xref: /openbmc/linux/drivers/tty/serial/amba-pl011.c (revision 6b5fc336)
1 /*
2  *  Driver for AMBA serial ports
3  *
4  *  Based on drivers/char/serial.c, by Linus Torvalds, Theodore Ts'o.
5  *
6  *  Copyright 1999 ARM Limited
7  *  Copyright (C) 2000 Deep Blue Solutions Ltd.
8  *  Copyright (C) 2010 ST-Ericsson SA
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License as published by
12  * the Free Software Foundation; either version 2 of the License, or
13  * (at your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18  * GNU General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public License
21  * along with this program; if not, write to the Free Software
22  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
23  *
24  * This is a generic driver for ARM AMBA-type serial ports.  They
25  * have a lot of 16550-like features, but are not register compatible.
26  * Note that although they do have CTS, DCD and DSR inputs, they do
27  * not have an RI input, nor do they have DTR or RTS outputs.  If
28  * required, these have to be supplied via some other means (eg, GPIO)
29  * and hooked into this driver.
30  */
31 
32 
33 #if defined(CONFIG_SERIAL_AMBA_PL011_CONSOLE) && defined(CONFIG_MAGIC_SYSRQ)
34 #define SUPPORT_SYSRQ
35 #endif
36 
37 #include <linux/module.h>
38 #include <linux/ioport.h>
39 #include <linux/init.h>
40 #include <linux/console.h>
41 #include <linux/sysrq.h>
42 #include <linux/device.h>
43 #include <linux/tty.h>
44 #include <linux/tty_flip.h>
45 #include <linux/serial_core.h>
46 #include <linux/serial.h>
47 #include <linux/amba/bus.h>
48 #include <linux/amba/serial.h>
49 #include <linux/clk.h>
50 #include <linux/slab.h>
51 #include <linux/dmaengine.h>
52 #include <linux/dma-mapping.h>
53 #include <linux/scatterlist.h>
54 #include <linux/delay.h>
55 #include <linux/types.h>
56 #include <linux/of.h>
57 #include <linux/of_device.h>
58 #include <linux/pinctrl/consumer.h>
59 #include <linux/sizes.h>
60 #include <linux/io.h>
61 #include <linux/acpi.h>
62 
63 #include "amba-pl011.h"
64 
65 #define UART_NR			14
66 
67 #define SERIAL_AMBA_MAJOR	204
68 #define SERIAL_AMBA_MINOR	64
69 #define SERIAL_AMBA_NR		UART_NR
70 
71 #define AMBA_ISR_PASS_LIMIT	256
72 
73 #define UART_DR_ERROR		(UART011_DR_OE|UART011_DR_BE|UART011_DR_PE|UART011_DR_FE)
74 #define UART_DUMMY_DR_RX	(1 << 16)
75 
76 static u16 pl011_std_offsets[REG_ARRAY_SIZE] = {
77 	[REG_DR] = UART01x_DR,
78 	[REG_FR] = UART01x_FR,
79 	[REG_LCRH_RX] = UART011_LCRH,
80 	[REG_LCRH_TX] = UART011_LCRH,
81 	[REG_IBRD] = UART011_IBRD,
82 	[REG_FBRD] = UART011_FBRD,
83 	[REG_CR] = UART011_CR,
84 	[REG_IFLS] = UART011_IFLS,
85 	[REG_IMSC] = UART011_IMSC,
86 	[REG_RIS] = UART011_RIS,
87 	[REG_MIS] = UART011_MIS,
88 	[REG_ICR] = UART011_ICR,
89 	[REG_DMACR] = UART011_DMACR,
90 };
91 
92 /* There is by now at least one vendor with differing details, so handle it */
93 struct vendor_data {
94 	const u16		*reg_offset;
95 	unsigned int		ifls;
96 	unsigned int		fr_busy;
97 	unsigned int		fr_dsr;
98 	unsigned int		fr_cts;
99 	unsigned int		fr_ri;
100 	unsigned int		inv_fr;
101 	bool			access_32b;
102 	bool			oversampling;
103 	bool			dma_threshold;
104 	bool			cts_event_workaround;
105 	bool			always_enabled;
106 	bool			fixed_options;
107 
108 	unsigned int (*get_fifosize)(struct amba_device *dev);
109 };
110 
111 static unsigned int get_fifosize_arm(struct amba_device *dev)
112 {
113 	return amba_rev(dev) < 3 ? 16 : 32;
114 }
115 
116 static struct vendor_data vendor_arm = {
117 	.reg_offset		= pl011_std_offsets,
118 	.ifls			= UART011_IFLS_RX4_8|UART011_IFLS_TX4_8,
119 	.fr_busy		= UART01x_FR_BUSY,
120 	.fr_dsr			= UART01x_FR_DSR,
121 	.fr_cts			= UART01x_FR_CTS,
122 	.fr_ri			= UART011_FR_RI,
123 	.oversampling		= false,
124 	.dma_threshold		= false,
125 	.cts_event_workaround	= false,
126 	.always_enabled		= false,
127 	.fixed_options		= false,
128 	.get_fifosize		= get_fifosize_arm,
129 };
130 
131 static struct vendor_data vendor_sbsa = {
132 	.reg_offset		= pl011_std_offsets,
133 	.fr_busy		= UART01x_FR_BUSY,
134 	.fr_dsr			= UART01x_FR_DSR,
135 	.fr_cts			= UART01x_FR_CTS,
136 	.fr_ri			= UART011_FR_RI,
137 	.access_32b		= true,
138 	.oversampling		= false,
139 	.dma_threshold		= false,
140 	.cts_event_workaround	= false,
141 	.always_enabled		= true,
142 	.fixed_options		= true,
143 };
144 
145 /*
146  * Erratum 44 for QDF2432v1 and QDF2400v1 SoCs describes the BUSY bit as
147  * occasionally getting stuck as 1. To avoid the potential for a hang, check
148  * TXFE == 0 instead of BUSY == 1. This may not be suitable for all UART
149  * implementations, so only do so if an affected platform is detected in
150  * parse_spcr().
151  */
152 static bool qdf2400_e44_present = false;
153 
154 static struct vendor_data vendor_qdt_qdf2400_e44 = {
155 	.reg_offset		= pl011_std_offsets,
156 	.fr_busy		= UART011_FR_TXFE,
157 	.fr_dsr			= UART01x_FR_DSR,
158 	.fr_cts			= UART01x_FR_CTS,
159 	.fr_ri			= UART011_FR_RI,
160 	.inv_fr			= UART011_FR_TXFE,
161 	.access_32b		= true,
162 	.oversampling		= false,
163 	.dma_threshold		= false,
164 	.cts_event_workaround	= false,
165 	.always_enabled		= true,
166 	.fixed_options		= true,
167 };
168 
169 static u16 pl011_st_offsets[REG_ARRAY_SIZE] = {
170 	[REG_DR] = UART01x_DR,
171 	[REG_ST_DMAWM] = ST_UART011_DMAWM,
172 	[REG_ST_TIMEOUT] = ST_UART011_TIMEOUT,
173 	[REG_FR] = UART01x_FR,
174 	[REG_LCRH_RX] = ST_UART011_LCRH_RX,
175 	[REG_LCRH_TX] = ST_UART011_LCRH_TX,
176 	[REG_IBRD] = UART011_IBRD,
177 	[REG_FBRD] = UART011_FBRD,
178 	[REG_CR] = UART011_CR,
179 	[REG_IFLS] = UART011_IFLS,
180 	[REG_IMSC] = UART011_IMSC,
181 	[REG_RIS] = UART011_RIS,
182 	[REG_MIS] = UART011_MIS,
183 	[REG_ICR] = UART011_ICR,
184 	[REG_DMACR] = UART011_DMACR,
185 	[REG_ST_XFCR] = ST_UART011_XFCR,
186 	[REG_ST_XON1] = ST_UART011_XON1,
187 	[REG_ST_XON2] = ST_UART011_XON2,
188 	[REG_ST_XOFF1] = ST_UART011_XOFF1,
189 	[REG_ST_XOFF2] = ST_UART011_XOFF2,
190 	[REG_ST_ITCR] = ST_UART011_ITCR,
191 	[REG_ST_ITIP] = ST_UART011_ITIP,
192 	[REG_ST_ABCR] = ST_UART011_ABCR,
193 	[REG_ST_ABIMSC] = ST_UART011_ABIMSC,
194 };
195 
196 static unsigned int get_fifosize_st(struct amba_device *dev)
197 {
198 	return 64;
199 }
200 
201 static struct vendor_data vendor_st = {
202 	.reg_offset		= pl011_st_offsets,
203 	.ifls			= UART011_IFLS_RX_HALF|UART011_IFLS_TX_HALF,
204 	.fr_busy		= UART01x_FR_BUSY,
205 	.fr_dsr			= UART01x_FR_DSR,
206 	.fr_cts			= UART01x_FR_CTS,
207 	.fr_ri			= UART011_FR_RI,
208 	.oversampling		= true,
209 	.dma_threshold		= true,
210 	.cts_event_workaround	= true,
211 	.always_enabled		= false,
212 	.fixed_options		= false,
213 	.get_fifosize		= get_fifosize_st,
214 };
215 
216 static const u16 pl011_zte_offsets[REG_ARRAY_SIZE] = {
217 	[REG_DR] = ZX_UART011_DR,
218 	[REG_FR] = ZX_UART011_FR,
219 	[REG_LCRH_RX] = ZX_UART011_LCRH,
220 	[REG_LCRH_TX] = ZX_UART011_LCRH,
221 	[REG_IBRD] = ZX_UART011_IBRD,
222 	[REG_FBRD] = ZX_UART011_FBRD,
223 	[REG_CR] = ZX_UART011_CR,
224 	[REG_IFLS] = ZX_UART011_IFLS,
225 	[REG_IMSC] = ZX_UART011_IMSC,
226 	[REG_RIS] = ZX_UART011_RIS,
227 	[REG_MIS] = ZX_UART011_MIS,
228 	[REG_ICR] = ZX_UART011_ICR,
229 	[REG_DMACR] = ZX_UART011_DMACR,
230 };
231 
232 static unsigned int get_fifosize_zte(struct amba_device *dev)
233 {
234 	return 16;
235 }
236 
237 static struct vendor_data vendor_zte = {
238 	.reg_offset		= pl011_zte_offsets,
239 	.access_32b		= true,
240 	.ifls			= UART011_IFLS_RX4_8|UART011_IFLS_TX4_8,
241 	.fr_busy		= ZX_UART01x_FR_BUSY,
242 	.fr_dsr			= ZX_UART01x_FR_DSR,
243 	.fr_cts			= ZX_UART01x_FR_CTS,
244 	.fr_ri			= ZX_UART011_FR_RI,
245 	.get_fifosize		= get_fifosize_zte,
246 };
247 
248 /* Deals with DMA transactions */
249 
250 struct pl011_sgbuf {
251 	struct scatterlist sg;
252 	char *buf;
253 };
254 
255 struct pl011_dmarx_data {
256 	struct dma_chan		*chan;
257 	struct completion	complete;
258 	bool			use_buf_b;
259 	struct pl011_sgbuf	sgbuf_a;
260 	struct pl011_sgbuf	sgbuf_b;
261 	dma_cookie_t		cookie;
262 	bool			running;
263 	struct timer_list	timer;
264 	unsigned int last_residue;
265 	unsigned long last_jiffies;
266 	bool auto_poll_rate;
267 	unsigned int poll_rate;
268 	unsigned int poll_timeout;
269 };
270 
271 struct pl011_dmatx_data {
272 	struct dma_chan		*chan;
273 	struct scatterlist	sg;
274 	char			*buf;
275 	bool			queued;
276 };
277 
278 /*
279  * We wrap our port structure around the generic uart_port.
280  */
281 struct uart_amba_port {
282 	struct uart_port	port;
283 	const u16		*reg_offset;
284 	struct clk		*clk;
285 	const struct vendor_data *vendor;
286 	unsigned int		dmacr;		/* dma control reg */
287 	unsigned int		im;		/* interrupt mask */
288 	unsigned int		old_status;
289 	unsigned int		fifosize;	/* vendor-specific */
290 	unsigned int		old_cr;		/* state during shutdown */
291 	bool			autorts;
292 	unsigned int		fixed_baud;	/* vendor-set fixed baud rate */
293 	char			type[12];
294 #ifdef CONFIG_DMA_ENGINE
295 	/* DMA stuff */
296 	bool			using_tx_dma;
297 	bool			using_rx_dma;
298 	struct pl011_dmarx_data dmarx;
299 	struct pl011_dmatx_data	dmatx;
300 	bool			dma_probed;
301 #endif
302 };
303 
304 static unsigned int pl011_reg_to_offset(const struct uart_amba_port *uap,
305 	unsigned int reg)
306 {
307 	return uap->reg_offset[reg];
308 }
309 
310 static unsigned int pl011_read(const struct uart_amba_port *uap,
311 	unsigned int reg)
312 {
313 	void __iomem *addr = uap->port.membase + pl011_reg_to_offset(uap, reg);
314 
315 	return (uap->port.iotype == UPIO_MEM32) ?
316 		readl_relaxed(addr) : readw_relaxed(addr);
317 }
318 
319 static void pl011_write(unsigned int val, const struct uart_amba_port *uap,
320 	unsigned int reg)
321 {
322 	void __iomem *addr = uap->port.membase + pl011_reg_to_offset(uap, reg);
323 
324 	if (uap->port.iotype == UPIO_MEM32)
325 		writel_relaxed(val, addr);
326 	else
327 		writew_relaxed(val, addr);
328 }
329 
330 /*
331  * Reads up to 256 characters from the FIFO or until it's empty and
332  * inserts them into the TTY layer. Returns the number of characters
333  * read from the FIFO.
334  */
335 static int pl011_fifo_to_tty(struct uart_amba_port *uap)
336 {
337 	u16 status;
338 	unsigned int ch, flag, max_count = 256;
339 	int fifotaken = 0;
340 
341 	while (max_count--) {
342 		status = pl011_read(uap, REG_FR);
343 		if (status & UART01x_FR_RXFE)
344 			break;
345 
346 		/* Take chars from the FIFO and update status */
347 		ch = pl011_read(uap, REG_DR) | UART_DUMMY_DR_RX;
348 		flag = TTY_NORMAL;
349 		uap->port.icount.rx++;
350 		fifotaken++;
351 
352 		if (unlikely(ch & UART_DR_ERROR)) {
353 			if (ch & UART011_DR_BE) {
354 				ch &= ~(UART011_DR_FE | UART011_DR_PE);
355 				uap->port.icount.brk++;
356 				if (uart_handle_break(&uap->port))
357 					continue;
358 			} else if (ch & UART011_DR_PE)
359 				uap->port.icount.parity++;
360 			else if (ch & UART011_DR_FE)
361 				uap->port.icount.frame++;
362 			if (ch & UART011_DR_OE)
363 				uap->port.icount.overrun++;
364 
365 			ch &= uap->port.read_status_mask;
366 
367 			if (ch & UART011_DR_BE)
368 				flag = TTY_BREAK;
369 			else if (ch & UART011_DR_PE)
370 				flag = TTY_PARITY;
371 			else if (ch & UART011_DR_FE)
372 				flag = TTY_FRAME;
373 		}
374 
375 		if (uart_handle_sysrq_char(&uap->port, ch & 255))
376 			continue;
377 
378 		uart_insert_char(&uap->port, ch, UART011_DR_OE, ch, flag);
379 	}
380 
381 	return fifotaken;
382 }
383 
384 
385 /*
386  * All the DMA operation mode stuff goes inside this ifdef.
387  * This assumes that you have a generic DMA device interface,
388  * no custom DMA interfaces are supported.
389  */
390 #ifdef CONFIG_DMA_ENGINE
391 
392 #define PL011_DMA_BUFFER_SIZE PAGE_SIZE
393 
394 static int pl011_sgbuf_init(struct dma_chan *chan, struct pl011_sgbuf *sg,
395 	enum dma_data_direction dir)
396 {
397 	dma_addr_t dma_addr;
398 
399 	sg->buf = dma_alloc_coherent(chan->device->dev,
400 		PL011_DMA_BUFFER_SIZE, &dma_addr, GFP_KERNEL);
401 	if (!sg->buf)
402 		return -ENOMEM;
403 
404 	sg_init_table(&sg->sg, 1);
405 	sg_set_page(&sg->sg, phys_to_page(dma_addr),
406 		PL011_DMA_BUFFER_SIZE, offset_in_page(dma_addr));
407 	sg_dma_address(&sg->sg) = dma_addr;
408 	sg_dma_len(&sg->sg) = PL011_DMA_BUFFER_SIZE;
409 
410 	return 0;
411 }
412 
413 static void pl011_sgbuf_free(struct dma_chan *chan, struct pl011_sgbuf *sg,
414 	enum dma_data_direction dir)
415 {
416 	if (sg->buf) {
417 		dma_free_coherent(chan->device->dev,
418 			PL011_DMA_BUFFER_SIZE, sg->buf,
419 			sg_dma_address(&sg->sg));
420 	}
421 }
422 
423 static void pl011_dma_probe(struct uart_amba_port *uap)
424 {
425 	/* DMA is the sole user of the platform data right now */
426 	struct amba_pl011_data *plat = dev_get_platdata(uap->port.dev);
427 	struct device *dev = uap->port.dev;
428 	struct dma_slave_config tx_conf = {
429 		.dst_addr = uap->port.mapbase +
430 				 pl011_reg_to_offset(uap, REG_DR),
431 		.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
432 		.direction = DMA_MEM_TO_DEV,
433 		.dst_maxburst = uap->fifosize >> 1,
434 		.device_fc = false,
435 	};
436 	struct dma_chan *chan;
437 	dma_cap_mask_t mask;
438 
439 	uap->dma_probed = true;
440 	chan = dma_request_slave_channel_reason(dev, "tx");
441 	if (IS_ERR(chan)) {
442 		if (PTR_ERR(chan) == -EPROBE_DEFER) {
443 			uap->dma_probed = false;
444 			return;
445 		}
446 
447 		/* We need platform data */
448 		if (!plat || !plat->dma_filter) {
449 			dev_info(uap->port.dev, "no DMA platform data\n");
450 			return;
451 		}
452 
453 		/* Try to acquire a generic DMA engine slave TX channel */
454 		dma_cap_zero(mask);
455 		dma_cap_set(DMA_SLAVE, mask);
456 
457 		chan = dma_request_channel(mask, plat->dma_filter,
458 						plat->dma_tx_param);
459 		if (!chan) {
460 			dev_err(uap->port.dev, "no TX DMA channel!\n");
461 			return;
462 		}
463 	}
464 
465 	dmaengine_slave_config(chan, &tx_conf);
466 	uap->dmatx.chan = chan;
467 
468 	dev_info(uap->port.dev, "DMA channel TX %s\n",
469 		 dma_chan_name(uap->dmatx.chan));
470 
471 	/* Optionally make use of an RX channel as well */
472 	chan = dma_request_slave_channel(dev, "rx");
473 
474 	if (!chan && plat && plat->dma_rx_param) {
475 		chan = dma_request_channel(mask, plat->dma_filter, plat->dma_rx_param);
476 
477 		if (!chan) {
478 			dev_err(uap->port.dev, "no RX DMA channel!\n");
479 			return;
480 		}
481 	}
482 
483 	if (chan) {
484 		struct dma_slave_config rx_conf = {
485 			.src_addr = uap->port.mapbase +
486 				pl011_reg_to_offset(uap, REG_DR),
487 			.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
488 			.direction = DMA_DEV_TO_MEM,
489 			.src_maxburst = uap->fifosize >> 2,
490 			.device_fc = false,
491 		};
492 		struct dma_slave_caps caps;
493 
494 		/*
495 		 * Some DMA controllers provide information on their capabilities.
496 		 * If the controller does, check for suitable residue processing
497 		 * otherwise assime all is well.
498 		 */
499 		if (0 == dma_get_slave_caps(chan, &caps)) {
500 			if (caps.residue_granularity ==
501 					DMA_RESIDUE_GRANULARITY_DESCRIPTOR) {
502 				dma_release_channel(chan);
503 				dev_info(uap->port.dev,
504 					"RX DMA disabled - no residue processing\n");
505 				return;
506 			}
507 		}
508 		dmaengine_slave_config(chan, &rx_conf);
509 		uap->dmarx.chan = chan;
510 
511 		uap->dmarx.auto_poll_rate = false;
512 		if (plat && plat->dma_rx_poll_enable) {
513 			/* Set poll rate if specified. */
514 			if (plat->dma_rx_poll_rate) {
515 				uap->dmarx.auto_poll_rate = false;
516 				uap->dmarx.poll_rate = plat->dma_rx_poll_rate;
517 			} else {
518 				/*
519 				 * 100 ms defaults to poll rate if not
520 				 * specified. This will be adjusted with
521 				 * the baud rate at set_termios.
522 				 */
523 				uap->dmarx.auto_poll_rate = true;
524 				uap->dmarx.poll_rate =  100;
525 			}
526 			/* 3 secs defaults poll_timeout if not specified. */
527 			if (plat->dma_rx_poll_timeout)
528 				uap->dmarx.poll_timeout =
529 					plat->dma_rx_poll_timeout;
530 			else
531 				uap->dmarx.poll_timeout = 3000;
532 		} else if (!plat && dev->of_node) {
533 			uap->dmarx.auto_poll_rate = of_property_read_bool(
534 						dev->of_node, "auto-poll");
535 			if (uap->dmarx.auto_poll_rate) {
536 				u32 x;
537 
538 				if (0 == of_property_read_u32(dev->of_node,
539 						"poll-rate-ms", &x))
540 					uap->dmarx.poll_rate = x;
541 				else
542 					uap->dmarx.poll_rate = 100;
543 				if (0 == of_property_read_u32(dev->of_node,
544 						"poll-timeout-ms", &x))
545 					uap->dmarx.poll_timeout = x;
546 				else
547 					uap->dmarx.poll_timeout = 3000;
548 			}
549 		}
550 		dev_info(uap->port.dev, "DMA channel RX %s\n",
551 			 dma_chan_name(uap->dmarx.chan));
552 	}
553 }
554 
555 static void pl011_dma_remove(struct uart_amba_port *uap)
556 {
557 	if (uap->dmatx.chan)
558 		dma_release_channel(uap->dmatx.chan);
559 	if (uap->dmarx.chan)
560 		dma_release_channel(uap->dmarx.chan);
561 }
562 
563 /* Forward declare these for the refill routine */
564 static int pl011_dma_tx_refill(struct uart_amba_port *uap);
565 static void pl011_start_tx_pio(struct uart_amba_port *uap);
566 
567 /*
568  * The current DMA TX buffer has been sent.
569  * Try to queue up another DMA buffer.
570  */
571 static void pl011_dma_tx_callback(void *data)
572 {
573 	struct uart_amba_port *uap = data;
574 	struct pl011_dmatx_data *dmatx = &uap->dmatx;
575 	unsigned long flags;
576 	u16 dmacr;
577 
578 	spin_lock_irqsave(&uap->port.lock, flags);
579 	if (uap->dmatx.queued)
580 		dma_unmap_sg(dmatx->chan->device->dev, &dmatx->sg, 1,
581 			     DMA_TO_DEVICE);
582 
583 	dmacr = uap->dmacr;
584 	uap->dmacr = dmacr & ~UART011_TXDMAE;
585 	pl011_write(uap->dmacr, uap, REG_DMACR);
586 
587 	/*
588 	 * If TX DMA was disabled, it means that we've stopped the DMA for
589 	 * some reason (eg, XOFF received, or we want to send an X-char.)
590 	 *
591 	 * Note: we need to be careful here of a potential race between DMA
592 	 * and the rest of the driver - if the driver disables TX DMA while
593 	 * a TX buffer completing, we must update the tx queued status to
594 	 * get further refills (hence we check dmacr).
595 	 */
596 	if (!(dmacr & UART011_TXDMAE) || uart_tx_stopped(&uap->port) ||
597 	    uart_circ_empty(&uap->port.state->xmit)) {
598 		uap->dmatx.queued = false;
599 		spin_unlock_irqrestore(&uap->port.lock, flags);
600 		return;
601 	}
602 
603 	if (pl011_dma_tx_refill(uap) <= 0)
604 		/*
605 		 * We didn't queue a DMA buffer for some reason, but we
606 		 * have data pending to be sent.  Re-enable the TX IRQ.
607 		 */
608 		pl011_start_tx_pio(uap);
609 
610 	spin_unlock_irqrestore(&uap->port.lock, flags);
611 }
612 
613 /*
614  * Try to refill the TX DMA buffer.
615  * Locking: called with port lock held and IRQs disabled.
616  * Returns:
617  *   1 if we queued up a TX DMA buffer.
618  *   0 if we didn't want to handle this by DMA
619  *  <0 on error
620  */
621 static int pl011_dma_tx_refill(struct uart_amba_port *uap)
622 {
623 	struct pl011_dmatx_data *dmatx = &uap->dmatx;
624 	struct dma_chan *chan = dmatx->chan;
625 	struct dma_device *dma_dev = chan->device;
626 	struct dma_async_tx_descriptor *desc;
627 	struct circ_buf *xmit = &uap->port.state->xmit;
628 	unsigned int count;
629 
630 	/*
631 	 * Try to avoid the overhead involved in using DMA if the
632 	 * transaction fits in the first half of the FIFO, by using
633 	 * the standard interrupt handling.  This ensures that we
634 	 * issue a uart_write_wakeup() at the appropriate time.
635 	 */
636 	count = uart_circ_chars_pending(xmit);
637 	if (count < (uap->fifosize >> 1)) {
638 		uap->dmatx.queued = false;
639 		return 0;
640 	}
641 
642 	/*
643 	 * Bodge: don't send the last character by DMA, as this
644 	 * will prevent XON from notifying us to restart DMA.
645 	 */
646 	count -= 1;
647 
648 	/* Else proceed to copy the TX chars to the DMA buffer and fire DMA */
649 	if (count > PL011_DMA_BUFFER_SIZE)
650 		count = PL011_DMA_BUFFER_SIZE;
651 
652 	if (xmit->tail < xmit->head)
653 		memcpy(&dmatx->buf[0], &xmit->buf[xmit->tail], count);
654 	else {
655 		size_t first = UART_XMIT_SIZE - xmit->tail;
656 		size_t second;
657 
658 		if (first > count)
659 			first = count;
660 		second = count - first;
661 
662 		memcpy(&dmatx->buf[0], &xmit->buf[xmit->tail], first);
663 		if (second)
664 			memcpy(&dmatx->buf[first], &xmit->buf[0], second);
665 	}
666 
667 	dmatx->sg.length = count;
668 
669 	if (dma_map_sg(dma_dev->dev, &dmatx->sg, 1, DMA_TO_DEVICE) != 1) {
670 		uap->dmatx.queued = false;
671 		dev_dbg(uap->port.dev, "unable to map TX DMA\n");
672 		return -EBUSY;
673 	}
674 
675 	desc = dmaengine_prep_slave_sg(chan, &dmatx->sg, 1, DMA_MEM_TO_DEV,
676 					     DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
677 	if (!desc) {
678 		dma_unmap_sg(dma_dev->dev, &dmatx->sg, 1, DMA_TO_DEVICE);
679 		uap->dmatx.queued = false;
680 		/*
681 		 * If DMA cannot be used right now, we complete this
682 		 * transaction via IRQ and let the TTY layer retry.
683 		 */
684 		dev_dbg(uap->port.dev, "TX DMA busy\n");
685 		return -EBUSY;
686 	}
687 
688 	/* Some data to go along to the callback */
689 	desc->callback = pl011_dma_tx_callback;
690 	desc->callback_param = uap;
691 
692 	/* All errors should happen at prepare time */
693 	dmaengine_submit(desc);
694 
695 	/* Fire the DMA transaction */
696 	dma_dev->device_issue_pending(chan);
697 
698 	uap->dmacr |= UART011_TXDMAE;
699 	pl011_write(uap->dmacr, uap, REG_DMACR);
700 	uap->dmatx.queued = true;
701 
702 	/*
703 	 * Now we know that DMA will fire, so advance the ring buffer
704 	 * with the stuff we just dispatched.
705 	 */
706 	xmit->tail = (xmit->tail + count) & (UART_XMIT_SIZE - 1);
707 	uap->port.icount.tx += count;
708 
709 	if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
710 		uart_write_wakeup(&uap->port);
711 
712 	return 1;
713 }
714 
715 /*
716  * We received a transmit interrupt without a pending X-char but with
717  * pending characters.
718  * Locking: called with port lock held and IRQs disabled.
719  * Returns:
720  *   false if we want to use PIO to transmit
721  *   true if we queued a DMA buffer
722  */
723 static bool pl011_dma_tx_irq(struct uart_amba_port *uap)
724 {
725 	if (!uap->using_tx_dma)
726 		return false;
727 
728 	/*
729 	 * If we already have a TX buffer queued, but received a
730 	 * TX interrupt, it will be because we've just sent an X-char.
731 	 * Ensure the TX DMA is enabled and the TX IRQ is disabled.
732 	 */
733 	if (uap->dmatx.queued) {
734 		uap->dmacr |= UART011_TXDMAE;
735 		pl011_write(uap->dmacr, uap, REG_DMACR);
736 		uap->im &= ~UART011_TXIM;
737 		pl011_write(uap->im, uap, REG_IMSC);
738 		return true;
739 	}
740 
741 	/*
742 	 * We don't have a TX buffer queued, so try to queue one.
743 	 * If we successfully queued a buffer, mask the TX IRQ.
744 	 */
745 	if (pl011_dma_tx_refill(uap) > 0) {
746 		uap->im &= ~UART011_TXIM;
747 		pl011_write(uap->im, uap, REG_IMSC);
748 		return true;
749 	}
750 	return false;
751 }
752 
753 /*
754  * Stop the DMA transmit (eg, due to received XOFF).
755  * Locking: called with port lock held and IRQs disabled.
756  */
757 static inline void pl011_dma_tx_stop(struct uart_amba_port *uap)
758 {
759 	if (uap->dmatx.queued) {
760 		uap->dmacr &= ~UART011_TXDMAE;
761 		pl011_write(uap->dmacr, uap, REG_DMACR);
762 	}
763 }
764 
765 /*
766  * Try to start a DMA transmit, or in the case of an XON/OFF
767  * character queued for send, try to get that character out ASAP.
768  * Locking: called with port lock held and IRQs disabled.
769  * Returns:
770  *   false if we want the TX IRQ to be enabled
771  *   true if we have a buffer queued
772  */
773 static inline bool pl011_dma_tx_start(struct uart_amba_port *uap)
774 {
775 	u16 dmacr;
776 
777 	if (!uap->using_tx_dma)
778 		return false;
779 
780 	if (!uap->port.x_char) {
781 		/* no X-char, try to push chars out in DMA mode */
782 		bool ret = true;
783 
784 		if (!uap->dmatx.queued) {
785 			if (pl011_dma_tx_refill(uap) > 0) {
786 				uap->im &= ~UART011_TXIM;
787 				pl011_write(uap->im, uap, REG_IMSC);
788 			} else
789 				ret = false;
790 		} else if (!(uap->dmacr & UART011_TXDMAE)) {
791 			uap->dmacr |= UART011_TXDMAE;
792 			pl011_write(uap->dmacr, uap, REG_DMACR);
793 		}
794 		return ret;
795 	}
796 
797 	/*
798 	 * We have an X-char to send.  Disable DMA to prevent it loading
799 	 * the TX fifo, and then see if we can stuff it into the FIFO.
800 	 */
801 	dmacr = uap->dmacr;
802 	uap->dmacr &= ~UART011_TXDMAE;
803 	pl011_write(uap->dmacr, uap, REG_DMACR);
804 
805 	if (pl011_read(uap, REG_FR) & UART01x_FR_TXFF) {
806 		/*
807 		 * No space in the FIFO, so enable the transmit interrupt
808 		 * so we know when there is space.  Note that once we've
809 		 * loaded the character, we should just re-enable DMA.
810 		 */
811 		return false;
812 	}
813 
814 	pl011_write(uap->port.x_char, uap, REG_DR);
815 	uap->port.icount.tx++;
816 	uap->port.x_char = 0;
817 
818 	/* Success - restore the DMA state */
819 	uap->dmacr = dmacr;
820 	pl011_write(dmacr, uap, REG_DMACR);
821 
822 	return true;
823 }
824 
825 /*
826  * Flush the transmit buffer.
827  * Locking: called with port lock held and IRQs disabled.
828  */
829 static void pl011_dma_flush_buffer(struct uart_port *port)
830 __releases(&uap->port.lock)
831 __acquires(&uap->port.lock)
832 {
833 	struct uart_amba_port *uap =
834 	    container_of(port, struct uart_amba_port, port);
835 
836 	if (!uap->using_tx_dma)
837 		return;
838 
839 	/* Avoid deadlock with the DMA engine callback */
840 	spin_unlock(&uap->port.lock);
841 	dmaengine_terminate_all(uap->dmatx.chan);
842 	spin_lock(&uap->port.lock);
843 	if (uap->dmatx.queued) {
844 		dma_unmap_sg(uap->dmatx.chan->device->dev, &uap->dmatx.sg, 1,
845 			     DMA_TO_DEVICE);
846 		uap->dmatx.queued = false;
847 		uap->dmacr &= ~UART011_TXDMAE;
848 		pl011_write(uap->dmacr, uap, REG_DMACR);
849 	}
850 }
851 
852 static void pl011_dma_rx_callback(void *data);
853 
854 static int pl011_dma_rx_trigger_dma(struct uart_amba_port *uap)
855 {
856 	struct dma_chan *rxchan = uap->dmarx.chan;
857 	struct pl011_dmarx_data *dmarx = &uap->dmarx;
858 	struct dma_async_tx_descriptor *desc;
859 	struct pl011_sgbuf *sgbuf;
860 
861 	if (!rxchan)
862 		return -EIO;
863 
864 	/* Start the RX DMA job */
865 	sgbuf = uap->dmarx.use_buf_b ?
866 		&uap->dmarx.sgbuf_b : &uap->dmarx.sgbuf_a;
867 	desc = dmaengine_prep_slave_sg(rxchan, &sgbuf->sg, 1,
868 					DMA_DEV_TO_MEM,
869 					DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
870 	/*
871 	 * If the DMA engine is busy and cannot prepare a
872 	 * channel, no big deal, the driver will fall back
873 	 * to interrupt mode as a result of this error code.
874 	 */
875 	if (!desc) {
876 		uap->dmarx.running = false;
877 		dmaengine_terminate_all(rxchan);
878 		return -EBUSY;
879 	}
880 
881 	/* Some data to go along to the callback */
882 	desc->callback = pl011_dma_rx_callback;
883 	desc->callback_param = uap;
884 	dmarx->cookie = dmaengine_submit(desc);
885 	dma_async_issue_pending(rxchan);
886 
887 	uap->dmacr |= UART011_RXDMAE;
888 	pl011_write(uap->dmacr, uap, REG_DMACR);
889 	uap->dmarx.running = true;
890 
891 	uap->im &= ~UART011_RXIM;
892 	pl011_write(uap->im, uap, REG_IMSC);
893 
894 	return 0;
895 }
896 
897 /*
898  * This is called when either the DMA job is complete, or
899  * the FIFO timeout interrupt occurred. This must be called
900  * with the port spinlock uap->port.lock held.
901  */
902 static void pl011_dma_rx_chars(struct uart_amba_port *uap,
903 			       u32 pending, bool use_buf_b,
904 			       bool readfifo)
905 {
906 	struct tty_port *port = &uap->port.state->port;
907 	struct pl011_sgbuf *sgbuf = use_buf_b ?
908 		&uap->dmarx.sgbuf_b : &uap->dmarx.sgbuf_a;
909 	int dma_count = 0;
910 	u32 fifotaken = 0; /* only used for vdbg() */
911 
912 	struct pl011_dmarx_data *dmarx = &uap->dmarx;
913 	int dmataken = 0;
914 
915 	if (uap->dmarx.poll_rate) {
916 		/* The data can be taken by polling */
917 		dmataken = sgbuf->sg.length - dmarx->last_residue;
918 		/* Recalculate the pending size */
919 		if (pending >= dmataken)
920 			pending -= dmataken;
921 	}
922 
923 	/* Pick the remain data from the DMA */
924 	if (pending) {
925 
926 		/*
927 		 * First take all chars in the DMA pipe, then look in the FIFO.
928 		 * Note that tty_insert_flip_buf() tries to take as many chars
929 		 * as it can.
930 		 */
931 		dma_count = tty_insert_flip_string(port, sgbuf->buf + dmataken,
932 				pending);
933 
934 		uap->port.icount.rx += dma_count;
935 		if (dma_count < pending)
936 			dev_warn(uap->port.dev,
937 				 "couldn't insert all characters (TTY is full?)\n");
938 	}
939 
940 	/* Reset the last_residue for Rx DMA poll */
941 	if (uap->dmarx.poll_rate)
942 		dmarx->last_residue = sgbuf->sg.length;
943 
944 	/*
945 	 * Only continue with trying to read the FIFO if all DMA chars have
946 	 * been taken first.
947 	 */
948 	if (dma_count == pending && readfifo) {
949 		/* Clear any error flags */
950 		pl011_write(UART011_OEIS | UART011_BEIS | UART011_PEIS |
951 			    UART011_FEIS, uap, REG_ICR);
952 
953 		/*
954 		 * If we read all the DMA'd characters, and we had an
955 		 * incomplete buffer, that could be due to an rx error, or
956 		 * maybe we just timed out. Read any pending chars and check
957 		 * the error status.
958 		 *
959 		 * Error conditions will only occur in the FIFO, these will
960 		 * trigger an immediate interrupt and stop the DMA job, so we
961 		 * will always find the error in the FIFO, never in the DMA
962 		 * buffer.
963 		 */
964 		fifotaken = pl011_fifo_to_tty(uap);
965 	}
966 
967 	spin_unlock(&uap->port.lock);
968 	dev_vdbg(uap->port.dev,
969 		 "Took %d chars from DMA buffer and %d chars from the FIFO\n",
970 		 dma_count, fifotaken);
971 	tty_flip_buffer_push(port);
972 	spin_lock(&uap->port.lock);
973 }
974 
975 static void pl011_dma_rx_irq(struct uart_amba_port *uap)
976 {
977 	struct pl011_dmarx_data *dmarx = &uap->dmarx;
978 	struct dma_chan *rxchan = dmarx->chan;
979 	struct pl011_sgbuf *sgbuf = dmarx->use_buf_b ?
980 		&dmarx->sgbuf_b : &dmarx->sgbuf_a;
981 	size_t pending;
982 	struct dma_tx_state state;
983 	enum dma_status dmastat;
984 
985 	/*
986 	 * Pause the transfer so we can trust the current counter,
987 	 * do this before we pause the PL011 block, else we may
988 	 * overflow the FIFO.
989 	 */
990 	if (dmaengine_pause(rxchan))
991 		dev_err(uap->port.dev, "unable to pause DMA transfer\n");
992 	dmastat = rxchan->device->device_tx_status(rxchan,
993 						   dmarx->cookie, &state);
994 	if (dmastat != DMA_PAUSED)
995 		dev_err(uap->port.dev, "unable to pause DMA transfer\n");
996 
997 	/* Disable RX DMA - incoming data will wait in the FIFO */
998 	uap->dmacr &= ~UART011_RXDMAE;
999 	pl011_write(uap->dmacr, uap, REG_DMACR);
1000 	uap->dmarx.running = false;
1001 
1002 	pending = sgbuf->sg.length - state.residue;
1003 	BUG_ON(pending > PL011_DMA_BUFFER_SIZE);
1004 	/* Then we terminate the transfer - we now know our residue */
1005 	dmaengine_terminate_all(rxchan);
1006 
1007 	/*
1008 	 * This will take the chars we have so far and insert
1009 	 * into the framework.
1010 	 */
1011 	pl011_dma_rx_chars(uap, pending, dmarx->use_buf_b, true);
1012 
1013 	/* Switch buffer & re-trigger DMA job */
1014 	dmarx->use_buf_b = !dmarx->use_buf_b;
1015 	if (pl011_dma_rx_trigger_dma(uap)) {
1016 		dev_dbg(uap->port.dev, "could not retrigger RX DMA job "
1017 			"fall back to interrupt mode\n");
1018 		uap->im |= UART011_RXIM;
1019 		pl011_write(uap->im, uap, REG_IMSC);
1020 	}
1021 }
1022 
1023 static void pl011_dma_rx_callback(void *data)
1024 {
1025 	struct uart_amba_port *uap = data;
1026 	struct pl011_dmarx_data *dmarx = &uap->dmarx;
1027 	struct dma_chan *rxchan = dmarx->chan;
1028 	bool lastbuf = dmarx->use_buf_b;
1029 	struct pl011_sgbuf *sgbuf = dmarx->use_buf_b ?
1030 		&dmarx->sgbuf_b : &dmarx->sgbuf_a;
1031 	size_t pending;
1032 	struct dma_tx_state state;
1033 	int ret;
1034 
1035 	/*
1036 	 * This completion interrupt occurs typically when the
1037 	 * RX buffer is totally stuffed but no timeout has yet
1038 	 * occurred. When that happens, we just want the RX
1039 	 * routine to flush out the secondary DMA buffer while
1040 	 * we immediately trigger the next DMA job.
1041 	 */
1042 	spin_lock_irq(&uap->port.lock);
1043 	/*
1044 	 * Rx data can be taken by the UART interrupts during
1045 	 * the DMA irq handler. So we check the residue here.
1046 	 */
1047 	rxchan->device->device_tx_status(rxchan, dmarx->cookie, &state);
1048 	pending = sgbuf->sg.length - state.residue;
1049 	BUG_ON(pending > PL011_DMA_BUFFER_SIZE);
1050 	/* Then we terminate the transfer - we now know our residue */
1051 	dmaengine_terminate_all(rxchan);
1052 
1053 	uap->dmarx.running = false;
1054 	dmarx->use_buf_b = !lastbuf;
1055 	ret = pl011_dma_rx_trigger_dma(uap);
1056 
1057 	pl011_dma_rx_chars(uap, pending, lastbuf, false);
1058 	spin_unlock_irq(&uap->port.lock);
1059 	/*
1060 	 * Do this check after we picked the DMA chars so we don't
1061 	 * get some IRQ immediately from RX.
1062 	 */
1063 	if (ret) {
1064 		dev_dbg(uap->port.dev, "could not retrigger RX DMA job "
1065 			"fall back to interrupt mode\n");
1066 		uap->im |= UART011_RXIM;
1067 		pl011_write(uap->im, uap, REG_IMSC);
1068 	}
1069 }
1070 
1071 /*
1072  * Stop accepting received characters, when we're shutting down or
1073  * suspending this port.
1074  * Locking: called with port lock held and IRQs disabled.
1075  */
1076 static inline void pl011_dma_rx_stop(struct uart_amba_port *uap)
1077 {
1078 	/* FIXME.  Just disable the DMA enable */
1079 	uap->dmacr &= ~UART011_RXDMAE;
1080 	pl011_write(uap->dmacr, uap, REG_DMACR);
1081 }
1082 
1083 /*
1084  * Timer handler for Rx DMA polling.
1085  * Every polling, It checks the residue in the dma buffer and transfer
1086  * data to the tty. Also, last_residue is updated for the next polling.
1087  */
1088 static void pl011_dma_rx_poll(unsigned long args)
1089 {
1090 	struct uart_amba_port *uap = (struct uart_amba_port *)args;
1091 	struct tty_port *port = &uap->port.state->port;
1092 	struct pl011_dmarx_data *dmarx = &uap->dmarx;
1093 	struct dma_chan *rxchan = uap->dmarx.chan;
1094 	unsigned long flags = 0;
1095 	unsigned int dmataken = 0;
1096 	unsigned int size = 0;
1097 	struct pl011_sgbuf *sgbuf;
1098 	int dma_count;
1099 	struct dma_tx_state state;
1100 
1101 	sgbuf = dmarx->use_buf_b ? &uap->dmarx.sgbuf_b : &uap->dmarx.sgbuf_a;
1102 	rxchan->device->device_tx_status(rxchan, dmarx->cookie, &state);
1103 	if (likely(state.residue < dmarx->last_residue)) {
1104 		dmataken = sgbuf->sg.length - dmarx->last_residue;
1105 		size = dmarx->last_residue - state.residue;
1106 		dma_count = tty_insert_flip_string(port, sgbuf->buf + dmataken,
1107 				size);
1108 		if (dma_count == size)
1109 			dmarx->last_residue =  state.residue;
1110 		dmarx->last_jiffies = jiffies;
1111 	}
1112 	tty_flip_buffer_push(port);
1113 
1114 	/*
1115 	 * If no data is received in poll_timeout, the driver will fall back
1116 	 * to interrupt mode. We will retrigger DMA at the first interrupt.
1117 	 */
1118 	if (jiffies_to_msecs(jiffies - dmarx->last_jiffies)
1119 			> uap->dmarx.poll_timeout) {
1120 
1121 		spin_lock_irqsave(&uap->port.lock, flags);
1122 		pl011_dma_rx_stop(uap);
1123 		uap->im |= UART011_RXIM;
1124 		pl011_write(uap->im, uap, REG_IMSC);
1125 		spin_unlock_irqrestore(&uap->port.lock, flags);
1126 
1127 		uap->dmarx.running = false;
1128 		dmaengine_terminate_all(rxchan);
1129 		del_timer(&uap->dmarx.timer);
1130 	} else {
1131 		mod_timer(&uap->dmarx.timer,
1132 			jiffies + msecs_to_jiffies(uap->dmarx.poll_rate));
1133 	}
1134 }
1135 
1136 static void pl011_dma_startup(struct uart_amba_port *uap)
1137 {
1138 	int ret;
1139 
1140 	if (!uap->dma_probed)
1141 		pl011_dma_probe(uap);
1142 
1143 	if (!uap->dmatx.chan)
1144 		return;
1145 
1146 	uap->dmatx.buf = kmalloc(PL011_DMA_BUFFER_SIZE, GFP_KERNEL | __GFP_DMA);
1147 	if (!uap->dmatx.buf) {
1148 		dev_err(uap->port.dev, "no memory for DMA TX buffer\n");
1149 		uap->port.fifosize = uap->fifosize;
1150 		return;
1151 	}
1152 
1153 	sg_init_one(&uap->dmatx.sg, uap->dmatx.buf, PL011_DMA_BUFFER_SIZE);
1154 
1155 	/* The DMA buffer is now the FIFO the TTY subsystem can use */
1156 	uap->port.fifosize = PL011_DMA_BUFFER_SIZE;
1157 	uap->using_tx_dma = true;
1158 
1159 	if (!uap->dmarx.chan)
1160 		goto skip_rx;
1161 
1162 	/* Allocate and map DMA RX buffers */
1163 	ret = pl011_sgbuf_init(uap->dmarx.chan, &uap->dmarx.sgbuf_a,
1164 			       DMA_FROM_DEVICE);
1165 	if (ret) {
1166 		dev_err(uap->port.dev, "failed to init DMA %s: %d\n",
1167 			"RX buffer A", ret);
1168 		goto skip_rx;
1169 	}
1170 
1171 	ret = pl011_sgbuf_init(uap->dmarx.chan, &uap->dmarx.sgbuf_b,
1172 			       DMA_FROM_DEVICE);
1173 	if (ret) {
1174 		dev_err(uap->port.dev, "failed to init DMA %s: %d\n",
1175 			"RX buffer B", ret);
1176 		pl011_sgbuf_free(uap->dmarx.chan, &uap->dmarx.sgbuf_a,
1177 				 DMA_FROM_DEVICE);
1178 		goto skip_rx;
1179 	}
1180 
1181 	uap->using_rx_dma = true;
1182 
1183 skip_rx:
1184 	/* Turn on DMA error (RX/TX will be enabled on demand) */
1185 	uap->dmacr |= UART011_DMAONERR;
1186 	pl011_write(uap->dmacr, uap, REG_DMACR);
1187 
1188 	/*
1189 	 * ST Micro variants has some specific dma burst threshold
1190 	 * compensation. Set this to 16 bytes, so burst will only
1191 	 * be issued above/below 16 bytes.
1192 	 */
1193 	if (uap->vendor->dma_threshold)
1194 		pl011_write(ST_UART011_DMAWM_RX_16 | ST_UART011_DMAWM_TX_16,
1195 			    uap, REG_ST_DMAWM);
1196 
1197 	if (uap->using_rx_dma) {
1198 		if (pl011_dma_rx_trigger_dma(uap))
1199 			dev_dbg(uap->port.dev, "could not trigger initial "
1200 				"RX DMA job, fall back to interrupt mode\n");
1201 		if (uap->dmarx.poll_rate) {
1202 			init_timer(&(uap->dmarx.timer));
1203 			uap->dmarx.timer.function = pl011_dma_rx_poll;
1204 			uap->dmarx.timer.data = (unsigned long)uap;
1205 			mod_timer(&uap->dmarx.timer,
1206 				jiffies +
1207 				msecs_to_jiffies(uap->dmarx.poll_rate));
1208 			uap->dmarx.last_residue = PL011_DMA_BUFFER_SIZE;
1209 			uap->dmarx.last_jiffies = jiffies;
1210 		}
1211 	}
1212 }
1213 
1214 static void pl011_dma_shutdown(struct uart_amba_port *uap)
1215 {
1216 	if (!(uap->using_tx_dma || uap->using_rx_dma))
1217 		return;
1218 
1219 	/* Disable RX and TX DMA */
1220 	while (pl011_read(uap, REG_FR) & uap->vendor->fr_busy)
1221 		cpu_relax();
1222 
1223 	spin_lock_irq(&uap->port.lock);
1224 	uap->dmacr &= ~(UART011_DMAONERR | UART011_RXDMAE | UART011_TXDMAE);
1225 	pl011_write(uap->dmacr, uap, REG_DMACR);
1226 	spin_unlock_irq(&uap->port.lock);
1227 
1228 	if (uap->using_tx_dma) {
1229 		/* In theory, this should already be done by pl011_dma_flush_buffer */
1230 		dmaengine_terminate_all(uap->dmatx.chan);
1231 		if (uap->dmatx.queued) {
1232 			dma_unmap_sg(uap->dmatx.chan->device->dev, &uap->dmatx.sg, 1,
1233 				     DMA_TO_DEVICE);
1234 			uap->dmatx.queued = false;
1235 		}
1236 
1237 		kfree(uap->dmatx.buf);
1238 		uap->using_tx_dma = false;
1239 	}
1240 
1241 	if (uap->using_rx_dma) {
1242 		dmaengine_terminate_all(uap->dmarx.chan);
1243 		/* Clean up the RX DMA */
1244 		pl011_sgbuf_free(uap->dmarx.chan, &uap->dmarx.sgbuf_a, DMA_FROM_DEVICE);
1245 		pl011_sgbuf_free(uap->dmarx.chan, &uap->dmarx.sgbuf_b, DMA_FROM_DEVICE);
1246 		if (uap->dmarx.poll_rate)
1247 			del_timer_sync(&uap->dmarx.timer);
1248 		uap->using_rx_dma = false;
1249 	}
1250 }
1251 
1252 static inline bool pl011_dma_rx_available(struct uart_amba_port *uap)
1253 {
1254 	return uap->using_rx_dma;
1255 }
1256 
1257 static inline bool pl011_dma_rx_running(struct uart_amba_port *uap)
1258 {
1259 	return uap->using_rx_dma && uap->dmarx.running;
1260 }
1261 
1262 #else
1263 /* Blank functions if the DMA engine is not available */
1264 static inline void pl011_dma_probe(struct uart_amba_port *uap)
1265 {
1266 }
1267 
1268 static inline void pl011_dma_remove(struct uart_amba_port *uap)
1269 {
1270 }
1271 
1272 static inline void pl011_dma_startup(struct uart_amba_port *uap)
1273 {
1274 }
1275 
1276 static inline void pl011_dma_shutdown(struct uart_amba_port *uap)
1277 {
1278 }
1279 
1280 static inline bool pl011_dma_tx_irq(struct uart_amba_port *uap)
1281 {
1282 	return false;
1283 }
1284 
1285 static inline void pl011_dma_tx_stop(struct uart_amba_port *uap)
1286 {
1287 }
1288 
1289 static inline bool pl011_dma_tx_start(struct uart_amba_port *uap)
1290 {
1291 	return false;
1292 }
1293 
1294 static inline void pl011_dma_rx_irq(struct uart_amba_port *uap)
1295 {
1296 }
1297 
1298 static inline void pl011_dma_rx_stop(struct uart_amba_port *uap)
1299 {
1300 }
1301 
1302 static inline int pl011_dma_rx_trigger_dma(struct uart_amba_port *uap)
1303 {
1304 	return -EIO;
1305 }
1306 
1307 static inline bool pl011_dma_rx_available(struct uart_amba_port *uap)
1308 {
1309 	return false;
1310 }
1311 
1312 static inline bool pl011_dma_rx_running(struct uart_amba_port *uap)
1313 {
1314 	return false;
1315 }
1316 
1317 #define pl011_dma_flush_buffer	NULL
1318 #endif
1319 
1320 static void pl011_stop_tx(struct uart_port *port)
1321 {
1322 	struct uart_amba_port *uap =
1323 	    container_of(port, struct uart_amba_port, port);
1324 
1325 	uap->im &= ~UART011_TXIM;
1326 	pl011_write(uap->im, uap, REG_IMSC);
1327 	pl011_dma_tx_stop(uap);
1328 }
1329 
1330 static bool pl011_tx_chars(struct uart_amba_port *uap, bool from_irq);
1331 
1332 /* Start TX with programmed I/O only (no DMA) */
1333 static void pl011_start_tx_pio(struct uart_amba_port *uap)
1334 {
1335 	if (pl011_tx_chars(uap, false)) {
1336 		uap->im |= UART011_TXIM;
1337 		pl011_write(uap->im, uap, REG_IMSC);
1338 	}
1339 }
1340 
1341 static void pl011_start_tx(struct uart_port *port)
1342 {
1343 	struct uart_amba_port *uap =
1344 	    container_of(port, struct uart_amba_port, port);
1345 
1346 	if (!pl011_dma_tx_start(uap))
1347 		pl011_start_tx_pio(uap);
1348 }
1349 
1350 static void pl011_stop_rx(struct uart_port *port)
1351 {
1352 	struct uart_amba_port *uap =
1353 	    container_of(port, struct uart_amba_port, port);
1354 
1355 	uap->im &= ~(UART011_RXIM|UART011_RTIM|UART011_FEIM|
1356 		     UART011_PEIM|UART011_BEIM|UART011_OEIM);
1357 	pl011_write(uap->im, uap, REG_IMSC);
1358 
1359 	pl011_dma_rx_stop(uap);
1360 }
1361 
1362 static void pl011_enable_ms(struct uart_port *port)
1363 {
1364 	struct uart_amba_port *uap =
1365 	    container_of(port, struct uart_amba_port, port);
1366 
1367 	uap->im |= UART011_RIMIM|UART011_CTSMIM|UART011_DCDMIM|UART011_DSRMIM;
1368 	pl011_write(uap->im, uap, REG_IMSC);
1369 }
1370 
1371 static void pl011_rx_chars(struct uart_amba_port *uap)
1372 __releases(&uap->port.lock)
1373 __acquires(&uap->port.lock)
1374 {
1375 	pl011_fifo_to_tty(uap);
1376 
1377 	spin_unlock(&uap->port.lock);
1378 	tty_flip_buffer_push(&uap->port.state->port);
1379 	/*
1380 	 * If we were temporarily out of DMA mode for a while,
1381 	 * attempt to switch back to DMA mode again.
1382 	 */
1383 	if (pl011_dma_rx_available(uap)) {
1384 		if (pl011_dma_rx_trigger_dma(uap)) {
1385 			dev_dbg(uap->port.dev, "could not trigger RX DMA job "
1386 				"fall back to interrupt mode again\n");
1387 			uap->im |= UART011_RXIM;
1388 			pl011_write(uap->im, uap, REG_IMSC);
1389 		} else {
1390 #ifdef CONFIG_DMA_ENGINE
1391 			/* Start Rx DMA poll */
1392 			if (uap->dmarx.poll_rate) {
1393 				uap->dmarx.last_jiffies = jiffies;
1394 				uap->dmarx.last_residue	= PL011_DMA_BUFFER_SIZE;
1395 				mod_timer(&uap->dmarx.timer,
1396 					jiffies +
1397 					msecs_to_jiffies(uap->dmarx.poll_rate));
1398 			}
1399 #endif
1400 		}
1401 	}
1402 	spin_lock(&uap->port.lock);
1403 }
1404 
1405 static bool pl011_tx_char(struct uart_amba_port *uap, unsigned char c,
1406 			  bool from_irq)
1407 {
1408 	if (unlikely(!from_irq) &&
1409 	    pl011_read(uap, REG_FR) & UART01x_FR_TXFF)
1410 		return false; /* unable to transmit character */
1411 
1412 	pl011_write(c, uap, REG_DR);
1413 	uap->port.icount.tx++;
1414 
1415 	return true;
1416 }
1417 
1418 /* Returns true if tx interrupts have to be (kept) enabled  */
1419 static bool pl011_tx_chars(struct uart_amba_port *uap, bool from_irq)
1420 {
1421 	struct circ_buf *xmit = &uap->port.state->xmit;
1422 	int count = uap->fifosize >> 1;
1423 
1424 	if (uap->port.x_char) {
1425 		if (!pl011_tx_char(uap, uap->port.x_char, from_irq))
1426 			return true;
1427 		uap->port.x_char = 0;
1428 		--count;
1429 	}
1430 	if (uart_circ_empty(xmit) || uart_tx_stopped(&uap->port)) {
1431 		pl011_stop_tx(&uap->port);
1432 		return false;
1433 	}
1434 
1435 	/* If we are using DMA mode, try to send some characters. */
1436 	if (pl011_dma_tx_irq(uap))
1437 		return true;
1438 
1439 	do {
1440 		if (likely(from_irq) && count-- == 0)
1441 			break;
1442 
1443 		if (!pl011_tx_char(uap, xmit->buf[xmit->tail], from_irq))
1444 			break;
1445 
1446 		xmit->tail = (xmit->tail + 1) & (UART_XMIT_SIZE - 1);
1447 	} while (!uart_circ_empty(xmit));
1448 
1449 	if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
1450 		uart_write_wakeup(&uap->port);
1451 
1452 	if (uart_circ_empty(xmit)) {
1453 		pl011_stop_tx(&uap->port);
1454 		return false;
1455 	}
1456 	return true;
1457 }
1458 
1459 static void pl011_modem_status(struct uart_amba_port *uap)
1460 {
1461 	unsigned int status, delta;
1462 
1463 	status = pl011_read(uap, REG_FR) & UART01x_FR_MODEM_ANY;
1464 
1465 	delta = status ^ uap->old_status;
1466 	uap->old_status = status;
1467 
1468 	if (!delta)
1469 		return;
1470 
1471 	if (delta & UART01x_FR_DCD)
1472 		uart_handle_dcd_change(&uap->port, status & UART01x_FR_DCD);
1473 
1474 	if (delta & uap->vendor->fr_dsr)
1475 		uap->port.icount.dsr++;
1476 
1477 	if (delta & uap->vendor->fr_cts)
1478 		uart_handle_cts_change(&uap->port,
1479 				       status & uap->vendor->fr_cts);
1480 
1481 	wake_up_interruptible(&uap->port.state->port.delta_msr_wait);
1482 }
1483 
1484 static void check_apply_cts_event_workaround(struct uart_amba_port *uap)
1485 {
1486 	unsigned int dummy_read;
1487 
1488 	if (!uap->vendor->cts_event_workaround)
1489 		return;
1490 
1491 	/* workaround to make sure that all bits are unlocked.. */
1492 	pl011_write(0x00, uap, REG_ICR);
1493 
1494 	/*
1495 	 * WA: introduce 26ns(1 uart clk) delay before W1C;
1496 	 * single apb access will incur 2 pclk(133.12Mhz) delay,
1497 	 * so add 2 dummy reads
1498 	 */
1499 	dummy_read = pl011_read(uap, REG_ICR);
1500 	dummy_read = pl011_read(uap, REG_ICR);
1501 }
1502 
1503 static irqreturn_t pl011_int(int irq, void *dev_id)
1504 {
1505 	struct uart_amba_port *uap = dev_id;
1506 	unsigned long flags;
1507 	unsigned int status, pass_counter = AMBA_ISR_PASS_LIMIT;
1508 	u16 imsc;
1509 	int handled = 0;
1510 
1511 	spin_lock_irqsave(&uap->port.lock, flags);
1512 	imsc = pl011_read(uap, REG_IMSC);
1513 	status = pl011_read(uap, REG_RIS) & imsc;
1514 	if (status) {
1515 		do {
1516 			check_apply_cts_event_workaround(uap);
1517 
1518 			pl011_write(status & ~(UART011_TXIS|UART011_RTIS|
1519 					       UART011_RXIS),
1520 				    uap, REG_ICR);
1521 
1522 			if (status & (UART011_RTIS|UART011_RXIS)) {
1523 				if (pl011_dma_rx_running(uap))
1524 					pl011_dma_rx_irq(uap);
1525 				else
1526 					pl011_rx_chars(uap);
1527 			}
1528 			if (status & (UART011_DSRMIS|UART011_DCDMIS|
1529 				      UART011_CTSMIS|UART011_RIMIS))
1530 				pl011_modem_status(uap);
1531 			if (status & UART011_TXIS)
1532 				pl011_tx_chars(uap, true);
1533 
1534 			if (pass_counter-- == 0)
1535 				break;
1536 
1537 			status = pl011_read(uap, REG_RIS) & imsc;
1538 		} while (status != 0);
1539 		handled = 1;
1540 	}
1541 
1542 	spin_unlock_irqrestore(&uap->port.lock, flags);
1543 
1544 	return IRQ_RETVAL(handled);
1545 }
1546 
1547 static unsigned int pl011_tx_empty(struct uart_port *port)
1548 {
1549 	struct uart_amba_port *uap =
1550 	    container_of(port, struct uart_amba_port, port);
1551 
1552 	/* Allow feature register bits to be inverted to work around errata */
1553 	unsigned int status = pl011_read(uap, REG_FR) ^ uap->vendor->inv_fr;
1554 
1555 	return status & (uap->vendor->fr_busy | UART01x_FR_TXFF) ?
1556 							0 : TIOCSER_TEMT;
1557 }
1558 
1559 static unsigned int pl011_get_mctrl(struct uart_port *port)
1560 {
1561 	struct uart_amba_port *uap =
1562 	    container_of(port, struct uart_amba_port, port);
1563 	unsigned int result = 0;
1564 	unsigned int status = pl011_read(uap, REG_FR);
1565 
1566 #define TIOCMBIT(uartbit, tiocmbit)	\
1567 	if (status & uartbit)		\
1568 		result |= tiocmbit
1569 
1570 	TIOCMBIT(UART01x_FR_DCD, TIOCM_CAR);
1571 	TIOCMBIT(uap->vendor->fr_dsr, TIOCM_DSR);
1572 	TIOCMBIT(uap->vendor->fr_cts, TIOCM_CTS);
1573 	TIOCMBIT(uap->vendor->fr_ri, TIOCM_RNG);
1574 #undef TIOCMBIT
1575 	return result;
1576 }
1577 
1578 static void pl011_set_mctrl(struct uart_port *port, unsigned int mctrl)
1579 {
1580 	struct uart_amba_port *uap =
1581 	    container_of(port, struct uart_amba_port, port);
1582 	unsigned int cr;
1583 
1584 	cr = pl011_read(uap, REG_CR);
1585 
1586 #define	TIOCMBIT(tiocmbit, uartbit)		\
1587 	if (mctrl & tiocmbit)		\
1588 		cr |= uartbit;		\
1589 	else				\
1590 		cr &= ~uartbit
1591 
1592 	TIOCMBIT(TIOCM_RTS, UART011_CR_RTS);
1593 	TIOCMBIT(TIOCM_DTR, UART011_CR_DTR);
1594 	TIOCMBIT(TIOCM_OUT1, UART011_CR_OUT1);
1595 	TIOCMBIT(TIOCM_OUT2, UART011_CR_OUT2);
1596 	TIOCMBIT(TIOCM_LOOP, UART011_CR_LBE);
1597 
1598 	if (uap->autorts) {
1599 		/* We need to disable auto-RTS if we want to turn RTS off */
1600 		TIOCMBIT(TIOCM_RTS, UART011_CR_RTSEN);
1601 	}
1602 #undef TIOCMBIT
1603 
1604 	pl011_write(cr, uap, REG_CR);
1605 }
1606 
1607 static void pl011_break_ctl(struct uart_port *port, int break_state)
1608 {
1609 	struct uart_amba_port *uap =
1610 	    container_of(port, struct uart_amba_port, port);
1611 	unsigned long flags;
1612 	unsigned int lcr_h;
1613 
1614 	spin_lock_irqsave(&uap->port.lock, flags);
1615 	lcr_h = pl011_read(uap, REG_LCRH_TX);
1616 	if (break_state == -1)
1617 		lcr_h |= UART01x_LCRH_BRK;
1618 	else
1619 		lcr_h &= ~UART01x_LCRH_BRK;
1620 	pl011_write(lcr_h, uap, REG_LCRH_TX);
1621 	spin_unlock_irqrestore(&uap->port.lock, flags);
1622 }
1623 
1624 #ifdef CONFIG_CONSOLE_POLL
1625 
1626 static void pl011_quiesce_irqs(struct uart_port *port)
1627 {
1628 	struct uart_amba_port *uap =
1629 	    container_of(port, struct uart_amba_port, port);
1630 
1631 	pl011_write(pl011_read(uap, REG_MIS), uap, REG_ICR);
1632 	/*
1633 	 * There is no way to clear TXIM as this is "ready to transmit IRQ", so
1634 	 * we simply mask it. start_tx() will unmask it.
1635 	 *
1636 	 * Note we can race with start_tx(), and if the race happens, the
1637 	 * polling user might get another interrupt just after we clear it.
1638 	 * But it should be OK and can happen even w/o the race, e.g.
1639 	 * controller immediately got some new data and raised the IRQ.
1640 	 *
1641 	 * And whoever uses polling routines assumes that it manages the device
1642 	 * (including tx queue), so we're also fine with start_tx()'s caller
1643 	 * side.
1644 	 */
1645 	pl011_write(pl011_read(uap, REG_IMSC) & ~UART011_TXIM, uap,
1646 		    REG_IMSC);
1647 }
1648 
1649 static int pl011_get_poll_char(struct uart_port *port)
1650 {
1651 	struct uart_amba_port *uap =
1652 	    container_of(port, struct uart_amba_port, port);
1653 	unsigned int status;
1654 
1655 	/*
1656 	 * The caller might need IRQs lowered, e.g. if used with KDB NMI
1657 	 * debugger.
1658 	 */
1659 	pl011_quiesce_irqs(port);
1660 
1661 	status = pl011_read(uap, REG_FR);
1662 	if (status & UART01x_FR_RXFE)
1663 		return NO_POLL_CHAR;
1664 
1665 	return pl011_read(uap, REG_DR);
1666 }
1667 
1668 static void pl011_put_poll_char(struct uart_port *port,
1669 			 unsigned char ch)
1670 {
1671 	struct uart_amba_port *uap =
1672 	    container_of(port, struct uart_amba_port, port);
1673 
1674 	while (pl011_read(uap, REG_FR) & UART01x_FR_TXFF)
1675 		cpu_relax();
1676 
1677 	pl011_write(ch, uap, REG_DR);
1678 }
1679 
1680 #endif /* CONFIG_CONSOLE_POLL */
1681 
1682 static int pl011_hwinit(struct uart_port *port)
1683 {
1684 	struct uart_amba_port *uap =
1685 	    container_of(port, struct uart_amba_port, port);
1686 	int retval;
1687 
1688 	/* Optionaly enable pins to be muxed in and configured */
1689 	pinctrl_pm_select_default_state(port->dev);
1690 
1691 	/*
1692 	 * Try to enable the clock producer.
1693 	 */
1694 	retval = clk_prepare_enable(uap->clk);
1695 	if (retval)
1696 		return retval;
1697 
1698 	uap->port.uartclk = clk_get_rate(uap->clk);
1699 
1700 	/* Clear pending error and receive interrupts */
1701 	pl011_write(UART011_OEIS | UART011_BEIS | UART011_PEIS |
1702 		    UART011_FEIS | UART011_RTIS | UART011_RXIS,
1703 		    uap, REG_ICR);
1704 
1705 	/*
1706 	 * Save interrupts enable mask, and enable RX interrupts in case if
1707 	 * the interrupt is used for NMI entry.
1708 	 */
1709 	uap->im = pl011_read(uap, REG_IMSC);
1710 	pl011_write(UART011_RTIM | UART011_RXIM, uap, REG_IMSC);
1711 
1712 	if (dev_get_platdata(uap->port.dev)) {
1713 		struct amba_pl011_data *plat;
1714 
1715 		plat = dev_get_platdata(uap->port.dev);
1716 		if (plat->init)
1717 			plat->init();
1718 	}
1719 	return 0;
1720 }
1721 
1722 static bool pl011_split_lcrh(const struct uart_amba_port *uap)
1723 {
1724 	return pl011_reg_to_offset(uap, REG_LCRH_RX) !=
1725 	       pl011_reg_to_offset(uap, REG_LCRH_TX);
1726 }
1727 
1728 static void pl011_write_lcr_h(struct uart_amba_port *uap, unsigned int lcr_h)
1729 {
1730 	pl011_write(lcr_h, uap, REG_LCRH_RX);
1731 	if (pl011_split_lcrh(uap)) {
1732 		int i;
1733 		/*
1734 		 * Wait 10 PCLKs before writing LCRH_TX register,
1735 		 * to get this delay write read only register 10 times
1736 		 */
1737 		for (i = 0; i < 10; ++i)
1738 			pl011_write(0xff, uap, REG_MIS);
1739 		pl011_write(lcr_h, uap, REG_LCRH_TX);
1740 	}
1741 }
1742 
1743 static int pl011_allocate_irq(struct uart_amba_port *uap)
1744 {
1745 	pl011_write(uap->im, uap, REG_IMSC);
1746 
1747 	return request_irq(uap->port.irq, pl011_int, 0, "uart-pl011", uap);
1748 }
1749 
1750 /*
1751  * Enable interrupts, only timeouts when using DMA
1752  * if initial RX DMA job failed, start in interrupt mode
1753  * as well.
1754  */
1755 static void pl011_enable_interrupts(struct uart_amba_port *uap)
1756 {
1757 	spin_lock_irq(&uap->port.lock);
1758 
1759 	/* Clear out any spuriously appearing RX interrupts */
1760 	pl011_write(UART011_RTIS | UART011_RXIS, uap, REG_ICR);
1761 	uap->im = UART011_RTIM;
1762 	if (!pl011_dma_rx_running(uap))
1763 		uap->im |= UART011_RXIM;
1764 	pl011_write(uap->im, uap, REG_IMSC);
1765 	spin_unlock_irq(&uap->port.lock);
1766 }
1767 
1768 static int pl011_startup(struct uart_port *port)
1769 {
1770 	struct uart_amba_port *uap =
1771 	    container_of(port, struct uart_amba_port, port);
1772 	unsigned int cr;
1773 	int retval;
1774 
1775 	retval = pl011_hwinit(port);
1776 	if (retval)
1777 		goto clk_dis;
1778 
1779 	retval = pl011_allocate_irq(uap);
1780 	if (retval)
1781 		goto clk_dis;
1782 
1783 	pl011_write(uap->vendor->ifls, uap, REG_IFLS);
1784 
1785 	spin_lock_irq(&uap->port.lock);
1786 
1787 	/* restore RTS and DTR */
1788 	cr = uap->old_cr & (UART011_CR_RTS | UART011_CR_DTR);
1789 	cr |= UART01x_CR_UARTEN | UART011_CR_RXE | UART011_CR_TXE;
1790 	pl011_write(cr, uap, REG_CR);
1791 
1792 	spin_unlock_irq(&uap->port.lock);
1793 
1794 	/*
1795 	 * initialise the old status of the modem signals
1796 	 */
1797 	uap->old_status = pl011_read(uap, REG_FR) & UART01x_FR_MODEM_ANY;
1798 
1799 	/* Startup DMA */
1800 	pl011_dma_startup(uap);
1801 
1802 	pl011_enable_interrupts(uap);
1803 
1804 	return 0;
1805 
1806  clk_dis:
1807 	clk_disable_unprepare(uap->clk);
1808 	return retval;
1809 }
1810 
1811 static int sbsa_uart_startup(struct uart_port *port)
1812 {
1813 	struct uart_amba_port *uap =
1814 		container_of(port, struct uart_amba_port, port);
1815 	int retval;
1816 
1817 	retval = pl011_hwinit(port);
1818 	if (retval)
1819 		return retval;
1820 
1821 	retval = pl011_allocate_irq(uap);
1822 	if (retval)
1823 		return retval;
1824 
1825 	/* The SBSA UART does not support any modem status lines. */
1826 	uap->old_status = 0;
1827 
1828 	pl011_enable_interrupts(uap);
1829 
1830 	return 0;
1831 }
1832 
1833 static void pl011_shutdown_channel(struct uart_amba_port *uap,
1834 					unsigned int lcrh)
1835 {
1836       unsigned long val;
1837 
1838       val = pl011_read(uap, lcrh);
1839       val &= ~(UART01x_LCRH_BRK | UART01x_LCRH_FEN);
1840       pl011_write(val, uap, lcrh);
1841 }
1842 
1843 /*
1844  * disable the port. It should not disable RTS and DTR.
1845  * Also RTS and DTR state should be preserved to restore
1846  * it during startup().
1847  */
1848 static void pl011_disable_uart(struct uart_amba_port *uap)
1849 {
1850 	unsigned int cr;
1851 
1852 	uap->autorts = false;
1853 	spin_lock_irq(&uap->port.lock);
1854 	cr = pl011_read(uap, REG_CR);
1855 	uap->old_cr = cr;
1856 	cr &= UART011_CR_RTS | UART011_CR_DTR;
1857 	cr |= UART01x_CR_UARTEN | UART011_CR_TXE;
1858 	pl011_write(cr, uap, REG_CR);
1859 	spin_unlock_irq(&uap->port.lock);
1860 
1861 	/*
1862 	 * disable break condition and fifos
1863 	 */
1864 	pl011_shutdown_channel(uap, REG_LCRH_RX);
1865 	if (pl011_split_lcrh(uap))
1866 		pl011_shutdown_channel(uap, REG_LCRH_TX);
1867 }
1868 
1869 static void pl011_disable_interrupts(struct uart_amba_port *uap)
1870 {
1871 	spin_lock_irq(&uap->port.lock);
1872 
1873 	/* mask all interrupts and clear all pending ones */
1874 	uap->im = 0;
1875 	pl011_write(uap->im, uap, REG_IMSC);
1876 	pl011_write(0xffff, uap, REG_ICR);
1877 
1878 	spin_unlock_irq(&uap->port.lock);
1879 }
1880 
1881 static void pl011_shutdown(struct uart_port *port)
1882 {
1883 	struct uart_amba_port *uap =
1884 		container_of(port, struct uart_amba_port, port);
1885 
1886 	pl011_disable_interrupts(uap);
1887 
1888 	pl011_dma_shutdown(uap);
1889 
1890 	free_irq(uap->port.irq, uap);
1891 
1892 	pl011_disable_uart(uap);
1893 
1894 	/*
1895 	 * Shut down the clock producer
1896 	 */
1897 	clk_disable_unprepare(uap->clk);
1898 	/* Optionally let pins go into sleep states */
1899 	pinctrl_pm_select_sleep_state(port->dev);
1900 
1901 	if (dev_get_platdata(uap->port.dev)) {
1902 		struct amba_pl011_data *plat;
1903 
1904 		plat = dev_get_platdata(uap->port.dev);
1905 		if (plat->exit)
1906 			plat->exit();
1907 	}
1908 
1909 	if (uap->port.ops->flush_buffer)
1910 		uap->port.ops->flush_buffer(port);
1911 }
1912 
1913 static void sbsa_uart_shutdown(struct uart_port *port)
1914 {
1915 	struct uart_amba_port *uap =
1916 		container_of(port, struct uart_amba_port, port);
1917 
1918 	pl011_disable_interrupts(uap);
1919 
1920 	free_irq(uap->port.irq, uap);
1921 
1922 	if (uap->port.ops->flush_buffer)
1923 		uap->port.ops->flush_buffer(port);
1924 }
1925 
1926 static void
1927 pl011_setup_status_masks(struct uart_port *port, struct ktermios *termios)
1928 {
1929 	port->read_status_mask = UART011_DR_OE | 255;
1930 	if (termios->c_iflag & INPCK)
1931 		port->read_status_mask |= UART011_DR_FE | UART011_DR_PE;
1932 	if (termios->c_iflag & (IGNBRK | BRKINT | PARMRK))
1933 		port->read_status_mask |= UART011_DR_BE;
1934 
1935 	/*
1936 	 * Characters to ignore
1937 	 */
1938 	port->ignore_status_mask = 0;
1939 	if (termios->c_iflag & IGNPAR)
1940 		port->ignore_status_mask |= UART011_DR_FE | UART011_DR_PE;
1941 	if (termios->c_iflag & IGNBRK) {
1942 		port->ignore_status_mask |= UART011_DR_BE;
1943 		/*
1944 		 * If we're ignoring parity and break indicators,
1945 		 * ignore overruns too (for real raw support).
1946 		 */
1947 		if (termios->c_iflag & IGNPAR)
1948 			port->ignore_status_mask |= UART011_DR_OE;
1949 	}
1950 
1951 	/*
1952 	 * Ignore all characters if CREAD is not set.
1953 	 */
1954 	if ((termios->c_cflag & CREAD) == 0)
1955 		port->ignore_status_mask |= UART_DUMMY_DR_RX;
1956 }
1957 
1958 static void
1959 pl011_set_termios(struct uart_port *port, struct ktermios *termios,
1960 		     struct ktermios *old)
1961 {
1962 	struct uart_amba_port *uap =
1963 	    container_of(port, struct uart_amba_port, port);
1964 	unsigned int lcr_h, old_cr;
1965 	unsigned long flags;
1966 	unsigned int baud, quot, clkdiv;
1967 
1968 	if (uap->vendor->oversampling)
1969 		clkdiv = 8;
1970 	else
1971 		clkdiv = 16;
1972 
1973 	/*
1974 	 * Ask the core to calculate the divisor for us.
1975 	 */
1976 	baud = uart_get_baud_rate(port, termios, old, 0,
1977 				  port->uartclk / clkdiv);
1978 #ifdef CONFIG_DMA_ENGINE
1979 	/*
1980 	 * Adjust RX DMA polling rate with baud rate if not specified.
1981 	 */
1982 	if (uap->dmarx.auto_poll_rate)
1983 		uap->dmarx.poll_rate = DIV_ROUND_UP(10000000, baud);
1984 #endif
1985 
1986 	if (baud > port->uartclk/16)
1987 		quot = DIV_ROUND_CLOSEST(port->uartclk * 8, baud);
1988 	else
1989 		quot = DIV_ROUND_CLOSEST(port->uartclk * 4, baud);
1990 
1991 	switch (termios->c_cflag & CSIZE) {
1992 	case CS5:
1993 		lcr_h = UART01x_LCRH_WLEN_5;
1994 		break;
1995 	case CS6:
1996 		lcr_h = UART01x_LCRH_WLEN_6;
1997 		break;
1998 	case CS7:
1999 		lcr_h = UART01x_LCRH_WLEN_7;
2000 		break;
2001 	default: // CS8
2002 		lcr_h = UART01x_LCRH_WLEN_8;
2003 		break;
2004 	}
2005 	if (termios->c_cflag & CSTOPB)
2006 		lcr_h |= UART01x_LCRH_STP2;
2007 	if (termios->c_cflag & PARENB) {
2008 		lcr_h |= UART01x_LCRH_PEN;
2009 		if (!(termios->c_cflag & PARODD))
2010 			lcr_h |= UART01x_LCRH_EPS;
2011 		if (termios->c_cflag & CMSPAR)
2012 			lcr_h |= UART011_LCRH_SPS;
2013 	}
2014 	if (uap->fifosize > 1)
2015 		lcr_h |= UART01x_LCRH_FEN;
2016 
2017 	spin_lock_irqsave(&port->lock, flags);
2018 
2019 	/*
2020 	 * Update the per-port timeout.
2021 	 */
2022 	uart_update_timeout(port, termios->c_cflag, baud);
2023 
2024 	pl011_setup_status_masks(port, termios);
2025 
2026 	if (UART_ENABLE_MS(port, termios->c_cflag))
2027 		pl011_enable_ms(port);
2028 
2029 	/* first, disable everything */
2030 	old_cr = pl011_read(uap, REG_CR);
2031 	pl011_write(0, uap, REG_CR);
2032 
2033 	if (termios->c_cflag & CRTSCTS) {
2034 		if (old_cr & UART011_CR_RTS)
2035 			old_cr |= UART011_CR_RTSEN;
2036 
2037 		old_cr |= UART011_CR_CTSEN;
2038 		uap->autorts = true;
2039 	} else {
2040 		old_cr &= ~(UART011_CR_CTSEN | UART011_CR_RTSEN);
2041 		uap->autorts = false;
2042 	}
2043 
2044 	if (uap->vendor->oversampling) {
2045 		if (baud > port->uartclk / 16)
2046 			old_cr |= ST_UART011_CR_OVSFACT;
2047 		else
2048 			old_cr &= ~ST_UART011_CR_OVSFACT;
2049 	}
2050 
2051 	/*
2052 	 * Workaround for the ST Micro oversampling variants to
2053 	 * increase the bitrate slightly, by lowering the divisor,
2054 	 * to avoid delayed sampling of start bit at high speeds,
2055 	 * else we see data corruption.
2056 	 */
2057 	if (uap->vendor->oversampling) {
2058 		if ((baud >= 3000000) && (baud < 3250000) && (quot > 1))
2059 			quot -= 1;
2060 		else if ((baud > 3250000) && (quot > 2))
2061 			quot -= 2;
2062 	}
2063 	/* Set baud rate */
2064 	pl011_write(quot & 0x3f, uap, REG_FBRD);
2065 	pl011_write(quot >> 6, uap, REG_IBRD);
2066 
2067 	/*
2068 	 * ----------v----------v----------v----------v-----
2069 	 * NOTE: REG_LCRH_TX and REG_LCRH_RX MUST BE WRITTEN AFTER
2070 	 * REG_FBRD & REG_IBRD.
2071 	 * ----------^----------^----------^----------^-----
2072 	 */
2073 	pl011_write_lcr_h(uap, lcr_h);
2074 	pl011_write(old_cr, uap, REG_CR);
2075 
2076 	spin_unlock_irqrestore(&port->lock, flags);
2077 }
2078 
2079 static void
2080 sbsa_uart_set_termios(struct uart_port *port, struct ktermios *termios,
2081 		      struct ktermios *old)
2082 {
2083 	struct uart_amba_port *uap =
2084 	    container_of(port, struct uart_amba_port, port);
2085 	unsigned long flags;
2086 
2087 	tty_termios_encode_baud_rate(termios, uap->fixed_baud, uap->fixed_baud);
2088 
2089 	/* The SBSA UART only supports 8n1 without hardware flow control. */
2090 	termios->c_cflag &= ~(CSIZE | CSTOPB | PARENB | PARODD);
2091 	termios->c_cflag &= ~(CMSPAR | CRTSCTS);
2092 	termios->c_cflag |= CS8 | CLOCAL;
2093 
2094 	spin_lock_irqsave(&port->lock, flags);
2095 	uart_update_timeout(port, CS8, uap->fixed_baud);
2096 	pl011_setup_status_masks(port, termios);
2097 	spin_unlock_irqrestore(&port->lock, flags);
2098 }
2099 
2100 static const char *pl011_type(struct uart_port *port)
2101 {
2102 	struct uart_amba_port *uap =
2103 	    container_of(port, struct uart_amba_port, port);
2104 	return uap->port.type == PORT_AMBA ? uap->type : NULL;
2105 }
2106 
2107 /*
2108  * Release the memory region(s) being used by 'port'
2109  */
2110 static void pl011_release_port(struct uart_port *port)
2111 {
2112 	release_mem_region(port->mapbase, SZ_4K);
2113 }
2114 
2115 /*
2116  * Request the memory region(s) being used by 'port'
2117  */
2118 static int pl011_request_port(struct uart_port *port)
2119 {
2120 	return request_mem_region(port->mapbase, SZ_4K, "uart-pl011")
2121 			!= NULL ? 0 : -EBUSY;
2122 }
2123 
2124 /*
2125  * Configure/autoconfigure the port.
2126  */
2127 static void pl011_config_port(struct uart_port *port, int flags)
2128 {
2129 	if (flags & UART_CONFIG_TYPE) {
2130 		port->type = PORT_AMBA;
2131 		pl011_request_port(port);
2132 	}
2133 }
2134 
2135 /*
2136  * verify the new serial_struct (for TIOCSSERIAL).
2137  */
2138 static int pl011_verify_port(struct uart_port *port, struct serial_struct *ser)
2139 {
2140 	int ret = 0;
2141 	if (ser->type != PORT_UNKNOWN && ser->type != PORT_AMBA)
2142 		ret = -EINVAL;
2143 	if (ser->irq < 0 || ser->irq >= nr_irqs)
2144 		ret = -EINVAL;
2145 	if (ser->baud_base < 9600)
2146 		ret = -EINVAL;
2147 	return ret;
2148 }
2149 
2150 static const struct uart_ops amba_pl011_pops = {
2151 	.tx_empty	= pl011_tx_empty,
2152 	.set_mctrl	= pl011_set_mctrl,
2153 	.get_mctrl	= pl011_get_mctrl,
2154 	.stop_tx	= pl011_stop_tx,
2155 	.start_tx	= pl011_start_tx,
2156 	.stop_rx	= pl011_stop_rx,
2157 	.enable_ms	= pl011_enable_ms,
2158 	.break_ctl	= pl011_break_ctl,
2159 	.startup	= pl011_startup,
2160 	.shutdown	= pl011_shutdown,
2161 	.flush_buffer	= pl011_dma_flush_buffer,
2162 	.set_termios	= pl011_set_termios,
2163 	.type		= pl011_type,
2164 	.release_port	= pl011_release_port,
2165 	.request_port	= pl011_request_port,
2166 	.config_port	= pl011_config_port,
2167 	.verify_port	= pl011_verify_port,
2168 #ifdef CONFIG_CONSOLE_POLL
2169 	.poll_init     = pl011_hwinit,
2170 	.poll_get_char = pl011_get_poll_char,
2171 	.poll_put_char = pl011_put_poll_char,
2172 #endif
2173 };
2174 
2175 static void sbsa_uart_set_mctrl(struct uart_port *port, unsigned int mctrl)
2176 {
2177 }
2178 
2179 static unsigned int sbsa_uart_get_mctrl(struct uart_port *port)
2180 {
2181 	return 0;
2182 }
2183 
2184 static const struct uart_ops sbsa_uart_pops = {
2185 	.tx_empty	= pl011_tx_empty,
2186 	.set_mctrl	= sbsa_uart_set_mctrl,
2187 	.get_mctrl	= sbsa_uart_get_mctrl,
2188 	.stop_tx	= pl011_stop_tx,
2189 	.start_tx	= pl011_start_tx,
2190 	.stop_rx	= pl011_stop_rx,
2191 	.startup	= sbsa_uart_startup,
2192 	.shutdown	= sbsa_uart_shutdown,
2193 	.set_termios	= sbsa_uart_set_termios,
2194 	.type		= pl011_type,
2195 	.release_port	= pl011_release_port,
2196 	.request_port	= pl011_request_port,
2197 	.config_port	= pl011_config_port,
2198 	.verify_port	= pl011_verify_port,
2199 #ifdef CONFIG_CONSOLE_POLL
2200 	.poll_init     = pl011_hwinit,
2201 	.poll_get_char = pl011_get_poll_char,
2202 	.poll_put_char = pl011_put_poll_char,
2203 #endif
2204 };
2205 
2206 static struct uart_amba_port *amba_ports[UART_NR];
2207 
2208 #ifdef CONFIG_SERIAL_AMBA_PL011_CONSOLE
2209 
2210 static void pl011_console_putchar(struct uart_port *port, int ch)
2211 {
2212 	struct uart_amba_port *uap =
2213 	    container_of(port, struct uart_amba_port, port);
2214 
2215 	while (pl011_read(uap, REG_FR) & UART01x_FR_TXFF)
2216 		cpu_relax();
2217 	pl011_write(ch, uap, REG_DR);
2218 }
2219 
2220 static void
2221 pl011_console_write(struct console *co, const char *s, unsigned int count)
2222 {
2223 	struct uart_amba_port *uap = amba_ports[co->index];
2224 	unsigned int old_cr = 0, new_cr;
2225 	unsigned long flags;
2226 	int locked = 1;
2227 
2228 	clk_enable(uap->clk);
2229 
2230 	local_irq_save(flags);
2231 	if (uap->port.sysrq)
2232 		locked = 0;
2233 	else if (oops_in_progress)
2234 		locked = spin_trylock(&uap->port.lock);
2235 	else
2236 		spin_lock(&uap->port.lock);
2237 
2238 	/*
2239 	 *	First save the CR then disable the interrupts
2240 	 */
2241 	if (!uap->vendor->always_enabled) {
2242 		old_cr = pl011_read(uap, REG_CR);
2243 		new_cr = old_cr & ~UART011_CR_CTSEN;
2244 		new_cr |= UART01x_CR_UARTEN | UART011_CR_TXE;
2245 		pl011_write(new_cr, uap, REG_CR);
2246 	}
2247 
2248 	uart_console_write(&uap->port, s, count, pl011_console_putchar);
2249 
2250 	/*
2251 	 *	Finally, wait for transmitter to become empty and restore the
2252 	 *	TCR. Allow feature register bits to be inverted to work around
2253 	 *	errata.
2254 	 */
2255 	while ((pl011_read(uap, REG_FR) ^ uap->vendor->inv_fr)
2256 						& uap->vendor->fr_busy)
2257 		cpu_relax();
2258 	if (!uap->vendor->always_enabled)
2259 		pl011_write(old_cr, uap, REG_CR);
2260 
2261 	if (locked)
2262 		spin_unlock(&uap->port.lock);
2263 	local_irq_restore(flags);
2264 
2265 	clk_disable(uap->clk);
2266 }
2267 
2268 static void __init
2269 pl011_console_get_options(struct uart_amba_port *uap, int *baud,
2270 			     int *parity, int *bits)
2271 {
2272 	if (pl011_read(uap, REG_CR) & UART01x_CR_UARTEN) {
2273 		unsigned int lcr_h, ibrd, fbrd;
2274 
2275 		lcr_h = pl011_read(uap, REG_LCRH_TX);
2276 
2277 		*parity = 'n';
2278 		if (lcr_h & UART01x_LCRH_PEN) {
2279 			if (lcr_h & UART01x_LCRH_EPS)
2280 				*parity = 'e';
2281 			else
2282 				*parity = 'o';
2283 		}
2284 
2285 		if ((lcr_h & 0x60) == UART01x_LCRH_WLEN_7)
2286 			*bits = 7;
2287 		else
2288 			*bits = 8;
2289 
2290 		ibrd = pl011_read(uap, REG_IBRD);
2291 		fbrd = pl011_read(uap, REG_FBRD);
2292 
2293 		*baud = uap->port.uartclk * 4 / (64 * ibrd + fbrd);
2294 
2295 		if (uap->vendor->oversampling) {
2296 			if (pl011_read(uap, REG_CR)
2297 				  & ST_UART011_CR_OVSFACT)
2298 				*baud *= 2;
2299 		}
2300 	}
2301 }
2302 
2303 static int __init pl011_console_setup(struct console *co, char *options)
2304 {
2305 	struct uart_amba_port *uap;
2306 	int baud = 38400;
2307 	int bits = 8;
2308 	int parity = 'n';
2309 	int flow = 'n';
2310 	int ret;
2311 
2312 	/*
2313 	 * Check whether an invalid uart number has been specified, and
2314 	 * if so, search for the first available port that does have
2315 	 * console support.
2316 	 */
2317 	if (co->index >= UART_NR)
2318 		co->index = 0;
2319 	uap = amba_ports[co->index];
2320 	if (!uap)
2321 		return -ENODEV;
2322 
2323 	/* Allow pins to be muxed in and configured */
2324 	pinctrl_pm_select_default_state(uap->port.dev);
2325 
2326 	ret = clk_prepare(uap->clk);
2327 	if (ret)
2328 		return ret;
2329 
2330 	if (dev_get_platdata(uap->port.dev)) {
2331 		struct amba_pl011_data *plat;
2332 
2333 		plat = dev_get_platdata(uap->port.dev);
2334 		if (plat->init)
2335 			plat->init();
2336 	}
2337 
2338 	uap->port.uartclk = clk_get_rate(uap->clk);
2339 
2340 	if (uap->vendor->fixed_options) {
2341 		baud = uap->fixed_baud;
2342 	} else {
2343 		if (options)
2344 			uart_parse_options(options,
2345 					   &baud, &parity, &bits, &flow);
2346 		else
2347 			pl011_console_get_options(uap, &baud, &parity, &bits);
2348 	}
2349 
2350 	return uart_set_options(&uap->port, co, baud, parity, bits, flow);
2351 }
2352 
2353 /**
2354  *	pl011_console_match - non-standard console matching
2355  *	@co:	  registering console
2356  *	@name:	  name from console command line
2357  *	@idx:	  index from console command line
2358  *	@options: ptr to option string from console command line
2359  *
2360  *	Only attempts to match console command lines of the form:
2361  *	    console=pl011,mmio|mmio32,<addr>[,<options>]
2362  *	    console=pl011,0x<addr>[,<options>]
2363  *	This form is used to register an initial earlycon boot console and
2364  *	replace it with the amba_console at pl011 driver init.
2365  *
2366  *	Performs console setup for a match (as required by interface)
2367  *	If no <options> are specified, then assume the h/w is already setup.
2368  *
2369  *	Returns 0 if console matches; otherwise non-zero to use default matching
2370  */
2371 static int __init pl011_console_match(struct console *co, char *name, int idx,
2372 				      char *options)
2373 {
2374 	unsigned char iotype;
2375 	resource_size_t addr;
2376 	int i;
2377 
2378 	if (strcmp(name, "qdf2400_e44") == 0) {
2379 		pr_info_once("UART: Working around QDF2400 SoC erratum 44");
2380 		qdf2400_e44_present = true;
2381 	} else if (strcmp(name, "pl011") != 0) {
2382 		return -ENODEV;
2383 	}
2384 
2385 	if (uart_parse_earlycon(options, &iotype, &addr, &options))
2386 		return -ENODEV;
2387 
2388 	if (iotype != UPIO_MEM && iotype != UPIO_MEM32)
2389 		return -ENODEV;
2390 
2391 	/* try to match the port specified on the command line */
2392 	for (i = 0; i < ARRAY_SIZE(amba_ports); i++) {
2393 		struct uart_port *port;
2394 
2395 		if (!amba_ports[i])
2396 			continue;
2397 
2398 		port = &amba_ports[i]->port;
2399 
2400 		if (port->mapbase != addr)
2401 			continue;
2402 
2403 		co->index = i;
2404 		port->cons = co;
2405 		return pl011_console_setup(co, options);
2406 	}
2407 
2408 	return -ENODEV;
2409 }
2410 
2411 static struct uart_driver amba_reg;
2412 static struct console amba_console = {
2413 	.name		= "ttyAMA",
2414 	.write		= pl011_console_write,
2415 	.device		= uart_console_device,
2416 	.setup		= pl011_console_setup,
2417 	.match		= pl011_console_match,
2418 	.flags		= CON_PRINTBUFFER | CON_ANYTIME,
2419 	.index		= -1,
2420 	.data		= &amba_reg,
2421 };
2422 
2423 #define AMBA_CONSOLE	(&amba_console)
2424 
2425 static void qdf2400_e44_putc(struct uart_port *port, int c)
2426 {
2427 	while (readl(port->membase + UART01x_FR) & UART01x_FR_TXFF)
2428 		cpu_relax();
2429 	writel(c, port->membase + UART01x_DR);
2430 	while (!(readl(port->membase + UART01x_FR) & UART011_FR_TXFE))
2431 		cpu_relax();
2432 }
2433 
2434 static void qdf2400_e44_early_write(struct console *con, const char *s, unsigned n)
2435 {
2436 	struct earlycon_device *dev = con->data;
2437 
2438 	uart_console_write(&dev->port, s, n, qdf2400_e44_putc);
2439 }
2440 
2441 static void pl011_putc(struct uart_port *port, int c)
2442 {
2443 	while (readl(port->membase + UART01x_FR) & UART01x_FR_TXFF)
2444 		cpu_relax();
2445 	if (port->iotype == UPIO_MEM32)
2446 		writel(c, port->membase + UART01x_DR);
2447 	else
2448 		writeb(c, port->membase + UART01x_DR);
2449 	while (readl(port->membase + UART01x_FR) & UART01x_FR_BUSY)
2450 		cpu_relax();
2451 }
2452 
2453 static void pl011_early_write(struct console *con, const char *s, unsigned n)
2454 {
2455 	struct earlycon_device *dev = con->data;
2456 
2457 	uart_console_write(&dev->port, s, n, pl011_putc);
2458 }
2459 
2460 /*
2461  * On non-ACPI systems, earlycon is enabled by specifying
2462  * "earlycon=pl011,<address>" on the kernel command line.
2463  *
2464  * On ACPI ARM64 systems, an "early" console is enabled via the SPCR table,
2465  * by specifying only "earlycon" on the command line.  Because it requires
2466  * SPCR, the console starts after ACPI is parsed, which is later than a
2467  * traditional early console.
2468  *
2469  * To get the traditional early console that starts before ACPI is parsed,
2470  * specify the full "earlycon=pl011,<address>" option.
2471  */
2472 static int __init pl011_early_console_setup(struct earlycon_device *device,
2473 					    const char *opt)
2474 {
2475 	if (!device->port.membase)
2476 		return -ENODEV;
2477 
2478 	device->con->write = pl011_early_write;
2479 
2480 	return 0;
2481 }
2482 OF_EARLYCON_DECLARE(pl011, "arm,pl011", pl011_early_console_setup);
2483 OF_EARLYCON_DECLARE(pl011, "arm,sbsa-uart", pl011_early_console_setup);
2484 
2485 /*
2486  * On Qualcomm Datacenter Technologies QDF2400 SOCs affected by
2487  * Erratum 44, traditional earlycon can be enabled by specifying
2488  * "earlycon=qdf2400_e44,<address>".  Any options are ignored.
2489  *
2490  * Alternatively, you can just specify "earlycon", and the early console
2491  * will be enabled with the information from the SPCR table.  In this
2492  * case, the SPCR code will detect the need for the E44 work-around,
2493  * and set the console name to "qdf2400_e44".
2494  */
2495 static int __init
2496 qdf2400_e44_early_console_setup(struct earlycon_device *device,
2497 				const char *opt)
2498 {
2499 	if (!device->port.membase)
2500 		return -ENODEV;
2501 
2502 	device->con->write = qdf2400_e44_early_write;
2503 	return 0;
2504 }
2505 EARLYCON_DECLARE(qdf2400_e44, qdf2400_e44_early_console_setup);
2506 
2507 #else
2508 #define AMBA_CONSOLE	NULL
2509 #endif
2510 
2511 static struct uart_driver amba_reg = {
2512 	.owner			= THIS_MODULE,
2513 	.driver_name		= "ttyAMA",
2514 	.dev_name		= "ttyAMA",
2515 	.major			= SERIAL_AMBA_MAJOR,
2516 	.minor			= SERIAL_AMBA_MINOR,
2517 	.nr			= UART_NR,
2518 	.cons			= AMBA_CONSOLE,
2519 };
2520 
2521 static int pl011_probe_dt_alias(int index, struct device *dev)
2522 {
2523 	struct device_node *np;
2524 	static bool seen_dev_with_alias = false;
2525 	static bool seen_dev_without_alias = false;
2526 	int ret = index;
2527 
2528 	if (!IS_ENABLED(CONFIG_OF))
2529 		return ret;
2530 
2531 	np = dev->of_node;
2532 	if (!np)
2533 		return ret;
2534 
2535 	ret = of_alias_get_id(np, "serial");
2536 	if (ret < 0) {
2537 		seen_dev_without_alias = true;
2538 		ret = index;
2539 	} else {
2540 		seen_dev_with_alias = true;
2541 		if (ret >= ARRAY_SIZE(amba_ports) || amba_ports[ret] != NULL) {
2542 			dev_warn(dev, "requested serial port %d  not available.\n", ret);
2543 			ret = index;
2544 		}
2545 	}
2546 
2547 	if (seen_dev_with_alias && seen_dev_without_alias)
2548 		dev_warn(dev, "aliased and non-aliased serial devices found in device tree. Serial port enumeration may be unpredictable.\n");
2549 
2550 	return ret;
2551 }
2552 
2553 /* unregisters the driver also if no more ports are left */
2554 static void pl011_unregister_port(struct uart_amba_port *uap)
2555 {
2556 	int i;
2557 	bool busy = false;
2558 
2559 	for (i = 0; i < ARRAY_SIZE(amba_ports); i++) {
2560 		if (amba_ports[i] == uap)
2561 			amba_ports[i] = NULL;
2562 		else if (amba_ports[i])
2563 			busy = true;
2564 	}
2565 	pl011_dma_remove(uap);
2566 	if (!busy)
2567 		uart_unregister_driver(&amba_reg);
2568 }
2569 
2570 static int pl011_find_free_port(void)
2571 {
2572 	int i;
2573 
2574 	for (i = 0; i < ARRAY_SIZE(amba_ports); i++)
2575 		if (amba_ports[i] == NULL)
2576 			return i;
2577 
2578 	return -EBUSY;
2579 }
2580 
2581 static int pl011_setup_port(struct device *dev, struct uart_amba_port *uap,
2582 			    struct resource *mmiobase, int index)
2583 {
2584 	void __iomem *base;
2585 
2586 	base = devm_ioremap_resource(dev, mmiobase);
2587 	if (IS_ERR(base))
2588 		return PTR_ERR(base);
2589 
2590 	index = pl011_probe_dt_alias(index, dev);
2591 
2592 	uap->old_cr = 0;
2593 	uap->port.dev = dev;
2594 	uap->port.mapbase = mmiobase->start;
2595 	uap->port.membase = base;
2596 	uap->port.fifosize = uap->fifosize;
2597 	uap->port.flags = UPF_BOOT_AUTOCONF;
2598 	uap->port.line = index;
2599 
2600 	amba_ports[index] = uap;
2601 
2602 	return 0;
2603 }
2604 
2605 static int pl011_register_port(struct uart_amba_port *uap)
2606 {
2607 	int ret;
2608 
2609 	/* Ensure interrupts from this UART are masked and cleared */
2610 	pl011_write(0, uap, REG_IMSC);
2611 	pl011_write(0xffff, uap, REG_ICR);
2612 
2613 	if (!amba_reg.state) {
2614 		ret = uart_register_driver(&amba_reg);
2615 		if (ret < 0) {
2616 			dev_err(uap->port.dev,
2617 				"Failed to register AMBA-PL011 driver\n");
2618 			return ret;
2619 		}
2620 	}
2621 
2622 	ret = uart_add_one_port(&amba_reg, &uap->port);
2623 	if (ret)
2624 		pl011_unregister_port(uap);
2625 
2626 	return ret;
2627 }
2628 
2629 static int pl011_probe(struct amba_device *dev, const struct amba_id *id)
2630 {
2631 	struct uart_amba_port *uap;
2632 	struct vendor_data *vendor = id->data;
2633 	int portnr, ret;
2634 
2635 	portnr = pl011_find_free_port();
2636 	if (portnr < 0)
2637 		return portnr;
2638 
2639 	uap = devm_kzalloc(&dev->dev, sizeof(struct uart_amba_port),
2640 			   GFP_KERNEL);
2641 	if (!uap)
2642 		return -ENOMEM;
2643 
2644 	uap->clk = devm_clk_get(&dev->dev, NULL);
2645 	if (IS_ERR(uap->clk))
2646 		return PTR_ERR(uap->clk);
2647 
2648 	uap->reg_offset = vendor->reg_offset;
2649 	uap->vendor = vendor;
2650 	uap->fifosize = vendor->get_fifosize(dev);
2651 	uap->port.iotype = vendor->access_32b ? UPIO_MEM32 : UPIO_MEM;
2652 	uap->port.irq = dev->irq[0];
2653 	uap->port.ops = &amba_pl011_pops;
2654 
2655 	snprintf(uap->type, sizeof(uap->type), "PL011 rev%u", amba_rev(dev));
2656 
2657 	ret = pl011_setup_port(&dev->dev, uap, &dev->res, portnr);
2658 	if (ret)
2659 		return ret;
2660 
2661 	amba_set_drvdata(dev, uap);
2662 
2663 	return pl011_register_port(uap);
2664 }
2665 
2666 static int pl011_remove(struct amba_device *dev)
2667 {
2668 	struct uart_amba_port *uap = amba_get_drvdata(dev);
2669 
2670 	uart_remove_one_port(&amba_reg, &uap->port);
2671 	pl011_unregister_port(uap);
2672 	return 0;
2673 }
2674 
2675 #ifdef CONFIG_PM_SLEEP
2676 static int pl011_suspend(struct device *dev)
2677 {
2678 	struct uart_amba_port *uap = dev_get_drvdata(dev);
2679 
2680 	if (!uap)
2681 		return -EINVAL;
2682 
2683 	return uart_suspend_port(&amba_reg, &uap->port);
2684 }
2685 
2686 static int pl011_resume(struct device *dev)
2687 {
2688 	struct uart_amba_port *uap = dev_get_drvdata(dev);
2689 
2690 	if (!uap)
2691 		return -EINVAL;
2692 
2693 	return uart_resume_port(&amba_reg, &uap->port);
2694 }
2695 #endif
2696 
2697 static SIMPLE_DEV_PM_OPS(pl011_dev_pm_ops, pl011_suspend, pl011_resume);
2698 
2699 static int sbsa_uart_probe(struct platform_device *pdev)
2700 {
2701 	struct uart_amba_port *uap;
2702 	struct resource *r;
2703 	int portnr, ret;
2704 	int baudrate;
2705 
2706 	/*
2707 	 * Check the mandatory baud rate parameter in the DT node early
2708 	 * so that we can easily exit with the error.
2709 	 */
2710 	if (pdev->dev.of_node) {
2711 		struct device_node *np = pdev->dev.of_node;
2712 
2713 		ret = of_property_read_u32(np, "current-speed", &baudrate);
2714 		if (ret)
2715 			return ret;
2716 	} else {
2717 		baudrate = 115200;
2718 	}
2719 
2720 	portnr = pl011_find_free_port();
2721 	if (portnr < 0)
2722 		return portnr;
2723 
2724 	uap = devm_kzalloc(&pdev->dev, sizeof(struct uart_amba_port),
2725 			   GFP_KERNEL);
2726 	if (!uap)
2727 		return -ENOMEM;
2728 
2729 	ret = platform_get_irq(pdev, 0);
2730 	if (ret < 0) {
2731 		if (ret != -EPROBE_DEFER)
2732 			dev_err(&pdev->dev, "cannot obtain irq\n");
2733 		return ret;
2734 	}
2735 	uap->port.irq	= ret;
2736 
2737 	uap->reg_offset	= vendor_sbsa.reg_offset;
2738 	uap->vendor	= qdf2400_e44_present ?
2739 					&vendor_qdt_qdf2400_e44 : &vendor_sbsa;
2740 	uap->fifosize	= 32;
2741 	uap->port.iotype = vendor_sbsa.access_32b ? UPIO_MEM32 : UPIO_MEM;
2742 	uap->port.ops	= &sbsa_uart_pops;
2743 	uap->fixed_baud = baudrate;
2744 
2745 	snprintf(uap->type, sizeof(uap->type), "SBSA");
2746 
2747 	r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2748 
2749 	ret = pl011_setup_port(&pdev->dev, uap, r, portnr);
2750 	if (ret)
2751 		return ret;
2752 
2753 	platform_set_drvdata(pdev, uap);
2754 
2755 	return pl011_register_port(uap);
2756 }
2757 
2758 static int sbsa_uart_remove(struct platform_device *pdev)
2759 {
2760 	struct uart_amba_port *uap = platform_get_drvdata(pdev);
2761 
2762 	uart_remove_one_port(&amba_reg, &uap->port);
2763 	pl011_unregister_port(uap);
2764 	return 0;
2765 }
2766 
2767 static const struct of_device_id sbsa_uart_of_match[] = {
2768 	{ .compatible = "arm,sbsa-uart", },
2769 	{},
2770 };
2771 MODULE_DEVICE_TABLE(of, sbsa_uart_of_match);
2772 
2773 static const struct acpi_device_id sbsa_uart_acpi_match[] = {
2774 	{ "ARMH0011", 0 },
2775 	{},
2776 };
2777 MODULE_DEVICE_TABLE(acpi, sbsa_uart_acpi_match);
2778 
2779 static struct platform_driver arm_sbsa_uart_platform_driver = {
2780 	.probe		= sbsa_uart_probe,
2781 	.remove		= sbsa_uart_remove,
2782 	.driver	= {
2783 		.name	= "sbsa-uart",
2784 		.of_match_table = of_match_ptr(sbsa_uart_of_match),
2785 		.acpi_match_table = ACPI_PTR(sbsa_uart_acpi_match),
2786 	},
2787 };
2788 
2789 static struct amba_id pl011_ids[] = {
2790 	{
2791 		.id	= 0x00041011,
2792 		.mask	= 0x000fffff,
2793 		.data	= &vendor_arm,
2794 	},
2795 	{
2796 		.id	= 0x00380802,
2797 		.mask	= 0x00ffffff,
2798 		.data	= &vendor_st,
2799 	},
2800 	{
2801 		.id	= AMBA_LINUX_ID(0x00, 0x1, 0xffe),
2802 		.mask	= 0x00ffffff,
2803 		.data	= &vendor_zte,
2804 	},
2805 	{ 0, 0 },
2806 };
2807 
2808 MODULE_DEVICE_TABLE(amba, pl011_ids);
2809 
2810 static struct amba_driver pl011_driver = {
2811 	.drv = {
2812 		.name	= "uart-pl011",
2813 		.pm	= &pl011_dev_pm_ops,
2814 	},
2815 	.id_table	= pl011_ids,
2816 	.probe		= pl011_probe,
2817 	.remove		= pl011_remove,
2818 };
2819 
2820 static int __init pl011_init(void)
2821 {
2822 	printk(KERN_INFO "Serial: AMBA PL011 UART driver\n");
2823 
2824 	if (platform_driver_register(&arm_sbsa_uart_platform_driver))
2825 		pr_warn("could not register SBSA UART platform driver\n");
2826 	return amba_driver_register(&pl011_driver);
2827 }
2828 
2829 static void __exit pl011_exit(void)
2830 {
2831 	platform_driver_unregister(&arm_sbsa_uart_platform_driver);
2832 	amba_driver_unregister(&pl011_driver);
2833 }
2834 
2835 /*
2836  * While this can be a module, if builtin it's most likely the console
2837  * So let's leave module_exit but move module_init to an earlier place
2838  */
2839 arch_initcall(pl011_init);
2840 module_exit(pl011_exit);
2841 
2842 MODULE_AUTHOR("ARM Ltd/Deep Blue Solutions Ltd");
2843 MODULE_DESCRIPTION("ARM AMBA serial port driver");
2844 MODULE_LICENSE("GPL");
2845