1 /* 2 * Driver for AMBA serial ports 3 * 4 * Based on drivers/char/serial.c, by Linus Torvalds, Theodore Ts'o. 5 * 6 * Copyright 1999 ARM Limited 7 * Copyright (C) 2000 Deep Blue Solutions Ltd. 8 * Copyright (C) 2010 ST-Ericsson SA 9 * 10 * This program is free software; you can redistribute it and/or modify 11 * it under the terms of the GNU General Public License as published by 12 * the Free Software Foundation; either version 2 of the License, or 13 * (at your option) any later version. 14 * 15 * This program is distributed in the hope that it will be useful, 16 * but WITHOUT ANY WARRANTY; without even the implied warranty of 17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 18 * GNU General Public License for more details. 19 * 20 * You should have received a copy of the GNU General Public License 21 * along with this program; if not, write to the Free Software 22 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 23 * 24 * This is a generic driver for ARM AMBA-type serial ports. They 25 * have a lot of 16550-like features, but are not register compatible. 26 * Note that although they do have CTS, DCD and DSR inputs, they do 27 * not have an RI input, nor do they have DTR or RTS outputs. If 28 * required, these have to be supplied via some other means (eg, GPIO) 29 * and hooked into this driver. 30 */ 31 32 33 #if defined(CONFIG_SERIAL_AMBA_PL011_CONSOLE) && defined(CONFIG_MAGIC_SYSRQ) 34 #define SUPPORT_SYSRQ 35 #endif 36 37 #include <linux/module.h> 38 #include <linux/ioport.h> 39 #include <linux/init.h> 40 #include <linux/console.h> 41 #include <linux/sysrq.h> 42 #include <linux/device.h> 43 #include <linux/tty.h> 44 #include <linux/tty_flip.h> 45 #include <linux/serial_core.h> 46 #include <linux/serial.h> 47 #include <linux/amba/bus.h> 48 #include <linux/amba/serial.h> 49 #include <linux/clk.h> 50 #include <linux/slab.h> 51 #include <linux/dmaengine.h> 52 #include <linux/dma-mapping.h> 53 #include <linux/scatterlist.h> 54 #include <linux/delay.h> 55 #include <linux/types.h> 56 #include <linux/of.h> 57 #include <linux/of_device.h> 58 #include <linux/pinctrl/consumer.h> 59 #include <linux/sizes.h> 60 #include <linux/io.h> 61 62 #define UART_NR 14 63 64 #define SERIAL_AMBA_MAJOR 204 65 #define SERIAL_AMBA_MINOR 64 66 #define SERIAL_AMBA_NR UART_NR 67 68 #define AMBA_ISR_PASS_LIMIT 256 69 70 #define UART_DR_ERROR (UART011_DR_OE|UART011_DR_BE|UART011_DR_PE|UART011_DR_FE) 71 #define UART_DUMMY_DR_RX (1 << 16) 72 73 /* There is by now at least one vendor with differing details, so handle it */ 74 struct vendor_data { 75 unsigned int ifls; 76 unsigned int lcrh_tx; 77 unsigned int lcrh_rx; 78 bool oversampling; 79 bool dma_threshold; 80 bool cts_event_workaround; 81 82 unsigned int (*get_fifosize)(struct amba_device *dev); 83 }; 84 85 static unsigned int get_fifosize_arm(struct amba_device *dev) 86 { 87 return amba_rev(dev) < 3 ? 16 : 32; 88 } 89 90 static struct vendor_data vendor_arm = { 91 .ifls = UART011_IFLS_RX4_8|UART011_IFLS_TX4_8, 92 .lcrh_tx = UART011_LCRH, 93 .lcrh_rx = UART011_LCRH, 94 .oversampling = false, 95 .dma_threshold = false, 96 .cts_event_workaround = false, 97 .get_fifosize = get_fifosize_arm, 98 }; 99 100 static unsigned int get_fifosize_st(struct amba_device *dev) 101 { 102 return 64; 103 } 104 105 static struct vendor_data vendor_st = { 106 .ifls = UART011_IFLS_RX_HALF|UART011_IFLS_TX_HALF, 107 .lcrh_tx = ST_UART011_LCRH_TX, 108 .lcrh_rx = ST_UART011_LCRH_RX, 109 .oversampling = true, 110 .dma_threshold = true, 111 .cts_event_workaround = true, 112 .get_fifosize = get_fifosize_st, 113 }; 114 115 /* Deals with DMA transactions */ 116 117 struct pl011_sgbuf { 118 struct scatterlist sg; 119 char *buf; 120 }; 121 122 struct pl011_dmarx_data { 123 struct dma_chan *chan; 124 struct completion complete; 125 bool use_buf_b; 126 struct pl011_sgbuf sgbuf_a; 127 struct pl011_sgbuf sgbuf_b; 128 dma_cookie_t cookie; 129 bool running; 130 struct timer_list timer; 131 unsigned int last_residue; 132 unsigned long last_jiffies; 133 bool auto_poll_rate; 134 unsigned int poll_rate; 135 unsigned int poll_timeout; 136 }; 137 138 struct pl011_dmatx_data { 139 struct dma_chan *chan; 140 struct scatterlist sg; 141 char *buf; 142 bool queued; 143 }; 144 145 /* 146 * We wrap our port structure around the generic uart_port. 147 */ 148 struct uart_amba_port { 149 struct uart_port port; 150 struct clk *clk; 151 const struct vendor_data *vendor; 152 unsigned int dmacr; /* dma control reg */ 153 unsigned int im; /* interrupt mask */ 154 unsigned int old_status; 155 unsigned int fifosize; /* vendor-specific */ 156 unsigned int lcrh_tx; /* vendor-specific */ 157 unsigned int lcrh_rx; /* vendor-specific */ 158 unsigned int old_cr; /* state during shutdown */ 159 bool autorts; 160 char type[12]; 161 #ifdef CONFIG_DMA_ENGINE 162 /* DMA stuff */ 163 bool using_tx_dma; 164 bool using_rx_dma; 165 struct pl011_dmarx_data dmarx; 166 struct pl011_dmatx_data dmatx; 167 #endif 168 }; 169 170 /* 171 * Reads up to 256 characters from the FIFO or until it's empty and 172 * inserts them into the TTY layer. Returns the number of characters 173 * read from the FIFO. 174 */ 175 static int pl011_fifo_to_tty(struct uart_amba_port *uap) 176 { 177 u16 status, ch; 178 unsigned int flag, max_count = 256; 179 int fifotaken = 0; 180 181 while (max_count--) { 182 status = readw(uap->port.membase + UART01x_FR); 183 if (status & UART01x_FR_RXFE) 184 break; 185 186 /* Take chars from the FIFO and update status */ 187 ch = readw(uap->port.membase + UART01x_DR) | 188 UART_DUMMY_DR_RX; 189 flag = TTY_NORMAL; 190 uap->port.icount.rx++; 191 fifotaken++; 192 193 if (unlikely(ch & UART_DR_ERROR)) { 194 if (ch & UART011_DR_BE) { 195 ch &= ~(UART011_DR_FE | UART011_DR_PE); 196 uap->port.icount.brk++; 197 if (uart_handle_break(&uap->port)) 198 continue; 199 } else if (ch & UART011_DR_PE) 200 uap->port.icount.parity++; 201 else if (ch & UART011_DR_FE) 202 uap->port.icount.frame++; 203 if (ch & UART011_DR_OE) 204 uap->port.icount.overrun++; 205 206 ch &= uap->port.read_status_mask; 207 208 if (ch & UART011_DR_BE) 209 flag = TTY_BREAK; 210 else if (ch & UART011_DR_PE) 211 flag = TTY_PARITY; 212 else if (ch & UART011_DR_FE) 213 flag = TTY_FRAME; 214 } 215 216 if (uart_handle_sysrq_char(&uap->port, ch & 255)) 217 continue; 218 219 uart_insert_char(&uap->port, ch, UART011_DR_OE, ch, flag); 220 } 221 222 return fifotaken; 223 } 224 225 226 /* 227 * All the DMA operation mode stuff goes inside this ifdef. 228 * This assumes that you have a generic DMA device interface, 229 * no custom DMA interfaces are supported. 230 */ 231 #ifdef CONFIG_DMA_ENGINE 232 233 #define PL011_DMA_BUFFER_SIZE PAGE_SIZE 234 235 static int pl011_sgbuf_init(struct dma_chan *chan, struct pl011_sgbuf *sg, 236 enum dma_data_direction dir) 237 { 238 dma_addr_t dma_addr; 239 240 sg->buf = dma_alloc_coherent(chan->device->dev, 241 PL011_DMA_BUFFER_SIZE, &dma_addr, GFP_KERNEL); 242 if (!sg->buf) 243 return -ENOMEM; 244 245 sg_init_table(&sg->sg, 1); 246 sg_set_page(&sg->sg, phys_to_page(dma_addr), 247 PL011_DMA_BUFFER_SIZE, offset_in_page(dma_addr)); 248 sg_dma_address(&sg->sg) = dma_addr; 249 250 return 0; 251 } 252 253 static void pl011_sgbuf_free(struct dma_chan *chan, struct pl011_sgbuf *sg, 254 enum dma_data_direction dir) 255 { 256 if (sg->buf) { 257 dma_free_coherent(chan->device->dev, 258 PL011_DMA_BUFFER_SIZE, sg->buf, 259 sg_dma_address(&sg->sg)); 260 } 261 } 262 263 static void pl011_dma_probe_initcall(struct device *dev, struct uart_amba_port *uap) 264 { 265 /* DMA is the sole user of the platform data right now */ 266 struct amba_pl011_data *plat = dev_get_platdata(uap->port.dev); 267 struct dma_slave_config tx_conf = { 268 .dst_addr = uap->port.mapbase + UART01x_DR, 269 .dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE, 270 .direction = DMA_MEM_TO_DEV, 271 .dst_maxburst = uap->fifosize >> 1, 272 .device_fc = false, 273 }; 274 struct dma_chan *chan; 275 dma_cap_mask_t mask; 276 277 chan = dma_request_slave_channel(dev, "tx"); 278 279 if (!chan) { 280 /* We need platform data */ 281 if (!plat || !plat->dma_filter) { 282 dev_info(uap->port.dev, "no DMA platform data\n"); 283 return; 284 } 285 286 /* Try to acquire a generic DMA engine slave TX channel */ 287 dma_cap_zero(mask); 288 dma_cap_set(DMA_SLAVE, mask); 289 290 chan = dma_request_channel(mask, plat->dma_filter, 291 plat->dma_tx_param); 292 if (!chan) { 293 dev_err(uap->port.dev, "no TX DMA channel!\n"); 294 return; 295 } 296 } 297 298 dmaengine_slave_config(chan, &tx_conf); 299 uap->dmatx.chan = chan; 300 301 dev_info(uap->port.dev, "DMA channel TX %s\n", 302 dma_chan_name(uap->dmatx.chan)); 303 304 /* Optionally make use of an RX channel as well */ 305 chan = dma_request_slave_channel(dev, "rx"); 306 307 if (!chan && plat->dma_rx_param) { 308 chan = dma_request_channel(mask, plat->dma_filter, plat->dma_rx_param); 309 310 if (!chan) { 311 dev_err(uap->port.dev, "no RX DMA channel!\n"); 312 return; 313 } 314 } 315 316 if (chan) { 317 struct dma_slave_config rx_conf = { 318 .src_addr = uap->port.mapbase + UART01x_DR, 319 .src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE, 320 .direction = DMA_DEV_TO_MEM, 321 .src_maxburst = uap->fifosize >> 2, 322 .device_fc = false, 323 }; 324 325 dmaengine_slave_config(chan, &rx_conf); 326 uap->dmarx.chan = chan; 327 328 if (plat && plat->dma_rx_poll_enable) { 329 /* Set poll rate if specified. */ 330 if (plat->dma_rx_poll_rate) { 331 uap->dmarx.auto_poll_rate = false; 332 uap->dmarx.poll_rate = plat->dma_rx_poll_rate; 333 } else { 334 /* 335 * 100 ms defaults to poll rate if not 336 * specified. This will be adjusted with 337 * the baud rate at set_termios. 338 */ 339 uap->dmarx.auto_poll_rate = true; 340 uap->dmarx.poll_rate = 100; 341 } 342 /* 3 secs defaults poll_timeout if not specified. */ 343 if (plat->dma_rx_poll_timeout) 344 uap->dmarx.poll_timeout = 345 plat->dma_rx_poll_timeout; 346 else 347 uap->dmarx.poll_timeout = 3000; 348 } else 349 uap->dmarx.auto_poll_rate = false; 350 351 dev_info(uap->port.dev, "DMA channel RX %s\n", 352 dma_chan_name(uap->dmarx.chan)); 353 } 354 } 355 356 #ifndef MODULE 357 /* 358 * Stack up the UARTs and let the above initcall be done at device 359 * initcall time, because the serial driver is called as an arch 360 * initcall, and at this time the DMA subsystem is not yet registered. 361 * At this point the driver will switch over to using DMA where desired. 362 */ 363 struct dma_uap { 364 struct list_head node; 365 struct uart_amba_port *uap; 366 struct device *dev; 367 }; 368 369 static LIST_HEAD(pl011_dma_uarts); 370 371 static int __init pl011_dma_initcall(void) 372 { 373 struct list_head *node, *tmp; 374 375 list_for_each_safe(node, tmp, &pl011_dma_uarts) { 376 struct dma_uap *dmau = list_entry(node, struct dma_uap, node); 377 pl011_dma_probe_initcall(dmau->dev, dmau->uap); 378 list_del(node); 379 kfree(dmau); 380 } 381 return 0; 382 } 383 384 device_initcall(pl011_dma_initcall); 385 386 static void pl011_dma_probe(struct device *dev, struct uart_amba_port *uap) 387 { 388 struct dma_uap *dmau = kzalloc(sizeof(struct dma_uap), GFP_KERNEL); 389 if (dmau) { 390 dmau->uap = uap; 391 dmau->dev = dev; 392 list_add_tail(&dmau->node, &pl011_dma_uarts); 393 } 394 } 395 #else 396 static void pl011_dma_probe(struct device *dev, struct uart_amba_port *uap) 397 { 398 pl011_dma_probe_initcall(dev, uap); 399 } 400 #endif 401 402 static void pl011_dma_remove(struct uart_amba_port *uap) 403 { 404 /* TODO: remove the initcall if it has not yet executed */ 405 if (uap->dmatx.chan) 406 dma_release_channel(uap->dmatx.chan); 407 if (uap->dmarx.chan) 408 dma_release_channel(uap->dmarx.chan); 409 } 410 411 /* Forward declare this for the refill routine */ 412 static int pl011_dma_tx_refill(struct uart_amba_port *uap); 413 414 /* 415 * The current DMA TX buffer has been sent. 416 * Try to queue up another DMA buffer. 417 */ 418 static void pl011_dma_tx_callback(void *data) 419 { 420 struct uart_amba_port *uap = data; 421 struct pl011_dmatx_data *dmatx = &uap->dmatx; 422 unsigned long flags; 423 u16 dmacr; 424 425 spin_lock_irqsave(&uap->port.lock, flags); 426 if (uap->dmatx.queued) 427 dma_unmap_sg(dmatx->chan->device->dev, &dmatx->sg, 1, 428 DMA_TO_DEVICE); 429 430 dmacr = uap->dmacr; 431 uap->dmacr = dmacr & ~UART011_TXDMAE; 432 writew(uap->dmacr, uap->port.membase + UART011_DMACR); 433 434 /* 435 * If TX DMA was disabled, it means that we've stopped the DMA for 436 * some reason (eg, XOFF received, or we want to send an X-char.) 437 * 438 * Note: we need to be careful here of a potential race between DMA 439 * and the rest of the driver - if the driver disables TX DMA while 440 * a TX buffer completing, we must update the tx queued status to 441 * get further refills (hence we check dmacr). 442 */ 443 if (!(dmacr & UART011_TXDMAE) || uart_tx_stopped(&uap->port) || 444 uart_circ_empty(&uap->port.state->xmit)) { 445 uap->dmatx.queued = false; 446 spin_unlock_irqrestore(&uap->port.lock, flags); 447 return; 448 } 449 450 if (pl011_dma_tx_refill(uap) <= 0) { 451 /* 452 * We didn't queue a DMA buffer for some reason, but we 453 * have data pending to be sent. Re-enable the TX IRQ. 454 */ 455 uap->im |= UART011_TXIM; 456 writew(uap->im, uap->port.membase + UART011_IMSC); 457 } 458 spin_unlock_irqrestore(&uap->port.lock, flags); 459 } 460 461 /* 462 * Try to refill the TX DMA buffer. 463 * Locking: called with port lock held and IRQs disabled. 464 * Returns: 465 * 1 if we queued up a TX DMA buffer. 466 * 0 if we didn't want to handle this by DMA 467 * <0 on error 468 */ 469 static int pl011_dma_tx_refill(struct uart_amba_port *uap) 470 { 471 struct pl011_dmatx_data *dmatx = &uap->dmatx; 472 struct dma_chan *chan = dmatx->chan; 473 struct dma_device *dma_dev = chan->device; 474 struct dma_async_tx_descriptor *desc; 475 struct circ_buf *xmit = &uap->port.state->xmit; 476 unsigned int count; 477 478 /* 479 * Try to avoid the overhead involved in using DMA if the 480 * transaction fits in the first half of the FIFO, by using 481 * the standard interrupt handling. This ensures that we 482 * issue a uart_write_wakeup() at the appropriate time. 483 */ 484 count = uart_circ_chars_pending(xmit); 485 if (count < (uap->fifosize >> 1)) { 486 uap->dmatx.queued = false; 487 return 0; 488 } 489 490 /* 491 * Bodge: don't send the last character by DMA, as this 492 * will prevent XON from notifying us to restart DMA. 493 */ 494 count -= 1; 495 496 /* Else proceed to copy the TX chars to the DMA buffer and fire DMA */ 497 if (count > PL011_DMA_BUFFER_SIZE) 498 count = PL011_DMA_BUFFER_SIZE; 499 500 if (xmit->tail < xmit->head) 501 memcpy(&dmatx->buf[0], &xmit->buf[xmit->tail], count); 502 else { 503 size_t first = UART_XMIT_SIZE - xmit->tail; 504 size_t second = xmit->head; 505 506 memcpy(&dmatx->buf[0], &xmit->buf[xmit->tail], first); 507 if (second) 508 memcpy(&dmatx->buf[first], &xmit->buf[0], second); 509 } 510 511 dmatx->sg.length = count; 512 513 if (dma_map_sg(dma_dev->dev, &dmatx->sg, 1, DMA_TO_DEVICE) != 1) { 514 uap->dmatx.queued = false; 515 dev_dbg(uap->port.dev, "unable to map TX DMA\n"); 516 return -EBUSY; 517 } 518 519 desc = dmaengine_prep_slave_sg(chan, &dmatx->sg, 1, DMA_MEM_TO_DEV, 520 DMA_PREP_INTERRUPT | DMA_CTRL_ACK); 521 if (!desc) { 522 dma_unmap_sg(dma_dev->dev, &dmatx->sg, 1, DMA_TO_DEVICE); 523 uap->dmatx.queued = false; 524 /* 525 * If DMA cannot be used right now, we complete this 526 * transaction via IRQ and let the TTY layer retry. 527 */ 528 dev_dbg(uap->port.dev, "TX DMA busy\n"); 529 return -EBUSY; 530 } 531 532 /* Some data to go along to the callback */ 533 desc->callback = pl011_dma_tx_callback; 534 desc->callback_param = uap; 535 536 /* All errors should happen at prepare time */ 537 dmaengine_submit(desc); 538 539 /* Fire the DMA transaction */ 540 dma_dev->device_issue_pending(chan); 541 542 uap->dmacr |= UART011_TXDMAE; 543 writew(uap->dmacr, uap->port.membase + UART011_DMACR); 544 uap->dmatx.queued = true; 545 546 /* 547 * Now we know that DMA will fire, so advance the ring buffer 548 * with the stuff we just dispatched. 549 */ 550 xmit->tail = (xmit->tail + count) & (UART_XMIT_SIZE - 1); 551 uap->port.icount.tx += count; 552 553 if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS) 554 uart_write_wakeup(&uap->port); 555 556 return 1; 557 } 558 559 /* 560 * We received a transmit interrupt without a pending X-char but with 561 * pending characters. 562 * Locking: called with port lock held and IRQs disabled. 563 * Returns: 564 * false if we want to use PIO to transmit 565 * true if we queued a DMA buffer 566 */ 567 static bool pl011_dma_tx_irq(struct uart_amba_port *uap) 568 { 569 if (!uap->using_tx_dma) 570 return false; 571 572 /* 573 * If we already have a TX buffer queued, but received a 574 * TX interrupt, it will be because we've just sent an X-char. 575 * Ensure the TX DMA is enabled and the TX IRQ is disabled. 576 */ 577 if (uap->dmatx.queued) { 578 uap->dmacr |= UART011_TXDMAE; 579 writew(uap->dmacr, uap->port.membase + UART011_DMACR); 580 uap->im &= ~UART011_TXIM; 581 writew(uap->im, uap->port.membase + UART011_IMSC); 582 return true; 583 } 584 585 /* 586 * We don't have a TX buffer queued, so try to queue one. 587 * If we successfully queued a buffer, mask the TX IRQ. 588 */ 589 if (pl011_dma_tx_refill(uap) > 0) { 590 uap->im &= ~UART011_TXIM; 591 writew(uap->im, uap->port.membase + UART011_IMSC); 592 return true; 593 } 594 return false; 595 } 596 597 /* 598 * Stop the DMA transmit (eg, due to received XOFF). 599 * Locking: called with port lock held and IRQs disabled. 600 */ 601 static inline void pl011_dma_tx_stop(struct uart_amba_port *uap) 602 { 603 if (uap->dmatx.queued) { 604 uap->dmacr &= ~UART011_TXDMAE; 605 writew(uap->dmacr, uap->port.membase + UART011_DMACR); 606 } 607 } 608 609 /* 610 * Try to start a DMA transmit, or in the case of an XON/OFF 611 * character queued for send, try to get that character out ASAP. 612 * Locking: called with port lock held and IRQs disabled. 613 * Returns: 614 * false if we want the TX IRQ to be enabled 615 * true if we have a buffer queued 616 */ 617 static inline bool pl011_dma_tx_start(struct uart_amba_port *uap) 618 { 619 u16 dmacr; 620 621 if (!uap->using_tx_dma) 622 return false; 623 624 if (!uap->port.x_char) { 625 /* no X-char, try to push chars out in DMA mode */ 626 bool ret = true; 627 628 if (!uap->dmatx.queued) { 629 if (pl011_dma_tx_refill(uap) > 0) { 630 uap->im &= ~UART011_TXIM; 631 ret = true; 632 } else { 633 uap->im |= UART011_TXIM; 634 ret = false; 635 } 636 writew(uap->im, uap->port.membase + UART011_IMSC); 637 } else if (!(uap->dmacr & UART011_TXDMAE)) { 638 uap->dmacr |= UART011_TXDMAE; 639 writew(uap->dmacr, 640 uap->port.membase + UART011_DMACR); 641 } 642 return ret; 643 } 644 645 /* 646 * We have an X-char to send. Disable DMA to prevent it loading 647 * the TX fifo, and then see if we can stuff it into the FIFO. 648 */ 649 dmacr = uap->dmacr; 650 uap->dmacr &= ~UART011_TXDMAE; 651 writew(uap->dmacr, uap->port.membase + UART011_DMACR); 652 653 if (readw(uap->port.membase + UART01x_FR) & UART01x_FR_TXFF) { 654 /* 655 * No space in the FIFO, so enable the transmit interrupt 656 * so we know when there is space. Note that once we've 657 * loaded the character, we should just re-enable DMA. 658 */ 659 return false; 660 } 661 662 writew(uap->port.x_char, uap->port.membase + UART01x_DR); 663 uap->port.icount.tx++; 664 uap->port.x_char = 0; 665 666 /* Success - restore the DMA state */ 667 uap->dmacr = dmacr; 668 writew(dmacr, uap->port.membase + UART011_DMACR); 669 670 return true; 671 } 672 673 /* 674 * Flush the transmit buffer. 675 * Locking: called with port lock held and IRQs disabled. 676 */ 677 static void pl011_dma_flush_buffer(struct uart_port *port) 678 __releases(&uap->port.lock) 679 __acquires(&uap->port.lock) 680 { 681 struct uart_amba_port *uap = 682 container_of(port, struct uart_amba_port, port); 683 684 if (!uap->using_tx_dma) 685 return; 686 687 /* Avoid deadlock with the DMA engine callback */ 688 spin_unlock(&uap->port.lock); 689 dmaengine_terminate_all(uap->dmatx.chan); 690 spin_lock(&uap->port.lock); 691 if (uap->dmatx.queued) { 692 dma_unmap_sg(uap->dmatx.chan->device->dev, &uap->dmatx.sg, 1, 693 DMA_TO_DEVICE); 694 uap->dmatx.queued = false; 695 uap->dmacr &= ~UART011_TXDMAE; 696 writew(uap->dmacr, uap->port.membase + UART011_DMACR); 697 } 698 } 699 700 static void pl011_dma_rx_callback(void *data); 701 702 static int pl011_dma_rx_trigger_dma(struct uart_amba_port *uap) 703 { 704 struct dma_chan *rxchan = uap->dmarx.chan; 705 struct pl011_dmarx_data *dmarx = &uap->dmarx; 706 struct dma_async_tx_descriptor *desc; 707 struct pl011_sgbuf *sgbuf; 708 709 if (!rxchan) 710 return -EIO; 711 712 /* Start the RX DMA job */ 713 sgbuf = uap->dmarx.use_buf_b ? 714 &uap->dmarx.sgbuf_b : &uap->dmarx.sgbuf_a; 715 desc = dmaengine_prep_slave_sg(rxchan, &sgbuf->sg, 1, 716 DMA_DEV_TO_MEM, 717 DMA_PREP_INTERRUPT | DMA_CTRL_ACK); 718 /* 719 * If the DMA engine is busy and cannot prepare a 720 * channel, no big deal, the driver will fall back 721 * to interrupt mode as a result of this error code. 722 */ 723 if (!desc) { 724 uap->dmarx.running = false; 725 dmaengine_terminate_all(rxchan); 726 return -EBUSY; 727 } 728 729 /* Some data to go along to the callback */ 730 desc->callback = pl011_dma_rx_callback; 731 desc->callback_param = uap; 732 dmarx->cookie = dmaengine_submit(desc); 733 dma_async_issue_pending(rxchan); 734 735 uap->dmacr |= UART011_RXDMAE; 736 writew(uap->dmacr, uap->port.membase + UART011_DMACR); 737 uap->dmarx.running = true; 738 739 uap->im &= ~UART011_RXIM; 740 writew(uap->im, uap->port.membase + UART011_IMSC); 741 742 return 0; 743 } 744 745 /* 746 * This is called when either the DMA job is complete, or 747 * the FIFO timeout interrupt occurred. This must be called 748 * with the port spinlock uap->port.lock held. 749 */ 750 static void pl011_dma_rx_chars(struct uart_amba_port *uap, 751 u32 pending, bool use_buf_b, 752 bool readfifo) 753 { 754 struct tty_port *port = &uap->port.state->port; 755 struct pl011_sgbuf *sgbuf = use_buf_b ? 756 &uap->dmarx.sgbuf_b : &uap->dmarx.sgbuf_a; 757 int dma_count = 0; 758 u32 fifotaken = 0; /* only used for vdbg() */ 759 760 struct pl011_dmarx_data *dmarx = &uap->dmarx; 761 int dmataken = 0; 762 763 if (uap->dmarx.poll_rate) { 764 /* The data can be taken by polling */ 765 dmataken = sgbuf->sg.length - dmarx->last_residue; 766 /* Recalculate the pending size */ 767 if (pending >= dmataken) 768 pending -= dmataken; 769 } 770 771 /* Pick the remain data from the DMA */ 772 if (pending) { 773 774 /* 775 * First take all chars in the DMA pipe, then look in the FIFO. 776 * Note that tty_insert_flip_buf() tries to take as many chars 777 * as it can. 778 */ 779 dma_count = tty_insert_flip_string(port, sgbuf->buf + dmataken, 780 pending); 781 782 uap->port.icount.rx += dma_count; 783 if (dma_count < pending) 784 dev_warn(uap->port.dev, 785 "couldn't insert all characters (TTY is full?)\n"); 786 } 787 788 /* Reset the last_residue for Rx DMA poll */ 789 if (uap->dmarx.poll_rate) 790 dmarx->last_residue = sgbuf->sg.length; 791 792 /* 793 * Only continue with trying to read the FIFO if all DMA chars have 794 * been taken first. 795 */ 796 if (dma_count == pending && readfifo) { 797 /* Clear any error flags */ 798 writew(UART011_OEIS | UART011_BEIS | UART011_PEIS | UART011_FEIS, 799 uap->port.membase + UART011_ICR); 800 801 /* 802 * If we read all the DMA'd characters, and we had an 803 * incomplete buffer, that could be due to an rx error, or 804 * maybe we just timed out. Read any pending chars and check 805 * the error status. 806 * 807 * Error conditions will only occur in the FIFO, these will 808 * trigger an immediate interrupt and stop the DMA job, so we 809 * will always find the error in the FIFO, never in the DMA 810 * buffer. 811 */ 812 fifotaken = pl011_fifo_to_tty(uap); 813 } 814 815 spin_unlock(&uap->port.lock); 816 dev_vdbg(uap->port.dev, 817 "Took %d chars from DMA buffer and %d chars from the FIFO\n", 818 dma_count, fifotaken); 819 tty_flip_buffer_push(port); 820 spin_lock(&uap->port.lock); 821 } 822 823 static void pl011_dma_rx_irq(struct uart_amba_port *uap) 824 { 825 struct pl011_dmarx_data *dmarx = &uap->dmarx; 826 struct dma_chan *rxchan = dmarx->chan; 827 struct pl011_sgbuf *sgbuf = dmarx->use_buf_b ? 828 &dmarx->sgbuf_b : &dmarx->sgbuf_a; 829 size_t pending; 830 struct dma_tx_state state; 831 enum dma_status dmastat; 832 833 /* 834 * Pause the transfer so we can trust the current counter, 835 * do this before we pause the PL011 block, else we may 836 * overflow the FIFO. 837 */ 838 if (dmaengine_pause(rxchan)) 839 dev_err(uap->port.dev, "unable to pause DMA transfer\n"); 840 dmastat = rxchan->device->device_tx_status(rxchan, 841 dmarx->cookie, &state); 842 if (dmastat != DMA_PAUSED) 843 dev_err(uap->port.dev, "unable to pause DMA transfer\n"); 844 845 /* Disable RX DMA - incoming data will wait in the FIFO */ 846 uap->dmacr &= ~UART011_RXDMAE; 847 writew(uap->dmacr, uap->port.membase + UART011_DMACR); 848 uap->dmarx.running = false; 849 850 pending = sgbuf->sg.length - state.residue; 851 BUG_ON(pending > PL011_DMA_BUFFER_SIZE); 852 /* Then we terminate the transfer - we now know our residue */ 853 dmaengine_terminate_all(rxchan); 854 855 /* 856 * This will take the chars we have so far and insert 857 * into the framework. 858 */ 859 pl011_dma_rx_chars(uap, pending, dmarx->use_buf_b, true); 860 861 /* Switch buffer & re-trigger DMA job */ 862 dmarx->use_buf_b = !dmarx->use_buf_b; 863 if (pl011_dma_rx_trigger_dma(uap)) { 864 dev_dbg(uap->port.dev, "could not retrigger RX DMA job " 865 "fall back to interrupt mode\n"); 866 uap->im |= UART011_RXIM; 867 writew(uap->im, uap->port.membase + UART011_IMSC); 868 } 869 } 870 871 static void pl011_dma_rx_callback(void *data) 872 { 873 struct uart_amba_port *uap = data; 874 struct pl011_dmarx_data *dmarx = &uap->dmarx; 875 struct dma_chan *rxchan = dmarx->chan; 876 bool lastbuf = dmarx->use_buf_b; 877 struct pl011_sgbuf *sgbuf = dmarx->use_buf_b ? 878 &dmarx->sgbuf_b : &dmarx->sgbuf_a; 879 size_t pending; 880 struct dma_tx_state state; 881 int ret; 882 883 /* 884 * This completion interrupt occurs typically when the 885 * RX buffer is totally stuffed but no timeout has yet 886 * occurred. When that happens, we just want the RX 887 * routine to flush out the secondary DMA buffer while 888 * we immediately trigger the next DMA job. 889 */ 890 spin_lock_irq(&uap->port.lock); 891 /* 892 * Rx data can be taken by the UART interrupts during 893 * the DMA irq handler. So we check the residue here. 894 */ 895 rxchan->device->device_tx_status(rxchan, dmarx->cookie, &state); 896 pending = sgbuf->sg.length - state.residue; 897 BUG_ON(pending > PL011_DMA_BUFFER_SIZE); 898 /* Then we terminate the transfer - we now know our residue */ 899 dmaengine_terminate_all(rxchan); 900 901 uap->dmarx.running = false; 902 dmarx->use_buf_b = !lastbuf; 903 ret = pl011_dma_rx_trigger_dma(uap); 904 905 pl011_dma_rx_chars(uap, pending, lastbuf, false); 906 spin_unlock_irq(&uap->port.lock); 907 /* 908 * Do this check after we picked the DMA chars so we don't 909 * get some IRQ immediately from RX. 910 */ 911 if (ret) { 912 dev_dbg(uap->port.dev, "could not retrigger RX DMA job " 913 "fall back to interrupt mode\n"); 914 uap->im |= UART011_RXIM; 915 writew(uap->im, uap->port.membase + UART011_IMSC); 916 } 917 } 918 919 /* 920 * Stop accepting received characters, when we're shutting down or 921 * suspending this port. 922 * Locking: called with port lock held and IRQs disabled. 923 */ 924 static inline void pl011_dma_rx_stop(struct uart_amba_port *uap) 925 { 926 /* FIXME. Just disable the DMA enable */ 927 uap->dmacr &= ~UART011_RXDMAE; 928 writew(uap->dmacr, uap->port.membase + UART011_DMACR); 929 } 930 931 /* 932 * Timer handler for Rx DMA polling. 933 * Every polling, It checks the residue in the dma buffer and transfer 934 * data to the tty. Also, last_residue is updated for the next polling. 935 */ 936 static void pl011_dma_rx_poll(unsigned long args) 937 { 938 struct uart_amba_port *uap = (struct uart_amba_port *)args; 939 struct tty_port *port = &uap->port.state->port; 940 struct pl011_dmarx_data *dmarx = &uap->dmarx; 941 struct dma_chan *rxchan = uap->dmarx.chan; 942 unsigned long flags = 0; 943 unsigned int dmataken = 0; 944 unsigned int size = 0; 945 struct pl011_sgbuf *sgbuf; 946 int dma_count; 947 struct dma_tx_state state; 948 949 sgbuf = dmarx->use_buf_b ? &uap->dmarx.sgbuf_b : &uap->dmarx.sgbuf_a; 950 rxchan->device->device_tx_status(rxchan, dmarx->cookie, &state); 951 if (likely(state.residue < dmarx->last_residue)) { 952 dmataken = sgbuf->sg.length - dmarx->last_residue; 953 size = dmarx->last_residue - state.residue; 954 dma_count = tty_insert_flip_string(port, sgbuf->buf + dmataken, 955 size); 956 if (dma_count == size) 957 dmarx->last_residue = state.residue; 958 dmarx->last_jiffies = jiffies; 959 } 960 tty_flip_buffer_push(port); 961 962 /* 963 * If no data is received in poll_timeout, the driver will fall back 964 * to interrupt mode. We will retrigger DMA at the first interrupt. 965 */ 966 if (jiffies_to_msecs(jiffies - dmarx->last_jiffies) 967 > uap->dmarx.poll_timeout) { 968 969 spin_lock_irqsave(&uap->port.lock, flags); 970 pl011_dma_rx_stop(uap); 971 uap->im |= UART011_RXIM; 972 writew(uap->im, uap->port.membase + UART011_IMSC); 973 spin_unlock_irqrestore(&uap->port.lock, flags); 974 975 uap->dmarx.running = false; 976 dmaengine_terminate_all(rxchan); 977 del_timer(&uap->dmarx.timer); 978 } else { 979 mod_timer(&uap->dmarx.timer, 980 jiffies + msecs_to_jiffies(uap->dmarx.poll_rate)); 981 } 982 } 983 984 static void pl011_dma_startup(struct uart_amba_port *uap) 985 { 986 int ret; 987 988 if (!uap->dmatx.chan) 989 return; 990 991 uap->dmatx.buf = kmalloc(PL011_DMA_BUFFER_SIZE, GFP_KERNEL); 992 if (!uap->dmatx.buf) { 993 dev_err(uap->port.dev, "no memory for DMA TX buffer\n"); 994 uap->port.fifosize = uap->fifosize; 995 return; 996 } 997 998 sg_init_one(&uap->dmatx.sg, uap->dmatx.buf, PL011_DMA_BUFFER_SIZE); 999 1000 /* The DMA buffer is now the FIFO the TTY subsystem can use */ 1001 uap->port.fifosize = PL011_DMA_BUFFER_SIZE; 1002 uap->using_tx_dma = true; 1003 1004 if (!uap->dmarx.chan) 1005 goto skip_rx; 1006 1007 /* Allocate and map DMA RX buffers */ 1008 ret = pl011_sgbuf_init(uap->dmarx.chan, &uap->dmarx.sgbuf_a, 1009 DMA_FROM_DEVICE); 1010 if (ret) { 1011 dev_err(uap->port.dev, "failed to init DMA %s: %d\n", 1012 "RX buffer A", ret); 1013 goto skip_rx; 1014 } 1015 1016 ret = pl011_sgbuf_init(uap->dmarx.chan, &uap->dmarx.sgbuf_b, 1017 DMA_FROM_DEVICE); 1018 if (ret) { 1019 dev_err(uap->port.dev, "failed to init DMA %s: %d\n", 1020 "RX buffer B", ret); 1021 pl011_sgbuf_free(uap->dmarx.chan, &uap->dmarx.sgbuf_a, 1022 DMA_FROM_DEVICE); 1023 goto skip_rx; 1024 } 1025 1026 uap->using_rx_dma = true; 1027 1028 skip_rx: 1029 /* Turn on DMA error (RX/TX will be enabled on demand) */ 1030 uap->dmacr |= UART011_DMAONERR; 1031 writew(uap->dmacr, uap->port.membase + UART011_DMACR); 1032 1033 /* 1034 * ST Micro variants has some specific dma burst threshold 1035 * compensation. Set this to 16 bytes, so burst will only 1036 * be issued above/below 16 bytes. 1037 */ 1038 if (uap->vendor->dma_threshold) 1039 writew(ST_UART011_DMAWM_RX_16 | ST_UART011_DMAWM_TX_16, 1040 uap->port.membase + ST_UART011_DMAWM); 1041 1042 if (uap->using_rx_dma) { 1043 if (pl011_dma_rx_trigger_dma(uap)) 1044 dev_dbg(uap->port.dev, "could not trigger initial " 1045 "RX DMA job, fall back to interrupt mode\n"); 1046 if (uap->dmarx.poll_rate) { 1047 init_timer(&(uap->dmarx.timer)); 1048 uap->dmarx.timer.function = pl011_dma_rx_poll; 1049 uap->dmarx.timer.data = (unsigned long)uap; 1050 mod_timer(&uap->dmarx.timer, 1051 jiffies + 1052 msecs_to_jiffies(uap->dmarx.poll_rate)); 1053 uap->dmarx.last_residue = PL011_DMA_BUFFER_SIZE; 1054 uap->dmarx.last_jiffies = jiffies; 1055 } 1056 } 1057 } 1058 1059 static void pl011_dma_shutdown(struct uart_amba_port *uap) 1060 { 1061 if (!(uap->using_tx_dma || uap->using_rx_dma)) 1062 return; 1063 1064 /* Disable RX and TX DMA */ 1065 while (readw(uap->port.membase + UART01x_FR) & UART01x_FR_BUSY) 1066 barrier(); 1067 1068 spin_lock_irq(&uap->port.lock); 1069 uap->dmacr &= ~(UART011_DMAONERR | UART011_RXDMAE | UART011_TXDMAE); 1070 writew(uap->dmacr, uap->port.membase + UART011_DMACR); 1071 spin_unlock_irq(&uap->port.lock); 1072 1073 if (uap->using_tx_dma) { 1074 /* In theory, this should already be done by pl011_dma_flush_buffer */ 1075 dmaengine_terminate_all(uap->dmatx.chan); 1076 if (uap->dmatx.queued) { 1077 dma_unmap_sg(uap->dmatx.chan->device->dev, &uap->dmatx.sg, 1, 1078 DMA_TO_DEVICE); 1079 uap->dmatx.queued = false; 1080 } 1081 1082 kfree(uap->dmatx.buf); 1083 uap->using_tx_dma = false; 1084 } 1085 1086 if (uap->using_rx_dma) { 1087 dmaengine_terminate_all(uap->dmarx.chan); 1088 /* Clean up the RX DMA */ 1089 pl011_sgbuf_free(uap->dmarx.chan, &uap->dmarx.sgbuf_a, DMA_FROM_DEVICE); 1090 pl011_sgbuf_free(uap->dmarx.chan, &uap->dmarx.sgbuf_b, DMA_FROM_DEVICE); 1091 if (uap->dmarx.poll_rate) 1092 del_timer_sync(&uap->dmarx.timer); 1093 uap->using_rx_dma = false; 1094 } 1095 } 1096 1097 static inline bool pl011_dma_rx_available(struct uart_amba_port *uap) 1098 { 1099 return uap->using_rx_dma; 1100 } 1101 1102 static inline bool pl011_dma_rx_running(struct uart_amba_port *uap) 1103 { 1104 return uap->using_rx_dma && uap->dmarx.running; 1105 } 1106 1107 #else 1108 /* Blank functions if the DMA engine is not available */ 1109 static inline void pl011_dma_probe(struct device *dev, struct uart_amba_port *uap) 1110 { 1111 } 1112 1113 static inline void pl011_dma_remove(struct uart_amba_port *uap) 1114 { 1115 } 1116 1117 static inline void pl011_dma_startup(struct uart_amba_port *uap) 1118 { 1119 } 1120 1121 static inline void pl011_dma_shutdown(struct uart_amba_port *uap) 1122 { 1123 } 1124 1125 static inline bool pl011_dma_tx_irq(struct uart_amba_port *uap) 1126 { 1127 return false; 1128 } 1129 1130 static inline void pl011_dma_tx_stop(struct uart_amba_port *uap) 1131 { 1132 } 1133 1134 static inline bool pl011_dma_tx_start(struct uart_amba_port *uap) 1135 { 1136 return false; 1137 } 1138 1139 static inline void pl011_dma_rx_irq(struct uart_amba_port *uap) 1140 { 1141 } 1142 1143 static inline void pl011_dma_rx_stop(struct uart_amba_port *uap) 1144 { 1145 } 1146 1147 static inline int pl011_dma_rx_trigger_dma(struct uart_amba_port *uap) 1148 { 1149 return -EIO; 1150 } 1151 1152 static inline bool pl011_dma_rx_available(struct uart_amba_port *uap) 1153 { 1154 return false; 1155 } 1156 1157 static inline bool pl011_dma_rx_running(struct uart_amba_port *uap) 1158 { 1159 return false; 1160 } 1161 1162 #define pl011_dma_flush_buffer NULL 1163 #endif 1164 1165 static void pl011_stop_tx(struct uart_port *port) 1166 { 1167 struct uart_amba_port *uap = 1168 container_of(port, struct uart_amba_port, port); 1169 1170 uap->im &= ~UART011_TXIM; 1171 writew(uap->im, uap->port.membase + UART011_IMSC); 1172 pl011_dma_tx_stop(uap); 1173 } 1174 1175 static void pl011_start_tx(struct uart_port *port) 1176 { 1177 struct uart_amba_port *uap = 1178 container_of(port, struct uart_amba_port, port); 1179 1180 if (!pl011_dma_tx_start(uap)) { 1181 uap->im |= UART011_TXIM; 1182 writew(uap->im, uap->port.membase + UART011_IMSC); 1183 } 1184 } 1185 1186 static void pl011_stop_rx(struct uart_port *port) 1187 { 1188 struct uart_amba_port *uap = 1189 container_of(port, struct uart_amba_port, port); 1190 1191 uap->im &= ~(UART011_RXIM|UART011_RTIM|UART011_FEIM| 1192 UART011_PEIM|UART011_BEIM|UART011_OEIM); 1193 writew(uap->im, uap->port.membase + UART011_IMSC); 1194 1195 pl011_dma_rx_stop(uap); 1196 } 1197 1198 static void pl011_enable_ms(struct uart_port *port) 1199 { 1200 struct uart_amba_port *uap = 1201 container_of(port, struct uart_amba_port, port); 1202 1203 uap->im |= UART011_RIMIM|UART011_CTSMIM|UART011_DCDMIM|UART011_DSRMIM; 1204 writew(uap->im, uap->port.membase + UART011_IMSC); 1205 } 1206 1207 static void pl011_rx_chars(struct uart_amba_port *uap) 1208 __releases(&uap->port.lock) 1209 __acquires(&uap->port.lock) 1210 { 1211 pl011_fifo_to_tty(uap); 1212 1213 spin_unlock(&uap->port.lock); 1214 tty_flip_buffer_push(&uap->port.state->port); 1215 /* 1216 * If we were temporarily out of DMA mode for a while, 1217 * attempt to switch back to DMA mode again. 1218 */ 1219 if (pl011_dma_rx_available(uap)) { 1220 if (pl011_dma_rx_trigger_dma(uap)) { 1221 dev_dbg(uap->port.dev, "could not trigger RX DMA job " 1222 "fall back to interrupt mode again\n"); 1223 uap->im |= UART011_RXIM; 1224 writew(uap->im, uap->port.membase + UART011_IMSC); 1225 } else { 1226 #ifdef CONFIG_DMA_ENGINE 1227 /* Start Rx DMA poll */ 1228 if (uap->dmarx.poll_rate) { 1229 uap->dmarx.last_jiffies = jiffies; 1230 uap->dmarx.last_residue = PL011_DMA_BUFFER_SIZE; 1231 mod_timer(&uap->dmarx.timer, 1232 jiffies + 1233 msecs_to_jiffies(uap->dmarx.poll_rate)); 1234 } 1235 #endif 1236 } 1237 } 1238 spin_lock(&uap->port.lock); 1239 } 1240 1241 static void pl011_tx_chars(struct uart_amba_port *uap) 1242 { 1243 struct circ_buf *xmit = &uap->port.state->xmit; 1244 int count; 1245 1246 if (uap->port.x_char) { 1247 writew(uap->port.x_char, uap->port.membase + UART01x_DR); 1248 uap->port.icount.tx++; 1249 uap->port.x_char = 0; 1250 return; 1251 } 1252 if (uart_circ_empty(xmit) || uart_tx_stopped(&uap->port)) { 1253 pl011_stop_tx(&uap->port); 1254 return; 1255 } 1256 1257 /* If we are using DMA mode, try to send some characters. */ 1258 if (pl011_dma_tx_irq(uap)) 1259 return; 1260 1261 count = uap->fifosize >> 1; 1262 do { 1263 writew(xmit->buf[xmit->tail], uap->port.membase + UART01x_DR); 1264 xmit->tail = (xmit->tail + 1) & (UART_XMIT_SIZE - 1); 1265 uap->port.icount.tx++; 1266 if (uart_circ_empty(xmit)) 1267 break; 1268 } while (--count > 0); 1269 1270 if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS) 1271 uart_write_wakeup(&uap->port); 1272 1273 if (uart_circ_empty(xmit)) 1274 pl011_stop_tx(&uap->port); 1275 } 1276 1277 static void pl011_modem_status(struct uart_amba_port *uap) 1278 { 1279 unsigned int status, delta; 1280 1281 status = readw(uap->port.membase + UART01x_FR) & UART01x_FR_MODEM_ANY; 1282 1283 delta = status ^ uap->old_status; 1284 uap->old_status = status; 1285 1286 if (!delta) 1287 return; 1288 1289 if (delta & UART01x_FR_DCD) 1290 uart_handle_dcd_change(&uap->port, status & UART01x_FR_DCD); 1291 1292 if (delta & UART01x_FR_DSR) 1293 uap->port.icount.dsr++; 1294 1295 if (delta & UART01x_FR_CTS) 1296 uart_handle_cts_change(&uap->port, status & UART01x_FR_CTS); 1297 1298 wake_up_interruptible(&uap->port.state->port.delta_msr_wait); 1299 } 1300 1301 static irqreturn_t pl011_int(int irq, void *dev_id) 1302 { 1303 struct uart_amba_port *uap = dev_id; 1304 unsigned long flags; 1305 unsigned int status, pass_counter = AMBA_ISR_PASS_LIMIT; 1306 int handled = 0; 1307 unsigned int dummy_read; 1308 1309 spin_lock_irqsave(&uap->port.lock, flags); 1310 status = readw(uap->port.membase + UART011_MIS); 1311 if (status) { 1312 do { 1313 if (uap->vendor->cts_event_workaround) { 1314 /* workaround to make sure that all bits are unlocked.. */ 1315 writew(0x00, uap->port.membase + UART011_ICR); 1316 1317 /* 1318 * WA: introduce 26ns(1 uart clk) delay before W1C; 1319 * single apb access will incur 2 pclk(133.12Mhz) delay, 1320 * so add 2 dummy reads 1321 */ 1322 dummy_read = readw(uap->port.membase + UART011_ICR); 1323 dummy_read = readw(uap->port.membase + UART011_ICR); 1324 } 1325 1326 writew(status & ~(UART011_TXIS|UART011_RTIS| 1327 UART011_RXIS), 1328 uap->port.membase + UART011_ICR); 1329 1330 if (status & (UART011_RTIS|UART011_RXIS)) { 1331 if (pl011_dma_rx_running(uap)) 1332 pl011_dma_rx_irq(uap); 1333 else 1334 pl011_rx_chars(uap); 1335 } 1336 if (status & (UART011_DSRMIS|UART011_DCDMIS| 1337 UART011_CTSMIS|UART011_RIMIS)) 1338 pl011_modem_status(uap); 1339 if (status & UART011_TXIS) 1340 pl011_tx_chars(uap); 1341 1342 if (pass_counter-- == 0) 1343 break; 1344 1345 status = readw(uap->port.membase + UART011_MIS); 1346 } while (status != 0); 1347 handled = 1; 1348 } 1349 1350 spin_unlock_irqrestore(&uap->port.lock, flags); 1351 1352 return IRQ_RETVAL(handled); 1353 } 1354 1355 static unsigned int pl011_tx_empty(struct uart_port *port) 1356 { 1357 struct uart_amba_port *uap = 1358 container_of(port, struct uart_amba_port, port); 1359 unsigned int status = readw(uap->port.membase + UART01x_FR); 1360 return status & (UART01x_FR_BUSY|UART01x_FR_TXFF) ? 0 : TIOCSER_TEMT; 1361 } 1362 1363 static unsigned int pl011_get_mctrl(struct uart_port *port) 1364 { 1365 struct uart_amba_port *uap = 1366 container_of(port, struct uart_amba_port, port); 1367 unsigned int result = 0; 1368 unsigned int status = readw(uap->port.membase + UART01x_FR); 1369 1370 #define TIOCMBIT(uartbit, tiocmbit) \ 1371 if (status & uartbit) \ 1372 result |= tiocmbit 1373 1374 TIOCMBIT(UART01x_FR_DCD, TIOCM_CAR); 1375 TIOCMBIT(UART01x_FR_DSR, TIOCM_DSR); 1376 TIOCMBIT(UART01x_FR_CTS, TIOCM_CTS); 1377 TIOCMBIT(UART011_FR_RI, TIOCM_RNG); 1378 #undef TIOCMBIT 1379 return result; 1380 } 1381 1382 static void pl011_set_mctrl(struct uart_port *port, unsigned int mctrl) 1383 { 1384 struct uart_amba_port *uap = 1385 container_of(port, struct uart_amba_port, port); 1386 unsigned int cr; 1387 1388 cr = readw(uap->port.membase + UART011_CR); 1389 1390 #define TIOCMBIT(tiocmbit, uartbit) \ 1391 if (mctrl & tiocmbit) \ 1392 cr |= uartbit; \ 1393 else \ 1394 cr &= ~uartbit 1395 1396 TIOCMBIT(TIOCM_RTS, UART011_CR_RTS); 1397 TIOCMBIT(TIOCM_DTR, UART011_CR_DTR); 1398 TIOCMBIT(TIOCM_OUT1, UART011_CR_OUT1); 1399 TIOCMBIT(TIOCM_OUT2, UART011_CR_OUT2); 1400 TIOCMBIT(TIOCM_LOOP, UART011_CR_LBE); 1401 1402 if (uap->autorts) { 1403 /* We need to disable auto-RTS if we want to turn RTS off */ 1404 TIOCMBIT(TIOCM_RTS, UART011_CR_RTSEN); 1405 } 1406 #undef TIOCMBIT 1407 1408 writew(cr, uap->port.membase + UART011_CR); 1409 } 1410 1411 static void pl011_break_ctl(struct uart_port *port, int break_state) 1412 { 1413 struct uart_amba_port *uap = 1414 container_of(port, struct uart_amba_port, port); 1415 unsigned long flags; 1416 unsigned int lcr_h; 1417 1418 spin_lock_irqsave(&uap->port.lock, flags); 1419 lcr_h = readw(uap->port.membase + uap->lcrh_tx); 1420 if (break_state == -1) 1421 lcr_h |= UART01x_LCRH_BRK; 1422 else 1423 lcr_h &= ~UART01x_LCRH_BRK; 1424 writew(lcr_h, uap->port.membase + uap->lcrh_tx); 1425 spin_unlock_irqrestore(&uap->port.lock, flags); 1426 } 1427 1428 #ifdef CONFIG_CONSOLE_POLL 1429 1430 static void pl011_quiesce_irqs(struct uart_port *port) 1431 { 1432 struct uart_amba_port *uap = 1433 container_of(port, struct uart_amba_port, port); 1434 unsigned char __iomem *regs = uap->port.membase; 1435 1436 writew(readw(regs + UART011_MIS), regs + UART011_ICR); 1437 /* 1438 * There is no way to clear TXIM as this is "ready to transmit IRQ", so 1439 * we simply mask it. start_tx() will unmask it. 1440 * 1441 * Note we can race with start_tx(), and if the race happens, the 1442 * polling user might get another interrupt just after we clear it. 1443 * But it should be OK and can happen even w/o the race, e.g. 1444 * controller immediately got some new data and raised the IRQ. 1445 * 1446 * And whoever uses polling routines assumes that it manages the device 1447 * (including tx queue), so we're also fine with start_tx()'s caller 1448 * side. 1449 */ 1450 writew(readw(regs + UART011_IMSC) & ~UART011_TXIM, regs + UART011_IMSC); 1451 } 1452 1453 static int pl011_get_poll_char(struct uart_port *port) 1454 { 1455 struct uart_amba_port *uap = 1456 container_of(port, struct uart_amba_port, port); 1457 unsigned int status; 1458 1459 /* 1460 * The caller might need IRQs lowered, e.g. if used with KDB NMI 1461 * debugger. 1462 */ 1463 pl011_quiesce_irqs(port); 1464 1465 status = readw(uap->port.membase + UART01x_FR); 1466 if (status & UART01x_FR_RXFE) 1467 return NO_POLL_CHAR; 1468 1469 return readw(uap->port.membase + UART01x_DR); 1470 } 1471 1472 static void pl011_put_poll_char(struct uart_port *port, 1473 unsigned char ch) 1474 { 1475 struct uart_amba_port *uap = 1476 container_of(port, struct uart_amba_port, port); 1477 1478 while (readw(uap->port.membase + UART01x_FR) & UART01x_FR_TXFF) 1479 barrier(); 1480 1481 writew(ch, uap->port.membase + UART01x_DR); 1482 } 1483 1484 #endif /* CONFIG_CONSOLE_POLL */ 1485 1486 static int pl011_hwinit(struct uart_port *port) 1487 { 1488 struct uart_amba_port *uap = 1489 container_of(port, struct uart_amba_port, port); 1490 int retval; 1491 1492 /* Optionaly enable pins to be muxed in and configured */ 1493 pinctrl_pm_select_default_state(port->dev); 1494 1495 /* 1496 * Try to enable the clock producer. 1497 */ 1498 retval = clk_prepare_enable(uap->clk); 1499 if (retval) 1500 return retval; 1501 1502 uap->port.uartclk = clk_get_rate(uap->clk); 1503 1504 /* Clear pending error and receive interrupts */ 1505 writew(UART011_OEIS | UART011_BEIS | UART011_PEIS | UART011_FEIS | 1506 UART011_RTIS | UART011_RXIS, uap->port.membase + UART011_ICR); 1507 1508 /* 1509 * Save interrupts enable mask, and enable RX interrupts in case if 1510 * the interrupt is used for NMI entry. 1511 */ 1512 uap->im = readw(uap->port.membase + UART011_IMSC); 1513 writew(UART011_RTIM | UART011_RXIM, uap->port.membase + UART011_IMSC); 1514 1515 if (dev_get_platdata(uap->port.dev)) { 1516 struct amba_pl011_data *plat; 1517 1518 plat = dev_get_platdata(uap->port.dev); 1519 if (plat->init) 1520 plat->init(); 1521 } 1522 return 0; 1523 } 1524 1525 static void pl011_write_lcr_h(struct uart_amba_port *uap, unsigned int lcr_h) 1526 { 1527 writew(lcr_h, uap->port.membase + uap->lcrh_rx); 1528 if (uap->lcrh_rx != uap->lcrh_tx) { 1529 int i; 1530 /* 1531 * Wait 10 PCLKs before writing LCRH_TX register, 1532 * to get this delay write read only register 10 times 1533 */ 1534 for (i = 0; i < 10; ++i) 1535 writew(0xff, uap->port.membase + UART011_MIS); 1536 writew(lcr_h, uap->port.membase + uap->lcrh_tx); 1537 } 1538 } 1539 1540 static int pl011_startup(struct uart_port *port) 1541 { 1542 struct uart_amba_port *uap = 1543 container_of(port, struct uart_amba_port, port); 1544 unsigned int cr, lcr_h, fbrd, ibrd; 1545 int retval; 1546 1547 retval = pl011_hwinit(port); 1548 if (retval) 1549 goto clk_dis; 1550 1551 writew(uap->im, uap->port.membase + UART011_IMSC); 1552 1553 /* 1554 * Allocate the IRQ 1555 */ 1556 retval = request_irq(uap->port.irq, pl011_int, 0, "uart-pl011", uap); 1557 if (retval) 1558 goto clk_dis; 1559 1560 writew(uap->vendor->ifls, uap->port.membase + UART011_IFLS); 1561 1562 /* 1563 * Provoke TX FIFO interrupt into asserting. Taking care to preserve 1564 * baud rate and data format specified by FBRD, IBRD and LCRH as the 1565 * UART may already be in use as a console. 1566 */ 1567 spin_lock_irq(&uap->port.lock); 1568 1569 fbrd = readw(uap->port.membase + UART011_FBRD); 1570 ibrd = readw(uap->port.membase + UART011_IBRD); 1571 lcr_h = readw(uap->port.membase + uap->lcrh_rx); 1572 1573 cr = UART01x_CR_UARTEN | UART011_CR_TXE | UART011_CR_LBE; 1574 writew(cr, uap->port.membase + UART011_CR); 1575 writew(0, uap->port.membase + UART011_FBRD); 1576 writew(1, uap->port.membase + UART011_IBRD); 1577 pl011_write_lcr_h(uap, 0); 1578 writew(0, uap->port.membase + UART01x_DR); 1579 while (readw(uap->port.membase + UART01x_FR) & UART01x_FR_BUSY) 1580 barrier(); 1581 1582 writew(fbrd, uap->port.membase + UART011_FBRD); 1583 writew(ibrd, uap->port.membase + UART011_IBRD); 1584 pl011_write_lcr_h(uap, lcr_h); 1585 1586 /* restore RTS and DTR */ 1587 cr = uap->old_cr & (UART011_CR_RTS | UART011_CR_DTR); 1588 cr |= UART01x_CR_UARTEN | UART011_CR_RXE | UART011_CR_TXE; 1589 writew(cr, uap->port.membase + UART011_CR); 1590 1591 spin_unlock_irq(&uap->port.lock); 1592 1593 /* 1594 * initialise the old status of the modem signals 1595 */ 1596 uap->old_status = readw(uap->port.membase + UART01x_FR) & UART01x_FR_MODEM_ANY; 1597 1598 /* Startup DMA */ 1599 pl011_dma_startup(uap); 1600 1601 /* 1602 * Finally, enable interrupts, only timeouts when using DMA 1603 * if initial RX DMA job failed, start in interrupt mode 1604 * as well. 1605 */ 1606 spin_lock_irq(&uap->port.lock); 1607 /* Clear out any spuriously appearing RX interrupts */ 1608 writew(UART011_RTIS | UART011_RXIS, 1609 uap->port.membase + UART011_ICR); 1610 uap->im = UART011_RTIM; 1611 if (!pl011_dma_rx_running(uap)) 1612 uap->im |= UART011_RXIM; 1613 writew(uap->im, uap->port.membase + UART011_IMSC); 1614 spin_unlock_irq(&uap->port.lock); 1615 1616 return 0; 1617 1618 clk_dis: 1619 clk_disable_unprepare(uap->clk); 1620 return retval; 1621 } 1622 1623 static void pl011_shutdown_channel(struct uart_amba_port *uap, 1624 unsigned int lcrh) 1625 { 1626 unsigned long val; 1627 1628 val = readw(uap->port.membase + lcrh); 1629 val &= ~(UART01x_LCRH_BRK | UART01x_LCRH_FEN); 1630 writew(val, uap->port.membase + lcrh); 1631 } 1632 1633 static void pl011_shutdown(struct uart_port *port) 1634 { 1635 struct uart_amba_port *uap = 1636 container_of(port, struct uart_amba_port, port); 1637 unsigned int cr; 1638 1639 /* 1640 * disable all interrupts 1641 */ 1642 spin_lock_irq(&uap->port.lock); 1643 uap->im = 0; 1644 writew(uap->im, uap->port.membase + UART011_IMSC); 1645 writew(0xffff, uap->port.membase + UART011_ICR); 1646 spin_unlock_irq(&uap->port.lock); 1647 1648 pl011_dma_shutdown(uap); 1649 1650 /* 1651 * Free the interrupt 1652 */ 1653 free_irq(uap->port.irq, uap); 1654 1655 /* 1656 * disable the port 1657 * disable the port. It should not disable RTS and DTR. 1658 * Also RTS and DTR state should be preserved to restore 1659 * it during startup(). 1660 */ 1661 uap->autorts = false; 1662 spin_lock_irq(&uap->port.lock); 1663 cr = readw(uap->port.membase + UART011_CR); 1664 uap->old_cr = cr; 1665 cr &= UART011_CR_RTS | UART011_CR_DTR; 1666 cr |= UART01x_CR_UARTEN | UART011_CR_TXE; 1667 writew(cr, uap->port.membase + UART011_CR); 1668 spin_unlock_irq(&uap->port.lock); 1669 1670 /* 1671 * disable break condition and fifos 1672 */ 1673 pl011_shutdown_channel(uap, uap->lcrh_rx); 1674 if (uap->lcrh_rx != uap->lcrh_tx) 1675 pl011_shutdown_channel(uap, uap->lcrh_tx); 1676 1677 /* 1678 * Shut down the clock producer 1679 */ 1680 clk_disable_unprepare(uap->clk); 1681 /* Optionally let pins go into sleep states */ 1682 pinctrl_pm_select_sleep_state(port->dev); 1683 1684 if (dev_get_platdata(uap->port.dev)) { 1685 struct amba_pl011_data *plat; 1686 1687 plat = dev_get_platdata(uap->port.dev); 1688 if (plat->exit) 1689 plat->exit(); 1690 } 1691 1692 } 1693 1694 static void 1695 pl011_set_termios(struct uart_port *port, struct ktermios *termios, 1696 struct ktermios *old) 1697 { 1698 struct uart_amba_port *uap = 1699 container_of(port, struct uart_amba_port, port); 1700 unsigned int lcr_h, old_cr; 1701 unsigned long flags; 1702 unsigned int baud, quot, clkdiv; 1703 1704 if (uap->vendor->oversampling) 1705 clkdiv = 8; 1706 else 1707 clkdiv = 16; 1708 1709 /* 1710 * Ask the core to calculate the divisor for us. 1711 */ 1712 baud = uart_get_baud_rate(port, termios, old, 0, 1713 port->uartclk / clkdiv); 1714 #ifdef CONFIG_DMA_ENGINE 1715 /* 1716 * Adjust RX DMA polling rate with baud rate if not specified. 1717 */ 1718 if (uap->dmarx.auto_poll_rate) 1719 uap->dmarx.poll_rate = DIV_ROUND_UP(10000000, baud); 1720 #endif 1721 1722 if (baud > port->uartclk/16) 1723 quot = DIV_ROUND_CLOSEST(port->uartclk * 8, baud); 1724 else 1725 quot = DIV_ROUND_CLOSEST(port->uartclk * 4, baud); 1726 1727 switch (termios->c_cflag & CSIZE) { 1728 case CS5: 1729 lcr_h = UART01x_LCRH_WLEN_5; 1730 break; 1731 case CS6: 1732 lcr_h = UART01x_LCRH_WLEN_6; 1733 break; 1734 case CS7: 1735 lcr_h = UART01x_LCRH_WLEN_7; 1736 break; 1737 default: // CS8 1738 lcr_h = UART01x_LCRH_WLEN_8; 1739 break; 1740 } 1741 if (termios->c_cflag & CSTOPB) 1742 lcr_h |= UART01x_LCRH_STP2; 1743 if (termios->c_cflag & PARENB) { 1744 lcr_h |= UART01x_LCRH_PEN; 1745 if (!(termios->c_cflag & PARODD)) 1746 lcr_h |= UART01x_LCRH_EPS; 1747 } 1748 if (uap->fifosize > 1) 1749 lcr_h |= UART01x_LCRH_FEN; 1750 1751 spin_lock_irqsave(&port->lock, flags); 1752 1753 /* 1754 * Update the per-port timeout. 1755 */ 1756 uart_update_timeout(port, termios->c_cflag, baud); 1757 1758 port->read_status_mask = UART011_DR_OE | 255; 1759 if (termios->c_iflag & INPCK) 1760 port->read_status_mask |= UART011_DR_FE | UART011_DR_PE; 1761 if (termios->c_iflag & (IGNBRK | BRKINT | PARMRK)) 1762 port->read_status_mask |= UART011_DR_BE; 1763 1764 /* 1765 * Characters to ignore 1766 */ 1767 port->ignore_status_mask = 0; 1768 if (termios->c_iflag & IGNPAR) 1769 port->ignore_status_mask |= UART011_DR_FE | UART011_DR_PE; 1770 if (termios->c_iflag & IGNBRK) { 1771 port->ignore_status_mask |= UART011_DR_BE; 1772 /* 1773 * If we're ignoring parity and break indicators, 1774 * ignore overruns too (for real raw support). 1775 */ 1776 if (termios->c_iflag & IGNPAR) 1777 port->ignore_status_mask |= UART011_DR_OE; 1778 } 1779 1780 /* 1781 * Ignore all characters if CREAD is not set. 1782 */ 1783 if ((termios->c_cflag & CREAD) == 0) 1784 port->ignore_status_mask |= UART_DUMMY_DR_RX; 1785 1786 if (UART_ENABLE_MS(port, termios->c_cflag)) 1787 pl011_enable_ms(port); 1788 1789 /* first, disable everything */ 1790 old_cr = readw(port->membase + UART011_CR); 1791 writew(0, port->membase + UART011_CR); 1792 1793 if (termios->c_cflag & CRTSCTS) { 1794 if (old_cr & UART011_CR_RTS) 1795 old_cr |= UART011_CR_RTSEN; 1796 1797 old_cr |= UART011_CR_CTSEN; 1798 uap->autorts = true; 1799 } else { 1800 old_cr &= ~(UART011_CR_CTSEN | UART011_CR_RTSEN); 1801 uap->autorts = false; 1802 } 1803 1804 if (uap->vendor->oversampling) { 1805 if (baud > port->uartclk / 16) 1806 old_cr |= ST_UART011_CR_OVSFACT; 1807 else 1808 old_cr &= ~ST_UART011_CR_OVSFACT; 1809 } 1810 1811 /* 1812 * Workaround for the ST Micro oversampling variants to 1813 * increase the bitrate slightly, by lowering the divisor, 1814 * to avoid delayed sampling of start bit at high speeds, 1815 * else we see data corruption. 1816 */ 1817 if (uap->vendor->oversampling) { 1818 if ((baud >= 3000000) && (baud < 3250000) && (quot > 1)) 1819 quot -= 1; 1820 else if ((baud > 3250000) && (quot > 2)) 1821 quot -= 2; 1822 } 1823 /* Set baud rate */ 1824 writew(quot & 0x3f, port->membase + UART011_FBRD); 1825 writew(quot >> 6, port->membase + UART011_IBRD); 1826 1827 /* 1828 * ----------v----------v----------v----------v----- 1829 * NOTE: lcrh_tx and lcrh_rx MUST BE WRITTEN AFTER 1830 * UART011_FBRD & UART011_IBRD. 1831 * ----------^----------^----------^----------^----- 1832 */ 1833 pl011_write_lcr_h(uap, lcr_h); 1834 writew(old_cr, port->membase + UART011_CR); 1835 1836 spin_unlock_irqrestore(&port->lock, flags); 1837 } 1838 1839 static const char *pl011_type(struct uart_port *port) 1840 { 1841 struct uart_amba_port *uap = 1842 container_of(port, struct uart_amba_port, port); 1843 return uap->port.type == PORT_AMBA ? uap->type : NULL; 1844 } 1845 1846 /* 1847 * Release the memory region(s) being used by 'port' 1848 */ 1849 static void pl011_release_port(struct uart_port *port) 1850 { 1851 release_mem_region(port->mapbase, SZ_4K); 1852 } 1853 1854 /* 1855 * Request the memory region(s) being used by 'port' 1856 */ 1857 static int pl011_request_port(struct uart_port *port) 1858 { 1859 return request_mem_region(port->mapbase, SZ_4K, "uart-pl011") 1860 != NULL ? 0 : -EBUSY; 1861 } 1862 1863 /* 1864 * Configure/autoconfigure the port. 1865 */ 1866 static void pl011_config_port(struct uart_port *port, int flags) 1867 { 1868 if (flags & UART_CONFIG_TYPE) { 1869 port->type = PORT_AMBA; 1870 pl011_request_port(port); 1871 } 1872 } 1873 1874 /* 1875 * verify the new serial_struct (for TIOCSSERIAL). 1876 */ 1877 static int pl011_verify_port(struct uart_port *port, struct serial_struct *ser) 1878 { 1879 int ret = 0; 1880 if (ser->type != PORT_UNKNOWN && ser->type != PORT_AMBA) 1881 ret = -EINVAL; 1882 if (ser->irq < 0 || ser->irq >= nr_irqs) 1883 ret = -EINVAL; 1884 if (ser->baud_base < 9600) 1885 ret = -EINVAL; 1886 return ret; 1887 } 1888 1889 static struct uart_ops amba_pl011_pops = { 1890 .tx_empty = pl011_tx_empty, 1891 .set_mctrl = pl011_set_mctrl, 1892 .get_mctrl = pl011_get_mctrl, 1893 .stop_tx = pl011_stop_tx, 1894 .start_tx = pl011_start_tx, 1895 .stop_rx = pl011_stop_rx, 1896 .enable_ms = pl011_enable_ms, 1897 .break_ctl = pl011_break_ctl, 1898 .startup = pl011_startup, 1899 .shutdown = pl011_shutdown, 1900 .flush_buffer = pl011_dma_flush_buffer, 1901 .set_termios = pl011_set_termios, 1902 .type = pl011_type, 1903 .release_port = pl011_release_port, 1904 .request_port = pl011_request_port, 1905 .config_port = pl011_config_port, 1906 .verify_port = pl011_verify_port, 1907 #ifdef CONFIG_CONSOLE_POLL 1908 .poll_init = pl011_hwinit, 1909 .poll_get_char = pl011_get_poll_char, 1910 .poll_put_char = pl011_put_poll_char, 1911 #endif 1912 }; 1913 1914 static struct uart_amba_port *amba_ports[UART_NR]; 1915 1916 #ifdef CONFIG_SERIAL_AMBA_PL011_CONSOLE 1917 1918 static void pl011_console_putchar(struct uart_port *port, int ch) 1919 { 1920 struct uart_amba_port *uap = 1921 container_of(port, struct uart_amba_port, port); 1922 1923 while (readw(uap->port.membase + UART01x_FR) & UART01x_FR_TXFF) 1924 barrier(); 1925 writew(ch, uap->port.membase + UART01x_DR); 1926 } 1927 1928 static void 1929 pl011_console_write(struct console *co, const char *s, unsigned int count) 1930 { 1931 struct uart_amba_port *uap = amba_ports[co->index]; 1932 unsigned int status, old_cr, new_cr; 1933 unsigned long flags; 1934 int locked = 1; 1935 1936 clk_enable(uap->clk); 1937 1938 local_irq_save(flags); 1939 if (uap->port.sysrq) 1940 locked = 0; 1941 else if (oops_in_progress) 1942 locked = spin_trylock(&uap->port.lock); 1943 else 1944 spin_lock(&uap->port.lock); 1945 1946 /* 1947 * First save the CR then disable the interrupts 1948 */ 1949 old_cr = readw(uap->port.membase + UART011_CR); 1950 new_cr = old_cr & ~UART011_CR_CTSEN; 1951 new_cr |= UART01x_CR_UARTEN | UART011_CR_TXE; 1952 writew(new_cr, uap->port.membase + UART011_CR); 1953 1954 uart_console_write(&uap->port, s, count, pl011_console_putchar); 1955 1956 /* 1957 * Finally, wait for transmitter to become empty 1958 * and restore the TCR 1959 */ 1960 do { 1961 status = readw(uap->port.membase + UART01x_FR); 1962 } while (status & UART01x_FR_BUSY); 1963 writew(old_cr, uap->port.membase + UART011_CR); 1964 1965 if (locked) 1966 spin_unlock(&uap->port.lock); 1967 local_irq_restore(flags); 1968 1969 clk_disable(uap->clk); 1970 } 1971 1972 static void __init 1973 pl011_console_get_options(struct uart_amba_port *uap, int *baud, 1974 int *parity, int *bits) 1975 { 1976 if (readw(uap->port.membase + UART011_CR) & UART01x_CR_UARTEN) { 1977 unsigned int lcr_h, ibrd, fbrd; 1978 1979 lcr_h = readw(uap->port.membase + uap->lcrh_tx); 1980 1981 *parity = 'n'; 1982 if (lcr_h & UART01x_LCRH_PEN) { 1983 if (lcr_h & UART01x_LCRH_EPS) 1984 *parity = 'e'; 1985 else 1986 *parity = 'o'; 1987 } 1988 1989 if ((lcr_h & 0x60) == UART01x_LCRH_WLEN_7) 1990 *bits = 7; 1991 else 1992 *bits = 8; 1993 1994 ibrd = readw(uap->port.membase + UART011_IBRD); 1995 fbrd = readw(uap->port.membase + UART011_FBRD); 1996 1997 *baud = uap->port.uartclk * 4 / (64 * ibrd + fbrd); 1998 1999 if (uap->vendor->oversampling) { 2000 if (readw(uap->port.membase + UART011_CR) 2001 & ST_UART011_CR_OVSFACT) 2002 *baud *= 2; 2003 } 2004 } 2005 } 2006 2007 static int __init pl011_console_setup(struct console *co, char *options) 2008 { 2009 struct uart_amba_port *uap; 2010 int baud = 38400; 2011 int bits = 8; 2012 int parity = 'n'; 2013 int flow = 'n'; 2014 int ret; 2015 2016 /* 2017 * Check whether an invalid uart number has been specified, and 2018 * if so, search for the first available port that does have 2019 * console support. 2020 */ 2021 if (co->index >= UART_NR) 2022 co->index = 0; 2023 uap = amba_ports[co->index]; 2024 if (!uap) 2025 return -ENODEV; 2026 2027 /* Allow pins to be muxed in and configured */ 2028 pinctrl_pm_select_default_state(uap->port.dev); 2029 2030 ret = clk_prepare(uap->clk); 2031 if (ret) 2032 return ret; 2033 2034 if (dev_get_platdata(uap->port.dev)) { 2035 struct amba_pl011_data *plat; 2036 2037 plat = dev_get_platdata(uap->port.dev); 2038 if (plat->init) 2039 plat->init(); 2040 } 2041 2042 uap->port.uartclk = clk_get_rate(uap->clk); 2043 2044 if (options) 2045 uart_parse_options(options, &baud, &parity, &bits, &flow); 2046 else 2047 pl011_console_get_options(uap, &baud, &parity, &bits); 2048 2049 return uart_set_options(&uap->port, co, baud, parity, bits, flow); 2050 } 2051 2052 static struct uart_driver amba_reg; 2053 static struct console amba_console = { 2054 .name = "ttyAMA", 2055 .write = pl011_console_write, 2056 .device = uart_console_device, 2057 .setup = pl011_console_setup, 2058 .flags = CON_PRINTBUFFER, 2059 .index = -1, 2060 .data = &amba_reg, 2061 }; 2062 2063 #define AMBA_CONSOLE (&amba_console) 2064 2065 static void pl011_putc(struct uart_port *port, int c) 2066 { 2067 while (readl(port->membase + UART01x_FR) & UART01x_FR_TXFF) 2068 ; 2069 writeb(c, port->membase + UART01x_DR); 2070 while (readl(port->membase + UART01x_FR) & UART01x_FR_BUSY) 2071 ; 2072 } 2073 2074 static void pl011_early_write(struct console *con, const char *s, unsigned n) 2075 { 2076 struct earlycon_device *dev = con->data; 2077 2078 uart_console_write(&dev->port, s, n, pl011_putc); 2079 } 2080 2081 static int __init pl011_early_console_setup(struct earlycon_device *device, 2082 const char *opt) 2083 { 2084 if (!device->port.membase) 2085 return -ENODEV; 2086 2087 device->con->write = pl011_early_write; 2088 return 0; 2089 } 2090 EARLYCON_DECLARE(pl011, pl011_early_console_setup); 2091 OF_EARLYCON_DECLARE(pl011, "arm,pl011", pl011_early_console_setup); 2092 2093 #else 2094 #define AMBA_CONSOLE NULL 2095 #endif 2096 2097 static struct uart_driver amba_reg = { 2098 .owner = THIS_MODULE, 2099 .driver_name = "ttyAMA", 2100 .dev_name = "ttyAMA", 2101 .major = SERIAL_AMBA_MAJOR, 2102 .minor = SERIAL_AMBA_MINOR, 2103 .nr = UART_NR, 2104 .cons = AMBA_CONSOLE, 2105 }; 2106 2107 static int pl011_probe_dt_alias(int index, struct device *dev) 2108 { 2109 struct device_node *np; 2110 static bool seen_dev_with_alias = false; 2111 static bool seen_dev_without_alias = false; 2112 int ret = index; 2113 2114 if (!IS_ENABLED(CONFIG_OF)) 2115 return ret; 2116 2117 np = dev->of_node; 2118 if (!np) 2119 return ret; 2120 2121 ret = of_alias_get_id(np, "serial"); 2122 if (IS_ERR_VALUE(ret)) { 2123 seen_dev_without_alias = true; 2124 ret = index; 2125 } else { 2126 seen_dev_with_alias = true; 2127 if (ret >= ARRAY_SIZE(amba_ports) || amba_ports[ret] != NULL) { 2128 dev_warn(dev, "requested serial port %d not available.\n", ret); 2129 ret = index; 2130 } 2131 } 2132 2133 if (seen_dev_with_alias && seen_dev_without_alias) 2134 dev_warn(dev, "aliased and non-aliased serial devices found in device tree. Serial port enumeration may be unpredictable.\n"); 2135 2136 return ret; 2137 } 2138 2139 static int pl011_probe(struct amba_device *dev, const struct amba_id *id) 2140 { 2141 struct uart_amba_port *uap; 2142 struct vendor_data *vendor = id->data; 2143 void __iomem *base; 2144 int i, ret; 2145 2146 for (i = 0; i < ARRAY_SIZE(amba_ports); i++) 2147 if (amba_ports[i] == NULL) 2148 break; 2149 2150 if (i == ARRAY_SIZE(amba_ports)) 2151 return -EBUSY; 2152 2153 uap = devm_kzalloc(&dev->dev, sizeof(struct uart_amba_port), 2154 GFP_KERNEL); 2155 if (uap == NULL) 2156 return -ENOMEM; 2157 2158 i = pl011_probe_dt_alias(i, &dev->dev); 2159 2160 base = devm_ioremap(&dev->dev, dev->res.start, 2161 resource_size(&dev->res)); 2162 if (!base) 2163 return -ENOMEM; 2164 2165 uap->clk = devm_clk_get(&dev->dev, NULL); 2166 if (IS_ERR(uap->clk)) 2167 return PTR_ERR(uap->clk); 2168 2169 uap->vendor = vendor; 2170 uap->lcrh_rx = vendor->lcrh_rx; 2171 uap->lcrh_tx = vendor->lcrh_tx; 2172 uap->old_cr = 0; 2173 uap->fifosize = vendor->get_fifosize(dev); 2174 uap->port.dev = &dev->dev; 2175 uap->port.mapbase = dev->res.start; 2176 uap->port.membase = base; 2177 uap->port.iotype = UPIO_MEM; 2178 uap->port.irq = dev->irq[0]; 2179 uap->port.fifosize = uap->fifosize; 2180 uap->port.ops = &amba_pl011_pops; 2181 uap->port.flags = UPF_BOOT_AUTOCONF; 2182 uap->port.line = i; 2183 pl011_dma_probe(&dev->dev, uap); 2184 2185 /* Ensure interrupts from this UART are masked and cleared */ 2186 writew(0, uap->port.membase + UART011_IMSC); 2187 writew(0xffff, uap->port.membase + UART011_ICR); 2188 2189 snprintf(uap->type, sizeof(uap->type), "PL011 rev%u", amba_rev(dev)); 2190 2191 amba_ports[i] = uap; 2192 2193 amba_set_drvdata(dev, uap); 2194 2195 if (!amba_reg.state) { 2196 ret = uart_register_driver(&amba_reg); 2197 if (ret < 0) { 2198 pr_err("Failed to register AMBA-PL011 driver\n"); 2199 return ret; 2200 } 2201 } 2202 2203 ret = uart_add_one_port(&amba_reg, &uap->port); 2204 if (ret) { 2205 amba_ports[i] = NULL; 2206 uart_unregister_driver(&amba_reg); 2207 pl011_dma_remove(uap); 2208 } 2209 2210 return ret; 2211 } 2212 2213 static int pl011_remove(struct amba_device *dev) 2214 { 2215 struct uart_amba_port *uap = amba_get_drvdata(dev); 2216 bool busy = false; 2217 int i; 2218 2219 uart_remove_one_port(&amba_reg, &uap->port); 2220 2221 for (i = 0; i < ARRAY_SIZE(amba_ports); i++) 2222 if (amba_ports[i] == uap) 2223 amba_ports[i] = NULL; 2224 else if (amba_ports[i]) 2225 busy = true; 2226 2227 pl011_dma_remove(uap); 2228 if (!busy) 2229 uart_unregister_driver(&amba_reg); 2230 return 0; 2231 } 2232 2233 #ifdef CONFIG_PM_SLEEP 2234 static int pl011_suspend(struct device *dev) 2235 { 2236 struct uart_amba_port *uap = dev_get_drvdata(dev); 2237 2238 if (!uap) 2239 return -EINVAL; 2240 2241 return uart_suspend_port(&amba_reg, &uap->port); 2242 } 2243 2244 static int pl011_resume(struct device *dev) 2245 { 2246 struct uart_amba_port *uap = dev_get_drvdata(dev); 2247 2248 if (!uap) 2249 return -EINVAL; 2250 2251 return uart_resume_port(&amba_reg, &uap->port); 2252 } 2253 #endif 2254 2255 static SIMPLE_DEV_PM_OPS(pl011_dev_pm_ops, pl011_suspend, pl011_resume); 2256 2257 static struct amba_id pl011_ids[] = { 2258 { 2259 .id = 0x00041011, 2260 .mask = 0x000fffff, 2261 .data = &vendor_arm, 2262 }, 2263 { 2264 .id = 0x00380802, 2265 .mask = 0x00ffffff, 2266 .data = &vendor_st, 2267 }, 2268 { 0, 0 }, 2269 }; 2270 2271 MODULE_DEVICE_TABLE(amba, pl011_ids); 2272 2273 static struct amba_driver pl011_driver = { 2274 .drv = { 2275 .name = "uart-pl011", 2276 .pm = &pl011_dev_pm_ops, 2277 }, 2278 .id_table = pl011_ids, 2279 .probe = pl011_probe, 2280 .remove = pl011_remove, 2281 }; 2282 2283 static int __init pl011_init(void) 2284 { 2285 printk(KERN_INFO "Serial: AMBA PL011 UART driver\n"); 2286 2287 return amba_driver_register(&pl011_driver); 2288 } 2289 2290 static void __exit pl011_exit(void) 2291 { 2292 amba_driver_unregister(&pl011_driver); 2293 } 2294 2295 /* 2296 * While this can be a module, if builtin it's most likely the console 2297 * So let's leave module_exit but move module_init to an earlier place 2298 */ 2299 arch_initcall(pl011_init); 2300 module_exit(pl011_exit); 2301 2302 MODULE_AUTHOR("ARM Ltd/Deep Blue Solutions Ltd"); 2303 MODULE_DESCRIPTION("ARM AMBA serial port driver"); 2304 MODULE_LICENSE("GPL"); 2305