xref: /openbmc/linux/drivers/tty/serial/amba-pl011.c (revision 5a158981)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  *  Driver for AMBA serial ports
4  *
5  *  Based on drivers/char/serial.c, by Linus Torvalds, Theodore Ts'o.
6  *
7  *  Copyright 1999 ARM Limited
8  *  Copyright (C) 2000 Deep Blue Solutions Ltd.
9  *  Copyright (C) 2010 ST-Ericsson SA
10  *
11  * This is a generic driver for ARM AMBA-type serial ports.  They
12  * have a lot of 16550-like features, but are not register compatible.
13  * Note that although they do have CTS, DCD and DSR inputs, they do
14  * not have an RI input, nor do they have DTR or RTS outputs.  If
15  * required, these have to be supplied via some other means (eg, GPIO)
16  * and hooked into this driver.
17  */
18 
19 
20 #if defined(CONFIG_SERIAL_AMBA_PL011_CONSOLE) && defined(CONFIG_MAGIC_SYSRQ)
21 #define SUPPORT_SYSRQ
22 #endif
23 
24 #include <linux/module.h>
25 #include <linux/ioport.h>
26 #include <linux/init.h>
27 #include <linux/console.h>
28 #include <linux/sysrq.h>
29 #include <linux/device.h>
30 #include <linux/tty.h>
31 #include <linux/tty_flip.h>
32 #include <linux/serial_core.h>
33 #include <linux/serial.h>
34 #include <linux/amba/bus.h>
35 #include <linux/amba/serial.h>
36 #include <linux/clk.h>
37 #include <linux/slab.h>
38 #include <linux/dmaengine.h>
39 #include <linux/dma-mapping.h>
40 #include <linux/scatterlist.h>
41 #include <linux/delay.h>
42 #include <linux/types.h>
43 #include <linux/of.h>
44 #include <linux/of_device.h>
45 #include <linux/pinctrl/consumer.h>
46 #include <linux/sizes.h>
47 #include <linux/io.h>
48 #include <linux/acpi.h>
49 
50 #include "amba-pl011.h"
51 
52 #define UART_NR			14
53 
54 #define SERIAL_AMBA_MAJOR	204
55 #define SERIAL_AMBA_MINOR	64
56 #define SERIAL_AMBA_NR		UART_NR
57 
58 #define AMBA_ISR_PASS_LIMIT	256
59 
60 #define UART_DR_ERROR		(UART011_DR_OE|UART011_DR_BE|UART011_DR_PE|UART011_DR_FE)
61 #define UART_DUMMY_DR_RX	(1 << 16)
62 
63 static u16 pl011_std_offsets[REG_ARRAY_SIZE] = {
64 	[REG_DR] = UART01x_DR,
65 	[REG_FR] = UART01x_FR,
66 	[REG_LCRH_RX] = UART011_LCRH,
67 	[REG_LCRH_TX] = UART011_LCRH,
68 	[REG_IBRD] = UART011_IBRD,
69 	[REG_FBRD] = UART011_FBRD,
70 	[REG_CR] = UART011_CR,
71 	[REG_IFLS] = UART011_IFLS,
72 	[REG_IMSC] = UART011_IMSC,
73 	[REG_RIS] = UART011_RIS,
74 	[REG_MIS] = UART011_MIS,
75 	[REG_ICR] = UART011_ICR,
76 	[REG_DMACR] = UART011_DMACR,
77 };
78 
79 /* There is by now at least one vendor with differing details, so handle it */
80 struct vendor_data {
81 	const u16		*reg_offset;
82 	unsigned int		ifls;
83 	unsigned int		fr_busy;
84 	unsigned int		fr_dsr;
85 	unsigned int		fr_cts;
86 	unsigned int		fr_ri;
87 	unsigned int		inv_fr;
88 	bool			access_32b;
89 	bool			oversampling;
90 	bool			dma_threshold;
91 	bool			cts_event_workaround;
92 	bool			always_enabled;
93 	bool			fixed_options;
94 
95 	unsigned int (*get_fifosize)(struct amba_device *dev);
96 };
97 
98 static unsigned int get_fifosize_arm(struct amba_device *dev)
99 {
100 	return amba_rev(dev) < 3 ? 16 : 32;
101 }
102 
103 static struct vendor_data vendor_arm = {
104 	.reg_offset		= pl011_std_offsets,
105 	.ifls			= UART011_IFLS_RX4_8|UART011_IFLS_TX4_8,
106 	.fr_busy		= UART01x_FR_BUSY,
107 	.fr_dsr			= UART01x_FR_DSR,
108 	.fr_cts			= UART01x_FR_CTS,
109 	.fr_ri			= UART011_FR_RI,
110 	.oversampling		= false,
111 	.dma_threshold		= false,
112 	.cts_event_workaround	= false,
113 	.always_enabled		= false,
114 	.fixed_options		= false,
115 	.get_fifosize		= get_fifosize_arm,
116 };
117 
118 static const struct vendor_data vendor_sbsa = {
119 	.reg_offset		= pl011_std_offsets,
120 	.fr_busy		= UART01x_FR_BUSY,
121 	.fr_dsr			= UART01x_FR_DSR,
122 	.fr_cts			= UART01x_FR_CTS,
123 	.fr_ri			= UART011_FR_RI,
124 	.access_32b		= true,
125 	.oversampling		= false,
126 	.dma_threshold		= false,
127 	.cts_event_workaround	= false,
128 	.always_enabled		= true,
129 	.fixed_options		= true,
130 };
131 
132 #ifdef CONFIG_ACPI_SPCR_TABLE
133 static const struct vendor_data vendor_qdt_qdf2400_e44 = {
134 	.reg_offset		= pl011_std_offsets,
135 	.fr_busy		= UART011_FR_TXFE,
136 	.fr_dsr			= UART01x_FR_DSR,
137 	.fr_cts			= UART01x_FR_CTS,
138 	.fr_ri			= UART011_FR_RI,
139 	.inv_fr			= UART011_FR_TXFE,
140 	.access_32b		= true,
141 	.oversampling		= false,
142 	.dma_threshold		= false,
143 	.cts_event_workaround	= false,
144 	.always_enabled		= true,
145 	.fixed_options		= true,
146 };
147 #endif
148 
149 static u16 pl011_st_offsets[REG_ARRAY_SIZE] = {
150 	[REG_DR] = UART01x_DR,
151 	[REG_ST_DMAWM] = ST_UART011_DMAWM,
152 	[REG_ST_TIMEOUT] = ST_UART011_TIMEOUT,
153 	[REG_FR] = UART01x_FR,
154 	[REG_LCRH_RX] = ST_UART011_LCRH_RX,
155 	[REG_LCRH_TX] = ST_UART011_LCRH_TX,
156 	[REG_IBRD] = UART011_IBRD,
157 	[REG_FBRD] = UART011_FBRD,
158 	[REG_CR] = UART011_CR,
159 	[REG_IFLS] = UART011_IFLS,
160 	[REG_IMSC] = UART011_IMSC,
161 	[REG_RIS] = UART011_RIS,
162 	[REG_MIS] = UART011_MIS,
163 	[REG_ICR] = UART011_ICR,
164 	[REG_DMACR] = UART011_DMACR,
165 	[REG_ST_XFCR] = ST_UART011_XFCR,
166 	[REG_ST_XON1] = ST_UART011_XON1,
167 	[REG_ST_XON2] = ST_UART011_XON2,
168 	[REG_ST_XOFF1] = ST_UART011_XOFF1,
169 	[REG_ST_XOFF2] = ST_UART011_XOFF2,
170 	[REG_ST_ITCR] = ST_UART011_ITCR,
171 	[REG_ST_ITIP] = ST_UART011_ITIP,
172 	[REG_ST_ABCR] = ST_UART011_ABCR,
173 	[REG_ST_ABIMSC] = ST_UART011_ABIMSC,
174 };
175 
176 static unsigned int get_fifosize_st(struct amba_device *dev)
177 {
178 	return 64;
179 }
180 
181 static struct vendor_data vendor_st = {
182 	.reg_offset		= pl011_st_offsets,
183 	.ifls			= UART011_IFLS_RX_HALF|UART011_IFLS_TX_HALF,
184 	.fr_busy		= UART01x_FR_BUSY,
185 	.fr_dsr			= UART01x_FR_DSR,
186 	.fr_cts			= UART01x_FR_CTS,
187 	.fr_ri			= UART011_FR_RI,
188 	.oversampling		= true,
189 	.dma_threshold		= true,
190 	.cts_event_workaround	= true,
191 	.always_enabled		= false,
192 	.fixed_options		= false,
193 	.get_fifosize		= get_fifosize_st,
194 };
195 
196 static const u16 pl011_zte_offsets[REG_ARRAY_SIZE] = {
197 	[REG_DR] = ZX_UART011_DR,
198 	[REG_FR] = ZX_UART011_FR,
199 	[REG_LCRH_RX] = ZX_UART011_LCRH,
200 	[REG_LCRH_TX] = ZX_UART011_LCRH,
201 	[REG_IBRD] = ZX_UART011_IBRD,
202 	[REG_FBRD] = ZX_UART011_FBRD,
203 	[REG_CR] = ZX_UART011_CR,
204 	[REG_IFLS] = ZX_UART011_IFLS,
205 	[REG_IMSC] = ZX_UART011_IMSC,
206 	[REG_RIS] = ZX_UART011_RIS,
207 	[REG_MIS] = ZX_UART011_MIS,
208 	[REG_ICR] = ZX_UART011_ICR,
209 	[REG_DMACR] = ZX_UART011_DMACR,
210 };
211 
212 static unsigned int get_fifosize_zte(struct amba_device *dev)
213 {
214 	return 16;
215 }
216 
217 static struct vendor_data vendor_zte = {
218 	.reg_offset		= pl011_zte_offsets,
219 	.access_32b		= true,
220 	.ifls			= UART011_IFLS_RX4_8|UART011_IFLS_TX4_8,
221 	.fr_busy		= ZX_UART01x_FR_BUSY,
222 	.fr_dsr			= ZX_UART01x_FR_DSR,
223 	.fr_cts			= ZX_UART01x_FR_CTS,
224 	.fr_ri			= ZX_UART011_FR_RI,
225 	.get_fifosize		= get_fifosize_zte,
226 };
227 
228 /* Deals with DMA transactions */
229 
230 struct pl011_sgbuf {
231 	struct scatterlist sg;
232 	char *buf;
233 };
234 
235 struct pl011_dmarx_data {
236 	struct dma_chan		*chan;
237 	struct completion	complete;
238 	bool			use_buf_b;
239 	struct pl011_sgbuf	sgbuf_a;
240 	struct pl011_sgbuf	sgbuf_b;
241 	dma_cookie_t		cookie;
242 	bool			running;
243 	struct timer_list	timer;
244 	unsigned int last_residue;
245 	unsigned long last_jiffies;
246 	bool auto_poll_rate;
247 	unsigned int poll_rate;
248 	unsigned int poll_timeout;
249 };
250 
251 struct pl011_dmatx_data {
252 	struct dma_chan		*chan;
253 	struct scatterlist	sg;
254 	char			*buf;
255 	bool			queued;
256 };
257 
258 /*
259  * We wrap our port structure around the generic uart_port.
260  */
261 struct uart_amba_port {
262 	struct uart_port	port;
263 	const u16		*reg_offset;
264 	struct clk		*clk;
265 	const struct vendor_data *vendor;
266 	unsigned int		dmacr;		/* dma control reg */
267 	unsigned int		im;		/* interrupt mask */
268 	unsigned int		old_status;
269 	unsigned int		fifosize;	/* vendor-specific */
270 	unsigned int		old_cr;		/* state during shutdown */
271 	unsigned int		fixed_baud;	/* vendor-set fixed baud rate */
272 	char			type[12];
273 #ifdef CONFIG_DMA_ENGINE
274 	/* DMA stuff */
275 	bool			using_tx_dma;
276 	bool			using_rx_dma;
277 	struct pl011_dmarx_data dmarx;
278 	struct pl011_dmatx_data	dmatx;
279 	bool			dma_probed;
280 #endif
281 };
282 
283 static unsigned int pl011_reg_to_offset(const struct uart_amba_port *uap,
284 	unsigned int reg)
285 {
286 	return uap->reg_offset[reg];
287 }
288 
289 static unsigned int pl011_read(const struct uart_amba_port *uap,
290 	unsigned int reg)
291 {
292 	void __iomem *addr = uap->port.membase + pl011_reg_to_offset(uap, reg);
293 
294 	return (uap->port.iotype == UPIO_MEM32) ?
295 		readl_relaxed(addr) : readw_relaxed(addr);
296 }
297 
298 static void pl011_write(unsigned int val, const struct uart_amba_port *uap,
299 	unsigned int reg)
300 {
301 	void __iomem *addr = uap->port.membase + pl011_reg_to_offset(uap, reg);
302 
303 	if (uap->port.iotype == UPIO_MEM32)
304 		writel_relaxed(val, addr);
305 	else
306 		writew_relaxed(val, addr);
307 }
308 
309 /*
310  * Reads up to 256 characters from the FIFO or until it's empty and
311  * inserts them into the TTY layer. Returns the number of characters
312  * read from the FIFO.
313  */
314 static int pl011_fifo_to_tty(struct uart_amba_port *uap)
315 {
316 	u16 status;
317 	unsigned int ch, flag, fifotaken;
318 
319 	for (fifotaken = 0; fifotaken != 256; fifotaken++) {
320 		status = pl011_read(uap, REG_FR);
321 		if (status & UART01x_FR_RXFE)
322 			break;
323 
324 		/* Take chars from the FIFO and update status */
325 		ch = pl011_read(uap, REG_DR) | UART_DUMMY_DR_RX;
326 		flag = TTY_NORMAL;
327 		uap->port.icount.rx++;
328 
329 		if (unlikely(ch & UART_DR_ERROR)) {
330 			if (ch & UART011_DR_BE) {
331 				ch &= ~(UART011_DR_FE | UART011_DR_PE);
332 				uap->port.icount.brk++;
333 				if (uart_handle_break(&uap->port))
334 					continue;
335 			} else if (ch & UART011_DR_PE)
336 				uap->port.icount.parity++;
337 			else if (ch & UART011_DR_FE)
338 				uap->port.icount.frame++;
339 			if (ch & UART011_DR_OE)
340 				uap->port.icount.overrun++;
341 
342 			ch &= uap->port.read_status_mask;
343 
344 			if (ch & UART011_DR_BE)
345 				flag = TTY_BREAK;
346 			else if (ch & UART011_DR_PE)
347 				flag = TTY_PARITY;
348 			else if (ch & UART011_DR_FE)
349 				flag = TTY_FRAME;
350 		}
351 
352 		if (uart_handle_sysrq_char(&uap->port, ch & 255))
353 			continue;
354 
355 		uart_insert_char(&uap->port, ch, UART011_DR_OE, ch, flag);
356 	}
357 
358 	return fifotaken;
359 }
360 
361 
362 /*
363  * All the DMA operation mode stuff goes inside this ifdef.
364  * This assumes that you have a generic DMA device interface,
365  * no custom DMA interfaces are supported.
366  */
367 #ifdef CONFIG_DMA_ENGINE
368 
369 #define PL011_DMA_BUFFER_SIZE PAGE_SIZE
370 
371 static int pl011_sgbuf_init(struct dma_chan *chan, struct pl011_sgbuf *sg,
372 	enum dma_data_direction dir)
373 {
374 	dma_addr_t dma_addr;
375 
376 	sg->buf = dma_alloc_coherent(chan->device->dev,
377 		PL011_DMA_BUFFER_SIZE, &dma_addr, GFP_KERNEL);
378 	if (!sg->buf)
379 		return -ENOMEM;
380 
381 	sg_init_table(&sg->sg, 1);
382 	sg_set_page(&sg->sg, phys_to_page(dma_addr),
383 		PL011_DMA_BUFFER_SIZE, offset_in_page(dma_addr));
384 	sg_dma_address(&sg->sg) = dma_addr;
385 	sg_dma_len(&sg->sg) = PL011_DMA_BUFFER_SIZE;
386 
387 	return 0;
388 }
389 
390 static void pl011_sgbuf_free(struct dma_chan *chan, struct pl011_sgbuf *sg,
391 	enum dma_data_direction dir)
392 {
393 	if (sg->buf) {
394 		dma_free_coherent(chan->device->dev,
395 			PL011_DMA_BUFFER_SIZE, sg->buf,
396 			sg_dma_address(&sg->sg));
397 	}
398 }
399 
400 static void pl011_dma_probe(struct uart_amba_port *uap)
401 {
402 	/* DMA is the sole user of the platform data right now */
403 	struct amba_pl011_data *plat = dev_get_platdata(uap->port.dev);
404 	struct device *dev = uap->port.dev;
405 	struct dma_slave_config tx_conf = {
406 		.dst_addr = uap->port.mapbase +
407 				 pl011_reg_to_offset(uap, REG_DR),
408 		.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
409 		.direction = DMA_MEM_TO_DEV,
410 		.dst_maxburst = uap->fifosize >> 1,
411 		.device_fc = false,
412 	};
413 	struct dma_chan *chan;
414 	dma_cap_mask_t mask;
415 
416 	uap->dma_probed = true;
417 	chan = dma_request_chan(dev, "tx");
418 	if (IS_ERR(chan)) {
419 		if (PTR_ERR(chan) == -EPROBE_DEFER) {
420 			uap->dma_probed = false;
421 			return;
422 		}
423 
424 		/* We need platform data */
425 		if (!plat || !plat->dma_filter) {
426 			dev_info(uap->port.dev, "no DMA platform data\n");
427 			return;
428 		}
429 
430 		/* Try to acquire a generic DMA engine slave TX channel */
431 		dma_cap_zero(mask);
432 		dma_cap_set(DMA_SLAVE, mask);
433 
434 		chan = dma_request_channel(mask, plat->dma_filter,
435 						plat->dma_tx_param);
436 		if (!chan) {
437 			dev_err(uap->port.dev, "no TX DMA channel!\n");
438 			return;
439 		}
440 	}
441 
442 	dmaengine_slave_config(chan, &tx_conf);
443 	uap->dmatx.chan = chan;
444 
445 	dev_info(uap->port.dev, "DMA channel TX %s\n",
446 		 dma_chan_name(uap->dmatx.chan));
447 
448 	/* Optionally make use of an RX channel as well */
449 	chan = dma_request_slave_channel(dev, "rx");
450 
451 	if (!chan && plat && plat->dma_rx_param) {
452 		chan = dma_request_channel(mask, plat->dma_filter, plat->dma_rx_param);
453 
454 		if (!chan) {
455 			dev_err(uap->port.dev, "no RX DMA channel!\n");
456 			return;
457 		}
458 	}
459 
460 	if (chan) {
461 		struct dma_slave_config rx_conf = {
462 			.src_addr = uap->port.mapbase +
463 				pl011_reg_to_offset(uap, REG_DR),
464 			.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
465 			.direction = DMA_DEV_TO_MEM,
466 			.src_maxburst = uap->fifosize >> 2,
467 			.device_fc = false,
468 		};
469 		struct dma_slave_caps caps;
470 
471 		/*
472 		 * Some DMA controllers provide information on their capabilities.
473 		 * If the controller does, check for suitable residue processing
474 		 * otherwise assime all is well.
475 		 */
476 		if (0 == dma_get_slave_caps(chan, &caps)) {
477 			if (caps.residue_granularity ==
478 					DMA_RESIDUE_GRANULARITY_DESCRIPTOR) {
479 				dma_release_channel(chan);
480 				dev_info(uap->port.dev,
481 					"RX DMA disabled - no residue processing\n");
482 				return;
483 			}
484 		}
485 		dmaengine_slave_config(chan, &rx_conf);
486 		uap->dmarx.chan = chan;
487 
488 		uap->dmarx.auto_poll_rate = false;
489 		if (plat && plat->dma_rx_poll_enable) {
490 			/* Set poll rate if specified. */
491 			if (plat->dma_rx_poll_rate) {
492 				uap->dmarx.auto_poll_rate = false;
493 				uap->dmarx.poll_rate = plat->dma_rx_poll_rate;
494 			} else {
495 				/*
496 				 * 100 ms defaults to poll rate if not
497 				 * specified. This will be adjusted with
498 				 * the baud rate at set_termios.
499 				 */
500 				uap->dmarx.auto_poll_rate = true;
501 				uap->dmarx.poll_rate =  100;
502 			}
503 			/* 3 secs defaults poll_timeout if not specified. */
504 			if (plat->dma_rx_poll_timeout)
505 				uap->dmarx.poll_timeout =
506 					plat->dma_rx_poll_timeout;
507 			else
508 				uap->dmarx.poll_timeout = 3000;
509 		} else if (!plat && dev->of_node) {
510 			uap->dmarx.auto_poll_rate = of_property_read_bool(
511 						dev->of_node, "auto-poll");
512 			if (uap->dmarx.auto_poll_rate) {
513 				u32 x;
514 
515 				if (0 == of_property_read_u32(dev->of_node,
516 						"poll-rate-ms", &x))
517 					uap->dmarx.poll_rate = x;
518 				else
519 					uap->dmarx.poll_rate = 100;
520 				if (0 == of_property_read_u32(dev->of_node,
521 						"poll-timeout-ms", &x))
522 					uap->dmarx.poll_timeout = x;
523 				else
524 					uap->dmarx.poll_timeout = 3000;
525 			}
526 		}
527 		dev_info(uap->port.dev, "DMA channel RX %s\n",
528 			 dma_chan_name(uap->dmarx.chan));
529 	}
530 }
531 
532 static void pl011_dma_remove(struct uart_amba_port *uap)
533 {
534 	if (uap->dmatx.chan)
535 		dma_release_channel(uap->dmatx.chan);
536 	if (uap->dmarx.chan)
537 		dma_release_channel(uap->dmarx.chan);
538 }
539 
540 /* Forward declare these for the refill routine */
541 static int pl011_dma_tx_refill(struct uart_amba_port *uap);
542 static void pl011_start_tx_pio(struct uart_amba_port *uap);
543 
544 /*
545  * The current DMA TX buffer has been sent.
546  * Try to queue up another DMA buffer.
547  */
548 static void pl011_dma_tx_callback(void *data)
549 {
550 	struct uart_amba_port *uap = data;
551 	struct pl011_dmatx_data *dmatx = &uap->dmatx;
552 	unsigned long flags;
553 	u16 dmacr;
554 
555 	spin_lock_irqsave(&uap->port.lock, flags);
556 	if (uap->dmatx.queued)
557 		dma_unmap_sg(dmatx->chan->device->dev, &dmatx->sg, 1,
558 			     DMA_TO_DEVICE);
559 
560 	dmacr = uap->dmacr;
561 	uap->dmacr = dmacr & ~UART011_TXDMAE;
562 	pl011_write(uap->dmacr, uap, REG_DMACR);
563 
564 	/*
565 	 * If TX DMA was disabled, it means that we've stopped the DMA for
566 	 * some reason (eg, XOFF received, or we want to send an X-char.)
567 	 *
568 	 * Note: we need to be careful here of a potential race between DMA
569 	 * and the rest of the driver - if the driver disables TX DMA while
570 	 * a TX buffer completing, we must update the tx queued status to
571 	 * get further refills (hence we check dmacr).
572 	 */
573 	if (!(dmacr & UART011_TXDMAE) || uart_tx_stopped(&uap->port) ||
574 	    uart_circ_empty(&uap->port.state->xmit)) {
575 		uap->dmatx.queued = false;
576 		spin_unlock_irqrestore(&uap->port.lock, flags);
577 		return;
578 	}
579 
580 	if (pl011_dma_tx_refill(uap) <= 0)
581 		/*
582 		 * We didn't queue a DMA buffer for some reason, but we
583 		 * have data pending to be sent.  Re-enable the TX IRQ.
584 		 */
585 		pl011_start_tx_pio(uap);
586 
587 	spin_unlock_irqrestore(&uap->port.lock, flags);
588 }
589 
590 /*
591  * Try to refill the TX DMA buffer.
592  * Locking: called with port lock held and IRQs disabled.
593  * Returns:
594  *   1 if we queued up a TX DMA buffer.
595  *   0 if we didn't want to handle this by DMA
596  *  <0 on error
597  */
598 static int pl011_dma_tx_refill(struct uart_amba_port *uap)
599 {
600 	struct pl011_dmatx_data *dmatx = &uap->dmatx;
601 	struct dma_chan *chan = dmatx->chan;
602 	struct dma_device *dma_dev = chan->device;
603 	struct dma_async_tx_descriptor *desc;
604 	struct circ_buf *xmit = &uap->port.state->xmit;
605 	unsigned int count;
606 
607 	/*
608 	 * Try to avoid the overhead involved in using DMA if the
609 	 * transaction fits in the first half of the FIFO, by using
610 	 * the standard interrupt handling.  This ensures that we
611 	 * issue a uart_write_wakeup() at the appropriate time.
612 	 */
613 	count = uart_circ_chars_pending(xmit);
614 	if (count < (uap->fifosize >> 1)) {
615 		uap->dmatx.queued = false;
616 		return 0;
617 	}
618 
619 	/*
620 	 * Bodge: don't send the last character by DMA, as this
621 	 * will prevent XON from notifying us to restart DMA.
622 	 */
623 	count -= 1;
624 
625 	/* Else proceed to copy the TX chars to the DMA buffer and fire DMA */
626 	if (count > PL011_DMA_BUFFER_SIZE)
627 		count = PL011_DMA_BUFFER_SIZE;
628 
629 	if (xmit->tail < xmit->head)
630 		memcpy(&dmatx->buf[0], &xmit->buf[xmit->tail], count);
631 	else {
632 		size_t first = UART_XMIT_SIZE - xmit->tail;
633 		size_t second;
634 
635 		if (first > count)
636 			first = count;
637 		second = count - first;
638 
639 		memcpy(&dmatx->buf[0], &xmit->buf[xmit->tail], first);
640 		if (second)
641 			memcpy(&dmatx->buf[first], &xmit->buf[0], second);
642 	}
643 
644 	dmatx->sg.length = count;
645 
646 	if (dma_map_sg(dma_dev->dev, &dmatx->sg, 1, DMA_TO_DEVICE) != 1) {
647 		uap->dmatx.queued = false;
648 		dev_dbg(uap->port.dev, "unable to map TX DMA\n");
649 		return -EBUSY;
650 	}
651 
652 	desc = dmaengine_prep_slave_sg(chan, &dmatx->sg, 1, DMA_MEM_TO_DEV,
653 					     DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
654 	if (!desc) {
655 		dma_unmap_sg(dma_dev->dev, &dmatx->sg, 1, DMA_TO_DEVICE);
656 		uap->dmatx.queued = false;
657 		/*
658 		 * If DMA cannot be used right now, we complete this
659 		 * transaction via IRQ and let the TTY layer retry.
660 		 */
661 		dev_dbg(uap->port.dev, "TX DMA busy\n");
662 		return -EBUSY;
663 	}
664 
665 	/* Some data to go along to the callback */
666 	desc->callback = pl011_dma_tx_callback;
667 	desc->callback_param = uap;
668 
669 	/* All errors should happen at prepare time */
670 	dmaengine_submit(desc);
671 
672 	/* Fire the DMA transaction */
673 	dma_dev->device_issue_pending(chan);
674 
675 	uap->dmacr |= UART011_TXDMAE;
676 	pl011_write(uap->dmacr, uap, REG_DMACR);
677 	uap->dmatx.queued = true;
678 
679 	/*
680 	 * Now we know that DMA will fire, so advance the ring buffer
681 	 * with the stuff we just dispatched.
682 	 */
683 	xmit->tail = (xmit->tail + count) & (UART_XMIT_SIZE - 1);
684 	uap->port.icount.tx += count;
685 
686 	if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
687 		uart_write_wakeup(&uap->port);
688 
689 	return 1;
690 }
691 
692 /*
693  * We received a transmit interrupt without a pending X-char but with
694  * pending characters.
695  * Locking: called with port lock held and IRQs disabled.
696  * Returns:
697  *   false if we want to use PIO to transmit
698  *   true if we queued a DMA buffer
699  */
700 static bool pl011_dma_tx_irq(struct uart_amba_port *uap)
701 {
702 	if (!uap->using_tx_dma)
703 		return false;
704 
705 	/*
706 	 * If we already have a TX buffer queued, but received a
707 	 * TX interrupt, it will be because we've just sent an X-char.
708 	 * Ensure the TX DMA is enabled and the TX IRQ is disabled.
709 	 */
710 	if (uap->dmatx.queued) {
711 		uap->dmacr |= UART011_TXDMAE;
712 		pl011_write(uap->dmacr, uap, REG_DMACR);
713 		uap->im &= ~UART011_TXIM;
714 		pl011_write(uap->im, uap, REG_IMSC);
715 		return true;
716 	}
717 
718 	/*
719 	 * We don't have a TX buffer queued, so try to queue one.
720 	 * If we successfully queued a buffer, mask the TX IRQ.
721 	 */
722 	if (pl011_dma_tx_refill(uap) > 0) {
723 		uap->im &= ~UART011_TXIM;
724 		pl011_write(uap->im, uap, REG_IMSC);
725 		return true;
726 	}
727 	return false;
728 }
729 
730 /*
731  * Stop the DMA transmit (eg, due to received XOFF).
732  * Locking: called with port lock held and IRQs disabled.
733  */
734 static inline void pl011_dma_tx_stop(struct uart_amba_port *uap)
735 {
736 	if (uap->dmatx.queued) {
737 		uap->dmacr &= ~UART011_TXDMAE;
738 		pl011_write(uap->dmacr, uap, REG_DMACR);
739 	}
740 }
741 
742 /*
743  * Try to start a DMA transmit, or in the case of an XON/OFF
744  * character queued for send, try to get that character out ASAP.
745  * Locking: called with port lock held and IRQs disabled.
746  * Returns:
747  *   false if we want the TX IRQ to be enabled
748  *   true if we have a buffer queued
749  */
750 static inline bool pl011_dma_tx_start(struct uart_amba_port *uap)
751 {
752 	u16 dmacr;
753 
754 	if (!uap->using_tx_dma)
755 		return false;
756 
757 	if (!uap->port.x_char) {
758 		/* no X-char, try to push chars out in DMA mode */
759 		bool ret = true;
760 
761 		if (!uap->dmatx.queued) {
762 			if (pl011_dma_tx_refill(uap) > 0) {
763 				uap->im &= ~UART011_TXIM;
764 				pl011_write(uap->im, uap, REG_IMSC);
765 			} else
766 				ret = false;
767 		} else if (!(uap->dmacr & UART011_TXDMAE)) {
768 			uap->dmacr |= UART011_TXDMAE;
769 			pl011_write(uap->dmacr, uap, REG_DMACR);
770 		}
771 		return ret;
772 	}
773 
774 	/*
775 	 * We have an X-char to send.  Disable DMA to prevent it loading
776 	 * the TX fifo, and then see if we can stuff it into the FIFO.
777 	 */
778 	dmacr = uap->dmacr;
779 	uap->dmacr &= ~UART011_TXDMAE;
780 	pl011_write(uap->dmacr, uap, REG_DMACR);
781 
782 	if (pl011_read(uap, REG_FR) & UART01x_FR_TXFF) {
783 		/*
784 		 * No space in the FIFO, so enable the transmit interrupt
785 		 * so we know when there is space.  Note that once we've
786 		 * loaded the character, we should just re-enable DMA.
787 		 */
788 		return false;
789 	}
790 
791 	pl011_write(uap->port.x_char, uap, REG_DR);
792 	uap->port.icount.tx++;
793 	uap->port.x_char = 0;
794 
795 	/* Success - restore the DMA state */
796 	uap->dmacr = dmacr;
797 	pl011_write(dmacr, uap, REG_DMACR);
798 
799 	return true;
800 }
801 
802 /*
803  * Flush the transmit buffer.
804  * Locking: called with port lock held and IRQs disabled.
805  */
806 static void pl011_dma_flush_buffer(struct uart_port *port)
807 __releases(&uap->port.lock)
808 __acquires(&uap->port.lock)
809 {
810 	struct uart_amba_port *uap =
811 	    container_of(port, struct uart_amba_port, port);
812 
813 	if (!uap->using_tx_dma)
814 		return;
815 
816 	dmaengine_terminate_async(uap->dmatx.chan);
817 
818 	if (uap->dmatx.queued) {
819 		dma_unmap_sg(uap->dmatx.chan->device->dev, &uap->dmatx.sg, 1,
820 			     DMA_TO_DEVICE);
821 		uap->dmatx.queued = false;
822 		uap->dmacr &= ~UART011_TXDMAE;
823 		pl011_write(uap->dmacr, uap, REG_DMACR);
824 	}
825 }
826 
827 static void pl011_dma_rx_callback(void *data);
828 
829 static int pl011_dma_rx_trigger_dma(struct uart_amba_port *uap)
830 {
831 	struct dma_chan *rxchan = uap->dmarx.chan;
832 	struct pl011_dmarx_data *dmarx = &uap->dmarx;
833 	struct dma_async_tx_descriptor *desc;
834 	struct pl011_sgbuf *sgbuf;
835 
836 	if (!rxchan)
837 		return -EIO;
838 
839 	/* Start the RX DMA job */
840 	sgbuf = uap->dmarx.use_buf_b ?
841 		&uap->dmarx.sgbuf_b : &uap->dmarx.sgbuf_a;
842 	desc = dmaengine_prep_slave_sg(rxchan, &sgbuf->sg, 1,
843 					DMA_DEV_TO_MEM,
844 					DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
845 	/*
846 	 * If the DMA engine is busy and cannot prepare a
847 	 * channel, no big deal, the driver will fall back
848 	 * to interrupt mode as a result of this error code.
849 	 */
850 	if (!desc) {
851 		uap->dmarx.running = false;
852 		dmaengine_terminate_all(rxchan);
853 		return -EBUSY;
854 	}
855 
856 	/* Some data to go along to the callback */
857 	desc->callback = pl011_dma_rx_callback;
858 	desc->callback_param = uap;
859 	dmarx->cookie = dmaengine_submit(desc);
860 	dma_async_issue_pending(rxchan);
861 
862 	uap->dmacr |= UART011_RXDMAE;
863 	pl011_write(uap->dmacr, uap, REG_DMACR);
864 	uap->dmarx.running = true;
865 
866 	uap->im &= ~UART011_RXIM;
867 	pl011_write(uap->im, uap, REG_IMSC);
868 
869 	return 0;
870 }
871 
872 /*
873  * This is called when either the DMA job is complete, or
874  * the FIFO timeout interrupt occurred. This must be called
875  * with the port spinlock uap->port.lock held.
876  */
877 static void pl011_dma_rx_chars(struct uart_amba_port *uap,
878 			       u32 pending, bool use_buf_b,
879 			       bool readfifo)
880 {
881 	struct tty_port *port = &uap->port.state->port;
882 	struct pl011_sgbuf *sgbuf = use_buf_b ?
883 		&uap->dmarx.sgbuf_b : &uap->dmarx.sgbuf_a;
884 	int dma_count = 0;
885 	u32 fifotaken = 0; /* only used for vdbg() */
886 
887 	struct pl011_dmarx_data *dmarx = &uap->dmarx;
888 	int dmataken = 0;
889 
890 	if (uap->dmarx.poll_rate) {
891 		/* The data can be taken by polling */
892 		dmataken = sgbuf->sg.length - dmarx->last_residue;
893 		/* Recalculate the pending size */
894 		if (pending >= dmataken)
895 			pending -= dmataken;
896 	}
897 
898 	/* Pick the remain data from the DMA */
899 	if (pending) {
900 
901 		/*
902 		 * First take all chars in the DMA pipe, then look in the FIFO.
903 		 * Note that tty_insert_flip_buf() tries to take as many chars
904 		 * as it can.
905 		 */
906 		dma_count = tty_insert_flip_string(port, sgbuf->buf + dmataken,
907 				pending);
908 
909 		uap->port.icount.rx += dma_count;
910 		if (dma_count < pending)
911 			dev_warn(uap->port.dev,
912 				 "couldn't insert all characters (TTY is full?)\n");
913 	}
914 
915 	/* Reset the last_residue for Rx DMA poll */
916 	if (uap->dmarx.poll_rate)
917 		dmarx->last_residue = sgbuf->sg.length;
918 
919 	/*
920 	 * Only continue with trying to read the FIFO if all DMA chars have
921 	 * been taken first.
922 	 */
923 	if (dma_count == pending && readfifo) {
924 		/* Clear any error flags */
925 		pl011_write(UART011_OEIS | UART011_BEIS | UART011_PEIS |
926 			    UART011_FEIS, uap, REG_ICR);
927 
928 		/*
929 		 * If we read all the DMA'd characters, and we had an
930 		 * incomplete buffer, that could be due to an rx error, or
931 		 * maybe we just timed out. Read any pending chars and check
932 		 * the error status.
933 		 *
934 		 * Error conditions will only occur in the FIFO, these will
935 		 * trigger an immediate interrupt and stop the DMA job, so we
936 		 * will always find the error in the FIFO, never in the DMA
937 		 * buffer.
938 		 */
939 		fifotaken = pl011_fifo_to_tty(uap);
940 	}
941 
942 	spin_unlock(&uap->port.lock);
943 	dev_vdbg(uap->port.dev,
944 		 "Took %d chars from DMA buffer and %d chars from the FIFO\n",
945 		 dma_count, fifotaken);
946 	tty_flip_buffer_push(port);
947 	spin_lock(&uap->port.lock);
948 }
949 
950 static void pl011_dma_rx_irq(struct uart_amba_port *uap)
951 {
952 	struct pl011_dmarx_data *dmarx = &uap->dmarx;
953 	struct dma_chan *rxchan = dmarx->chan;
954 	struct pl011_sgbuf *sgbuf = dmarx->use_buf_b ?
955 		&dmarx->sgbuf_b : &dmarx->sgbuf_a;
956 	size_t pending;
957 	struct dma_tx_state state;
958 	enum dma_status dmastat;
959 
960 	/*
961 	 * Pause the transfer so we can trust the current counter,
962 	 * do this before we pause the PL011 block, else we may
963 	 * overflow the FIFO.
964 	 */
965 	if (dmaengine_pause(rxchan))
966 		dev_err(uap->port.dev, "unable to pause DMA transfer\n");
967 	dmastat = rxchan->device->device_tx_status(rxchan,
968 						   dmarx->cookie, &state);
969 	if (dmastat != DMA_PAUSED)
970 		dev_err(uap->port.dev, "unable to pause DMA transfer\n");
971 
972 	/* Disable RX DMA - incoming data will wait in the FIFO */
973 	uap->dmacr &= ~UART011_RXDMAE;
974 	pl011_write(uap->dmacr, uap, REG_DMACR);
975 	uap->dmarx.running = false;
976 
977 	pending = sgbuf->sg.length - state.residue;
978 	BUG_ON(pending > PL011_DMA_BUFFER_SIZE);
979 	/* Then we terminate the transfer - we now know our residue */
980 	dmaengine_terminate_all(rxchan);
981 
982 	/*
983 	 * This will take the chars we have so far and insert
984 	 * into the framework.
985 	 */
986 	pl011_dma_rx_chars(uap, pending, dmarx->use_buf_b, true);
987 
988 	/* Switch buffer & re-trigger DMA job */
989 	dmarx->use_buf_b = !dmarx->use_buf_b;
990 	if (pl011_dma_rx_trigger_dma(uap)) {
991 		dev_dbg(uap->port.dev, "could not retrigger RX DMA job "
992 			"fall back to interrupt mode\n");
993 		uap->im |= UART011_RXIM;
994 		pl011_write(uap->im, uap, REG_IMSC);
995 	}
996 }
997 
998 static void pl011_dma_rx_callback(void *data)
999 {
1000 	struct uart_amba_port *uap = data;
1001 	struct pl011_dmarx_data *dmarx = &uap->dmarx;
1002 	struct dma_chan *rxchan = dmarx->chan;
1003 	bool lastbuf = dmarx->use_buf_b;
1004 	struct pl011_sgbuf *sgbuf = dmarx->use_buf_b ?
1005 		&dmarx->sgbuf_b : &dmarx->sgbuf_a;
1006 	size_t pending;
1007 	struct dma_tx_state state;
1008 	int ret;
1009 
1010 	/*
1011 	 * This completion interrupt occurs typically when the
1012 	 * RX buffer is totally stuffed but no timeout has yet
1013 	 * occurred. When that happens, we just want the RX
1014 	 * routine to flush out the secondary DMA buffer while
1015 	 * we immediately trigger the next DMA job.
1016 	 */
1017 	spin_lock_irq(&uap->port.lock);
1018 	/*
1019 	 * Rx data can be taken by the UART interrupts during
1020 	 * the DMA irq handler. So we check the residue here.
1021 	 */
1022 	rxchan->device->device_tx_status(rxchan, dmarx->cookie, &state);
1023 	pending = sgbuf->sg.length - state.residue;
1024 	BUG_ON(pending > PL011_DMA_BUFFER_SIZE);
1025 	/* Then we terminate the transfer - we now know our residue */
1026 	dmaengine_terminate_all(rxchan);
1027 
1028 	uap->dmarx.running = false;
1029 	dmarx->use_buf_b = !lastbuf;
1030 	ret = pl011_dma_rx_trigger_dma(uap);
1031 
1032 	pl011_dma_rx_chars(uap, pending, lastbuf, false);
1033 	spin_unlock_irq(&uap->port.lock);
1034 	/*
1035 	 * Do this check after we picked the DMA chars so we don't
1036 	 * get some IRQ immediately from RX.
1037 	 */
1038 	if (ret) {
1039 		dev_dbg(uap->port.dev, "could not retrigger RX DMA job "
1040 			"fall back to interrupt mode\n");
1041 		uap->im |= UART011_RXIM;
1042 		pl011_write(uap->im, uap, REG_IMSC);
1043 	}
1044 }
1045 
1046 /*
1047  * Stop accepting received characters, when we're shutting down or
1048  * suspending this port.
1049  * Locking: called with port lock held and IRQs disabled.
1050  */
1051 static inline void pl011_dma_rx_stop(struct uart_amba_port *uap)
1052 {
1053 	/* FIXME.  Just disable the DMA enable */
1054 	uap->dmacr &= ~UART011_RXDMAE;
1055 	pl011_write(uap->dmacr, uap, REG_DMACR);
1056 }
1057 
1058 /*
1059  * Timer handler for Rx DMA polling.
1060  * Every polling, It checks the residue in the dma buffer and transfer
1061  * data to the tty. Also, last_residue is updated for the next polling.
1062  */
1063 static void pl011_dma_rx_poll(struct timer_list *t)
1064 {
1065 	struct uart_amba_port *uap = from_timer(uap, t, dmarx.timer);
1066 	struct tty_port *port = &uap->port.state->port;
1067 	struct pl011_dmarx_data *dmarx = &uap->dmarx;
1068 	struct dma_chan *rxchan = uap->dmarx.chan;
1069 	unsigned long flags = 0;
1070 	unsigned int dmataken = 0;
1071 	unsigned int size = 0;
1072 	struct pl011_sgbuf *sgbuf;
1073 	int dma_count;
1074 	struct dma_tx_state state;
1075 
1076 	sgbuf = dmarx->use_buf_b ? &uap->dmarx.sgbuf_b : &uap->dmarx.sgbuf_a;
1077 	rxchan->device->device_tx_status(rxchan, dmarx->cookie, &state);
1078 	if (likely(state.residue < dmarx->last_residue)) {
1079 		dmataken = sgbuf->sg.length - dmarx->last_residue;
1080 		size = dmarx->last_residue - state.residue;
1081 		dma_count = tty_insert_flip_string(port, sgbuf->buf + dmataken,
1082 				size);
1083 		if (dma_count == size)
1084 			dmarx->last_residue =  state.residue;
1085 		dmarx->last_jiffies = jiffies;
1086 	}
1087 	tty_flip_buffer_push(port);
1088 
1089 	/*
1090 	 * If no data is received in poll_timeout, the driver will fall back
1091 	 * to interrupt mode. We will retrigger DMA at the first interrupt.
1092 	 */
1093 	if (jiffies_to_msecs(jiffies - dmarx->last_jiffies)
1094 			> uap->dmarx.poll_timeout) {
1095 
1096 		spin_lock_irqsave(&uap->port.lock, flags);
1097 		pl011_dma_rx_stop(uap);
1098 		uap->im |= UART011_RXIM;
1099 		pl011_write(uap->im, uap, REG_IMSC);
1100 		spin_unlock_irqrestore(&uap->port.lock, flags);
1101 
1102 		uap->dmarx.running = false;
1103 		dmaengine_terminate_all(rxchan);
1104 		del_timer(&uap->dmarx.timer);
1105 	} else {
1106 		mod_timer(&uap->dmarx.timer,
1107 			jiffies + msecs_to_jiffies(uap->dmarx.poll_rate));
1108 	}
1109 }
1110 
1111 static void pl011_dma_startup(struct uart_amba_port *uap)
1112 {
1113 	int ret;
1114 
1115 	if (!uap->dma_probed)
1116 		pl011_dma_probe(uap);
1117 
1118 	if (!uap->dmatx.chan)
1119 		return;
1120 
1121 	uap->dmatx.buf = kmalloc(PL011_DMA_BUFFER_SIZE, GFP_KERNEL | __GFP_DMA);
1122 	if (!uap->dmatx.buf) {
1123 		dev_err(uap->port.dev, "no memory for DMA TX buffer\n");
1124 		uap->port.fifosize = uap->fifosize;
1125 		return;
1126 	}
1127 
1128 	sg_init_one(&uap->dmatx.sg, uap->dmatx.buf, PL011_DMA_BUFFER_SIZE);
1129 
1130 	/* The DMA buffer is now the FIFO the TTY subsystem can use */
1131 	uap->port.fifosize = PL011_DMA_BUFFER_SIZE;
1132 	uap->using_tx_dma = true;
1133 
1134 	if (!uap->dmarx.chan)
1135 		goto skip_rx;
1136 
1137 	/* Allocate and map DMA RX buffers */
1138 	ret = pl011_sgbuf_init(uap->dmarx.chan, &uap->dmarx.sgbuf_a,
1139 			       DMA_FROM_DEVICE);
1140 	if (ret) {
1141 		dev_err(uap->port.dev, "failed to init DMA %s: %d\n",
1142 			"RX buffer A", ret);
1143 		goto skip_rx;
1144 	}
1145 
1146 	ret = pl011_sgbuf_init(uap->dmarx.chan, &uap->dmarx.sgbuf_b,
1147 			       DMA_FROM_DEVICE);
1148 	if (ret) {
1149 		dev_err(uap->port.dev, "failed to init DMA %s: %d\n",
1150 			"RX buffer B", ret);
1151 		pl011_sgbuf_free(uap->dmarx.chan, &uap->dmarx.sgbuf_a,
1152 				 DMA_FROM_DEVICE);
1153 		goto skip_rx;
1154 	}
1155 
1156 	uap->using_rx_dma = true;
1157 
1158 skip_rx:
1159 	/* Turn on DMA error (RX/TX will be enabled on demand) */
1160 	uap->dmacr |= UART011_DMAONERR;
1161 	pl011_write(uap->dmacr, uap, REG_DMACR);
1162 
1163 	/*
1164 	 * ST Micro variants has some specific dma burst threshold
1165 	 * compensation. Set this to 16 bytes, so burst will only
1166 	 * be issued above/below 16 bytes.
1167 	 */
1168 	if (uap->vendor->dma_threshold)
1169 		pl011_write(ST_UART011_DMAWM_RX_16 | ST_UART011_DMAWM_TX_16,
1170 			    uap, REG_ST_DMAWM);
1171 
1172 	if (uap->using_rx_dma) {
1173 		if (pl011_dma_rx_trigger_dma(uap))
1174 			dev_dbg(uap->port.dev, "could not trigger initial "
1175 				"RX DMA job, fall back to interrupt mode\n");
1176 		if (uap->dmarx.poll_rate) {
1177 			timer_setup(&uap->dmarx.timer, pl011_dma_rx_poll, 0);
1178 			mod_timer(&uap->dmarx.timer,
1179 				jiffies +
1180 				msecs_to_jiffies(uap->dmarx.poll_rate));
1181 			uap->dmarx.last_residue = PL011_DMA_BUFFER_SIZE;
1182 			uap->dmarx.last_jiffies = jiffies;
1183 		}
1184 	}
1185 }
1186 
1187 static void pl011_dma_shutdown(struct uart_amba_port *uap)
1188 {
1189 	if (!(uap->using_tx_dma || uap->using_rx_dma))
1190 		return;
1191 
1192 	/* Disable RX and TX DMA */
1193 	while (pl011_read(uap, REG_FR) & uap->vendor->fr_busy)
1194 		cpu_relax();
1195 
1196 	spin_lock_irq(&uap->port.lock);
1197 	uap->dmacr &= ~(UART011_DMAONERR | UART011_RXDMAE | UART011_TXDMAE);
1198 	pl011_write(uap->dmacr, uap, REG_DMACR);
1199 	spin_unlock_irq(&uap->port.lock);
1200 
1201 	if (uap->using_tx_dma) {
1202 		/* In theory, this should already be done by pl011_dma_flush_buffer */
1203 		dmaengine_terminate_all(uap->dmatx.chan);
1204 		if (uap->dmatx.queued) {
1205 			dma_unmap_sg(uap->dmatx.chan->device->dev, &uap->dmatx.sg, 1,
1206 				     DMA_TO_DEVICE);
1207 			uap->dmatx.queued = false;
1208 		}
1209 
1210 		kfree(uap->dmatx.buf);
1211 		uap->using_tx_dma = false;
1212 	}
1213 
1214 	if (uap->using_rx_dma) {
1215 		dmaengine_terminate_all(uap->dmarx.chan);
1216 		/* Clean up the RX DMA */
1217 		pl011_sgbuf_free(uap->dmarx.chan, &uap->dmarx.sgbuf_a, DMA_FROM_DEVICE);
1218 		pl011_sgbuf_free(uap->dmarx.chan, &uap->dmarx.sgbuf_b, DMA_FROM_DEVICE);
1219 		if (uap->dmarx.poll_rate)
1220 			del_timer_sync(&uap->dmarx.timer);
1221 		uap->using_rx_dma = false;
1222 	}
1223 }
1224 
1225 static inline bool pl011_dma_rx_available(struct uart_amba_port *uap)
1226 {
1227 	return uap->using_rx_dma;
1228 }
1229 
1230 static inline bool pl011_dma_rx_running(struct uart_amba_port *uap)
1231 {
1232 	return uap->using_rx_dma && uap->dmarx.running;
1233 }
1234 
1235 #else
1236 /* Blank functions if the DMA engine is not available */
1237 static inline void pl011_dma_remove(struct uart_amba_port *uap)
1238 {
1239 }
1240 
1241 static inline void pl011_dma_startup(struct uart_amba_port *uap)
1242 {
1243 }
1244 
1245 static inline void pl011_dma_shutdown(struct uart_amba_port *uap)
1246 {
1247 }
1248 
1249 static inline bool pl011_dma_tx_irq(struct uart_amba_port *uap)
1250 {
1251 	return false;
1252 }
1253 
1254 static inline void pl011_dma_tx_stop(struct uart_amba_port *uap)
1255 {
1256 }
1257 
1258 static inline bool pl011_dma_tx_start(struct uart_amba_port *uap)
1259 {
1260 	return false;
1261 }
1262 
1263 static inline void pl011_dma_rx_irq(struct uart_amba_port *uap)
1264 {
1265 }
1266 
1267 static inline void pl011_dma_rx_stop(struct uart_amba_port *uap)
1268 {
1269 }
1270 
1271 static inline int pl011_dma_rx_trigger_dma(struct uart_amba_port *uap)
1272 {
1273 	return -EIO;
1274 }
1275 
1276 static inline bool pl011_dma_rx_available(struct uart_amba_port *uap)
1277 {
1278 	return false;
1279 }
1280 
1281 static inline bool pl011_dma_rx_running(struct uart_amba_port *uap)
1282 {
1283 	return false;
1284 }
1285 
1286 #define pl011_dma_flush_buffer	NULL
1287 #endif
1288 
1289 static void pl011_stop_tx(struct uart_port *port)
1290 {
1291 	struct uart_amba_port *uap =
1292 	    container_of(port, struct uart_amba_port, port);
1293 
1294 	uap->im &= ~UART011_TXIM;
1295 	pl011_write(uap->im, uap, REG_IMSC);
1296 	pl011_dma_tx_stop(uap);
1297 }
1298 
1299 static bool pl011_tx_chars(struct uart_amba_port *uap, bool from_irq);
1300 
1301 /* Start TX with programmed I/O only (no DMA) */
1302 static void pl011_start_tx_pio(struct uart_amba_port *uap)
1303 {
1304 	if (pl011_tx_chars(uap, false)) {
1305 		uap->im |= UART011_TXIM;
1306 		pl011_write(uap->im, uap, REG_IMSC);
1307 	}
1308 }
1309 
1310 static void pl011_start_tx(struct uart_port *port)
1311 {
1312 	struct uart_amba_port *uap =
1313 	    container_of(port, struct uart_amba_port, port);
1314 
1315 	if (!pl011_dma_tx_start(uap))
1316 		pl011_start_tx_pio(uap);
1317 }
1318 
1319 static void pl011_stop_rx(struct uart_port *port)
1320 {
1321 	struct uart_amba_port *uap =
1322 	    container_of(port, struct uart_amba_port, port);
1323 
1324 	uap->im &= ~(UART011_RXIM|UART011_RTIM|UART011_FEIM|
1325 		     UART011_PEIM|UART011_BEIM|UART011_OEIM);
1326 	pl011_write(uap->im, uap, REG_IMSC);
1327 
1328 	pl011_dma_rx_stop(uap);
1329 }
1330 
1331 static void pl011_enable_ms(struct uart_port *port)
1332 {
1333 	struct uart_amba_port *uap =
1334 	    container_of(port, struct uart_amba_port, port);
1335 
1336 	uap->im |= UART011_RIMIM|UART011_CTSMIM|UART011_DCDMIM|UART011_DSRMIM;
1337 	pl011_write(uap->im, uap, REG_IMSC);
1338 }
1339 
1340 static void pl011_rx_chars(struct uart_amba_port *uap)
1341 __releases(&uap->port.lock)
1342 __acquires(&uap->port.lock)
1343 {
1344 	pl011_fifo_to_tty(uap);
1345 
1346 	spin_unlock(&uap->port.lock);
1347 	tty_flip_buffer_push(&uap->port.state->port);
1348 	/*
1349 	 * If we were temporarily out of DMA mode for a while,
1350 	 * attempt to switch back to DMA mode again.
1351 	 */
1352 	if (pl011_dma_rx_available(uap)) {
1353 		if (pl011_dma_rx_trigger_dma(uap)) {
1354 			dev_dbg(uap->port.dev, "could not trigger RX DMA job "
1355 				"fall back to interrupt mode again\n");
1356 			uap->im |= UART011_RXIM;
1357 			pl011_write(uap->im, uap, REG_IMSC);
1358 		} else {
1359 #ifdef CONFIG_DMA_ENGINE
1360 			/* Start Rx DMA poll */
1361 			if (uap->dmarx.poll_rate) {
1362 				uap->dmarx.last_jiffies = jiffies;
1363 				uap->dmarx.last_residue	= PL011_DMA_BUFFER_SIZE;
1364 				mod_timer(&uap->dmarx.timer,
1365 					jiffies +
1366 					msecs_to_jiffies(uap->dmarx.poll_rate));
1367 			}
1368 #endif
1369 		}
1370 	}
1371 	spin_lock(&uap->port.lock);
1372 }
1373 
1374 static bool pl011_tx_char(struct uart_amba_port *uap, unsigned char c,
1375 			  bool from_irq)
1376 {
1377 	if (unlikely(!from_irq) &&
1378 	    pl011_read(uap, REG_FR) & UART01x_FR_TXFF)
1379 		return false; /* unable to transmit character */
1380 
1381 	pl011_write(c, uap, REG_DR);
1382 	uap->port.icount.tx++;
1383 
1384 	return true;
1385 }
1386 
1387 /* Returns true if tx interrupts have to be (kept) enabled  */
1388 static bool pl011_tx_chars(struct uart_amba_port *uap, bool from_irq)
1389 {
1390 	struct circ_buf *xmit = &uap->port.state->xmit;
1391 	int count = uap->fifosize >> 1;
1392 
1393 	if (uap->port.x_char) {
1394 		if (!pl011_tx_char(uap, uap->port.x_char, from_irq))
1395 			return true;
1396 		uap->port.x_char = 0;
1397 		--count;
1398 	}
1399 	if (uart_circ_empty(xmit) || uart_tx_stopped(&uap->port)) {
1400 		pl011_stop_tx(&uap->port);
1401 		return false;
1402 	}
1403 
1404 	/* If we are using DMA mode, try to send some characters. */
1405 	if (pl011_dma_tx_irq(uap))
1406 		return true;
1407 
1408 	do {
1409 		if (likely(from_irq) && count-- == 0)
1410 			break;
1411 
1412 		if (!pl011_tx_char(uap, xmit->buf[xmit->tail], from_irq))
1413 			break;
1414 
1415 		xmit->tail = (xmit->tail + 1) & (UART_XMIT_SIZE - 1);
1416 	} while (!uart_circ_empty(xmit));
1417 
1418 	if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
1419 		uart_write_wakeup(&uap->port);
1420 
1421 	if (uart_circ_empty(xmit)) {
1422 		pl011_stop_tx(&uap->port);
1423 		return false;
1424 	}
1425 	return true;
1426 }
1427 
1428 static void pl011_modem_status(struct uart_amba_port *uap)
1429 {
1430 	unsigned int status, delta;
1431 
1432 	status = pl011_read(uap, REG_FR) & UART01x_FR_MODEM_ANY;
1433 
1434 	delta = status ^ uap->old_status;
1435 	uap->old_status = status;
1436 
1437 	if (!delta)
1438 		return;
1439 
1440 	if (delta & UART01x_FR_DCD)
1441 		uart_handle_dcd_change(&uap->port, status & UART01x_FR_DCD);
1442 
1443 	if (delta & uap->vendor->fr_dsr)
1444 		uap->port.icount.dsr++;
1445 
1446 	if (delta & uap->vendor->fr_cts)
1447 		uart_handle_cts_change(&uap->port,
1448 				       status & uap->vendor->fr_cts);
1449 
1450 	wake_up_interruptible(&uap->port.state->port.delta_msr_wait);
1451 }
1452 
1453 static void check_apply_cts_event_workaround(struct uart_amba_port *uap)
1454 {
1455 	unsigned int dummy_read;
1456 
1457 	if (!uap->vendor->cts_event_workaround)
1458 		return;
1459 
1460 	/* workaround to make sure that all bits are unlocked.. */
1461 	pl011_write(0x00, uap, REG_ICR);
1462 
1463 	/*
1464 	 * WA: introduce 26ns(1 uart clk) delay before W1C;
1465 	 * single apb access will incur 2 pclk(133.12Mhz) delay,
1466 	 * so add 2 dummy reads
1467 	 */
1468 	dummy_read = pl011_read(uap, REG_ICR);
1469 	dummy_read = pl011_read(uap, REG_ICR);
1470 }
1471 
1472 static irqreturn_t pl011_int(int irq, void *dev_id)
1473 {
1474 	struct uart_amba_port *uap = dev_id;
1475 	unsigned long flags;
1476 	unsigned int status, pass_counter = AMBA_ISR_PASS_LIMIT;
1477 	int handled = 0;
1478 
1479 	spin_lock_irqsave(&uap->port.lock, flags);
1480 	status = pl011_read(uap, REG_RIS) & uap->im;
1481 	if (status) {
1482 		do {
1483 			check_apply_cts_event_workaround(uap);
1484 
1485 			pl011_write(status & ~(UART011_TXIS|UART011_RTIS|
1486 					       UART011_RXIS),
1487 				    uap, REG_ICR);
1488 
1489 			if (status & (UART011_RTIS|UART011_RXIS)) {
1490 				if (pl011_dma_rx_running(uap))
1491 					pl011_dma_rx_irq(uap);
1492 				else
1493 					pl011_rx_chars(uap);
1494 			}
1495 			if (status & (UART011_DSRMIS|UART011_DCDMIS|
1496 				      UART011_CTSMIS|UART011_RIMIS))
1497 				pl011_modem_status(uap);
1498 			if (status & UART011_TXIS)
1499 				pl011_tx_chars(uap, true);
1500 
1501 			if (pass_counter-- == 0)
1502 				break;
1503 
1504 			status = pl011_read(uap, REG_RIS) & uap->im;
1505 		} while (status != 0);
1506 		handled = 1;
1507 	}
1508 
1509 	spin_unlock_irqrestore(&uap->port.lock, flags);
1510 
1511 	return IRQ_RETVAL(handled);
1512 }
1513 
1514 static unsigned int pl011_tx_empty(struct uart_port *port)
1515 {
1516 	struct uart_amba_port *uap =
1517 	    container_of(port, struct uart_amba_port, port);
1518 
1519 	/* Allow feature register bits to be inverted to work around errata */
1520 	unsigned int status = pl011_read(uap, REG_FR) ^ uap->vendor->inv_fr;
1521 
1522 	return status & (uap->vendor->fr_busy | UART01x_FR_TXFF) ?
1523 							0 : TIOCSER_TEMT;
1524 }
1525 
1526 static unsigned int pl011_get_mctrl(struct uart_port *port)
1527 {
1528 	struct uart_amba_port *uap =
1529 	    container_of(port, struct uart_amba_port, port);
1530 	unsigned int result = 0;
1531 	unsigned int status = pl011_read(uap, REG_FR);
1532 
1533 #define TIOCMBIT(uartbit, tiocmbit)	\
1534 	if (status & uartbit)		\
1535 		result |= tiocmbit
1536 
1537 	TIOCMBIT(UART01x_FR_DCD, TIOCM_CAR);
1538 	TIOCMBIT(uap->vendor->fr_dsr, TIOCM_DSR);
1539 	TIOCMBIT(uap->vendor->fr_cts, TIOCM_CTS);
1540 	TIOCMBIT(uap->vendor->fr_ri, TIOCM_RNG);
1541 #undef TIOCMBIT
1542 	return result;
1543 }
1544 
1545 static void pl011_set_mctrl(struct uart_port *port, unsigned int mctrl)
1546 {
1547 	struct uart_amba_port *uap =
1548 	    container_of(port, struct uart_amba_port, port);
1549 	unsigned int cr;
1550 
1551 	cr = pl011_read(uap, REG_CR);
1552 
1553 #define	TIOCMBIT(tiocmbit, uartbit)		\
1554 	if (mctrl & tiocmbit)		\
1555 		cr |= uartbit;		\
1556 	else				\
1557 		cr &= ~uartbit
1558 
1559 	TIOCMBIT(TIOCM_RTS, UART011_CR_RTS);
1560 	TIOCMBIT(TIOCM_DTR, UART011_CR_DTR);
1561 	TIOCMBIT(TIOCM_OUT1, UART011_CR_OUT1);
1562 	TIOCMBIT(TIOCM_OUT2, UART011_CR_OUT2);
1563 	TIOCMBIT(TIOCM_LOOP, UART011_CR_LBE);
1564 
1565 	if (port->status & UPSTAT_AUTORTS) {
1566 		/* We need to disable auto-RTS if we want to turn RTS off */
1567 		TIOCMBIT(TIOCM_RTS, UART011_CR_RTSEN);
1568 	}
1569 #undef TIOCMBIT
1570 
1571 	pl011_write(cr, uap, REG_CR);
1572 }
1573 
1574 static void pl011_break_ctl(struct uart_port *port, int break_state)
1575 {
1576 	struct uart_amba_port *uap =
1577 	    container_of(port, struct uart_amba_port, port);
1578 	unsigned long flags;
1579 	unsigned int lcr_h;
1580 
1581 	spin_lock_irqsave(&uap->port.lock, flags);
1582 	lcr_h = pl011_read(uap, REG_LCRH_TX);
1583 	if (break_state == -1)
1584 		lcr_h |= UART01x_LCRH_BRK;
1585 	else
1586 		lcr_h &= ~UART01x_LCRH_BRK;
1587 	pl011_write(lcr_h, uap, REG_LCRH_TX);
1588 	spin_unlock_irqrestore(&uap->port.lock, flags);
1589 }
1590 
1591 #ifdef CONFIG_CONSOLE_POLL
1592 
1593 static void pl011_quiesce_irqs(struct uart_port *port)
1594 {
1595 	struct uart_amba_port *uap =
1596 	    container_of(port, struct uart_amba_port, port);
1597 
1598 	pl011_write(pl011_read(uap, REG_MIS), uap, REG_ICR);
1599 	/*
1600 	 * There is no way to clear TXIM as this is "ready to transmit IRQ", so
1601 	 * we simply mask it. start_tx() will unmask it.
1602 	 *
1603 	 * Note we can race with start_tx(), and if the race happens, the
1604 	 * polling user might get another interrupt just after we clear it.
1605 	 * But it should be OK and can happen even w/o the race, e.g.
1606 	 * controller immediately got some new data and raised the IRQ.
1607 	 *
1608 	 * And whoever uses polling routines assumes that it manages the device
1609 	 * (including tx queue), so we're also fine with start_tx()'s caller
1610 	 * side.
1611 	 */
1612 	pl011_write(pl011_read(uap, REG_IMSC) & ~UART011_TXIM, uap,
1613 		    REG_IMSC);
1614 }
1615 
1616 static int pl011_get_poll_char(struct uart_port *port)
1617 {
1618 	struct uart_amba_port *uap =
1619 	    container_of(port, struct uart_amba_port, port);
1620 	unsigned int status;
1621 
1622 	/*
1623 	 * The caller might need IRQs lowered, e.g. if used with KDB NMI
1624 	 * debugger.
1625 	 */
1626 	pl011_quiesce_irqs(port);
1627 
1628 	status = pl011_read(uap, REG_FR);
1629 	if (status & UART01x_FR_RXFE)
1630 		return NO_POLL_CHAR;
1631 
1632 	return pl011_read(uap, REG_DR);
1633 }
1634 
1635 static void pl011_put_poll_char(struct uart_port *port,
1636 			 unsigned char ch)
1637 {
1638 	struct uart_amba_port *uap =
1639 	    container_of(port, struct uart_amba_port, port);
1640 
1641 	while (pl011_read(uap, REG_FR) & UART01x_FR_TXFF)
1642 		cpu_relax();
1643 
1644 	pl011_write(ch, uap, REG_DR);
1645 }
1646 
1647 #endif /* CONFIG_CONSOLE_POLL */
1648 
1649 static int pl011_hwinit(struct uart_port *port)
1650 {
1651 	struct uart_amba_port *uap =
1652 	    container_of(port, struct uart_amba_port, port);
1653 	int retval;
1654 
1655 	/* Optionaly enable pins to be muxed in and configured */
1656 	pinctrl_pm_select_default_state(port->dev);
1657 
1658 	/*
1659 	 * Try to enable the clock producer.
1660 	 */
1661 	retval = clk_prepare_enable(uap->clk);
1662 	if (retval)
1663 		return retval;
1664 
1665 	uap->port.uartclk = clk_get_rate(uap->clk);
1666 
1667 	/* Clear pending error and receive interrupts */
1668 	pl011_write(UART011_OEIS | UART011_BEIS | UART011_PEIS |
1669 		    UART011_FEIS | UART011_RTIS | UART011_RXIS,
1670 		    uap, REG_ICR);
1671 
1672 	/*
1673 	 * Save interrupts enable mask, and enable RX interrupts in case if
1674 	 * the interrupt is used for NMI entry.
1675 	 */
1676 	uap->im = pl011_read(uap, REG_IMSC);
1677 	pl011_write(UART011_RTIM | UART011_RXIM, uap, REG_IMSC);
1678 
1679 	if (dev_get_platdata(uap->port.dev)) {
1680 		struct amba_pl011_data *plat;
1681 
1682 		plat = dev_get_platdata(uap->port.dev);
1683 		if (plat->init)
1684 			plat->init();
1685 	}
1686 	return 0;
1687 }
1688 
1689 static bool pl011_split_lcrh(const struct uart_amba_port *uap)
1690 {
1691 	return pl011_reg_to_offset(uap, REG_LCRH_RX) !=
1692 	       pl011_reg_to_offset(uap, REG_LCRH_TX);
1693 }
1694 
1695 static void pl011_write_lcr_h(struct uart_amba_port *uap, unsigned int lcr_h)
1696 {
1697 	pl011_write(lcr_h, uap, REG_LCRH_RX);
1698 	if (pl011_split_lcrh(uap)) {
1699 		int i;
1700 		/*
1701 		 * Wait 10 PCLKs before writing LCRH_TX register,
1702 		 * to get this delay write read only register 10 times
1703 		 */
1704 		for (i = 0; i < 10; ++i)
1705 			pl011_write(0xff, uap, REG_MIS);
1706 		pl011_write(lcr_h, uap, REG_LCRH_TX);
1707 	}
1708 }
1709 
1710 static int pl011_allocate_irq(struct uart_amba_port *uap)
1711 {
1712 	pl011_write(uap->im, uap, REG_IMSC);
1713 
1714 	return request_irq(uap->port.irq, pl011_int, IRQF_SHARED, "uart-pl011", uap);
1715 }
1716 
1717 /*
1718  * Enable interrupts, only timeouts when using DMA
1719  * if initial RX DMA job failed, start in interrupt mode
1720  * as well.
1721  */
1722 static void pl011_enable_interrupts(struct uart_amba_port *uap)
1723 {
1724 	unsigned int i;
1725 
1726 	spin_lock_irq(&uap->port.lock);
1727 
1728 	/* Clear out any spuriously appearing RX interrupts */
1729 	pl011_write(UART011_RTIS | UART011_RXIS, uap, REG_ICR);
1730 
1731 	/*
1732 	 * RXIS is asserted only when the RX FIFO transitions from below
1733 	 * to above the trigger threshold.  If the RX FIFO is already
1734 	 * full to the threshold this can't happen and RXIS will now be
1735 	 * stuck off.  Drain the RX FIFO explicitly to fix this:
1736 	 */
1737 	for (i = 0; i < uap->fifosize * 2; ++i) {
1738 		if (pl011_read(uap, REG_FR) & UART01x_FR_RXFE)
1739 			break;
1740 
1741 		pl011_read(uap, REG_DR);
1742 	}
1743 
1744 	uap->im = UART011_RTIM;
1745 	if (!pl011_dma_rx_running(uap))
1746 		uap->im |= UART011_RXIM;
1747 	pl011_write(uap->im, uap, REG_IMSC);
1748 	spin_unlock_irq(&uap->port.lock);
1749 }
1750 
1751 static int pl011_startup(struct uart_port *port)
1752 {
1753 	struct uart_amba_port *uap =
1754 	    container_of(port, struct uart_amba_port, port);
1755 	unsigned int cr;
1756 	int retval;
1757 
1758 	retval = pl011_hwinit(port);
1759 	if (retval)
1760 		goto clk_dis;
1761 
1762 	retval = pl011_allocate_irq(uap);
1763 	if (retval)
1764 		goto clk_dis;
1765 
1766 	pl011_write(uap->vendor->ifls, uap, REG_IFLS);
1767 
1768 	spin_lock_irq(&uap->port.lock);
1769 
1770 	/* restore RTS and DTR */
1771 	cr = uap->old_cr & (UART011_CR_RTS | UART011_CR_DTR);
1772 	cr |= UART01x_CR_UARTEN | UART011_CR_RXE | UART011_CR_TXE;
1773 	pl011_write(cr, uap, REG_CR);
1774 
1775 	spin_unlock_irq(&uap->port.lock);
1776 
1777 	/*
1778 	 * initialise the old status of the modem signals
1779 	 */
1780 	uap->old_status = pl011_read(uap, REG_FR) & UART01x_FR_MODEM_ANY;
1781 
1782 	/* Startup DMA */
1783 	pl011_dma_startup(uap);
1784 
1785 	pl011_enable_interrupts(uap);
1786 
1787 	return 0;
1788 
1789  clk_dis:
1790 	clk_disable_unprepare(uap->clk);
1791 	return retval;
1792 }
1793 
1794 static int sbsa_uart_startup(struct uart_port *port)
1795 {
1796 	struct uart_amba_port *uap =
1797 		container_of(port, struct uart_amba_port, port);
1798 	int retval;
1799 
1800 	retval = pl011_hwinit(port);
1801 	if (retval)
1802 		return retval;
1803 
1804 	retval = pl011_allocate_irq(uap);
1805 	if (retval)
1806 		return retval;
1807 
1808 	/* The SBSA UART does not support any modem status lines. */
1809 	uap->old_status = 0;
1810 
1811 	pl011_enable_interrupts(uap);
1812 
1813 	return 0;
1814 }
1815 
1816 static void pl011_shutdown_channel(struct uart_amba_port *uap,
1817 					unsigned int lcrh)
1818 {
1819       unsigned long val;
1820 
1821       val = pl011_read(uap, lcrh);
1822       val &= ~(UART01x_LCRH_BRK | UART01x_LCRH_FEN);
1823       pl011_write(val, uap, lcrh);
1824 }
1825 
1826 /*
1827  * disable the port. It should not disable RTS and DTR.
1828  * Also RTS and DTR state should be preserved to restore
1829  * it during startup().
1830  */
1831 static void pl011_disable_uart(struct uart_amba_port *uap)
1832 {
1833 	unsigned int cr;
1834 
1835 	uap->port.status &= ~(UPSTAT_AUTOCTS | UPSTAT_AUTORTS);
1836 	spin_lock_irq(&uap->port.lock);
1837 	cr = pl011_read(uap, REG_CR);
1838 	uap->old_cr = cr;
1839 	cr &= UART011_CR_RTS | UART011_CR_DTR;
1840 	cr |= UART01x_CR_UARTEN | UART011_CR_TXE;
1841 	pl011_write(cr, uap, REG_CR);
1842 	spin_unlock_irq(&uap->port.lock);
1843 
1844 	/*
1845 	 * disable break condition and fifos
1846 	 */
1847 	pl011_shutdown_channel(uap, REG_LCRH_RX);
1848 	if (pl011_split_lcrh(uap))
1849 		pl011_shutdown_channel(uap, REG_LCRH_TX);
1850 }
1851 
1852 static void pl011_disable_interrupts(struct uart_amba_port *uap)
1853 {
1854 	spin_lock_irq(&uap->port.lock);
1855 
1856 	/* mask all interrupts and clear all pending ones */
1857 	uap->im = 0;
1858 	pl011_write(uap->im, uap, REG_IMSC);
1859 	pl011_write(0xffff, uap, REG_ICR);
1860 
1861 	spin_unlock_irq(&uap->port.lock);
1862 }
1863 
1864 static void pl011_shutdown(struct uart_port *port)
1865 {
1866 	struct uart_amba_port *uap =
1867 		container_of(port, struct uart_amba_port, port);
1868 
1869 	pl011_disable_interrupts(uap);
1870 
1871 	pl011_dma_shutdown(uap);
1872 
1873 	free_irq(uap->port.irq, uap);
1874 
1875 	pl011_disable_uart(uap);
1876 
1877 	/*
1878 	 * Shut down the clock producer
1879 	 */
1880 	clk_disable_unprepare(uap->clk);
1881 	/* Optionally let pins go into sleep states */
1882 	pinctrl_pm_select_sleep_state(port->dev);
1883 
1884 	if (dev_get_platdata(uap->port.dev)) {
1885 		struct amba_pl011_data *plat;
1886 
1887 		plat = dev_get_platdata(uap->port.dev);
1888 		if (plat->exit)
1889 			plat->exit();
1890 	}
1891 
1892 	if (uap->port.ops->flush_buffer)
1893 		uap->port.ops->flush_buffer(port);
1894 }
1895 
1896 static void sbsa_uart_shutdown(struct uart_port *port)
1897 {
1898 	struct uart_amba_port *uap =
1899 		container_of(port, struct uart_amba_port, port);
1900 
1901 	pl011_disable_interrupts(uap);
1902 
1903 	free_irq(uap->port.irq, uap);
1904 
1905 	if (uap->port.ops->flush_buffer)
1906 		uap->port.ops->flush_buffer(port);
1907 }
1908 
1909 static void
1910 pl011_setup_status_masks(struct uart_port *port, struct ktermios *termios)
1911 {
1912 	port->read_status_mask = UART011_DR_OE | 255;
1913 	if (termios->c_iflag & INPCK)
1914 		port->read_status_mask |= UART011_DR_FE | UART011_DR_PE;
1915 	if (termios->c_iflag & (IGNBRK | BRKINT | PARMRK))
1916 		port->read_status_mask |= UART011_DR_BE;
1917 
1918 	/*
1919 	 * Characters to ignore
1920 	 */
1921 	port->ignore_status_mask = 0;
1922 	if (termios->c_iflag & IGNPAR)
1923 		port->ignore_status_mask |= UART011_DR_FE | UART011_DR_PE;
1924 	if (termios->c_iflag & IGNBRK) {
1925 		port->ignore_status_mask |= UART011_DR_BE;
1926 		/*
1927 		 * If we're ignoring parity and break indicators,
1928 		 * ignore overruns too (for real raw support).
1929 		 */
1930 		if (termios->c_iflag & IGNPAR)
1931 			port->ignore_status_mask |= UART011_DR_OE;
1932 	}
1933 
1934 	/*
1935 	 * Ignore all characters if CREAD is not set.
1936 	 */
1937 	if ((termios->c_cflag & CREAD) == 0)
1938 		port->ignore_status_mask |= UART_DUMMY_DR_RX;
1939 }
1940 
1941 static void
1942 pl011_set_termios(struct uart_port *port, struct ktermios *termios,
1943 		     struct ktermios *old)
1944 {
1945 	struct uart_amba_port *uap =
1946 	    container_of(port, struct uart_amba_port, port);
1947 	unsigned int lcr_h, old_cr;
1948 	unsigned long flags;
1949 	unsigned int baud, quot, clkdiv;
1950 
1951 	if (uap->vendor->oversampling)
1952 		clkdiv = 8;
1953 	else
1954 		clkdiv = 16;
1955 
1956 	/*
1957 	 * Ask the core to calculate the divisor for us.
1958 	 */
1959 	baud = uart_get_baud_rate(port, termios, old, 0,
1960 				  port->uartclk / clkdiv);
1961 #ifdef CONFIG_DMA_ENGINE
1962 	/*
1963 	 * Adjust RX DMA polling rate with baud rate if not specified.
1964 	 */
1965 	if (uap->dmarx.auto_poll_rate)
1966 		uap->dmarx.poll_rate = DIV_ROUND_UP(10000000, baud);
1967 #endif
1968 
1969 	if (baud > port->uartclk/16)
1970 		quot = DIV_ROUND_CLOSEST(port->uartclk * 8, baud);
1971 	else
1972 		quot = DIV_ROUND_CLOSEST(port->uartclk * 4, baud);
1973 
1974 	switch (termios->c_cflag & CSIZE) {
1975 	case CS5:
1976 		lcr_h = UART01x_LCRH_WLEN_5;
1977 		break;
1978 	case CS6:
1979 		lcr_h = UART01x_LCRH_WLEN_6;
1980 		break;
1981 	case CS7:
1982 		lcr_h = UART01x_LCRH_WLEN_7;
1983 		break;
1984 	default: // CS8
1985 		lcr_h = UART01x_LCRH_WLEN_8;
1986 		break;
1987 	}
1988 	if (termios->c_cflag & CSTOPB)
1989 		lcr_h |= UART01x_LCRH_STP2;
1990 	if (termios->c_cflag & PARENB) {
1991 		lcr_h |= UART01x_LCRH_PEN;
1992 		if (!(termios->c_cflag & PARODD))
1993 			lcr_h |= UART01x_LCRH_EPS;
1994 		if (termios->c_cflag & CMSPAR)
1995 			lcr_h |= UART011_LCRH_SPS;
1996 	}
1997 	if (uap->fifosize > 1)
1998 		lcr_h |= UART01x_LCRH_FEN;
1999 
2000 	spin_lock_irqsave(&port->lock, flags);
2001 
2002 	/*
2003 	 * Update the per-port timeout.
2004 	 */
2005 	uart_update_timeout(port, termios->c_cflag, baud);
2006 
2007 	pl011_setup_status_masks(port, termios);
2008 
2009 	if (UART_ENABLE_MS(port, termios->c_cflag))
2010 		pl011_enable_ms(port);
2011 
2012 	/* first, disable everything */
2013 	old_cr = pl011_read(uap, REG_CR);
2014 	pl011_write(0, uap, REG_CR);
2015 
2016 	if (termios->c_cflag & CRTSCTS) {
2017 		if (old_cr & UART011_CR_RTS)
2018 			old_cr |= UART011_CR_RTSEN;
2019 
2020 		old_cr |= UART011_CR_CTSEN;
2021 		port->status |= UPSTAT_AUTOCTS | UPSTAT_AUTORTS;
2022 	} else {
2023 		old_cr &= ~(UART011_CR_CTSEN | UART011_CR_RTSEN);
2024 		port->status &= ~(UPSTAT_AUTOCTS | UPSTAT_AUTORTS);
2025 	}
2026 
2027 	if (uap->vendor->oversampling) {
2028 		if (baud > port->uartclk / 16)
2029 			old_cr |= ST_UART011_CR_OVSFACT;
2030 		else
2031 			old_cr &= ~ST_UART011_CR_OVSFACT;
2032 	}
2033 
2034 	/*
2035 	 * Workaround for the ST Micro oversampling variants to
2036 	 * increase the bitrate slightly, by lowering the divisor,
2037 	 * to avoid delayed sampling of start bit at high speeds,
2038 	 * else we see data corruption.
2039 	 */
2040 	if (uap->vendor->oversampling) {
2041 		if ((baud >= 3000000) && (baud < 3250000) && (quot > 1))
2042 			quot -= 1;
2043 		else if ((baud > 3250000) && (quot > 2))
2044 			quot -= 2;
2045 	}
2046 	/* Set baud rate */
2047 	pl011_write(quot & 0x3f, uap, REG_FBRD);
2048 	pl011_write(quot >> 6, uap, REG_IBRD);
2049 
2050 	/*
2051 	 * ----------v----------v----------v----------v-----
2052 	 * NOTE: REG_LCRH_TX and REG_LCRH_RX MUST BE WRITTEN AFTER
2053 	 * REG_FBRD & REG_IBRD.
2054 	 * ----------^----------^----------^----------^-----
2055 	 */
2056 	pl011_write_lcr_h(uap, lcr_h);
2057 	pl011_write(old_cr, uap, REG_CR);
2058 
2059 	spin_unlock_irqrestore(&port->lock, flags);
2060 }
2061 
2062 static void
2063 sbsa_uart_set_termios(struct uart_port *port, struct ktermios *termios,
2064 		      struct ktermios *old)
2065 {
2066 	struct uart_amba_port *uap =
2067 	    container_of(port, struct uart_amba_port, port);
2068 	unsigned long flags;
2069 
2070 	tty_termios_encode_baud_rate(termios, uap->fixed_baud, uap->fixed_baud);
2071 
2072 	/* The SBSA UART only supports 8n1 without hardware flow control. */
2073 	termios->c_cflag &= ~(CSIZE | CSTOPB | PARENB | PARODD);
2074 	termios->c_cflag &= ~(CMSPAR | CRTSCTS);
2075 	termios->c_cflag |= CS8 | CLOCAL;
2076 
2077 	spin_lock_irqsave(&port->lock, flags);
2078 	uart_update_timeout(port, CS8, uap->fixed_baud);
2079 	pl011_setup_status_masks(port, termios);
2080 	spin_unlock_irqrestore(&port->lock, flags);
2081 }
2082 
2083 static const char *pl011_type(struct uart_port *port)
2084 {
2085 	struct uart_amba_port *uap =
2086 	    container_of(port, struct uart_amba_port, port);
2087 	return uap->port.type == PORT_AMBA ? uap->type : NULL;
2088 }
2089 
2090 /*
2091  * Release the memory region(s) being used by 'port'
2092  */
2093 static void pl011_release_port(struct uart_port *port)
2094 {
2095 	release_mem_region(port->mapbase, SZ_4K);
2096 }
2097 
2098 /*
2099  * Request the memory region(s) being used by 'port'
2100  */
2101 static int pl011_request_port(struct uart_port *port)
2102 {
2103 	return request_mem_region(port->mapbase, SZ_4K, "uart-pl011")
2104 			!= NULL ? 0 : -EBUSY;
2105 }
2106 
2107 /*
2108  * Configure/autoconfigure the port.
2109  */
2110 static void pl011_config_port(struct uart_port *port, int flags)
2111 {
2112 	if (flags & UART_CONFIG_TYPE) {
2113 		port->type = PORT_AMBA;
2114 		pl011_request_port(port);
2115 	}
2116 }
2117 
2118 /*
2119  * verify the new serial_struct (for TIOCSSERIAL).
2120  */
2121 static int pl011_verify_port(struct uart_port *port, struct serial_struct *ser)
2122 {
2123 	int ret = 0;
2124 	if (ser->type != PORT_UNKNOWN && ser->type != PORT_AMBA)
2125 		ret = -EINVAL;
2126 	if (ser->irq < 0 || ser->irq >= nr_irqs)
2127 		ret = -EINVAL;
2128 	if (ser->baud_base < 9600)
2129 		ret = -EINVAL;
2130 	return ret;
2131 }
2132 
2133 static const struct uart_ops amba_pl011_pops = {
2134 	.tx_empty	= pl011_tx_empty,
2135 	.set_mctrl	= pl011_set_mctrl,
2136 	.get_mctrl	= pl011_get_mctrl,
2137 	.stop_tx	= pl011_stop_tx,
2138 	.start_tx	= pl011_start_tx,
2139 	.stop_rx	= pl011_stop_rx,
2140 	.enable_ms	= pl011_enable_ms,
2141 	.break_ctl	= pl011_break_ctl,
2142 	.startup	= pl011_startup,
2143 	.shutdown	= pl011_shutdown,
2144 	.flush_buffer	= pl011_dma_flush_buffer,
2145 	.set_termios	= pl011_set_termios,
2146 	.type		= pl011_type,
2147 	.release_port	= pl011_release_port,
2148 	.request_port	= pl011_request_port,
2149 	.config_port	= pl011_config_port,
2150 	.verify_port	= pl011_verify_port,
2151 #ifdef CONFIG_CONSOLE_POLL
2152 	.poll_init     = pl011_hwinit,
2153 	.poll_get_char = pl011_get_poll_char,
2154 	.poll_put_char = pl011_put_poll_char,
2155 #endif
2156 };
2157 
2158 static void sbsa_uart_set_mctrl(struct uart_port *port, unsigned int mctrl)
2159 {
2160 }
2161 
2162 static unsigned int sbsa_uart_get_mctrl(struct uart_port *port)
2163 {
2164 	return 0;
2165 }
2166 
2167 static const struct uart_ops sbsa_uart_pops = {
2168 	.tx_empty	= pl011_tx_empty,
2169 	.set_mctrl	= sbsa_uart_set_mctrl,
2170 	.get_mctrl	= sbsa_uart_get_mctrl,
2171 	.stop_tx	= pl011_stop_tx,
2172 	.start_tx	= pl011_start_tx,
2173 	.stop_rx	= pl011_stop_rx,
2174 	.startup	= sbsa_uart_startup,
2175 	.shutdown	= sbsa_uart_shutdown,
2176 	.set_termios	= sbsa_uart_set_termios,
2177 	.type		= pl011_type,
2178 	.release_port	= pl011_release_port,
2179 	.request_port	= pl011_request_port,
2180 	.config_port	= pl011_config_port,
2181 	.verify_port	= pl011_verify_port,
2182 #ifdef CONFIG_CONSOLE_POLL
2183 	.poll_init     = pl011_hwinit,
2184 	.poll_get_char = pl011_get_poll_char,
2185 	.poll_put_char = pl011_put_poll_char,
2186 #endif
2187 };
2188 
2189 static struct uart_amba_port *amba_ports[UART_NR];
2190 
2191 #ifdef CONFIG_SERIAL_AMBA_PL011_CONSOLE
2192 
2193 static void pl011_console_putchar(struct uart_port *port, int ch)
2194 {
2195 	struct uart_amba_port *uap =
2196 	    container_of(port, struct uart_amba_port, port);
2197 
2198 	while (pl011_read(uap, REG_FR) & UART01x_FR_TXFF)
2199 		cpu_relax();
2200 	pl011_write(ch, uap, REG_DR);
2201 }
2202 
2203 static void
2204 pl011_console_write(struct console *co, const char *s, unsigned int count)
2205 {
2206 	struct uart_amba_port *uap = amba_ports[co->index];
2207 	unsigned int old_cr = 0, new_cr;
2208 	unsigned long flags;
2209 	int locked = 1;
2210 
2211 	clk_enable(uap->clk);
2212 
2213 	local_irq_save(flags);
2214 	if (uap->port.sysrq)
2215 		locked = 0;
2216 	else if (oops_in_progress)
2217 		locked = spin_trylock(&uap->port.lock);
2218 	else
2219 		spin_lock(&uap->port.lock);
2220 
2221 	/*
2222 	 *	First save the CR then disable the interrupts
2223 	 */
2224 	if (!uap->vendor->always_enabled) {
2225 		old_cr = pl011_read(uap, REG_CR);
2226 		new_cr = old_cr & ~UART011_CR_CTSEN;
2227 		new_cr |= UART01x_CR_UARTEN | UART011_CR_TXE;
2228 		pl011_write(new_cr, uap, REG_CR);
2229 	}
2230 
2231 	uart_console_write(&uap->port, s, count, pl011_console_putchar);
2232 
2233 	/*
2234 	 *	Finally, wait for transmitter to become empty and restore the
2235 	 *	TCR. Allow feature register bits to be inverted to work around
2236 	 *	errata.
2237 	 */
2238 	while ((pl011_read(uap, REG_FR) ^ uap->vendor->inv_fr)
2239 						& uap->vendor->fr_busy)
2240 		cpu_relax();
2241 	if (!uap->vendor->always_enabled)
2242 		pl011_write(old_cr, uap, REG_CR);
2243 
2244 	if (locked)
2245 		spin_unlock(&uap->port.lock);
2246 	local_irq_restore(flags);
2247 
2248 	clk_disable(uap->clk);
2249 }
2250 
2251 static void __init
2252 pl011_console_get_options(struct uart_amba_port *uap, int *baud,
2253 			     int *parity, int *bits)
2254 {
2255 	if (pl011_read(uap, REG_CR) & UART01x_CR_UARTEN) {
2256 		unsigned int lcr_h, ibrd, fbrd;
2257 
2258 		lcr_h = pl011_read(uap, REG_LCRH_TX);
2259 
2260 		*parity = 'n';
2261 		if (lcr_h & UART01x_LCRH_PEN) {
2262 			if (lcr_h & UART01x_LCRH_EPS)
2263 				*parity = 'e';
2264 			else
2265 				*parity = 'o';
2266 		}
2267 
2268 		if ((lcr_h & 0x60) == UART01x_LCRH_WLEN_7)
2269 			*bits = 7;
2270 		else
2271 			*bits = 8;
2272 
2273 		ibrd = pl011_read(uap, REG_IBRD);
2274 		fbrd = pl011_read(uap, REG_FBRD);
2275 
2276 		*baud = uap->port.uartclk * 4 / (64 * ibrd + fbrd);
2277 
2278 		if (uap->vendor->oversampling) {
2279 			if (pl011_read(uap, REG_CR)
2280 				  & ST_UART011_CR_OVSFACT)
2281 				*baud *= 2;
2282 		}
2283 	}
2284 }
2285 
2286 static int __init pl011_console_setup(struct console *co, char *options)
2287 {
2288 	struct uart_amba_port *uap;
2289 	int baud = 38400;
2290 	int bits = 8;
2291 	int parity = 'n';
2292 	int flow = 'n';
2293 	int ret;
2294 
2295 	/*
2296 	 * Check whether an invalid uart number has been specified, and
2297 	 * if so, search for the first available port that does have
2298 	 * console support.
2299 	 */
2300 	if (co->index >= UART_NR)
2301 		co->index = 0;
2302 	uap = amba_ports[co->index];
2303 	if (!uap)
2304 		return -ENODEV;
2305 
2306 	/* Allow pins to be muxed in and configured */
2307 	pinctrl_pm_select_default_state(uap->port.dev);
2308 
2309 	ret = clk_prepare(uap->clk);
2310 	if (ret)
2311 		return ret;
2312 
2313 	if (dev_get_platdata(uap->port.dev)) {
2314 		struct amba_pl011_data *plat;
2315 
2316 		plat = dev_get_platdata(uap->port.dev);
2317 		if (plat->init)
2318 			plat->init();
2319 	}
2320 
2321 	uap->port.uartclk = clk_get_rate(uap->clk);
2322 
2323 	if (uap->vendor->fixed_options) {
2324 		baud = uap->fixed_baud;
2325 	} else {
2326 		if (options)
2327 			uart_parse_options(options,
2328 					   &baud, &parity, &bits, &flow);
2329 		else
2330 			pl011_console_get_options(uap, &baud, &parity, &bits);
2331 	}
2332 
2333 	return uart_set_options(&uap->port, co, baud, parity, bits, flow);
2334 }
2335 
2336 /**
2337  *	pl011_console_match - non-standard console matching
2338  *	@co:	  registering console
2339  *	@name:	  name from console command line
2340  *	@idx:	  index from console command line
2341  *	@options: ptr to option string from console command line
2342  *
2343  *	Only attempts to match console command lines of the form:
2344  *	    console=pl011,mmio|mmio32,<addr>[,<options>]
2345  *	    console=pl011,0x<addr>[,<options>]
2346  *	This form is used to register an initial earlycon boot console and
2347  *	replace it with the amba_console at pl011 driver init.
2348  *
2349  *	Performs console setup for a match (as required by interface)
2350  *	If no <options> are specified, then assume the h/w is already setup.
2351  *
2352  *	Returns 0 if console matches; otherwise non-zero to use default matching
2353  */
2354 static int __init pl011_console_match(struct console *co, char *name, int idx,
2355 				      char *options)
2356 {
2357 	unsigned char iotype;
2358 	resource_size_t addr;
2359 	int i;
2360 
2361 	/*
2362 	 * Systems affected by the Qualcomm Technologies QDF2400 E44 erratum
2363 	 * have a distinct console name, so make sure we check for that.
2364 	 * The actual implementation of the erratum occurs in the probe
2365 	 * function.
2366 	 */
2367 	if ((strcmp(name, "qdf2400_e44") != 0) && (strcmp(name, "pl011") != 0))
2368 		return -ENODEV;
2369 
2370 	if (uart_parse_earlycon(options, &iotype, &addr, &options))
2371 		return -ENODEV;
2372 
2373 	if (iotype != UPIO_MEM && iotype != UPIO_MEM32)
2374 		return -ENODEV;
2375 
2376 	/* try to match the port specified on the command line */
2377 	for (i = 0; i < ARRAY_SIZE(amba_ports); i++) {
2378 		struct uart_port *port;
2379 
2380 		if (!amba_ports[i])
2381 			continue;
2382 
2383 		port = &amba_ports[i]->port;
2384 
2385 		if (port->mapbase != addr)
2386 			continue;
2387 
2388 		co->index = i;
2389 		port->cons = co;
2390 		return pl011_console_setup(co, options);
2391 	}
2392 
2393 	return -ENODEV;
2394 }
2395 
2396 static struct uart_driver amba_reg;
2397 static struct console amba_console = {
2398 	.name		= "ttyAMA",
2399 	.write		= pl011_console_write,
2400 	.device		= uart_console_device,
2401 	.setup		= pl011_console_setup,
2402 	.match		= pl011_console_match,
2403 	.flags		= CON_PRINTBUFFER | CON_ANYTIME,
2404 	.index		= -1,
2405 	.data		= &amba_reg,
2406 };
2407 
2408 #define AMBA_CONSOLE	(&amba_console)
2409 
2410 static void qdf2400_e44_putc(struct uart_port *port, int c)
2411 {
2412 	while (readl(port->membase + UART01x_FR) & UART01x_FR_TXFF)
2413 		cpu_relax();
2414 	writel(c, port->membase + UART01x_DR);
2415 	while (!(readl(port->membase + UART01x_FR) & UART011_FR_TXFE))
2416 		cpu_relax();
2417 }
2418 
2419 static void qdf2400_e44_early_write(struct console *con, const char *s, unsigned n)
2420 {
2421 	struct earlycon_device *dev = con->data;
2422 
2423 	uart_console_write(&dev->port, s, n, qdf2400_e44_putc);
2424 }
2425 
2426 static void pl011_putc(struct uart_port *port, int c)
2427 {
2428 	while (readl(port->membase + UART01x_FR) & UART01x_FR_TXFF)
2429 		cpu_relax();
2430 	if (port->iotype == UPIO_MEM32)
2431 		writel(c, port->membase + UART01x_DR);
2432 	else
2433 		writeb(c, port->membase + UART01x_DR);
2434 	while (readl(port->membase + UART01x_FR) & UART01x_FR_BUSY)
2435 		cpu_relax();
2436 }
2437 
2438 static void pl011_early_write(struct console *con, const char *s, unsigned n)
2439 {
2440 	struct earlycon_device *dev = con->data;
2441 
2442 	uart_console_write(&dev->port, s, n, pl011_putc);
2443 }
2444 
2445 /*
2446  * On non-ACPI systems, earlycon is enabled by specifying
2447  * "earlycon=pl011,<address>" on the kernel command line.
2448  *
2449  * On ACPI ARM64 systems, an "early" console is enabled via the SPCR table,
2450  * by specifying only "earlycon" on the command line.  Because it requires
2451  * SPCR, the console starts after ACPI is parsed, which is later than a
2452  * traditional early console.
2453  *
2454  * To get the traditional early console that starts before ACPI is parsed,
2455  * specify the full "earlycon=pl011,<address>" option.
2456  */
2457 static int __init pl011_early_console_setup(struct earlycon_device *device,
2458 					    const char *opt)
2459 {
2460 	if (!device->port.membase)
2461 		return -ENODEV;
2462 
2463 	device->con->write = pl011_early_write;
2464 
2465 	return 0;
2466 }
2467 OF_EARLYCON_DECLARE(pl011, "arm,pl011", pl011_early_console_setup);
2468 OF_EARLYCON_DECLARE(pl011, "arm,sbsa-uart", pl011_early_console_setup);
2469 
2470 /*
2471  * On Qualcomm Datacenter Technologies QDF2400 SOCs affected by
2472  * Erratum 44, traditional earlycon can be enabled by specifying
2473  * "earlycon=qdf2400_e44,<address>".  Any options are ignored.
2474  *
2475  * Alternatively, you can just specify "earlycon", and the early console
2476  * will be enabled with the information from the SPCR table.  In this
2477  * case, the SPCR code will detect the need for the E44 work-around,
2478  * and set the console name to "qdf2400_e44".
2479  */
2480 static int __init
2481 qdf2400_e44_early_console_setup(struct earlycon_device *device,
2482 				const char *opt)
2483 {
2484 	if (!device->port.membase)
2485 		return -ENODEV;
2486 
2487 	device->con->write = qdf2400_e44_early_write;
2488 	return 0;
2489 }
2490 EARLYCON_DECLARE(qdf2400_e44, qdf2400_e44_early_console_setup);
2491 
2492 #else
2493 #define AMBA_CONSOLE	NULL
2494 #endif
2495 
2496 static struct uart_driver amba_reg = {
2497 	.owner			= THIS_MODULE,
2498 	.driver_name		= "ttyAMA",
2499 	.dev_name		= "ttyAMA",
2500 	.major			= SERIAL_AMBA_MAJOR,
2501 	.minor			= SERIAL_AMBA_MINOR,
2502 	.nr			= UART_NR,
2503 	.cons			= AMBA_CONSOLE,
2504 };
2505 
2506 static int pl011_probe_dt_alias(int index, struct device *dev)
2507 {
2508 	struct device_node *np;
2509 	static bool seen_dev_with_alias = false;
2510 	static bool seen_dev_without_alias = false;
2511 	int ret = index;
2512 
2513 	if (!IS_ENABLED(CONFIG_OF))
2514 		return ret;
2515 
2516 	np = dev->of_node;
2517 	if (!np)
2518 		return ret;
2519 
2520 	ret = of_alias_get_id(np, "serial");
2521 	if (ret < 0) {
2522 		seen_dev_without_alias = true;
2523 		ret = index;
2524 	} else {
2525 		seen_dev_with_alias = true;
2526 		if (ret >= ARRAY_SIZE(amba_ports) || amba_ports[ret] != NULL) {
2527 			dev_warn(dev, "requested serial port %d  not available.\n", ret);
2528 			ret = index;
2529 		}
2530 	}
2531 
2532 	if (seen_dev_with_alias && seen_dev_without_alias)
2533 		dev_warn(dev, "aliased and non-aliased serial devices found in device tree. Serial port enumeration may be unpredictable.\n");
2534 
2535 	return ret;
2536 }
2537 
2538 /* unregisters the driver also if no more ports are left */
2539 static void pl011_unregister_port(struct uart_amba_port *uap)
2540 {
2541 	int i;
2542 	bool busy = false;
2543 
2544 	for (i = 0; i < ARRAY_SIZE(amba_ports); i++) {
2545 		if (amba_ports[i] == uap)
2546 			amba_ports[i] = NULL;
2547 		else if (amba_ports[i])
2548 			busy = true;
2549 	}
2550 	pl011_dma_remove(uap);
2551 	if (!busy)
2552 		uart_unregister_driver(&amba_reg);
2553 }
2554 
2555 static int pl011_find_free_port(void)
2556 {
2557 	int i;
2558 
2559 	for (i = 0; i < ARRAY_SIZE(amba_ports); i++)
2560 		if (amba_ports[i] == NULL)
2561 			return i;
2562 
2563 	return -EBUSY;
2564 }
2565 
2566 static int pl011_setup_port(struct device *dev, struct uart_amba_port *uap,
2567 			    struct resource *mmiobase, int index)
2568 {
2569 	void __iomem *base;
2570 
2571 	base = devm_ioremap_resource(dev, mmiobase);
2572 	if (IS_ERR(base))
2573 		return PTR_ERR(base);
2574 
2575 	index = pl011_probe_dt_alias(index, dev);
2576 
2577 	uap->old_cr = 0;
2578 	uap->port.dev = dev;
2579 	uap->port.mapbase = mmiobase->start;
2580 	uap->port.membase = base;
2581 	uap->port.fifosize = uap->fifosize;
2582 	uap->port.flags = UPF_BOOT_AUTOCONF;
2583 	uap->port.line = index;
2584 
2585 	amba_ports[index] = uap;
2586 
2587 	return 0;
2588 }
2589 
2590 static int pl011_register_port(struct uart_amba_port *uap)
2591 {
2592 	int ret;
2593 
2594 	/* Ensure interrupts from this UART are masked and cleared */
2595 	pl011_write(0, uap, REG_IMSC);
2596 	pl011_write(0xffff, uap, REG_ICR);
2597 
2598 	if (!amba_reg.state) {
2599 		ret = uart_register_driver(&amba_reg);
2600 		if (ret < 0) {
2601 			dev_err(uap->port.dev,
2602 				"Failed to register AMBA-PL011 driver\n");
2603 			return ret;
2604 		}
2605 	}
2606 
2607 	ret = uart_add_one_port(&amba_reg, &uap->port);
2608 	if (ret)
2609 		pl011_unregister_port(uap);
2610 
2611 	return ret;
2612 }
2613 
2614 static int pl011_probe(struct amba_device *dev, const struct amba_id *id)
2615 {
2616 	struct uart_amba_port *uap;
2617 	struct vendor_data *vendor = id->data;
2618 	int portnr, ret;
2619 
2620 	portnr = pl011_find_free_port();
2621 	if (portnr < 0)
2622 		return portnr;
2623 
2624 	uap = devm_kzalloc(&dev->dev, sizeof(struct uart_amba_port),
2625 			   GFP_KERNEL);
2626 	if (!uap)
2627 		return -ENOMEM;
2628 
2629 	uap->clk = devm_clk_get(&dev->dev, NULL);
2630 	if (IS_ERR(uap->clk))
2631 		return PTR_ERR(uap->clk);
2632 
2633 	uap->reg_offset = vendor->reg_offset;
2634 	uap->vendor = vendor;
2635 	uap->fifosize = vendor->get_fifosize(dev);
2636 	uap->port.iotype = vendor->access_32b ? UPIO_MEM32 : UPIO_MEM;
2637 	uap->port.irq = dev->irq[0];
2638 	uap->port.ops = &amba_pl011_pops;
2639 
2640 	snprintf(uap->type, sizeof(uap->type), "PL011 rev%u", amba_rev(dev));
2641 
2642 	ret = pl011_setup_port(&dev->dev, uap, &dev->res, portnr);
2643 	if (ret)
2644 		return ret;
2645 
2646 	amba_set_drvdata(dev, uap);
2647 
2648 	return pl011_register_port(uap);
2649 }
2650 
2651 static int pl011_remove(struct amba_device *dev)
2652 {
2653 	struct uart_amba_port *uap = amba_get_drvdata(dev);
2654 
2655 	uart_remove_one_port(&amba_reg, &uap->port);
2656 	pl011_unregister_port(uap);
2657 	return 0;
2658 }
2659 
2660 #ifdef CONFIG_PM_SLEEP
2661 static int pl011_suspend(struct device *dev)
2662 {
2663 	struct uart_amba_port *uap = dev_get_drvdata(dev);
2664 
2665 	if (!uap)
2666 		return -EINVAL;
2667 
2668 	return uart_suspend_port(&amba_reg, &uap->port);
2669 }
2670 
2671 static int pl011_resume(struct device *dev)
2672 {
2673 	struct uart_amba_port *uap = dev_get_drvdata(dev);
2674 
2675 	if (!uap)
2676 		return -EINVAL;
2677 
2678 	return uart_resume_port(&amba_reg, &uap->port);
2679 }
2680 #endif
2681 
2682 static SIMPLE_DEV_PM_OPS(pl011_dev_pm_ops, pl011_suspend, pl011_resume);
2683 
2684 static int sbsa_uart_probe(struct platform_device *pdev)
2685 {
2686 	struct uart_amba_port *uap;
2687 	struct resource *r;
2688 	int portnr, ret;
2689 	int baudrate;
2690 
2691 	/*
2692 	 * Check the mandatory baud rate parameter in the DT node early
2693 	 * so that we can easily exit with the error.
2694 	 */
2695 	if (pdev->dev.of_node) {
2696 		struct device_node *np = pdev->dev.of_node;
2697 
2698 		ret = of_property_read_u32(np, "current-speed", &baudrate);
2699 		if (ret)
2700 			return ret;
2701 	} else {
2702 		baudrate = 115200;
2703 	}
2704 
2705 	portnr = pl011_find_free_port();
2706 	if (portnr < 0)
2707 		return portnr;
2708 
2709 	uap = devm_kzalloc(&pdev->dev, sizeof(struct uart_amba_port),
2710 			   GFP_KERNEL);
2711 	if (!uap)
2712 		return -ENOMEM;
2713 
2714 	ret = platform_get_irq(pdev, 0);
2715 	if (ret < 0)
2716 		return ret;
2717 	uap->port.irq	= ret;
2718 
2719 #ifdef CONFIG_ACPI_SPCR_TABLE
2720 	if (qdf2400_e44_present) {
2721 		dev_info(&pdev->dev, "working around QDF2400 SoC erratum 44\n");
2722 		uap->vendor = &vendor_qdt_qdf2400_e44;
2723 	} else
2724 #endif
2725 		uap->vendor = &vendor_sbsa;
2726 
2727 	uap->reg_offset	= uap->vendor->reg_offset;
2728 	uap->fifosize	= 32;
2729 	uap->port.iotype = uap->vendor->access_32b ? UPIO_MEM32 : UPIO_MEM;
2730 	uap->port.ops	= &sbsa_uart_pops;
2731 	uap->fixed_baud = baudrate;
2732 
2733 	snprintf(uap->type, sizeof(uap->type), "SBSA");
2734 
2735 	r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2736 
2737 	ret = pl011_setup_port(&pdev->dev, uap, r, portnr);
2738 	if (ret)
2739 		return ret;
2740 
2741 	platform_set_drvdata(pdev, uap);
2742 
2743 	return pl011_register_port(uap);
2744 }
2745 
2746 static int sbsa_uart_remove(struct platform_device *pdev)
2747 {
2748 	struct uart_amba_port *uap = platform_get_drvdata(pdev);
2749 
2750 	uart_remove_one_port(&amba_reg, &uap->port);
2751 	pl011_unregister_port(uap);
2752 	return 0;
2753 }
2754 
2755 static const struct of_device_id sbsa_uart_of_match[] = {
2756 	{ .compatible = "arm,sbsa-uart", },
2757 	{},
2758 };
2759 MODULE_DEVICE_TABLE(of, sbsa_uart_of_match);
2760 
2761 static const struct acpi_device_id sbsa_uart_acpi_match[] = {
2762 	{ "ARMH0011", 0 },
2763 	{},
2764 };
2765 MODULE_DEVICE_TABLE(acpi, sbsa_uart_acpi_match);
2766 
2767 static struct platform_driver arm_sbsa_uart_platform_driver = {
2768 	.probe		= sbsa_uart_probe,
2769 	.remove		= sbsa_uart_remove,
2770 	.driver	= {
2771 		.name	= "sbsa-uart",
2772 		.of_match_table = of_match_ptr(sbsa_uart_of_match),
2773 		.acpi_match_table = ACPI_PTR(sbsa_uart_acpi_match),
2774 		.suppress_bind_attrs = IS_BUILTIN(CONFIG_SERIAL_AMBA_PL011),
2775 	},
2776 };
2777 
2778 static const struct amba_id pl011_ids[] = {
2779 	{
2780 		.id	= 0x00041011,
2781 		.mask	= 0x000fffff,
2782 		.data	= &vendor_arm,
2783 	},
2784 	{
2785 		.id	= 0x00380802,
2786 		.mask	= 0x00ffffff,
2787 		.data	= &vendor_st,
2788 	},
2789 	{
2790 		.id	= AMBA_LINUX_ID(0x00, 0x1, 0xffe),
2791 		.mask	= 0x00ffffff,
2792 		.data	= &vendor_zte,
2793 	},
2794 	{ 0, 0 },
2795 };
2796 
2797 MODULE_DEVICE_TABLE(amba, pl011_ids);
2798 
2799 static struct amba_driver pl011_driver = {
2800 	.drv = {
2801 		.name	= "uart-pl011",
2802 		.pm	= &pl011_dev_pm_ops,
2803 		.suppress_bind_attrs = IS_BUILTIN(CONFIG_SERIAL_AMBA_PL011),
2804 	},
2805 	.id_table	= pl011_ids,
2806 	.probe		= pl011_probe,
2807 	.remove		= pl011_remove,
2808 };
2809 
2810 static int __init pl011_init(void)
2811 {
2812 	printk(KERN_INFO "Serial: AMBA PL011 UART driver\n");
2813 
2814 	if (platform_driver_register(&arm_sbsa_uart_platform_driver))
2815 		pr_warn("could not register SBSA UART platform driver\n");
2816 	return amba_driver_register(&pl011_driver);
2817 }
2818 
2819 static void __exit pl011_exit(void)
2820 {
2821 	platform_driver_unregister(&arm_sbsa_uart_platform_driver);
2822 	amba_driver_unregister(&pl011_driver);
2823 }
2824 
2825 /*
2826  * While this can be a module, if builtin it's most likely the console
2827  * So let's leave module_exit but move module_init to an earlier place
2828  */
2829 arch_initcall(pl011_init);
2830 module_exit(pl011_exit);
2831 
2832 MODULE_AUTHOR("ARM Ltd/Deep Blue Solutions Ltd");
2833 MODULE_DESCRIPTION("ARM AMBA serial port driver");
2834 MODULE_LICENSE("GPL");
2835