xref: /openbmc/linux/drivers/tty/serial/amba-pl011.c (revision 6774def6)
1 /*
2  *  Driver for AMBA serial ports
3  *
4  *  Based on drivers/char/serial.c, by Linus Torvalds, Theodore Ts'o.
5  *
6  *  Copyright 1999 ARM Limited
7  *  Copyright (C) 2000 Deep Blue Solutions Ltd.
8  *  Copyright (C) 2010 ST-Ericsson SA
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License as published by
12  * the Free Software Foundation; either version 2 of the License, or
13  * (at your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18  * GNU General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public License
21  * along with this program; if not, write to the Free Software
22  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
23  *
24  * This is a generic driver for ARM AMBA-type serial ports.  They
25  * have a lot of 16550-like features, but are not register compatible.
26  * Note that although they do have CTS, DCD and DSR inputs, they do
27  * not have an RI input, nor do they have DTR or RTS outputs.  If
28  * required, these have to be supplied via some other means (eg, GPIO)
29  * and hooked into this driver.
30  */
31 
32 
33 #if defined(CONFIG_SERIAL_AMBA_PL011_CONSOLE) && defined(CONFIG_MAGIC_SYSRQ)
34 #define SUPPORT_SYSRQ
35 #endif
36 
37 #include <linux/module.h>
38 #include <linux/ioport.h>
39 #include <linux/init.h>
40 #include <linux/console.h>
41 #include <linux/sysrq.h>
42 #include <linux/device.h>
43 #include <linux/tty.h>
44 #include <linux/tty_flip.h>
45 #include <linux/serial_core.h>
46 #include <linux/serial.h>
47 #include <linux/amba/bus.h>
48 #include <linux/amba/serial.h>
49 #include <linux/clk.h>
50 #include <linux/slab.h>
51 #include <linux/dmaengine.h>
52 #include <linux/dma-mapping.h>
53 #include <linux/scatterlist.h>
54 #include <linux/delay.h>
55 #include <linux/types.h>
56 #include <linux/of.h>
57 #include <linux/of_device.h>
58 #include <linux/pinctrl/consumer.h>
59 #include <linux/sizes.h>
60 #include <linux/io.h>
61 
62 #define UART_NR			14
63 
64 #define SERIAL_AMBA_MAJOR	204
65 #define SERIAL_AMBA_MINOR	64
66 #define SERIAL_AMBA_NR		UART_NR
67 
68 #define AMBA_ISR_PASS_LIMIT	256
69 
70 #define UART_DR_ERROR		(UART011_DR_OE|UART011_DR_BE|UART011_DR_PE|UART011_DR_FE)
71 #define UART_DUMMY_DR_RX	(1 << 16)
72 
73 /* There is by now at least one vendor with differing details, so handle it */
74 struct vendor_data {
75 	unsigned int		ifls;
76 	unsigned int		lcrh_tx;
77 	unsigned int		lcrh_rx;
78 	bool			oversampling;
79 	bool			dma_threshold;
80 	bool			cts_event_workaround;
81 
82 	unsigned int (*get_fifosize)(struct amba_device *dev);
83 };
84 
85 static unsigned int get_fifosize_arm(struct amba_device *dev)
86 {
87 	return amba_rev(dev) < 3 ? 16 : 32;
88 }
89 
90 static struct vendor_data vendor_arm = {
91 	.ifls			= UART011_IFLS_RX4_8|UART011_IFLS_TX4_8,
92 	.lcrh_tx		= UART011_LCRH,
93 	.lcrh_rx		= UART011_LCRH,
94 	.oversampling		= false,
95 	.dma_threshold		= false,
96 	.cts_event_workaround	= false,
97 	.get_fifosize		= get_fifosize_arm,
98 };
99 
100 static unsigned int get_fifosize_st(struct amba_device *dev)
101 {
102 	return 64;
103 }
104 
105 static struct vendor_data vendor_st = {
106 	.ifls			= UART011_IFLS_RX_HALF|UART011_IFLS_TX_HALF,
107 	.lcrh_tx		= ST_UART011_LCRH_TX,
108 	.lcrh_rx		= ST_UART011_LCRH_RX,
109 	.oversampling		= true,
110 	.dma_threshold		= true,
111 	.cts_event_workaround	= true,
112 	.get_fifosize		= get_fifosize_st,
113 };
114 
115 /* Deals with DMA transactions */
116 
117 struct pl011_sgbuf {
118 	struct scatterlist sg;
119 	char *buf;
120 };
121 
122 struct pl011_dmarx_data {
123 	struct dma_chan		*chan;
124 	struct completion	complete;
125 	bool			use_buf_b;
126 	struct pl011_sgbuf	sgbuf_a;
127 	struct pl011_sgbuf	sgbuf_b;
128 	dma_cookie_t		cookie;
129 	bool			running;
130 	struct timer_list	timer;
131 	unsigned int last_residue;
132 	unsigned long last_jiffies;
133 	bool auto_poll_rate;
134 	unsigned int poll_rate;
135 	unsigned int poll_timeout;
136 };
137 
138 struct pl011_dmatx_data {
139 	struct dma_chan		*chan;
140 	struct scatterlist	sg;
141 	char			*buf;
142 	bool			queued;
143 };
144 
145 /*
146  * We wrap our port structure around the generic uart_port.
147  */
148 struct uart_amba_port {
149 	struct uart_port	port;
150 	struct clk		*clk;
151 	const struct vendor_data *vendor;
152 	unsigned int		dmacr;		/* dma control reg */
153 	unsigned int		im;		/* interrupt mask */
154 	unsigned int		old_status;
155 	unsigned int		fifosize;	/* vendor-specific */
156 	unsigned int		lcrh_tx;	/* vendor-specific */
157 	unsigned int		lcrh_rx;	/* vendor-specific */
158 	unsigned int		old_cr;		/* state during shutdown */
159 	bool			autorts;
160 	char			type[12];
161 #ifdef CONFIG_DMA_ENGINE
162 	/* DMA stuff */
163 	bool			using_tx_dma;
164 	bool			using_rx_dma;
165 	struct pl011_dmarx_data dmarx;
166 	struct pl011_dmatx_data	dmatx;
167 #endif
168 };
169 
170 /*
171  * Reads up to 256 characters from the FIFO or until it's empty and
172  * inserts them into the TTY layer. Returns the number of characters
173  * read from the FIFO.
174  */
175 static int pl011_fifo_to_tty(struct uart_amba_port *uap)
176 {
177 	u16 status, ch;
178 	unsigned int flag, max_count = 256;
179 	int fifotaken = 0;
180 
181 	while (max_count--) {
182 		status = readw(uap->port.membase + UART01x_FR);
183 		if (status & UART01x_FR_RXFE)
184 			break;
185 
186 		/* Take chars from the FIFO and update status */
187 		ch = readw(uap->port.membase + UART01x_DR) |
188 			UART_DUMMY_DR_RX;
189 		flag = TTY_NORMAL;
190 		uap->port.icount.rx++;
191 		fifotaken++;
192 
193 		if (unlikely(ch & UART_DR_ERROR)) {
194 			if (ch & UART011_DR_BE) {
195 				ch &= ~(UART011_DR_FE | UART011_DR_PE);
196 				uap->port.icount.brk++;
197 				if (uart_handle_break(&uap->port))
198 					continue;
199 			} else if (ch & UART011_DR_PE)
200 				uap->port.icount.parity++;
201 			else if (ch & UART011_DR_FE)
202 				uap->port.icount.frame++;
203 			if (ch & UART011_DR_OE)
204 				uap->port.icount.overrun++;
205 
206 			ch &= uap->port.read_status_mask;
207 
208 			if (ch & UART011_DR_BE)
209 				flag = TTY_BREAK;
210 			else if (ch & UART011_DR_PE)
211 				flag = TTY_PARITY;
212 			else if (ch & UART011_DR_FE)
213 				flag = TTY_FRAME;
214 		}
215 
216 		if (uart_handle_sysrq_char(&uap->port, ch & 255))
217 			continue;
218 
219 		uart_insert_char(&uap->port, ch, UART011_DR_OE, ch, flag);
220 	}
221 
222 	return fifotaken;
223 }
224 
225 
226 /*
227  * All the DMA operation mode stuff goes inside this ifdef.
228  * This assumes that you have a generic DMA device interface,
229  * no custom DMA interfaces are supported.
230  */
231 #ifdef CONFIG_DMA_ENGINE
232 
233 #define PL011_DMA_BUFFER_SIZE PAGE_SIZE
234 
235 static int pl011_sgbuf_init(struct dma_chan *chan, struct pl011_sgbuf *sg,
236 	enum dma_data_direction dir)
237 {
238 	dma_addr_t dma_addr;
239 
240 	sg->buf = dma_alloc_coherent(chan->device->dev,
241 		PL011_DMA_BUFFER_SIZE, &dma_addr, GFP_KERNEL);
242 	if (!sg->buf)
243 		return -ENOMEM;
244 
245 	sg_init_table(&sg->sg, 1);
246 	sg_set_page(&sg->sg, phys_to_page(dma_addr),
247 		PL011_DMA_BUFFER_SIZE, offset_in_page(dma_addr));
248 	sg_dma_address(&sg->sg) = dma_addr;
249 
250 	return 0;
251 }
252 
253 static void pl011_sgbuf_free(struct dma_chan *chan, struct pl011_sgbuf *sg,
254 	enum dma_data_direction dir)
255 {
256 	if (sg->buf) {
257 		dma_free_coherent(chan->device->dev,
258 			PL011_DMA_BUFFER_SIZE, sg->buf,
259 			sg_dma_address(&sg->sg));
260 	}
261 }
262 
263 static void pl011_dma_probe_initcall(struct device *dev, struct uart_amba_port *uap)
264 {
265 	/* DMA is the sole user of the platform data right now */
266 	struct amba_pl011_data *plat = dev_get_platdata(uap->port.dev);
267 	struct dma_slave_config tx_conf = {
268 		.dst_addr = uap->port.mapbase + UART01x_DR,
269 		.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
270 		.direction = DMA_MEM_TO_DEV,
271 		.dst_maxburst = uap->fifosize >> 1,
272 		.device_fc = false,
273 	};
274 	struct dma_chan *chan;
275 	dma_cap_mask_t mask;
276 
277 	chan = dma_request_slave_channel(dev, "tx");
278 
279 	if (!chan) {
280 		/* We need platform data */
281 		if (!plat || !plat->dma_filter) {
282 			dev_info(uap->port.dev, "no DMA platform data\n");
283 			return;
284 		}
285 
286 		/* Try to acquire a generic DMA engine slave TX channel */
287 		dma_cap_zero(mask);
288 		dma_cap_set(DMA_SLAVE, mask);
289 
290 		chan = dma_request_channel(mask, plat->dma_filter,
291 						plat->dma_tx_param);
292 		if (!chan) {
293 			dev_err(uap->port.dev, "no TX DMA channel!\n");
294 			return;
295 		}
296 	}
297 
298 	dmaengine_slave_config(chan, &tx_conf);
299 	uap->dmatx.chan = chan;
300 
301 	dev_info(uap->port.dev, "DMA channel TX %s\n",
302 		 dma_chan_name(uap->dmatx.chan));
303 
304 	/* Optionally make use of an RX channel as well */
305 	chan = dma_request_slave_channel(dev, "rx");
306 
307 	if (!chan && plat->dma_rx_param) {
308 		chan = dma_request_channel(mask, plat->dma_filter, plat->dma_rx_param);
309 
310 		if (!chan) {
311 			dev_err(uap->port.dev, "no RX DMA channel!\n");
312 			return;
313 		}
314 	}
315 
316 	if (chan) {
317 		struct dma_slave_config rx_conf = {
318 			.src_addr = uap->port.mapbase + UART01x_DR,
319 			.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
320 			.direction = DMA_DEV_TO_MEM,
321 			.src_maxburst = uap->fifosize >> 2,
322 			.device_fc = false,
323 		};
324 
325 		dmaengine_slave_config(chan, &rx_conf);
326 		uap->dmarx.chan = chan;
327 
328 		if (plat && plat->dma_rx_poll_enable) {
329 			/* Set poll rate if specified. */
330 			if (plat->dma_rx_poll_rate) {
331 				uap->dmarx.auto_poll_rate = false;
332 				uap->dmarx.poll_rate = plat->dma_rx_poll_rate;
333 			} else {
334 				/*
335 				 * 100 ms defaults to poll rate if not
336 				 * specified. This will be adjusted with
337 				 * the baud rate at set_termios.
338 				 */
339 				uap->dmarx.auto_poll_rate = true;
340 				uap->dmarx.poll_rate =  100;
341 			}
342 			/* 3 secs defaults poll_timeout if not specified. */
343 			if (plat->dma_rx_poll_timeout)
344 				uap->dmarx.poll_timeout =
345 					plat->dma_rx_poll_timeout;
346 			else
347 				uap->dmarx.poll_timeout = 3000;
348 		} else
349 			uap->dmarx.auto_poll_rate = false;
350 
351 		dev_info(uap->port.dev, "DMA channel RX %s\n",
352 			 dma_chan_name(uap->dmarx.chan));
353 	}
354 }
355 
356 #ifndef MODULE
357 /*
358  * Stack up the UARTs and let the above initcall be done at device
359  * initcall time, because the serial driver is called as an arch
360  * initcall, and at this time the DMA subsystem is not yet registered.
361  * At this point the driver will switch over to using DMA where desired.
362  */
363 struct dma_uap {
364 	struct list_head node;
365 	struct uart_amba_port *uap;
366 	struct device *dev;
367 };
368 
369 static LIST_HEAD(pl011_dma_uarts);
370 
371 static int __init pl011_dma_initcall(void)
372 {
373 	struct list_head *node, *tmp;
374 
375 	list_for_each_safe(node, tmp, &pl011_dma_uarts) {
376 		struct dma_uap *dmau = list_entry(node, struct dma_uap, node);
377 		pl011_dma_probe_initcall(dmau->dev, dmau->uap);
378 		list_del(node);
379 		kfree(dmau);
380 	}
381 	return 0;
382 }
383 
384 device_initcall(pl011_dma_initcall);
385 
386 static void pl011_dma_probe(struct device *dev, struct uart_amba_port *uap)
387 {
388 	struct dma_uap *dmau = kzalloc(sizeof(struct dma_uap), GFP_KERNEL);
389 	if (dmau) {
390 		dmau->uap = uap;
391 		dmau->dev = dev;
392 		list_add_tail(&dmau->node, &pl011_dma_uarts);
393 	}
394 }
395 #else
396 static void pl011_dma_probe(struct device *dev, struct uart_amba_port *uap)
397 {
398 	pl011_dma_probe_initcall(dev, uap);
399 }
400 #endif
401 
402 static void pl011_dma_remove(struct uart_amba_port *uap)
403 {
404 	/* TODO: remove the initcall if it has not yet executed */
405 	if (uap->dmatx.chan)
406 		dma_release_channel(uap->dmatx.chan);
407 	if (uap->dmarx.chan)
408 		dma_release_channel(uap->dmarx.chan);
409 }
410 
411 /* Forward declare this for the refill routine */
412 static int pl011_dma_tx_refill(struct uart_amba_port *uap);
413 
414 /*
415  * The current DMA TX buffer has been sent.
416  * Try to queue up another DMA buffer.
417  */
418 static void pl011_dma_tx_callback(void *data)
419 {
420 	struct uart_amba_port *uap = data;
421 	struct pl011_dmatx_data *dmatx = &uap->dmatx;
422 	unsigned long flags;
423 	u16 dmacr;
424 
425 	spin_lock_irqsave(&uap->port.lock, flags);
426 	if (uap->dmatx.queued)
427 		dma_unmap_sg(dmatx->chan->device->dev, &dmatx->sg, 1,
428 			     DMA_TO_DEVICE);
429 
430 	dmacr = uap->dmacr;
431 	uap->dmacr = dmacr & ~UART011_TXDMAE;
432 	writew(uap->dmacr, uap->port.membase + UART011_DMACR);
433 
434 	/*
435 	 * If TX DMA was disabled, it means that we've stopped the DMA for
436 	 * some reason (eg, XOFF received, or we want to send an X-char.)
437 	 *
438 	 * Note: we need to be careful here of a potential race between DMA
439 	 * and the rest of the driver - if the driver disables TX DMA while
440 	 * a TX buffer completing, we must update the tx queued status to
441 	 * get further refills (hence we check dmacr).
442 	 */
443 	if (!(dmacr & UART011_TXDMAE) || uart_tx_stopped(&uap->port) ||
444 	    uart_circ_empty(&uap->port.state->xmit)) {
445 		uap->dmatx.queued = false;
446 		spin_unlock_irqrestore(&uap->port.lock, flags);
447 		return;
448 	}
449 
450 	if (pl011_dma_tx_refill(uap) <= 0) {
451 		/*
452 		 * We didn't queue a DMA buffer for some reason, but we
453 		 * have data pending to be sent.  Re-enable the TX IRQ.
454 		 */
455 		uap->im |= UART011_TXIM;
456 		writew(uap->im, uap->port.membase + UART011_IMSC);
457 	}
458 	spin_unlock_irqrestore(&uap->port.lock, flags);
459 }
460 
461 /*
462  * Try to refill the TX DMA buffer.
463  * Locking: called with port lock held and IRQs disabled.
464  * Returns:
465  *   1 if we queued up a TX DMA buffer.
466  *   0 if we didn't want to handle this by DMA
467  *  <0 on error
468  */
469 static int pl011_dma_tx_refill(struct uart_amba_port *uap)
470 {
471 	struct pl011_dmatx_data *dmatx = &uap->dmatx;
472 	struct dma_chan *chan = dmatx->chan;
473 	struct dma_device *dma_dev = chan->device;
474 	struct dma_async_tx_descriptor *desc;
475 	struct circ_buf *xmit = &uap->port.state->xmit;
476 	unsigned int count;
477 
478 	/*
479 	 * Try to avoid the overhead involved in using DMA if the
480 	 * transaction fits in the first half of the FIFO, by using
481 	 * the standard interrupt handling.  This ensures that we
482 	 * issue a uart_write_wakeup() at the appropriate time.
483 	 */
484 	count = uart_circ_chars_pending(xmit);
485 	if (count < (uap->fifosize >> 1)) {
486 		uap->dmatx.queued = false;
487 		return 0;
488 	}
489 
490 	/*
491 	 * Bodge: don't send the last character by DMA, as this
492 	 * will prevent XON from notifying us to restart DMA.
493 	 */
494 	count -= 1;
495 
496 	/* Else proceed to copy the TX chars to the DMA buffer and fire DMA */
497 	if (count > PL011_DMA_BUFFER_SIZE)
498 		count = PL011_DMA_BUFFER_SIZE;
499 
500 	if (xmit->tail < xmit->head)
501 		memcpy(&dmatx->buf[0], &xmit->buf[xmit->tail], count);
502 	else {
503 		size_t first = UART_XMIT_SIZE - xmit->tail;
504 		size_t second = xmit->head;
505 
506 		memcpy(&dmatx->buf[0], &xmit->buf[xmit->tail], first);
507 		if (second)
508 			memcpy(&dmatx->buf[first], &xmit->buf[0], second);
509 	}
510 
511 	dmatx->sg.length = count;
512 
513 	if (dma_map_sg(dma_dev->dev, &dmatx->sg, 1, DMA_TO_DEVICE) != 1) {
514 		uap->dmatx.queued = false;
515 		dev_dbg(uap->port.dev, "unable to map TX DMA\n");
516 		return -EBUSY;
517 	}
518 
519 	desc = dmaengine_prep_slave_sg(chan, &dmatx->sg, 1, DMA_MEM_TO_DEV,
520 					     DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
521 	if (!desc) {
522 		dma_unmap_sg(dma_dev->dev, &dmatx->sg, 1, DMA_TO_DEVICE);
523 		uap->dmatx.queued = false;
524 		/*
525 		 * If DMA cannot be used right now, we complete this
526 		 * transaction via IRQ and let the TTY layer retry.
527 		 */
528 		dev_dbg(uap->port.dev, "TX DMA busy\n");
529 		return -EBUSY;
530 	}
531 
532 	/* Some data to go along to the callback */
533 	desc->callback = pl011_dma_tx_callback;
534 	desc->callback_param = uap;
535 
536 	/* All errors should happen at prepare time */
537 	dmaengine_submit(desc);
538 
539 	/* Fire the DMA transaction */
540 	dma_dev->device_issue_pending(chan);
541 
542 	uap->dmacr |= UART011_TXDMAE;
543 	writew(uap->dmacr, uap->port.membase + UART011_DMACR);
544 	uap->dmatx.queued = true;
545 
546 	/*
547 	 * Now we know that DMA will fire, so advance the ring buffer
548 	 * with the stuff we just dispatched.
549 	 */
550 	xmit->tail = (xmit->tail + count) & (UART_XMIT_SIZE - 1);
551 	uap->port.icount.tx += count;
552 
553 	if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
554 		uart_write_wakeup(&uap->port);
555 
556 	return 1;
557 }
558 
559 /*
560  * We received a transmit interrupt without a pending X-char but with
561  * pending characters.
562  * Locking: called with port lock held and IRQs disabled.
563  * Returns:
564  *   false if we want to use PIO to transmit
565  *   true if we queued a DMA buffer
566  */
567 static bool pl011_dma_tx_irq(struct uart_amba_port *uap)
568 {
569 	if (!uap->using_tx_dma)
570 		return false;
571 
572 	/*
573 	 * If we already have a TX buffer queued, but received a
574 	 * TX interrupt, it will be because we've just sent an X-char.
575 	 * Ensure the TX DMA is enabled and the TX IRQ is disabled.
576 	 */
577 	if (uap->dmatx.queued) {
578 		uap->dmacr |= UART011_TXDMAE;
579 		writew(uap->dmacr, uap->port.membase + UART011_DMACR);
580 		uap->im &= ~UART011_TXIM;
581 		writew(uap->im, uap->port.membase + UART011_IMSC);
582 		return true;
583 	}
584 
585 	/*
586 	 * We don't have a TX buffer queued, so try to queue one.
587 	 * If we successfully queued a buffer, mask the TX IRQ.
588 	 */
589 	if (pl011_dma_tx_refill(uap) > 0) {
590 		uap->im &= ~UART011_TXIM;
591 		writew(uap->im, uap->port.membase + UART011_IMSC);
592 		return true;
593 	}
594 	return false;
595 }
596 
597 /*
598  * Stop the DMA transmit (eg, due to received XOFF).
599  * Locking: called with port lock held and IRQs disabled.
600  */
601 static inline void pl011_dma_tx_stop(struct uart_amba_port *uap)
602 {
603 	if (uap->dmatx.queued) {
604 		uap->dmacr &= ~UART011_TXDMAE;
605 		writew(uap->dmacr, uap->port.membase + UART011_DMACR);
606 	}
607 }
608 
609 /*
610  * Try to start a DMA transmit, or in the case of an XON/OFF
611  * character queued for send, try to get that character out ASAP.
612  * Locking: called with port lock held and IRQs disabled.
613  * Returns:
614  *   false if we want the TX IRQ to be enabled
615  *   true if we have a buffer queued
616  */
617 static inline bool pl011_dma_tx_start(struct uart_amba_port *uap)
618 {
619 	u16 dmacr;
620 
621 	if (!uap->using_tx_dma)
622 		return false;
623 
624 	if (!uap->port.x_char) {
625 		/* no X-char, try to push chars out in DMA mode */
626 		bool ret = true;
627 
628 		if (!uap->dmatx.queued) {
629 			if (pl011_dma_tx_refill(uap) > 0) {
630 				uap->im &= ~UART011_TXIM;
631 				ret = true;
632 			} else {
633 				uap->im |= UART011_TXIM;
634 				ret = false;
635 			}
636 			writew(uap->im, uap->port.membase + UART011_IMSC);
637 		} else if (!(uap->dmacr & UART011_TXDMAE)) {
638 			uap->dmacr |= UART011_TXDMAE;
639 			writew(uap->dmacr,
640 				       uap->port.membase + UART011_DMACR);
641 		}
642 		return ret;
643 	}
644 
645 	/*
646 	 * We have an X-char to send.  Disable DMA to prevent it loading
647 	 * the TX fifo, and then see if we can stuff it into the FIFO.
648 	 */
649 	dmacr = uap->dmacr;
650 	uap->dmacr &= ~UART011_TXDMAE;
651 	writew(uap->dmacr, uap->port.membase + UART011_DMACR);
652 
653 	if (readw(uap->port.membase + UART01x_FR) & UART01x_FR_TXFF) {
654 		/*
655 		 * No space in the FIFO, so enable the transmit interrupt
656 		 * so we know when there is space.  Note that once we've
657 		 * loaded the character, we should just re-enable DMA.
658 		 */
659 		return false;
660 	}
661 
662 	writew(uap->port.x_char, uap->port.membase + UART01x_DR);
663 	uap->port.icount.tx++;
664 	uap->port.x_char = 0;
665 
666 	/* Success - restore the DMA state */
667 	uap->dmacr = dmacr;
668 	writew(dmacr, uap->port.membase + UART011_DMACR);
669 
670 	return true;
671 }
672 
673 /*
674  * Flush the transmit buffer.
675  * Locking: called with port lock held and IRQs disabled.
676  */
677 static void pl011_dma_flush_buffer(struct uart_port *port)
678 __releases(&uap->port.lock)
679 __acquires(&uap->port.lock)
680 {
681 	struct uart_amba_port *uap =
682 	    container_of(port, struct uart_amba_port, port);
683 
684 	if (!uap->using_tx_dma)
685 		return;
686 
687 	/* Avoid deadlock with the DMA engine callback */
688 	spin_unlock(&uap->port.lock);
689 	dmaengine_terminate_all(uap->dmatx.chan);
690 	spin_lock(&uap->port.lock);
691 	if (uap->dmatx.queued) {
692 		dma_unmap_sg(uap->dmatx.chan->device->dev, &uap->dmatx.sg, 1,
693 			     DMA_TO_DEVICE);
694 		uap->dmatx.queued = false;
695 		uap->dmacr &= ~UART011_TXDMAE;
696 		writew(uap->dmacr, uap->port.membase + UART011_DMACR);
697 	}
698 }
699 
700 static void pl011_dma_rx_callback(void *data);
701 
702 static int pl011_dma_rx_trigger_dma(struct uart_amba_port *uap)
703 {
704 	struct dma_chan *rxchan = uap->dmarx.chan;
705 	struct pl011_dmarx_data *dmarx = &uap->dmarx;
706 	struct dma_async_tx_descriptor *desc;
707 	struct pl011_sgbuf *sgbuf;
708 
709 	if (!rxchan)
710 		return -EIO;
711 
712 	/* Start the RX DMA job */
713 	sgbuf = uap->dmarx.use_buf_b ?
714 		&uap->dmarx.sgbuf_b : &uap->dmarx.sgbuf_a;
715 	desc = dmaengine_prep_slave_sg(rxchan, &sgbuf->sg, 1,
716 					DMA_DEV_TO_MEM,
717 					DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
718 	/*
719 	 * If the DMA engine is busy and cannot prepare a
720 	 * channel, no big deal, the driver will fall back
721 	 * to interrupt mode as a result of this error code.
722 	 */
723 	if (!desc) {
724 		uap->dmarx.running = false;
725 		dmaengine_terminate_all(rxchan);
726 		return -EBUSY;
727 	}
728 
729 	/* Some data to go along to the callback */
730 	desc->callback = pl011_dma_rx_callback;
731 	desc->callback_param = uap;
732 	dmarx->cookie = dmaengine_submit(desc);
733 	dma_async_issue_pending(rxchan);
734 
735 	uap->dmacr |= UART011_RXDMAE;
736 	writew(uap->dmacr, uap->port.membase + UART011_DMACR);
737 	uap->dmarx.running = true;
738 
739 	uap->im &= ~UART011_RXIM;
740 	writew(uap->im, uap->port.membase + UART011_IMSC);
741 
742 	return 0;
743 }
744 
745 /*
746  * This is called when either the DMA job is complete, or
747  * the FIFO timeout interrupt occurred. This must be called
748  * with the port spinlock uap->port.lock held.
749  */
750 static void pl011_dma_rx_chars(struct uart_amba_port *uap,
751 			       u32 pending, bool use_buf_b,
752 			       bool readfifo)
753 {
754 	struct tty_port *port = &uap->port.state->port;
755 	struct pl011_sgbuf *sgbuf = use_buf_b ?
756 		&uap->dmarx.sgbuf_b : &uap->dmarx.sgbuf_a;
757 	int dma_count = 0;
758 	u32 fifotaken = 0; /* only used for vdbg() */
759 
760 	struct pl011_dmarx_data *dmarx = &uap->dmarx;
761 	int dmataken = 0;
762 
763 	if (uap->dmarx.poll_rate) {
764 		/* The data can be taken by polling */
765 		dmataken = sgbuf->sg.length - dmarx->last_residue;
766 		/* Recalculate the pending size */
767 		if (pending >= dmataken)
768 			pending -= dmataken;
769 	}
770 
771 	/* Pick the remain data from the DMA */
772 	if (pending) {
773 
774 		/*
775 		 * First take all chars in the DMA pipe, then look in the FIFO.
776 		 * Note that tty_insert_flip_buf() tries to take as many chars
777 		 * as it can.
778 		 */
779 		dma_count = tty_insert_flip_string(port, sgbuf->buf + dmataken,
780 				pending);
781 
782 		uap->port.icount.rx += dma_count;
783 		if (dma_count < pending)
784 			dev_warn(uap->port.dev,
785 				 "couldn't insert all characters (TTY is full?)\n");
786 	}
787 
788 	/* Reset the last_residue for Rx DMA poll */
789 	if (uap->dmarx.poll_rate)
790 		dmarx->last_residue = sgbuf->sg.length;
791 
792 	/*
793 	 * Only continue with trying to read the FIFO if all DMA chars have
794 	 * been taken first.
795 	 */
796 	if (dma_count == pending && readfifo) {
797 		/* Clear any error flags */
798 		writew(UART011_OEIS | UART011_BEIS | UART011_PEIS | UART011_FEIS,
799 		       uap->port.membase + UART011_ICR);
800 
801 		/*
802 		 * If we read all the DMA'd characters, and we had an
803 		 * incomplete buffer, that could be due to an rx error, or
804 		 * maybe we just timed out. Read any pending chars and check
805 		 * the error status.
806 		 *
807 		 * Error conditions will only occur in the FIFO, these will
808 		 * trigger an immediate interrupt and stop the DMA job, so we
809 		 * will always find the error in the FIFO, never in the DMA
810 		 * buffer.
811 		 */
812 		fifotaken = pl011_fifo_to_tty(uap);
813 	}
814 
815 	spin_unlock(&uap->port.lock);
816 	dev_vdbg(uap->port.dev,
817 		 "Took %d chars from DMA buffer and %d chars from the FIFO\n",
818 		 dma_count, fifotaken);
819 	tty_flip_buffer_push(port);
820 	spin_lock(&uap->port.lock);
821 }
822 
823 static void pl011_dma_rx_irq(struct uart_amba_port *uap)
824 {
825 	struct pl011_dmarx_data *dmarx = &uap->dmarx;
826 	struct dma_chan *rxchan = dmarx->chan;
827 	struct pl011_sgbuf *sgbuf = dmarx->use_buf_b ?
828 		&dmarx->sgbuf_b : &dmarx->sgbuf_a;
829 	size_t pending;
830 	struct dma_tx_state state;
831 	enum dma_status dmastat;
832 
833 	/*
834 	 * Pause the transfer so we can trust the current counter,
835 	 * do this before we pause the PL011 block, else we may
836 	 * overflow the FIFO.
837 	 */
838 	if (dmaengine_pause(rxchan))
839 		dev_err(uap->port.dev, "unable to pause DMA transfer\n");
840 	dmastat = rxchan->device->device_tx_status(rxchan,
841 						   dmarx->cookie, &state);
842 	if (dmastat != DMA_PAUSED)
843 		dev_err(uap->port.dev, "unable to pause DMA transfer\n");
844 
845 	/* Disable RX DMA - incoming data will wait in the FIFO */
846 	uap->dmacr &= ~UART011_RXDMAE;
847 	writew(uap->dmacr, uap->port.membase + UART011_DMACR);
848 	uap->dmarx.running = false;
849 
850 	pending = sgbuf->sg.length - state.residue;
851 	BUG_ON(pending > PL011_DMA_BUFFER_SIZE);
852 	/* Then we terminate the transfer - we now know our residue */
853 	dmaengine_terminate_all(rxchan);
854 
855 	/*
856 	 * This will take the chars we have so far and insert
857 	 * into the framework.
858 	 */
859 	pl011_dma_rx_chars(uap, pending, dmarx->use_buf_b, true);
860 
861 	/* Switch buffer & re-trigger DMA job */
862 	dmarx->use_buf_b = !dmarx->use_buf_b;
863 	if (pl011_dma_rx_trigger_dma(uap)) {
864 		dev_dbg(uap->port.dev, "could not retrigger RX DMA job "
865 			"fall back to interrupt mode\n");
866 		uap->im |= UART011_RXIM;
867 		writew(uap->im, uap->port.membase + UART011_IMSC);
868 	}
869 }
870 
871 static void pl011_dma_rx_callback(void *data)
872 {
873 	struct uart_amba_port *uap = data;
874 	struct pl011_dmarx_data *dmarx = &uap->dmarx;
875 	struct dma_chan *rxchan = dmarx->chan;
876 	bool lastbuf = dmarx->use_buf_b;
877 	struct pl011_sgbuf *sgbuf = dmarx->use_buf_b ?
878 		&dmarx->sgbuf_b : &dmarx->sgbuf_a;
879 	size_t pending;
880 	struct dma_tx_state state;
881 	int ret;
882 
883 	/*
884 	 * This completion interrupt occurs typically when the
885 	 * RX buffer is totally stuffed but no timeout has yet
886 	 * occurred. When that happens, we just want the RX
887 	 * routine to flush out the secondary DMA buffer while
888 	 * we immediately trigger the next DMA job.
889 	 */
890 	spin_lock_irq(&uap->port.lock);
891 	/*
892 	 * Rx data can be taken by the UART interrupts during
893 	 * the DMA irq handler. So we check the residue here.
894 	 */
895 	rxchan->device->device_tx_status(rxchan, dmarx->cookie, &state);
896 	pending = sgbuf->sg.length - state.residue;
897 	BUG_ON(pending > PL011_DMA_BUFFER_SIZE);
898 	/* Then we terminate the transfer - we now know our residue */
899 	dmaengine_terminate_all(rxchan);
900 
901 	uap->dmarx.running = false;
902 	dmarx->use_buf_b = !lastbuf;
903 	ret = pl011_dma_rx_trigger_dma(uap);
904 
905 	pl011_dma_rx_chars(uap, pending, lastbuf, false);
906 	spin_unlock_irq(&uap->port.lock);
907 	/*
908 	 * Do this check after we picked the DMA chars so we don't
909 	 * get some IRQ immediately from RX.
910 	 */
911 	if (ret) {
912 		dev_dbg(uap->port.dev, "could not retrigger RX DMA job "
913 			"fall back to interrupt mode\n");
914 		uap->im |= UART011_RXIM;
915 		writew(uap->im, uap->port.membase + UART011_IMSC);
916 	}
917 }
918 
919 /*
920  * Stop accepting received characters, when we're shutting down or
921  * suspending this port.
922  * Locking: called with port lock held and IRQs disabled.
923  */
924 static inline void pl011_dma_rx_stop(struct uart_amba_port *uap)
925 {
926 	/* FIXME.  Just disable the DMA enable */
927 	uap->dmacr &= ~UART011_RXDMAE;
928 	writew(uap->dmacr, uap->port.membase + UART011_DMACR);
929 }
930 
931 /*
932  * Timer handler for Rx DMA polling.
933  * Every polling, It checks the residue in the dma buffer and transfer
934  * data to the tty. Also, last_residue is updated for the next polling.
935  */
936 static void pl011_dma_rx_poll(unsigned long args)
937 {
938 	struct uart_amba_port *uap = (struct uart_amba_port *)args;
939 	struct tty_port *port = &uap->port.state->port;
940 	struct pl011_dmarx_data *dmarx = &uap->dmarx;
941 	struct dma_chan *rxchan = uap->dmarx.chan;
942 	unsigned long flags = 0;
943 	unsigned int dmataken = 0;
944 	unsigned int size = 0;
945 	struct pl011_sgbuf *sgbuf;
946 	int dma_count;
947 	struct dma_tx_state state;
948 
949 	sgbuf = dmarx->use_buf_b ? &uap->dmarx.sgbuf_b : &uap->dmarx.sgbuf_a;
950 	rxchan->device->device_tx_status(rxchan, dmarx->cookie, &state);
951 	if (likely(state.residue < dmarx->last_residue)) {
952 		dmataken = sgbuf->sg.length - dmarx->last_residue;
953 		size = dmarx->last_residue - state.residue;
954 		dma_count = tty_insert_flip_string(port, sgbuf->buf + dmataken,
955 				size);
956 		if (dma_count == size)
957 			dmarx->last_residue =  state.residue;
958 		dmarx->last_jiffies = jiffies;
959 	}
960 	tty_flip_buffer_push(port);
961 
962 	/*
963 	 * If no data is received in poll_timeout, the driver will fall back
964 	 * to interrupt mode. We will retrigger DMA at the first interrupt.
965 	 */
966 	if (jiffies_to_msecs(jiffies - dmarx->last_jiffies)
967 			> uap->dmarx.poll_timeout) {
968 
969 		spin_lock_irqsave(&uap->port.lock, flags);
970 		pl011_dma_rx_stop(uap);
971 		uap->im |= UART011_RXIM;
972 		writew(uap->im, uap->port.membase + UART011_IMSC);
973 		spin_unlock_irqrestore(&uap->port.lock, flags);
974 
975 		uap->dmarx.running = false;
976 		dmaengine_terminate_all(rxchan);
977 		del_timer(&uap->dmarx.timer);
978 	} else {
979 		mod_timer(&uap->dmarx.timer,
980 			jiffies + msecs_to_jiffies(uap->dmarx.poll_rate));
981 	}
982 }
983 
984 static void pl011_dma_startup(struct uart_amba_port *uap)
985 {
986 	int ret;
987 
988 	if (!uap->dmatx.chan)
989 		return;
990 
991 	uap->dmatx.buf = kmalloc(PL011_DMA_BUFFER_SIZE, GFP_KERNEL);
992 	if (!uap->dmatx.buf) {
993 		dev_err(uap->port.dev, "no memory for DMA TX buffer\n");
994 		uap->port.fifosize = uap->fifosize;
995 		return;
996 	}
997 
998 	sg_init_one(&uap->dmatx.sg, uap->dmatx.buf, PL011_DMA_BUFFER_SIZE);
999 
1000 	/* The DMA buffer is now the FIFO the TTY subsystem can use */
1001 	uap->port.fifosize = PL011_DMA_BUFFER_SIZE;
1002 	uap->using_tx_dma = true;
1003 
1004 	if (!uap->dmarx.chan)
1005 		goto skip_rx;
1006 
1007 	/* Allocate and map DMA RX buffers */
1008 	ret = pl011_sgbuf_init(uap->dmarx.chan, &uap->dmarx.sgbuf_a,
1009 			       DMA_FROM_DEVICE);
1010 	if (ret) {
1011 		dev_err(uap->port.dev, "failed to init DMA %s: %d\n",
1012 			"RX buffer A", ret);
1013 		goto skip_rx;
1014 	}
1015 
1016 	ret = pl011_sgbuf_init(uap->dmarx.chan, &uap->dmarx.sgbuf_b,
1017 			       DMA_FROM_DEVICE);
1018 	if (ret) {
1019 		dev_err(uap->port.dev, "failed to init DMA %s: %d\n",
1020 			"RX buffer B", ret);
1021 		pl011_sgbuf_free(uap->dmarx.chan, &uap->dmarx.sgbuf_a,
1022 				 DMA_FROM_DEVICE);
1023 		goto skip_rx;
1024 	}
1025 
1026 	uap->using_rx_dma = true;
1027 
1028 skip_rx:
1029 	/* Turn on DMA error (RX/TX will be enabled on demand) */
1030 	uap->dmacr |= UART011_DMAONERR;
1031 	writew(uap->dmacr, uap->port.membase + UART011_DMACR);
1032 
1033 	/*
1034 	 * ST Micro variants has some specific dma burst threshold
1035 	 * compensation. Set this to 16 bytes, so burst will only
1036 	 * be issued above/below 16 bytes.
1037 	 */
1038 	if (uap->vendor->dma_threshold)
1039 		writew(ST_UART011_DMAWM_RX_16 | ST_UART011_DMAWM_TX_16,
1040 			       uap->port.membase + ST_UART011_DMAWM);
1041 
1042 	if (uap->using_rx_dma) {
1043 		if (pl011_dma_rx_trigger_dma(uap))
1044 			dev_dbg(uap->port.dev, "could not trigger initial "
1045 				"RX DMA job, fall back to interrupt mode\n");
1046 		if (uap->dmarx.poll_rate) {
1047 			init_timer(&(uap->dmarx.timer));
1048 			uap->dmarx.timer.function = pl011_dma_rx_poll;
1049 			uap->dmarx.timer.data = (unsigned long)uap;
1050 			mod_timer(&uap->dmarx.timer,
1051 				jiffies +
1052 				msecs_to_jiffies(uap->dmarx.poll_rate));
1053 			uap->dmarx.last_residue = PL011_DMA_BUFFER_SIZE;
1054 			uap->dmarx.last_jiffies = jiffies;
1055 		}
1056 	}
1057 }
1058 
1059 static void pl011_dma_shutdown(struct uart_amba_port *uap)
1060 {
1061 	if (!(uap->using_tx_dma || uap->using_rx_dma))
1062 		return;
1063 
1064 	/* Disable RX and TX DMA */
1065 	while (readw(uap->port.membase + UART01x_FR) & UART01x_FR_BUSY)
1066 		barrier();
1067 
1068 	spin_lock_irq(&uap->port.lock);
1069 	uap->dmacr &= ~(UART011_DMAONERR | UART011_RXDMAE | UART011_TXDMAE);
1070 	writew(uap->dmacr, uap->port.membase + UART011_DMACR);
1071 	spin_unlock_irq(&uap->port.lock);
1072 
1073 	if (uap->using_tx_dma) {
1074 		/* In theory, this should already be done by pl011_dma_flush_buffer */
1075 		dmaengine_terminate_all(uap->dmatx.chan);
1076 		if (uap->dmatx.queued) {
1077 			dma_unmap_sg(uap->dmatx.chan->device->dev, &uap->dmatx.sg, 1,
1078 				     DMA_TO_DEVICE);
1079 			uap->dmatx.queued = false;
1080 		}
1081 
1082 		kfree(uap->dmatx.buf);
1083 		uap->using_tx_dma = false;
1084 	}
1085 
1086 	if (uap->using_rx_dma) {
1087 		dmaengine_terminate_all(uap->dmarx.chan);
1088 		/* Clean up the RX DMA */
1089 		pl011_sgbuf_free(uap->dmarx.chan, &uap->dmarx.sgbuf_a, DMA_FROM_DEVICE);
1090 		pl011_sgbuf_free(uap->dmarx.chan, &uap->dmarx.sgbuf_b, DMA_FROM_DEVICE);
1091 		if (uap->dmarx.poll_rate)
1092 			del_timer_sync(&uap->dmarx.timer);
1093 		uap->using_rx_dma = false;
1094 	}
1095 }
1096 
1097 static inline bool pl011_dma_rx_available(struct uart_amba_port *uap)
1098 {
1099 	return uap->using_rx_dma;
1100 }
1101 
1102 static inline bool pl011_dma_rx_running(struct uart_amba_port *uap)
1103 {
1104 	return uap->using_rx_dma && uap->dmarx.running;
1105 }
1106 
1107 #else
1108 /* Blank functions if the DMA engine is not available */
1109 static inline void pl011_dma_probe(struct device *dev, struct uart_amba_port *uap)
1110 {
1111 }
1112 
1113 static inline void pl011_dma_remove(struct uart_amba_port *uap)
1114 {
1115 }
1116 
1117 static inline void pl011_dma_startup(struct uart_amba_port *uap)
1118 {
1119 }
1120 
1121 static inline void pl011_dma_shutdown(struct uart_amba_port *uap)
1122 {
1123 }
1124 
1125 static inline bool pl011_dma_tx_irq(struct uart_amba_port *uap)
1126 {
1127 	return false;
1128 }
1129 
1130 static inline void pl011_dma_tx_stop(struct uart_amba_port *uap)
1131 {
1132 }
1133 
1134 static inline bool pl011_dma_tx_start(struct uart_amba_port *uap)
1135 {
1136 	return false;
1137 }
1138 
1139 static inline void pl011_dma_rx_irq(struct uart_amba_port *uap)
1140 {
1141 }
1142 
1143 static inline void pl011_dma_rx_stop(struct uart_amba_port *uap)
1144 {
1145 }
1146 
1147 static inline int pl011_dma_rx_trigger_dma(struct uart_amba_port *uap)
1148 {
1149 	return -EIO;
1150 }
1151 
1152 static inline bool pl011_dma_rx_available(struct uart_amba_port *uap)
1153 {
1154 	return false;
1155 }
1156 
1157 static inline bool pl011_dma_rx_running(struct uart_amba_port *uap)
1158 {
1159 	return false;
1160 }
1161 
1162 #define pl011_dma_flush_buffer	NULL
1163 #endif
1164 
1165 static void pl011_stop_tx(struct uart_port *port)
1166 {
1167 	struct uart_amba_port *uap =
1168 	    container_of(port, struct uart_amba_port, port);
1169 
1170 	uap->im &= ~UART011_TXIM;
1171 	writew(uap->im, uap->port.membase + UART011_IMSC);
1172 	pl011_dma_tx_stop(uap);
1173 }
1174 
1175 static void pl011_start_tx(struct uart_port *port)
1176 {
1177 	struct uart_amba_port *uap =
1178 	    container_of(port, struct uart_amba_port, port);
1179 
1180 	if (!pl011_dma_tx_start(uap)) {
1181 		uap->im |= UART011_TXIM;
1182 		writew(uap->im, uap->port.membase + UART011_IMSC);
1183 	}
1184 }
1185 
1186 static void pl011_stop_rx(struct uart_port *port)
1187 {
1188 	struct uart_amba_port *uap =
1189 	    container_of(port, struct uart_amba_port, port);
1190 
1191 	uap->im &= ~(UART011_RXIM|UART011_RTIM|UART011_FEIM|
1192 		     UART011_PEIM|UART011_BEIM|UART011_OEIM);
1193 	writew(uap->im, uap->port.membase + UART011_IMSC);
1194 
1195 	pl011_dma_rx_stop(uap);
1196 }
1197 
1198 static void pl011_enable_ms(struct uart_port *port)
1199 {
1200 	struct uart_amba_port *uap =
1201 	    container_of(port, struct uart_amba_port, port);
1202 
1203 	uap->im |= UART011_RIMIM|UART011_CTSMIM|UART011_DCDMIM|UART011_DSRMIM;
1204 	writew(uap->im, uap->port.membase + UART011_IMSC);
1205 }
1206 
1207 static void pl011_rx_chars(struct uart_amba_port *uap)
1208 __releases(&uap->port.lock)
1209 __acquires(&uap->port.lock)
1210 {
1211 	pl011_fifo_to_tty(uap);
1212 
1213 	spin_unlock(&uap->port.lock);
1214 	tty_flip_buffer_push(&uap->port.state->port);
1215 	/*
1216 	 * If we were temporarily out of DMA mode for a while,
1217 	 * attempt to switch back to DMA mode again.
1218 	 */
1219 	if (pl011_dma_rx_available(uap)) {
1220 		if (pl011_dma_rx_trigger_dma(uap)) {
1221 			dev_dbg(uap->port.dev, "could not trigger RX DMA job "
1222 				"fall back to interrupt mode again\n");
1223 			uap->im |= UART011_RXIM;
1224 			writew(uap->im, uap->port.membase + UART011_IMSC);
1225 		} else {
1226 #ifdef CONFIG_DMA_ENGINE
1227 			/* Start Rx DMA poll */
1228 			if (uap->dmarx.poll_rate) {
1229 				uap->dmarx.last_jiffies = jiffies;
1230 				uap->dmarx.last_residue	= PL011_DMA_BUFFER_SIZE;
1231 				mod_timer(&uap->dmarx.timer,
1232 					jiffies +
1233 					msecs_to_jiffies(uap->dmarx.poll_rate));
1234 			}
1235 #endif
1236 		}
1237 	}
1238 	spin_lock(&uap->port.lock);
1239 }
1240 
1241 static void pl011_tx_chars(struct uart_amba_port *uap)
1242 {
1243 	struct circ_buf *xmit = &uap->port.state->xmit;
1244 	int count;
1245 
1246 	if (uap->port.x_char) {
1247 		writew(uap->port.x_char, uap->port.membase + UART01x_DR);
1248 		uap->port.icount.tx++;
1249 		uap->port.x_char = 0;
1250 		return;
1251 	}
1252 	if (uart_circ_empty(xmit) || uart_tx_stopped(&uap->port)) {
1253 		pl011_stop_tx(&uap->port);
1254 		return;
1255 	}
1256 
1257 	/* If we are using DMA mode, try to send some characters. */
1258 	if (pl011_dma_tx_irq(uap))
1259 		return;
1260 
1261 	count = uap->fifosize >> 1;
1262 	do {
1263 		writew(xmit->buf[xmit->tail], uap->port.membase + UART01x_DR);
1264 		xmit->tail = (xmit->tail + 1) & (UART_XMIT_SIZE - 1);
1265 		uap->port.icount.tx++;
1266 		if (uart_circ_empty(xmit))
1267 			break;
1268 	} while (--count > 0);
1269 
1270 	if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
1271 		uart_write_wakeup(&uap->port);
1272 
1273 	if (uart_circ_empty(xmit))
1274 		pl011_stop_tx(&uap->port);
1275 }
1276 
1277 static void pl011_modem_status(struct uart_amba_port *uap)
1278 {
1279 	unsigned int status, delta;
1280 
1281 	status = readw(uap->port.membase + UART01x_FR) & UART01x_FR_MODEM_ANY;
1282 
1283 	delta = status ^ uap->old_status;
1284 	uap->old_status = status;
1285 
1286 	if (!delta)
1287 		return;
1288 
1289 	if (delta & UART01x_FR_DCD)
1290 		uart_handle_dcd_change(&uap->port, status & UART01x_FR_DCD);
1291 
1292 	if (delta & UART01x_FR_DSR)
1293 		uap->port.icount.dsr++;
1294 
1295 	if (delta & UART01x_FR_CTS)
1296 		uart_handle_cts_change(&uap->port, status & UART01x_FR_CTS);
1297 
1298 	wake_up_interruptible(&uap->port.state->port.delta_msr_wait);
1299 }
1300 
1301 static irqreturn_t pl011_int(int irq, void *dev_id)
1302 {
1303 	struct uart_amba_port *uap = dev_id;
1304 	unsigned long flags;
1305 	unsigned int status, pass_counter = AMBA_ISR_PASS_LIMIT;
1306 	int handled = 0;
1307 	unsigned int dummy_read;
1308 
1309 	spin_lock_irqsave(&uap->port.lock, flags);
1310 	status = readw(uap->port.membase + UART011_MIS);
1311 	if (status) {
1312 		do {
1313 			if (uap->vendor->cts_event_workaround) {
1314 				/* workaround to make sure that all bits are unlocked.. */
1315 				writew(0x00, uap->port.membase + UART011_ICR);
1316 
1317 				/*
1318 				 * WA: introduce 26ns(1 uart clk) delay before W1C;
1319 				 * single apb access will incur 2 pclk(133.12Mhz) delay,
1320 				 * so add 2 dummy reads
1321 				 */
1322 				dummy_read = readw(uap->port.membase + UART011_ICR);
1323 				dummy_read = readw(uap->port.membase + UART011_ICR);
1324 			}
1325 
1326 			writew(status & ~(UART011_TXIS|UART011_RTIS|
1327 					  UART011_RXIS),
1328 			       uap->port.membase + UART011_ICR);
1329 
1330 			if (status & (UART011_RTIS|UART011_RXIS)) {
1331 				if (pl011_dma_rx_running(uap))
1332 					pl011_dma_rx_irq(uap);
1333 				else
1334 					pl011_rx_chars(uap);
1335 			}
1336 			if (status & (UART011_DSRMIS|UART011_DCDMIS|
1337 				      UART011_CTSMIS|UART011_RIMIS))
1338 				pl011_modem_status(uap);
1339 			if (status & UART011_TXIS)
1340 				pl011_tx_chars(uap);
1341 
1342 			if (pass_counter-- == 0)
1343 				break;
1344 
1345 			status = readw(uap->port.membase + UART011_MIS);
1346 		} while (status != 0);
1347 		handled = 1;
1348 	}
1349 
1350 	spin_unlock_irqrestore(&uap->port.lock, flags);
1351 
1352 	return IRQ_RETVAL(handled);
1353 }
1354 
1355 static unsigned int pl011_tx_empty(struct uart_port *port)
1356 {
1357 	struct uart_amba_port *uap =
1358 	    container_of(port, struct uart_amba_port, port);
1359 	unsigned int status = readw(uap->port.membase + UART01x_FR);
1360 	return status & (UART01x_FR_BUSY|UART01x_FR_TXFF) ? 0 : TIOCSER_TEMT;
1361 }
1362 
1363 static unsigned int pl011_get_mctrl(struct uart_port *port)
1364 {
1365 	struct uart_amba_port *uap =
1366 	    container_of(port, struct uart_amba_port, port);
1367 	unsigned int result = 0;
1368 	unsigned int status = readw(uap->port.membase + UART01x_FR);
1369 
1370 #define TIOCMBIT(uartbit, tiocmbit)	\
1371 	if (status & uartbit)		\
1372 		result |= tiocmbit
1373 
1374 	TIOCMBIT(UART01x_FR_DCD, TIOCM_CAR);
1375 	TIOCMBIT(UART01x_FR_DSR, TIOCM_DSR);
1376 	TIOCMBIT(UART01x_FR_CTS, TIOCM_CTS);
1377 	TIOCMBIT(UART011_FR_RI, TIOCM_RNG);
1378 #undef TIOCMBIT
1379 	return result;
1380 }
1381 
1382 static void pl011_set_mctrl(struct uart_port *port, unsigned int mctrl)
1383 {
1384 	struct uart_amba_port *uap =
1385 	    container_of(port, struct uart_amba_port, port);
1386 	unsigned int cr;
1387 
1388 	cr = readw(uap->port.membase + UART011_CR);
1389 
1390 #define	TIOCMBIT(tiocmbit, uartbit)		\
1391 	if (mctrl & tiocmbit)		\
1392 		cr |= uartbit;		\
1393 	else				\
1394 		cr &= ~uartbit
1395 
1396 	TIOCMBIT(TIOCM_RTS, UART011_CR_RTS);
1397 	TIOCMBIT(TIOCM_DTR, UART011_CR_DTR);
1398 	TIOCMBIT(TIOCM_OUT1, UART011_CR_OUT1);
1399 	TIOCMBIT(TIOCM_OUT2, UART011_CR_OUT2);
1400 	TIOCMBIT(TIOCM_LOOP, UART011_CR_LBE);
1401 
1402 	if (uap->autorts) {
1403 		/* We need to disable auto-RTS if we want to turn RTS off */
1404 		TIOCMBIT(TIOCM_RTS, UART011_CR_RTSEN);
1405 	}
1406 #undef TIOCMBIT
1407 
1408 	writew(cr, uap->port.membase + UART011_CR);
1409 }
1410 
1411 static void pl011_break_ctl(struct uart_port *port, int break_state)
1412 {
1413 	struct uart_amba_port *uap =
1414 	    container_of(port, struct uart_amba_port, port);
1415 	unsigned long flags;
1416 	unsigned int lcr_h;
1417 
1418 	spin_lock_irqsave(&uap->port.lock, flags);
1419 	lcr_h = readw(uap->port.membase + uap->lcrh_tx);
1420 	if (break_state == -1)
1421 		lcr_h |= UART01x_LCRH_BRK;
1422 	else
1423 		lcr_h &= ~UART01x_LCRH_BRK;
1424 	writew(lcr_h, uap->port.membase + uap->lcrh_tx);
1425 	spin_unlock_irqrestore(&uap->port.lock, flags);
1426 }
1427 
1428 #ifdef CONFIG_CONSOLE_POLL
1429 
1430 static void pl011_quiesce_irqs(struct uart_port *port)
1431 {
1432 	struct uart_amba_port *uap =
1433 	    container_of(port, struct uart_amba_port, port);
1434 	unsigned char __iomem *regs = uap->port.membase;
1435 
1436 	writew(readw(regs + UART011_MIS), regs + UART011_ICR);
1437 	/*
1438 	 * There is no way to clear TXIM as this is "ready to transmit IRQ", so
1439 	 * we simply mask it. start_tx() will unmask it.
1440 	 *
1441 	 * Note we can race with start_tx(), and if the race happens, the
1442 	 * polling user might get another interrupt just after we clear it.
1443 	 * But it should be OK and can happen even w/o the race, e.g.
1444 	 * controller immediately got some new data and raised the IRQ.
1445 	 *
1446 	 * And whoever uses polling routines assumes that it manages the device
1447 	 * (including tx queue), so we're also fine with start_tx()'s caller
1448 	 * side.
1449 	 */
1450 	writew(readw(regs + UART011_IMSC) & ~UART011_TXIM, regs + UART011_IMSC);
1451 }
1452 
1453 static int pl011_get_poll_char(struct uart_port *port)
1454 {
1455 	struct uart_amba_port *uap =
1456 	    container_of(port, struct uart_amba_port, port);
1457 	unsigned int status;
1458 
1459 	/*
1460 	 * The caller might need IRQs lowered, e.g. if used with KDB NMI
1461 	 * debugger.
1462 	 */
1463 	pl011_quiesce_irqs(port);
1464 
1465 	status = readw(uap->port.membase + UART01x_FR);
1466 	if (status & UART01x_FR_RXFE)
1467 		return NO_POLL_CHAR;
1468 
1469 	return readw(uap->port.membase + UART01x_DR);
1470 }
1471 
1472 static void pl011_put_poll_char(struct uart_port *port,
1473 			 unsigned char ch)
1474 {
1475 	struct uart_amba_port *uap =
1476 	    container_of(port, struct uart_amba_port, port);
1477 
1478 	while (readw(uap->port.membase + UART01x_FR) & UART01x_FR_TXFF)
1479 		barrier();
1480 
1481 	writew(ch, uap->port.membase + UART01x_DR);
1482 }
1483 
1484 #endif /* CONFIG_CONSOLE_POLL */
1485 
1486 static int pl011_hwinit(struct uart_port *port)
1487 {
1488 	struct uart_amba_port *uap =
1489 	    container_of(port, struct uart_amba_port, port);
1490 	int retval;
1491 
1492 	/* Optionaly enable pins to be muxed in and configured */
1493 	pinctrl_pm_select_default_state(port->dev);
1494 
1495 	/*
1496 	 * Try to enable the clock producer.
1497 	 */
1498 	retval = clk_prepare_enable(uap->clk);
1499 	if (retval)
1500 		return retval;
1501 
1502 	uap->port.uartclk = clk_get_rate(uap->clk);
1503 
1504 	/* Clear pending error and receive interrupts */
1505 	writew(UART011_OEIS | UART011_BEIS | UART011_PEIS | UART011_FEIS |
1506 	       UART011_RTIS | UART011_RXIS, uap->port.membase + UART011_ICR);
1507 
1508 	/*
1509 	 * Save interrupts enable mask, and enable RX interrupts in case if
1510 	 * the interrupt is used for NMI entry.
1511 	 */
1512 	uap->im = readw(uap->port.membase + UART011_IMSC);
1513 	writew(UART011_RTIM | UART011_RXIM, uap->port.membase + UART011_IMSC);
1514 
1515 	if (dev_get_platdata(uap->port.dev)) {
1516 		struct amba_pl011_data *plat;
1517 
1518 		plat = dev_get_platdata(uap->port.dev);
1519 		if (plat->init)
1520 			plat->init();
1521 	}
1522 	return 0;
1523 }
1524 
1525 static void pl011_write_lcr_h(struct uart_amba_port *uap, unsigned int lcr_h)
1526 {
1527 	writew(lcr_h, uap->port.membase + uap->lcrh_rx);
1528 	if (uap->lcrh_rx != uap->lcrh_tx) {
1529 		int i;
1530 		/*
1531 		 * Wait 10 PCLKs before writing LCRH_TX register,
1532 		 * to get this delay write read only register 10 times
1533 		 */
1534 		for (i = 0; i < 10; ++i)
1535 			writew(0xff, uap->port.membase + UART011_MIS);
1536 		writew(lcr_h, uap->port.membase + uap->lcrh_tx);
1537 	}
1538 }
1539 
1540 static int pl011_startup(struct uart_port *port)
1541 {
1542 	struct uart_amba_port *uap =
1543 	    container_of(port, struct uart_amba_port, port);
1544 	unsigned int cr, lcr_h, fbrd, ibrd;
1545 	int retval;
1546 
1547 	retval = pl011_hwinit(port);
1548 	if (retval)
1549 		goto clk_dis;
1550 
1551 	writew(uap->im, uap->port.membase + UART011_IMSC);
1552 
1553 	/*
1554 	 * Allocate the IRQ
1555 	 */
1556 	retval = request_irq(uap->port.irq, pl011_int, 0, "uart-pl011", uap);
1557 	if (retval)
1558 		goto clk_dis;
1559 
1560 	writew(uap->vendor->ifls, uap->port.membase + UART011_IFLS);
1561 
1562 	/*
1563 	 * Provoke TX FIFO interrupt into asserting. Taking care to preserve
1564 	 * baud rate and data format specified by FBRD, IBRD and LCRH as the
1565 	 * UART may already be in use as a console.
1566 	 */
1567 	spin_lock_irq(&uap->port.lock);
1568 
1569 	fbrd = readw(uap->port.membase + UART011_FBRD);
1570 	ibrd = readw(uap->port.membase + UART011_IBRD);
1571 	lcr_h = readw(uap->port.membase + uap->lcrh_rx);
1572 
1573 	cr = UART01x_CR_UARTEN | UART011_CR_TXE | UART011_CR_LBE;
1574 	writew(cr, uap->port.membase + UART011_CR);
1575 	writew(0, uap->port.membase + UART011_FBRD);
1576 	writew(1, uap->port.membase + UART011_IBRD);
1577 	pl011_write_lcr_h(uap, 0);
1578 	writew(0, uap->port.membase + UART01x_DR);
1579 	while (readw(uap->port.membase + UART01x_FR) & UART01x_FR_BUSY)
1580 		barrier();
1581 
1582 	writew(fbrd, uap->port.membase + UART011_FBRD);
1583 	writew(ibrd, uap->port.membase + UART011_IBRD);
1584 	pl011_write_lcr_h(uap, lcr_h);
1585 
1586 	/* restore RTS and DTR */
1587 	cr = uap->old_cr & (UART011_CR_RTS | UART011_CR_DTR);
1588 	cr |= UART01x_CR_UARTEN | UART011_CR_RXE | UART011_CR_TXE;
1589 	writew(cr, uap->port.membase + UART011_CR);
1590 
1591 	spin_unlock_irq(&uap->port.lock);
1592 
1593 	/*
1594 	 * initialise the old status of the modem signals
1595 	 */
1596 	uap->old_status = readw(uap->port.membase + UART01x_FR) & UART01x_FR_MODEM_ANY;
1597 
1598 	/* Startup DMA */
1599 	pl011_dma_startup(uap);
1600 
1601 	/*
1602 	 * Finally, enable interrupts, only timeouts when using DMA
1603 	 * if initial RX DMA job failed, start in interrupt mode
1604 	 * as well.
1605 	 */
1606 	spin_lock_irq(&uap->port.lock);
1607 	/* Clear out any spuriously appearing RX interrupts */
1608 	 writew(UART011_RTIS | UART011_RXIS,
1609 		uap->port.membase + UART011_ICR);
1610 	uap->im = UART011_RTIM;
1611 	if (!pl011_dma_rx_running(uap))
1612 		uap->im |= UART011_RXIM;
1613 	writew(uap->im, uap->port.membase + UART011_IMSC);
1614 	spin_unlock_irq(&uap->port.lock);
1615 
1616 	return 0;
1617 
1618  clk_dis:
1619 	clk_disable_unprepare(uap->clk);
1620 	return retval;
1621 }
1622 
1623 static void pl011_shutdown_channel(struct uart_amba_port *uap,
1624 					unsigned int lcrh)
1625 {
1626       unsigned long val;
1627 
1628       val = readw(uap->port.membase + lcrh);
1629       val &= ~(UART01x_LCRH_BRK | UART01x_LCRH_FEN);
1630       writew(val, uap->port.membase + lcrh);
1631 }
1632 
1633 static void pl011_shutdown(struct uart_port *port)
1634 {
1635 	struct uart_amba_port *uap =
1636 	    container_of(port, struct uart_amba_port, port);
1637 	unsigned int cr;
1638 
1639 	/*
1640 	 * disable all interrupts
1641 	 */
1642 	spin_lock_irq(&uap->port.lock);
1643 	uap->im = 0;
1644 	writew(uap->im, uap->port.membase + UART011_IMSC);
1645 	writew(0xffff, uap->port.membase + UART011_ICR);
1646 	spin_unlock_irq(&uap->port.lock);
1647 
1648 	pl011_dma_shutdown(uap);
1649 
1650 	/*
1651 	 * Free the interrupt
1652 	 */
1653 	free_irq(uap->port.irq, uap);
1654 
1655 	/*
1656 	 * disable the port
1657 	 * disable the port. It should not disable RTS and DTR.
1658 	 * Also RTS and DTR state should be preserved to restore
1659 	 * it during startup().
1660 	 */
1661 	uap->autorts = false;
1662 	spin_lock_irq(&uap->port.lock);
1663 	cr = readw(uap->port.membase + UART011_CR);
1664 	uap->old_cr = cr;
1665 	cr &= UART011_CR_RTS | UART011_CR_DTR;
1666 	cr |= UART01x_CR_UARTEN | UART011_CR_TXE;
1667 	writew(cr, uap->port.membase + UART011_CR);
1668 	spin_unlock_irq(&uap->port.lock);
1669 
1670 	/*
1671 	 * disable break condition and fifos
1672 	 */
1673 	pl011_shutdown_channel(uap, uap->lcrh_rx);
1674 	if (uap->lcrh_rx != uap->lcrh_tx)
1675 		pl011_shutdown_channel(uap, uap->lcrh_tx);
1676 
1677 	/*
1678 	 * Shut down the clock producer
1679 	 */
1680 	clk_disable_unprepare(uap->clk);
1681 	/* Optionally let pins go into sleep states */
1682 	pinctrl_pm_select_sleep_state(port->dev);
1683 
1684 	if (dev_get_platdata(uap->port.dev)) {
1685 		struct amba_pl011_data *plat;
1686 
1687 		plat = dev_get_platdata(uap->port.dev);
1688 		if (plat->exit)
1689 			plat->exit();
1690 	}
1691 
1692 }
1693 
1694 static void
1695 pl011_set_termios(struct uart_port *port, struct ktermios *termios,
1696 		     struct ktermios *old)
1697 {
1698 	struct uart_amba_port *uap =
1699 	    container_of(port, struct uart_amba_port, port);
1700 	unsigned int lcr_h, old_cr;
1701 	unsigned long flags;
1702 	unsigned int baud, quot, clkdiv;
1703 
1704 	if (uap->vendor->oversampling)
1705 		clkdiv = 8;
1706 	else
1707 		clkdiv = 16;
1708 
1709 	/*
1710 	 * Ask the core to calculate the divisor for us.
1711 	 */
1712 	baud = uart_get_baud_rate(port, termios, old, 0,
1713 				  port->uartclk / clkdiv);
1714 #ifdef CONFIG_DMA_ENGINE
1715 	/*
1716 	 * Adjust RX DMA polling rate with baud rate if not specified.
1717 	 */
1718 	if (uap->dmarx.auto_poll_rate)
1719 		uap->dmarx.poll_rate = DIV_ROUND_UP(10000000, baud);
1720 #endif
1721 
1722 	if (baud > port->uartclk/16)
1723 		quot = DIV_ROUND_CLOSEST(port->uartclk * 8, baud);
1724 	else
1725 		quot = DIV_ROUND_CLOSEST(port->uartclk * 4, baud);
1726 
1727 	switch (termios->c_cflag & CSIZE) {
1728 	case CS5:
1729 		lcr_h = UART01x_LCRH_WLEN_5;
1730 		break;
1731 	case CS6:
1732 		lcr_h = UART01x_LCRH_WLEN_6;
1733 		break;
1734 	case CS7:
1735 		lcr_h = UART01x_LCRH_WLEN_7;
1736 		break;
1737 	default: // CS8
1738 		lcr_h = UART01x_LCRH_WLEN_8;
1739 		break;
1740 	}
1741 	if (termios->c_cflag & CSTOPB)
1742 		lcr_h |= UART01x_LCRH_STP2;
1743 	if (termios->c_cflag & PARENB) {
1744 		lcr_h |= UART01x_LCRH_PEN;
1745 		if (!(termios->c_cflag & PARODD))
1746 			lcr_h |= UART01x_LCRH_EPS;
1747 	}
1748 	if (uap->fifosize > 1)
1749 		lcr_h |= UART01x_LCRH_FEN;
1750 
1751 	spin_lock_irqsave(&port->lock, flags);
1752 
1753 	/*
1754 	 * Update the per-port timeout.
1755 	 */
1756 	uart_update_timeout(port, termios->c_cflag, baud);
1757 
1758 	port->read_status_mask = UART011_DR_OE | 255;
1759 	if (termios->c_iflag & INPCK)
1760 		port->read_status_mask |= UART011_DR_FE | UART011_DR_PE;
1761 	if (termios->c_iflag & (IGNBRK | BRKINT | PARMRK))
1762 		port->read_status_mask |= UART011_DR_BE;
1763 
1764 	/*
1765 	 * Characters to ignore
1766 	 */
1767 	port->ignore_status_mask = 0;
1768 	if (termios->c_iflag & IGNPAR)
1769 		port->ignore_status_mask |= UART011_DR_FE | UART011_DR_PE;
1770 	if (termios->c_iflag & IGNBRK) {
1771 		port->ignore_status_mask |= UART011_DR_BE;
1772 		/*
1773 		 * If we're ignoring parity and break indicators,
1774 		 * ignore overruns too (for real raw support).
1775 		 */
1776 		if (termios->c_iflag & IGNPAR)
1777 			port->ignore_status_mask |= UART011_DR_OE;
1778 	}
1779 
1780 	/*
1781 	 * Ignore all characters if CREAD is not set.
1782 	 */
1783 	if ((termios->c_cflag & CREAD) == 0)
1784 		port->ignore_status_mask |= UART_DUMMY_DR_RX;
1785 
1786 	if (UART_ENABLE_MS(port, termios->c_cflag))
1787 		pl011_enable_ms(port);
1788 
1789 	/* first, disable everything */
1790 	old_cr = readw(port->membase + UART011_CR);
1791 	writew(0, port->membase + UART011_CR);
1792 
1793 	if (termios->c_cflag & CRTSCTS) {
1794 		if (old_cr & UART011_CR_RTS)
1795 			old_cr |= UART011_CR_RTSEN;
1796 
1797 		old_cr |= UART011_CR_CTSEN;
1798 		uap->autorts = true;
1799 	} else {
1800 		old_cr &= ~(UART011_CR_CTSEN | UART011_CR_RTSEN);
1801 		uap->autorts = false;
1802 	}
1803 
1804 	if (uap->vendor->oversampling) {
1805 		if (baud > port->uartclk / 16)
1806 			old_cr |= ST_UART011_CR_OVSFACT;
1807 		else
1808 			old_cr &= ~ST_UART011_CR_OVSFACT;
1809 	}
1810 
1811 	/*
1812 	 * Workaround for the ST Micro oversampling variants to
1813 	 * increase the bitrate slightly, by lowering the divisor,
1814 	 * to avoid delayed sampling of start bit at high speeds,
1815 	 * else we see data corruption.
1816 	 */
1817 	if (uap->vendor->oversampling) {
1818 		if ((baud >= 3000000) && (baud < 3250000) && (quot > 1))
1819 			quot -= 1;
1820 		else if ((baud > 3250000) && (quot > 2))
1821 			quot -= 2;
1822 	}
1823 	/* Set baud rate */
1824 	writew(quot & 0x3f, port->membase + UART011_FBRD);
1825 	writew(quot >> 6, port->membase + UART011_IBRD);
1826 
1827 	/*
1828 	 * ----------v----------v----------v----------v-----
1829 	 * NOTE: lcrh_tx and lcrh_rx MUST BE WRITTEN AFTER
1830 	 * UART011_FBRD & UART011_IBRD.
1831 	 * ----------^----------^----------^----------^-----
1832 	 */
1833 	pl011_write_lcr_h(uap, lcr_h);
1834 	writew(old_cr, port->membase + UART011_CR);
1835 
1836 	spin_unlock_irqrestore(&port->lock, flags);
1837 }
1838 
1839 static const char *pl011_type(struct uart_port *port)
1840 {
1841 	struct uart_amba_port *uap =
1842 	    container_of(port, struct uart_amba_port, port);
1843 	return uap->port.type == PORT_AMBA ? uap->type : NULL;
1844 }
1845 
1846 /*
1847  * Release the memory region(s) being used by 'port'
1848  */
1849 static void pl011_release_port(struct uart_port *port)
1850 {
1851 	release_mem_region(port->mapbase, SZ_4K);
1852 }
1853 
1854 /*
1855  * Request the memory region(s) being used by 'port'
1856  */
1857 static int pl011_request_port(struct uart_port *port)
1858 {
1859 	return request_mem_region(port->mapbase, SZ_4K, "uart-pl011")
1860 			!= NULL ? 0 : -EBUSY;
1861 }
1862 
1863 /*
1864  * Configure/autoconfigure the port.
1865  */
1866 static void pl011_config_port(struct uart_port *port, int flags)
1867 {
1868 	if (flags & UART_CONFIG_TYPE) {
1869 		port->type = PORT_AMBA;
1870 		pl011_request_port(port);
1871 	}
1872 }
1873 
1874 /*
1875  * verify the new serial_struct (for TIOCSSERIAL).
1876  */
1877 static int pl011_verify_port(struct uart_port *port, struct serial_struct *ser)
1878 {
1879 	int ret = 0;
1880 	if (ser->type != PORT_UNKNOWN && ser->type != PORT_AMBA)
1881 		ret = -EINVAL;
1882 	if (ser->irq < 0 || ser->irq >= nr_irqs)
1883 		ret = -EINVAL;
1884 	if (ser->baud_base < 9600)
1885 		ret = -EINVAL;
1886 	return ret;
1887 }
1888 
1889 static struct uart_ops amba_pl011_pops = {
1890 	.tx_empty	= pl011_tx_empty,
1891 	.set_mctrl	= pl011_set_mctrl,
1892 	.get_mctrl	= pl011_get_mctrl,
1893 	.stop_tx	= pl011_stop_tx,
1894 	.start_tx	= pl011_start_tx,
1895 	.stop_rx	= pl011_stop_rx,
1896 	.enable_ms	= pl011_enable_ms,
1897 	.break_ctl	= pl011_break_ctl,
1898 	.startup	= pl011_startup,
1899 	.shutdown	= pl011_shutdown,
1900 	.flush_buffer	= pl011_dma_flush_buffer,
1901 	.set_termios	= pl011_set_termios,
1902 	.type		= pl011_type,
1903 	.release_port	= pl011_release_port,
1904 	.request_port	= pl011_request_port,
1905 	.config_port	= pl011_config_port,
1906 	.verify_port	= pl011_verify_port,
1907 #ifdef CONFIG_CONSOLE_POLL
1908 	.poll_init     = pl011_hwinit,
1909 	.poll_get_char = pl011_get_poll_char,
1910 	.poll_put_char = pl011_put_poll_char,
1911 #endif
1912 };
1913 
1914 static struct uart_amba_port *amba_ports[UART_NR];
1915 
1916 #ifdef CONFIG_SERIAL_AMBA_PL011_CONSOLE
1917 
1918 static void pl011_console_putchar(struct uart_port *port, int ch)
1919 {
1920 	struct uart_amba_port *uap =
1921 	    container_of(port, struct uart_amba_port, port);
1922 
1923 	while (readw(uap->port.membase + UART01x_FR) & UART01x_FR_TXFF)
1924 		barrier();
1925 	writew(ch, uap->port.membase + UART01x_DR);
1926 }
1927 
1928 static void
1929 pl011_console_write(struct console *co, const char *s, unsigned int count)
1930 {
1931 	struct uart_amba_port *uap = amba_ports[co->index];
1932 	unsigned int status, old_cr, new_cr;
1933 	unsigned long flags;
1934 	int locked = 1;
1935 
1936 	clk_enable(uap->clk);
1937 
1938 	local_irq_save(flags);
1939 	if (uap->port.sysrq)
1940 		locked = 0;
1941 	else if (oops_in_progress)
1942 		locked = spin_trylock(&uap->port.lock);
1943 	else
1944 		spin_lock(&uap->port.lock);
1945 
1946 	/*
1947 	 *	First save the CR then disable the interrupts
1948 	 */
1949 	old_cr = readw(uap->port.membase + UART011_CR);
1950 	new_cr = old_cr & ~UART011_CR_CTSEN;
1951 	new_cr |= UART01x_CR_UARTEN | UART011_CR_TXE;
1952 	writew(new_cr, uap->port.membase + UART011_CR);
1953 
1954 	uart_console_write(&uap->port, s, count, pl011_console_putchar);
1955 
1956 	/*
1957 	 *	Finally, wait for transmitter to become empty
1958 	 *	and restore the TCR
1959 	 */
1960 	do {
1961 		status = readw(uap->port.membase + UART01x_FR);
1962 	} while (status & UART01x_FR_BUSY);
1963 	writew(old_cr, uap->port.membase + UART011_CR);
1964 
1965 	if (locked)
1966 		spin_unlock(&uap->port.lock);
1967 	local_irq_restore(flags);
1968 
1969 	clk_disable(uap->clk);
1970 }
1971 
1972 static void __init
1973 pl011_console_get_options(struct uart_amba_port *uap, int *baud,
1974 			     int *parity, int *bits)
1975 {
1976 	if (readw(uap->port.membase + UART011_CR) & UART01x_CR_UARTEN) {
1977 		unsigned int lcr_h, ibrd, fbrd;
1978 
1979 		lcr_h = readw(uap->port.membase + uap->lcrh_tx);
1980 
1981 		*parity = 'n';
1982 		if (lcr_h & UART01x_LCRH_PEN) {
1983 			if (lcr_h & UART01x_LCRH_EPS)
1984 				*parity = 'e';
1985 			else
1986 				*parity = 'o';
1987 		}
1988 
1989 		if ((lcr_h & 0x60) == UART01x_LCRH_WLEN_7)
1990 			*bits = 7;
1991 		else
1992 			*bits = 8;
1993 
1994 		ibrd = readw(uap->port.membase + UART011_IBRD);
1995 		fbrd = readw(uap->port.membase + UART011_FBRD);
1996 
1997 		*baud = uap->port.uartclk * 4 / (64 * ibrd + fbrd);
1998 
1999 		if (uap->vendor->oversampling) {
2000 			if (readw(uap->port.membase + UART011_CR)
2001 				  & ST_UART011_CR_OVSFACT)
2002 				*baud *= 2;
2003 		}
2004 	}
2005 }
2006 
2007 static int __init pl011_console_setup(struct console *co, char *options)
2008 {
2009 	struct uart_amba_port *uap;
2010 	int baud = 38400;
2011 	int bits = 8;
2012 	int parity = 'n';
2013 	int flow = 'n';
2014 	int ret;
2015 
2016 	/*
2017 	 * Check whether an invalid uart number has been specified, and
2018 	 * if so, search for the first available port that does have
2019 	 * console support.
2020 	 */
2021 	if (co->index >= UART_NR)
2022 		co->index = 0;
2023 	uap = amba_ports[co->index];
2024 	if (!uap)
2025 		return -ENODEV;
2026 
2027 	/* Allow pins to be muxed in and configured */
2028 	pinctrl_pm_select_default_state(uap->port.dev);
2029 
2030 	ret = clk_prepare(uap->clk);
2031 	if (ret)
2032 		return ret;
2033 
2034 	if (dev_get_platdata(uap->port.dev)) {
2035 		struct amba_pl011_data *plat;
2036 
2037 		plat = dev_get_platdata(uap->port.dev);
2038 		if (plat->init)
2039 			plat->init();
2040 	}
2041 
2042 	uap->port.uartclk = clk_get_rate(uap->clk);
2043 
2044 	if (options)
2045 		uart_parse_options(options, &baud, &parity, &bits, &flow);
2046 	else
2047 		pl011_console_get_options(uap, &baud, &parity, &bits);
2048 
2049 	return uart_set_options(&uap->port, co, baud, parity, bits, flow);
2050 }
2051 
2052 static struct uart_driver amba_reg;
2053 static struct console amba_console = {
2054 	.name		= "ttyAMA",
2055 	.write		= pl011_console_write,
2056 	.device		= uart_console_device,
2057 	.setup		= pl011_console_setup,
2058 	.flags		= CON_PRINTBUFFER,
2059 	.index		= -1,
2060 	.data		= &amba_reg,
2061 };
2062 
2063 #define AMBA_CONSOLE	(&amba_console)
2064 
2065 static void pl011_putc(struct uart_port *port, int c)
2066 {
2067 	while (readl(port->membase + UART01x_FR) & UART01x_FR_TXFF)
2068 		;
2069 	writeb(c, port->membase + UART01x_DR);
2070 	while (readl(port->membase + UART01x_FR) & UART01x_FR_BUSY)
2071 		;
2072 }
2073 
2074 static void pl011_early_write(struct console *con, const char *s, unsigned n)
2075 {
2076 	struct earlycon_device *dev = con->data;
2077 
2078 	uart_console_write(&dev->port, s, n, pl011_putc);
2079 }
2080 
2081 static int __init pl011_early_console_setup(struct earlycon_device *device,
2082 					    const char *opt)
2083 {
2084 	if (!device->port.membase)
2085 		return -ENODEV;
2086 
2087 	device->con->write = pl011_early_write;
2088 	return 0;
2089 }
2090 EARLYCON_DECLARE(pl011, pl011_early_console_setup);
2091 OF_EARLYCON_DECLARE(pl011, "arm,pl011", pl011_early_console_setup);
2092 
2093 #else
2094 #define AMBA_CONSOLE	NULL
2095 #endif
2096 
2097 static struct uart_driver amba_reg = {
2098 	.owner			= THIS_MODULE,
2099 	.driver_name		= "ttyAMA",
2100 	.dev_name		= "ttyAMA",
2101 	.major			= SERIAL_AMBA_MAJOR,
2102 	.minor			= SERIAL_AMBA_MINOR,
2103 	.nr			= UART_NR,
2104 	.cons			= AMBA_CONSOLE,
2105 };
2106 
2107 static int pl011_probe_dt_alias(int index, struct device *dev)
2108 {
2109 	struct device_node *np;
2110 	static bool seen_dev_with_alias = false;
2111 	static bool seen_dev_without_alias = false;
2112 	int ret = index;
2113 
2114 	if (!IS_ENABLED(CONFIG_OF))
2115 		return ret;
2116 
2117 	np = dev->of_node;
2118 	if (!np)
2119 		return ret;
2120 
2121 	ret = of_alias_get_id(np, "serial");
2122 	if (IS_ERR_VALUE(ret)) {
2123 		seen_dev_without_alias = true;
2124 		ret = index;
2125 	} else {
2126 		seen_dev_with_alias = true;
2127 		if (ret >= ARRAY_SIZE(amba_ports) || amba_ports[ret] != NULL) {
2128 			dev_warn(dev, "requested serial port %d  not available.\n", ret);
2129 			ret = index;
2130 		}
2131 	}
2132 
2133 	if (seen_dev_with_alias && seen_dev_without_alias)
2134 		dev_warn(dev, "aliased and non-aliased serial devices found in device tree. Serial port enumeration may be unpredictable.\n");
2135 
2136 	return ret;
2137 }
2138 
2139 static int pl011_probe(struct amba_device *dev, const struct amba_id *id)
2140 {
2141 	struct uart_amba_port *uap;
2142 	struct vendor_data *vendor = id->data;
2143 	void __iomem *base;
2144 	int i, ret;
2145 
2146 	for (i = 0; i < ARRAY_SIZE(amba_ports); i++)
2147 		if (amba_ports[i] == NULL)
2148 			break;
2149 
2150 	if (i == ARRAY_SIZE(amba_ports))
2151 		return -EBUSY;
2152 
2153 	uap = devm_kzalloc(&dev->dev, sizeof(struct uart_amba_port),
2154 			   GFP_KERNEL);
2155 	if (uap == NULL)
2156 		return -ENOMEM;
2157 
2158 	i = pl011_probe_dt_alias(i, &dev->dev);
2159 
2160 	base = devm_ioremap(&dev->dev, dev->res.start,
2161 			    resource_size(&dev->res));
2162 	if (!base)
2163 		return -ENOMEM;
2164 
2165 	uap->clk = devm_clk_get(&dev->dev, NULL);
2166 	if (IS_ERR(uap->clk))
2167 		return PTR_ERR(uap->clk);
2168 
2169 	uap->vendor = vendor;
2170 	uap->lcrh_rx = vendor->lcrh_rx;
2171 	uap->lcrh_tx = vendor->lcrh_tx;
2172 	uap->old_cr = 0;
2173 	uap->fifosize = vendor->get_fifosize(dev);
2174 	uap->port.dev = &dev->dev;
2175 	uap->port.mapbase = dev->res.start;
2176 	uap->port.membase = base;
2177 	uap->port.iotype = UPIO_MEM;
2178 	uap->port.irq = dev->irq[0];
2179 	uap->port.fifosize = uap->fifosize;
2180 	uap->port.ops = &amba_pl011_pops;
2181 	uap->port.flags = UPF_BOOT_AUTOCONF;
2182 	uap->port.line = i;
2183 	pl011_dma_probe(&dev->dev, uap);
2184 
2185 	/* Ensure interrupts from this UART are masked and cleared */
2186 	writew(0, uap->port.membase + UART011_IMSC);
2187 	writew(0xffff, uap->port.membase + UART011_ICR);
2188 
2189 	snprintf(uap->type, sizeof(uap->type), "PL011 rev%u", amba_rev(dev));
2190 
2191 	amba_ports[i] = uap;
2192 
2193 	amba_set_drvdata(dev, uap);
2194 
2195 	if (!amba_reg.state) {
2196 		ret = uart_register_driver(&amba_reg);
2197 		if (ret < 0) {
2198 			pr_err("Failed to register AMBA-PL011 driver\n");
2199 			return ret;
2200 		}
2201 	}
2202 
2203 	ret = uart_add_one_port(&amba_reg, &uap->port);
2204 	if (ret) {
2205 		amba_ports[i] = NULL;
2206 		uart_unregister_driver(&amba_reg);
2207 		pl011_dma_remove(uap);
2208 	}
2209 
2210 	return ret;
2211 }
2212 
2213 static int pl011_remove(struct amba_device *dev)
2214 {
2215 	struct uart_amba_port *uap = amba_get_drvdata(dev);
2216 	bool busy = false;
2217 	int i;
2218 
2219 	uart_remove_one_port(&amba_reg, &uap->port);
2220 
2221 	for (i = 0; i < ARRAY_SIZE(amba_ports); i++)
2222 		if (amba_ports[i] == uap)
2223 			amba_ports[i] = NULL;
2224 		else if (amba_ports[i])
2225 			busy = true;
2226 
2227 	pl011_dma_remove(uap);
2228 	if (!busy)
2229 		uart_unregister_driver(&amba_reg);
2230 	return 0;
2231 }
2232 
2233 #ifdef CONFIG_PM_SLEEP
2234 static int pl011_suspend(struct device *dev)
2235 {
2236 	struct uart_amba_port *uap = dev_get_drvdata(dev);
2237 
2238 	if (!uap)
2239 		return -EINVAL;
2240 
2241 	return uart_suspend_port(&amba_reg, &uap->port);
2242 }
2243 
2244 static int pl011_resume(struct device *dev)
2245 {
2246 	struct uart_amba_port *uap = dev_get_drvdata(dev);
2247 
2248 	if (!uap)
2249 		return -EINVAL;
2250 
2251 	return uart_resume_port(&amba_reg, &uap->port);
2252 }
2253 #endif
2254 
2255 static SIMPLE_DEV_PM_OPS(pl011_dev_pm_ops, pl011_suspend, pl011_resume);
2256 
2257 static struct amba_id pl011_ids[] = {
2258 	{
2259 		.id	= 0x00041011,
2260 		.mask	= 0x000fffff,
2261 		.data	= &vendor_arm,
2262 	},
2263 	{
2264 		.id	= 0x00380802,
2265 		.mask	= 0x00ffffff,
2266 		.data	= &vendor_st,
2267 	},
2268 	{ 0, 0 },
2269 };
2270 
2271 MODULE_DEVICE_TABLE(amba, pl011_ids);
2272 
2273 static struct amba_driver pl011_driver = {
2274 	.drv = {
2275 		.name	= "uart-pl011",
2276 		.pm	= &pl011_dev_pm_ops,
2277 	},
2278 	.id_table	= pl011_ids,
2279 	.probe		= pl011_probe,
2280 	.remove		= pl011_remove,
2281 };
2282 
2283 static int __init pl011_init(void)
2284 {
2285 	printk(KERN_INFO "Serial: AMBA PL011 UART driver\n");
2286 
2287 	return amba_driver_register(&pl011_driver);
2288 }
2289 
2290 static void __exit pl011_exit(void)
2291 {
2292 	amba_driver_unregister(&pl011_driver);
2293 }
2294 
2295 /*
2296  * While this can be a module, if builtin it's most likely the console
2297  * So let's leave module_exit but move module_init to an earlier place
2298  */
2299 arch_initcall(pl011_init);
2300 module_exit(pl011_exit);
2301 
2302 MODULE_AUTHOR("ARM Ltd/Deep Blue Solutions Ltd");
2303 MODULE_DESCRIPTION("ARM AMBA serial port driver");
2304 MODULE_LICENSE("GPL");
2305