xref: /openbmc/linux/drivers/tty/serial/amba-pl011.c (revision 6a551c11)
1 /*
2  *  Driver for AMBA serial ports
3  *
4  *  Based on drivers/char/serial.c, by Linus Torvalds, Theodore Ts'o.
5  *
6  *  Copyright 1999 ARM Limited
7  *  Copyright (C) 2000 Deep Blue Solutions Ltd.
8  *  Copyright (C) 2010 ST-Ericsson SA
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License as published by
12  * the Free Software Foundation; either version 2 of the License, or
13  * (at your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18  * GNU General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public License
21  * along with this program; if not, write to the Free Software
22  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
23  *
24  * This is a generic driver for ARM AMBA-type serial ports.  They
25  * have a lot of 16550-like features, but are not register compatible.
26  * Note that although they do have CTS, DCD and DSR inputs, they do
27  * not have an RI input, nor do they have DTR or RTS outputs.  If
28  * required, these have to be supplied via some other means (eg, GPIO)
29  * and hooked into this driver.
30  */
31 
32 
33 #if defined(CONFIG_SERIAL_AMBA_PL011_CONSOLE) && defined(CONFIG_MAGIC_SYSRQ)
34 #define SUPPORT_SYSRQ
35 #endif
36 
37 #include <linux/module.h>
38 #include <linux/ioport.h>
39 #include <linux/init.h>
40 #include <linux/console.h>
41 #include <linux/sysrq.h>
42 #include <linux/device.h>
43 #include <linux/tty.h>
44 #include <linux/tty_flip.h>
45 #include <linux/serial_core.h>
46 #include <linux/serial.h>
47 #include <linux/amba/bus.h>
48 #include <linux/amba/serial.h>
49 #include <linux/clk.h>
50 #include <linux/slab.h>
51 #include <linux/dmaengine.h>
52 #include <linux/dma-mapping.h>
53 #include <linux/scatterlist.h>
54 #include <linux/delay.h>
55 #include <linux/types.h>
56 #include <linux/of.h>
57 #include <linux/of_device.h>
58 #include <linux/pinctrl/consumer.h>
59 #include <linux/sizes.h>
60 #include <linux/io.h>
61 #include <linux/acpi.h>
62 
63 #include "amba-pl011.h"
64 
65 #define UART_NR			14
66 
67 #define SERIAL_AMBA_MAJOR	204
68 #define SERIAL_AMBA_MINOR	64
69 #define SERIAL_AMBA_NR		UART_NR
70 
71 #define AMBA_ISR_PASS_LIMIT	256
72 
73 #define UART_DR_ERROR		(UART011_DR_OE|UART011_DR_BE|UART011_DR_PE|UART011_DR_FE)
74 #define UART_DUMMY_DR_RX	(1 << 16)
75 
76 static u16 pl011_std_offsets[REG_ARRAY_SIZE] = {
77 	[REG_DR] = UART01x_DR,
78 	[REG_FR] = UART01x_FR,
79 	[REG_LCRH_RX] = UART011_LCRH,
80 	[REG_LCRH_TX] = UART011_LCRH,
81 	[REG_IBRD] = UART011_IBRD,
82 	[REG_FBRD] = UART011_FBRD,
83 	[REG_CR] = UART011_CR,
84 	[REG_IFLS] = UART011_IFLS,
85 	[REG_IMSC] = UART011_IMSC,
86 	[REG_RIS] = UART011_RIS,
87 	[REG_MIS] = UART011_MIS,
88 	[REG_ICR] = UART011_ICR,
89 	[REG_DMACR] = UART011_DMACR,
90 };
91 
92 /* There is by now at least one vendor with differing details, so handle it */
93 struct vendor_data {
94 	const u16		*reg_offset;
95 	unsigned int		ifls;
96 	bool			access_32b;
97 	bool			oversampling;
98 	bool			dma_threshold;
99 	bool			cts_event_workaround;
100 	bool			always_enabled;
101 	bool			fixed_options;
102 
103 	unsigned int (*get_fifosize)(struct amba_device *dev);
104 };
105 
106 static unsigned int get_fifosize_arm(struct amba_device *dev)
107 {
108 	return amba_rev(dev) < 3 ? 16 : 32;
109 }
110 
111 static struct vendor_data vendor_arm = {
112 	.reg_offset		= pl011_std_offsets,
113 	.ifls			= UART011_IFLS_RX4_8|UART011_IFLS_TX4_8,
114 	.oversampling		= false,
115 	.dma_threshold		= false,
116 	.cts_event_workaround	= false,
117 	.always_enabled		= false,
118 	.fixed_options		= false,
119 	.get_fifosize		= get_fifosize_arm,
120 };
121 
122 static struct vendor_data vendor_sbsa = {
123 	.reg_offset		= pl011_std_offsets,
124 	.access_32b		= true,
125 	.oversampling		= false,
126 	.dma_threshold		= false,
127 	.cts_event_workaround	= false,
128 	.always_enabled		= true,
129 	.fixed_options		= true,
130 };
131 
132 static u16 pl011_st_offsets[REG_ARRAY_SIZE] = {
133 	[REG_DR] = UART01x_DR,
134 	[REG_ST_DMAWM] = ST_UART011_DMAWM,
135 	[REG_ST_TIMEOUT] = ST_UART011_TIMEOUT,
136 	[REG_FR] = UART01x_FR,
137 	[REG_LCRH_RX] = ST_UART011_LCRH_RX,
138 	[REG_LCRH_TX] = ST_UART011_LCRH_TX,
139 	[REG_IBRD] = UART011_IBRD,
140 	[REG_FBRD] = UART011_FBRD,
141 	[REG_CR] = UART011_CR,
142 	[REG_IFLS] = UART011_IFLS,
143 	[REG_IMSC] = UART011_IMSC,
144 	[REG_RIS] = UART011_RIS,
145 	[REG_MIS] = UART011_MIS,
146 	[REG_ICR] = UART011_ICR,
147 	[REG_DMACR] = UART011_DMACR,
148 	[REG_ST_XFCR] = ST_UART011_XFCR,
149 	[REG_ST_XON1] = ST_UART011_XON1,
150 	[REG_ST_XON2] = ST_UART011_XON2,
151 	[REG_ST_XOFF1] = ST_UART011_XOFF1,
152 	[REG_ST_XOFF2] = ST_UART011_XOFF2,
153 	[REG_ST_ITCR] = ST_UART011_ITCR,
154 	[REG_ST_ITIP] = ST_UART011_ITIP,
155 	[REG_ST_ABCR] = ST_UART011_ABCR,
156 	[REG_ST_ABIMSC] = ST_UART011_ABIMSC,
157 };
158 
159 static unsigned int get_fifosize_st(struct amba_device *dev)
160 {
161 	return 64;
162 }
163 
164 static struct vendor_data vendor_st = {
165 	.reg_offset		= pl011_st_offsets,
166 	.ifls			= UART011_IFLS_RX_HALF|UART011_IFLS_TX_HALF,
167 	.oversampling		= true,
168 	.dma_threshold		= true,
169 	.cts_event_workaround	= true,
170 	.always_enabled		= false,
171 	.fixed_options		= false,
172 	.get_fifosize		= get_fifosize_st,
173 };
174 
175 static const u16 pl011_zte_offsets[REG_ARRAY_SIZE] = {
176 	[REG_DR] = ZX_UART011_DR,
177 	[REG_FR] = ZX_UART011_FR,
178 	[REG_LCRH_RX] = ZX_UART011_LCRH,
179 	[REG_LCRH_TX] = ZX_UART011_LCRH,
180 	[REG_IBRD] = ZX_UART011_IBRD,
181 	[REG_FBRD] = ZX_UART011_FBRD,
182 	[REG_CR] = ZX_UART011_CR,
183 	[REG_IFLS] = ZX_UART011_IFLS,
184 	[REG_IMSC] = ZX_UART011_IMSC,
185 	[REG_RIS] = ZX_UART011_RIS,
186 	[REG_MIS] = ZX_UART011_MIS,
187 	[REG_ICR] = ZX_UART011_ICR,
188 	[REG_DMACR] = ZX_UART011_DMACR,
189 };
190 
191 static struct vendor_data vendor_zte __maybe_unused = {
192 	.reg_offset		= pl011_zte_offsets,
193 	.access_32b		= true,
194 	.ifls			= UART011_IFLS_RX4_8|UART011_IFLS_TX4_8,
195 	.get_fifosize		= get_fifosize_arm,
196 };
197 
198 /* Deals with DMA transactions */
199 
200 struct pl011_sgbuf {
201 	struct scatterlist sg;
202 	char *buf;
203 };
204 
205 struct pl011_dmarx_data {
206 	struct dma_chan		*chan;
207 	struct completion	complete;
208 	bool			use_buf_b;
209 	struct pl011_sgbuf	sgbuf_a;
210 	struct pl011_sgbuf	sgbuf_b;
211 	dma_cookie_t		cookie;
212 	bool			running;
213 	struct timer_list	timer;
214 	unsigned int last_residue;
215 	unsigned long last_jiffies;
216 	bool auto_poll_rate;
217 	unsigned int poll_rate;
218 	unsigned int poll_timeout;
219 };
220 
221 struct pl011_dmatx_data {
222 	struct dma_chan		*chan;
223 	struct scatterlist	sg;
224 	char			*buf;
225 	bool			queued;
226 };
227 
228 /*
229  * We wrap our port structure around the generic uart_port.
230  */
231 struct uart_amba_port {
232 	struct uart_port	port;
233 	const u16		*reg_offset;
234 	struct clk		*clk;
235 	const struct vendor_data *vendor;
236 	unsigned int		dmacr;		/* dma control reg */
237 	unsigned int		im;		/* interrupt mask */
238 	unsigned int		old_status;
239 	unsigned int		fifosize;	/* vendor-specific */
240 	unsigned int		old_cr;		/* state during shutdown */
241 	bool			autorts;
242 	unsigned int		fixed_baud;	/* vendor-set fixed baud rate */
243 	char			type[12];
244 #ifdef CONFIG_DMA_ENGINE
245 	/* DMA stuff */
246 	bool			using_tx_dma;
247 	bool			using_rx_dma;
248 	struct pl011_dmarx_data dmarx;
249 	struct pl011_dmatx_data	dmatx;
250 	bool			dma_probed;
251 #endif
252 };
253 
254 static unsigned int pl011_reg_to_offset(const struct uart_amba_port *uap,
255 	unsigned int reg)
256 {
257 	return uap->reg_offset[reg];
258 }
259 
260 static unsigned int pl011_read(const struct uart_amba_port *uap,
261 	unsigned int reg)
262 {
263 	void __iomem *addr = uap->port.membase + pl011_reg_to_offset(uap, reg);
264 
265 	return (uap->port.iotype == UPIO_MEM32) ?
266 		readl_relaxed(addr) : readw_relaxed(addr);
267 }
268 
269 static void pl011_write(unsigned int val, const struct uart_amba_port *uap,
270 	unsigned int reg)
271 {
272 	void __iomem *addr = uap->port.membase + pl011_reg_to_offset(uap, reg);
273 
274 	if (uap->port.iotype == UPIO_MEM32)
275 		writel_relaxed(val, addr);
276 	else
277 		writew_relaxed(val, addr);
278 }
279 
280 /*
281  * Reads up to 256 characters from the FIFO or until it's empty and
282  * inserts them into the TTY layer. Returns the number of characters
283  * read from the FIFO.
284  */
285 static int pl011_fifo_to_tty(struct uart_amba_port *uap)
286 {
287 	u16 status;
288 	unsigned int ch, flag, max_count = 256;
289 	int fifotaken = 0;
290 
291 	while (max_count--) {
292 		status = pl011_read(uap, REG_FR);
293 		if (status & UART01x_FR_RXFE)
294 			break;
295 
296 		/* Take chars from the FIFO and update status */
297 		ch = pl011_read(uap, REG_DR) | UART_DUMMY_DR_RX;
298 		flag = TTY_NORMAL;
299 		uap->port.icount.rx++;
300 		fifotaken++;
301 
302 		if (unlikely(ch & UART_DR_ERROR)) {
303 			if (ch & UART011_DR_BE) {
304 				ch &= ~(UART011_DR_FE | UART011_DR_PE);
305 				uap->port.icount.brk++;
306 				if (uart_handle_break(&uap->port))
307 					continue;
308 			} else if (ch & UART011_DR_PE)
309 				uap->port.icount.parity++;
310 			else if (ch & UART011_DR_FE)
311 				uap->port.icount.frame++;
312 			if (ch & UART011_DR_OE)
313 				uap->port.icount.overrun++;
314 
315 			ch &= uap->port.read_status_mask;
316 
317 			if (ch & UART011_DR_BE)
318 				flag = TTY_BREAK;
319 			else if (ch & UART011_DR_PE)
320 				flag = TTY_PARITY;
321 			else if (ch & UART011_DR_FE)
322 				flag = TTY_FRAME;
323 		}
324 
325 		if (uart_handle_sysrq_char(&uap->port, ch & 255))
326 			continue;
327 
328 		uart_insert_char(&uap->port, ch, UART011_DR_OE, ch, flag);
329 	}
330 
331 	return fifotaken;
332 }
333 
334 
335 /*
336  * All the DMA operation mode stuff goes inside this ifdef.
337  * This assumes that you have a generic DMA device interface,
338  * no custom DMA interfaces are supported.
339  */
340 #ifdef CONFIG_DMA_ENGINE
341 
342 #define PL011_DMA_BUFFER_SIZE PAGE_SIZE
343 
344 static int pl011_sgbuf_init(struct dma_chan *chan, struct pl011_sgbuf *sg,
345 	enum dma_data_direction dir)
346 {
347 	dma_addr_t dma_addr;
348 
349 	sg->buf = dma_alloc_coherent(chan->device->dev,
350 		PL011_DMA_BUFFER_SIZE, &dma_addr, GFP_KERNEL);
351 	if (!sg->buf)
352 		return -ENOMEM;
353 
354 	sg_init_table(&sg->sg, 1);
355 	sg_set_page(&sg->sg, phys_to_page(dma_addr),
356 		PL011_DMA_BUFFER_SIZE, offset_in_page(dma_addr));
357 	sg_dma_address(&sg->sg) = dma_addr;
358 	sg_dma_len(&sg->sg) = PL011_DMA_BUFFER_SIZE;
359 
360 	return 0;
361 }
362 
363 static void pl011_sgbuf_free(struct dma_chan *chan, struct pl011_sgbuf *sg,
364 	enum dma_data_direction dir)
365 {
366 	if (sg->buf) {
367 		dma_free_coherent(chan->device->dev,
368 			PL011_DMA_BUFFER_SIZE, sg->buf,
369 			sg_dma_address(&sg->sg));
370 	}
371 }
372 
373 static void pl011_dma_probe(struct uart_amba_port *uap)
374 {
375 	/* DMA is the sole user of the platform data right now */
376 	struct amba_pl011_data *plat = dev_get_platdata(uap->port.dev);
377 	struct device *dev = uap->port.dev;
378 	struct dma_slave_config tx_conf = {
379 		.dst_addr = uap->port.mapbase +
380 				 pl011_reg_to_offset(uap, REG_DR),
381 		.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
382 		.direction = DMA_MEM_TO_DEV,
383 		.dst_maxburst = uap->fifosize >> 1,
384 		.device_fc = false,
385 	};
386 	struct dma_chan *chan;
387 	dma_cap_mask_t mask;
388 
389 	uap->dma_probed = true;
390 	chan = dma_request_slave_channel_reason(dev, "tx");
391 	if (IS_ERR(chan)) {
392 		if (PTR_ERR(chan) == -EPROBE_DEFER) {
393 			uap->dma_probed = false;
394 			return;
395 		}
396 
397 		/* We need platform data */
398 		if (!plat || !plat->dma_filter) {
399 			dev_info(uap->port.dev, "no DMA platform data\n");
400 			return;
401 		}
402 
403 		/* Try to acquire a generic DMA engine slave TX channel */
404 		dma_cap_zero(mask);
405 		dma_cap_set(DMA_SLAVE, mask);
406 
407 		chan = dma_request_channel(mask, plat->dma_filter,
408 						plat->dma_tx_param);
409 		if (!chan) {
410 			dev_err(uap->port.dev, "no TX DMA channel!\n");
411 			return;
412 		}
413 	}
414 
415 	dmaengine_slave_config(chan, &tx_conf);
416 	uap->dmatx.chan = chan;
417 
418 	dev_info(uap->port.dev, "DMA channel TX %s\n",
419 		 dma_chan_name(uap->dmatx.chan));
420 
421 	/* Optionally make use of an RX channel as well */
422 	chan = dma_request_slave_channel(dev, "rx");
423 
424 	if (!chan && plat && plat->dma_rx_param) {
425 		chan = dma_request_channel(mask, plat->dma_filter, plat->dma_rx_param);
426 
427 		if (!chan) {
428 			dev_err(uap->port.dev, "no RX DMA channel!\n");
429 			return;
430 		}
431 	}
432 
433 	if (chan) {
434 		struct dma_slave_config rx_conf = {
435 			.src_addr = uap->port.mapbase +
436 				pl011_reg_to_offset(uap, REG_DR),
437 			.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
438 			.direction = DMA_DEV_TO_MEM,
439 			.src_maxburst = uap->fifosize >> 2,
440 			.device_fc = false,
441 		};
442 		struct dma_slave_caps caps;
443 
444 		/*
445 		 * Some DMA controllers provide information on their capabilities.
446 		 * If the controller does, check for suitable residue processing
447 		 * otherwise assime all is well.
448 		 */
449 		if (0 == dma_get_slave_caps(chan, &caps)) {
450 			if (caps.residue_granularity ==
451 					DMA_RESIDUE_GRANULARITY_DESCRIPTOR) {
452 				dma_release_channel(chan);
453 				dev_info(uap->port.dev,
454 					"RX DMA disabled - no residue processing\n");
455 				return;
456 			}
457 		}
458 		dmaengine_slave_config(chan, &rx_conf);
459 		uap->dmarx.chan = chan;
460 
461 		uap->dmarx.auto_poll_rate = false;
462 		if (plat && plat->dma_rx_poll_enable) {
463 			/* Set poll rate if specified. */
464 			if (plat->dma_rx_poll_rate) {
465 				uap->dmarx.auto_poll_rate = false;
466 				uap->dmarx.poll_rate = plat->dma_rx_poll_rate;
467 			} else {
468 				/*
469 				 * 100 ms defaults to poll rate if not
470 				 * specified. This will be adjusted with
471 				 * the baud rate at set_termios.
472 				 */
473 				uap->dmarx.auto_poll_rate = true;
474 				uap->dmarx.poll_rate =  100;
475 			}
476 			/* 3 secs defaults poll_timeout if not specified. */
477 			if (plat->dma_rx_poll_timeout)
478 				uap->dmarx.poll_timeout =
479 					plat->dma_rx_poll_timeout;
480 			else
481 				uap->dmarx.poll_timeout = 3000;
482 		} else if (!plat && dev->of_node) {
483 			uap->dmarx.auto_poll_rate = of_property_read_bool(
484 						dev->of_node, "auto-poll");
485 			if (uap->dmarx.auto_poll_rate) {
486 				u32 x;
487 
488 				if (0 == of_property_read_u32(dev->of_node,
489 						"poll-rate-ms", &x))
490 					uap->dmarx.poll_rate = x;
491 				else
492 					uap->dmarx.poll_rate = 100;
493 				if (0 == of_property_read_u32(dev->of_node,
494 						"poll-timeout-ms", &x))
495 					uap->dmarx.poll_timeout = x;
496 				else
497 					uap->dmarx.poll_timeout = 3000;
498 			}
499 		}
500 		dev_info(uap->port.dev, "DMA channel RX %s\n",
501 			 dma_chan_name(uap->dmarx.chan));
502 	}
503 }
504 
505 static void pl011_dma_remove(struct uart_amba_port *uap)
506 {
507 	if (uap->dmatx.chan)
508 		dma_release_channel(uap->dmatx.chan);
509 	if (uap->dmarx.chan)
510 		dma_release_channel(uap->dmarx.chan);
511 }
512 
513 /* Forward declare these for the refill routine */
514 static int pl011_dma_tx_refill(struct uart_amba_port *uap);
515 static void pl011_start_tx_pio(struct uart_amba_port *uap);
516 
517 /*
518  * The current DMA TX buffer has been sent.
519  * Try to queue up another DMA buffer.
520  */
521 static void pl011_dma_tx_callback(void *data)
522 {
523 	struct uart_amba_port *uap = data;
524 	struct pl011_dmatx_data *dmatx = &uap->dmatx;
525 	unsigned long flags;
526 	u16 dmacr;
527 
528 	spin_lock_irqsave(&uap->port.lock, flags);
529 	if (uap->dmatx.queued)
530 		dma_unmap_sg(dmatx->chan->device->dev, &dmatx->sg, 1,
531 			     DMA_TO_DEVICE);
532 
533 	dmacr = uap->dmacr;
534 	uap->dmacr = dmacr & ~UART011_TXDMAE;
535 	pl011_write(uap->dmacr, uap, REG_DMACR);
536 
537 	/*
538 	 * If TX DMA was disabled, it means that we've stopped the DMA for
539 	 * some reason (eg, XOFF received, or we want to send an X-char.)
540 	 *
541 	 * Note: we need to be careful here of a potential race between DMA
542 	 * and the rest of the driver - if the driver disables TX DMA while
543 	 * a TX buffer completing, we must update the tx queued status to
544 	 * get further refills (hence we check dmacr).
545 	 */
546 	if (!(dmacr & UART011_TXDMAE) || uart_tx_stopped(&uap->port) ||
547 	    uart_circ_empty(&uap->port.state->xmit)) {
548 		uap->dmatx.queued = false;
549 		spin_unlock_irqrestore(&uap->port.lock, flags);
550 		return;
551 	}
552 
553 	if (pl011_dma_tx_refill(uap) <= 0)
554 		/*
555 		 * We didn't queue a DMA buffer for some reason, but we
556 		 * have data pending to be sent.  Re-enable the TX IRQ.
557 		 */
558 		pl011_start_tx_pio(uap);
559 
560 	spin_unlock_irqrestore(&uap->port.lock, flags);
561 }
562 
563 /*
564  * Try to refill the TX DMA buffer.
565  * Locking: called with port lock held and IRQs disabled.
566  * Returns:
567  *   1 if we queued up a TX DMA buffer.
568  *   0 if we didn't want to handle this by DMA
569  *  <0 on error
570  */
571 static int pl011_dma_tx_refill(struct uart_amba_port *uap)
572 {
573 	struct pl011_dmatx_data *dmatx = &uap->dmatx;
574 	struct dma_chan *chan = dmatx->chan;
575 	struct dma_device *dma_dev = chan->device;
576 	struct dma_async_tx_descriptor *desc;
577 	struct circ_buf *xmit = &uap->port.state->xmit;
578 	unsigned int count;
579 
580 	/*
581 	 * Try to avoid the overhead involved in using DMA if the
582 	 * transaction fits in the first half of the FIFO, by using
583 	 * the standard interrupt handling.  This ensures that we
584 	 * issue a uart_write_wakeup() at the appropriate time.
585 	 */
586 	count = uart_circ_chars_pending(xmit);
587 	if (count < (uap->fifosize >> 1)) {
588 		uap->dmatx.queued = false;
589 		return 0;
590 	}
591 
592 	/*
593 	 * Bodge: don't send the last character by DMA, as this
594 	 * will prevent XON from notifying us to restart DMA.
595 	 */
596 	count -= 1;
597 
598 	/* Else proceed to copy the TX chars to the DMA buffer and fire DMA */
599 	if (count > PL011_DMA_BUFFER_SIZE)
600 		count = PL011_DMA_BUFFER_SIZE;
601 
602 	if (xmit->tail < xmit->head)
603 		memcpy(&dmatx->buf[0], &xmit->buf[xmit->tail], count);
604 	else {
605 		size_t first = UART_XMIT_SIZE - xmit->tail;
606 		size_t second;
607 
608 		if (first > count)
609 			first = count;
610 		second = count - first;
611 
612 		memcpy(&dmatx->buf[0], &xmit->buf[xmit->tail], first);
613 		if (second)
614 			memcpy(&dmatx->buf[first], &xmit->buf[0], second);
615 	}
616 
617 	dmatx->sg.length = count;
618 
619 	if (dma_map_sg(dma_dev->dev, &dmatx->sg, 1, DMA_TO_DEVICE) != 1) {
620 		uap->dmatx.queued = false;
621 		dev_dbg(uap->port.dev, "unable to map TX DMA\n");
622 		return -EBUSY;
623 	}
624 
625 	desc = dmaengine_prep_slave_sg(chan, &dmatx->sg, 1, DMA_MEM_TO_DEV,
626 					     DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
627 	if (!desc) {
628 		dma_unmap_sg(dma_dev->dev, &dmatx->sg, 1, DMA_TO_DEVICE);
629 		uap->dmatx.queued = false;
630 		/*
631 		 * If DMA cannot be used right now, we complete this
632 		 * transaction via IRQ and let the TTY layer retry.
633 		 */
634 		dev_dbg(uap->port.dev, "TX DMA busy\n");
635 		return -EBUSY;
636 	}
637 
638 	/* Some data to go along to the callback */
639 	desc->callback = pl011_dma_tx_callback;
640 	desc->callback_param = uap;
641 
642 	/* All errors should happen at prepare time */
643 	dmaengine_submit(desc);
644 
645 	/* Fire the DMA transaction */
646 	dma_dev->device_issue_pending(chan);
647 
648 	uap->dmacr |= UART011_TXDMAE;
649 	pl011_write(uap->dmacr, uap, REG_DMACR);
650 	uap->dmatx.queued = true;
651 
652 	/*
653 	 * Now we know that DMA will fire, so advance the ring buffer
654 	 * with the stuff we just dispatched.
655 	 */
656 	xmit->tail = (xmit->tail + count) & (UART_XMIT_SIZE - 1);
657 	uap->port.icount.tx += count;
658 
659 	if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
660 		uart_write_wakeup(&uap->port);
661 
662 	return 1;
663 }
664 
665 /*
666  * We received a transmit interrupt without a pending X-char but with
667  * pending characters.
668  * Locking: called with port lock held and IRQs disabled.
669  * Returns:
670  *   false if we want to use PIO to transmit
671  *   true if we queued a DMA buffer
672  */
673 static bool pl011_dma_tx_irq(struct uart_amba_port *uap)
674 {
675 	if (!uap->using_tx_dma)
676 		return false;
677 
678 	/*
679 	 * If we already have a TX buffer queued, but received a
680 	 * TX interrupt, it will be because we've just sent an X-char.
681 	 * Ensure the TX DMA is enabled and the TX IRQ is disabled.
682 	 */
683 	if (uap->dmatx.queued) {
684 		uap->dmacr |= UART011_TXDMAE;
685 		pl011_write(uap->dmacr, uap, REG_DMACR);
686 		uap->im &= ~UART011_TXIM;
687 		pl011_write(uap->im, uap, REG_IMSC);
688 		return true;
689 	}
690 
691 	/*
692 	 * We don't have a TX buffer queued, so try to queue one.
693 	 * If we successfully queued a buffer, mask the TX IRQ.
694 	 */
695 	if (pl011_dma_tx_refill(uap) > 0) {
696 		uap->im &= ~UART011_TXIM;
697 		pl011_write(uap->im, uap, REG_IMSC);
698 		return true;
699 	}
700 	return false;
701 }
702 
703 /*
704  * Stop the DMA transmit (eg, due to received XOFF).
705  * Locking: called with port lock held and IRQs disabled.
706  */
707 static inline void pl011_dma_tx_stop(struct uart_amba_port *uap)
708 {
709 	if (uap->dmatx.queued) {
710 		uap->dmacr &= ~UART011_TXDMAE;
711 		pl011_write(uap->dmacr, uap, REG_DMACR);
712 	}
713 }
714 
715 /*
716  * Try to start a DMA transmit, or in the case of an XON/OFF
717  * character queued for send, try to get that character out ASAP.
718  * Locking: called with port lock held and IRQs disabled.
719  * Returns:
720  *   false if we want the TX IRQ to be enabled
721  *   true if we have a buffer queued
722  */
723 static inline bool pl011_dma_tx_start(struct uart_amba_port *uap)
724 {
725 	u16 dmacr;
726 
727 	if (!uap->using_tx_dma)
728 		return false;
729 
730 	if (!uap->port.x_char) {
731 		/* no X-char, try to push chars out in DMA mode */
732 		bool ret = true;
733 
734 		if (!uap->dmatx.queued) {
735 			if (pl011_dma_tx_refill(uap) > 0) {
736 				uap->im &= ~UART011_TXIM;
737 				pl011_write(uap->im, uap, REG_IMSC);
738 			} else
739 				ret = false;
740 		} else if (!(uap->dmacr & UART011_TXDMAE)) {
741 			uap->dmacr |= UART011_TXDMAE;
742 			pl011_write(uap->dmacr, uap, REG_DMACR);
743 		}
744 		return ret;
745 	}
746 
747 	/*
748 	 * We have an X-char to send.  Disable DMA to prevent it loading
749 	 * the TX fifo, and then see if we can stuff it into the FIFO.
750 	 */
751 	dmacr = uap->dmacr;
752 	uap->dmacr &= ~UART011_TXDMAE;
753 	pl011_write(uap->dmacr, uap, REG_DMACR);
754 
755 	if (pl011_read(uap, REG_FR) & UART01x_FR_TXFF) {
756 		/*
757 		 * No space in the FIFO, so enable the transmit interrupt
758 		 * so we know when there is space.  Note that once we've
759 		 * loaded the character, we should just re-enable DMA.
760 		 */
761 		return false;
762 	}
763 
764 	pl011_write(uap->port.x_char, uap, REG_DR);
765 	uap->port.icount.tx++;
766 	uap->port.x_char = 0;
767 
768 	/* Success - restore the DMA state */
769 	uap->dmacr = dmacr;
770 	pl011_write(dmacr, uap, REG_DMACR);
771 
772 	return true;
773 }
774 
775 /*
776  * Flush the transmit buffer.
777  * Locking: called with port lock held and IRQs disabled.
778  */
779 static void pl011_dma_flush_buffer(struct uart_port *port)
780 __releases(&uap->port.lock)
781 __acquires(&uap->port.lock)
782 {
783 	struct uart_amba_port *uap =
784 	    container_of(port, struct uart_amba_port, port);
785 
786 	if (!uap->using_tx_dma)
787 		return;
788 
789 	/* Avoid deadlock with the DMA engine callback */
790 	spin_unlock(&uap->port.lock);
791 	dmaengine_terminate_all(uap->dmatx.chan);
792 	spin_lock(&uap->port.lock);
793 	if (uap->dmatx.queued) {
794 		dma_unmap_sg(uap->dmatx.chan->device->dev, &uap->dmatx.sg, 1,
795 			     DMA_TO_DEVICE);
796 		uap->dmatx.queued = false;
797 		uap->dmacr &= ~UART011_TXDMAE;
798 		pl011_write(uap->dmacr, uap, REG_DMACR);
799 	}
800 }
801 
802 static void pl011_dma_rx_callback(void *data);
803 
804 static int pl011_dma_rx_trigger_dma(struct uart_amba_port *uap)
805 {
806 	struct dma_chan *rxchan = uap->dmarx.chan;
807 	struct pl011_dmarx_data *dmarx = &uap->dmarx;
808 	struct dma_async_tx_descriptor *desc;
809 	struct pl011_sgbuf *sgbuf;
810 
811 	if (!rxchan)
812 		return -EIO;
813 
814 	/* Start the RX DMA job */
815 	sgbuf = uap->dmarx.use_buf_b ?
816 		&uap->dmarx.sgbuf_b : &uap->dmarx.sgbuf_a;
817 	desc = dmaengine_prep_slave_sg(rxchan, &sgbuf->sg, 1,
818 					DMA_DEV_TO_MEM,
819 					DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
820 	/*
821 	 * If the DMA engine is busy and cannot prepare a
822 	 * channel, no big deal, the driver will fall back
823 	 * to interrupt mode as a result of this error code.
824 	 */
825 	if (!desc) {
826 		uap->dmarx.running = false;
827 		dmaengine_terminate_all(rxchan);
828 		return -EBUSY;
829 	}
830 
831 	/* Some data to go along to the callback */
832 	desc->callback = pl011_dma_rx_callback;
833 	desc->callback_param = uap;
834 	dmarx->cookie = dmaengine_submit(desc);
835 	dma_async_issue_pending(rxchan);
836 
837 	uap->dmacr |= UART011_RXDMAE;
838 	pl011_write(uap->dmacr, uap, REG_DMACR);
839 	uap->dmarx.running = true;
840 
841 	uap->im &= ~UART011_RXIM;
842 	pl011_write(uap->im, uap, REG_IMSC);
843 
844 	return 0;
845 }
846 
847 /*
848  * This is called when either the DMA job is complete, or
849  * the FIFO timeout interrupt occurred. This must be called
850  * with the port spinlock uap->port.lock held.
851  */
852 static void pl011_dma_rx_chars(struct uart_amba_port *uap,
853 			       u32 pending, bool use_buf_b,
854 			       bool readfifo)
855 {
856 	struct tty_port *port = &uap->port.state->port;
857 	struct pl011_sgbuf *sgbuf = use_buf_b ?
858 		&uap->dmarx.sgbuf_b : &uap->dmarx.sgbuf_a;
859 	int dma_count = 0;
860 	u32 fifotaken = 0; /* only used for vdbg() */
861 
862 	struct pl011_dmarx_data *dmarx = &uap->dmarx;
863 	int dmataken = 0;
864 
865 	if (uap->dmarx.poll_rate) {
866 		/* The data can be taken by polling */
867 		dmataken = sgbuf->sg.length - dmarx->last_residue;
868 		/* Recalculate the pending size */
869 		if (pending >= dmataken)
870 			pending -= dmataken;
871 	}
872 
873 	/* Pick the remain data from the DMA */
874 	if (pending) {
875 
876 		/*
877 		 * First take all chars in the DMA pipe, then look in the FIFO.
878 		 * Note that tty_insert_flip_buf() tries to take as many chars
879 		 * as it can.
880 		 */
881 		dma_count = tty_insert_flip_string(port, sgbuf->buf + dmataken,
882 				pending);
883 
884 		uap->port.icount.rx += dma_count;
885 		if (dma_count < pending)
886 			dev_warn(uap->port.dev,
887 				 "couldn't insert all characters (TTY is full?)\n");
888 	}
889 
890 	/* Reset the last_residue for Rx DMA poll */
891 	if (uap->dmarx.poll_rate)
892 		dmarx->last_residue = sgbuf->sg.length;
893 
894 	/*
895 	 * Only continue with trying to read the FIFO if all DMA chars have
896 	 * been taken first.
897 	 */
898 	if (dma_count == pending && readfifo) {
899 		/* Clear any error flags */
900 		pl011_write(UART011_OEIS | UART011_BEIS | UART011_PEIS |
901 			    UART011_FEIS, uap, REG_ICR);
902 
903 		/*
904 		 * If we read all the DMA'd characters, and we had an
905 		 * incomplete buffer, that could be due to an rx error, or
906 		 * maybe we just timed out. Read any pending chars and check
907 		 * the error status.
908 		 *
909 		 * Error conditions will only occur in the FIFO, these will
910 		 * trigger an immediate interrupt and stop the DMA job, so we
911 		 * will always find the error in the FIFO, never in the DMA
912 		 * buffer.
913 		 */
914 		fifotaken = pl011_fifo_to_tty(uap);
915 	}
916 
917 	spin_unlock(&uap->port.lock);
918 	dev_vdbg(uap->port.dev,
919 		 "Took %d chars from DMA buffer and %d chars from the FIFO\n",
920 		 dma_count, fifotaken);
921 	tty_flip_buffer_push(port);
922 	spin_lock(&uap->port.lock);
923 }
924 
925 static void pl011_dma_rx_irq(struct uart_amba_port *uap)
926 {
927 	struct pl011_dmarx_data *dmarx = &uap->dmarx;
928 	struct dma_chan *rxchan = dmarx->chan;
929 	struct pl011_sgbuf *sgbuf = dmarx->use_buf_b ?
930 		&dmarx->sgbuf_b : &dmarx->sgbuf_a;
931 	size_t pending;
932 	struct dma_tx_state state;
933 	enum dma_status dmastat;
934 
935 	/*
936 	 * Pause the transfer so we can trust the current counter,
937 	 * do this before we pause the PL011 block, else we may
938 	 * overflow the FIFO.
939 	 */
940 	if (dmaengine_pause(rxchan))
941 		dev_err(uap->port.dev, "unable to pause DMA transfer\n");
942 	dmastat = rxchan->device->device_tx_status(rxchan,
943 						   dmarx->cookie, &state);
944 	if (dmastat != DMA_PAUSED)
945 		dev_err(uap->port.dev, "unable to pause DMA transfer\n");
946 
947 	/* Disable RX DMA - incoming data will wait in the FIFO */
948 	uap->dmacr &= ~UART011_RXDMAE;
949 	pl011_write(uap->dmacr, uap, REG_DMACR);
950 	uap->dmarx.running = false;
951 
952 	pending = sgbuf->sg.length - state.residue;
953 	BUG_ON(pending > PL011_DMA_BUFFER_SIZE);
954 	/* Then we terminate the transfer - we now know our residue */
955 	dmaengine_terminate_all(rxchan);
956 
957 	/*
958 	 * This will take the chars we have so far and insert
959 	 * into the framework.
960 	 */
961 	pl011_dma_rx_chars(uap, pending, dmarx->use_buf_b, true);
962 
963 	/* Switch buffer & re-trigger DMA job */
964 	dmarx->use_buf_b = !dmarx->use_buf_b;
965 	if (pl011_dma_rx_trigger_dma(uap)) {
966 		dev_dbg(uap->port.dev, "could not retrigger RX DMA job "
967 			"fall back to interrupt mode\n");
968 		uap->im |= UART011_RXIM;
969 		pl011_write(uap->im, uap, REG_IMSC);
970 	}
971 }
972 
973 static void pl011_dma_rx_callback(void *data)
974 {
975 	struct uart_amba_port *uap = data;
976 	struct pl011_dmarx_data *dmarx = &uap->dmarx;
977 	struct dma_chan *rxchan = dmarx->chan;
978 	bool lastbuf = dmarx->use_buf_b;
979 	struct pl011_sgbuf *sgbuf = dmarx->use_buf_b ?
980 		&dmarx->sgbuf_b : &dmarx->sgbuf_a;
981 	size_t pending;
982 	struct dma_tx_state state;
983 	int ret;
984 
985 	/*
986 	 * This completion interrupt occurs typically when the
987 	 * RX buffer is totally stuffed but no timeout has yet
988 	 * occurred. When that happens, we just want the RX
989 	 * routine to flush out the secondary DMA buffer while
990 	 * we immediately trigger the next DMA job.
991 	 */
992 	spin_lock_irq(&uap->port.lock);
993 	/*
994 	 * Rx data can be taken by the UART interrupts during
995 	 * the DMA irq handler. So we check the residue here.
996 	 */
997 	rxchan->device->device_tx_status(rxchan, dmarx->cookie, &state);
998 	pending = sgbuf->sg.length - state.residue;
999 	BUG_ON(pending > PL011_DMA_BUFFER_SIZE);
1000 	/* Then we terminate the transfer - we now know our residue */
1001 	dmaengine_terminate_all(rxchan);
1002 
1003 	uap->dmarx.running = false;
1004 	dmarx->use_buf_b = !lastbuf;
1005 	ret = pl011_dma_rx_trigger_dma(uap);
1006 
1007 	pl011_dma_rx_chars(uap, pending, lastbuf, false);
1008 	spin_unlock_irq(&uap->port.lock);
1009 	/*
1010 	 * Do this check after we picked the DMA chars so we don't
1011 	 * get some IRQ immediately from RX.
1012 	 */
1013 	if (ret) {
1014 		dev_dbg(uap->port.dev, "could not retrigger RX DMA job "
1015 			"fall back to interrupt mode\n");
1016 		uap->im |= UART011_RXIM;
1017 		pl011_write(uap->im, uap, REG_IMSC);
1018 	}
1019 }
1020 
1021 /*
1022  * Stop accepting received characters, when we're shutting down or
1023  * suspending this port.
1024  * Locking: called with port lock held and IRQs disabled.
1025  */
1026 static inline void pl011_dma_rx_stop(struct uart_amba_port *uap)
1027 {
1028 	/* FIXME.  Just disable the DMA enable */
1029 	uap->dmacr &= ~UART011_RXDMAE;
1030 	pl011_write(uap->dmacr, uap, REG_DMACR);
1031 }
1032 
1033 /*
1034  * Timer handler for Rx DMA polling.
1035  * Every polling, It checks the residue in the dma buffer and transfer
1036  * data to the tty. Also, last_residue is updated for the next polling.
1037  */
1038 static void pl011_dma_rx_poll(unsigned long args)
1039 {
1040 	struct uart_amba_port *uap = (struct uart_amba_port *)args;
1041 	struct tty_port *port = &uap->port.state->port;
1042 	struct pl011_dmarx_data *dmarx = &uap->dmarx;
1043 	struct dma_chan *rxchan = uap->dmarx.chan;
1044 	unsigned long flags = 0;
1045 	unsigned int dmataken = 0;
1046 	unsigned int size = 0;
1047 	struct pl011_sgbuf *sgbuf;
1048 	int dma_count;
1049 	struct dma_tx_state state;
1050 
1051 	sgbuf = dmarx->use_buf_b ? &uap->dmarx.sgbuf_b : &uap->dmarx.sgbuf_a;
1052 	rxchan->device->device_tx_status(rxchan, dmarx->cookie, &state);
1053 	if (likely(state.residue < dmarx->last_residue)) {
1054 		dmataken = sgbuf->sg.length - dmarx->last_residue;
1055 		size = dmarx->last_residue - state.residue;
1056 		dma_count = tty_insert_flip_string(port, sgbuf->buf + dmataken,
1057 				size);
1058 		if (dma_count == size)
1059 			dmarx->last_residue =  state.residue;
1060 		dmarx->last_jiffies = jiffies;
1061 	}
1062 	tty_flip_buffer_push(port);
1063 
1064 	/*
1065 	 * If no data is received in poll_timeout, the driver will fall back
1066 	 * to interrupt mode. We will retrigger DMA at the first interrupt.
1067 	 */
1068 	if (jiffies_to_msecs(jiffies - dmarx->last_jiffies)
1069 			> uap->dmarx.poll_timeout) {
1070 
1071 		spin_lock_irqsave(&uap->port.lock, flags);
1072 		pl011_dma_rx_stop(uap);
1073 		uap->im |= UART011_RXIM;
1074 		pl011_write(uap->im, uap, REG_IMSC);
1075 		spin_unlock_irqrestore(&uap->port.lock, flags);
1076 
1077 		uap->dmarx.running = false;
1078 		dmaengine_terminate_all(rxchan);
1079 		del_timer(&uap->dmarx.timer);
1080 	} else {
1081 		mod_timer(&uap->dmarx.timer,
1082 			jiffies + msecs_to_jiffies(uap->dmarx.poll_rate));
1083 	}
1084 }
1085 
1086 static void pl011_dma_startup(struct uart_amba_port *uap)
1087 {
1088 	int ret;
1089 
1090 	if (!uap->dma_probed)
1091 		pl011_dma_probe(uap);
1092 
1093 	if (!uap->dmatx.chan)
1094 		return;
1095 
1096 	uap->dmatx.buf = kmalloc(PL011_DMA_BUFFER_SIZE, GFP_KERNEL | __GFP_DMA);
1097 	if (!uap->dmatx.buf) {
1098 		dev_err(uap->port.dev, "no memory for DMA TX buffer\n");
1099 		uap->port.fifosize = uap->fifosize;
1100 		return;
1101 	}
1102 
1103 	sg_init_one(&uap->dmatx.sg, uap->dmatx.buf, PL011_DMA_BUFFER_SIZE);
1104 
1105 	/* The DMA buffer is now the FIFO the TTY subsystem can use */
1106 	uap->port.fifosize = PL011_DMA_BUFFER_SIZE;
1107 	uap->using_tx_dma = true;
1108 
1109 	if (!uap->dmarx.chan)
1110 		goto skip_rx;
1111 
1112 	/* Allocate and map DMA RX buffers */
1113 	ret = pl011_sgbuf_init(uap->dmarx.chan, &uap->dmarx.sgbuf_a,
1114 			       DMA_FROM_DEVICE);
1115 	if (ret) {
1116 		dev_err(uap->port.dev, "failed to init DMA %s: %d\n",
1117 			"RX buffer A", ret);
1118 		goto skip_rx;
1119 	}
1120 
1121 	ret = pl011_sgbuf_init(uap->dmarx.chan, &uap->dmarx.sgbuf_b,
1122 			       DMA_FROM_DEVICE);
1123 	if (ret) {
1124 		dev_err(uap->port.dev, "failed to init DMA %s: %d\n",
1125 			"RX buffer B", ret);
1126 		pl011_sgbuf_free(uap->dmarx.chan, &uap->dmarx.sgbuf_a,
1127 				 DMA_FROM_DEVICE);
1128 		goto skip_rx;
1129 	}
1130 
1131 	uap->using_rx_dma = true;
1132 
1133 skip_rx:
1134 	/* Turn on DMA error (RX/TX will be enabled on demand) */
1135 	uap->dmacr |= UART011_DMAONERR;
1136 	pl011_write(uap->dmacr, uap, REG_DMACR);
1137 
1138 	/*
1139 	 * ST Micro variants has some specific dma burst threshold
1140 	 * compensation. Set this to 16 bytes, so burst will only
1141 	 * be issued above/below 16 bytes.
1142 	 */
1143 	if (uap->vendor->dma_threshold)
1144 		pl011_write(ST_UART011_DMAWM_RX_16 | ST_UART011_DMAWM_TX_16,
1145 			    uap, REG_ST_DMAWM);
1146 
1147 	if (uap->using_rx_dma) {
1148 		if (pl011_dma_rx_trigger_dma(uap))
1149 			dev_dbg(uap->port.dev, "could not trigger initial "
1150 				"RX DMA job, fall back to interrupt mode\n");
1151 		if (uap->dmarx.poll_rate) {
1152 			init_timer(&(uap->dmarx.timer));
1153 			uap->dmarx.timer.function = pl011_dma_rx_poll;
1154 			uap->dmarx.timer.data = (unsigned long)uap;
1155 			mod_timer(&uap->dmarx.timer,
1156 				jiffies +
1157 				msecs_to_jiffies(uap->dmarx.poll_rate));
1158 			uap->dmarx.last_residue = PL011_DMA_BUFFER_SIZE;
1159 			uap->dmarx.last_jiffies = jiffies;
1160 		}
1161 	}
1162 }
1163 
1164 static void pl011_dma_shutdown(struct uart_amba_port *uap)
1165 {
1166 	if (!(uap->using_tx_dma || uap->using_rx_dma))
1167 		return;
1168 
1169 	/* Disable RX and TX DMA */
1170 	while (pl011_read(uap, REG_FR) & UART01x_FR_BUSY)
1171 		cpu_relax();
1172 
1173 	spin_lock_irq(&uap->port.lock);
1174 	uap->dmacr &= ~(UART011_DMAONERR | UART011_RXDMAE | UART011_TXDMAE);
1175 	pl011_write(uap->dmacr, uap, REG_DMACR);
1176 	spin_unlock_irq(&uap->port.lock);
1177 
1178 	if (uap->using_tx_dma) {
1179 		/* In theory, this should already be done by pl011_dma_flush_buffer */
1180 		dmaengine_terminate_all(uap->dmatx.chan);
1181 		if (uap->dmatx.queued) {
1182 			dma_unmap_sg(uap->dmatx.chan->device->dev, &uap->dmatx.sg, 1,
1183 				     DMA_TO_DEVICE);
1184 			uap->dmatx.queued = false;
1185 		}
1186 
1187 		kfree(uap->dmatx.buf);
1188 		uap->using_tx_dma = false;
1189 	}
1190 
1191 	if (uap->using_rx_dma) {
1192 		dmaengine_terminate_all(uap->dmarx.chan);
1193 		/* Clean up the RX DMA */
1194 		pl011_sgbuf_free(uap->dmarx.chan, &uap->dmarx.sgbuf_a, DMA_FROM_DEVICE);
1195 		pl011_sgbuf_free(uap->dmarx.chan, &uap->dmarx.sgbuf_b, DMA_FROM_DEVICE);
1196 		if (uap->dmarx.poll_rate)
1197 			del_timer_sync(&uap->dmarx.timer);
1198 		uap->using_rx_dma = false;
1199 	}
1200 }
1201 
1202 static inline bool pl011_dma_rx_available(struct uart_amba_port *uap)
1203 {
1204 	return uap->using_rx_dma;
1205 }
1206 
1207 static inline bool pl011_dma_rx_running(struct uart_amba_port *uap)
1208 {
1209 	return uap->using_rx_dma && uap->dmarx.running;
1210 }
1211 
1212 #else
1213 /* Blank functions if the DMA engine is not available */
1214 static inline void pl011_dma_probe(struct uart_amba_port *uap)
1215 {
1216 }
1217 
1218 static inline void pl011_dma_remove(struct uart_amba_port *uap)
1219 {
1220 }
1221 
1222 static inline void pl011_dma_startup(struct uart_amba_port *uap)
1223 {
1224 }
1225 
1226 static inline void pl011_dma_shutdown(struct uart_amba_port *uap)
1227 {
1228 }
1229 
1230 static inline bool pl011_dma_tx_irq(struct uart_amba_port *uap)
1231 {
1232 	return false;
1233 }
1234 
1235 static inline void pl011_dma_tx_stop(struct uart_amba_port *uap)
1236 {
1237 }
1238 
1239 static inline bool pl011_dma_tx_start(struct uart_amba_port *uap)
1240 {
1241 	return false;
1242 }
1243 
1244 static inline void pl011_dma_rx_irq(struct uart_amba_port *uap)
1245 {
1246 }
1247 
1248 static inline void pl011_dma_rx_stop(struct uart_amba_port *uap)
1249 {
1250 }
1251 
1252 static inline int pl011_dma_rx_trigger_dma(struct uart_amba_port *uap)
1253 {
1254 	return -EIO;
1255 }
1256 
1257 static inline bool pl011_dma_rx_available(struct uart_amba_port *uap)
1258 {
1259 	return false;
1260 }
1261 
1262 static inline bool pl011_dma_rx_running(struct uart_amba_port *uap)
1263 {
1264 	return false;
1265 }
1266 
1267 #define pl011_dma_flush_buffer	NULL
1268 #endif
1269 
1270 static void pl011_stop_tx(struct uart_port *port)
1271 {
1272 	struct uart_amba_port *uap =
1273 	    container_of(port, struct uart_amba_port, port);
1274 
1275 	uap->im &= ~UART011_TXIM;
1276 	pl011_write(uap->im, uap, REG_IMSC);
1277 	pl011_dma_tx_stop(uap);
1278 }
1279 
1280 static void pl011_tx_chars(struct uart_amba_port *uap, bool from_irq);
1281 
1282 /* Start TX with programmed I/O only (no DMA) */
1283 static void pl011_start_tx_pio(struct uart_amba_port *uap)
1284 {
1285 	uap->im |= UART011_TXIM;
1286 	pl011_write(uap->im, uap, REG_IMSC);
1287 	pl011_tx_chars(uap, false);
1288 }
1289 
1290 static void pl011_start_tx(struct uart_port *port)
1291 {
1292 	struct uart_amba_port *uap =
1293 	    container_of(port, struct uart_amba_port, port);
1294 
1295 	if (!pl011_dma_tx_start(uap))
1296 		pl011_start_tx_pio(uap);
1297 }
1298 
1299 static void pl011_stop_rx(struct uart_port *port)
1300 {
1301 	struct uart_amba_port *uap =
1302 	    container_of(port, struct uart_amba_port, port);
1303 
1304 	uap->im &= ~(UART011_RXIM|UART011_RTIM|UART011_FEIM|
1305 		     UART011_PEIM|UART011_BEIM|UART011_OEIM);
1306 	pl011_write(uap->im, uap, REG_IMSC);
1307 
1308 	pl011_dma_rx_stop(uap);
1309 }
1310 
1311 static void pl011_enable_ms(struct uart_port *port)
1312 {
1313 	struct uart_amba_port *uap =
1314 	    container_of(port, struct uart_amba_port, port);
1315 
1316 	uap->im |= UART011_RIMIM|UART011_CTSMIM|UART011_DCDMIM|UART011_DSRMIM;
1317 	pl011_write(uap->im, uap, REG_IMSC);
1318 }
1319 
1320 static void pl011_rx_chars(struct uart_amba_port *uap)
1321 __releases(&uap->port.lock)
1322 __acquires(&uap->port.lock)
1323 {
1324 	pl011_fifo_to_tty(uap);
1325 
1326 	spin_unlock(&uap->port.lock);
1327 	tty_flip_buffer_push(&uap->port.state->port);
1328 	/*
1329 	 * If we were temporarily out of DMA mode for a while,
1330 	 * attempt to switch back to DMA mode again.
1331 	 */
1332 	if (pl011_dma_rx_available(uap)) {
1333 		if (pl011_dma_rx_trigger_dma(uap)) {
1334 			dev_dbg(uap->port.dev, "could not trigger RX DMA job "
1335 				"fall back to interrupt mode again\n");
1336 			uap->im |= UART011_RXIM;
1337 			pl011_write(uap->im, uap, REG_IMSC);
1338 		} else {
1339 #ifdef CONFIG_DMA_ENGINE
1340 			/* Start Rx DMA poll */
1341 			if (uap->dmarx.poll_rate) {
1342 				uap->dmarx.last_jiffies = jiffies;
1343 				uap->dmarx.last_residue	= PL011_DMA_BUFFER_SIZE;
1344 				mod_timer(&uap->dmarx.timer,
1345 					jiffies +
1346 					msecs_to_jiffies(uap->dmarx.poll_rate));
1347 			}
1348 #endif
1349 		}
1350 	}
1351 	spin_lock(&uap->port.lock);
1352 }
1353 
1354 static bool pl011_tx_char(struct uart_amba_port *uap, unsigned char c,
1355 			  bool from_irq)
1356 {
1357 	if (unlikely(!from_irq) &&
1358 	    pl011_read(uap, REG_FR) & UART01x_FR_TXFF)
1359 		return false; /* unable to transmit character */
1360 
1361 	pl011_write(c, uap, REG_DR);
1362 	uap->port.icount.tx++;
1363 
1364 	return true;
1365 }
1366 
1367 static void pl011_tx_chars(struct uart_amba_port *uap, bool from_irq)
1368 {
1369 	struct circ_buf *xmit = &uap->port.state->xmit;
1370 	int count = uap->fifosize >> 1;
1371 
1372 	if (uap->port.x_char) {
1373 		if (!pl011_tx_char(uap, uap->port.x_char, from_irq))
1374 			return;
1375 		uap->port.x_char = 0;
1376 		--count;
1377 	}
1378 	if (uart_circ_empty(xmit) || uart_tx_stopped(&uap->port)) {
1379 		pl011_stop_tx(&uap->port);
1380 		return;
1381 	}
1382 
1383 	/* If we are using DMA mode, try to send some characters. */
1384 	if (pl011_dma_tx_irq(uap))
1385 		return;
1386 
1387 	do {
1388 		if (likely(from_irq) && count-- == 0)
1389 			break;
1390 
1391 		if (!pl011_tx_char(uap, xmit->buf[xmit->tail], from_irq))
1392 			break;
1393 
1394 		xmit->tail = (xmit->tail + 1) & (UART_XMIT_SIZE - 1);
1395 	} while (!uart_circ_empty(xmit));
1396 
1397 	if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
1398 		uart_write_wakeup(&uap->port);
1399 
1400 	if (uart_circ_empty(xmit))
1401 		pl011_stop_tx(&uap->port);
1402 }
1403 
1404 static void pl011_modem_status(struct uart_amba_port *uap)
1405 {
1406 	unsigned int status, delta;
1407 
1408 	status = pl011_read(uap, REG_FR) & UART01x_FR_MODEM_ANY;
1409 
1410 	delta = status ^ uap->old_status;
1411 	uap->old_status = status;
1412 
1413 	if (!delta)
1414 		return;
1415 
1416 	if (delta & UART01x_FR_DCD)
1417 		uart_handle_dcd_change(&uap->port, status & UART01x_FR_DCD);
1418 
1419 	if (delta & UART01x_FR_DSR)
1420 		uap->port.icount.dsr++;
1421 
1422 	if (delta & UART01x_FR_CTS)
1423 		uart_handle_cts_change(&uap->port, status & UART01x_FR_CTS);
1424 
1425 	wake_up_interruptible(&uap->port.state->port.delta_msr_wait);
1426 }
1427 
1428 static void check_apply_cts_event_workaround(struct uart_amba_port *uap)
1429 {
1430 	unsigned int dummy_read;
1431 
1432 	if (!uap->vendor->cts_event_workaround)
1433 		return;
1434 
1435 	/* workaround to make sure that all bits are unlocked.. */
1436 	pl011_write(0x00, uap, REG_ICR);
1437 
1438 	/*
1439 	 * WA: introduce 26ns(1 uart clk) delay before W1C;
1440 	 * single apb access will incur 2 pclk(133.12Mhz) delay,
1441 	 * so add 2 dummy reads
1442 	 */
1443 	dummy_read = pl011_read(uap, REG_ICR);
1444 	dummy_read = pl011_read(uap, REG_ICR);
1445 }
1446 
1447 static irqreturn_t pl011_int(int irq, void *dev_id)
1448 {
1449 	struct uart_amba_port *uap = dev_id;
1450 	unsigned long flags;
1451 	unsigned int status, pass_counter = AMBA_ISR_PASS_LIMIT;
1452 	u16 imsc;
1453 	int handled = 0;
1454 
1455 	spin_lock_irqsave(&uap->port.lock, flags);
1456 	imsc = pl011_read(uap, REG_IMSC);
1457 	status = pl011_read(uap, REG_RIS) & imsc;
1458 	if (status) {
1459 		do {
1460 			check_apply_cts_event_workaround(uap);
1461 
1462 			pl011_write(status & ~(UART011_TXIS|UART011_RTIS|
1463 					       UART011_RXIS),
1464 				    uap, REG_ICR);
1465 
1466 			if (status & (UART011_RTIS|UART011_RXIS)) {
1467 				if (pl011_dma_rx_running(uap))
1468 					pl011_dma_rx_irq(uap);
1469 				else
1470 					pl011_rx_chars(uap);
1471 			}
1472 			if (status & (UART011_DSRMIS|UART011_DCDMIS|
1473 				      UART011_CTSMIS|UART011_RIMIS))
1474 				pl011_modem_status(uap);
1475 			if (status & UART011_TXIS)
1476 				pl011_tx_chars(uap, true);
1477 
1478 			if (pass_counter-- == 0)
1479 				break;
1480 
1481 			status = pl011_read(uap, REG_RIS) & imsc;
1482 		} while (status != 0);
1483 		handled = 1;
1484 	}
1485 
1486 	spin_unlock_irqrestore(&uap->port.lock, flags);
1487 
1488 	return IRQ_RETVAL(handled);
1489 }
1490 
1491 static unsigned int pl011_tx_empty(struct uart_port *port)
1492 {
1493 	struct uart_amba_port *uap =
1494 	    container_of(port, struct uart_amba_port, port);
1495 	unsigned int status = pl011_read(uap, REG_FR);
1496 	return status & (UART01x_FR_BUSY|UART01x_FR_TXFF) ? 0 : TIOCSER_TEMT;
1497 }
1498 
1499 static unsigned int pl011_get_mctrl(struct uart_port *port)
1500 {
1501 	struct uart_amba_port *uap =
1502 	    container_of(port, struct uart_amba_port, port);
1503 	unsigned int result = 0;
1504 	unsigned int status = pl011_read(uap, REG_FR);
1505 
1506 #define TIOCMBIT(uartbit, tiocmbit)	\
1507 	if (status & uartbit)		\
1508 		result |= tiocmbit
1509 
1510 	TIOCMBIT(UART01x_FR_DCD, TIOCM_CAR);
1511 	TIOCMBIT(UART01x_FR_DSR, TIOCM_DSR);
1512 	TIOCMBIT(UART01x_FR_CTS, TIOCM_CTS);
1513 	TIOCMBIT(UART011_FR_RI, TIOCM_RNG);
1514 #undef TIOCMBIT
1515 	return result;
1516 }
1517 
1518 static void pl011_set_mctrl(struct uart_port *port, unsigned int mctrl)
1519 {
1520 	struct uart_amba_port *uap =
1521 	    container_of(port, struct uart_amba_port, port);
1522 	unsigned int cr;
1523 
1524 	cr = pl011_read(uap, REG_CR);
1525 
1526 #define	TIOCMBIT(tiocmbit, uartbit)		\
1527 	if (mctrl & tiocmbit)		\
1528 		cr |= uartbit;		\
1529 	else				\
1530 		cr &= ~uartbit
1531 
1532 	TIOCMBIT(TIOCM_RTS, UART011_CR_RTS);
1533 	TIOCMBIT(TIOCM_DTR, UART011_CR_DTR);
1534 	TIOCMBIT(TIOCM_OUT1, UART011_CR_OUT1);
1535 	TIOCMBIT(TIOCM_OUT2, UART011_CR_OUT2);
1536 	TIOCMBIT(TIOCM_LOOP, UART011_CR_LBE);
1537 
1538 	if (uap->autorts) {
1539 		/* We need to disable auto-RTS if we want to turn RTS off */
1540 		TIOCMBIT(TIOCM_RTS, UART011_CR_RTSEN);
1541 	}
1542 #undef TIOCMBIT
1543 
1544 	pl011_write(cr, uap, REG_CR);
1545 }
1546 
1547 static void pl011_break_ctl(struct uart_port *port, int break_state)
1548 {
1549 	struct uart_amba_port *uap =
1550 	    container_of(port, struct uart_amba_port, port);
1551 	unsigned long flags;
1552 	unsigned int lcr_h;
1553 
1554 	spin_lock_irqsave(&uap->port.lock, flags);
1555 	lcr_h = pl011_read(uap, REG_LCRH_TX);
1556 	if (break_state == -1)
1557 		lcr_h |= UART01x_LCRH_BRK;
1558 	else
1559 		lcr_h &= ~UART01x_LCRH_BRK;
1560 	pl011_write(lcr_h, uap, REG_LCRH_TX);
1561 	spin_unlock_irqrestore(&uap->port.lock, flags);
1562 }
1563 
1564 #ifdef CONFIG_CONSOLE_POLL
1565 
1566 static void pl011_quiesce_irqs(struct uart_port *port)
1567 {
1568 	struct uart_amba_port *uap =
1569 	    container_of(port, struct uart_amba_port, port);
1570 
1571 	pl011_write(pl011_read(uap, REG_MIS), uap, REG_ICR);
1572 	/*
1573 	 * There is no way to clear TXIM as this is "ready to transmit IRQ", so
1574 	 * we simply mask it. start_tx() will unmask it.
1575 	 *
1576 	 * Note we can race with start_tx(), and if the race happens, the
1577 	 * polling user might get another interrupt just after we clear it.
1578 	 * But it should be OK and can happen even w/o the race, e.g.
1579 	 * controller immediately got some new data and raised the IRQ.
1580 	 *
1581 	 * And whoever uses polling routines assumes that it manages the device
1582 	 * (including tx queue), so we're also fine with start_tx()'s caller
1583 	 * side.
1584 	 */
1585 	pl011_write(pl011_read(uap, REG_IMSC) & ~UART011_TXIM, uap,
1586 		    REG_IMSC);
1587 }
1588 
1589 static int pl011_get_poll_char(struct uart_port *port)
1590 {
1591 	struct uart_amba_port *uap =
1592 	    container_of(port, struct uart_amba_port, port);
1593 	unsigned int status;
1594 
1595 	/*
1596 	 * The caller might need IRQs lowered, e.g. if used with KDB NMI
1597 	 * debugger.
1598 	 */
1599 	pl011_quiesce_irqs(port);
1600 
1601 	status = pl011_read(uap, REG_FR);
1602 	if (status & UART01x_FR_RXFE)
1603 		return NO_POLL_CHAR;
1604 
1605 	return pl011_read(uap, REG_DR);
1606 }
1607 
1608 static void pl011_put_poll_char(struct uart_port *port,
1609 			 unsigned char ch)
1610 {
1611 	struct uart_amba_port *uap =
1612 	    container_of(port, struct uart_amba_port, port);
1613 
1614 	while (pl011_read(uap, REG_FR) & UART01x_FR_TXFF)
1615 		cpu_relax();
1616 
1617 	pl011_write(ch, uap, REG_DR);
1618 }
1619 
1620 #endif /* CONFIG_CONSOLE_POLL */
1621 
1622 static int pl011_hwinit(struct uart_port *port)
1623 {
1624 	struct uart_amba_port *uap =
1625 	    container_of(port, struct uart_amba_port, port);
1626 	int retval;
1627 
1628 	/* Optionaly enable pins to be muxed in and configured */
1629 	pinctrl_pm_select_default_state(port->dev);
1630 
1631 	/*
1632 	 * Try to enable the clock producer.
1633 	 */
1634 	retval = clk_prepare_enable(uap->clk);
1635 	if (retval)
1636 		return retval;
1637 
1638 	uap->port.uartclk = clk_get_rate(uap->clk);
1639 
1640 	/* Clear pending error and receive interrupts */
1641 	pl011_write(UART011_OEIS | UART011_BEIS | UART011_PEIS |
1642 		    UART011_FEIS | UART011_RTIS | UART011_RXIS,
1643 		    uap, REG_ICR);
1644 
1645 	/*
1646 	 * Save interrupts enable mask, and enable RX interrupts in case if
1647 	 * the interrupt is used for NMI entry.
1648 	 */
1649 	uap->im = pl011_read(uap, REG_IMSC);
1650 	pl011_write(UART011_RTIM | UART011_RXIM, uap, REG_IMSC);
1651 
1652 	if (dev_get_platdata(uap->port.dev)) {
1653 		struct amba_pl011_data *plat;
1654 
1655 		plat = dev_get_platdata(uap->port.dev);
1656 		if (plat->init)
1657 			plat->init();
1658 	}
1659 	return 0;
1660 }
1661 
1662 static bool pl011_split_lcrh(const struct uart_amba_port *uap)
1663 {
1664 	return pl011_reg_to_offset(uap, REG_LCRH_RX) !=
1665 	       pl011_reg_to_offset(uap, REG_LCRH_TX);
1666 }
1667 
1668 static void pl011_write_lcr_h(struct uart_amba_port *uap, unsigned int lcr_h)
1669 {
1670 	pl011_write(lcr_h, uap, REG_LCRH_RX);
1671 	if (pl011_split_lcrh(uap)) {
1672 		int i;
1673 		/*
1674 		 * Wait 10 PCLKs before writing LCRH_TX register,
1675 		 * to get this delay write read only register 10 times
1676 		 */
1677 		for (i = 0; i < 10; ++i)
1678 			pl011_write(0xff, uap, REG_MIS);
1679 		pl011_write(lcr_h, uap, REG_LCRH_TX);
1680 	}
1681 }
1682 
1683 static int pl011_allocate_irq(struct uart_amba_port *uap)
1684 {
1685 	pl011_write(uap->im, uap, REG_IMSC);
1686 
1687 	return request_irq(uap->port.irq, pl011_int, 0, "uart-pl011", uap);
1688 }
1689 
1690 /*
1691  * Enable interrupts, only timeouts when using DMA
1692  * if initial RX DMA job failed, start in interrupt mode
1693  * as well.
1694  */
1695 static void pl011_enable_interrupts(struct uart_amba_port *uap)
1696 {
1697 	spin_lock_irq(&uap->port.lock);
1698 
1699 	/* Clear out any spuriously appearing RX interrupts */
1700 	pl011_write(UART011_RTIS | UART011_RXIS, uap, REG_ICR);
1701 	uap->im = UART011_RTIM;
1702 	if (!pl011_dma_rx_running(uap))
1703 		uap->im |= UART011_RXIM;
1704 	pl011_write(uap->im, uap, REG_IMSC);
1705 	spin_unlock_irq(&uap->port.lock);
1706 }
1707 
1708 static int pl011_startup(struct uart_port *port)
1709 {
1710 	struct uart_amba_port *uap =
1711 	    container_of(port, struct uart_amba_port, port);
1712 	unsigned int cr;
1713 	int retval;
1714 
1715 	retval = pl011_hwinit(port);
1716 	if (retval)
1717 		goto clk_dis;
1718 
1719 	retval = pl011_allocate_irq(uap);
1720 	if (retval)
1721 		goto clk_dis;
1722 
1723 	pl011_write(uap->vendor->ifls, uap, REG_IFLS);
1724 
1725 	spin_lock_irq(&uap->port.lock);
1726 
1727 	/* restore RTS and DTR */
1728 	cr = uap->old_cr & (UART011_CR_RTS | UART011_CR_DTR);
1729 	cr |= UART01x_CR_UARTEN | UART011_CR_RXE | UART011_CR_TXE;
1730 	pl011_write(cr, uap, REG_CR);
1731 
1732 	spin_unlock_irq(&uap->port.lock);
1733 
1734 	/*
1735 	 * initialise the old status of the modem signals
1736 	 */
1737 	uap->old_status = pl011_read(uap, REG_FR) & UART01x_FR_MODEM_ANY;
1738 
1739 	/* Startup DMA */
1740 	pl011_dma_startup(uap);
1741 
1742 	pl011_enable_interrupts(uap);
1743 
1744 	return 0;
1745 
1746  clk_dis:
1747 	clk_disable_unprepare(uap->clk);
1748 	return retval;
1749 }
1750 
1751 static int sbsa_uart_startup(struct uart_port *port)
1752 {
1753 	struct uart_amba_port *uap =
1754 		container_of(port, struct uart_amba_port, port);
1755 	int retval;
1756 
1757 	retval = pl011_hwinit(port);
1758 	if (retval)
1759 		return retval;
1760 
1761 	retval = pl011_allocate_irq(uap);
1762 	if (retval)
1763 		return retval;
1764 
1765 	/* The SBSA UART does not support any modem status lines. */
1766 	uap->old_status = 0;
1767 
1768 	pl011_enable_interrupts(uap);
1769 
1770 	return 0;
1771 }
1772 
1773 static void pl011_shutdown_channel(struct uart_amba_port *uap,
1774 					unsigned int lcrh)
1775 {
1776       unsigned long val;
1777 
1778       val = pl011_read(uap, lcrh);
1779       val &= ~(UART01x_LCRH_BRK | UART01x_LCRH_FEN);
1780       pl011_write(val, uap, lcrh);
1781 }
1782 
1783 /*
1784  * disable the port. It should not disable RTS and DTR.
1785  * Also RTS and DTR state should be preserved to restore
1786  * it during startup().
1787  */
1788 static void pl011_disable_uart(struct uart_amba_port *uap)
1789 {
1790 	unsigned int cr;
1791 
1792 	uap->autorts = false;
1793 	spin_lock_irq(&uap->port.lock);
1794 	cr = pl011_read(uap, REG_CR);
1795 	uap->old_cr = cr;
1796 	cr &= UART011_CR_RTS | UART011_CR_DTR;
1797 	cr |= UART01x_CR_UARTEN | UART011_CR_TXE;
1798 	pl011_write(cr, uap, REG_CR);
1799 	spin_unlock_irq(&uap->port.lock);
1800 
1801 	/*
1802 	 * disable break condition and fifos
1803 	 */
1804 	pl011_shutdown_channel(uap, REG_LCRH_RX);
1805 	if (pl011_split_lcrh(uap))
1806 		pl011_shutdown_channel(uap, REG_LCRH_TX);
1807 }
1808 
1809 static void pl011_disable_interrupts(struct uart_amba_port *uap)
1810 {
1811 	spin_lock_irq(&uap->port.lock);
1812 
1813 	/* mask all interrupts and clear all pending ones */
1814 	uap->im = 0;
1815 	pl011_write(uap->im, uap, REG_IMSC);
1816 	pl011_write(0xffff, uap, REG_ICR);
1817 
1818 	spin_unlock_irq(&uap->port.lock);
1819 }
1820 
1821 static void pl011_shutdown(struct uart_port *port)
1822 {
1823 	struct uart_amba_port *uap =
1824 		container_of(port, struct uart_amba_port, port);
1825 
1826 	pl011_disable_interrupts(uap);
1827 
1828 	pl011_dma_shutdown(uap);
1829 
1830 	free_irq(uap->port.irq, uap);
1831 
1832 	pl011_disable_uart(uap);
1833 
1834 	/*
1835 	 * Shut down the clock producer
1836 	 */
1837 	clk_disable_unprepare(uap->clk);
1838 	/* Optionally let pins go into sleep states */
1839 	pinctrl_pm_select_sleep_state(port->dev);
1840 
1841 	if (dev_get_platdata(uap->port.dev)) {
1842 		struct amba_pl011_data *plat;
1843 
1844 		plat = dev_get_platdata(uap->port.dev);
1845 		if (plat->exit)
1846 			plat->exit();
1847 	}
1848 
1849 	if (uap->port.ops->flush_buffer)
1850 		uap->port.ops->flush_buffer(port);
1851 }
1852 
1853 static void sbsa_uart_shutdown(struct uart_port *port)
1854 {
1855 	struct uart_amba_port *uap =
1856 		container_of(port, struct uart_amba_port, port);
1857 
1858 	pl011_disable_interrupts(uap);
1859 
1860 	free_irq(uap->port.irq, uap);
1861 
1862 	if (uap->port.ops->flush_buffer)
1863 		uap->port.ops->flush_buffer(port);
1864 }
1865 
1866 static void
1867 pl011_setup_status_masks(struct uart_port *port, struct ktermios *termios)
1868 {
1869 	port->read_status_mask = UART011_DR_OE | 255;
1870 	if (termios->c_iflag & INPCK)
1871 		port->read_status_mask |= UART011_DR_FE | UART011_DR_PE;
1872 	if (termios->c_iflag & (IGNBRK | BRKINT | PARMRK))
1873 		port->read_status_mask |= UART011_DR_BE;
1874 
1875 	/*
1876 	 * Characters to ignore
1877 	 */
1878 	port->ignore_status_mask = 0;
1879 	if (termios->c_iflag & IGNPAR)
1880 		port->ignore_status_mask |= UART011_DR_FE | UART011_DR_PE;
1881 	if (termios->c_iflag & IGNBRK) {
1882 		port->ignore_status_mask |= UART011_DR_BE;
1883 		/*
1884 		 * If we're ignoring parity and break indicators,
1885 		 * ignore overruns too (for real raw support).
1886 		 */
1887 		if (termios->c_iflag & IGNPAR)
1888 			port->ignore_status_mask |= UART011_DR_OE;
1889 	}
1890 
1891 	/*
1892 	 * Ignore all characters if CREAD is not set.
1893 	 */
1894 	if ((termios->c_cflag & CREAD) == 0)
1895 		port->ignore_status_mask |= UART_DUMMY_DR_RX;
1896 }
1897 
1898 static void
1899 pl011_set_termios(struct uart_port *port, struct ktermios *termios,
1900 		     struct ktermios *old)
1901 {
1902 	struct uart_amba_port *uap =
1903 	    container_of(port, struct uart_amba_port, port);
1904 	unsigned int lcr_h, old_cr;
1905 	unsigned long flags;
1906 	unsigned int baud, quot, clkdiv;
1907 
1908 	if (uap->vendor->oversampling)
1909 		clkdiv = 8;
1910 	else
1911 		clkdiv = 16;
1912 
1913 	/*
1914 	 * Ask the core to calculate the divisor for us.
1915 	 */
1916 	baud = uart_get_baud_rate(port, termios, old, 0,
1917 				  port->uartclk / clkdiv);
1918 #ifdef CONFIG_DMA_ENGINE
1919 	/*
1920 	 * Adjust RX DMA polling rate with baud rate if not specified.
1921 	 */
1922 	if (uap->dmarx.auto_poll_rate)
1923 		uap->dmarx.poll_rate = DIV_ROUND_UP(10000000, baud);
1924 #endif
1925 
1926 	if (baud > port->uartclk/16)
1927 		quot = DIV_ROUND_CLOSEST(port->uartclk * 8, baud);
1928 	else
1929 		quot = DIV_ROUND_CLOSEST(port->uartclk * 4, baud);
1930 
1931 	switch (termios->c_cflag & CSIZE) {
1932 	case CS5:
1933 		lcr_h = UART01x_LCRH_WLEN_5;
1934 		break;
1935 	case CS6:
1936 		lcr_h = UART01x_LCRH_WLEN_6;
1937 		break;
1938 	case CS7:
1939 		lcr_h = UART01x_LCRH_WLEN_7;
1940 		break;
1941 	default: // CS8
1942 		lcr_h = UART01x_LCRH_WLEN_8;
1943 		break;
1944 	}
1945 	if (termios->c_cflag & CSTOPB)
1946 		lcr_h |= UART01x_LCRH_STP2;
1947 	if (termios->c_cflag & PARENB) {
1948 		lcr_h |= UART01x_LCRH_PEN;
1949 		if (!(termios->c_cflag & PARODD))
1950 			lcr_h |= UART01x_LCRH_EPS;
1951 		if (termios->c_cflag & CMSPAR)
1952 			lcr_h |= UART011_LCRH_SPS;
1953 	}
1954 	if (uap->fifosize > 1)
1955 		lcr_h |= UART01x_LCRH_FEN;
1956 
1957 	spin_lock_irqsave(&port->lock, flags);
1958 
1959 	/*
1960 	 * Update the per-port timeout.
1961 	 */
1962 	uart_update_timeout(port, termios->c_cflag, baud);
1963 
1964 	pl011_setup_status_masks(port, termios);
1965 
1966 	if (UART_ENABLE_MS(port, termios->c_cflag))
1967 		pl011_enable_ms(port);
1968 
1969 	/* first, disable everything */
1970 	old_cr = pl011_read(uap, REG_CR);
1971 	pl011_write(0, uap, REG_CR);
1972 
1973 	if (termios->c_cflag & CRTSCTS) {
1974 		if (old_cr & UART011_CR_RTS)
1975 			old_cr |= UART011_CR_RTSEN;
1976 
1977 		old_cr |= UART011_CR_CTSEN;
1978 		uap->autorts = true;
1979 	} else {
1980 		old_cr &= ~(UART011_CR_CTSEN | UART011_CR_RTSEN);
1981 		uap->autorts = false;
1982 	}
1983 
1984 	if (uap->vendor->oversampling) {
1985 		if (baud > port->uartclk / 16)
1986 			old_cr |= ST_UART011_CR_OVSFACT;
1987 		else
1988 			old_cr &= ~ST_UART011_CR_OVSFACT;
1989 	}
1990 
1991 	/*
1992 	 * Workaround for the ST Micro oversampling variants to
1993 	 * increase the bitrate slightly, by lowering the divisor,
1994 	 * to avoid delayed sampling of start bit at high speeds,
1995 	 * else we see data corruption.
1996 	 */
1997 	if (uap->vendor->oversampling) {
1998 		if ((baud >= 3000000) && (baud < 3250000) && (quot > 1))
1999 			quot -= 1;
2000 		else if ((baud > 3250000) && (quot > 2))
2001 			quot -= 2;
2002 	}
2003 	/* Set baud rate */
2004 	pl011_write(quot & 0x3f, uap, REG_FBRD);
2005 	pl011_write(quot >> 6, uap, REG_IBRD);
2006 
2007 	/*
2008 	 * ----------v----------v----------v----------v-----
2009 	 * NOTE: REG_LCRH_TX and REG_LCRH_RX MUST BE WRITTEN AFTER
2010 	 * REG_FBRD & REG_IBRD.
2011 	 * ----------^----------^----------^----------^-----
2012 	 */
2013 	pl011_write_lcr_h(uap, lcr_h);
2014 	pl011_write(old_cr, uap, REG_CR);
2015 
2016 	spin_unlock_irqrestore(&port->lock, flags);
2017 }
2018 
2019 static void
2020 sbsa_uart_set_termios(struct uart_port *port, struct ktermios *termios,
2021 		      struct ktermios *old)
2022 {
2023 	struct uart_amba_port *uap =
2024 	    container_of(port, struct uart_amba_port, port);
2025 	unsigned long flags;
2026 
2027 	tty_termios_encode_baud_rate(termios, uap->fixed_baud, uap->fixed_baud);
2028 
2029 	/* The SBSA UART only supports 8n1 without hardware flow control. */
2030 	termios->c_cflag &= ~(CSIZE | CSTOPB | PARENB | PARODD);
2031 	termios->c_cflag &= ~(CMSPAR | CRTSCTS);
2032 	termios->c_cflag |= CS8 | CLOCAL;
2033 
2034 	spin_lock_irqsave(&port->lock, flags);
2035 	uart_update_timeout(port, CS8, uap->fixed_baud);
2036 	pl011_setup_status_masks(port, termios);
2037 	spin_unlock_irqrestore(&port->lock, flags);
2038 }
2039 
2040 static const char *pl011_type(struct uart_port *port)
2041 {
2042 	struct uart_amba_port *uap =
2043 	    container_of(port, struct uart_amba_port, port);
2044 	return uap->port.type == PORT_AMBA ? uap->type : NULL;
2045 }
2046 
2047 /*
2048  * Release the memory region(s) being used by 'port'
2049  */
2050 static void pl011_release_port(struct uart_port *port)
2051 {
2052 	release_mem_region(port->mapbase, SZ_4K);
2053 }
2054 
2055 /*
2056  * Request the memory region(s) being used by 'port'
2057  */
2058 static int pl011_request_port(struct uart_port *port)
2059 {
2060 	return request_mem_region(port->mapbase, SZ_4K, "uart-pl011")
2061 			!= NULL ? 0 : -EBUSY;
2062 }
2063 
2064 /*
2065  * Configure/autoconfigure the port.
2066  */
2067 static void pl011_config_port(struct uart_port *port, int flags)
2068 {
2069 	if (flags & UART_CONFIG_TYPE) {
2070 		port->type = PORT_AMBA;
2071 		pl011_request_port(port);
2072 	}
2073 }
2074 
2075 /*
2076  * verify the new serial_struct (for TIOCSSERIAL).
2077  */
2078 static int pl011_verify_port(struct uart_port *port, struct serial_struct *ser)
2079 {
2080 	int ret = 0;
2081 	if (ser->type != PORT_UNKNOWN && ser->type != PORT_AMBA)
2082 		ret = -EINVAL;
2083 	if (ser->irq < 0 || ser->irq >= nr_irqs)
2084 		ret = -EINVAL;
2085 	if (ser->baud_base < 9600)
2086 		ret = -EINVAL;
2087 	return ret;
2088 }
2089 
2090 static struct uart_ops amba_pl011_pops = {
2091 	.tx_empty	= pl011_tx_empty,
2092 	.set_mctrl	= pl011_set_mctrl,
2093 	.get_mctrl	= pl011_get_mctrl,
2094 	.stop_tx	= pl011_stop_tx,
2095 	.start_tx	= pl011_start_tx,
2096 	.stop_rx	= pl011_stop_rx,
2097 	.enable_ms	= pl011_enable_ms,
2098 	.break_ctl	= pl011_break_ctl,
2099 	.startup	= pl011_startup,
2100 	.shutdown	= pl011_shutdown,
2101 	.flush_buffer	= pl011_dma_flush_buffer,
2102 	.set_termios	= pl011_set_termios,
2103 	.type		= pl011_type,
2104 	.release_port	= pl011_release_port,
2105 	.request_port	= pl011_request_port,
2106 	.config_port	= pl011_config_port,
2107 	.verify_port	= pl011_verify_port,
2108 #ifdef CONFIG_CONSOLE_POLL
2109 	.poll_init     = pl011_hwinit,
2110 	.poll_get_char = pl011_get_poll_char,
2111 	.poll_put_char = pl011_put_poll_char,
2112 #endif
2113 };
2114 
2115 static void sbsa_uart_set_mctrl(struct uart_port *port, unsigned int mctrl)
2116 {
2117 }
2118 
2119 static unsigned int sbsa_uart_get_mctrl(struct uart_port *port)
2120 {
2121 	return 0;
2122 }
2123 
2124 static const struct uart_ops sbsa_uart_pops = {
2125 	.tx_empty	= pl011_tx_empty,
2126 	.set_mctrl	= sbsa_uart_set_mctrl,
2127 	.get_mctrl	= sbsa_uart_get_mctrl,
2128 	.stop_tx	= pl011_stop_tx,
2129 	.start_tx	= pl011_start_tx,
2130 	.stop_rx	= pl011_stop_rx,
2131 	.startup	= sbsa_uart_startup,
2132 	.shutdown	= sbsa_uart_shutdown,
2133 	.set_termios	= sbsa_uart_set_termios,
2134 	.type		= pl011_type,
2135 	.release_port	= pl011_release_port,
2136 	.request_port	= pl011_request_port,
2137 	.config_port	= pl011_config_port,
2138 	.verify_port	= pl011_verify_port,
2139 #ifdef CONFIG_CONSOLE_POLL
2140 	.poll_init     = pl011_hwinit,
2141 	.poll_get_char = pl011_get_poll_char,
2142 	.poll_put_char = pl011_put_poll_char,
2143 #endif
2144 };
2145 
2146 static struct uart_amba_port *amba_ports[UART_NR];
2147 
2148 #ifdef CONFIG_SERIAL_AMBA_PL011_CONSOLE
2149 
2150 static void pl011_console_putchar(struct uart_port *port, int ch)
2151 {
2152 	struct uart_amba_port *uap =
2153 	    container_of(port, struct uart_amba_port, port);
2154 
2155 	while (pl011_read(uap, REG_FR) & UART01x_FR_TXFF)
2156 		cpu_relax();
2157 	pl011_write(ch, uap, REG_DR);
2158 }
2159 
2160 static void
2161 pl011_console_write(struct console *co, const char *s, unsigned int count)
2162 {
2163 	struct uart_amba_port *uap = amba_ports[co->index];
2164 	unsigned int old_cr = 0, new_cr;
2165 	unsigned long flags;
2166 	int locked = 1;
2167 
2168 	clk_enable(uap->clk);
2169 
2170 	local_irq_save(flags);
2171 	if (uap->port.sysrq)
2172 		locked = 0;
2173 	else if (oops_in_progress)
2174 		locked = spin_trylock(&uap->port.lock);
2175 	else
2176 		spin_lock(&uap->port.lock);
2177 
2178 	/*
2179 	 *	First save the CR then disable the interrupts
2180 	 */
2181 	if (!uap->vendor->always_enabled) {
2182 		old_cr = pl011_read(uap, REG_CR);
2183 		new_cr = old_cr & ~UART011_CR_CTSEN;
2184 		new_cr |= UART01x_CR_UARTEN | UART011_CR_TXE;
2185 		pl011_write(new_cr, uap, REG_CR);
2186 	}
2187 
2188 	uart_console_write(&uap->port, s, count, pl011_console_putchar);
2189 
2190 	/*
2191 	 *	Finally, wait for transmitter to become empty
2192 	 *	and restore the TCR
2193 	 */
2194 	while (pl011_read(uap, REG_FR) & UART01x_FR_BUSY)
2195 		cpu_relax();
2196 	if (!uap->vendor->always_enabled)
2197 		pl011_write(old_cr, uap, REG_CR);
2198 
2199 	if (locked)
2200 		spin_unlock(&uap->port.lock);
2201 	local_irq_restore(flags);
2202 
2203 	clk_disable(uap->clk);
2204 }
2205 
2206 static void __init
2207 pl011_console_get_options(struct uart_amba_port *uap, int *baud,
2208 			     int *parity, int *bits)
2209 {
2210 	if (pl011_read(uap, REG_CR) & UART01x_CR_UARTEN) {
2211 		unsigned int lcr_h, ibrd, fbrd;
2212 
2213 		lcr_h = pl011_read(uap, REG_LCRH_TX);
2214 
2215 		*parity = 'n';
2216 		if (lcr_h & UART01x_LCRH_PEN) {
2217 			if (lcr_h & UART01x_LCRH_EPS)
2218 				*parity = 'e';
2219 			else
2220 				*parity = 'o';
2221 		}
2222 
2223 		if ((lcr_h & 0x60) == UART01x_LCRH_WLEN_7)
2224 			*bits = 7;
2225 		else
2226 			*bits = 8;
2227 
2228 		ibrd = pl011_read(uap, REG_IBRD);
2229 		fbrd = pl011_read(uap, REG_FBRD);
2230 
2231 		*baud = uap->port.uartclk * 4 / (64 * ibrd + fbrd);
2232 
2233 		if (uap->vendor->oversampling) {
2234 			if (pl011_read(uap, REG_CR)
2235 				  & ST_UART011_CR_OVSFACT)
2236 				*baud *= 2;
2237 		}
2238 	}
2239 }
2240 
2241 static int __init pl011_console_setup(struct console *co, char *options)
2242 {
2243 	struct uart_amba_port *uap;
2244 	int baud = 38400;
2245 	int bits = 8;
2246 	int parity = 'n';
2247 	int flow = 'n';
2248 	int ret;
2249 
2250 	/*
2251 	 * Check whether an invalid uart number has been specified, and
2252 	 * if so, search for the first available port that does have
2253 	 * console support.
2254 	 */
2255 	if (co->index >= UART_NR)
2256 		co->index = 0;
2257 	uap = amba_ports[co->index];
2258 	if (!uap)
2259 		return -ENODEV;
2260 
2261 	/* Allow pins to be muxed in and configured */
2262 	pinctrl_pm_select_default_state(uap->port.dev);
2263 
2264 	ret = clk_prepare(uap->clk);
2265 	if (ret)
2266 		return ret;
2267 
2268 	if (dev_get_platdata(uap->port.dev)) {
2269 		struct amba_pl011_data *plat;
2270 
2271 		plat = dev_get_platdata(uap->port.dev);
2272 		if (plat->init)
2273 			plat->init();
2274 	}
2275 
2276 	uap->port.uartclk = clk_get_rate(uap->clk);
2277 
2278 	if (uap->vendor->fixed_options) {
2279 		baud = uap->fixed_baud;
2280 	} else {
2281 		if (options)
2282 			uart_parse_options(options,
2283 					   &baud, &parity, &bits, &flow);
2284 		else
2285 			pl011_console_get_options(uap, &baud, &parity, &bits);
2286 	}
2287 
2288 	return uart_set_options(&uap->port, co, baud, parity, bits, flow);
2289 }
2290 
2291 static struct uart_driver amba_reg;
2292 static struct console amba_console = {
2293 	.name		= "ttyAMA",
2294 	.write		= pl011_console_write,
2295 	.device		= uart_console_device,
2296 	.setup		= pl011_console_setup,
2297 	.flags		= CON_PRINTBUFFER,
2298 	.index		= -1,
2299 	.data		= &amba_reg,
2300 };
2301 
2302 #define AMBA_CONSOLE	(&amba_console)
2303 
2304 static void pl011_putc(struct uart_port *port, int c)
2305 {
2306 	while (readl(port->membase + UART01x_FR) & UART01x_FR_TXFF)
2307 		cpu_relax();
2308 	if (port->iotype == UPIO_MEM32)
2309 		writel(c, port->membase + UART01x_DR);
2310 	else
2311 		writeb(c, port->membase + UART01x_DR);
2312 	while (readl(port->membase + UART01x_FR) & UART01x_FR_BUSY)
2313 		cpu_relax();
2314 }
2315 
2316 static void pl011_early_write(struct console *con, const char *s, unsigned n)
2317 {
2318 	struct earlycon_device *dev = con->data;
2319 
2320 	uart_console_write(&dev->port, s, n, pl011_putc);
2321 }
2322 
2323 static int __init pl011_early_console_setup(struct earlycon_device *device,
2324 					    const char *opt)
2325 {
2326 	if (!device->port.membase)
2327 		return -ENODEV;
2328 
2329 	device->con->write = pl011_early_write;
2330 	return 0;
2331 }
2332 OF_EARLYCON_DECLARE(pl011, "arm,pl011", pl011_early_console_setup);
2333 
2334 #else
2335 #define AMBA_CONSOLE	NULL
2336 #endif
2337 
2338 static struct uart_driver amba_reg = {
2339 	.owner			= THIS_MODULE,
2340 	.driver_name		= "ttyAMA",
2341 	.dev_name		= "ttyAMA",
2342 	.major			= SERIAL_AMBA_MAJOR,
2343 	.minor			= SERIAL_AMBA_MINOR,
2344 	.nr			= UART_NR,
2345 	.cons			= AMBA_CONSOLE,
2346 };
2347 
2348 static int pl011_probe_dt_alias(int index, struct device *dev)
2349 {
2350 	struct device_node *np;
2351 	static bool seen_dev_with_alias = false;
2352 	static bool seen_dev_without_alias = false;
2353 	int ret = index;
2354 
2355 	if (!IS_ENABLED(CONFIG_OF))
2356 		return ret;
2357 
2358 	np = dev->of_node;
2359 	if (!np)
2360 		return ret;
2361 
2362 	ret = of_alias_get_id(np, "serial");
2363 	if (ret < 0) {
2364 		seen_dev_without_alias = true;
2365 		ret = index;
2366 	} else {
2367 		seen_dev_with_alias = true;
2368 		if (ret >= ARRAY_SIZE(amba_ports) || amba_ports[ret] != NULL) {
2369 			dev_warn(dev, "requested serial port %d  not available.\n", ret);
2370 			ret = index;
2371 		}
2372 	}
2373 
2374 	if (seen_dev_with_alias && seen_dev_without_alias)
2375 		dev_warn(dev, "aliased and non-aliased serial devices found in device tree. Serial port enumeration may be unpredictable.\n");
2376 
2377 	return ret;
2378 }
2379 
2380 /* unregisters the driver also if no more ports are left */
2381 static void pl011_unregister_port(struct uart_amba_port *uap)
2382 {
2383 	int i;
2384 	bool busy = false;
2385 
2386 	for (i = 0; i < ARRAY_SIZE(amba_ports); i++) {
2387 		if (amba_ports[i] == uap)
2388 			amba_ports[i] = NULL;
2389 		else if (amba_ports[i])
2390 			busy = true;
2391 	}
2392 	pl011_dma_remove(uap);
2393 	if (!busy)
2394 		uart_unregister_driver(&amba_reg);
2395 }
2396 
2397 static int pl011_find_free_port(void)
2398 {
2399 	int i;
2400 
2401 	for (i = 0; i < ARRAY_SIZE(amba_ports); i++)
2402 		if (amba_ports[i] == NULL)
2403 			return i;
2404 
2405 	return -EBUSY;
2406 }
2407 
2408 static int pl011_setup_port(struct device *dev, struct uart_amba_port *uap,
2409 			    struct resource *mmiobase, int index)
2410 {
2411 	void __iomem *base;
2412 
2413 	base = devm_ioremap_resource(dev, mmiobase);
2414 	if (IS_ERR(base))
2415 		return PTR_ERR(base);
2416 
2417 	index = pl011_probe_dt_alias(index, dev);
2418 
2419 	uap->old_cr = 0;
2420 	uap->port.dev = dev;
2421 	uap->port.mapbase = mmiobase->start;
2422 	uap->port.membase = base;
2423 	uap->port.fifosize = uap->fifosize;
2424 	uap->port.flags = UPF_BOOT_AUTOCONF;
2425 	uap->port.line = index;
2426 
2427 	amba_ports[index] = uap;
2428 
2429 	return 0;
2430 }
2431 
2432 static int pl011_register_port(struct uart_amba_port *uap)
2433 {
2434 	int ret;
2435 
2436 	/* Ensure interrupts from this UART are masked and cleared */
2437 	pl011_write(0, uap, REG_IMSC);
2438 	pl011_write(0xffff, uap, REG_ICR);
2439 
2440 	if (!amba_reg.state) {
2441 		ret = uart_register_driver(&amba_reg);
2442 		if (ret < 0) {
2443 			dev_err(uap->port.dev,
2444 				"Failed to register AMBA-PL011 driver\n");
2445 			return ret;
2446 		}
2447 	}
2448 
2449 	ret = uart_add_one_port(&amba_reg, &uap->port);
2450 	if (ret)
2451 		pl011_unregister_port(uap);
2452 
2453 	return ret;
2454 }
2455 
2456 static int pl011_probe(struct amba_device *dev, const struct amba_id *id)
2457 {
2458 	struct uart_amba_port *uap;
2459 	struct vendor_data *vendor = id->data;
2460 	int portnr, ret;
2461 
2462 	portnr = pl011_find_free_port();
2463 	if (portnr < 0)
2464 		return portnr;
2465 
2466 	uap = devm_kzalloc(&dev->dev, sizeof(struct uart_amba_port),
2467 			   GFP_KERNEL);
2468 	if (!uap)
2469 		return -ENOMEM;
2470 
2471 	uap->clk = devm_clk_get(&dev->dev, NULL);
2472 	if (IS_ERR(uap->clk))
2473 		return PTR_ERR(uap->clk);
2474 
2475 	uap->reg_offset = vendor->reg_offset;
2476 	uap->vendor = vendor;
2477 	uap->fifosize = vendor->get_fifosize(dev);
2478 	uap->port.iotype = vendor->access_32b ? UPIO_MEM32 : UPIO_MEM;
2479 	uap->port.irq = dev->irq[0];
2480 	uap->port.ops = &amba_pl011_pops;
2481 
2482 	snprintf(uap->type, sizeof(uap->type), "PL011 rev%u", amba_rev(dev));
2483 
2484 	ret = pl011_setup_port(&dev->dev, uap, &dev->res, portnr);
2485 	if (ret)
2486 		return ret;
2487 
2488 	amba_set_drvdata(dev, uap);
2489 
2490 	return pl011_register_port(uap);
2491 }
2492 
2493 static int pl011_remove(struct amba_device *dev)
2494 {
2495 	struct uart_amba_port *uap = amba_get_drvdata(dev);
2496 
2497 	uart_remove_one_port(&amba_reg, &uap->port);
2498 	pl011_unregister_port(uap);
2499 	return 0;
2500 }
2501 
2502 #ifdef CONFIG_PM_SLEEP
2503 static int pl011_suspend(struct device *dev)
2504 {
2505 	struct uart_amba_port *uap = dev_get_drvdata(dev);
2506 
2507 	if (!uap)
2508 		return -EINVAL;
2509 
2510 	return uart_suspend_port(&amba_reg, &uap->port);
2511 }
2512 
2513 static int pl011_resume(struct device *dev)
2514 {
2515 	struct uart_amba_port *uap = dev_get_drvdata(dev);
2516 
2517 	if (!uap)
2518 		return -EINVAL;
2519 
2520 	return uart_resume_port(&amba_reg, &uap->port);
2521 }
2522 #endif
2523 
2524 static SIMPLE_DEV_PM_OPS(pl011_dev_pm_ops, pl011_suspend, pl011_resume);
2525 
2526 static int sbsa_uart_probe(struct platform_device *pdev)
2527 {
2528 	struct uart_amba_port *uap;
2529 	struct resource *r;
2530 	int portnr, ret;
2531 	int baudrate;
2532 
2533 	/*
2534 	 * Check the mandatory baud rate parameter in the DT node early
2535 	 * so that we can easily exit with the error.
2536 	 */
2537 	if (pdev->dev.of_node) {
2538 		struct device_node *np = pdev->dev.of_node;
2539 
2540 		ret = of_property_read_u32(np, "current-speed", &baudrate);
2541 		if (ret)
2542 			return ret;
2543 	} else {
2544 		baudrate = 115200;
2545 	}
2546 
2547 	portnr = pl011_find_free_port();
2548 	if (portnr < 0)
2549 		return portnr;
2550 
2551 	uap = devm_kzalloc(&pdev->dev, sizeof(struct uart_amba_port),
2552 			   GFP_KERNEL);
2553 	if (!uap)
2554 		return -ENOMEM;
2555 
2556 	uap->reg_offset	= vendor_sbsa.reg_offset;
2557 	uap->vendor	= &vendor_sbsa;
2558 	uap->fifosize	= 32;
2559 	uap->port.iotype = vendor_sbsa.access_32b ? UPIO_MEM32 : UPIO_MEM;
2560 	uap->port.irq	= platform_get_irq(pdev, 0);
2561 	uap->port.ops	= &sbsa_uart_pops;
2562 	uap->fixed_baud = baudrate;
2563 
2564 	snprintf(uap->type, sizeof(uap->type), "SBSA");
2565 
2566 	r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2567 
2568 	ret = pl011_setup_port(&pdev->dev, uap, r, portnr);
2569 	if (ret)
2570 		return ret;
2571 
2572 	platform_set_drvdata(pdev, uap);
2573 
2574 	return pl011_register_port(uap);
2575 }
2576 
2577 static int sbsa_uart_remove(struct platform_device *pdev)
2578 {
2579 	struct uart_amba_port *uap = platform_get_drvdata(pdev);
2580 
2581 	uart_remove_one_port(&amba_reg, &uap->port);
2582 	pl011_unregister_port(uap);
2583 	return 0;
2584 }
2585 
2586 static const struct of_device_id sbsa_uart_of_match[] = {
2587 	{ .compatible = "arm,sbsa-uart", },
2588 	{},
2589 };
2590 MODULE_DEVICE_TABLE(of, sbsa_uart_of_match);
2591 
2592 static const struct acpi_device_id sbsa_uart_acpi_match[] = {
2593 	{ "ARMH0011", 0 },
2594 	{},
2595 };
2596 MODULE_DEVICE_TABLE(acpi, sbsa_uart_acpi_match);
2597 
2598 static struct platform_driver arm_sbsa_uart_platform_driver = {
2599 	.probe		= sbsa_uart_probe,
2600 	.remove		= sbsa_uart_remove,
2601 	.driver	= {
2602 		.name	= "sbsa-uart",
2603 		.of_match_table = of_match_ptr(sbsa_uart_of_match),
2604 		.acpi_match_table = ACPI_PTR(sbsa_uart_acpi_match),
2605 	},
2606 };
2607 
2608 static struct amba_id pl011_ids[] = {
2609 	{
2610 		.id	= 0x00041011,
2611 		.mask	= 0x000fffff,
2612 		.data	= &vendor_arm,
2613 	},
2614 	{
2615 		.id	= 0x00380802,
2616 		.mask	= 0x00ffffff,
2617 		.data	= &vendor_st,
2618 	},
2619 	{ 0, 0 },
2620 };
2621 
2622 MODULE_DEVICE_TABLE(amba, pl011_ids);
2623 
2624 static struct amba_driver pl011_driver = {
2625 	.drv = {
2626 		.name	= "uart-pl011",
2627 		.pm	= &pl011_dev_pm_ops,
2628 	},
2629 	.id_table	= pl011_ids,
2630 	.probe		= pl011_probe,
2631 	.remove		= pl011_remove,
2632 };
2633 
2634 static int __init pl011_init(void)
2635 {
2636 	printk(KERN_INFO "Serial: AMBA PL011 UART driver\n");
2637 
2638 	if (platform_driver_register(&arm_sbsa_uart_platform_driver))
2639 		pr_warn("could not register SBSA UART platform driver\n");
2640 	return amba_driver_register(&pl011_driver);
2641 }
2642 
2643 static void __exit pl011_exit(void)
2644 {
2645 	platform_driver_unregister(&arm_sbsa_uart_platform_driver);
2646 	amba_driver_unregister(&pl011_driver);
2647 }
2648 
2649 /*
2650  * While this can be a module, if builtin it's most likely the console
2651  * So let's leave module_exit but move module_init to an earlier place
2652  */
2653 arch_initcall(pl011_init);
2654 module_exit(pl011_exit);
2655 
2656 MODULE_AUTHOR("ARM Ltd/Deep Blue Solutions Ltd");
2657 MODULE_DESCRIPTION("ARM AMBA serial port driver");
2658 MODULE_LICENSE("GPL");
2659