if (status & UART01x_FR_RXFE)
318 			break;
319 
320 		/* Take chars from the FIFO and update status */
321 		ch = pl011_read(uap, REG_DR) | UART_DUMMY_DR_RX;
322 		flag = TTY_NORMAL;
323 		uap->port.icount.rx++;
324 
325 		if (unlikely(ch & UART_DR_ERROR)) {
326 			if (ch & UART011_DR_BE) {
327 				ch &= ~(UART011_DR_FE | UART011_DR_PE);
328 				uap->port.icount.brk++;
329 				if (uart_handle_break(&uap->port))
330 					continue;
331 			} else if (ch & UART011_DR_PE)
332 				uap->port.icount.parity++;
333 			else if (ch & UART011_DR_FE)
334 				uap->port.icount.frame++;
335 			if (ch & UART011_DR_OE)
336 				uap->port.icount.overrun++;
337 
338 			ch &= uap->port.read_status_mask;
339 
340 			if (ch & UART011_DR_BE)
341 				flag = TTY_BREAK;
342 			else if (ch & UART011_DR_PE)
343 				flag = TTY_PARITY;
344 			else if (ch & UART011_DR_FE)
345 				flag = TTY_FRAME;
346 		}
347 
348 		spin_unlock(&uap->port.lock);
349 		sysrq = uart_handle_sysrq_char(&uap->port, ch & 255);
350 		spin_lock(&uap->port.lock);
351 
352 		if (!sysrq)
353 			uart_insert_char(&uap->port, ch, UART011_DR_OE, ch, flag);
354 	}
355 
356 	return fifotaken;
357 }
358 
359 
360 /*
361  * All the DMA operation mode stuff goes inside this ifdef.
362  * This assumes that you have a generic DMA device interface,
363  * no custom DMA interfaces are supported.
364  */
365 #ifdef CONFIG_DMA_ENGINE
366 
367 #define PL011_DMA_BUFFER_SIZE PAGE_SIZE
368 
369 static int pl011_sgbuf_init(struct dma_chan *chan, struct pl011_sgbuf *sg,
370 	enum dma_data_direction dir)
371 {
372 	dma_addr_t dma_addr;
373 
374 	sg->buf = dma_alloc_coherent(chan->device->dev,
375 		PL011_DMA_BUFFER_SIZE, &dma_addr, GFP_KERNEL);
376 	if (!sg->buf)
377 		return -ENOMEM;
378 
379 	sg_init_table(&sg->sg, 1);
380 	sg_set_page(&sg->sg, phys_to_page(dma_addr),
381 		PL011_DMA_BUFFER_SIZE, offset_in_page(dma_addr));
382 	sg_dma_address(&sg->sg) = dma_addr;
383 	sg_dma_len(&sg->sg) = PL011_DMA_BUFFER_SIZE;
384 
385 	return 0;
386 }
387 
388 static void pl011_sgbuf_free(struct dma_chan *chan, struct pl011_sgbuf *sg,
389 	enum dma_data_direction dir)
390 {
391 	if (sg->buf) {
392 		dma_free_coherent(chan->device->dev,
393 			PL011_DMA_BUFFER_SIZE, sg->buf,
394 			sg_dma_address(&sg->sg));
395 	}
396 }
397 
398 static void pl011_dma_probe(struct uart_amba_port *uap)
399 {
400 	/* DMA is the sole user of the platform data right now */
401 	struct amba_pl011_data *plat = dev_get_platdata(uap->port.dev);
402 	struct device *dev = uap->port.dev;
403 	struct dma_slave_config tx_conf = {
404 		.dst_addr = uap->port.mapbase +
405 				 pl011_reg_to_offset(uap, REG_DR),
406 		.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
407 		.direction = DMA_MEM_TO_DEV,
408 		.dst_maxburst = uap->fifosize >> 1,
409 		.device_fc = false,
410 	};
411 	struct dma_chan *chan;
412 	dma_cap_mask_t mask;
413 
414 	uap->dma_probed = true;
415 	chan = dma_request_chan(dev, "tx");
416 	if (IS_ERR(chan)) {
417 		if (PTR_ERR(chan) == -EPROBE_DEFER) {
418 			uap->dma_probed = false;
419 			return;
420 		}
421 
422 		/* We need platform data */
423 		if (!plat || !plat->dma_filter) {
424 			dev_info(uap->port.dev, "no DMA platform data\n");
425 			return;
426 		}
427 
428 		/* Try to acquire a generic DMA engine slave TX channel */
429 		dma_cap_zero(mask);
430 		dma_cap_set(DMA_SLAVE, mask);
431 
432 		chan = dma_request_channel(mask, plat->dma_filter,
433 						plat->dma_tx_param);
434 		if (!chan) {
435 			dev_err(uap->port.dev, "no TX DMA channel!\n");
436 			return;
437 		}
438 	}
439 
440 	dmaengine_slave_config(chan, &tx_conf);
441 	uap->dmatx.chan = chan;
442 
443 	dev_info(uap->port.dev, "DMA channel TX %s\n",
444 		 dma_chan_name(uap->dmatx.chan));
445 
446 	/* Optionally make use of an RX channel as well */
447 	chan = dma_request_slave_channel(dev, "rx");
448 
449 	if (!chan && plat && plat->dma_rx_param) {
450 		chan = dma_request_channel(mask, plat->dma_filter, plat->dma_rx_param);
451 
452 		if (!chan) {
453 			dev_err(uap->port.dev, "no RX DMA channel!\n");
454 			return;
455 		}
456 	}
457 
458 	if (chan) {
459 		struct dma_slave_config rx_conf = {
460 			.src_addr = uap->port.mapbase +
461 				pl011_reg_to_offset(uap, REG_DR),
462 			.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
463 			.direction = DMA_DEV_TO_MEM,
464 			.src_maxburst = uap->fifosize >> 2,
465 			.device_fc = false,
466 		};
467 		struct dma_slave_caps caps;
468 
469 		/*
470 		 * Some DMA controllers provide information on their capabilities.
471 		 * If the controller does, check for suitable residue processing
472 		 * otherwise assime all is well.
473 		 */
474 		if (0 == dma_get_slave_caps(chan, &caps)) {
475 			if (caps.residue_granularity ==
476 					DMA_RESIDUE_GRANULARITY_DESCRIPTOR) {
477 				dma_release_channel(chan);
478 				dev_info(uap->port.dev,
479 					"RX DMA disabled - no residue processing\n");
480 				return;
481 			}
482 		}
483 		dmaengine_slave_config(chan, &rx_conf);
484 		uap->dmarx.chan = chan;
485 
486 		uap->dmarx.auto_poll_rate = false;
487 		if (plat && plat->dma_rx_poll_enable) {
488 			/* Set poll rate if specified. */
489 			if (plat->dma_rx_poll_rate) {
490 				uap->dmarx.auto_poll_rate = false;
491 				uap->dmarx.poll_rate = plat->dma_rx_poll_rate;
492 			} else {
493 				/*
494 				 * 100 ms defaults to poll rate if not
495 				 * specified. This will be adjusted with
496 				 * the baud rate at set_termios.
497 				 */
498 				uap->dmarx.auto_poll_rate = true;
499 				uap->dmarx.poll_rate =  100;
500 			}
501 			/* 3 secs defaults poll_timeout if not specified. */
502 			if (plat->dma_rx_poll_timeout)
503 				uap->dmarx.poll_timeout =
504 					plat->dma_rx_poll_timeout;
505 			else
506 				uap->dmarx.poll_timeout = 3000;
507 		} else if (!plat && dev->of_node) {
508 			uap->dmarx.auto_poll_rate = of_property_read_bool(
509 						dev->of_node, "auto-poll");
510 			if (uap->dmarx.auto_poll_rate) {
511 				u32 x;
512 
513 				if (0 == of_property_read_u32(dev->of_node,
514 						"poll-rate-ms", &x))
515 					uap->dmarx.poll_rate = x;
516 				else
517 					uap->dmarx.poll_rate = 100;
518 				if (0 == of_property_read_u32(dev->of_node,
519 						"poll-timeout-ms", &x))
520 					uap->dmarx.poll_timeout = x;
521 				else
522 					uap->dmarx.poll_timeout = 3000;
523 			}
524 		}
525 		dev_info(uap->port.dev, "DMA channel RX %s\n",
526 			 dma_chan_name(uap->dmarx.chan));
527 	}
528 }
529 
530 static void pl011_dma_remove(struct uart_amba_port *uap)
531 {
532 	if (uap->dmatx.chan)
533 		dma_release_channel(uap->dmatx.chan);
534 	if (uap->dmarx.chan)
535 		dma_release_channel(uap->dmarx.chan);
536 }
537 
538 /* Forward declare these for the refill routine */
539 static int pl011_dma_tx_refill(struct uart_amba_port *uap);
540 static void pl011_start_tx_pio(struct uart_amba_port *uap);
541 
542 /*
543  * The current DMA TX buffer has been sent.
544  * Try to queue up another DMA buffer.
545  */
546 static void pl011_dma_tx_callback(void *data)
547 {
548 	struct uart_amba_port *uap = data;
549 	struct pl011_dmatx_data *dmatx = &uap->dmatx;
550 	unsigned long flags;
551 	u16 dmacr;
552 
553 	spin_lock_irqsave(&uap->port.lock, flags);
554 	if (uap->dmatx.queued)
555 		dma_unmap_sg(dmatx->chan->device->dev, &dmatx->sg, 1,
556 			     DMA_TO_DEVICE);
557 
558 	dmacr = uap->dmacr;
559 	uap->dmacr = dmacr & ~UART011_TXDMAE;
560 	pl011_write(uap->dmacr, uap, REG_DMACR);
561 
562 	/*
563 	 * If TX DMA was disabled, it means that we've stopped the DMA for
564 	 * some reason (eg, XOFF received, or we want to send an X-char.)
565 	 *
566 	 * Note: we need to be careful here of a potential race between DMA
567 	 * and the rest of the driver - if the driver disables TX DMA while
568 	 * a TX buffer completing, we must update the tx queued status to
569 	 * get further refills (hence we check dmacr).
570 	 */
571 	if (!(dmacr & UART011_TXDMAE) || uart_tx_stopped(&uap->port) ||
572 	    uart_circ_empty(&uap->port.state->xmit)) {
573 		uap->dmatx.queued = false;
574 		spin_unlock_irqrestore(&uap->port.lock, flags);
575 		return;
576 	}
577 
578 	if (pl011_dma_tx_refill(uap) <= 0)
579 		/*
580 		 * We didn't queue a DMA buffer for some reason, but we
581 		 * have data pending to be sent.  Re-enable the TX IRQ.
582 		 */
583 		pl011_start_tx_pio(uap);
584 
585 	spin_unlock_irqrestore(&uap->port.lock, flags);
586 }
587 
588 /*
589  * Try to refill the TX DMA buffer.
590  * Locking: called with port lock held and IRQs disabled.
591  * Returns:
592  *   1 if we queued up a TX DMA buffer.
593  *   0 if we didn't want to handle this by DMA
594  *  <0 on error
595  */
596 static int pl011_dma_tx_refill(struct uart_amba_port *uap)
597 {
598 	struct pl011_dmatx_data *dmatx = &uap->dmatx;
599 	struct dma_chan *chan = dmatx->chan;
600 	struct dma_device *dma_dev = chan->device;
601 	struct dma_async_tx_descriptor *desc;
602 	struct circ_buf *xmit = &uap->port.state->xmit;
603 	unsigned int count;
604 
605 	/*
606 	 * Try to avoid the overhead involved in using DMA if the
607 	 * transaction fits in the first half of the FIFO, by using
608 	 * the standard interrupt handling.  This ensures that we
609 	 * issue a uart_write_wakeup() at the appropriate time.
610 	 */
611 	count = uart_circ_chars_pending(xmit);
612 	if (count < (uap->fifosize >> 1)) {
613 		uap->dmatx.queued = false;
614 		return 0;
615 	}
616 
617 	/*
618 	 * Bodge: don't send the last character by DMA, as this
619 	 * will prevent XON from notifying us to restart DMA.
620 	 */
621 	count -= 1;
622 
623 	/* Else proceed to copy the TX chars to the DMA buffer and fire DMA */
624 	if (count > PL011_DMA_BUFFER_SIZE)
625 		count = PL011_DMA_BUFFER_SIZE;
626 
627 	if (xmit->tail < xmit->head)
628 		memcpy(&dmatx->buf[0], &xmit->buf[xmit->tail], count);
629 	else {
630 		size_t first = UART_XMIT_SIZE - xmit->tail;
631 		size_t second;
632 
633 		if (first > count)
634 			first = count;
635 		second = count - first;
636 
637 		memcpy(&dmatx->buf[0], &xmit->buf[xmit->tail], first);
638 		if (second)
639 			memcpy(&dmatx->buf[first], &xmit->buf[0], second);
640 	}
641 
642 	dmatx->sg.length = count;
643 
644 	if (dma_map_sg(dma_dev->dev, &dmatx->sg, 1, DMA_TO_DEVICE) != 1) {
645 		uap->dmatx.queued = false;
646 		dev_dbg(uap->port.dev, "unable to map TX DMA\n");
647 		return -EBUSY;
648 	}
649 
650 	desc = dmaengine_prep_slave_sg(chan, &dmatx->sg, 1, DMA_MEM_TO_DEV,
651 					     DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
652 	if (!desc) {
653 		dma_unmap_sg(dma_dev->dev, &dmatx->sg, 1, DMA_TO_DEVICE);
654 		uap->dmatx.queued = false;
655 		/*
656 		 * If DMA cannot be used right now, we complete this
657 		 * transaction via IRQ and let the TTY layer retry.
658 		 */
659 		dev_dbg(uap->port.dev, "TX DMA busy\n");
660 		return -EBUSY;
661 	}
662 
663 	/* Some data to go along to the callback */
664 	desc->callback = pl011_dma_tx_callback;
665 	desc->callback_param = uap;
666 
667 	/* All errors should happen at prepare time */
668 	dmaengine_submit(desc);
669 
670 	/* Fire the DMA transaction */
671 	dma_dev->device_issue_pending(chan);
672 
673 	uap->dmacr |= UART011_TXDMAE;
674 	pl011_write(uap->dmacr, uap, REG_DMACR);
675 	uap->dmatx.queued = true;
676 
677 	/*
678 	 * Now we know that DMA will fire, so advance the ring buffer
679 	 * with the stuff we just dispatched.
680 	 */
681 	uart_xmit_advance(&uap->port, count);
682 
683 	if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
684 		uart_write_wakeup(&uap->port);
685 
686 	return 1;
687 }
688 
689 /*
690  * We received a transmit interrupt without a pending X-char but with
691  * pending characters.
692  * Locking: called with port lock held and IRQs disabled.
693  * Returns:
694  *   false if we want to use PIO to transmit
695  *   true if we queued a DMA buffer
696  */
697 static bool pl011_dma_tx_irq(struct uart_amba_port *uap)
698 {
699 	if (!uap->using_tx_dma)
700 		return false;
701 
702 	/*
703 	 * If we already have a TX buffer queued, but received a
704 	 * TX interrupt, it will be because we've just sent an X-char.
705 	 * Ensure the TX DMA is enabled and the TX IRQ is disabled.
706 	 */
707 	if (uap->dmatx.queued) {
708 		uap->dmacr |= UART011_TXDMAE;
709 		pl011_write(uap->dmacr, uap, REG_DMACR);
710 		uap->im &= ~UART011_TXIM;
711 		pl011_write(uap->im, uap, REG_IMSC);
712 		return true;
713 	}
714 
715 	/*
716 	 * We don't have a TX buffer queued, so try to queue one.
717 	 * If we successfully queued a buffer, mask the TX IRQ.
718 	 */
719 	if (pl011_dma_tx_refill(uap) > 0) {
720 		uap->im &= ~UART011_TXIM;
721 		pl011_write(uap->im, uap, REG_IMSC);
722 		return true;
723 	}
724 	return false;
725 }
726 
727 /*
728  * Stop the DMA transmit (eg, due to received XOFF).
729  * Locking: called with port lock held and IRQs disabled.
730  */
731 static inline void pl011_dma_tx_stop(struct uart_amba_port *uap)
732 {
733 	if (uap->dmatx.queued) {
734 		uap->dmacr &= ~UART011_TXDMAE;
735 		pl011_write(uap->dmacr, uap, REG_DMACR);
736 	}
737 }
738 
739 /*
740  * Try to start a DMA transmit, or in the case of an XON/OFF
741  * character queued for send, try to get that character out ASAP.
742  * Locking: called with port lock held and IRQs disabled.
743  * Returns:
744  *   false if we want the TX IRQ to be enabled
745  *   true if we have a buffer queued
746  */
747 static inline bool pl011_dma_tx_start(struct uart_amba_port *uap)
748 {
749 	u16 dmacr;
750 
751 	if (!uap->using_tx_dma)
752 		return false;
753 
754 	if (!uap->port.x_char) {
755 		/* no X-char, try to push chars out in DMA mode */
756 		bool ret = true;
757 
758 		if (!uap->dmatx.queued) {
759 			if (pl011_dma_tx_refill(uap) > 0) {
760 				uap->im &= ~UART011_TXIM;
761 				pl011_write(uap->im, uap, REG_IMSC);
762 			} else
763 				ret = false;
764 		} else if (!(uap->dmacr & UART011_TXDMAE)) {
765 			uap->dmacr |= UART011_TXDMAE;
766 			pl011_write(uap->dmacr, uap, REG_DMACR);
767 		}
768 		return ret;
769 	}
770 
771 	/*
772 	 * We have an X-char to send.  Disable DMA to prevent it loading
773 	 * the TX fifo, and then see if we can stuff it into the FIFO.
774 	 */
775 	dmacr = uap->dmacr;
776 	uap->dmacr &= ~UART011_TXDMAE;
777 	pl011_write(uap->dmacr, uap, REG_DMACR);
778 
779 	if (pl011_read(uap, REG_FR) & UART01x_FR_TXFF) {
780 		/*
781 		 * No space in the FIFO, so enable the transmit interrupt
782 		 * so we know when there is space.  Note that once we've
783 		 * loaded the character, we should just re-enable DMA.
784 		 */
785 		return false;
786 	}
787 
788 	pl011_write(uap->port.x_char, uap, REG_DR);
789 	uap->port.icount.tx++;
790 	uap->port.x_char = 0;
791 
792 	/* Success - restore the DMA state */
793 	uap->dmacr = dmacr;
794 	pl011_write(dmacr, uap, REG_DMACR);
795 
796 	return true;
797 }
798 
799 /*
800  * Flush the transmit buffer.
801  * Locking: called with port lock held and IRQs disabled.
802  */
803 static void pl011_dma_flush_buffer(struct uart_port *port)
804 __releases(&uap->port.lock)
805 __acquires(&uap->port.lock)
806 {
807 	struct uart_amba_port *uap =
808 	    container_of(port, struct uart_amba_port, port);
809 
810 	if (!uap->using_tx_dma)
811 		return;
812 
813 	dmaengine_terminate_async(uap->dmatx.chan);
814 
815 	if (uap->dmatx.queued) {
816 		dma_unmap_sg(uap->dmatx.chan->device->dev, &uap->dmatx.sg, 1,
817 			     DMA_TO_DEVICE);
818 		uap->dmatx.queued = false;
819 		uap->dmacr &= ~UART011_TXDMAE;
820 		pl011_write(uap->dmacr, uap, REG_DMACR);
821 	}
822 }
823 
824 static void pl011_dma_rx_callback(void *data);
825 
826 static int pl011_dma_rx_trigger_dma(struct uart_amba_port *uap)
827 {
828 	struct dma_chan *rxchan = uap->dmarx.chan;
829 	struct pl011_dmarx_data *dmarx = &uap->dmarx;
830 	struct dma_async_tx_descriptor *desc;
831 	struct pl011_sgbuf *sgbuf;
832 
833 	if (!rxchan)
834 		return -EIO;
835 
836 	/* Start the RX DMA job */
837 	sgbuf = uap->dmarx.use_buf_b ?
838 		&uap->dmarx.sgbuf_b : &uap->dmarx.sgbuf_a;
839 	desc = dmaengine_prep_slave_sg(rxchan, &sgbuf->sg, 1,
840 					DMA_DEV_TO_MEM,
841 					DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
842 	/*
843 	 * If the DMA engine is busy and cannot prepare a
844 	 * channel, no big deal, the driver will fall back
845 	 * to interrupt mode as a result of this error code.
846 	 */
847 	if (!desc) {
848 		uap->dmarx.running = false;
849 		dmaengine_terminate_all(rxchan);
850 		return -EBUSY;
851 	}
852 
853 	/* Some data to go along to the callback */
854 	desc->callback = pl011_dma_rx_callback;
855 	desc->callback_param = uap;
856 	dmarx->cookie = dmaengine_submit(desc);
857 	dma_async_issue_pending(rxchan);
858 
859 	uap->dmacr |= UART011_RXDMAE;
860 	pl011_write(uap->dmacr, uap, REG_DMACR);
861 	uap->dmarx.running = true;
862 
863 	uap->im &= ~UART011_RXIM;
864 	pl011_write(uap->im, uap, REG_IMSC);
865 
866 	return 0;
867 }
868 
869 /*
870  * This is called when either the DMA job is complete, or
871  * the FIFO timeout interrupt occurred. This must be called
872  * with the port spinlock uap->port.lock held.
873  */
874 static void pl011_dma_rx_chars(struct uart_amba_port *uap,
875 			       u32 pending, bool use_buf_b,
876 			       bool readfifo)
877 {
878 	struct tty_port *port = &uap->port.state->port;
879 	struct pl011_sgbuf *sgbuf = use_buf_b ?
880 		&uap->dmarx.sgbuf_b : &uap->dmarx.sgbuf_a;
881 	int dma_count = 0;
882 	u32 fifotaken = 0; /* only used for vdbg() */
883 
884 	struct pl011_dmarx_data *dmarx = &uap->dmarx;
885 	int dmataken = 0;
886 
887 	if (uap->dmarx.poll_rate) {
888 		/* The data can be taken by polling */
889 		dmataken = sgbuf->sg.length - dmarx->last_residue;
890 		/* Recalculate the pending size */
891 		if (pending >= dmataken)
892 			pending -= dmataken;
893 	}
894 
895 	/* Pick the remain data from the DMA */
896 	if (pending) {
897 
898 		/*
899 		 * First take all chars in the DMA pipe, then look in the FIFO.
900 		 * Note that tty_insert_flip_buf() tries to take as many chars
901 		 * as it can.
902 		 */
903 		dma_count = tty_insert_flip_string(port, sgbuf->buf + dmataken,
904 				pending);
905 
906 		uap->port.icount.rx += dma_count;
907 		if (dma_count < pending)
908 			dev_warn(uap->port.dev,
909 				 "couldn't insert all characters (TTY is full?)\n");
910 	}
911 
912 	/* Reset the last_residue for Rx DMA poll */
913 	if (uap->dmarx.poll_rate)
914 		dmarx->last_residue = sgbuf->sg.length;
915 
916 	/*
917 	 * Only continue with trying to read the FIFO if all DMA chars have
918 	 * been taken first.
919 	 */
920 	if (dma_count == pending && readfifo) {
921 		/* Clear any error flags */
922 		pl011_write(UART011_OEIS | UART011_BEIS | UART011_PEIS |
923 			    UART011_FEIS, uap, REG_ICR);
924 
925 		/*
926 		 * If we read all the DMA'd characters, and we had an
927 		 * incomplete buffer, that could be due to an rx error, or
928 		 * maybe we just timed out. Read any pending chars and check
929 		 * the error status.
930 		 *
931 		 * Error conditions will only occur in the FIFO, these will
932 		 * trigger an immediate interrupt and stop the DMA job, so we
933 		 * will always find the error in the FIFO, never in the DMA
934 		 * buffer.
935 		 */
936 		fifotaken = pl011_fifo_to_tty(uap);
937 	}
938 
939 	dev_vdbg(uap->port.dev,
940 		 "Took %d chars from DMA buffer and %d chars from the FIFO\n",
941 		 dma_count, fifotaken);
942 	tty_flip_buffer_push(port);
943 }
944 
945 static void pl011_dma_rx_irq(struct uart_amba_port *uap)
946 {
947 	struct pl011_dmarx_data *dmarx = &uap->dmarx;
948 	struct dma_chan *rxchan = dmarx->chan;
949 	struct pl011_sgbuf *sgbuf = dmarx->use_buf_b ?
950 		&dmarx->sgbuf_b : &dmarx->sgbuf_a;
951 	size_t pending;
952 	struct dma_tx_state state;
953 	enum dma_status dmastat;
954 
955 	/*
956 	 * Pause the transfer so we can trust the current counter,
957 	 * do this before we pause the PL011 block, else we may
958 	 * overflow the FIFO.
959 	 */
960 	if (dmaengine_pause(rxchan))
961 		dev_err(uap->port.dev, "unable to pause DMA transfer\n");
962 	dmastat = rxchan->device->device_tx_status(rxchan,
963 						   dmarx->cookie, &state);
964 	if (dmastat != DMA_PAUSED)
965 		dev_err(uap->port.dev, "unable to pause DMA transfer\n");
966 
967 	/* Disable RX DMA - incoming data will wait in the FIFO */
968 	uap->dmacr &= ~UART011_RXDMAE;
969 	pl011_write(uap->dmacr, uap, REG_DMACR);
970 	uap->dmarx.running = false;
971 
972 	pending = sgbuf->sg.length - state.residue;
973 	BUG_ON(pending > PL011_DMA_BUFFER_SIZE);
974 	/* Then we terminate the transfer - we now know our residue */
975 	dmaengine_terminate_all(rxchan);
976 
977 	/*
978 	 * This will take the chars we have so far and insert
979 	 * into the framework.
980 	 */
981 	pl011_dma_rx_chars(uap, pending, dmarx->use_buf_b, true);
982 
983 	/* Switch buffer & re-trigger DMA job */
984 	dmarx->use_buf_b = !dmarx->use_buf_b;
985 	if (pl011_dma_rx_trigger_dma(uap)) {
986 		dev_dbg(uap->port.dev, "could not retrigger RX DMA job "
987 			"fall back to interrupt mode\n");
988 		uap->im |= UART011_RXIM;
989 		pl011_write(uap->im, uap, REG_IMSC);
990 	}
991 }
992 
993 static void pl011_dma_rx_callback(void *data)
994 {
995 	struct uart_amba_port *uap = data;
996 	struct pl011_dmarx_data *dmarx = &uap->dmarx;
997 	struct dma_chan *rxchan = dmarx->chan;
998 	bool lastbuf = dmarx->use_buf_b;
999 	struct pl011_sgbuf *sgbuf = dmarx->use_buf_b ?
1000 		&dmarx->sgbuf_b : &dmarx->sgbuf_a;
1001 	size_t pending;
1002 	struct dma_tx_state state;
1003 	int ret;
1004 
1005 	/*
1006 	 * This completion interrupt occurs typically when the
1007 	 * RX buffer is totally stuffed but no timeout has yet
1008 	 * occurred. When that happens, we just want the RX
1009 	 * routine to flush out the secondary DMA buffer while
1010 	 * we immediately trigger the next DMA job.
1011 	 */
1012 	spin_lock_irq(&uap->port.lock);
1013 	/*
1014 	 * Rx data can be taken by the UART interrupts during
1015 	 * the DMA irq handler. So we check the residue here.
1016 	 */
1017 	rxchan->device->device_tx_status(rxchan, dmarx->cookie, &state);
1018 	pending = sgbuf->sg.length - state.residue;
1019 	BUG_ON(pending > PL011_DMA_BUFFER_SIZE);
1020 	/* Then we terminate the transfer - we now know our residue */
1021 	dmaengine_terminate_all(rxchan);
1022 
1023 	uap->dmarx.running = false;
1024 	dmarx->use_buf_b = !lastbuf;
1025 	ret = pl011_dma_rx_trigger_dma(uap);
1026 
1027 	pl011_dma_rx_chars(uap, pending, lastbuf, false);
1028 	spin_unlock_irq(&uap->port.lock);
1029 	/*
1030 	 * Do this check after we picked the DMA chars so we don't
1031 	 * get some IRQ immediately from RX.
1032 	 */
1033 	if (ret) {
1034 		dev_dbg(uap->port.dev, "could not retrigger RX DMA job "
1035 			"fall back to interrupt mode\n");
1036 		uap->im |= UART011_RXIM;
1037 		pl011_write(uap->im, uap, REG_IMSC);
1038 	}
1039 }
1040 
1041 /*
1042  * Stop accepting received characters, when we're shutting down or
1043  * suspending this port.
1044  * Locking: called with port lock held and IRQs disabled.
1045  */
1046 static inline void pl011_dma_rx_stop(struct uart_amba_port *uap)
1047 {
1048 	if (!uap->using_rx_dma)
1049 		return;
1050 
1051 	/* FIXME.  Just disable the DMA enable */
1052 	uap->dmacr &= ~UART011_RXDMAE;
1053 	pl011_write(uap->dmacr, uap, REG_DMACR);
1054 }
1055 
1056 /*
1057  * Timer handler for Rx DMA polling.
1058  * Every polling, It checks the residue in the dma buffer and transfer
1059  * data to the tty. Also, last_residue is updated for the next polling.
1060  */
1061 static void pl011_dma_rx_poll(struct timer_list *t)
1062 {
1063 	struct uart_amba_port *uap = from_timer(uap, t, dmarx.timer);
1064 	struct tty_port *port = &uap->port.state->port;
1065 	struct pl011_dmarx_data *dmarx = &uap->dmarx;
1066 	struct dma_chan *rxchan = uap->dmarx.chan;
1067 	unsigned long flags;
1068 	unsigned int dmataken = 0;
1069 	unsigned int size = 0;
1070 	struct pl011_sgbuf *sgbuf;
1071 	int dma_count;
1072 	struct dma_tx_state state;
1073 
1074 	sgbuf = dmarx->use_buf_b ? &uap->dmarx.sgbuf_b : &uap->dmarx.sgbuf_a;
1075 	rxchan->device->device_tx_status(rxchan, dmarx->cookie, &state);
1076 	if (likely(state.residue < dmarx->last_residue)) {
1077 		dmataken = sgbuf->sg.length - dmarx->last_residue;
1078 		size = dmarx->last_residue - state.residue;
1079 		dma_count = tty_insert_flip_string(port, sgbuf->buf + dmataken,
1080 				size);
1081 		if (dma_count == size)
1082 			dmarx->last_residue =  state.residue;
1083 		dmarx->last_jiffies = jiffies;
1084 	}
1085 	tty_flip_buffer_push(port);
1086 
1087 	/*
1088 	 * If no data is received in poll_timeout, the driver will fall back
1089 	 * to interrupt mode. We will retrigger DMA at the first interrupt.
1090 	 */
1091 	if (jiffies_to_msecs(jiffies - dmarx->last_jiffies)
1092 			> uap->dmarx.poll_timeout) {
1093 
1094 		spin_lock_irqsave(&uap->port.lock, flags);
1095 		pl011_dma_rx_stop(uap);
1096 		uap->im |= UART011_RXIM;
1097 		pl011_write(uap->im, uap, REG_IMSC);
1098 		spin_unlock_irqrestore(&uap->port.lock, flags);
1099 
1100 		uap->dmarx.running = false;
1101 		dmaengine_terminate_all(rxchan);
1102 		del_timer(&uap->dmarx.timer);
1103 	} else {
1104 		mod_timer(&uap->dmarx.timer,
1105 			jiffies + msecs_to_jiffies(uap->dmarx.poll_rate));
1106 	}
1107 }
1108 
1109 static void pl011_dma_startup(struct uart_amba_port *uap)
1110 {
1111 	int ret;
1112 
1113 	if (!uap->dma_probed)
1114 		pl011_dma_probe(uap);
1115 
1116 	if (!uap->dmatx.chan)
1117 		return;
1118 
1119 	uap->dmatx.buf = kmalloc(PL011_DMA_BUFFER_SIZE, GFP_KERNEL | __GFP_DMA);
1120 	if (!uap->dmatx.buf) {
1121 		dev_err(uap->port.dev, "no memory for DMA TX buffer\n");
1122 		uap->port.fifosize = uap->fifosize;
1123 		return;
1124 	}
1125 
1126 	sg_init_one(&uap->dmatx.sg, uap->dmatx.buf, PL011_DMA_BUFFER_SIZE);
1127 
1128 	/* The DMA buffer is now the FIFO the TTY subsystem can use */
1129 	uap->port.fifosize = PL011_DMA_BUFFER_SIZE;
1130 	uap->using_tx_dma = true;
1131 
1132 	if (!uap->dmarx.chan)
1133 		goto skip_rx;
1134 
1135 	/* Allocate and map DMA RX buffers */
1136 	ret = pl011_sgbuf_init(uap->dmarx.chan, &uap->dmarx.sgbuf_a,
1137 			       DMA_FROM_DEVICE);
1138 	if (ret) {
1139 		dev_err(uap->port.dev, "failed to init DMA %s: %d\n",
1140 			"RX buffer A", ret);
1141 		goto skip_rx;
1142 	}
1143 
1144 	ret = pl011_sgbuf_init(uap->dmarx.chan, &uap->dmarx.sgbuf_b,
1145 			       DMA_FROM_DEVICE);
1146 	if (ret) {
1147 		dev_err(uap->port.dev, "failed to init DMA %s: %d\n",
1148 			"RX buffer B", ret);
1149 		pl011_sgbuf_free(uap->dmarx.chan, &uap->dmarx.sgbuf_a,
1150 				 DMA_FROM_DEVICE);
1151 		goto skip_rx;
1152 	}
1153 
1154 	uap->using_rx_dma = true;
1155 
1156 skip_rx:
1157 	/* Turn on DMA error (RX/TX will be enabled on demand) */
1158 	uap->dmacr |= UART011_DMAONERR;
1159 	pl011_write(uap->dmacr, uap, REG_DMACR);
1160 
1161 	/*
1162 	 * ST Micro variants has some specific dma burst threshold
1163 	 * compensation. Set this to 16 bytes, so burst will only
1164 	 * be issued above/below 16 bytes.
1165 	 */
1166 	if (uap->vendor->dma_threshold)
1167 		pl011_write(ST_UART011_DMAWM_RX_16 | ST_UART011_DMAWM_TX_16,
1168 			    uap, REG_ST_DMAWM);
1169 
1170 	if (uap->using_rx_dma) {
1171 		if (pl011_dma_rx_trigger_dma(uap))
1172 			dev_dbg(uap->port.dev, "could not trigger initial "
1173 				"RX DMA job, fall back to interrupt mode\n");
1174 		if (uap->dmarx.poll_rate) {
1175 			timer_setup(&uap->dmarx.timer, pl011_dma_rx_poll, 0);
1176 			mod_timer(&uap->dmarx.timer,
1177 				jiffies +
1178 				msecs_to_jiffies(uap->dmarx.poll_rate));
1179 			uap->dmarx.last_residue = PL011_DMA_BUFFER_SIZE;
1180 			uap->dmarx.last_jiffies = jiffies;
1181 		}
1182 	}
1183 }
1184 
1185 static void pl011_dma_shutdown(struct uart_amba_port *uap)
1186 {
1187 	if (!(uap->using_tx_dma || uap->using_rx_dma))
1188 		return;
1189 
1190 	/* Disable RX and TX DMA */
1191 	while (pl011_read(uap, REG_FR) & uap->vendor->fr_busy)
1192 		cpu_relax();
1193 
1194 	spin_lock_irq(&uap->port.lock);
1195 	uap->dmacr &= ~(UART011_DMAONERR | UART011_RXDMAE | UART011_TXDMAE);
1196 	pl011_write(uap->dmacr, uap, REG_DMACR);
1197 	spin_unlock_irq(&uap->port.lock);
1198 
1199 	if (uap->using_tx_dma) {
1200 		/* In theory, this should already be done by pl011_dma_flush_buffer */
1201 		dmaengine_terminate_all(uap->dmatx.chan);
1202 		if (uap->dmatx.queued) {
1203 			dma_unmap_sg(uap->dmatx.chan->device->dev, &uap->dmatx.sg, 1,
1204 				     DMA_TO_DEVICE);
1205 			uap->dmatx.queued = false;
1206 		}
1207 
1208 		kfree(uap->dmatx.buf);
1209 		uap->using_tx_dma = false;
1210 	}
1211 
1212 	if (uap->using_rx_dma) {
1213 		dmaengine_terminate_all(uap->dmarx.chan);
1214 		/* Clean up the RX DMA */
1215 		pl011_sgbuf_free(uap->dmarx.chan, &uap->dmarx.sgbuf_a, DMA_FROM_DEVICE);
1216 		pl011_sgbuf_free(uap->dmarx.chan, &uap->dmarx.sgbuf_b, DMA_FROM_DEVICE);
1217 		if (uap->dmarx.poll_rate)
1218 			del_timer_sync(&uap->dmarx.timer);
1219 		uap->using_rx_dma = false;
1220 	}
1221 }
1222 
1223 static inline bool pl011_dma_rx_available(struct uart_amba_port *uap)
1224 {
1225 	return uap->using_rx_dma;
1226 }
1227 
1228 static inline bool pl011_dma_rx_running(struct uart_amba_port *uap)
1229 {
1230 	return uap->using_rx_dma && uap->dmarx.running;
1231 }
1232 
1233 #else
1234 /* Blank functions if the DMA engine is not available */
1235 static inline void pl011_dma_remove(struct uart_amba_port *uap)
1236 {
1237 }
1238 
1239 static inline void pl011_dma_startup(struct uart_amba_port *uap)
1240 {
1241 }
1242 
1243 static inline void pl011_dma_shutdown(struct uart_amba_port *uap)
1244 {
1245 }
1246 
1247 static inline bool pl011_dma_tx_irq(struct uart_amba_port *uap)
1248 {
1249 	return false;
1250 }
1251 
1252 static inline void pl011_dma_tx_stop(struct uart_amba_port *uap)
1253 {
1254 }
1255 
1256 static inline bool pl011_dma_tx_start(struct uart_amba_port *uap)
1257 {
1258 	return false;
1259 }
1260 
1261 static inline void pl011_dma_rx_irq(struct uart_amba_port *uap)
1262 {
1263 }
1264 
1265 static inline void pl011_dma_rx_stop(struct uart_amba_port *uap)
1266 {
1267 }
1268 
1269 static inline int pl011_dma_rx_trigger_dma(struct uart_amba_port *uap)
1270 {
1271 	return -EIO;
1272 }
1273 
1274 static inline bool pl011_dma_rx_available(struct uart_amba_port *uap)
1275 {
1276 	return false;
1277 }
1278 
1279 static inline bool pl011_dma_rx_running(struct uart_amba_port *uap)
1280 {
1281 	return false;
1282 }
1283 
1284 #define pl011_dma_flush_buffer	NULL
1285 #endif
1286 
1287 static void pl011_rs485_tx_stop(struct uart_amba_port *uap)
1288 {
1289 	/*
1290 	 * To be on the safe side only time out after twice as many iterations
1291 	 * as fifo size.
1292 	 */
1293 	const int MAX_TX_DRAIN_ITERS = uap->port.fifosize * 2;
1294 	struct uart_port *port = &uap->port;
1295 	int i = 0;
1296 	u32 cr;
1297 
1298 	/* Wait until hardware tx queue is empty */
1299 	while (!pl011_tx_empty(port)) {
1300 		if (i > MAX_TX_DRAIN_ITERS) {
1301 			dev_warn(port->dev,
1302 				 "timeout while draining hardware tx queue\n");
1303 			break;
1304 		}
1305 
1306 		udelay(uap->rs485_tx_drain_interval);
1307 		i++;
1308 	}
1309 
1310 	if (port->rs485.delay_rts_after_send)
1311 		mdelay(port->rs485.delay_rts_after_send);
1312 
1313 	cr = pl011_read(uap, REG_CR);
1314 
1315 	if (port->rs485.flags & SER_RS485_RTS_AFTER_SEND)
1316 		cr &= ~UART011_CR_RTS;
1317 	else
1318 		cr |= UART011_CR_RTS;
1319 
1320 	/* Disable the transmitter and reenable the transceiver */
1321 	cr &= ~UART011_CR_TXE;
1322 	cr |= UART011_CR_RXE;
1323 	pl011_write(cr, uap, REG_CR);
1324 
1325 	uap->rs485_tx_started = false;
1326 }
1327 
1328 static void pl011_stop_tx(struct uart_port *port)
1329 {
1330 	struct uart_amba_port *uap =
1331 	    container_of(port, struct uart_amba_port, port);
1332 
1333 	uap->im &= ~UART011_TXIM;
1334 	pl011_write(uap->im, uap, REG_IMSC);
1335 	pl011_dma_tx_stop(uap);
1336 
1337 	if ((port->rs485.flags & SER_RS485_ENABLED) && uap->rs485_tx_started)
1338 		pl011_rs485_tx_stop(uap);
1339 }
1340 
1341 static bool pl011_tx_chars(struct uart_amba_port *uap, bool from_irq);
1342 
1343 /* Start TX with programmed I/O only (no DMA) */
1344 static void pl011_start_tx_pio(struct uart_amba_port *uap)
1345 {
1346 	if (pl011_tx_chars(uap, false)) {
1347 		uap->im |= UART011_TXIM;
1348 		pl011_write(uap->im, uap, REG_IMSC);
1349 	}
1350 }
1351 
1352 static void pl011_start_tx(struct uart_port *port)
1353 {
1354 	struct uart_amba_port *uap =
1355 	    container_of(port, struct uart_amba_port, port);
1356 
1357 	if (!pl011_dma_tx_start(uap))
1358 		pl011_start_tx_pio(uap);
1359 }
1360 
1361 static void pl011_stop_rx(struct uart_port *port)
1362 {
1363 	struct uart_amba_port *uap =
1364 	    container_of(port, struct uart_amba_port, port);
1365 
1366 	uap->im &= ~(UART011_RXIM|UART011_RTIM|UART011_FEIM|
1367 		     UART011_PEIM|UART011_BEIM|UART011_OEIM);
1368 	pl011_write(uap->im, uap, REG_IMSC);
1369 
1370 	pl011_dma_rx_stop(uap);
1371 }
1372 
1373 static void pl011_throttle_rx(struct uart_port *port)
1374 {
1375 	unsigned long flags;
1376 
1377 	spin_lock_irqsave(&port->lock, flags);
1378 	pl011_stop_rx(port);
1379 	spin_unlock_irqrestore(&port->lock, flags);
1380 }
1381 
1382 static void pl011_enable_ms(struct uart_port *port)
1383 {
1384 	struct uart_amba_port *uap =
1385 	    container_of(port, struct uart_amba_port, port);
1386 
1387 	uap->im |= UART011_RIMIM|UART011_CTSMIM|UART011_DCDMIM|UART011_DSRMIM;
1388 	pl011_write(uap->im, uap, REG_IMSC);
1389 }
1390 
1391 static void pl011_rx_chars(struct uart_amba_port *uap)
1392 __releases(&uap->port.lock)
1393 __acquires(&uap->port.lock)
1394 {
1395 	pl011_fifo_to_tty(uap);
1396 
1397 	spin_unlock(&uap->port.lock);
1398 	tty_flip_buffer_push(&uap->port.state->port);
1399 	/*
1400 	 * If we were temporarily out of DMA mode for a while,
1401 	 * attempt to switch back to DMA mode again.
1402 	 */
1403 	if (pl011_dma_rx_available(uap)) {
1404 		if (pl011_dma_rx_trigger_dma(uap)) {
1405 			dev_dbg(uap->port.dev, "could not trigger RX DMA job "
1406 				"fall back to interrupt mode again\n");
1407 			uap->im |= UART011_RXIM;
1408 			pl011_write(uap->im, uap, REG_IMSC);
1409 		} else {
1410 #ifdef CONFIG_DMA_ENGINE
1411 			/* Start Rx DMA poll */
1412 			if (uap->dmarx.poll_rate) {
1413 				uap->dmarx.last_jiffies = jiffies;
1414 				uap->dmarx.last_residue	= PL011_DMA_BUFFER_SIZE;
1415 				mod_timer(&uap->dmarx.timer,
1416 					jiffies +
1417 					msecs_to_jiffies(uap->dmarx.poll_rate));
1418 			}
1419 #endif
1420 		}
1421 	}
1422 	spin_lock(&uap->port.lock);
1423 }
1424 
1425 static bool pl011_tx_char(struct uart_amba_port *uap, unsigned char c,
1426 			  bool from_irq)
1427 {
1428 	if (unlikely(!from_irq) &&
1429 	    pl011_read(uap, REG_FR) & UART01x_FR_TXFF)
1430 		return false; /* unable to transmit character */
1431 
1432 	pl011_write(c, uap, REG_DR);
1433 	uap->port.icount.tx++;
1434 
1435 	return true;
1436 }
1437 
1438 static void pl011_rs485_tx_start(struct uart_amba_port *uap)
1439 {
1440 	struct uart_port *port = &uap->port;
1441 	u32 cr;
1442 
1443 	/* Enable transmitter */
1444 	cr = pl011_read(uap, REG_CR);
1445 	cr |= UART011_CR_TXE;
1446 
1447 	/* Disable receiver if half-duplex */
1448 	if (!(port->rs485.flags & SER_RS485_RX_DURING_TX))
1449 		cr &= ~UART011_CR_RXE;
1450 
1451 	if (port->rs485.flags & SER_RS485_RTS_ON_SEND)
1452 		cr &= ~UART011_CR_RTS;
1453 	else
1454 		cr |= UART011_CR_RTS;
1455 
1456 	pl011_write(cr, uap, REG_CR);
1457 
1458 	if (port->rs485.delay_rts_before_send)
1459 		mdelay(port->rs485.delay_rts_before_send);
1460 
1461 	uap->rs485_tx_started = true;
1462 }
1463 
1464 /* Returns true if tx interrupts have to be (kept) enabled  */
1465 static bool pl011_tx_chars(struct uart_amba_port *uap, bool from_irq)
1466 {
1467 	struct circ_buf *xmit = &uap->port.state->xmit;
1468 	int count = uap->fifosize >> 1;
1469 
1470 	if ((uap->port.rs485.flags & SER_RS485_ENABLED) &&
1471 	    !uap->rs485_tx_started)
1472 		pl011_rs485_tx_start(uap);
1473 
1474 	if (uap->port.x_char) {
1475 		if (!pl011_tx_char(uap, uap->port.x_char, from_irq))
1476 			return true;
1477 		uap->port.x_char = 0;
1478 		--count;
1479 	}
1480 	if (uart_circ_empty(xmit) || uart_tx_stopped(&uap->port)) {
1481 		pl011_stop_tx(&uap->port);
1482 		return false;
1483 	}
1484 
1485 	/* If we are using DMA mode, try to send some characters. */
1486 	if (pl011_dma_tx_irq(uap))
1487 		return true;
1488 
1489 	do {
1490 		if (likely(from_irq) && count-- == 0)
1491 			break;
1492 
1493 		if (!pl011_tx_char(uap, xmit->buf[xmit->tail], from_irq))
1494 			break;
1495 
1496 		xmit->tail = (xmit->tail + 1) & (UART_XMIT_SIZE - 1);
1497 	} while (!uart_circ_empty(xmit));
1498 
1499 	if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
1500 		uart_write_wakeup(&uap->port);
1501 
1502 	if (uart_circ_empty(xmit)) {
1503 		pl011_stop_tx(&uap->port);
1504 		return false;
1505 	}
1506 	return true;
1507 }
1508 
1509 static void pl011_modem_status(struct uart_amba_port *uap)
1510 {
1511 	unsigned int status, delta;
1512 
1513 	status = pl011_read(uap, REG_FR) & UART01x_FR_MODEM_ANY;
1514 
1515 	delta = status ^ uap->old_status;
1516 	uap->old_status = status;
1517 
1518 	if (!delta)
1519 		return;
1520 
1521 	if (delta & UART01x_FR_DCD)
1522 		uart_handle_dcd_change(&uap->port, status & UART01x_FR_DCD);
1523 
1524 	if (delta & uap->vendor->fr_dsr)
1525 		uap->port.icount.dsr++;
1526 
1527 	if (delta & uap->vendor->fr_cts)
1528 		uart_handle_cts_change(&uap->port,
1529 				       status & uap->vendor->fr_cts);
1530 
1531 	wake_up_interruptible(&uap->port.state->port.delta_msr_wait);
1532 }
1533 
1534 static void check_apply_cts_event_workaround(struct uart_amba_port *uap)
1535 {
1536 	if (!uap->vendor->cts_event_workaround)
1537 		return;
1538 
1539 	/* workaround to make sure that all bits are unlocked.. */
1540 	pl011_write(0x00, uap, REG_ICR);
1541 
1542 	/*
1543 	 * WA: introduce 26ns(1 uart clk) delay before W1C;
1544 	 * single apb access will incur 2 pclk(133.12Mhz) delay,
1545 	 * so add 2 dummy reads
1546 	 */
1547 	pl011_read(uap, REG_ICR);
1548 	pl011_read(uap, REG_ICR);
1549 }
1550 
1551 static irqreturn_t pl011_int(int irq, void *dev_id)
1552 {
1553 	struct uart_amba_port *uap = dev_id;
1554 	unsigned long flags;
1555 	unsigned int status, pass_counter = AMBA_ISR_PASS_LIMIT;
1556 	int handled = 0;
1557 
1558 	spin_lock_irqsave(&uap->port.lock, flags);
1559 	status = pl011_read(uap, REG_RIS) & uap->im;
1560 	if (status) {
1561 		do {
1562 			check_apply_cts_event_workaround(uap);
1563 
1564 			pl011_write(status & ~(UART011_TXIS|UART011_RTIS|
1565 					       UART011_RXIS),
1566 				    uap, REG_ICR);
1567 
1568 			if (status & (UART011_RTIS|UART011_RXIS)) {
1569 				if (pl011_dma_rx_running(uap))
1570 					pl011_dma_rx_irq(uap);
1571 				else
1572 					pl011_rx_chars(uap);
1573 			}
1574 			if (status & (UART011_DSRMIS|UART011_DCDMIS|
1575 				      UART011_CTSMIS|UART011_RIMIS))
1576 				pl011_modem_status(uap);
1577 			if (status & UART011_TXIS)
1578 				pl011_tx_chars(uap, true);
1579 
1580 			if (pass_counter-- == 0)
1581 				break;
1582 
1583 			status = pl011_read(uap, REG_RIS) & uap->im;
1584 		} while (status != 0);
1585 		handled = 1;
1586 	}
1587 
1588 	spin_unlock_irqrestore(&uap->port.lock, flags);
1589 
1590 	return IRQ_RETVAL(handled);
1591 }
1592 
1593 static unsigned int pl011_tx_empty(struct uart_port *port)
1594 {
1595 	struct uart_amba_port *uap =
1596 	    container_of(port, struct uart_amba_port, port);
1597 
1598 	/* Allow feature register bits to be inverted to work around errata */
1599 	unsigned int status = pl011_read(uap, REG_FR) ^ uap->vendor->inv_fr;
1600 
1601 	return status & (uap->vendor->fr_busy | UART01x_FR_TXFF) ?
1602 							0 : TIOCSER_TEMT;
1603 }
1604 
1605 static unsigned int pl011_get_mctrl(struct uart_port *port)
1606 {
1607 	struct uart_amba_port *uap =
1608 	    container_of(port, struct uart_amba_port, port);
1609 	unsigned int result = 0;
1610 	unsigned int status = pl011_read(uap, REG_FR);
1611 
1612 #define TIOCMBIT(uartbit, tiocmbit)	\
1613 	if (status & uartbit)		\
1614 		result |= tiocmbit
1615 
1616 	TIOCMBIT(UART01x_FR_DCD, TIOCM_CAR);
1617 	TIOCMBIT(uap->vendor->fr_dsr, TIOCM_DSR);
1618 	TIOCMBIT(uap->vendor->fr_cts, TIOCM_CTS);
1619 	TIOCMBIT(uap->vendor->fr_ri, TIOCM_RNG);
1620 #undef TIOCMBIT
1621 	return result;
1622 }
1623 
1624 static void pl011_set_mctrl(struct uart_port *port, unsigned int mctrl)
1625 {
1626 	struct uart_amba_port *uap =
1627 	    container_of(port, struct uart_amba_port, port);
1628 	unsigned int cr;
1629 
1630 	cr = pl011_read(uap, REG_CR);
1631 
1632 #define	TIOCMBIT(tiocmbit, uartbit)		\
1633 	if (mctrl & tiocmbit)		\
1634 		cr |= uartbit;		\
1635 	else				\
1636 		cr &= ~uartbit
1637 
1638 	TIOCMBIT(TIOCM_RTS, UART011_CR_RTS);
1639 	TIOCMBIT(TIOCM_DTR, UART011_CR_DTR);
1640 	TIOCMBIT(TIOCM_OUT1, UART011_CR_OUT1);
1641 	TIOCMBIT(TIOCM_OUT2, UART011_CR_OUT2);
1642 	TIOCMBIT(TIOCM_LOOP, UART011_CR_LBE);
1643 
1644 	if (port->status & UPSTAT_AUTORTS) {
1645 		/* We need to disable auto-RTS if we want to turn RTS off */
1646 		TIOCMBIT(TIOCM_RTS, UART011_CR_RTSEN);
1647 	}
1648 #undef TIOCMBIT
1649 
1650 	pl011_write(cr, uap, REG_CR);
1651 }
1652 
1653 static void pl011_break_ctl(struct uart_port *port, int break_state)
1654 {
1655 	struct uart_amba_port *uap =
1656 	    container_of(port, struct uart_amba_port, port);
1657 	unsigned long flags;
1658 	unsigned int lcr_h;
1659 
1660 	spin_lock_irqsave(&uap->port.lock, flags);
1661 	lcr_h = pl011_read(uap, REG_LCRH_TX);
1662 	if (break_state == -1)
1663 		lcr_h |= UART01x_LCRH_BRK;
1664 	else
1665 		lcr_h &= ~UART01x_LCRH_BRK;
1666 	pl011_write(lcr_h, uap, REG_LCRH_TX);
1667 	spin_unlock_irqrestore(&uap->port.lock, flags);
1668 }
1669 
1670 #ifdef CONFIG_CONSOLE_POLL
1671 
1672 static void pl011_quiesce_irqs(struct uart_port *port)
1673 {
1674 	struct uart_amba_port *uap =
1675 	    container_of(port, struct uart_amba_port, port);
1676 
1677 	pl011_write(pl011_read(uap, REG_MIS), uap, REG_ICR);
1678 	/*
1679 	 * There is no way to clear TXIM as this is "ready to transmit IRQ", so
1680 	 * we simply mask it. start_tx() will unmask it.
1681 	 *
1682 	 * Note we can race with start_tx(), and if the race happens, the
1683 	 * polling user might get another interrupt just after we clear it.
1684 	 * But it should be OK and can happen even w/o the race, e.g.
1685 	 * controller immediately got some new data and raised the IRQ.
1686 	 *
1687 	 * And whoever uses polling routines assumes that it manages the device
1688 	 * (including tx queue), so we're also fine with start_tx()'s caller
1689 	 * side.
1690 	 */
1691 	pl011_write(pl011_read(uap, REG_IMSC) & ~UART011_TXIM, uap,
1692 		    REG_IMSC);
1693 }
1694 
1695 static int pl011_get_poll_char(struct uart_port *port)
1696 {
1697 	struct uart_amba_port *uap =
1698 	    container_of(port, struct uart_amba_port, port);
1699 	unsigned int status;
1700 
1701 	/*
1702 	 * The caller might need IRQs lowered, e.g. if used with KDB NMI
1703 	 * debugger.
1704 	 */
1705 	pl011_quiesce_irqs(port);
1706 
1707 	status = pl011_read(uap, REG_FR);
1708 	if (status & UART01x_FR_RXFE)
1709 		return NO_POLL_CHAR;
1710 
1711 	return pl011_read(uap, REG_DR);
1712 }
1713 
1714 static void pl011_put_poll_char(struct uart_port *port,
1715 			 unsigned char ch)
1716 {
1717 	struct uart_amba_port *uap =
1718 	    container_of(port, struct uart_amba_port, port);
1719 
1720 	while (pl011_read(uap, REG_FR) & UART01x_FR_TXFF)
1721 		cpu_relax();
1722 
1723 	pl011_write(ch, uap, REG_DR);
1724 }
1725 
1726 #endif /* CONFIG_CONSOLE_POLL */
1727 
1728 static int pl011_hwinit(struct uart_port *port)
1729 {
1730 	struct uart_amba_port *uap =
1731 	    container_of(port, struct uart_amba_port, port);
1732 	int retval;
1733 
1734 	/* Optionaly enable pins to be muxed in and configured */
1735 	pinctrl_pm_select_default_state(port->dev);
1736 
1737 	/*
1738 	 * Try to enable the clock producer.
1739 	 */
1740 	retval = clk_prepare_enable(uap->clk);
1741 	if (retval)
1742 		return retval;
1743 
1744 	uap->port.uartclk = clk_get_rate(uap->clk);
1745 
1746 	/* Clear pending error and receive interrupts */
1747 	pl011_write(UART011_OEIS | UART011_BEIS | UART011_PEIS |
1748 		    UART011_FEIS | UART011_RTIS | UART011_RXIS,
1749 		    uap, REG_ICR);
1750 
1751 	/*
1752 	 * Save interrupts enable mask, and enable RX interrupts in case if
1753 	 * the interrupt is used for NMI entry.
1754 	 */
1755 	uap->im = pl011_read(uap, REG_IMSC);
1756 	pl011_write(UART011_RTIM | UART011_RXIM, uap, REG_IMSC);
1757 
1758 	if (dev_get_platdata(uap->port.dev)) {
1759 		struct amba_pl011_data *plat;
1760 
1761 		plat = dev_get_platdata(uap->port.dev);
1762 		if (plat->init)
1763 			plat->init();
1764 	}
1765 	return 0;
1766 }
1767 
1768 static bool pl011_split_lcrh(const struct uart_amba_port *uap)
1769 {
1770 	return pl011_reg_to_offset(uap, REG_LCRH_RX) !=
1771 	       pl011_reg_to_offset(uap, REG_LCRH_TX);
1772 }
1773 
1774 static void pl011_write_lcr_h(struct uart_amba_port *uap, unsigned int lcr_h)
1775 {
1776 	pl011_write(lcr_h, uap, REG_LCRH_RX);
1777 	if (pl011_split_lcrh(uap)) {
1778 		int i;
1779 		/*
1780 		 * Wait 10 PCLKs before writing LCRH_TX register,
1781 		 * to get this delay write read only register 10 times
1782 		 */
1783 		for (i = 0; i < 10; ++i)
1784 			pl011_write(0xff, uap, REG_MIS);
1785 		pl011_write(lcr_h, uap, REG_LCRH_TX);
1786 	}
1787 }
1788 
1789 static int pl011_allocate_irq(struct uart_amba_port *uap)
1790 {
1791 	pl011_write(uap->im, uap, REG_IMSC);
1792 
1793 	return request_irq(uap->port.irq, pl011_int, IRQF_SHARED, "uart-pl011", uap);
1794 }
1795 
1796 /*
1797  * Enable interrupts, only timeouts when using DMA
1798  * if initial RX DMA job failed, start in interrupt mode
1799  * as well.
1800  */
1801 static void pl011_enable_interrupts(struct uart_amba_port *uap)
1802 {
1803 	unsigned long flags;
1804 	unsigned int i;
1805 
1806 	spin_lock_irqsave(&uap->port.lock, flags);
1807 
1808 	/* Clear out any spuriously appearing RX interrupts */
1809 	pl011_write(UART011_RTIS | UART011_RXIS, uap, REG_ICR);
1810 
1811 	/*
1812 	 * RXIS is asserted only when the RX FIFO transitions from below
1813 	 * to above the trigger threshold.  If the RX FIFO is already
1814 	 * full to the threshold this can't happen and RXIS will now be
1815 	 * stuck off.  Drain the RX FIFO explicitly to fix this:
1816 	 */
1817 	for (i = 0; i < uap->fifosize * 2; ++i) {
1818 		if (pl011_read(uap, REG_FR) & UART01x_FR_RXFE)
1819 			break;
1820 
1821 		pl011_read(uap, REG_DR);
1822 	}
1823 
1824 	uap->im = UART011_RTIM;
1825 	if (!pl011_dma_rx_running(uap))
1826 		uap->im |= UART011_RXIM;
1827 	pl011_write(uap->im, uap, REG_IMSC);
1828 	spin_unlock_irqrestore(&uap->port.lock, flags);
1829 }
1830 
1831 static void pl011_unthrottle_rx(struct uart_port *port)
1832 {
1833 	struct uart_amba_port *uap = container_of(port, struct uart_amba_port, port);
1834 	unsigned long flags;
1835 
1836 	spin_lock_irqsave(&uap->port.lock, flags);
1837 
1838 	uap->im = UART011_RTIM;
1839 	if (!pl011_dma_rx_running(uap))
1840 		uap->im |= UART011_RXIM;
1841 
1842 	pl011_write(uap->im, uap, REG_IMSC);
1843 
1844 	spin_unlock_irqrestore(&uap->port.lock, flags);
1845 }
1846 
1847 static int pl011_startup(struct uart_port *port)
1848 {
1849 	struct uart_amba_port *uap =
1850 	    container_of(port, struct uart_amba_port, port);
1851 	unsigned int cr;
1852 	int retval;
1853 
1854 	retval = pl011_hwinit(port);
1855 	if (retval)
1856 		goto clk_dis;
1857 
1858 	retval = pl011_allocate_irq(uap);
1859 	if (retval)
1860 		goto clk_dis;
1861 
1862 	pl011_write(uap->vendor->ifls, uap, REG_IFLS);
1863 
1864 	spin_lock_irq(&uap->port.lock);
1865 
1866 	cr = pl011_read(uap, REG_CR);
1867 	cr &= UART011_CR_RTS | UART011_CR_DTR;
1868 	cr |= UART01x_CR_UARTEN | UART011_CR_RXE;
1869 
1870 	if (!(port->rs485.flags & SER_RS485_ENABLED))
1871 		cr |= UART011_CR_TXE;
1872 
1873 	pl011_write(cr, uap, REG_CR);
1874 
1875 	spin_unlock_irq(&uap->port.lock);
1876 
1877 	/*
1878 	 * initialise the old status of the modem signals
1879 	 */
1880 	uap->old_status = pl011_read(uap, REG_FR) & UART01x_FR_MODEM_ANY;
1881 
1882 	/* Startup DMA */
1883 	pl011_dma_startup(uap);
1884 
1885 	pl011_enable_interrupts(uap);
1886 
1887 	return 0;
1888 
1889  clk_dis:
1890 	clk_disable_unprepare(uap->clk);
1891 	return retval;
1892 }
1893 
1894 static int sbsa_uart_startup(struct uart_port *port)
1895 {
1896 	struct uart_amba_port *uap =
1897 		container_of(port, struct uart_amba_port, port);
1898 	int retval;
1899 
1900 	retval = pl011_hwinit(port);
1901 	if (retval)
1902 		return retval;
1903 
1904 	retval = pl011_allocate_irq(uap);
1905 	if (retval)
1906 		return retval;
1907 
1908 	/* The SBSA UART does not support any modem status lines. */
1909 	uap->old_status = 0;
1910 
1911 	pl011_enable_interrupts(uap);
1912 
1913 	return 0;
1914 }
1915 
1916 static void pl011_shutdown_channel(struct uart_amba_port *uap,
1917 					unsigned int lcrh)
1918 {
1919       unsigned long val;
1920 
1921       val = pl011_read(uap, lcrh);
1922       val &= ~(UART01x_LCRH_BRK | UART01x_LCRH_FEN);
1923       pl011_write(val, uap, lcrh);
1924 }
1925 
1926 /*
1927  * disable the port. It should not disable RTS and DTR.
1928  * Also RTS and DTR state should be preserved to restore
1929  * it during startup().
1930  */
1931 static void pl011_disable_uart(struct uart_amba_port *uap)
1932 {
1933 	unsigned int cr;
1934 
1935 	uap->port.status &= ~(UPSTAT_AUTOCTS | UPSTAT_AUTORTS);
1936 	spin_lock_irq(&uap->port.lock);
1937 	cr = pl011_read(uap, REG_CR);
1938 	cr &= UART011_CR_RTS | UART011_CR_DTR;
1939 	cr |= UART01x_CR_UARTEN | UART011_CR_TXE;
1940 	pl011_write(cr, uap, REG_CR);
1941 	spin_unlock_irq(&uap->port.lock);
1942 
1943 	/*
1944 	 * disable break condition and fifos
1945 	 */
1946 	pl011_shutdown_channel(uap, REG_LCRH_RX);
1947 	if (pl011_split_lcrh(uap))
1948 		pl011_shutdown_channel(uap, REG_LCRH_TX);
1949 }
1950 
1951 static void pl011_disable_interrupts(struct uart_amba_port *uap)
1952 {
1953 	spin_lock_irq(&uap->port.lock);
1954 
1955 	/* mask all interrupts and clear all pending ones */
1956 	uap->im = 0;
1957 	pl011_write(uap->im, uap, REG_IMSC);
1958 	pl011_write(0xffff, uap, REG_ICR);
1959 
1960 	spin_unlock_irq(&uap->port.lock);
1961 }
1962 
1963 static void pl011_shutdown(struct uart_port *port)
1964 {
1965 	struct uart_amba_port *uap =
1966 		container_of(port, struct uart_amba_port, port);
1967 
1968 	pl011_disable_interrupts(uap);
1969 
1970 	pl011_dma_shutdown(uap);
1971 
1972 	if ((port->rs485.flags & SER_RS485_ENABLED) && uap->rs485_tx_started)
1973 		pl011_rs485_tx_stop(uap);
1974 
1975 	free_irq(uap->port.irq, uap);
1976 
1977 	pl011_disable_uart(uap);
1978 
1979 	/*
1980 	 * Shut down the clock producer
1981 	 */
1982 	clk_disable_unprepare(uap->clk);
1983 	/* Optionally let pins go into sleep states */
1984 	pinctrl_pm_select_sleep_state(port->dev);
1985 
1986 	if (dev_get_platdata(uap->port.dev)) {
1987 		struct amba_pl011_data *plat;
1988 
1989 		plat = dev_get_platdata(uap->port.dev);
1990 		if (plat->exit)
1991 			plat->exit();
1992 	}
1993 
1994 	if (uap->port.ops->flush_buffer)
1995 		uap->port.ops->flush_buffer(port);
1996 }
1997 
1998 static void sbsa_uart_shutdown(struct uart_port *port)
1999 {
2000 	struct uart_amba_port *uap =
2001 		container_of(port, struct uart_amba_port, port);
2002 
2003 	pl011_disable_interrupts(uap);
2004 
2005 	free_irq(uap->port.irq, uap);
2006 
2007 	if (uap->port.ops->flush_buffer)
2008 		uap->port.ops->flush_buffer(port);
2009 }
2010 
2011 static void
2012 pl011_setup_status_masks(struct uart_port *port, struct ktermios *termios)
2013 {
2014 	port->read_status_mask = UART011_DR_OE | 255;
2015 	if (termios->c_iflag & INPCK)
2016 		port->read_status_mask |= UART011_DR_FE | UART011_DR_PE;
2017 	if (termios->c_iflag & (IGNBRK | BRKINT | PARMRK))
2018 		port->read_status_mask |= UART011_DR_BE;
2019 
2020 	/*
2021 	 * Characters to ignore
2022 	 */
2023 	port->ignore_status_mask = 0;
2024 	if (termios->c_iflag & IGNPAR)
2025 		port->ignore_status_mask |= UART011_DR_FE | UART011_DR_PE;
2026 	if (termios->c_iflag & IGNBRK) {
2027 		port->ignore_status_mask |= UART011_DR_BE;
2028 		/*
2029 		 * If we're ignoring parity and break indicators,
2030 		 * ignore overruns too (for real raw support).
2031 		 */
2032 		if (termios->c_iflag & IGNPAR)
2033 			port->ignore_status_mask |= UART011_DR_OE;
2034 	}
2035 
2036 	/*
2037 	 * Ignore all characters if CREAD is not set.
2038 	 */
2039 	if ((termios->c_cflag & CREAD) == 0)
2040 		port->ignore_status_mask |= UART_DUMMY_DR_RX;
2041 }
2042 
2043 static void
2044 pl011_set_termios(struct uart_port *port, struct ktermios *termios,
2045 		  const struct ktermios *old)
2046 {
2047 	struct uart_amba_port *uap =
2048 	    container_of(port, struct uart_amba_port, port);
2049 	unsigned int lcr_h, old_cr;
2050 	unsigned long flags;
2051 	unsigned int baud, quot, clkdiv;
2052 	unsigned int bits;
2053 
2054 	if (uap->vendor->oversampling)
2055 		clkdiv = 8;
2056 	else
2057 		clkdiv = 16;
2058 
2059 	/*
2060 	 * Ask the core to calculate the divisor for us.
2061 	 */
2062 	baud = uart_get_baud_rate(port, termios, old, 0,
2063 				  port->uartclk / clkdiv);
2064 #ifdef CONFIG_DMA_ENGINE
2065 	/*
2066 	 * Adjust RX DMA polling rate with baud rate if not specified.
2067 	 */
2068 	if (uap->dmarx.auto_poll_rate)
2069 		uap->dmarx.poll_rate = DIV_ROUND_UP(10000000, baud);
2070 #endif
2071 
2072 	if (baud > port->uartclk/16)
2073 		quot = DIV_ROUND_CLOSEST(port->uartclk * 8, baud);
2074 	else
2075 		quot = DIV_ROUND_CLOSEST(port->uartclk * 4, baud);
2076 
2077 	switch (termios->c_cflag & CSIZE) {
2078 	case CS5:
2079 		lcr_h = UART01x_LCRH_WLEN_5;
2080 		break;
2081 	case CS6:
2082 		lcr_h = UART01x_LCRH_WLEN_6;
2083 		break;
2084 	case CS7:
2085 		lcr_h = UART01x_LCRH_WLEN_7;
2086 		break;
2087 	default: // CS8
2088 		lcr_h = UART01x_LCRH_WLEN_8;
2089 		break;
2090 	}
2091 	if (termios->c_cflag & CSTOPB)
2092 		lcr_h |= UART01x_LCRH_STP2;
2093 	if (termios->c_cflag & PARENB) {
2094 		lcr_h |= UART01x_LCRH_PEN;
2095 		if (!(termios->c_cflag & PARODD))
2096 			lcr_h |= UART01x_LCRH_EPS;
2097 		if (termios->c_cflag & CMSPAR)
2098 			lcr_h |= UART011_LCRH_SPS;
2099 	}
2100 	if (uap->fifosize > 1)
2101 		lcr_h |= UART01x_LCRH_FEN;
2102 
2103 	bits = tty_get_frame_size(termios->c_cflag);
2104 
2105 	spin_lock_irqsave(&port->lock, flags);
2106 
2107 	/*
2108 	 * Update the per-port timeout.
2109 	 */
2110 	uart_update_timeout(port, termios->c_cflag, baud);
2111 
2112 	/*
2113 	 * Calculate the approximated time it takes to transmit one character
2114 	 * with the given baud rate. We use this as the poll interval when we
2115 	 * wait for the tx queue to empty.
2116 	 */
2117 	uap->rs485_tx_drain_interval = DIV_ROUND_UP(bits * 1000 * 1000, baud);
2118 
2119 	pl011_setup_status_masks(port, termios);
2120 
2121 	if (UART_ENABLE_MS(port, termios->c_cflag))
2122 		pl011_enable_ms(port);
2123 
2124 	if (port->rs485.flags & SER_RS485_ENABLED)
2125 		termios->c_cflag &= ~CRTSCTS;
2126 
2127 	old_cr = pl011_read(uap, REG_CR);
2128 
2129 	if (termios->c_cflag & CRTSCTS) {
2130 		if (old_cr & UART011_CR_RTS)
2131 			old_cr |= UART011_CR_RTSEN;
2132 
2133 		old_cr |= UART011_CR_CTSEN;
2134 		port->status |= UPSTAT_AUTOCTS | UPSTAT_AUTORTS;
2135 	} else {
2136 		old_cr &= ~(UART011_CR_CTSEN | UART011_CR_RTSEN);
2137 		port->status &= ~(UPSTAT_AUTOCTS | UPSTAT_AUTORTS);
2138 	}
2139 
2140 	if (uap->vendor->oversampling) {
2141 		if (baud > port->uartclk / 16)
2142 			old_cr |= ST_UART011_CR_OVSFACT;
2143 		else
2144 			old_cr &= ~ST_UART011_CR_OVSFACT;
2145 	}
2146 
2147 	/*
2148 	 * Workaround for the ST Micro oversampling variants to
2149 	 * increase the bitrate slightly, by lowering the divisor,
2150 	 * to avoid delayed sampling of start bit at high speeds,
2151 	 * else we see data corruption.
2152 	 */
2153 	if (uap->vendor->oversampling) {
2154 		if ((baud >= 3000000) && (baud < 3250000) && (quot > 1))
2155 			quot -= 1;
2156 		else if ((baud > 3250000) && (quot > 2))
2157 			quot -= 2;
2158 	}
2159 	/* Set baud rate */
2160 	pl011_write(quot & 0x3f, uap, REG_FBRD);
2161 	pl011_write(quot >> 6, uap, REG_IBRD);
2162 
2163 	/*
2164 	 * ----------v----------v----------v----------v-----
2165 	 * NOTE: REG_LCRH_TX and REG_LCRH_RX MUST BE WRITTEN AFTER
2166 	 * REG_FBRD & REG_IBRD.
2167 	 * ----------^----------^----------^----------^-----
2168 	 */
2169 	pl011_write_lcr_h(uap, lcr_h);
2170 
2171 	/*
2172 	 * Receive was disabled by pl011_disable_uart during shutdown.
2173 	 * Need to reenable receive if you need to use a tty_driver
2174 	 * returns from tty_find_polling_driver() after a port shutdown.
2175 	 */
2176 	old_cr |= UART011_CR_RXE;
2177 	pl011_write(old_cr, uap, REG_CR);
2178 
2179 	spin_unlock_irqrestore(&port->lock, flags);
2180 }
2181 
2182 static void
2183 sbsa_uart_set_termios(struct uart_port *port, struct ktermios *termios,
2184 		      const struct ktermios *old)
2185 {
2186 	struct uart_amba_port *uap =
2187 	    container_of(port, struct uart_amba_port, port);
2188 	unsigned long flags;
2189 
2190 	tty_termios_encode_baud_rate(termios, uap->fixed_baud, uap->fixed_baud);
2191 
2192 	/* The SBSA UART only supports 8n1 without hardware flow control. */
2193 	termios->c_cflag &= ~(CSIZE | CSTOPB | PARENB | PARODD);
2194 	termios->c_cflag &= ~(CMSPAR | CRTSCTS);
2195 	termios->c_cflag |= CS8 | CLOCAL;
2196 
2197 	spin_lock_irqsave(&port->lock, flags);
2198 	uart_update_timeout(port, CS8, uap->fixed_baud);
2199 	pl011_setup_status_masks(port, termios);
2200 	spin_unlock_irqrestore(&port->lock, flags);
2201 }
2202 
2203 static const char *pl011_type(struct uart_port *port)
2204 {
2205 	struct uart_amba_port *uap =
2206 	    container_of(port, struct uart_amba_port, port);
2207 	return uap->port.type == PORT_AMBA ? uap->type : NULL;
2208 }
2209 
2210 /*
2211  * Configure/autoconfigure the port.
2212  */
2213 static void pl011_config_port(struct uart_port *port, int flags)
2214 {
2215 	if (flags & UART_CONFIG_TYPE)
2216 		port->type = PORT_AMBA;
2217 }
2218 
2219 /*
2220  * verify the new serial_struct (for TIOCSSERIAL).
2221  */
2222 static int pl011_verify_port(struct uart_port *port, struct serial_struct *ser)
2223 {
2224 	int ret = 0;
2225 	if (ser->type != PORT_UNKNOWN && ser->type != PORT_AMBA)
2226 		ret = -EINVAL;
2227 	if (ser->irq < 0 || ser->irq >= nr_irqs)
2228 		ret = -EINVAL;
2229 	if (ser->baud_base < 9600)
2230 		ret = -EINVAL;
2231 	if (port->mapbase != (unsigned long) ser->iomem_base)
2232 		ret = -EINVAL;
2233 	return ret;
2234 }
2235 
2236 static int pl011_rs485_config(struct uart_port *port, struct ktermios *termios,
2237 			      struct serial_rs485 *rs485)
2238 {
2239 	struct uart_amba_port *uap =
2240 		container_of(port, struct uart_amba_port, port);
2241 
2242 	if (port->rs485.flags & SER_RS485_ENABLED)
2243 		pl011_rs485_tx_stop(uap);
2244 
2245 	/* Make sure auto RTS is disabled */
2246 	if (rs485->flags & SER_RS485_ENABLED) {
2247 		u32 cr = pl011_read(uap, REG_CR);
2248 
2249 		cr &= ~UART011_CR_RTSEN;
2250 		pl011_write(cr, uap, REG_CR);
2251 		port->status &= ~UPSTAT_AUTORTS;
2252 	}
2253 
2254 	return 0;
2255 }
2256 
2257 static const struct uart_ops amba_pl011_pops = {
2258 	.tx_empty	= pl011_tx_empty,
2259 	.set_mctrl	= pl011_set_mctrl,
2260 	.get_mctrl	= pl011_get_mctrl,
2261 	.stop_tx	= pl011_stop_tx,
2262 	.start_tx	= pl011_start_tx,
2263 	.stop_rx	= pl011_stop_rx,
2264 	.throttle	= pl011_throttle_rx,
2265 	.unthrottle	= pl011_unthrottle_rx,
2266 	.enable_ms	= pl011_enable_ms,
2267 	.break_ctl	= pl011_break_ctl,
2268 	.startup	= pl011_startup,
2269 	.shutdown	= pl011_shutdown,
2270 	.flush_buffer	= pl011_dma_flush_buffer,
2271 	.set_termios	= pl011_set_termios,
2272 	.type		= pl011_type,
2273 	.config_port	= pl011_config_port,
2274 	.verify_port	= pl011_verify_port,
2275 #ifdef CONFIG_CONSOLE_POLL
2276 	.poll_init     = pl011_hwinit,
2277 	.poll_get_char = pl011_get_poll_char,
2278 	.poll_put_char = pl011_put_poll_char,
2279 #endif
2280 };
2281 
2282 static void sbsa_uart_set_mctrl(struct uart_port *port, unsigned int mctrl)
2283 {
2284 }
2285 
2286 static unsigned int sbsa_uart_get_mctrl(struct uart_port *port)
2287 {
2288 	return 0;
2289 }
2290 
2291 static const struct uart_ops sbsa_uart_pops = {
2292 	.tx_empty	= pl011_tx_empty,
2293 	.set_mctrl	= sbsa_uart_set_mctrl,
2294 	.get_mctrl	= sbsa_uart_get_mctrl,
2295 	.stop_tx	= pl011_stop_tx,
2296 	.start_tx	= pl011_start_tx,
2297 	.stop_rx	= pl011_stop_rx,
2298 	.startup	= sbsa_uart_startup,
2299 	.shutdown	= sbsa_uart_shutdown,
2300 	.set_termios	= sbsa_uart_set_termios,
2301 	.type		= pl011_type,
2302 	.config_port	= pl011_config_port,
2303 	.verify_port	= pl011_verify_port,
2304 #ifdef CONFIG_CONSOLE_POLL
2305 	.poll_init     = pl011_hwinit,
2306 	.poll_get_char = pl011_get_poll_char,
2307 	.poll_put_char = pl011_put_poll_char,
2308 #endif
2309 };
2310 
2311 static struct uart_amba_port *amba_ports[UART_NR];
2312 
2313 #ifdef CONFIG_SERIAL_AMBA_PL011_CONSOLE
2314 
2315 static void pl011_console_putchar(struct uart_port *port, unsigned char ch)
2316 {
2317 	struct uart_amba_port *uap =
2318 	    container_of(port, struct uart_amba_port, port);
2319 
2320 	while (pl011_read(uap, REG_FR) & UART01x_FR_TXFF)
2321 		cpu_relax();
2322 	pl011_write(ch, uap, REG_DR);
2323 }
2324 
2325 static void
2326 pl011_console_write(struct console *co, const char *s, unsigned int count)
2327 {
2328 	struct uart_amba_port *uap = amba_ports[co->index];
2329 	unsigned int old_cr = 0, new_cr;
2330 	unsigned long flags;
2331 	int locked = 1;
2332 
2333 	clk_enable(uap->clk);
2334 
2335 	local_irq_save(flags);
2336 	if (uap->port.sysrq)
2337 		locked = 0;
2338 	else if (oops_in_progress)
2339 		locked = spin_trylock(&uap->port.lock);
2340 	else
2341 		spin_lock(&uap->port.lock);
2342 
2343 	/*
2344 	 *	First save the CR then disable the interrupts
2345 	 */
2346 	if (!uap->vendor->always_enabled) {
2347 		old_cr = pl011_read(uap, REG_CR);
2348 		new_cr = old_cr & ~UART011_CR_CTSEN;
2349 		new_cr |= UART01x_CR_UARTEN | UART011_CR_TXE;
2350 		pl011_write(new_cr, uap, REG_CR);
2351 	}
2352 
2353 	uart_console_write(&uap->port, s, count, pl011_console_putchar);
2354 
2355 	/*
2356 	 *	Finally, wait for transmitter to become empty and restore the
2357 	 *	TCR. Allow feature register bits to be inverted to work around
2358 	 *	errata.
2359 	 */
2360 	while ((pl011_read(uap, REG_FR) ^ uap->vendor->inv_fr)
2361 						& uap->vendor->fr_busy)
2362 		cpu_relax();
2363 	if (!uap->vendor->always_enabled)
2364 		pl011_write(old_cr, uap, REG_CR);
2365 
2366 	if (locked)
2367 		spin_unlock(&uap->port.lock);
2368 	local_irq_restore(flags);
2369 
2370 	clk_disable(uap->clk);
2371 }
2372 
2373 static void pl011_console_get_options(struct uart_amba_port *uap, int *baud,
2374 				      int *parity, int *bits)
2375 {
2376 	if (pl011_read(uap, REG_CR) & UART01x_CR_UARTEN) {
2377 		unsigned int lcr_h, ibrd, fbrd;
2378 
2379 		lcr_h = pl011_read(uap, REG_LCRH_TX);
2380 
2381 		*parity = 'n';
2382 		if (lcr_h & UART01x_LCRH_PEN) {
2383 			if (lcr_h & UART01x_LCRH_EPS)
2384 				*parity = 'e';
2385 			else
2386 				*parity = 'o';
2387 		}
2388 
2389 		if ((lcr_h & 0x60) == UART01x_LCRH_WLEN_7)
2390 			*bits = 7;
2391 		else
2392 			*bits = 8;
2393 
2394 		ibrd = pl011_read(uap, REG_IBRD);
2395 		fbrd = pl011_read(uap, REG_FBRD);
2396 
2397 		*baud = uap->port.uartclk * 4 / (64 * ibrd + fbrd);
2398 
2399 		if (uap->vendor->oversampling) {
2400 			if (pl011_read(uap, REG_CR)
2401 				  & ST_UART011_CR_OVSFACT)
2402 				*baud *= 2;
2403 		}
2404 	}
2405 }
2406 
2407 static int pl011_console_setup(struct console *co, char *options)
2408 {
2409 	struct uart_amba_port *uap;
2410 	int baud = 38400;
2411 	int bits = 8;
2412 	int parity = 'n';
2413 	int flow = 'n';
2414 	int ret;
2415 
2416 	/*
2417 	 * Check whether an invalid uart number has been specified, and
2418 	 * if so, search for the first available port that does have
2419 	 * console support.
2420 	 */
2421 	if (co->index >= UART_NR)
2422 		co->index = 0;
2423 	uap = amba_ports[co->index];
2424 	if (!uap)
2425 		return -ENODEV;
2426 
2427 	/* Allow pins to be muxed in and configured */
2428 	pinctrl_pm_select_default_state(uap->port.dev);
2429 
2430 	ret = clk_prepare(uap->clk);
2431 	if (ret)
2432 		return ret;
2433 
2434 	if (dev_get_platdata(uap->port.dev)) {
2435 		struct amba_pl011_data *plat;
2436 
2437 		plat = dev_get_platdata(uap->port.dev);
2438 		if (plat->init)
2439 			plat->init();
2440 	}
2441 
2442 	uap->port.uartclk = clk_get_rate(uap->clk);
2443 
2444 	if (uap->vendor->fixed_options) {
2445 		baud = uap->fixed_baud;
2446 	} else {
2447 		if (options)
2448 			uart_parse_options(options,
2449 					   &baud, &parity, &bits, &flow);
2450 		else
2451 			pl011_console_get_options(uap, &baud, &parity, &bits);
2452 	}
2453 
2454 	return uart_set_options(&uap->port, co, baud, parity, bits, flow);
2455 }
2456 
2457 /**
2458  *	pl011_console_match - non-standard console matching
2459  *	@co:	  registering console
2460  *	@name:	  name from console command line
2461  *	@idx:	  index from console command line
2462  *	@options: ptr to option string from console command line
2463  *
2464  *	Only attempts to match console command lines of the form:
2465  *	    console=pl011,mmio|mmio32,<addr>[,<options>]
2466  *	    console=pl011,0x<addr>[,<options>]
2467  *	This form is used to register an initial earlycon boot console and
2468  *	replace it with the amba_console at pl011 driver init.
2469  *
2470  *	Performs console setup for a match (as required by interface)
2471  *	If no <options> are specified, then assume the h/w is already setup.
2472  *
2473  *	Returns 0 if console matches; otherwise non-zero to use default matching
2474  */
2475 static int pl011_console_match(struct console *co, char *name, int idx,
2476 			       char *options)
2477 {
2478 	unsigned char iotype;
2479 	resource_size_t addr;
2480 	int i;
2481 
2482 	/*
2483 	 * Systems affected by the Qualcomm Technologies QDF2400 E44 erratum
2484 	 * have a distinct console name, so make sure we check for that.
2485 	 * The actual implementation of the erratum occurs in the probe
2486 	 * function.
2487 	 */
2488 	if ((strcmp(name, "qdf2400_e44") != 0) && (strcmp(name, "pl011") != 0))
2489 		return -ENODEV;
2490 
2491 	if (uart_parse_earlycon(options, &iotype, &addr, &options))
2492 		return -ENODEV;
2493 
2494 	if (iotype != UPIO_MEM && iotype != UPIO_MEM32)
2495 		return -ENODEV;
2496 
2497 	/* try to match the port specified on the command line */
2498 	for (i = 0; i < ARRAY_SIZE(amba_ports); i++) {
2499 		struct uart_port *port;
2500 
2501 		if (!amba_ports[i])
2502 			continue;
2503 
2504 		port = &amba_ports[i]->port;
2505 
2506 		if (port->mapbase != addr)
2507 			continue;
2508 
2509 		co->index = i;
2510 		port->cons = co;
2511 		return pl011_console_setup(co, options);
2512 	}
2513 
2514 	return -ENODEV;
2515 }
2516 
2517 static struct uart_driver amba_reg;
2518 static struct console amba_console = {
2519 	.name		= "ttyAMA",
2520 	.write		= pl011_console_write,
2521 	.device		= uart_console_device,
2522 	.setup		= pl011_console_setup,
2523 	.match		= pl011_console_match,
2524 	.flags		= CON_PRINTBUFFER | CON_ANYTIME,
2525 	.index		= -1,
2526 	.data		= &amba_reg,
2527 };
2528 
2529 #define AMBA_CONSOLE	(&amba_console)
2530 
2531 static void qdf2400_e44_putc(struct uart_port *port, unsigned char c)
2532 {
2533 	while (readl(port->membase + UART01x_FR) & UART01x_FR_TXFF)
2534 		cpu_relax();
2535 	writel(c, port->membase + UART01x_DR);
2536 	while (!(readl(port->membase + UART01x_FR) & UART011_FR_TXFE))
2537 		cpu_relax();
2538 }
2539 
2540 static void qdf2400_e44_early_write(struct console *con, const char *s, unsigned n)
2541 {
2542 	struct earlycon_device *dev = con->data;
2543 
2544 	uart_console_write(&dev->port, s, n, qdf2400_e44_putc);
2545 }
2546 
2547 static void pl011_putc(struct uart_port *port, unsigned char c)
2548 {
2549 	while (readl(port->membase + UART01x_FR) & UART01x_FR_TXFF)
2550 		cpu_relax();
2551 	if (port->iotype == UPIO_MEM32)
2552 		writel(c, port->membase + UART01x_DR);
2553 	else
2554 		writeb(c, port->membase + UART01x_DR);
2555 	while (readl(port->membase + UART01x_FR) & UART01x_FR_BUSY)
2556 		cpu_relax();
2557 }
2558 
2559 static void pl011_early_write(struct console *con, const char *s, unsigned n)
2560 {
2561 	struct earlycon_device *dev = con->data;
2562 
2563 	uart_console_write(&dev->port, s, n, pl011_putc);
2564 }
2565 
2566 #ifdef CONFIG_CONSOLE_POLL
2567 static int pl011_getc(struct uart_port *port)
2568 {
2569 	if (readl(port->membase + UART01x_FR) & UART01x_FR_RXFE)
2570 		return NO_POLL_CHAR;
2571 
2572 	if (port->iotype == UPIO_MEM32)
2573 		return readl(port->membase + UART01x_DR);
2574 	else
2575 		return readb(port->membase + UART01x_DR);
2576 }
2577 
2578 static int pl011_early_read(struct console *con, char *s, unsigned int n)
2579 {
2580 	struct earlycon_device *dev = con->data;
2581 	int ch, num_read = 0;
2582 
2583 	while (num_read < n) {
2584 		ch = pl011_getc(&dev->port);
2585 		if (ch == NO_POLL_CHAR)
2586 			break;
2587 
2588 		s[num_read++] = ch;
2589 	}
2590 
2591 	return num_read;
2592 }
2593 #else
2594 #define pl011_early_read NULL
2595 #endif
2596 
2597 /*
2598  * On non-ACPI systems, earlycon is enabled by specifying
2599  * "earlycon=pl011,<address>" on the kernel command line.
2600  *
2601  * On ACPI ARM64 systems, an "early" console is enabled via the SPCR table,
2602  * by specifying only "earlycon" on the command line.  Because it requires
2603  * SPCR, the console starts after ACPI is parsed, which is later than a
2604  * traditional early console.
2605  *
2606  * To get the traditional early console that starts before ACPI is parsed,
2607  * specify the full "earlycon=pl011,<address>" option.
2608  */
2609 static int __init pl011_early_console_setup(struct earlycon_device *device,
2610 					    const char *opt)
2611 {
2612 	if (!device->port.membase)
2613 		return -ENODEV;
2614 
2615 	device->con->write = pl011_early_write;
2616 	device->con->read = pl011_early_read;
2617 
2618 	return 0;
2619 }
2620 OF_EARLYCON_DECLARE(pl011, "arm,pl011", pl011_early_console_setup);
2621 OF_EARLYCON_DECLARE(pl011, "arm,sbsa-uart", pl011_early_console_setup);
2622 
2623 /*
2624  * On Qualcomm Datacenter Technologies QDF2400 SOCs affected by
2625  * Erratum 44, traditional earlycon can be enabled by specifying
2626  * "earlycon=qdf2400_e44,<address>".  Any options are ignored.
2627  *
2628  * Alternatively, you can just specify "earlycon", and the early console
2629  * will be enabled with the information from the SPCR table.  In this
2630  * case, the SPCR code will detect the need for the E44 work-around,
2631  * and set the console name to "qdf2400_e44".
2632  */
2633 static int __init
2634 qdf2400_e44_early_console_setup(struct earlycon_device *device,
2635 				const char *opt)
2636 {
2637 	if (!device->port.membase)
2638 		return -ENODEV;
2639 
2640 	device->con->write = qdf2400_e44_early_write;
2641 	return 0;
2642 }
2643 EARLYCON_DECLARE(qdf2400_e44, qdf2400_e44_early_console_setup);
2644 
2645 #else
2646 #define AMBA_CONSOLE	NULL
2647 #endif
2648 
2649 static struct uart_driver amba_reg = {
2650 	.owner			= THIS_MODULE,
2651 	.driver_name		= "ttyAMA",
2652 	.dev_name		= "ttyAMA",
2653 	.major			= SERIAL_AMBA_MAJOR,
2654 	.minor			= SERIAL_AMBA_MINOR,
2655 	.nr			= UART_NR,
2656 	.cons			= AMBA_CONSOLE,
2657 };
2658 
2659 static int pl011_probe_dt_alias(int index, struct device *dev)
2660 {
2661 	struct device_node *np;
2662 	static bool seen_dev_with_alias = false;
2663 	static bool seen_dev_without_alias = false;
2664 	int ret = index;
2665 
2666 	if (!IS_ENABLED(CONFIG_OF))
2667 		return ret;
2668 
2669 	np = dev->of_node;
2670 	if (!np)
2671 		return ret;
2672 
2673 	ret = of_alias_get_id(np, "serial");
2674 	if (ret < 0) {
2675 		seen_dev_without_alias = true;
2676 		ret = index;
2677 	} else {
2678 		seen_dev_with_alias = true;
2679 		if (ret >= ARRAY_SIZE(amba_ports) || amba_ports[ret] != NULL) {
2680 			dev_warn(dev, "requested serial port %d  not available.\n", ret);
2681 			ret = index;
2682 		}
2683 	}
2684 
2685 	if (seen_dev_with_alias && seen_dev_without_alias)
2686 		dev_warn(dev, "aliased and non-aliased serial devices found in device tree. Serial port enumeration may be unpredictable.\n");
2687 
2688 	return ret;
2689 }
2690 
2691 /* unregisters the driver also if no more ports are left */
2692 static void pl011_unregister_port(struct uart_amba_port *uap)
2693 {
2694 	int i;
2695 	bool busy = false;
2696 
2697 	for (i = 0; i < ARRAY_SIZE(amba_ports); i++) {
2698 		if (amba_ports[i] == uap)
2699 			amba_ports[i] = NULL;
2700 		else if (amba_ports[i])
2701 			busy = true;
2702 	}
2703 	pl011_dma_remove(uap);
2704 	if (!busy)
2705 		uart_unregister_driver(&amba_reg);
2706 }
2707 
2708 static int pl011_find_free_port(void)
2709 {
2710 	int i;
2711 
2712 	for (i = 0; i < ARRAY_SIZE(amba_ports); i++)
2713 		if (amba_ports[i] == NULL)
2714 			return i;
2715 
2716 	return -EBUSY;
2717 }
2718 
2719 static int pl011_get_rs485_mode(struct uart_amba_port *uap)
2720 {
2721 	struct uart_port *port = &uap->port;
2722 	int ret;
2723 
2724 	ret = uart_get_rs485_mode(port);
2725 	if (ret)
2726 		return ret;
2727 
2728 	return 0;
2729 }
2730 
2731 static int pl011_setup_port(struct device *dev, struct uart_amba_port *uap,
2732 			    struct resource *mmiobase, int index)
2733 {
2734 	void __iomem *base;
2735 	int ret;
2736 
2737 	base = devm_ioremap_resource(dev, mmiobase);
2738 	if (IS_ERR(base))
2739 		return PTR_ERR(base);
2740 
2741 	index = pl011_probe_dt_alias(index, dev);
2742 
2743 	uap->port.dev = dev;
2744 	uap->port.mapbase = mmiobase->start;
2745 	uap->port.membase = base;
2746 	uap->port.fifosize = uap->fifosize;
2747 	uap->port.has_sysrq = IS_ENABLED(CONFIG_SERIAL_AMBA_PL011_CONSOLE);
2748 	uap->port.flags = UPF_BOOT_AUTOCONF;
2749 	uap->port.line = index;
2750 
2751 	ret = pl011_get_rs485_mode(uap);
2752 	if (ret)
2753 		return ret;
2754 
2755 	amba_ports[index] = uap;
2756 
2757 	return 0;
2758 }
2759 
2760 static int pl011_register_port(struct uart_amba_port *uap)
2761 {
2762 	int ret, i;
2763 
2764 	/* Ensure interrupts from this UART are masked and cleared */
2765 	pl011_write(0, uap, REG_IMSC);
2766 	pl011_write(0xffff, uap, REG_ICR);
2767 
2768 	if (!amba_reg.state) {
2769 		ret = uart_register_driver(&amba_reg);
2770 		if (ret < 0) {
2771 			dev_err(uap->port.dev,
2772 				"Failed to register AMBA-PL011 driver\n");
2773 			for (i = 0; i < ARRAY_SIZE(amba_ports); i++)
2774 				if (amba_ports[i] == uap)
2775 					amba_ports[i] = NULL;
2776 			return ret;
2777 		}
2778 	}
2779 
2780 	ret = uart_add_one_port(&amba_reg, &uap->port);
2781 	if (ret)
2782 		pl011_unregister_port(uap);
2783 
2784 	return ret;
2785 }
2786 
2787 static const struct serial_rs485 pl011_rs485_supported = {
2788 	.flags = SER_RS485_ENABLED | SER_RS485_RTS_ON_SEND | SER_RS485_RTS_AFTER_SEND |
2789 		 SER_RS485_RX_DURING_TX,
2790 	.delay_rts_before_send = 1,
2791 	.delay_rts_after_send = 1,
2792 };
2793 
2794 static int pl011_probe(struct amba_device *dev, const struct amba_id *id)
2795 {
2796 	struct uart_amba_port *uap;
2797 	struct vendor_data *vendor = id->data;
2798 	int portnr, ret;
2799 	u32 val;
2800 
2801 	portnr = pl011_find_free_port();
2802 	if (portnr < 0)
2803 		return portnr;
2804 
2805 	uap = devm_kzalloc(&dev->dev, sizeof(struct uart_amba_port),
2806 			   GFP_KERNEL);
2807 	if (!uap)
2808 		return -ENOMEM;
2809 
2810 	uap->clk = devm_clk_get(&dev->dev, NULL);
2811 	if (IS_ERR(uap->clk))
2812 		return PTR_ERR(uap->clk);
2813 
2814 	uap->reg_offset = vendor->reg_offset;
2815 	uap->vendor = vendor;
2816 	uap->fifosize = vendor->get_fifosize(dev);
2817 	uap->port.iotype = vendor->access_32b ? UPIO_MEM32 : UPIO_MEM;
2818 	uap->port.irq = dev->irq[0];
2819 	uap->port.ops = &amba_pl011_pops;
2820 	uap->port.rs485_config = pl011_rs485_config;
2821 	uap->port.rs485_supported = pl011_rs485_supported;
2822 	snprintf(uap->type, sizeof(uap->type), "PL011 rev%u", amba_rev(dev));
2823 
2824 	if (device_property_read_u32(&dev->dev, "reg-io-width", &val) == 0) {
2825 		switch (val) {
2826 		case 1:
2827 			uap->port.iotype = UPIO_MEM;
2828 			break;
2829 		case 4:
2830 			uap->port.iotype = UPIO_MEM32;
2831 			break;
2832 		default:
2833 			dev_warn(&dev->dev, "unsupported reg-io-width (%d)\n",
2834 				 val);
2835 			return -EINVAL;
2836 		}
2837 	}
2838 
2839 	ret = pl011_setup_port(&dev->dev, uap, &dev->res, portnr);
2840 	if (ret)
2841 		return ret;
2842 
2843 	amba_set_drvdata(dev, uap);
2844 
2845 	return pl011_register_port(uap);
2846 }
2847 
2848 static void pl011_remove(struct amba_device *dev)
2849 {
2850 	struct uart_amba_port *uap = amba_get_drvdata(dev);
2851 
2852 	uart_remove_one_port(&amba_reg, &uap->port);
2853 	pl011_unregister_port(uap);
2854 }
2855 
2856 #ifdef CONFIG_PM_SLEEP
2857 static int pl011_suspend(struct device *dev)
2858 {
2859 	struct uart_amba_port *uap = dev_get_drvdata(dev);
2860 
2861 	if (!uap)
2862 		return -EINVAL;
2863 
2864 	return uart_suspend_port(&amba_reg, &uap->port);
2865 }
2866 
2867 static int pl011_resume(struct device *dev)
2868 {
2869 	struct uart_amba_port *uap = dev_get_drvdata(dev);
2870 
2871 	if (!uap)
2872 		return -EINVAL;
2873 
2874 	return uart_resume_port(&amba_reg, &uap->port);
2875 }
2876 #endif
2877 
2878 static SIMPLE_DEV_PM_OPS(pl011_dev_pm_ops, pl011_suspend, pl011_resume);
2879 
2880 static int sbsa_uart_probe(struct platform_device *pdev)
2881 {
2882 	struct uart_amba_port *uap;
2883 	struct resource *r;
2884 	int portnr, ret;
2885 	int baudrate;
2886 
2887 	/*
2888 	 * Check the mandatory baud rate parameter in the DT node early
2889 	 * so that we can easily exit with the error.
2890 	 */
2891 	if (pdev->dev.of_node) {
2892 		struct device_node *np = pdev->dev.of_node;
2893 
2894 		ret = of_property_read_u32(np, "current-speed", &baudrate);
2895 		if (ret)
2896 			return ret;
2897 	} else {
2898 		baudrate = 115200;
2899 	}
2900 
2901 	portnr = pl011_find_free_port();
2902 	if (portnr < 0)
2903 		return portnr;
2904 
2905 	uap = devm_kzalloc(&pdev->dev, sizeof(struct uart_amba_port),
2906 			   GFP_KERNEL);
2907 	if (!uap)
2908 		return -ENOMEM;
2909 
2910 	ret = platform_get_irq(pdev, 0);
2911 	if (ret < 0)
2912 		return ret;
2913 	uap->port.irq	= ret;
2914 
2915 #ifdef CONFIG_ACPI_SPCR_TABLE
2916 	if (qdf2400_e44_present) {
2917 		dev_info(&pdev->dev, "working around QDF2400 SoC erratum 44\n");
2918 		uap->vendor = &vendor_qdt_qdf2400_e44;
2919 	} else
2920 #endif
2921 		uap->vendor = &vendor_sbsa;
2922 
2923 	uap->reg_offset	= uap->vendor->reg_offset;
2924 	uap->fifosize	= 32;
2925 	uap->port.iotype = uap->vendor->access_32b ? UPIO_MEM32 : UPIO_MEM;
2926 	uap->port.ops	= &sbsa_uart_pops;
2927 	uap->fixed_baud = baudrate;
2928 
2929 	snprintf(uap->type, sizeof(uap->type), "SBSA");
2930 
2931 	r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2932 
2933 	ret = pl011_setup_port(&pdev->dev, uap, r, portnr);
2934 	if (ret)
2935 		return ret;
2936 
2937 	platform_set_drvdata(pdev, uap);
2938 
2939 	return pl011_register_port(uap);
2940 }
2941 
2942 static int sbsa_uart_remove(struct platform_device *pdev)
2943 {
2944 	struct uart_amba_port *uap = platform_get_drvdata(pdev);
2945 
2946 	uart_remove_one_port(&amba_reg, &uap->port);
2947 	pl011_unregister_port(uap);
2948 	return 0;
2949 }
2950 
2951 static const struct of_device_id sbsa_uart_of_match[] = {
2952 	{ .compatible = "arm,sbsa-uart", },
2953 	{},
2954 };
2955 MODULE_DEVICE_TABLE(of, sbsa_uart_of_match);
2956 
2957 static const struct acpi_device_id __maybe_unused sbsa_uart_acpi_match[] = {
2958 	{ "ARMH0011", 0 },
2959 	{ "ARMHB000", 0 },
2960 	{},
2961 };
2962 MODULE_DEVICE_TABLE(acpi, sbsa_uart_acpi_match);
2963 
2964 static struct platform_driver arm_sbsa_uart_platform_driver = {
2965 	.probe		= sbsa_uart_probe,
2966 	.remove		= sbsa_uart_remove,
2967 	.driver	= {
2968 		.name	= "sbsa-uart",
2969 		.pm	= &pl011_dev_pm_ops,
2970 		.of_match_table = of_match_ptr(sbsa_uart_of_match),
2971 		.acpi_match_table = ACPI_PTR(sbsa_uart_acpi_match),
2972 		.suppress_bind_attrs = IS_BUILTIN(CONFIG_SERIAL_AMBA_PL011),
2973 	},
2974 };
2975 
2976 static const struct amba_id pl011_ids[] = {
2977 	{
2978 		.id	= 0x00041011,
2979 		.mask	= 0x000fffff,
2980 		.data	= &vendor_arm,
2981 	},
2982 	{
2983 		.id	= 0x00380802,
2984 		.mask	= 0x00ffffff,
2985 		.data	= &vendor_st,
2986 	},
2987 	{ 0, 0 },
2988 };
2989 
2990 MODULE_DEVICE_TABLE(amba, pl011_ids);
2991 
2992 static struct amba_driver pl011_driver = {
2993 	.drv = {
2994 		.name	= "uart-pl011",
2995 		.pm	= &pl011_dev_pm_ops,
2996 		.suppress_bind_attrs = IS_BUILTIN(CONFIG_SERIAL_AMBA_PL011),
2997 	},
2998 	.id_table	= pl011_ids,
2999 	.probe		= pl011_probe,
3000 	.remove		= pl011_remove,
3001 };
3002 
3003 static int __init pl011_init(void)
3004 {
3005 	printk(KERN_INFO "Serial: AMBA PL011 UART driver\n");
3006 
3007 	if (platform_driver_register(&arm_sbsa_uart_platform_driver))
3008 		pr_warn("could not register SBSA UART platform driver\n");
3009 	return amba_driver_register(&pl011_driver);
3010 }
3011 
3012 static void __exit pl011_exit(void)
3013 {
3014 	platform_driver_unregister(&arm_sbsa_uart_platform_driver);
3015 	amba_driver_unregister(&pl011_driver);
3016 }
3017 
3018 /*
3019  * While this can be a module, if builtin it's most likely the console
3020  * So let's leave module_exit but move module_init to an earlier place
3021  */
3022 arch_initcall(pl011_init);
3023 module_exit(pl011_exit);
3024 
3025 MODULE_AUTHOR("ARM Ltd/Deep Blue Solutions Ltd");
3026 MODULE_DESCRIPTION("ARM AMBA serial port driver");
3027 MODULE_LICENSE("GPL");
3028