xref: /openbmc/linux/drivers/tty/serial/amba-pl011.c (revision 63dc02bd)
1 /*
2  *  Driver for AMBA serial ports
3  *
4  *  Based on drivers/char/serial.c, by Linus Torvalds, Theodore Ts'o.
5  *
6  *  Copyright 1999 ARM Limited
7  *  Copyright (C) 2000 Deep Blue Solutions Ltd.
8  *  Copyright (C) 2010 ST-Ericsson SA
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License as published by
12  * the Free Software Foundation; either version 2 of the License, or
13  * (at your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18  * GNU General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public License
21  * along with this program; if not, write to the Free Software
22  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
23  *
24  * This is a generic driver for ARM AMBA-type serial ports.  They
25  * have a lot of 16550-like features, but are not register compatible.
26  * Note that although they do have CTS, DCD and DSR inputs, they do
27  * not have an RI input, nor do they have DTR or RTS outputs.  If
28  * required, these have to be supplied via some other means (eg, GPIO)
29  * and hooked into this driver.
30  */
31 
32 #if defined(CONFIG_SERIAL_AMBA_PL011_CONSOLE) && defined(CONFIG_MAGIC_SYSRQ)
33 #define SUPPORT_SYSRQ
34 #endif
35 
36 #include <linux/module.h>
37 #include <linux/ioport.h>
38 #include <linux/init.h>
39 #include <linux/console.h>
40 #include <linux/sysrq.h>
41 #include <linux/device.h>
42 #include <linux/tty.h>
43 #include <linux/tty_flip.h>
44 #include <linux/serial_core.h>
45 #include <linux/serial.h>
46 #include <linux/amba/bus.h>
47 #include <linux/amba/serial.h>
48 #include <linux/clk.h>
49 #include <linux/slab.h>
50 #include <linux/dmaengine.h>
51 #include <linux/dma-mapping.h>
52 #include <linux/scatterlist.h>
53 #include <linux/delay.h>
54 #include <linux/types.h>
55 
56 #include <asm/io.h>
57 #include <asm/sizes.h>
58 
59 #define UART_NR			14
60 
61 #define SERIAL_AMBA_MAJOR	204
62 #define SERIAL_AMBA_MINOR	64
63 #define SERIAL_AMBA_NR		UART_NR
64 
65 #define AMBA_ISR_PASS_LIMIT	256
66 
67 #define UART_DR_ERROR		(UART011_DR_OE|UART011_DR_BE|UART011_DR_PE|UART011_DR_FE)
68 #define UART_DUMMY_DR_RX	(1 << 16)
69 
70 
71 #define UART_WA_SAVE_NR 14
72 
73 static void pl011_lockup_wa(unsigned long data);
74 static const u32 uart_wa_reg[UART_WA_SAVE_NR] = {
75 	ST_UART011_DMAWM,
76 	ST_UART011_TIMEOUT,
77 	ST_UART011_LCRH_RX,
78 	UART011_IBRD,
79 	UART011_FBRD,
80 	ST_UART011_LCRH_TX,
81 	UART011_IFLS,
82 	ST_UART011_XFCR,
83 	ST_UART011_XON1,
84 	ST_UART011_XON2,
85 	ST_UART011_XOFF1,
86 	ST_UART011_XOFF2,
87 	UART011_CR,
88 	UART011_IMSC
89 };
90 
91 static u32 uart_wa_regdata[UART_WA_SAVE_NR];
92 static DECLARE_TASKLET(pl011_lockup_tlet, pl011_lockup_wa, 0);
93 
94 /* There is by now at least one vendor with differing details, so handle it */
95 struct vendor_data {
96 	unsigned int		ifls;
97 	unsigned int		fifosize;
98 	unsigned int		lcrh_tx;
99 	unsigned int		lcrh_rx;
100 	bool			oversampling;
101 	bool			interrupt_may_hang;   /* vendor-specific */
102 	bool			dma_threshold;
103 };
104 
105 static struct vendor_data vendor_arm = {
106 	.ifls			= UART011_IFLS_RX4_8|UART011_IFLS_TX4_8,
107 	.fifosize		= 16,
108 	.lcrh_tx		= UART011_LCRH,
109 	.lcrh_rx		= UART011_LCRH,
110 	.oversampling		= false,
111 	.dma_threshold		= false,
112 };
113 
114 static struct vendor_data vendor_st = {
115 	.ifls			= UART011_IFLS_RX_HALF|UART011_IFLS_TX_HALF,
116 	.fifosize		= 64,
117 	.lcrh_tx		= ST_UART011_LCRH_TX,
118 	.lcrh_rx		= ST_UART011_LCRH_RX,
119 	.oversampling		= true,
120 	.interrupt_may_hang	= true,
121 	.dma_threshold		= true,
122 };
123 
124 static struct uart_amba_port *amba_ports[UART_NR];
125 
126 /* Deals with DMA transactions */
127 
128 struct pl011_sgbuf {
129 	struct scatterlist sg;
130 	char *buf;
131 };
132 
133 struct pl011_dmarx_data {
134 	struct dma_chan		*chan;
135 	struct completion	complete;
136 	bool			use_buf_b;
137 	struct pl011_sgbuf	sgbuf_a;
138 	struct pl011_sgbuf	sgbuf_b;
139 	dma_cookie_t		cookie;
140 	bool			running;
141 };
142 
143 struct pl011_dmatx_data {
144 	struct dma_chan		*chan;
145 	struct scatterlist	sg;
146 	char			*buf;
147 	bool			queued;
148 };
149 
150 /*
151  * We wrap our port structure around the generic uart_port.
152  */
153 struct uart_amba_port {
154 	struct uart_port	port;
155 	struct clk		*clk;
156 	const struct vendor_data *vendor;
157 	unsigned int		dmacr;		/* dma control reg */
158 	unsigned int		im;		/* interrupt mask */
159 	unsigned int		old_status;
160 	unsigned int		fifosize;	/* vendor-specific */
161 	unsigned int		lcrh_tx;	/* vendor-specific */
162 	unsigned int		lcrh_rx;	/* vendor-specific */
163 	unsigned int		old_cr;		/* state during shutdown */
164 	bool			autorts;
165 	char			type[12];
166 	bool			interrupt_may_hang; /* vendor-specific */
167 #ifdef CONFIG_DMA_ENGINE
168 	/* DMA stuff */
169 	bool			using_tx_dma;
170 	bool			using_rx_dma;
171 	struct pl011_dmarx_data dmarx;
172 	struct pl011_dmatx_data	dmatx;
173 #endif
174 };
175 
176 /*
177  * Reads up to 256 characters from the FIFO or until it's empty and
178  * inserts them into the TTY layer. Returns the number of characters
179  * read from the FIFO.
180  */
181 static int pl011_fifo_to_tty(struct uart_amba_port *uap)
182 {
183 	u16 status, ch;
184 	unsigned int flag, max_count = 256;
185 	int fifotaken = 0;
186 
187 	while (max_count--) {
188 		status = readw(uap->port.membase + UART01x_FR);
189 		if (status & UART01x_FR_RXFE)
190 			break;
191 
192 		/* Take chars from the FIFO and update status */
193 		ch = readw(uap->port.membase + UART01x_DR) |
194 			UART_DUMMY_DR_RX;
195 		flag = TTY_NORMAL;
196 		uap->port.icount.rx++;
197 		fifotaken++;
198 
199 		if (unlikely(ch & UART_DR_ERROR)) {
200 			if (ch & UART011_DR_BE) {
201 				ch &= ~(UART011_DR_FE | UART011_DR_PE);
202 				uap->port.icount.brk++;
203 				if (uart_handle_break(&uap->port))
204 					continue;
205 			} else if (ch & UART011_DR_PE)
206 				uap->port.icount.parity++;
207 			else if (ch & UART011_DR_FE)
208 				uap->port.icount.frame++;
209 			if (ch & UART011_DR_OE)
210 				uap->port.icount.overrun++;
211 
212 			ch &= uap->port.read_status_mask;
213 
214 			if (ch & UART011_DR_BE)
215 				flag = TTY_BREAK;
216 			else if (ch & UART011_DR_PE)
217 				flag = TTY_PARITY;
218 			else if (ch & UART011_DR_FE)
219 				flag = TTY_FRAME;
220 		}
221 
222 		if (uart_handle_sysrq_char(&uap->port, ch & 255))
223 			continue;
224 
225 		uart_insert_char(&uap->port, ch, UART011_DR_OE, ch, flag);
226 	}
227 
228 	return fifotaken;
229 }
230 
231 
232 /*
233  * All the DMA operation mode stuff goes inside this ifdef.
234  * This assumes that you have a generic DMA device interface,
235  * no custom DMA interfaces are supported.
236  */
237 #ifdef CONFIG_DMA_ENGINE
238 
239 #define PL011_DMA_BUFFER_SIZE PAGE_SIZE
240 
241 static int pl011_sgbuf_init(struct dma_chan *chan, struct pl011_sgbuf *sg,
242 	enum dma_data_direction dir)
243 {
244 	sg->buf = kmalloc(PL011_DMA_BUFFER_SIZE, GFP_KERNEL);
245 	if (!sg->buf)
246 		return -ENOMEM;
247 
248 	sg_init_one(&sg->sg, sg->buf, PL011_DMA_BUFFER_SIZE);
249 
250 	if (dma_map_sg(chan->device->dev, &sg->sg, 1, dir) != 1) {
251 		kfree(sg->buf);
252 		return -EINVAL;
253 	}
254 	return 0;
255 }
256 
257 static void pl011_sgbuf_free(struct dma_chan *chan, struct pl011_sgbuf *sg,
258 	enum dma_data_direction dir)
259 {
260 	if (sg->buf) {
261 		dma_unmap_sg(chan->device->dev, &sg->sg, 1, dir);
262 		kfree(sg->buf);
263 	}
264 }
265 
266 static void pl011_dma_probe_initcall(struct uart_amba_port *uap)
267 {
268 	/* DMA is the sole user of the platform data right now */
269 	struct amba_pl011_data *plat = uap->port.dev->platform_data;
270 	struct dma_slave_config tx_conf = {
271 		.dst_addr = uap->port.mapbase + UART01x_DR,
272 		.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
273 		.direction = DMA_MEM_TO_DEV,
274 		.dst_maxburst = uap->fifosize >> 1,
275 		.device_fc = false,
276 	};
277 	struct dma_chan *chan;
278 	dma_cap_mask_t mask;
279 
280 	/* We need platform data */
281 	if (!plat || !plat->dma_filter) {
282 		dev_info(uap->port.dev, "no DMA platform data\n");
283 		return;
284 	}
285 
286 	/* Try to acquire a generic DMA engine slave TX channel */
287 	dma_cap_zero(mask);
288 	dma_cap_set(DMA_SLAVE, mask);
289 
290 	chan = dma_request_channel(mask, plat->dma_filter, plat->dma_tx_param);
291 	if (!chan) {
292 		dev_err(uap->port.dev, "no TX DMA channel!\n");
293 		return;
294 	}
295 
296 	dmaengine_slave_config(chan, &tx_conf);
297 	uap->dmatx.chan = chan;
298 
299 	dev_info(uap->port.dev, "DMA channel TX %s\n",
300 		 dma_chan_name(uap->dmatx.chan));
301 
302 	/* Optionally make use of an RX channel as well */
303 	if (plat->dma_rx_param) {
304 		struct dma_slave_config rx_conf = {
305 			.src_addr = uap->port.mapbase + UART01x_DR,
306 			.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
307 			.direction = DMA_DEV_TO_MEM,
308 			.src_maxburst = uap->fifosize >> 1,
309 			.device_fc = false,
310 		};
311 
312 		chan = dma_request_channel(mask, plat->dma_filter, plat->dma_rx_param);
313 		if (!chan) {
314 			dev_err(uap->port.dev, "no RX DMA channel!\n");
315 			return;
316 		}
317 
318 		dmaengine_slave_config(chan, &rx_conf);
319 		uap->dmarx.chan = chan;
320 
321 		dev_info(uap->port.dev, "DMA channel RX %s\n",
322 			 dma_chan_name(uap->dmarx.chan));
323 	}
324 }
325 
326 #ifndef MODULE
327 /*
328  * Stack up the UARTs and let the above initcall be done at device
329  * initcall time, because the serial driver is called as an arch
330  * initcall, and at this time the DMA subsystem is not yet registered.
331  * At this point the driver will switch over to using DMA where desired.
332  */
333 struct dma_uap {
334 	struct list_head node;
335 	struct uart_amba_port *uap;
336 };
337 
338 static LIST_HEAD(pl011_dma_uarts);
339 
340 static int __init pl011_dma_initcall(void)
341 {
342 	struct list_head *node, *tmp;
343 
344 	list_for_each_safe(node, tmp, &pl011_dma_uarts) {
345 		struct dma_uap *dmau = list_entry(node, struct dma_uap, node);
346 		pl011_dma_probe_initcall(dmau->uap);
347 		list_del(node);
348 		kfree(dmau);
349 	}
350 	return 0;
351 }
352 
353 device_initcall(pl011_dma_initcall);
354 
355 static void pl011_dma_probe(struct uart_amba_port *uap)
356 {
357 	struct dma_uap *dmau = kzalloc(sizeof(struct dma_uap), GFP_KERNEL);
358 	if (dmau) {
359 		dmau->uap = uap;
360 		list_add_tail(&dmau->node, &pl011_dma_uarts);
361 	}
362 }
363 #else
364 static void pl011_dma_probe(struct uart_amba_port *uap)
365 {
366 	pl011_dma_probe_initcall(uap);
367 }
368 #endif
369 
370 static void pl011_dma_remove(struct uart_amba_port *uap)
371 {
372 	/* TODO: remove the initcall if it has not yet executed */
373 	if (uap->dmatx.chan)
374 		dma_release_channel(uap->dmatx.chan);
375 	if (uap->dmarx.chan)
376 		dma_release_channel(uap->dmarx.chan);
377 }
378 
379 /* Forward declare this for the refill routine */
380 static int pl011_dma_tx_refill(struct uart_amba_port *uap);
381 
382 /*
383  * The current DMA TX buffer has been sent.
384  * Try to queue up another DMA buffer.
385  */
386 static void pl011_dma_tx_callback(void *data)
387 {
388 	struct uart_amba_port *uap = data;
389 	struct pl011_dmatx_data *dmatx = &uap->dmatx;
390 	unsigned long flags;
391 	u16 dmacr;
392 
393 	spin_lock_irqsave(&uap->port.lock, flags);
394 	if (uap->dmatx.queued)
395 		dma_unmap_sg(dmatx->chan->device->dev, &dmatx->sg, 1,
396 			     DMA_TO_DEVICE);
397 
398 	dmacr = uap->dmacr;
399 	uap->dmacr = dmacr & ~UART011_TXDMAE;
400 	writew(uap->dmacr, uap->port.membase + UART011_DMACR);
401 
402 	/*
403 	 * If TX DMA was disabled, it means that we've stopped the DMA for
404 	 * some reason (eg, XOFF received, or we want to send an X-char.)
405 	 *
406 	 * Note: we need to be careful here of a potential race between DMA
407 	 * and the rest of the driver - if the driver disables TX DMA while
408 	 * a TX buffer completing, we must update the tx queued status to
409 	 * get further refills (hence we check dmacr).
410 	 */
411 	if (!(dmacr & UART011_TXDMAE) || uart_tx_stopped(&uap->port) ||
412 	    uart_circ_empty(&uap->port.state->xmit)) {
413 		uap->dmatx.queued = false;
414 		spin_unlock_irqrestore(&uap->port.lock, flags);
415 		return;
416 	}
417 
418 	if (pl011_dma_tx_refill(uap) <= 0) {
419 		/*
420 		 * We didn't queue a DMA buffer for some reason, but we
421 		 * have data pending to be sent.  Re-enable the TX IRQ.
422 		 */
423 		uap->im |= UART011_TXIM;
424 		writew(uap->im, uap->port.membase + UART011_IMSC);
425 	}
426 	spin_unlock_irqrestore(&uap->port.lock, flags);
427 }
428 
429 /*
430  * Try to refill the TX DMA buffer.
431  * Locking: called with port lock held and IRQs disabled.
432  * Returns:
433  *   1 if we queued up a TX DMA buffer.
434  *   0 if we didn't want to handle this by DMA
435  *  <0 on error
436  */
437 static int pl011_dma_tx_refill(struct uart_amba_port *uap)
438 {
439 	struct pl011_dmatx_data *dmatx = &uap->dmatx;
440 	struct dma_chan *chan = dmatx->chan;
441 	struct dma_device *dma_dev = chan->device;
442 	struct dma_async_tx_descriptor *desc;
443 	struct circ_buf *xmit = &uap->port.state->xmit;
444 	unsigned int count;
445 
446 	/*
447 	 * Try to avoid the overhead involved in using DMA if the
448 	 * transaction fits in the first half of the FIFO, by using
449 	 * the standard interrupt handling.  This ensures that we
450 	 * issue a uart_write_wakeup() at the appropriate time.
451 	 */
452 	count = uart_circ_chars_pending(xmit);
453 	if (count < (uap->fifosize >> 1)) {
454 		uap->dmatx.queued = false;
455 		return 0;
456 	}
457 
458 	/*
459 	 * Bodge: don't send the last character by DMA, as this
460 	 * will prevent XON from notifying us to restart DMA.
461 	 */
462 	count -= 1;
463 
464 	/* Else proceed to copy the TX chars to the DMA buffer and fire DMA */
465 	if (count > PL011_DMA_BUFFER_SIZE)
466 		count = PL011_DMA_BUFFER_SIZE;
467 
468 	if (xmit->tail < xmit->head)
469 		memcpy(&dmatx->buf[0], &xmit->buf[xmit->tail], count);
470 	else {
471 		size_t first = UART_XMIT_SIZE - xmit->tail;
472 		size_t second = xmit->head;
473 
474 		memcpy(&dmatx->buf[0], &xmit->buf[xmit->tail], first);
475 		if (second)
476 			memcpy(&dmatx->buf[first], &xmit->buf[0], second);
477 	}
478 
479 	dmatx->sg.length = count;
480 
481 	if (dma_map_sg(dma_dev->dev, &dmatx->sg, 1, DMA_TO_DEVICE) != 1) {
482 		uap->dmatx.queued = false;
483 		dev_dbg(uap->port.dev, "unable to map TX DMA\n");
484 		return -EBUSY;
485 	}
486 
487 	desc = dmaengine_prep_slave_sg(chan, &dmatx->sg, 1, DMA_MEM_TO_DEV,
488 					     DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
489 	if (!desc) {
490 		dma_unmap_sg(dma_dev->dev, &dmatx->sg, 1, DMA_TO_DEVICE);
491 		uap->dmatx.queued = false;
492 		/*
493 		 * If DMA cannot be used right now, we complete this
494 		 * transaction via IRQ and let the TTY layer retry.
495 		 */
496 		dev_dbg(uap->port.dev, "TX DMA busy\n");
497 		return -EBUSY;
498 	}
499 
500 	/* Some data to go along to the callback */
501 	desc->callback = pl011_dma_tx_callback;
502 	desc->callback_param = uap;
503 
504 	/* All errors should happen at prepare time */
505 	dmaengine_submit(desc);
506 
507 	/* Fire the DMA transaction */
508 	dma_dev->device_issue_pending(chan);
509 
510 	uap->dmacr |= UART011_TXDMAE;
511 	writew(uap->dmacr, uap->port.membase + UART011_DMACR);
512 	uap->dmatx.queued = true;
513 
514 	/*
515 	 * Now we know that DMA will fire, so advance the ring buffer
516 	 * with the stuff we just dispatched.
517 	 */
518 	xmit->tail = (xmit->tail + count) & (UART_XMIT_SIZE - 1);
519 	uap->port.icount.tx += count;
520 
521 	if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
522 		uart_write_wakeup(&uap->port);
523 
524 	return 1;
525 }
526 
527 /*
528  * We received a transmit interrupt without a pending X-char but with
529  * pending characters.
530  * Locking: called with port lock held and IRQs disabled.
531  * Returns:
532  *   false if we want to use PIO to transmit
533  *   true if we queued a DMA buffer
534  */
535 static bool pl011_dma_tx_irq(struct uart_amba_port *uap)
536 {
537 	if (!uap->using_tx_dma)
538 		return false;
539 
540 	/*
541 	 * If we already have a TX buffer queued, but received a
542 	 * TX interrupt, it will be because we've just sent an X-char.
543 	 * Ensure the TX DMA is enabled and the TX IRQ is disabled.
544 	 */
545 	if (uap->dmatx.queued) {
546 		uap->dmacr |= UART011_TXDMAE;
547 		writew(uap->dmacr, uap->port.membase + UART011_DMACR);
548 		uap->im &= ~UART011_TXIM;
549 		writew(uap->im, uap->port.membase + UART011_IMSC);
550 		return true;
551 	}
552 
553 	/*
554 	 * We don't have a TX buffer queued, so try to queue one.
555 	 * If we successfully queued a buffer, mask the TX IRQ.
556 	 */
557 	if (pl011_dma_tx_refill(uap) > 0) {
558 		uap->im &= ~UART011_TXIM;
559 		writew(uap->im, uap->port.membase + UART011_IMSC);
560 		return true;
561 	}
562 	return false;
563 }
564 
565 /*
566  * Stop the DMA transmit (eg, due to received XOFF).
567  * Locking: called with port lock held and IRQs disabled.
568  */
569 static inline void pl011_dma_tx_stop(struct uart_amba_port *uap)
570 {
571 	if (uap->dmatx.queued) {
572 		uap->dmacr &= ~UART011_TXDMAE;
573 		writew(uap->dmacr, uap->port.membase + UART011_DMACR);
574 	}
575 }
576 
577 /*
578  * Try to start a DMA transmit, or in the case of an XON/OFF
579  * character queued for send, try to get that character out ASAP.
580  * Locking: called with port lock held and IRQs disabled.
581  * Returns:
582  *   false if we want the TX IRQ to be enabled
583  *   true if we have a buffer queued
584  */
585 static inline bool pl011_dma_tx_start(struct uart_amba_port *uap)
586 {
587 	u16 dmacr;
588 
589 	if (!uap->using_tx_dma)
590 		return false;
591 
592 	if (!uap->port.x_char) {
593 		/* no X-char, try to push chars out in DMA mode */
594 		bool ret = true;
595 
596 		if (!uap->dmatx.queued) {
597 			if (pl011_dma_tx_refill(uap) > 0) {
598 				uap->im &= ~UART011_TXIM;
599 				ret = true;
600 			} else {
601 				uap->im |= UART011_TXIM;
602 				ret = false;
603 			}
604 			writew(uap->im, uap->port.membase + UART011_IMSC);
605 		} else if (!(uap->dmacr & UART011_TXDMAE)) {
606 			uap->dmacr |= UART011_TXDMAE;
607 			writew(uap->dmacr,
608 				       uap->port.membase + UART011_DMACR);
609 		}
610 		return ret;
611 	}
612 
613 	/*
614 	 * We have an X-char to send.  Disable DMA to prevent it loading
615 	 * the TX fifo, and then see if we can stuff it into the FIFO.
616 	 */
617 	dmacr = uap->dmacr;
618 	uap->dmacr &= ~UART011_TXDMAE;
619 	writew(uap->dmacr, uap->port.membase + UART011_DMACR);
620 
621 	if (readw(uap->port.membase + UART01x_FR) & UART01x_FR_TXFF) {
622 		/*
623 		 * No space in the FIFO, so enable the transmit interrupt
624 		 * so we know when there is space.  Note that once we've
625 		 * loaded the character, we should just re-enable DMA.
626 		 */
627 		return false;
628 	}
629 
630 	writew(uap->port.x_char, uap->port.membase + UART01x_DR);
631 	uap->port.icount.tx++;
632 	uap->port.x_char = 0;
633 
634 	/* Success - restore the DMA state */
635 	uap->dmacr = dmacr;
636 	writew(dmacr, uap->port.membase + UART011_DMACR);
637 
638 	return true;
639 }
640 
641 /*
642  * Flush the transmit buffer.
643  * Locking: called with port lock held and IRQs disabled.
644  */
645 static void pl011_dma_flush_buffer(struct uart_port *port)
646 {
647 	struct uart_amba_port *uap = (struct uart_amba_port *)port;
648 
649 	if (!uap->using_tx_dma)
650 		return;
651 
652 	/* Avoid deadlock with the DMA engine callback */
653 	spin_unlock(&uap->port.lock);
654 	dmaengine_terminate_all(uap->dmatx.chan);
655 	spin_lock(&uap->port.lock);
656 	if (uap->dmatx.queued) {
657 		dma_unmap_sg(uap->dmatx.chan->device->dev, &uap->dmatx.sg, 1,
658 			     DMA_TO_DEVICE);
659 		uap->dmatx.queued = false;
660 		uap->dmacr &= ~UART011_TXDMAE;
661 		writew(uap->dmacr, uap->port.membase + UART011_DMACR);
662 	}
663 }
664 
665 static void pl011_dma_rx_callback(void *data);
666 
667 static int pl011_dma_rx_trigger_dma(struct uart_amba_port *uap)
668 {
669 	struct dma_chan *rxchan = uap->dmarx.chan;
670 	struct pl011_dmarx_data *dmarx = &uap->dmarx;
671 	struct dma_async_tx_descriptor *desc;
672 	struct pl011_sgbuf *sgbuf;
673 
674 	if (!rxchan)
675 		return -EIO;
676 
677 	/* Start the RX DMA job */
678 	sgbuf = uap->dmarx.use_buf_b ?
679 		&uap->dmarx.sgbuf_b : &uap->dmarx.sgbuf_a;
680 	desc = dmaengine_prep_slave_sg(rxchan, &sgbuf->sg, 1,
681 					DMA_DEV_TO_MEM,
682 					DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
683 	/*
684 	 * If the DMA engine is busy and cannot prepare a
685 	 * channel, no big deal, the driver will fall back
686 	 * to interrupt mode as a result of this error code.
687 	 */
688 	if (!desc) {
689 		uap->dmarx.running = false;
690 		dmaengine_terminate_all(rxchan);
691 		return -EBUSY;
692 	}
693 
694 	/* Some data to go along to the callback */
695 	desc->callback = pl011_dma_rx_callback;
696 	desc->callback_param = uap;
697 	dmarx->cookie = dmaengine_submit(desc);
698 	dma_async_issue_pending(rxchan);
699 
700 	uap->dmacr |= UART011_RXDMAE;
701 	writew(uap->dmacr, uap->port.membase + UART011_DMACR);
702 	uap->dmarx.running = true;
703 
704 	uap->im &= ~UART011_RXIM;
705 	writew(uap->im, uap->port.membase + UART011_IMSC);
706 
707 	return 0;
708 }
709 
710 /*
711  * This is called when either the DMA job is complete, or
712  * the FIFO timeout interrupt occurred. This must be called
713  * with the port spinlock uap->port.lock held.
714  */
715 static void pl011_dma_rx_chars(struct uart_amba_port *uap,
716 			       u32 pending, bool use_buf_b,
717 			       bool readfifo)
718 {
719 	struct tty_struct *tty = uap->port.state->port.tty;
720 	struct pl011_sgbuf *sgbuf = use_buf_b ?
721 		&uap->dmarx.sgbuf_b : &uap->dmarx.sgbuf_a;
722 	struct device *dev = uap->dmarx.chan->device->dev;
723 	int dma_count = 0;
724 	u32 fifotaken = 0; /* only used for vdbg() */
725 
726 	/* Pick everything from the DMA first */
727 	if (pending) {
728 		/* Sync in buffer */
729 		dma_sync_sg_for_cpu(dev, &sgbuf->sg, 1, DMA_FROM_DEVICE);
730 
731 		/*
732 		 * First take all chars in the DMA pipe, then look in the FIFO.
733 		 * Note that tty_insert_flip_buf() tries to take as many chars
734 		 * as it can.
735 		 */
736 		dma_count = tty_insert_flip_string(uap->port.state->port.tty,
737 						   sgbuf->buf, pending);
738 
739 		/* Return buffer to device */
740 		dma_sync_sg_for_device(dev, &sgbuf->sg, 1, DMA_FROM_DEVICE);
741 
742 		uap->port.icount.rx += dma_count;
743 		if (dma_count < pending)
744 			dev_warn(uap->port.dev,
745 				 "couldn't insert all characters (TTY is full?)\n");
746 	}
747 
748 	/*
749 	 * Only continue with trying to read the FIFO if all DMA chars have
750 	 * been taken first.
751 	 */
752 	if (dma_count == pending && readfifo) {
753 		/* Clear any error flags */
754 		writew(UART011_OEIS | UART011_BEIS | UART011_PEIS | UART011_FEIS,
755 		       uap->port.membase + UART011_ICR);
756 
757 		/*
758 		 * If we read all the DMA'd characters, and we had an
759 		 * incomplete buffer, that could be due to an rx error, or
760 		 * maybe we just timed out. Read any pending chars and check
761 		 * the error status.
762 		 *
763 		 * Error conditions will only occur in the FIFO, these will
764 		 * trigger an immediate interrupt and stop the DMA job, so we
765 		 * will always find the error in the FIFO, never in the DMA
766 		 * buffer.
767 		 */
768 		fifotaken = pl011_fifo_to_tty(uap);
769 	}
770 
771 	spin_unlock(&uap->port.lock);
772 	dev_vdbg(uap->port.dev,
773 		 "Took %d chars from DMA buffer and %d chars from the FIFO\n",
774 		 dma_count, fifotaken);
775 	tty_flip_buffer_push(tty);
776 	spin_lock(&uap->port.lock);
777 }
778 
779 static void pl011_dma_rx_irq(struct uart_amba_port *uap)
780 {
781 	struct pl011_dmarx_data *dmarx = &uap->dmarx;
782 	struct dma_chan *rxchan = dmarx->chan;
783 	struct pl011_sgbuf *sgbuf = dmarx->use_buf_b ?
784 		&dmarx->sgbuf_b : &dmarx->sgbuf_a;
785 	size_t pending;
786 	struct dma_tx_state state;
787 	enum dma_status dmastat;
788 
789 	/*
790 	 * Pause the transfer so we can trust the current counter,
791 	 * do this before we pause the PL011 block, else we may
792 	 * overflow the FIFO.
793 	 */
794 	if (dmaengine_pause(rxchan))
795 		dev_err(uap->port.dev, "unable to pause DMA transfer\n");
796 	dmastat = rxchan->device->device_tx_status(rxchan,
797 						   dmarx->cookie, &state);
798 	if (dmastat != DMA_PAUSED)
799 		dev_err(uap->port.dev, "unable to pause DMA transfer\n");
800 
801 	/* Disable RX DMA - incoming data will wait in the FIFO */
802 	uap->dmacr &= ~UART011_RXDMAE;
803 	writew(uap->dmacr, uap->port.membase + UART011_DMACR);
804 	uap->dmarx.running = false;
805 
806 	pending = sgbuf->sg.length - state.residue;
807 	BUG_ON(pending > PL011_DMA_BUFFER_SIZE);
808 	/* Then we terminate the transfer - we now know our residue */
809 	dmaengine_terminate_all(rxchan);
810 
811 	/*
812 	 * This will take the chars we have so far and insert
813 	 * into the framework.
814 	 */
815 	pl011_dma_rx_chars(uap, pending, dmarx->use_buf_b, true);
816 
817 	/* Switch buffer & re-trigger DMA job */
818 	dmarx->use_buf_b = !dmarx->use_buf_b;
819 	if (pl011_dma_rx_trigger_dma(uap)) {
820 		dev_dbg(uap->port.dev, "could not retrigger RX DMA job "
821 			"fall back to interrupt mode\n");
822 		uap->im |= UART011_RXIM;
823 		writew(uap->im, uap->port.membase + UART011_IMSC);
824 	}
825 }
826 
827 static void pl011_dma_rx_callback(void *data)
828 {
829 	struct uart_amba_port *uap = data;
830 	struct pl011_dmarx_data *dmarx = &uap->dmarx;
831 	struct dma_chan *rxchan = dmarx->chan;
832 	bool lastbuf = dmarx->use_buf_b;
833 	struct pl011_sgbuf *sgbuf = dmarx->use_buf_b ?
834 		&dmarx->sgbuf_b : &dmarx->sgbuf_a;
835 	size_t pending;
836 	struct dma_tx_state state;
837 	int ret;
838 
839 	/*
840 	 * This completion interrupt occurs typically when the
841 	 * RX buffer is totally stuffed but no timeout has yet
842 	 * occurred. When that happens, we just want the RX
843 	 * routine to flush out the secondary DMA buffer while
844 	 * we immediately trigger the next DMA job.
845 	 */
846 	spin_lock_irq(&uap->port.lock);
847 	/*
848 	 * Rx data can be taken by the UART interrupts during
849 	 * the DMA irq handler. So we check the residue here.
850 	 */
851 	rxchan->device->device_tx_status(rxchan, dmarx->cookie, &state);
852 	pending = sgbuf->sg.length - state.residue;
853 	BUG_ON(pending > PL011_DMA_BUFFER_SIZE);
854 	/* Then we terminate the transfer - we now know our residue */
855 	dmaengine_terminate_all(rxchan);
856 
857 	uap->dmarx.running = false;
858 	dmarx->use_buf_b = !lastbuf;
859 	ret = pl011_dma_rx_trigger_dma(uap);
860 
861 	pl011_dma_rx_chars(uap, pending, lastbuf, false);
862 	spin_unlock_irq(&uap->port.lock);
863 	/*
864 	 * Do this check after we picked the DMA chars so we don't
865 	 * get some IRQ immediately from RX.
866 	 */
867 	if (ret) {
868 		dev_dbg(uap->port.dev, "could not retrigger RX DMA job "
869 			"fall back to interrupt mode\n");
870 		uap->im |= UART011_RXIM;
871 		writew(uap->im, uap->port.membase + UART011_IMSC);
872 	}
873 }
874 
875 /*
876  * Stop accepting received characters, when we're shutting down or
877  * suspending this port.
878  * Locking: called with port lock held and IRQs disabled.
879  */
880 static inline void pl011_dma_rx_stop(struct uart_amba_port *uap)
881 {
882 	/* FIXME.  Just disable the DMA enable */
883 	uap->dmacr &= ~UART011_RXDMAE;
884 	writew(uap->dmacr, uap->port.membase + UART011_DMACR);
885 }
886 
887 static void pl011_dma_startup(struct uart_amba_port *uap)
888 {
889 	int ret;
890 
891 	if (!uap->dmatx.chan)
892 		return;
893 
894 	uap->dmatx.buf = kmalloc(PL011_DMA_BUFFER_SIZE, GFP_KERNEL);
895 	if (!uap->dmatx.buf) {
896 		dev_err(uap->port.dev, "no memory for DMA TX buffer\n");
897 		uap->port.fifosize = uap->fifosize;
898 		return;
899 	}
900 
901 	sg_init_one(&uap->dmatx.sg, uap->dmatx.buf, PL011_DMA_BUFFER_SIZE);
902 
903 	/* The DMA buffer is now the FIFO the TTY subsystem can use */
904 	uap->port.fifosize = PL011_DMA_BUFFER_SIZE;
905 	uap->using_tx_dma = true;
906 
907 	if (!uap->dmarx.chan)
908 		goto skip_rx;
909 
910 	/* Allocate and map DMA RX buffers */
911 	ret = pl011_sgbuf_init(uap->dmarx.chan, &uap->dmarx.sgbuf_a,
912 			       DMA_FROM_DEVICE);
913 	if (ret) {
914 		dev_err(uap->port.dev, "failed to init DMA %s: %d\n",
915 			"RX buffer A", ret);
916 		goto skip_rx;
917 	}
918 
919 	ret = pl011_sgbuf_init(uap->dmarx.chan, &uap->dmarx.sgbuf_b,
920 			       DMA_FROM_DEVICE);
921 	if (ret) {
922 		dev_err(uap->port.dev, "failed to init DMA %s: %d\n",
923 			"RX buffer B", ret);
924 		pl011_sgbuf_free(uap->dmarx.chan, &uap->dmarx.sgbuf_a,
925 				 DMA_FROM_DEVICE);
926 		goto skip_rx;
927 	}
928 
929 	uap->using_rx_dma = true;
930 
931 skip_rx:
932 	/* Turn on DMA error (RX/TX will be enabled on demand) */
933 	uap->dmacr |= UART011_DMAONERR;
934 	writew(uap->dmacr, uap->port.membase + UART011_DMACR);
935 
936 	/*
937 	 * ST Micro variants has some specific dma burst threshold
938 	 * compensation. Set this to 16 bytes, so burst will only
939 	 * be issued above/below 16 bytes.
940 	 */
941 	if (uap->vendor->dma_threshold)
942 		writew(ST_UART011_DMAWM_RX_16 | ST_UART011_DMAWM_TX_16,
943 			       uap->port.membase + ST_UART011_DMAWM);
944 
945 	if (uap->using_rx_dma) {
946 		if (pl011_dma_rx_trigger_dma(uap))
947 			dev_dbg(uap->port.dev, "could not trigger initial "
948 				"RX DMA job, fall back to interrupt mode\n");
949 	}
950 }
951 
952 static void pl011_dma_shutdown(struct uart_amba_port *uap)
953 {
954 	if (!(uap->using_tx_dma || uap->using_rx_dma))
955 		return;
956 
957 	/* Disable RX and TX DMA */
958 	while (readw(uap->port.membase + UART01x_FR) & UART01x_FR_BUSY)
959 		barrier();
960 
961 	spin_lock_irq(&uap->port.lock);
962 	uap->dmacr &= ~(UART011_DMAONERR | UART011_RXDMAE | UART011_TXDMAE);
963 	writew(uap->dmacr, uap->port.membase + UART011_DMACR);
964 	spin_unlock_irq(&uap->port.lock);
965 
966 	if (uap->using_tx_dma) {
967 		/* In theory, this should already be done by pl011_dma_flush_buffer */
968 		dmaengine_terminate_all(uap->dmatx.chan);
969 		if (uap->dmatx.queued) {
970 			dma_unmap_sg(uap->dmatx.chan->device->dev, &uap->dmatx.sg, 1,
971 				     DMA_TO_DEVICE);
972 			uap->dmatx.queued = false;
973 		}
974 
975 		kfree(uap->dmatx.buf);
976 		uap->using_tx_dma = false;
977 	}
978 
979 	if (uap->using_rx_dma) {
980 		dmaengine_terminate_all(uap->dmarx.chan);
981 		/* Clean up the RX DMA */
982 		pl011_sgbuf_free(uap->dmarx.chan, &uap->dmarx.sgbuf_a, DMA_FROM_DEVICE);
983 		pl011_sgbuf_free(uap->dmarx.chan, &uap->dmarx.sgbuf_b, DMA_FROM_DEVICE);
984 		uap->using_rx_dma = false;
985 	}
986 }
987 
988 static inline bool pl011_dma_rx_available(struct uart_amba_port *uap)
989 {
990 	return uap->using_rx_dma;
991 }
992 
993 static inline bool pl011_dma_rx_running(struct uart_amba_port *uap)
994 {
995 	return uap->using_rx_dma && uap->dmarx.running;
996 }
997 
998 
999 #else
1000 /* Blank functions if the DMA engine is not available */
1001 static inline void pl011_dma_probe(struct uart_amba_port *uap)
1002 {
1003 }
1004 
1005 static inline void pl011_dma_remove(struct uart_amba_port *uap)
1006 {
1007 }
1008 
1009 static inline void pl011_dma_startup(struct uart_amba_port *uap)
1010 {
1011 }
1012 
1013 static inline void pl011_dma_shutdown(struct uart_amba_port *uap)
1014 {
1015 }
1016 
1017 static inline bool pl011_dma_tx_irq(struct uart_amba_port *uap)
1018 {
1019 	return false;
1020 }
1021 
1022 static inline void pl011_dma_tx_stop(struct uart_amba_port *uap)
1023 {
1024 }
1025 
1026 static inline bool pl011_dma_tx_start(struct uart_amba_port *uap)
1027 {
1028 	return false;
1029 }
1030 
1031 static inline void pl011_dma_rx_irq(struct uart_amba_port *uap)
1032 {
1033 }
1034 
1035 static inline void pl011_dma_rx_stop(struct uart_amba_port *uap)
1036 {
1037 }
1038 
1039 static inline int pl011_dma_rx_trigger_dma(struct uart_amba_port *uap)
1040 {
1041 	return -EIO;
1042 }
1043 
1044 static inline bool pl011_dma_rx_available(struct uart_amba_port *uap)
1045 {
1046 	return false;
1047 }
1048 
1049 static inline bool pl011_dma_rx_running(struct uart_amba_port *uap)
1050 {
1051 	return false;
1052 }
1053 
1054 #define pl011_dma_flush_buffer	NULL
1055 #endif
1056 
1057 
1058 /*
1059  * pl011_lockup_wa
1060  * This workaround aims to break the deadlock situation
1061  * when after long transfer over uart in hardware flow
1062  * control, uart interrupt registers cannot be cleared.
1063  * Hence uart transfer gets blocked.
1064  *
1065  * It is seen that during such deadlock condition ICR
1066  * don't get cleared even on multiple write. This leads
1067  * pass_counter to decrease and finally reach zero. This
1068  * can be taken as trigger point to run this UART_BT_WA.
1069  *
1070  */
1071 static void pl011_lockup_wa(unsigned long data)
1072 {
1073 	struct uart_amba_port *uap = amba_ports[0];
1074 	void __iomem *base = uap->port.membase;
1075 	struct circ_buf *xmit = &uap->port.state->xmit;
1076 	struct tty_struct *tty = uap->port.state->port.tty;
1077 	int buf_empty_retries = 200;
1078 	int loop;
1079 
1080 	/* Stop HCI layer from submitting data for tx */
1081 	tty->hw_stopped = 1;
1082 	while (!uart_circ_empty(xmit)) {
1083 		if (buf_empty_retries-- == 0)
1084 			break;
1085 		udelay(100);
1086 	}
1087 
1088 	/* Backup registers */
1089 	for (loop = 0; loop < UART_WA_SAVE_NR; loop++)
1090 		uart_wa_regdata[loop] = readl(base + uart_wa_reg[loop]);
1091 
1092 	/* Disable UART so that FIFO data is flushed out */
1093 	writew(0x00, uap->port.membase + UART011_CR);
1094 
1095 	/* Soft reset UART module */
1096 	if (uap->port.dev->platform_data) {
1097 		struct amba_pl011_data *plat;
1098 
1099 		plat = uap->port.dev->platform_data;
1100 		if (plat->reset)
1101 			plat->reset();
1102 	}
1103 
1104 	/* Restore registers */
1105 	for (loop = 0; loop < UART_WA_SAVE_NR; loop++)
1106 		writew(uart_wa_regdata[loop] ,
1107 				uap->port.membase + uart_wa_reg[loop]);
1108 
1109 	/* Initialise the old status of the modem signals */
1110 	uap->old_status = readw(uap->port.membase + UART01x_FR) &
1111 		UART01x_FR_MODEM_ANY;
1112 
1113 	if (readl(base + UART011_MIS) & 0x2)
1114 		printk(KERN_EMERG "UART_BT_WA: ***FAILED***\n");
1115 
1116 	/* Start Tx/Rx */
1117 	tty->hw_stopped = 0;
1118 }
1119 
1120 static void pl011_stop_tx(struct uart_port *port)
1121 {
1122 	struct uart_amba_port *uap = (struct uart_amba_port *)port;
1123 
1124 	uap->im &= ~UART011_TXIM;
1125 	writew(uap->im, uap->port.membase + UART011_IMSC);
1126 	pl011_dma_tx_stop(uap);
1127 }
1128 
1129 static void pl011_start_tx(struct uart_port *port)
1130 {
1131 	struct uart_amba_port *uap = (struct uart_amba_port *)port;
1132 
1133 	if (!pl011_dma_tx_start(uap)) {
1134 		uap->im |= UART011_TXIM;
1135 		writew(uap->im, uap->port.membase + UART011_IMSC);
1136 	}
1137 }
1138 
1139 static void pl011_stop_rx(struct uart_port *port)
1140 {
1141 	struct uart_amba_port *uap = (struct uart_amba_port *)port;
1142 
1143 	uap->im &= ~(UART011_RXIM|UART011_RTIM|UART011_FEIM|
1144 		     UART011_PEIM|UART011_BEIM|UART011_OEIM);
1145 	writew(uap->im, uap->port.membase + UART011_IMSC);
1146 
1147 	pl011_dma_rx_stop(uap);
1148 }
1149 
1150 static void pl011_enable_ms(struct uart_port *port)
1151 {
1152 	struct uart_amba_port *uap = (struct uart_amba_port *)port;
1153 
1154 	uap->im |= UART011_RIMIM|UART011_CTSMIM|UART011_DCDMIM|UART011_DSRMIM;
1155 	writew(uap->im, uap->port.membase + UART011_IMSC);
1156 }
1157 
1158 static void pl011_rx_chars(struct uart_amba_port *uap)
1159 {
1160 	struct tty_struct *tty = uap->port.state->port.tty;
1161 
1162 	pl011_fifo_to_tty(uap);
1163 
1164 	spin_unlock(&uap->port.lock);
1165 	tty_flip_buffer_push(tty);
1166 	/*
1167 	 * If we were temporarily out of DMA mode for a while,
1168 	 * attempt to switch back to DMA mode again.
1169 	 */
1170 	if (pl011_dma_rx_available(uap)) {
1171 		if (pl011_dma_rx_trigger_dma(uap)) {
1172 			dev_dbg(uap->port.dev, "could not trigger RX DMA job "
1173 				"fall back to interrupt mode again\n");
1174 			uap->im |= UART011_RXIM;
1175 		} else
1176 			uap->im &= ~UART011_RXIM;
1177 		writew(uap->im, uap->port.membase + UART011_IMSC);
1178 	}
1179 	spin_lock(&uap->port.lock);
1180 }
1181 
1182 static void pl011_tx_chars(struct uart_amba_port *uap)
1183 {
1184 	struct circ_buf *xmit = &uap->port.state->xmit;
1185 	int count;
1186 
1187 	if (uap->port.x_char) {
1188 		writew(uap->port.x_char, uap->port.membase + UART01x_DR);
1189 		uap->port.icount.tx++;
1190 		uap->port.x_char = 0;
1191 		return;
1192 	}
1193 	if (uart_circ_empty(xmit) || uart_tx_stopped(&uap->port)) {
1194 		pl011_stop_tx(&uap->port);
1195 		return;
1196 	}
1197 
1198 	/* If we are using DMA mode, try to send some characters. */
1199 	if (pl011_dma_tx_irq(uap))
1200 		return;
1201 
1202 	count = uap->fifosize >> 1;
1203 	do {
1204 		writew(xmit->buf[xmit->tail], uap->port.membase + UART01x_DR);
1205 		xmit->tail = (xmit->tail + 1) & (UART_XMIT_SIZE - 1);
1206 		uap->port.icount.tx++;
1207 		if (uart_circ_empty(xmit))
1208 			break;
1209 	} while (--count > 0);
1210 
1211 	if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
1212 		uart_write_wakeup(&uap->port);
1213 
1214 	if (uart_circ_empty(xmit))
1215 		pl011_stop_tx(&uap->port);
1216 }
1217 
1218 static void pl011_modem_status(struct uart_amba_port *uap)
1219 {
1220 	unsigned int status, delta;
1221 
1222 	status = readw(uap->port.membase + UART01x_FR) & UART01x_FR_MODEM_ANY;
1223 
1224 	delta = status ^ uap->old_status;
1225 	uap->old_status = status;
1226 
1227 	if (!delta)
1228 		return;
1229 
1230 	if (delta & UART01x_FR_DCD)
1231 		uart_handle_dcd_change(&uap->port, status & UART01x_FR_DCD);
1232 
1233 	if (delta & UART01x_FR_DSR)
1234 		uap->port.icount.dsr++;
1235 
1236 	if (delta & UART01x_FR_CTS)
1237 		uart_handle_cts_change(&uap->port, status & UART01x_FR_CTS);
1238 
1239 	wake_up_interruptible(&uap->port.state->port.delta_msr_wait);
1240 }
1241 
1242 static irqreturn_t pl011_int(int irq, void *dev_id)
1243 {
1244 	struct uart_amba_port *uap = dev_id;
1245 	unsigned long flags;
1246 	unsigned int status, pass_counter = AMBA_ISR_PASS_LIMIT;
1247 	int handled = 0;
1248 
1249 	spin_lock_irqsave(&uap->port.lock, flags);
1250 
1251 	status = readw(uap->port.membase + UART011_MIS);
1252 	if (status) {
1253 		do {
1254 			writew(status & ~(UART011_TXIS|UART011_RTIS|
1255 					  UART011_RXIS),
1256 			       uap->port.membase + UART011_ICR);
1257 
1258 			if (status & (UART011_RTIS|UART011_RXIS)) {
1259 				if (pl011_dma_rx_running(uap))
1260 					pl011_dma_rx_irq(uap);
1261 				else
1262 					pl011_rx_chars(uap);
1263 			}
1264 			if (status & (UART011_DSRMIS|UART011_DCDMIS|
1265 				      UART011_CTSMIS|UART011_RIMIS))
1266 				pl011_modem_status(uap);
1267 			if (status & UART011_TXIS)
1268 				pl011_tx_chars(uap);
1269 
1270 			if (pass_counter-- == 0) {
1271 				if (uap->interrupt_may_hang)
1272 					tasklet_schedule(&pl011_lockup_tlet);
1273 				break;
1274 			}
1275 
1276 			status = readw(uap->port.membase + UART011_MIS);
1277 		} while (status != 0);
1278 		handled = 1;
1279 	}
1280 
1281 	spin_unlock_irqrestore(&uap->port.lock, flags);
1282 
1283 	return IRQ_RETVAL(handled);
1284 }
1285 
1286 static unsigned int pl01x_tx_empty(struct uart_port *port)
1287 {
1288 	struct uart_amba_port *uap = (struct uart_amba_port *)port;
1289 	unsigned int status = readw(uap->port.membase + UART01x_FR);
1290 	return status & (UART01x_FR_BUSY|UART01x_FR_TXFF) ? 0 : TIOCSER_TEMT;
1291 }
1292 
1293 static unsigned int pl01x_get_mctrl(struct uart_port *port)
1294 {
1295 	struct uart_amba_port *uap = (struct uart_amba_port *)port;
1296 	unsigned int result = 0;
1297 	unsigned int status = readw(uap->port.membase + UART01x_FR);
1298 
1299 #define TIOCMBIT(uartbit, tiocmbit)	\
1300 	if (status & uartbit)		\
1301 		result |= tiocmbit
1302 
1303 	TIOCMBIT(UART01x_FR_DCD, TIOCM_CAR);
1304 	TIOCMBIT(UART01x_FR_DSR, TIOCM_DSR);
1305 	TIOCMBIT(UART01x_FR_CTS, TIOCM_CTS);
1306 	TIOCMBIT(UART011_FR_RI, TIOCM_RNG);
1307 #undef TIOCMBIT
1308 	return result;
1309 }
1310 
1311 static void pl011_set_mctrl(struct uart_port *port, unsigned int mctrl)
1312 {
1313 	struct uart_amba_port *uap = (struct uart_amba_port *)port;
1314 	unsigned int cr;
1315 
1316 	cr = readw(uap->port.membase + UART011_CR);
1317 
1318 #define	TIOCMBIT(tiocmbit, uartbit)		\
1319 	if (mctrl & tiocmbit)		\
1320 		cr |= uartbit;		\
1321 	else				\
1322 		cr &= ~uartbit
1323 
1324 	TIOCMBIT(TIOCM_RTS, UART011_CR_RTS);
1325 	TIOCMBIT(TIOCM_DTR, UART011_CR_DTR);
1326 	TIOCMBIT(TIOCM_OUT1, UART011_CR_OUT1);
1327 	TIOCMBIT(TIOCM_OUT2, UART011_CR_OUT2);
1328 	TIOCMBIT(TIOCM_LOOP, UART011_CR_LBE);
1329 
1330 	if (uap->autorts) {
1331 		/* We need to disable auto-RTS if we want to turn RTS off */
1332 		TIOCMBIT(TIOCM_RTS, UART011_CR_RTSEN);
1333 	}
1334 #undef TIOCMBIT
1335 
1336 	writew(cr, uap->port.membase + UART011_CR);
1337 }
1338 
1339 static void pl011_break_ctl(struct uart_port *port, int break_state)
1340 {
1341 	struct uart_amba_port *uap = (struct uart_amba_port *)port;
1342 	unsigned long flags;
1343 	unsigned int lcr_h;
1344 
1345 	spin_lock_irqsave(&uap->port.lock, flags);
1346 	lcr_h = readw(uap->port.membase + uap->lcrh_tx);
1347 	if (break_state == -1)
1348 		lcr_h |= UART01x_LCRH_BRK;
1349 	else
1350 		lcr_h &= ~UART01x_LCRH_BRK;
1351 	writew(lcr_h, uap->port.membase + uap->lcrh_tx);
1352 	spin_unlock_irqrestore(&uap->port.lock, flags);
1353 }
1354 
1355 #ifdef CONFIG_CONSOLE_POLL
1356 static int pl010_get_poll_char(struct uart_port *port)
1357 {
1358 	struct uart_amba_port *uap = (struct uart_amba_port *)port;
1359 	unsigned int status;
1360 
1361 	status = readw(uap->port.membase + UART01x_FR);
1362 	if (status & UART01x_FR_RXFE)
1363 		return NO_POLL_CHAR;
1364 
1365 	return readw(uap->port.membase + UART01x_DR);
1366 }
1367 
1368 static void pl010_put_poll_char(struct uart_port *port,
1369 			 unsigned char ch)
1370 {
1371 	struct uart_amba_port *uap = (struct uart_amba_port *)port;
1372 
1373 	while (readw(uap->port.membase + UART01x_FR) & UART01x_FR_TXFF)
1374 		barrier();
1375 
1376 	writew(ch, uap->port.membase + UART01x_DR);
1377 }
1378 
1379 #endif /* CONFIG_CONSOLE_POLL */
1380 
1381 static int pl011_startup(struct uart_port *port)
1382 {
1383 	struct uart_amba_port *uap = (struct uart_amba_port *)port;
1384 	unsigned int cr;
1385 	int retval;
1386 
1387 	retval = clk_prepare(uap->clk);
1388 	if (retval)
1389 		goto out;
1390 
1391 	/*
1392 	 * Try to enable the clock producer.
1393 	 */
1394 	retval = clk_enable(uap->clk);
1395 	if (retval)
1396 		goto clk_unprep;
1397 
1398 	uap->port.uartclk = clk_get_rate(uap->clk);
1399 
1400 	/* Clear pending error and receive interrupts */
1401 	writew(UART011_OEIS | UART011_BEIS | UART011_PEIS | UART011_FEIS |
1402 	       UART011_RTIS | UART011_RXIS, uap->port.membase + UART011_ICR);
1403 
1404 	/*
1405 	 * Allocate the IRQ
1406 	 */
1407 	retval = request_irq(uap->port.irq, pl011_int, 0, "uart-pl011", uap);
1408 	if (retval)
1409 		goto clk_dis;
1410 
1411 	writew(uap->vendor->ifls, uap->port.membase + UART011_IFLS);
1412 
1413 	/*
1414 	 * Provoke TX FIFO interrupt into asserting.
1415 	 */
1416 	cr = UART01x_CR_UARTEN | UART011_CR_TXE | UART011_CR_LBE;
1417 	writew(cr, uap->port.membase + UART011_CR);
1418 	writew(0, uap->port.membase + UART011_FBRD);
1419 	writew(1, uap->port.membase + UART011_IBRD);
1420 	writew(0, uap->port.membase + uap->lcrh_rx);
1421 	if (uap->lcrh_tx != uap->lcrh_rx) {
1422 		int i;
1423 		/*
1424 		 * Wait 10 PCLKs before writing LCRH_TX register,
1425 		 * to get this delay write read only register 10 times
1426 		 */
1427 		for (i = 0; i < 10; ++i)
1428 			writew(0xff, uap->port.membase + UART011_MIS);
1429 		writew(0, uap->port.membase + uap->lcrh_tx);
1430 	}
1431 	writew(0, uap->port.membase + UART01x_DR);
1432 	while (readw(uap->port.membase + UART01x_FR) & UART01x_FR_BUSY)
1433 		barrier();
1434 
1435 	/* restore RTS and DTR */
1436 	cr = uap->old_cr & (UART011_CR_RTS | UART011_CR_DTR);
1437 	cr |= UART01x_CR_UARTEN | UART011_CR_RXE | UART011_CR_TXE;
1438 	writew(cr, uap->port.membase + UART011_CR);
1439 
1440 	/*
1441 	 * initialise the old status of the modem signals
1442 	 */
1443 	uap->old_status = readw(uap->port.membase + UART01x_FR) & UART01x_FR_MODEM_ANY;
1444 
1445 	/* Startup DMA */
1446 	pl011_dma_startup(uap);
1447 
1448 	/*
1449 	 * Finally, enable interrupts, only timeouts when using DMA
1450 	 * if initial RX DMA job failed, start in interrupt mode
1451 	 * as well.
1452 	 */
1453 	spin_lock_irq(&uap->port.lock);
1454 	/* Clear out any spuriously appearing RX interrupts */
1455 	 writew(UART011_RTIS | UART011_RXIS,
1456 		uap->port.membase + UART011_ICR);
1457 	uap->im = UART011_RTIM;
1458 	if (!pl011_dma_rx_running(uap))
1459 		uap->im |= UART011_RXIM;
1460 	writew(uap->im, uap->port.membase + UART011_IMSC);
1461 	spin_unlock_irq(&uap->port.lock);
1462 
1463 	if (uap->port.dev->platform_data) {
1464 		struct amba_pl011_data *plat;
1465 
1466 		plat = uap->port.dev->platform_data;
1467 		if (plat->init)
1468 			plat->init();
1469 	}
1470 
1471 	return 0;
1472 
1473  clk_dis:
1474 	clk_disable(uap->clk);
1475  clk_unprep:
1476 	clk_unprepare(uap->clk);
1477  out:
1478 	return retval;
1479 }
1480 
1481 static void pl011_shutdown_channel(struct uart_amba_port *uap,
1482 					unsigned int lcrh)
1483 {
1484       unsigned long val;
1485 
1486       val = readw(uap->port.membase + lcrh);
1487       val &= ~(UART01x_LCRH_BRK | UART01x_LCRH_FEN);
1488       writew(val, uap->port.membase + lcrh);
1489 }
1490 
1491 static void pl011_shutdown(struct uart_port *port)
1492 {
1493 	struct uart_amba_port *uap = (struct uart_amba_port *)port;
1494 	unsigned int cr;
1495 
1496 	/*
1497 	 * disable all interrupts
1498 	 */
1499 	spin_lock_irq(&uap->port.lock);
1500 	uap->im = 0;
1501 	writew(uap->im, uap->port.membase + UART011_IMSC);
1502 	writew(0xffff, uap->port.membase + UART011_ICR);
1503 	spin_unlock_irq(&uap->port.lock);
1504 
1505 	pl011_dma_shutdown(uap);
1506 
1507 	/*
1508 	 * Free the interrupt
1509 	 */
1510 	free_irq(uap->port.irq, uap);
1511 
1512 	/*
1513 	 * disable the port
1514 	 * disable the port. It should not disable RTS and DTR.
1515 	 * Also RTS and DTR state should be preserved to restore
1516 	 * it during startup().
1517 	 */
1518 	uap->autorts = false;
1519 	cr = readw(uap->port.membase + UART011_CR);
1520 	uap->old_cr = cr;
1521 	cr &= UART011_CR_RTS | UART011_CR_DTR;
1522 	cr |= UART01x_CR_UARTEN | UART011_CR_TXE;
1523 	writew(cr, uap->port.membase + UART011_CR);
1524 
1525 	/*
1526 	 * disable break condition and fifos
1527 	 */
1528 	pl011_shutdown_channel(uap, uap->lcrh_rx);
1529 	if (uap->lcrh_rx != uap->lcrh_tx)
1530 		pl011_shutdown_channel(uap, uap->lcrh_tx);
1531 
1532 	/*
1533 	 * Shut down the clock producer
1534 	 */
1535 	clk_disable(uap->clk);
1536 	clk_unprepare(uap->clk);
1537 
1538 	if (uap->port.dev->platform_data) {
1539 		struct amba_pl011_data *plat;
1540 
1541 		plat = uap->port.dev->platform_data;
1542 		if (plat->exit)
1543 			plat->exit();
1544 	}
1545 
1546 }
1547 
1548 static void
1549 pl011_set_termios(struct uart_port *port, struct ktermios *termios,
1550 		     struct ktermios *old)
1551 {
1552 	struct uart_amba_port *uap = (struct uart_amba_port *)port;
1553 	unsigned int lcr_h, old_cr;
1554 	unsigned long flags;
1555 	unsigned int baud, quot, clkdiv;
1556 
1557 	if (uap->vendor->oversampling)
1558 		clkdiv = 8;
1559 	else
1560 		clkdiv = 16;
1561 
1562 	/*
1563 	 * Ask the core to calculate the divisor for us.
1564 	 */
1565 	baud = uart_get_baud_rate(port, termios, old, 0,
1566 				  port->uartclk / clkdiv);
1567 
1568 	if (baud > port->uartclk/16)
1569 		quot = DIV_ROUND_CLOSEST(port->uartclk * 8, baud);
1570 	else
1571 		quot = DIV_ROUND_CLOSEST(port->uartclk * 4, baud);
1572 
1573 	switch (termios->c_cflag & CSIZE) {
1574 	case CS5:
1575 		lcr_h = UART01x_LCRH_WLEN_5;
1576 		break;
1577 	case CS6:
1578 		lcr_h = UART01x_LCRH_WLEN_6;
1579 		break;
1580 	case CS7:
1581 		lcr_h = UART01x_LCRH_WLEN_7;
1582 		break;
1583 	default: // CS8
1584 		lcr_h = UART01x_LCRH_WLEN_8;
1585 		break;
1586 	}
1587 	if (termios->c_cflag & CSTOPB)
1588 		lcr_h |= UART01x_LCRH_STP2;
1589 	if (termios->c_cflag & PARENB) {
1590 		lcr_h |= UART01x_LCRH_PEN;
1591 		if (!(termios->c_cflag & PARODD))
1592 			lcr_h |= UART01x_LCRH_EPS;
1593 	}
1594 	if (uap->fifosize > 1)
1595 		lcr_h |= UART01x_LCRH_FEN;
1596 
1597 	spin_lock_irqsave(&port->lock, flags);
1598 
1599 	/*
1600 	 * Update the per-port timeout.
1601 	 */
1602 	uart_update_timeout(port, termios->c_cflag, baud);
1603 
1604 	port->read_status_mask = UART011_DR_OE | 255;
1605 	if (termios->c_iflag & INPCK)
1606 		port->read_status_mask |= UART011_DR_FE | UART011_DR_PE;
1607 	if (termios->c_iflag & (BRKINT | PARMRK))
1608 		port->read_status_mask |= UART011_DR_BE;
1609 
1610 	/*
1611 	 * Characters to ignore
1612 	 */
1613 	port->ignore_status_mask = 0;
1614 	if (termios->c_iflag & IGNPAR)
1615 		port->ignore_status_mask |= UART011_DR_FE | UART011_DR_PE;
1616 	if (termios->c_iflag & IGNBRK) {
1617 		port->ignore_status_mask |= UART011_DR_BE;
1618 		/*
1619 		 * If we're ignoring parity and break indicators,
1620 		 * ignore overruns too (for real raw support).
1621 		 */
1622 		if (termios->c_iflag & IGNPAR)
1623 			port->ignore_status_mask |= UART011_DR_OE;
1624 	}
1625 
1626 	/*
1627 	 * Ignore all characters if CREAD is not set.
1628 	 */
1629 	if ((termios->c_cflag & CREAD) == 0)
1630 		port->ignore_status_mask |= UART_DUMMY_DR_RX;
1631 
1632 	if (UART_ENABLE_MS(port, termios->c_cflag))
1633 		pl011_enable_ms(port);
1634 
1635 	/* first, disable everything */
1636 	old_cr = readw(port->membase + UART011_CR);
1637 	writew(0, port->membase + UART011_CR);
1638 
1639 	if (termios->c_cflag & CRTSCTS) {
1640 		if (old_cr & UART011_CR_RTS)
1641 			old_cr |= UART011_CR_RTSEN;
1642 
1643 		old_cr |= UART011_CR_CTSEN;
1644 		uap->autorts = true;
1645 	} else {
1646 		old_cr &= ~(UART011_CR_CTSEN | UART011_CR_RTSEN);
1647 		uap->autorts = false;
1648 	}
1649 
1650 	if (uap->vendor->oversampling) {
1651 		if (baud > port->uartclk / 16)
1652 			old_cr |= ST_UART011_CR_OVSFACT;
1653 		else
1654 			old_cr &= ~ST_UART011_CR_OVSFACT;
1655 	}
1656 
1657 	/* Set baud rate */
1658 	writew(quot & 0x3f, port->membase + UART011_FBRD);
1659 	writew(quot >> 6, port->membase + UART011_IBRD);
1660 
1661 	/*
1662 	 * ----------v----------v----------v----------v-----
1663 	 * NOTE: MUST BE WRITTEN AFTER UARTLCR_M & UARTLCR_L
1664 	 * ----------^----------^----------^----------^-----
1665 	 */
1666 	writew(lcr_h, port->membase + uap->lcrh_rx);
1667 	if (uap->lcrh_rx != uap->lcrh_tx) {
1668 		int i;
1669 		/*
1670 		 * Wait 10 PCLKs before writing LCRH_TX register,
1671 		 * to get this delay write read only register 10 times
1672 		 */
1673 		for (i = 0; i < 10; ++i)
1674 			writew(0xff, uap->port.membase + UART011_MIS);
1675 		writew(lcr_h, port->membase + uap->lcrh_tx);
1676 	}
1677 	writew(old_cr, port->membase + UART011_CR);
1678 
1679 	spin_unlock_irqrestore(&port->lock, flags);
1680 }
1681 
1682 static const char *pl011_type(struct uart_port *port)
1683 {
1684 	struct uart_amba_port *uap = (struct uart_amba_port *)port;
1685 	return uap->port.type == PORT_AMBA ? uap->type : NULL;
1686 }
1687 
1688 /*
1689  * Release the memory region(s) being used by 'port'
1690  */
1691 static void pl010_release_port(struct uart_port *port)
1692 {
1693 	release_mem_region(port->mapbase, SZ_4K);
1694 }
1695 
1696 /*
1697  * Request the memory region(s) being used by 'port'
1698  */
1699 static int pl010_request_port(struct uart_port *port)
1700 {
1701 	return request_mem_region(port->mapbase, SZ_4K, "uart-pl011")
1702 			!= NULL ? 0 : -EBUSY;
1703 }
1704 
1705 /*
1706  * Configure/autoconfigure the port.
1707  */
1708 static void pl010_config_port(struct uart_port *port, int flags)
1709 {
1710 	if (flags & UART_CONFIG_TYPE) {
1711 		port->type = PORT_AMBA;
1712 		pl010_request_port(port);
1713 	}
1714 }
1715 
1716 /*
1717  * verify the new serial_struct (for TIOCSSERIAL).
1718  */
1719 static int pl010_verify_port(struct uart_port *port, struct serial_struct *ser)
1720 {
1721 	int ret = 0;
1722 	if (ser->type != PORT_UNKNOWN && ser->type != PORT_AMBA)
1723 		ret = -EINVAL;
1724 	if (ser->irq < 0 || ser->irq >= nr_irqs)
1725 		ret = -EINVAL;
1726 	if (ser->baud_base < 9600)
1727 		ret = -EINVAL;
1728 	return ret;
1729 }
1730 
1731 static struct uart_ops amba_pl011_pops = {
1732 	.tx_empty	= pl01x_tx_empty,
1733 	.set_mctrl	= pl011_set_mctrl,
1734 	.get_mctrl	= pl01x_get_mctrl,
1735 	.stop_tx	= pl011_stop_tx,
1736 	.start_tx	= pl011_start_tx,
1737 	.stop_rx	= pl011_stop_rx,
1738 	.enable_ms	= pl011_enable_ms,
1739 	.break_ctl	= pl011_break_ctl,
1740 	.startup	= pl011_startup,
1741 	.shutdown	= pl011_shutdown,
1742 	.flush_buffer	= pl011_dma_flush_buffer,
1743 	.set_termios	= pl011_set_termios,
1744 	.type		= pl011_type,
1745 	.release_port	= pl010_release_port,
1746 	.request_port	= pl010_request_port,
1747 	.config_port	= pl010_config_port,
1748 	.verify_port	= pl010_verify_port,
1749 #ifdef CONFIG_CONSOLE_POLL
1750 	.poll_get_char = pl010_get_poll_char,
1751 	.poll_put_char = pl010_put_poll_char,
1752 #endif
1753 };
1754 
1755 static struct uart_amba_port *amba_ports[UART_NR];
1756 
1757 #ifdef CONFIG_SERIAL_AMBA_PL011_CONSOLE
1758 
1759 static void pl011_console_putchar(struct uart_port *port, int ch)
1760 {
1761 	struct uart_amba_port *uap = (struct uart_amba_port *)port;
1762 
1763 	while (readw(uap->port.membase + UART01x_FR) & UART01x_FR_TXFF)
1764 		barrier();
1765 	writew(ch, uap->port.membase + UART01x_DR);
1766 }
1767 
1768 static void
1769 pl011_console_write(struct console *co, const char *s, unsigned int count)
1770 {
1771 	struct uart_amba_port *uap = amba_ports[co->index];
1772 	unsigned int status, old_cr, new_cr;
1773 	unsigned long flags;
1774 	int locked = 1;
1775 
1776 	clk_enable(uap->clk);
1777 
1778 	local_irq_save(flags);
1779 	if (uap->port.sysrq)
1780 		locked = 0;
1781 	else if (oops_in_progress)
1782 		locked = spin_trylock(&uap->port.lock);
1783 	else
1784 		spin_lock(&uap->port.lock);
1785 
1786 	/*
1787 	 *	First save the CR then disable the interrupts
1788 	 */
1789 	old_cr = readw(uap->port.membase + UART011_CR);
1790 	new_cr = old_cr & ~UART011_CR_CTSEN;
1791 	new_cr |= UART01x_CR_UARTEN | UART011_CR_TXE;
1792 	writew(new_cr, uap->port.membase + UART011_CR);
1793 
1794 	uart_console_write(&uap->port, s, count, pl011_console_putchar);
1795 
1796 	/*
1797 	 *	Finally, wait for transmitter to become empty
1798 	 *	and restore the TCR
1799 	 */
1800 	do {
1801 		status = readw(uap->port.membase + UART01x_FR);
1802 	} while (status & UART01x_FR_BUSY);
1803 	writew(old_cr, uap->port.membase + UART011_CR);
1804 
1805 	if (locked)
1806 		spin_unlock(&uap->port.lock);
1807 	local_irq_restore(flags);
1808 
1809 	clk_disable(uap->clk);
1810 }
1811 
1812 static void __init
1813 pl011_console_get_options(struct uart_amba_port *uap, int *baud,
1814 			     int *parity, int *bits)
1815 {
1816 	if (readw(uap->port.membase + UART011_CR) & UART01x_CR_UARTEN) {
1817 		unsigned int lcr_h, ibrd, fbrd;
1818 
1819 		lcr_h = readw(uap->port.membase + uap->lcrh_tx);
1820 
1821 		*parity = 'n';
1822 		if (lcr_h & UART01x_LCRH_PEN) {
1823 			if (lcr_h & UART01x_LCRH_EPS)
1824 				*parity = 'e';
1825 			else
1826 				*parity = 'o';
1827 		}
1828 
1829 		if ((lcr_h & 0x60) == UART01x_LCRH_WLEN_7)
1830 			*bits = 7;
1831 		else
1832 			*bits = 8;
1833 
1834 		ibrd = readw(uap->port.membase + UART011_IBRD);
1835 		fbrd = readw(uap->port.membase + UART011_FBRD);
1836 
1837 		*baud = uap->port.uartclk * 4 / (64 * ibrd + fbrd);
1838 
1839 		if (uap->vendor->oversampling) {
1840 			if (readw(uap->port.membase + UART011_CR)
1841 				  & ST_UART011_CR_OVSFACT)
1842 				*baud *= 2;
1843 		}
1844 	}
1845 }
1846 
1847 static int __init pl011_console_setup(struct console *co, char *options)
1848 {
1849 	struct uart_amba_port *uap;
1850 	int baud = 38400;
1851 	int bits = 8;
1852 	int parity = 'n';
1853 	int flow = 'n';
1854 	int ret;
1855 
1856 	/*
1857 	 * Check whether an invalid uart number has been specified, and
1858 	 * if so, search for the first available port that does have
1859 	 * console support.
1860 	 */
1861 	if (co->index >= UART_NR)
1862 		co->index = 0;
1863 	uap = amba_ports[co->index];
1864 	if (!uap)
1865 		return -ENODEV;
1866 
1867 	ret = clk_prepare(uap->clk);
1868 	if (ret)
1869 		return ret;
1870 
1871 	if (uap->port.dev->platform_data) {
1872 		struct amba_pl011_data *plat;
1873 
1874 		plat = uap->port.dev->platform_data;
1875 		if (plat->init)
1876 			plat->init();
1877 	}
1878 
1879 	uap->port.uartclk = clk_get_rate(uap->clk);
1880 
1881 	if (options)
1882 		uart_parse_options(options, &baud, &parity, &bits, &flow);
1883 	else
1884 		pl011_console_get_options(uap, &baud, &parity, &bits);
1885 
1886 	return uart_set_options(&uap->port, co, baud, parity, bits, flow);
1887 }
1888 
1889 static struct uart_driver amba_reg;
1890 static struct console amba_console = {
1891 	.name		= "ttyAMA",
1892 	.write		= pl011_console_write,
1893 	.device		= uart_console_device,
1894 	.setup		= pl011_console_setup,
1895 	.flags		= CON_PRINTBUFFER,
1896 	.index		= -1,
1897 	.data		= &amba_reg,
1898 };
1899 
1900 #define AMBA_CONSOLE	(&amba_console)
1901 #else
1902 #define AMBA_CONSOLE	NULL
1903 #endif
1904 
1905 static struct uart_driver amba_reg = {
1906 	.owner			= THIS_MODULE,
1907 	.driver_name		= "ttyAMA",
1908 	.dev_name		= "ttyAMA",
1909 	.major			= SERIAL_AMBA_MAJOR,
1910 	.minor			= SERIAL_AMBA_MINOR,
1911 	.nr			= UART_NR,
1912 	.cons			= AMBA_CONSOLE,
1913 };
1914 
1915 static int pl011_probe(struct amba_device *dev, const struct amba_id *id)
1916 {
1917 	struct uart_amba_port *uap;
1918 	struct vendor_data *vendor = id->data;
1919 	void __iomem *base;
1920 	int i, ret;
1921 
1922 	for (i = 0; i < ARRAY_SIZE(amba_ports); i++)
1923 		if (amba_ports[i] == NULL)
1924 			break;
1925 
1926 	if (i == ARRAY_SIZE(amba_ports)) {
1927 		ret = -EBUSY;
1928 		goto out;
1929 	}
1930 
1931 	uap = kzalloc(sizeof(struct uart_amba_port), GFP_KERNEL);
1932 	if (uap == NULL) {
1933 		ret = -ENOMEM;
1934 		goto out;
1935 	}
1936 
1937 	base = ioremap(dev->res.start, resource_size(&dev->res));
1938 	if (!base) {
1939 		ret = -ENOMEM;
1940 		goto free;
1941 	}
1942 
1943 	uap->clk = clk_get(&dev->dev, NULL);
1944 	if (IS_ERR(uap->clk)) {
1945 		ret = PTR_ERR(uap->clk);
1946 		goto unmap;
1947 	}
1948 
1949 	uap->vendor = vendor;
1950 	uap->lcrh_rx = vendor->lcrh_rx;
1951 	uap->lcrh_tx = vendor->lcrh_tx;
1952 	uap->old_cr = 0;
1953 	uap->fifosize = vendor->fifosize;
1954 	uap->interrupt_may_hang = vendor->interrupt_may_hang;
1955 	uap->port.dev = &dev->dev;
1956 	uap->port.mapbase = dev->res.start;
1957 	uap->port.membase = base;
1958 	uap->port.iotype = UPIO_MEM;
1959 	uap->port.irq = dev->irq[0];
1960 	uap->port.fifosize = uap->fifosize;
1961 	uap->port.ops = &amba_pl011_pops;
1962 	uap->port.flags = UPF_BOOT_AUTOCONF;
1963 	uap->port.line = i;
1964 	pl011_dma_probe(uap);
1965 
1966 	/* Ensure interrupts from this UART are masked and cleared */
1967 	writew(0, uap->port.membase + UART011_IMSC);
1968 	writew(0xffff, uap->port.membase + UART011_ICR);
1969 
1970 	snprintf(uap->type, sizeof(uap->type), "PL011 rev%u", amba_rev(dev));
1971 
1972 	amba_ports[i] = uap;
1973 
1974 	amba_set_drvdata(dev, uap);
1975 	ret = uart_add_one_port(&amba_reg, &uap->port);
1976 	if (ret) {
1977 		amba_set_drvdata(dev, NULL);
1978 		amba_ports[i] = NULL;
1979 		pl011_dma_remove(uap);
1980 		clk_put(uap->clk);
1981  unmap:
1982 		iounmap(base);
1983  free:
1984 		kfree(uap);
1985 	}
1986  out:
1987 	return ret;
1988 }
1989 
1990 static int pl011_remove(struct amba_device *dev)
1991 {
1992 	struct uart_amba_port *uap = amba_get_drvdata(dev);
1993 	int i;
1994 
1995 	amba_set_drvdata(dev, NULL);
1996 
1997 	uart_remove_one_port(&amba_reg, &uap->port);
1998 
1999 	for (i = 0; i < ARRAY_SIZE(amba_ports); i++)
2000 		if (amba_ports[i] == uap)
2001 			amba_ports[i] = NULL;
2002 
2003 	pl011_dma_remove(uap);
2004 	iounmap(uap->port.membase);
2005 	clk_put(uap->clk);
2006 	kfree(uap);
2007 	return 0;
2008 }
2009 
2010 #ifdef CONFIG_PM
2011 static int pl011_suspend(struct amba_device *dev, pm_message_t state)
2012 {
2013 	struct uart_amba_port *uap = amba_get_drvdata(dev);
2014 
2015 	if (!uap)
2016 		return -EINVAL;
2017 
2018 	return uart_suspend_port(&amba_reg, &uap->port);
2019 }
2020 
2021 static int pl011_resume(struct amba_device *dev)
2022 {
2023 	struct uart_amba_port *uap = amba_get_drvdata(dev);
2024 
2025 	if (!uap)
2026 		return -EINVAL;
2027 
2028 	return uart_resume_port(&amba_reg, &uap->port);
2029 }
2030 #endif
2031 
2032 static struct amba_id pl011_ids[] = {
2033 	{
2034 		.id	= 0x00041011,
2035 		.mask	= 0x000fffff,
2036 		.data	= &vendor_arm,
2037 	},
2038 	{
2039 		.id	= 0x00380802,
2040 		.mask	= 0x00ffffff,
2041 		.data	= &vendor_st,
2042 	},
2043 	{ 0, 0 },
2044 };
2045 
2046 MODULE_DEVICE_TABLE(amba, pl011_ids);
2047 
2048 static struct amba_driver pl011_driver = {
2049 	.drv = {
2050 		.name	= "uart-pl011",
2051 	},
2052 	.id_table	= pl011_ids,
2053 	.probe		= pl011_probe,
2054 	.remove		= pl011_remove,
2055 #ifdef CONFIG_PM
2056 	.suspend	= pl011_suspend,
2057 	.resume		= pl011_resume,
2058 #endif
2059 };
2060 
2061 static int __init pl011_init(void)
2062 {
2063 	int ret;
2064 	printk(KERN_INFO "Serial: AMBA PL011 UART driver\n");
2065 
2066 	ret = uart_register_driver(&amba_reg);
2067 	if (ret == 0) {
2068 		ret = amba_driver_register(&pl011_driver);
2069 		if (ret)
2070 			uart_unregister_driver(&amba_reg);
2071 	}
2072 	return ret;
2073 }
2074 
2075 static void __exit pl011_exit(void)
2076 {
2077 	amba_driver_unregister(&pl011_driver);
2078 	uart_unregister_driver(&amba_reg);
2079 }
2080 
2081 /*
2082  * While this can be a module, if builtin it's most likely the console
2083  * So let's leave module_exit but move module_init to an earlier place
2084  */
2085 arch_initcall(pl011_init);
2086 module_exit(pl011_exit);
2087 
2088 MODULE_AUTHOR("ARM Ltd/Deep Blue Solutions Ltd");
2089 MODULE_DESCRIPTION("ARM AMBA serial port driver");
2090 MODULE_LICENSE("GPL");
2091