xref: /openbmc/linux/drivers/tty/serial/amba-pl011.c (revision 4f3db074)
1 /*
2  *  Driver for AMBA serial ports
3  *
4  *  Based on drivers/char/serial.c, by Linus Torvalds, Theodore Ts'o.
5  *
6  *  Copyright 1999 ARM Limited
7  *  Copyright (C) 2000 Deep Blue Solutions Ltd.
8  *  Copyright (C) 2010 ST-Ericsson SA
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License as published by
12  * the Free Software Foundation; either version 2 of the License, or
13  * (at your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18  * GNU General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public License
21  * along with this program; if not, write to the Free Software
22  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
23  *
24  * This is a generic driver for ARM AMBA-type serial ports.  They
25  * have a lot of 16550-like features, but are not register compatible.
26  * Note that although they do have CTS, DCD and DSR inputs, they do
27  * not have an RI input, nor do they have DTR or RTS outputs.  If
28  * required, these have to be supplied via some other means (eg, GPIO)
29  * and hooked into this driver.
30  */
31 
32 
33 #if defined(CONFIG_SERIAL_AMBA_PL011_CONSOLE) && defined(CONFIG_MAGIC_SYSRQ)
34 #define SUPPORT_SYSRQ
35 #endif
36 
37 #include <linux/module.h>
38 #include <linux/ioport.h>
39 #include <linux/init.h>
40 #include <linux/console.h>
41 #include <linux/sysrq.h>
42 #include <linux/device.h>
43 #include <linux/tty.h>
44 #include <linux/tty_flip.h>
45 #include <linux/serial_core.h>
46 #include <linux/serial.h>
47 #include <linux/amba/bus.h>
48 #include <linux/amba/serial.h>
49 #include <linux/clk.h>
50 #include <linux/slab.h>
51 #include <linux/dmaengine.h>
52 #include <linux/dma-mapping.h>
53 #include <linux/scatterlist.h>
54 #include <linux/delay.h>
55 #include <linux/types.h>
56 #include <linux/of.h>
57 #include <linux/of_device.h>
58 #include <linux/pinctrl/consumer.h>
59 #include <linux/sizes.h>
60 #include <linux/io.h>
61 #include <linux/workqueue.h>
62 
63 #define UART_NR			14
64 
65 #define SERIAL_AMBA_MAJOR	204
66 #define SERIAL_AMBA_MINOR	64
67 #define SERIAL_AMBA_NR		UART_NR
68 
69 #define AMBA_ISR_PASS_LIMIT	256
70 
71 #define UART_DR_ERROR		(UART011_DR_OE|UART011_DR_BE|UART011_DR_PE|UART011_DR_FE)
72 #define UART_DUMMY_DR_RX	(1 << 16)
73 
74 /* There is by now at least one vendor with differing details, so handle it */
75 struct vendor_data {
76 	unsigned int		ifls;
77 	unsigned int		lcrh_tx;
78 	unsigned int		lcrh_rx;
79 	bool			oversampling;
80 	bool			dma_threshold;
81 	bool			cts_event_workaround;
82 
83 	unsigned int (*get_fifosize)(struct amba_device *dev);
84 };
85 
86 static unsigned int get_fifosize_arm(struct amba_device *dev)
87 {
88 	return amba_rev(dev) < 3 ? 16 : 32;
89 }
90 
91 static struct vendor_data vendor_arm = {
92 	.ifls			= UART011_IFLS_RX4_8|UART011_IFLS_TX4_8,
93 	.lcrh_tx		= UART011_LCRH,
94 	.lcrh_rx		= UART011_LCRH,
95 	.oversampling		= false,
96 	.dma_threshold		= false,
97 	.cts_event_workaround	= false,
98 	.get_fifosize		= get_fifosize_arm,
99 };
100 
101 static unsigned int get_fifosize_st(struct amba_device *dev)
102 {
103 	return 64;
104 }
105 
106 static struct vendor_data vendor_st = {
107 	.ifls			= UART011_IFLS_RX_HALF|UART011_IFLS_TX_HALF,
108 	.lcrh_tx		= ST_UART011_LCRH_TX,
109 	.lcrh_rx		= ST_UART011_LCRH_RX,
110 	.oversampling		= true,
111 	.dma_threshold		= true,
112 	.cts_event_workaround	= true,
113 	.get_fifosize		= get_fifosize_st,
114 };
115 
116 /* Deals with DMA transactions */
117 
118 struct pl011_sgbuf {
119 	struct scatterlist sg;
120 	char *buf;
121 };
122 
123 struct pl011_dmarx_data {
124 	struct dma_chan		*chan;
125 	struct completion	complete;
126 	bool			use_buf_b;
127 	struct pl011_sgbuf	sgbuf_a;
128 	struct pl011_sgbuf	sgbuf_b;
129 	dma_cookie_t		cookie;
130 	bool			running;
131 	struct timer_list	timer;
132 	unsigned int last_residue;
133 	unsigned long last_jiffies;
134 	bool auto_poll_rate;
135 	unsigned int poll_rate;
136 	unsigned int poll_timeout;
137 };
138 
139 struct pl011_dmatx_data {
140 	struct dma_chan		*chan;
141 	struct scatterlist	sg;
142 	char			*buf;
143 	bool			queued;
144 };
145 
146 /*
147  * We wrap our port structure around the generic uart_port.
148  */
149 struct uart_amba_port {
150 	struct uart_port	port;
151 	struct clk		*clk;
152 	const struct vendor_data *vendor;
153 	unsigned int		dmacr;		/* dma control reg */
154 	unsigned int		im;		/* interrupt mask */
155 	unsigned int		old_status;
156 	unsigned int		fifosize;	/* vendor-specific */
157 	unsigned int		lcrh_tx;	/* vendor-specific */
158 	unsigned int		lcrh_rx;	/* vendor-specific */
159 	unsigned int		old_cr;		/* state during shutdown */
160 	struct delayed_work	tx_softirq_work;
161 	bool			autorts;
162 	unsigned int		tx_irq_seen;	/* 0=none, 1=1, 2=2 or more */
163 	char			type[12];
164 #ifdef CONFIG_DMA_ENGINE
165 	/* DMA stuff */
166 	bool			using_tx_dma;
167 	bool			using_rx_dma;
168 	struct pl011_dmarx_data dmarx;
169 	struct pl011_dmatx_data	dmatx;
170 	bool			dma_probed;
171 #endif
172 };
173 
174 /*
175  * Reads up to 256 characters from the FIFO or until it's empty and
176  * inserts them into the TTY layer. Returns the number of characters
177  * read from the FIFO.
178  */
179 static int pl011_fifo_to_tty(struct uart_amba_port *uap)
180 {
181 	u16 status, ch;
182 	unsigned int flag, max_count = 256;
183 	int fifotaken = 0;
184 
185 	while (max_count--) {
186 		status = readw(uap->port.membase + UART01x_FR);
187 		if (status & UART01x_FR_RXFE)
188 			break;
189 
190 		/* Take chars from the FIFO and update status */
191 		ch = readw(uap->port.membase + UART01x_DR) |
192 			UART_DUMMY_DR_RX;
193 		flag = TTY_NORMAL;
194 		uap->port.icount.rx++;
195 		fifotaken++;
196 
197 		if (unlikely(ch & UART_DR_ERROR)) {
198 			if (ch & UART011_DR_BE) {
199 				ch &= ~(UART011_DR_FE | UART011_DR_PE);
200 				uap->port.icount.brk++;
201 				if (uart_handle_break(&uap->port))
202 					continue;
203 			} else if (ch & UART011_DR_PE)
204 				uap->port.icount.parity++;
205 			else if (ch & UART011_DR_FE)
206 				uap->port.icount.frame++;
207 			if (ch & UART011_DR_OE)
208 				uap->port.icount.overrun++;
209 
210 			ch &= uap->port.read_status_mask;
211 
212 			if (ch & UART011_DR_BE)
213 				flag = TTY_BREAK;
214 			else if (ch & UART011_DR_PE)
215 				flag = TTY_PARITY;
216 			else if (ch & UART011_DR_FE)
217 				flag = TTY_FRAME;
218 		}
219 
220 		if (uart_handle_sysrq_char(&uap->port, ch & 255))
221 			continue;
222 
223 		uart_insert_char(&uap->port, ch, UART011_DR_OE, ch, flag);
224 	}
225 
226 	return fifotaken;
227 }
228 
229 
230 /*
231  * All the DMA operation mode stuff goes inside this ifdef.
232  * This assumes that you have a generic DMA device interface,
233  * no custom DMA interfaces are supported.
234  */
235 #ifdef CONFIG_DMA_ENGINE
236 
237 #define PL011_DMA_BUFFER_SIZE PAGE_SIZE
238 
239 static int pl011_sgbuf_init(struct dma_chan *chan, struct pl011_sgbuf *sg,
240 	enum dma_data_direction dir)
241 {
242 	dma_addr_t dma_addr;
243 
244 	sg->buf = dma_alloc_coherent(chan->device->dev,
245 		PL011_DMA_BUFFER_SIZE, &dma_addr, GFP_KERNEL);
246 	if (!sg->buf)
247 		return -ENOMEM;
248 
249 	sg_init_table(&sg->sg, 1);
250 	sg_set_page(&sg->sg, phys_to_page(dma_addr),
251 		PL011_DMA_BUFFER_SIZE, offset_in_page(dma_addr));
252 	sg_dma_address(&sg->sg) = dma_addr;
253 	sg_dma_len(&sg->sg) = PL011_DMA_BUFFER_SIZE;
254 
255 	return 0;
256 }
257 
258 static void pl011_sgbuf_free(struct dma_chan *chan, struct pl011_sgbuf *sg,
259 	enum dma_data_direction dir)
260 {
261 	if (sg->buf) {
262 		dma_free_coherent(chan->device->dev,
263 			PL011_DMA_BUFFER_SIZE, sg->buf,
264 			sg_dma_address(&sg->sg));
265 	}
266 }
267 
268 static void pl011_dma_probe(struct uart_amba_port *uap)
269 {
270 	/* DMA is the sole user of the platform data right now */
271 	struct amba_pl011_data *plat = dev_get_platdata(uap->port.dev);
272 	struct device *dev = uap->port.dev;
273 	struct dma_slave_config tx_conf = {
274 		.dst_addr = uap->port.mapbase + UART01x_DR,
275 		.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
276 		.direction = DMA_MEM_TO_DEV,
277 		.dst_maxburst = uap->fifosize >> 1,
278 		.device_fc = false,
279 	};
280 	struct dma_chan *chan;
281 	dma_cap_mask_t mask;
282 
283 	uap->dma_probed = true;
284 	chan = dma_request_slave_channel_reason(dev, "tx");
285 	if (IS_ERR(chan)) {
286 		if (PTR_ERR(chan) == -EPROBE_DEFER) {
287 			uap->dma_probed = false;
288 			return;
289 		}
290 
291 		/* We need platform data */
292 		if (!plat || !plat->dma_filter) {
293 			dev_info(uap->port.dev, "no DMA platform data\n");
294 			return;
295 		}
296 
297 		/* Try to acquire a generic DMA engine slave TX channel */
298 		dma_cap_zero(mask);
299 		dma_cap_set(DMA_SLAVE, mask);
300 
301 		chan = dma_request_channel(mask, plat->dma_filter,
302 						plat->dma_tx_param);
303 		if (!chan) {
304 			dev_err(uap->port.dev, "no TX DMA channel!\n");
305 			return;
306 		}
307 	}
308 
309 	dmaengine_slave_config(chan, &tx_conf);
310 	uap->dmatx.chan = chan;
311 
312 	dev_info(uap->port.dev, "DMA channel TX %s\n",
313 		 dma_chan_name(uap->dmatx.chan));
314 
315 	/* Optionally make use of an RX channel as well */
316 	chan = dma_request_slave_channel(dev, "rx");
317 
318 	if (!chan && plat->dma_rx_param) {
319 		chan = dma_request_channel(mask, plat->dma_filter, plat->dma_rx_param);
320 
321 		if (!chan) {
322 			dev_err(uap->port.dev, "no RX DMA channel!\n");
323 			return;
324 		}
325 	}
326 
327 	if (chan) {
328 		struct dma_slave_config rx_conf = {
329 			.src_addr = uap->port.mapbase + UART01x_DR,
330 			.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
331 			.direction = DMA_DEV_TO_MEM,
332 			.src_maxburst = uap->fifosize >> 2,
333 			.device_fc = false,
334 		};
335 		struct dma_slave_caps caps;
336 
337 		/*
338 		 * Some DMA controllers provide information on their capabilities.
339 		 * If the controller does, check for suitable residue processing
340 		 * otherwise assime all is well.
341 		 */
342 		if (0 == dma_get_slave_caps(chan, &caps)) {
343 			if (caps.residue_granularity ==
344 					DMA_RESIDUE_GRANULARITY_DESCRIPTOR) {
345 				dma_release_channel(chan);
346 				dev_info(uap->port.dev,
347 					"RX DMA disabled - no residue processing\n");
348 				return;
349 			}
350 		}
351 		dmaengine_slave_config(chan, &rx_conf);
352 		uap->dmarx.chan = chan;
353 
354 		uap->dmarx.auto_poll_rate = false;
355 		if (plat && plat->dma_rx_poll_enable) {
356 			/* Set poll rate if specified. */
357 			if (plat->dma_rx_poll_rate) {
358 				uap->dmarx.auto_poll_rate = false;
359 				uap->dmarx.poll_rate = plat->dma_rx_poll_rate;
360 			} else {
361 				/*
362 				 * 100 ms defaults to poll rate if not
363 				 * specified. This will be adjusted with
364 				 * the baud rate at set_termios.
365 				 */
366 				uap->dmarx.auto_poll_rate = true;
367 				uap->dmarx.poll_rate =  100;
368 			}
369 			/* 3 secs defaults poll_timeout if not specified. */
370 			if (plat->dma_rx_poll_timeout)
371 				uap->dmarx.poll_timeout =
372 					plat->dma_rx_poll_timeout;
373 			else
374 				uap->dmarx.poll_timeout = 3000;
375 		} else if (!plat && dev->of_node) {
376 			uap->dmarx.auto_poll_rate = of_property_read_bool(
377 						dev->of_node, "auto-poll");
378 			if (uap->dmarx.auto_poll_rate) {
379 				u32 x;
380 
381 				if (0 == of_property_read_u32(dev->of_node,
382 						"poll-rate-ms", &x))
383 					uap->dmarx.poll_rate = x;
384 				else
385 					uap->dmarx.poll_rate = 100;
386 				if (0 == of_property_read_u32(dev->of_node,
387 						"poll-timeout-ms", &x))
388 					uap->dmarx.poll_timeout = x;
389 				else
390 					uap->dmarx.poll_timeout = 3000;
391 			}
392 		}
393 		dev_info(uap->port.dev, "DMA channel RX %s\n",
394 			 dma_chan_name(uap->dmarx.chan));
395 	}
396 }
397 
398 static void pl011_dma_remove(struct uart_amba_port *uap)
399 {
400 	if (uap->dmatx.chan)
401 		dma_release_channel(uap->dmatx.chan);
402 	if (uap->dmarx.chan)
403 		dma_release_channel(uap->dmarx.chan);
404 }
405 
406 /* Forward declare these for the refill routine */
407 static int pl011_dma_tx_refill(struct uart_amba_port *uap);
408 static void pl011_start_tx_pio(struct uart_amba_port *uap);
409 
410 /*
411  * The current DMA TX buffer has been sent.
412  * Try to queue up another DMA buffer.
413  */
414 static void pl011_dma_tx_callback(void *data)
415 {
416 	struct uart_amba_port *uap = data;
417 	struct pl011_dmatx_data *dmatx = &uap->dmatx;
418 	unsigned long flags;
419 	u16 dmacr;
420 
421 	spin_lock_irqsave(&uap->port.lock, flags);
422 	if (uap->dmatx.queued)
423 		dma_unmap_sg(dmatx->chan->device->dev, &dmatx->sg, 1,
424 			     DMA_TO_DEVICE);
425 
426 	dmacr = uap->dmacr;
427 	uap->dmacr = dmacr & ~UART011_TXDMAE;
428 	writew(uap->dmacr, uap->port.membase + UART011_DMACR);
429 
430 	/*
431 	 * If TX DMA was disabled, it means that we've stopped the DMA for
432 	 * some reason (eg, XOFF received, or we want to send an X-char.)
433 	 *
434 	 * Note: we need to be careful here of a potential race between DMA
435 	 * and the rest of the driver - if the driver disables TX DMA while
436 	 * a TX buffer completing, we must update the tx queued status to
437 	 * get further refills (hence we check dmacr).
438 	 */
439 	if (!(dmacr & UART011_TXDMAE) || uart_tx_stopped(&uap->port) ||
440 	    uart_circ_empty(&uap->port.state->xmit)) {
441 		uap->dmatx.queued = false;
442 		spin_unlock_irqrestore(&uap->port.lock, flags);
443 		return;
444 	}
445 
446 	if (pl011_dma_tx_refill(uap) <= 0)
447 		/*
448 		 * We didn't queue a DMA buffer for some reason, but we
449 		 * have data pending to be sent.  Re-enable the TX IRQ.
450 		 */
451 		pl011_start_tx_pio(uap);
452 
453 	spin_unlock_irqrestore(&uap->port.lock, flags);
454 }
455 
456 /*
457  * Try to refill the TX DMA buffer.
458  * Locking: called with port lock held and IRQs disabled.
459  * Returns:
460  *   1 if we queued up a TX DMA buffer.
461  *   0 if we didn't want to handle this by DMA
462  *  <0 on error
463  */
464 static int pl011_dma_tx_refill(struct uart_amba_port *uap)
465 {
466 	struct pl011_dmatx_data *dmatx = &uap->dmatx;
467 	struct dma_chan *chan = dmatx->chan;
468 	struct dma_device *dma_dev = chan->device;
469 	struct dma_async_tx_descriptor *desc;
470 	struct circ_buf *xmit = &uap->port.state->xmit;
471 	unsigned int count;
472 
473 	/*
474 	 * Try to avoid the overhead involved in using DMA if the
475 	 * transaction fits in the first half of the FIFO, by using
476 	 * the standard interrupt handling.  This ensures that we
477 	 * issue a uart_write_wakeup() at the appropriate time.
478 	 */
479 	count = uart_circ_chars_pending(xmit);
480 	if (count < (uap->fifosize >> 1)) {
481 		uap->dmatx.queued = false;
482 		return 0;
483 	}
484 
485 	/*
486 	 * Bodge: don't send the last character by DMA, as this
487 	 * will prevent XON from notifying us to restart DMA.
488 	 */
489 	count -= 1;
490 
491 	/* Else proceed to copy the TX chars to the DMA buffer and fire DMA */
492 	if (count > PL011_DMA_BUFFER_SIZE)
493 		count = PL011_DMA_BUFFER_SIZE;
494 
495 	if (xmit->tail < xmit->head)
496 		memcpy(&dmatx->buf[0], &xmit->buf[xmit->tail], count);
497 	else {
498 		size_t first = UART_XMIT_SIZE - xmit->tail;
499 		size_t second;
500 
501 		if (first > count)
502 			first = count;
503 		second = count - first;
504 
505 		memcpy(&dmatx->buf[0], &xmit->buf[xmit->tail], first);
506 		if (second)
507 			memcpy(&dmatx->buf[first], &xmit->buf[0], second);
508 	}
509 
510 	dmatx->sg.length = count;
511 
512 	if (dma_map_sg(dma_dev->dev, &dmatx->sg, 1, DMA_TO_DEVICE) != 1) {
513 		uap->dmatx.queued = false;
514 		dev_dbg(uap->port.dev, "unable to map TX DMA\n");
515 		return -EBUSY;
516 	}
517 
518 	desc = dmaengine_prep_slave_sg(chan, &dmatx->sg, 1, DMA_MEM_TO_DEV,
519 					     DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
520 	if (!desc) {
521 		dma_unmap_sg(dma_dev->dev, &dmatx->sg, 1, DMA_TO_DEVICE);
522 		uap->dmatx.queued = false;
523 		/*
524 		 * If DMA cannot be used right now, we complete this
525 		 * transaction via IRQ and let the TTY layer retry.
526 		 */
527 		dev_dbg(uap->port.dev, "TX DMA busy\n");
528 		return -EBUSY;
529 	}
530 
531 	/* Some data to go along to the callback */
532 	desc->callback = pl011_dma_tx_callback;
533 	desc->callback_param = uap;
534 
535 	/* All errors should happen at prepare time */
536 	dmaengine_submit(desc);
537 
538 	/* Fire the DMA transaction */
539 	dma_dev->device_issue_pending(chan);
540 
541 	uap->dmacr |= UART011_TXDMAE;
542 	writew(uap->dmacr, uap->port.membase + UART011_DMACR);
543 	uap->dmatx.queued = true;
544 
545 	/*
546 	 * Now we know that DMA will fire, so advance the ring buffer
547 	 * with the stuff we just dispatched.
548 	 */
549 	xmit->tail = (xmit->tail + count) & (UART_XMIT_SIZE - 1);
550 	uap->port.icount.tx += count;
551 
552 	if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
553 		uart_write_wakeup(&uap->port);
554 
555 	return 1;
556 }
557 
558 /*
559  * We received a transmit interrupt without a pending X-char but with
560  * pending characters.
561  * Locking: called with port lock held and IRQs disabled.
562  * Returns:
563  *   false if we want to use PIO to transmit
564  *   true if we queued a DMA buffer
565  */
566 static bool pl011_dma_tx_irq(struct uart_amba_port *uap)
567 {
568 	if (!uap->using_tx_dma)
569 		return false;
570 
571 	/*
572 	 * If we already have a TX buffer queued, but received a
573 	 * TX interrupt, it will be because we've just sent an X-char.
574 	 * Ensure the TX DMA is enabled and the TX IRQ is disabled.
575 	 */
576 	if (uap->dmatx.queued) {
577 		uap->dmacr |= UART011_TXDMAE;
578 		writew(uap->dmacr, uap->port.membase + UART011_DMACR);
579 		uap->im &= ~UART011_TXIM;
580 		writew(uap->im, uap->port.membase + UART011_IMSC);
581 		return true;
582 	}
583 
584 	/*
585 	 * We don't have a TX buffer queued, so try to queue one.
586 	 * If we successfully queued a buffer, mask the TX IRQ.
587 	 */
588 	if (pl011_dma_tx_refill(uap) > 0) {
589 		uap->im &= ~UART011_TXIM;
590 		writew(uap->im, uap->port.membase + UART011_IMSC);
591 		return true;
592 	}
593 	return false;
594 }
595 
596 /*
597  * Stop the DMA transmit (eg, due to received XOFF).
598  * Locking: called with port lock held and IRQs disabled.
599  */
600 static inline void pl011_dma_tx_stop(struct uart_amba_port *uap)
601 {
602 	if (uap->dmatx.queued) {
603 		uap->dmacr &= ~UART011_TXDMAE;
604 		writew(uap->dmacr, uap->port.membase + UART011_DMACR);
605 	}
606 }
607 
608 /*
609  * Try to start a DMA transmit, or in the case of an XON/OFF
610  * character queued for send, try to get that character out ASAP.
611  * Locking: called with port lock held and IRQs disabled.
612  * Returns:
613  *   false if we want the TX IRQ to be enabled
614  *   true if we have a buffer queued
615  */
616 static inline bool pl011_dma_tx_start(struct uart_amba_port *uap)
617 {
618 	u16 dmacr;
619 
620 	if (!uap->using_tx_dma)
621 		return false;
622 
623 	if (!uap->port.x_char) {
624 		/* no X-char, try to push chars out in DMA mode */
625 		bool ret = true;
626 
627 		if (!uap->dmatx.queued) {
628 			if (pl011_dma_tx_refill(uap) > 0) {
629 				uap->im &= ~UART011_TXIM;
630 				writew(uap->im, uap->port.membase +
631 				       UART011_IMSC);
632 			} else
633 				ret = false;
634 		} else if (!(uap->dmacr & UART011_TXDMAE)) {
635 			uap->dmacr |= UART011_TXDMAE;
636 			writew(uap->dmacr,
637 				       uap->port.membase + UART011_DMACR);
638 		}
639 		return ret;
640 	}
641 
642 	/*
643 	 * We have an X-char to send.  Disable DMA to prevent it loading
644 	 * the TX fifo, and then see if we can stuff it into the FIFO.
645 	 */
646 	dmacr = uap->dmacr;
647 	uap->dmacr &= ~UART011_TXDMAE;
648 	writew(uap->dmacr, uap->port.membase + UART011_DMACR);
649 
650 	if (readw(uap->port.membase + UART01x_FR) & UART01x_FR_TXFF) {
651 		/*
652 		 * No space in the FIFO, so enable the transmit interrupt
653 		 * so we know when there is space.  Note that once we've
654 		 * loaded the character, we should just re-enable DMA.
655 		 */
656 		return false;
657 	}
658 
659 	writew(uap->port.x_char, uap->port.membase + UART01x_DR);
660 	uap->port.icount.tx++;
661 	uap->port.x_char = 0;
662 
663 	/* Success - restore the DMA state */
664 	uap->dmacr = dmacr;
665 	writew(dmacr, uap->port.membase + UART011_DMACR);
666 
667 	return true;
668 }
669 
670 /*
671  * Flush the transmit buffer.
672  * Locking: called with port lock held and IRQs disabled.
673  */
674 static void pl011_dma_flush_buffer(struct uart_port *port)
675 __releases(&uap->port.lock)
676 __acquires(&uap->port.lock)
677 {
678 	struct uart_amba_port *uap =
679 	    container_of(port, struct uart_amba_port, port);
680 
681 	if (!uap->using_tx_dma)
682 		return;
683 
684 	/* Avoid deadlock with the DMA engine callback */
685 	spin_unlock(&uap->port.lock);
686 	dmaengine_terminate_all(uap->dmatx.chan);
687 	spin_lock(&uap->port.lock);
688 	if (uap->dmatx.queued) {
689 		dma_unmap_sg(uap->dmatx.chan->device->dev, &uap->dmatx.sg, 1,
690 			     DMA_TO_DEVICE);
691 		uap->dmatx.queued = false;
692 		uap->dmacr &= ~UART011_TXDMAE;
693 		writew(uap->dmacr, uap->port.membase + UART011_DMACR);
694 	}
695 }
696 
697 static void pl011_dma_rx_callback(void *data);
698 
699 static int pl011_dma_rx_trigger_dma(struct uart_amba_port *uap)
700 {
701 	struct dma_chan *rxchan = uap->dmarx.chan;
702 	struct pl011_dmarx_data *dmarx = &uap->dmarx;
703 	struct dma_async_tx_descriptor *desc;
704 	struct pl011_sgbuf *sgbuf;
705 
706 	if (!rxchan)
707 		return -EIO;
708 
709 	/* Start the RX DMA job */
710 	sgbuf = uap->dmarx.use_buf_b ?
711 		&uap->dmarx.sgbuf_b : &uap->dmarx.sgbuf_a;
712 	desc = dmaengine_prep_slave_sg(rxchan, &sgbuf->sg, 1,
713 					DMA_DEV_TO_MEM,
714 					DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
715 	/*
716 	 * If the DMA engine is busy and cannot prepare a
717 	 * channel, no big deal, the driver will fall back
718 	 * to interrupt mode as a result of this error code.
719 	 */
720 	if (!desc) {
721 		uap->dmarx.running = false;
722 		dmaengine_terminate_all(rxchan);
723 		return -EBUSY;
724 	}
725 
726 	/* Some data to go along to the callback */
727 	desc->callback = pl011_dma_rx_callback;
728 	desc->callback_param = uap;
729 	dmarx->cookie = dmaengine_submit(desc);
730 	dma_async_issue_pending(rxchan);
731 
732 	uap->dmacr |= UART011_RXDMAE;
733 	writew(uap->dmacr, uap->port.membase + UART011_DMACR);
734 	uap->dmarx.running = true;
735 
736 	uap->im &= ~UART011_RXIM;
737 	writew(uap->im, uap->port.membase + UART011_IMSC);
738 
739 	return 0;
740 }
741 
742 /*
743  * This is called when either the DMA job is complete, or
744  * the FIFO timeout interrupt occurred. This must be called
745  * with the port spinlock uap->port.lock held.
746  */
747 static void pl011_dma_rx_chars(struct uart_amba_port *uap,
748 			       u32 pending, bool use_buf_b,
749 			       bool readfifo)
750 {
751 	struct tty_port *port = &uap->port.state->port;
752 	struct pl011_sgbuf *sgbuf = use_buf_b ?
753 		&uap->dmarx.sgbuf_b : &uap->dmarx.sgbuf_a;
754 	int dma_count = 0;
755 	u32 fifotaken = 0; /* only used for vdbg() */
756 
757 	struct pl011_dmarx_data *dmarx = &uap->dmarx;
758 	int dmataken = 0;
759 
760 	if (uap->dmarx.poll_rate) {
761 		/* The data can be taken by polling */
762 		dmataken = sgbuf->sg.length - dmarx->last_residue;
763 		/* Recalculate the pending size */
764 		if (pending >= dmataken)
765 			pending -= dmataken;
766 	}
767 
768 	/* Pick the remain data from the DMA */
769 	if (pending) {
770 
771 		/*
772 		 * First take all chars in the DMA pipe, then look in the FIFO.
773 		 * Note that tty_insert_flip_buf() tries to take as many chars
774 		 * as it can.
775 		 */
776 		dma_count = tty_insert_flip_string(port, sgbuf->buf + dmataken,
777 				pending);
778 
779 		uap->port.icount.rx += dma_count;
780 		if (dma_count < pending)
781 			dev_warn(uap->port.dev,
782 				 "couldn't insert all characters (TTY is full?)\n");
783 	}
784 
785 	/* Reset the last_residue for Rx DMA poll */
786 	if (uap->dmarx.poll_rate)
787 		dmarx->last_residue = sgbuf->sg.length;
788 
789 	/*
790 	 * Only continue with trying to read the FIFO if all DMA chars have
791 	 * been taken first.
792 	 */
793 	if (dma_count == pending && readfifo) {
794 		/* Clear any error flags */
795 		writew(UART011_OEIS | UART011_BEIS | UART011_PEIS | UART011_FEIS,
796 		       uap->port.membase + UART011_ICR);
797 
798 		/*
799 		 * If we read all the DMA'd characters, and we had an
800 		 * incomplete buffer, that could be due to an rx error, or
801 		 * maybe we just timed out. Read any pending chars and check
802 		 * the error status.
803 		 *
804 		 * Error conditions will only occur in the FIFO, these will
805 		 * trigger an immediate interrupt and stop the DMA job, so we
806 		 * will always find the error in the FIFO, never in the DMA
807 		 * buffer.
808 		 */
809 		fifotaken = pl011_fifo_to_tty(uap);
810 	}
811 
812 	spin_unlock(&uap->port.lock);
813 	dev_vdbg(uap->port.dev,
814 		 "Took %d chars from DMA buffer and %d chars from the FIFO\n",
815 		 dma_count, fifotaken);
816 	tty_flip_buffer_push(port);
817 	spin_lock(&uap->port.lock);
818 }
819 
820 static void pl011_dma_rx_irq(struct uart_amba_port *uap)
821 {
822 	struct pl011_dmarx_data *dmarx = &uap->dmarx;
823 	struct dma_chan *rxchan = dmarx->chan;
824 	struct pl011_sgbuf *sgbuf = dmarx->use_buf_b ?
825 		&dmarx->sgbuf_b : &dmarx->sgbuf_a;
826 	size_t pending;
827 	struct dma_tx_state state;
828 	enum dma_status dmastat;
829 
830 	/*
831 	 * Pause the transfer so we can trust the current counter,
832 	 * do this before we pause the PL011 block, else we may
833 	 * overflow the FIFO.
834 	 */
835 	if (dmaengine_pause(rxchan))
836 		dev_err(uap->port.dev, "unable to pause DMA transfer\n");
837 	dmastat = rxchan->device->device_tx_status(rxchan,
838 						   dmarx->cookie, &state);
839 	if (dmastat != DMA_PAUSED)
840 		dev_err(uap->port.dev, "unable to pause DMA transfer\n");
841 
842 	/* Disable RX DMA - incoming data will wait in the FIFO */
843 	uap->dmacr &= ~UART011_RXDMAE;
844 	writew(uap->dmacr, uap->port.membase + UART011_DMACR);
845 	uap->dmarx.running = false;
846 
847 	pending = sgbuf->sg.length - state.residue;
848 	BUG_ON(pending > PL011_DMA_BUFFER_SIZE);
849 	/* Then we terminate the transfer - we now know our residue */
850 	dmaengine_terminate_all(rxchan);
851 
852 	/*
853 	 * This will take the chars we have so far and insert
854 	 * into the framework.
855 	 */
856 	pl011_dma_rx_chars(uap, pending, dmarx->use_buf_b, true);
857 
858 	/* Switch buffer & re-trigger DMA job */
859 	dmarx->use_buf_b = !dmarx->use_buf_b;
860 	if (pl011_dma_rx_trigger_dma(uap)) {
861 		dev_dbg(uap->port.dev, "could not retrigger RX DMA job "
862 			"fall back to interrupt mode\n");
863 		uap->im |= UART011_RXIM;
864 		writew(uap->im, uap->port.membase + UART011_IMSC);
865 	}
866 }
867 
868 static void pl011_dma_rx_callback(void *data)
869 {
870 	struct uart_amba_port *uap = data;
871 	struct pl011_dmarx_data *dmarx = &uap->dmarx;
872 	struct dma_chan *rxchan = dmarx->chan;
873 	bool lastbuf = dmarx->use_buf_b;
874 	struct pl011_sgbuf *sgbuf = dmarx->use_buf_b ?
875 		&dmarx->sgbuf_b : &dmarx->sgbuf_a;
876 	size_t pending;
877 	struct dma_tx_state state;
878 	int ret;
879 
880 	/*
881 	 * This completion interrupt occurs typically when the
882 	 * RX buffer is totally stuffed but no timeout has yet
883 	 * occurred. When that happens, we just want the RX
884 	 * routine to flush out the secondary DMA buffer while
885 	 * we immediately trigger the next DMA job.
886 	 */
887 	spin_lock_irq(&uap->port.lock);
888 	/*
889 	 * Rx data can be taken by the UART interrupts during
890 	 * the DMA irq handler. So we check the residue here.
891 	 */
892 	rxchan->device->device_tx_status(rxchan, dmarx->cookie, &state);
893 	pending = sgbuf->sg.length - state.residue;
894 	BUG_ON(pending > PL011_DMA_BUFFER_SIZE);
895 	/* Then we terminate the transfer - we now know our residue */
896 	dmaengine_terminate_all(rxchan);
897 
898 	uap->dmarx.running = false;
899 	dmarx->use_buf_b = !lastbuf;
900 	ret = pl011_dma_rx_trigger_dma(uap);
901 
902 	pl011_dma_rx_chars(uap, pending, lastbuf, false);
903 	spin_unlock_irq(&uap->port.lock);
904 	/*
905 	 * Do this check after we picked the DMA chars so we don't
906 	 * get some IRQ immediately from RX.
907 	 */
908 	if (ret) {
909 		dev_dbg(uap->port.dev, "could not retrigger RX DMA job "
910 			"fall back to interrupt mode\n");
911 		uap->im |= UART011_RXIM;
912 		writew(uap->im, uap->port.membase + UART011_IMSC);
913 	}
914 }
915 
916 /*
917  * Stop accepting received characters, when we're shutting down or
918  * suspending this port.
919  * Locking: called with port lock held and IRQs disabled.
920  */
921 static inline void pl011_dma_rx_stop(struct uart_amba_port *uap)
922 {
923 	/* FIXME.  Just disable the DMA enable */
924 	uap->dmacr &= ~UART011_RXDMAE;
925 	writew(uap->dmacr, uap->port.membase + UART011_DMACR);
926 }
927 
928 /*
929  * Timer handler for Rx DMA polling.
930  * Every polling, It checks the residue in the dma buffer and transfer
931  * data to the tty. Also, last_residue is updated for the next polling.
932  */
933 static void pl011_dma_rx_poll(unsigned long args)
934 {
935 	struct uart_amba_port *uap = (struct uart_amba_port *)args;
936 	struct tty_port *port = &uap->port.state->port;
937 	struct pl011_dmarx_data *dmarx = &uap->dmarx;
938 	struct dma_chan *rxchan = uap->dmarx.chan;
939 	unsigned long flags = 0;
940 	unsigned int dmataken = 0;
941 	unsigned int size = 0;
942 	struct pl011_sgbuf *sgbuf;
943 	int dma_count;
944 	struct dma_tx_state state;
945 
946 	sgbuf = dmarx->use_buf_b ? &uap->dmarx.sgbuf_b : &uap->dmarx.sgbuf_a;
947 	rxchan->device->device_tx_status(rxchan, dmarx->cookie, &state);
948 	if (likely(state.residue < dmarx->last_residue)) {
949 		dmataken = sgbuf->sg.length - dmarx->last_residue;
950 		size = dmarx->last_residue - state.residue;
951 		dma_count = tty_insert_flip_string(port, sgbuf->buf + dmataken,
952 				size);
953 		if (dma_count == size)
954 			dmarx->last_residue =  state.residue;
955 		dmarx->last_jiffies = jiffies;
956 	}
957 	tty_flip_buffer_push(port);
958 
959 	/*
960 	 * If no data is received in poll_timeout, the driver will fall back
961 	 * to interrupt mode. We will retrigger DMA at the first interrupt.
962 	 */
963 	if (jiffies_to_msecs(jiffies - dmarx->last_jiffies)
964 			> uap->dmarx.poll_timeout) {
965 
966 		spin_lock_irqsave(&uap->port.lock, flags);
967 		pl011_dma_rx_stop(uap);
968 		uap->im |= UART011_RXIM;
969 		writew(uap->im, uap->port.membase + UART011_IMSC);
970 		spin_unlock_irqrestore(&uap->port.lock, flags);
971 
972 		uap->dmarx.running = false;
973 		dmaengine_terminate_all(rxchan);
974 		del_timer(&uap->dmarx.timer);
975 	} else {
976 		mod_timer(&uap->dmarx.timer,
977 			jiffies + msecs_to_jiffies(uap->dmarx.poll_rate));
978 	}
979 }
980 
981 static void pl011_dma_startup(struct uart_amba_port *uap)
982 {
983 	int ret;
984 
985 	if (!uap->dma_probed)
986 		pl011_dma_probe(uap);
987 
988 	if (!uap->dmatx.chan)
989 		return;
990 
991 	uap->dmatx.buf = kmalloc(PL011_DMA_BUFFER_SIZE, GFP_KERNEL | __GFP_DMA);
992 	if (!uap->dmatx.buf) {
993 		dev_err(uap->port.dev, "no memory for DMA TX buffer\n");
994 		uap->port.fifosize = uap->fifosize;
995 		return;
996 	}
997 
998 	sg_init_one(&uap->dmatx.sg, uap->dmatx.buf, PL011_DMA_BUFFER_SIZE);
999 
1000 	/* The DMA buffer is now the FIFO the TTY subsystem can use */
1001 	uap->port.fifosize = PL011_DMA_BUFFER_SIZE;
1002 	uap->using_tx_dma = true;
1003 
1004 	if (!uap->dmarx.chan)
1005 		goto skip_rx;
1006 
1007 	/* Allocate and map DMA RX buffers */
1008 	ret = pl011_sgbuf_init(uap->dmarx.chan, &uap->dmarx.sgbuf_a,
1009 			       DMA_FROM_DEVICE);
1010 	if (ret) {
1011 		dev_err(uap->port.dev, "failed to init DMA %s: %d\n",
1012 			"RX buffer A", ret);
1013 		goto skip_rx;
1014 	}
1015 
1016 	ret = pl011_sgbuf_init(uap->dmarx.chan, &uap->dmarx.sgbuf_b,
1017 			       DMA_FROM_DEVICE);
1018 	if (ret) {
1019 		dev_err(uap->port.dev, "failed to init DMA %s: %d\n",
1020 			"RX buffer B", ret);
1021 		pl011_sgbuf_free(uap->dmarx.chan, &uap->dmarx.sgbuf_a,
1022 				 DMA_FROM_DEVICE);
1023 		goto skip_rx;
1024 	}
1025 
1026 	uap->using_rx_dma = true;
1027 
1028 skip_rx:
1029 	/* Turn on DMA error (RX/TX will be enabled on demand) */
1030 	uap->dmacr |= UART011_DMAONERR;
1031 	writew(uap->dmacr, uap->port.membase + UART011_DMACR);
1032 
1033 	/*
1034 	 * ST Micro variants has some specific dma burst threshold
1035 	 * compensation. Set this to 16 bytes, so burst will only
1036 	 * be issued above/below 16 bytes.
1037 	 */
1038 	if (uap->vendor->dma_threshold)
1039 		writew(ST_UART011_DMAWM_RX_16 | ST_UART011_DMAWM_TX_16,
1040 			       uap->port.membase + ST_UART011_DMAWM);
1041 
1042 	if (uap->using_rx_dma) {
1043 		if (pl011_dma_rx_trigger_dma(uap))
1044 			dev_dbg(uap->port.dev, "could not trigger initial "
1045 				"RX DMA job, fall back to interrupt mode\n");
1046 		if (uap->dmarx.poll_rate) {
1047 			init_timer(&(uap->dmarx.timer));
1048 			uap->dmarx.timer.function = pl011_dma_rx_poll;
1049 			uap->dmarx.timer.data = (unsigned long)uap;
1050 			mod_timer(&uap->dmarx.timer,
1051 				jiffies +
1052 				msecs_to_jiffies(uap->dmarx.poll_rate));
1053 			uap->dmarx.last_residue = PL011_DMA_BUFFER_SIZE;
1054 			uap->dmarx.last_jiffies = jiffies;
1055 		}
1056 	}
1057 }
1058 
1059 static void pl011_dma_shutdown(struct uart_amba_port *uap)
1060 {
1061 	if (!(uap->using_tx_dma || uap->using_rx_dma))
1062 		return;
1063 
1064 	/* Disable RX and TX DMA */
1065 	while (readw(uap->port.membase + UART01x_FR) & UART01x_FR_BUSY)
1066 		barrier();
1067 
1068 	spin_lock_irq(&uap->port.lock);
1069 	uap->dmacr &= ~(UART011_DMAONERR | UART011_RXDMAE | UART011_TXDMAE);
1070 	writew(uap->dmacr, uap->port.membase + UART011_DMACR);
1071 	spin_unlock_irq(&uap->port.lock);
1072 
1073 	if (uap->using_tx_dma) {
1074 		/* In theory, this should already be done by pl011_dma_flush_buffer */
1075 		dmaengine_terminate_all(uap->dmatx.chan);
1076 		if (uap->dmatx.queued) {
1077 			dma_unmap_sg(uap->dmatx.chan->device->dev, &uap->dmatx.sg, 1,
1078 				     DMA_TO_DEVICE);
1079 			uap->dmatx.queued = false;
1080 		}
1081 
1082 		kfree(uap->dmatx.buf);
1083 		uap->using_tx_dma = false;
1084 	}
1085 
1086 	if (uap->using_rx_dma) {
1087 		dmaengine_terminate_all(uap->dmarx.chan);
1088 		/* Clean up the RX DMA */
1089 		pl011_sgbuf_free(uap->dmarx.chan, &uap->dmarx.sgbuf_a, DMA_FROM_DEVICE);
1090 		pl011_sgbuf_free(uap->dmarx.chan, &uap->dmarx.sgbuf_b, DMA_FROM_DEVICE);
1091 		if (uap->dmarx.poll_rate)
1092 			del_timer_sync(&uap->dmarx.timer);
1093 		uap->using_rx_dma = false;
1094 	}
1095 }
1096 
1097 static inline bool pl011_dma_rx_available(struct uart_amba_port *uap)
1098 {
1099 	return uap->using_rx_dma;
1100 }
1101 
1102 static inline bool pl011_dma_rx_running(struct uart_amba_port *uap)
1103 {
1104 	return uap->using_rx_dma && uap->dmarx.running;
1105 }
1106 
1107 #else
1108 /* Blank functions if the DMA engine is not available */
1109 static inline void pl011_dma_probe(struct uart_amba_port *uap)
1110 {
1111 }
1112 
1113 static inline void pl011_dma_remove(struct uart_amba_port *uap)
1114 {
1115 }
1116 
1117 static inline void pl011_dma_startup(struct uart_amba_port *uap)
1118 {
1119 }
1120 
1121 static inline void pl011_dma_shutdown(struct uart_amba_port *uap)
1122 {
1123 }
1124 
1125 static inline bool pl011_dma_tx_irq(struct uart_amba_port *uap)
1126 {
1127 	return false;
1128 }
1129 
1130 static inline void pl011_dma_tx_stop(struct uart_amba_port *uap)
1131 {
1132 }
1133 
1134 static inline bool pl011_dma_tx_start(struct uart_amba_port *uap)
1135 {
1136 	return false;
1137 }
1138 
1139 static inline void pl011_dma_rx_irq(struct uart_amba_port *uap)
1140 {
1141 }
1142 
1143 static inline void pl011_dma_rx_stop(struct uart_amba_port *uap)
1144 {
1145 }
1146 
1147 static inline int pl011_dma_rx_trigger_dma(struct uart_amba_port *uap)
1148 {
1149 	return -EIO;
1150 }
1151 
1152 static inline bool pl011_dma_rx_available(struct uart_amba_port *uap)
1153 {
1154 	return false;
1155 }
1156 
1157 static inline bool pl011_dma_rx_running(struct uart_amba_port *uap)
1158 {
1159 	return false;
1160 }
1161 
1162 #define pl011_dma_flush_buffer	NULL
1163 #endif
1164 
1165 static void pl011_stop_tx(struct uart_port *port)
1166 {
1167 	struct uart_amba_port *uap =
1168 	    container_of(port, struct uart_amba_port, port);
1169 
1170 	uap->im &= ~UART011_TXIM;
1171 	writew(uap->im, uap->port.membase + UART011_IMSC);
1172 	pl011_dma_tx_stop(uap);
1173 }
1174 
1175 static bool pl011_tx_chars(struct uart_amba_port *uap);
1176 
1177 /* Start TX with programmed I/O only (no DMA) */
1178 static void pl011_start_tx_pio(struct uart_amba_port *uap)
1179 {
1180 	uap->im |= UART011_TXIM;
1181 	writew(uap->im, uap->port.membase + UART011_IMSC);
1182 	if (!uap->tx_irq_seen)
1183 		pl011_tx_chars(uap);
1184 }
1185 
1186 static void pl011_start_tx(struct uart_port *port)
1187 {
1188 	struct uart_amba_port *uap =
1189 	    container_of(port, struct uart_amba_port, port);
1190 
1191 	if (!pl011_dma_tx_start(uap))
1192 		pl011_start_tx_pio(uap);
1193 }
1194 
1195 static void pl011_stop_rx(struct uart_port *port)
1196 {
1197 	struct uart_amba_port *uap =
1198 	    container_of(port, struct uart_amba_port, port);
1199 
1200 	uap->im &= ~(UART011_RXIM|UART011_RTIM|UART011_FEIM|
1201 		     UART011_PEIM|UART011_BEIM|UART011_OEIM);
1202 	writew(uap->im, uap->port.membase + UART011_IMSC);
1203 
1204 	pl011_dma_rx_stop(uap);
1205 }
1206 
1207 static void pl011_enable_ms(struct uart_port *port)
1208 {
1209 	struct uart_amba_port *uap =
1210 	    container_of(port, struct uart_amba_port, port);
1211 
1212 	uap->im |= UART011_RIMIM|UART011_CTSMIM|UART011_DCDMIM|UART011_DSRMIM;
1213 	writew(uap->im, uap->port.membase + UART011_IMSC);
1214 }
1215 
1216 static void pl011_rx_chars(struct uart_amba_port *uap)
1217 __releases(&uap->port.lock)
1218 __acquires(&uap->port.lock)
1219 {
1220 	pl011_fifo_to_tty(uap);
1221 
1222 	spin_unlock(&uap->port.lock);
1223 	tty_flip_buffer_push(&uap->port.state->port);
1224 	/*
1225 	 * If we were temporarily out of DMA mode for a while,
1226 	 * attempt to switch back to DMA mode again.
1227 	 */
1228 	if (pl011_dma_rx_available(uap)) {
1229 		if (pl011_dma_rx_trigger_dma(uap)) {
1230 			dev_dbg(uap->port.dev, "could not trigger RX DMA job "
1231 				"fall back to interrupt mode again\n");
1232 			uap->im |= UART011_RXIM;
1233 			writew(uap->im, uap->port.membase + UART011_IMSC);
1234 		} else {
1235 #ifdef CONFIG_DMA_ENGINE
1236 			/* Start Rx DMA poll */
1237 			if (uap->dmarx.poll_rate) {
1238 				uap->dmarx.last_jiffies = jiffies;
1239 				uap->dmarx.last_residue	= PL011_DMA_BUFFER_SIZE;
1240 				mod_timer(&uap->dmarx.timer,
1241 					jiffies +
1242 					msecs_to_jiffies(uap->dmarx.poll_rate));
1243 			}
1244 #endif
1245 		}
1246 	}
1247 	spin_lock(&uap->port.lock);
1248 }
1249 
1250 /*
1251  * Transmit a character
1252  * There must be at least one free entry in the TX FIFO to accept the char.
1253  *
1254  * Returns true if the FIFO might have space in it afterwards;
1255  * returns false if the FIFO definitely became full.
1256  */
1257 static bool pl011_tx_char(struct uart_amba_port *uap, unsigned char c)
1258 {
1259 	writew(c, uap->port.membase + UART01x_DR);
1260 	uap->port.icount.tx++;
1261 
1262 	if (likely(uap->tx_irq_seen > 1))
1263 		return true;
1264 
1265 	return !(readw(uap->port.membase + UART01x_FR) & UART01x_FR_TXFF);
1266 }
1267 
1268 static bool pl011_tx_chars(struct uart_amba_port *uap)
1269 {
1270 	struct circ_buf *xmit = &uap->port.state->xmit;
1271 	int count;
1272 
1273 	if (unlikely(uap->tx_irq_seen < 2))
1274 		/*
1275 		 * Initial FIFO fill level unknown: we must check TXFF
1276 		 * after each write, so just try to fill up the FIFO.
1277 		 */
1278 		count = uap->fifosize;
1279 	else /* tx_irq_seen >= 2 */
1280 		/*
1281 		 * FIFO initially at least half-empty, so we can simply
1282 		 * write half the FIFO without polling TXFF.
1283 
1284 		 * Note: the *first* TX IRQ can still race with
1285 		 * pl011_start_tx_pio(), which can result in the FIFO
1286 		 * being fuller than expected in that case.
1287 		 */
1288 		count = uap->fifosize >> 1;
1289 
1290 	/*
1291 	 * If the FIFO is full we're guaranteed a TX IRQ at some later point,
1292 	 * and can't transmit immediately in any case:
1293 	 */
1294 	if (unlikely(uap->tx_irq_seen < 2 &&
1295 		     readw(uap->port.membase + UART01x_FR) & UART01x_FR_TXFF))
1296 		return false;
1297 
1298 	if (uap->port.x_char) {
1299 		pl011_tx_char(uap, uap->port.x_char);
1300 		uap->port.x_char = 0;
1301 		--count;
1302 	}
1303 	if (uart_circ_empty(xmit) || uart_tx_stopped(&uap->port)) {
1304 		pl011_stop_tx(&uap->port);
1305 		goto done;
1306 	}
1307 
1308 	/* If we are using DMA mode, try to send some characters. */
1309 	if (pl011_dma_tx_irq(uap))
1310 		goto done;
1311 
1312 	while (count-- > 0 && pl011_tx_char(uap, xmit->buf[xmit->tail])) {
1313 		xmit->tail = (xmit->tail + 1) & (UART_XMIT_SIZE - 1);
1314 		if (uart_circ_empty(xmit))
1315 			break;
1316 	}
1317 
1318 	if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
1319 		uart_write_wakeup(&uap->port);
1320 
1321 	if (uart_circ_empty(xmit)) {
1322 		pl011_stop_tx(&uap->port);
1323 		goto done;
1324 	}
1325 
1326 	if (unlikely(!uap->tx_irq_seen))
1327 		schedule_delayed_work(&uap->tx_softirq_work, uap->port.timeout);
1328 
1329 done:
1330 	return false;
1331 }
1332 
1333 static void pl011_modem_status(struct uart_amba_port *uap)
1334 {
1335 	unsigned int status, delta;
1336 
1337 	status = readw(uap->port.membase + UART01x_FR) & UART01x_FR_MODEM_ANY;
1338 
1339 	delta = status ^ uap->old_status;
1340 	uap->old_status = status;
1341 
1342 	if (!delta)
1343 		return;
1344 
1345 	if (delta & UART01x_FR_DCD)
1346 		uart_handle_dcd_change(&uap->port, status & UART01x_FR_DCD);
1347 
1348 	if (delta & UART01x_FR_DSR)
1349 		uap->port.icount.dsr++;
1350 
1351 	if (delta & UART01x_FR_CTS)
1352 		uart_handle_cts_change(&uap->port, status & UART01x_FR_CTS);
1353 
1354 	wake_up_interruptible(&uap->port.state->port.delta_msr_wait);
1355 }
1356 
1357 static void pl011_tx_softirq(struct work_struct *work)
1358 {
1359 	struct delayed_work *dwork = to_delayed_work(work);
1360 	struct uart_amba_port *uap =
1361 		container_of(dwork, struct uart_amba_port, tx_softirq_work);
1362 
1363 	spin_lock(&uap->port.lock);
1364 	while (pl011_tx_chars(uap)) ;
1365 	spin_unlock(&uap->port.lock);
1366 }
1367 
1368 static void pl011_tx_irq_seen(struct uart_amba_port *uap)
1369 {
1370 	if (likely(uap->tx_irq_seen > 1))
1371 		return;
1372 
1373 	uap->tx_irq_seen++;
1374 	if (uap->tx_irq_seen < 2)
1375 		/* first TX IRQ */
1376 		cancel_delayed_work(&uap->tx_softirq_work);
1377 }
1378 
1379 static irqreturn_t pl011_int(int irq, void *dev_id)
1380 {
1381 	struct uart_amba_port *uap = dev_id;
1382 	unsigned long flags;
1383 	unsigned int status, pass_counter = AMBA_ISR_PASS_LIMIT;
1384 	int handled = 0;
1385 	unsigned int dummy_read;
1386 
1387 	spin_lock_irqsave(&uap->port.lock, flags);
1388 	status = readw(uap->port.membase + UART011_MIS);
1389 	if (status) {
1390 		do {
1391 			if (uap->vendor->cts_event_workaround) {
1392 				/* workaround to make sure that all bits are unlocked.. */
1393 				writew(0x00, uap->port.membase + UART011_ICR);
1394 
1395 				/*
1396 				 * WA: introduce 26ns(1 uart clk) delay before W1C;
1397 				 * single apb access will incur 2 pclk(133.12Mhz) delay,
1398 				 * so add 2 dummy reads
1399 				 */
1400 				dummy_read = readw(uap->port.membase + UART011_ICR);
1401 				dummy_read = readw(uap->port.membase + UART011_ICR);
1402 			}
1403 
1404 			writew(status & ~(UART011_TXIS|UART011_RTIS|
1405 					  UART011_RXIS),
1406 			       uap->port.membase + UART011_ICR);
1407 
1408 			if (status & (UART011_RTIS|UART011_RXIS)) {
1409 				if (pl011_dma_rx_running(uap))
1410 					pl011_dma_rx_irq(uap);
1411 				else
1412 					pl011_rx_chars(uap);
1413 			}
1414 			if (status & (UART011_DSRMIS|UART011_DCDMIS|
1415 				      UART011_CTSMIS|UART011_RIMIS))
1416 				pl011_modem_status(uap);
1417 			if (status & UART011_TXIS) {
1418 				pl011_tx_irq_seen(uap);
1419 				pl011_tx_chars(uap);
1420 			}
1421 
1422 			if (pass_counter-- == 0)
1423 				break;
1424 
1425 			status = readw(uap->port.membase + UART011_MIS);
1426 		} while (status != 0);
1427 		handled = 1;
1428 	}
1429 
1430 	spin_unlock_irqrestore(&uap->port.lock, flags);
1431 
1432 	return IRQ_RETVAL(handled);
1433 }
1434 
1435 static unsigned int pl011_tx_empty(struct uart_port *port)
1436 {
1437 	struct uart_amba_port *uap =
1438 	    container_of(port, struct uart_amba_port, port);
1439 	unsigned int status = readw(uap->port.membase + UART01x_FR);
1440 	return status & (UART01x_FR_BUSY|UART01x_FR_TXFF) ? 0 : TIOCSER_TEMT;
1441 }
1442 
1443 static unsigned int pl011_get_mctrl(struct uart_port *port)
1444 {
1445 	struct uart_amba_port *uap =
1446 	    container_of(port, struct uart_amba_port, port);
1447 	unsigned int result = 0;
1448 	unsigned int status = readw(uap->port.membase + UART01x_FR);
1449 
1450 #define TIOCMBIT(uartbit, tiocmbit)	\
1451 	if (status & uartbit)		\
1452 		result |= tiocmbit
1453 
1454 	TIOCMBIT(UART01x_FR_DCD, TIOCM_CAR);
1455 	TIOCMBIT(UART01x_FR_DSR, TIOCM_DSR);
1456 	TIOCMBIT(UART01x_FR_CTS, TIOCM_CTS);
1457 	TIOCMBIT(UART011_FR_RI, TIOCM_RNG);
1458 #undef TIOCMBIT
1459 	return result;
1460 }
1461 
1462 static void pl011_set_mctrl(struct uart_port *port, unsigned int mctrl)
1463 {
1464 	struct uart_amba_port *uap =
1465 	    container_of(port, struct uart_amba_port, port);
1466 	unsigned int cr;
1467 
1468 	cr = readw(uap->port.membase + UART011_CR);
1469 
1470 #define	TIOCMBIT(tiocmbit, uartbit)		\
1471 	if (mctrl & tiocmbit)		\
1472 		cr |= uartbit;		\
1473 	else				\
1474 		cr &= ~uartbit
1475 
1476 	TIOCMBIT(TIOCM_RTS, UART011_CR_RTS);
1477 	TIOCMBIT(TIOCM_DTR, UART011_CR_DTR);
1478 	TIOCMBIT(TIOCM_OUT1, UART011_CR_OUT1);
1479 	TIOCMBIT(TIOCM_OUT2, UART011_CR_OUT2);
1480 	TIOCMBIT(TIOCM_LOOP, UART011_CR_LBE);
1481 
1482 	if (uap->autorts) {
1483 		/* We need to disable auto-RTS if we want to turn RTS off */
1484 		TIOCMBIT(TIOCM_RTS, UART011_CR_RTSEN);
1485 	}
1486 #undef TIOCMBIT
1487 
1488 	writew(cr, uap->port.membase + UART011_CR);
1489 }
1490 
1491 static void pl011_break_ctl(struct uart_port *port, int break_state)
1492 {
1493 	struct uart_amba_port *uap =
1494 	    container_of(port, struct uart_amba_port, port);
1495 	unsigned long flags;
1496 	unsigned int lcr_h;
1497 
1498 	spin_lock_irqsave(&uap->port.lock, flags);
1499 	lcr_h = readw(uap->port.membase + uap->lcrh_tx);
1500 	if (break_state == -1)
1501 		lcr_h |= UART01x_LCRH_BRK;
1502 	else
1503 		lcr_h &= ~UART01x_LCRH_BRK;
1504 	writew(lcr_h, uap->port.membase + uap->lcrh_tx);
1505 	spin_unlock_irqrestore(&uap->port.lock, flags);
1506 }
1507 
1508 #ifdef CONFIG_CONSOLE_POLL
1509 
1510 static void pl011_quiesce_irqs(struct uart_port *port)
1511 {
1512 	struct uart_amba_port *uap =
1513 	    container_of(port, struct uart_amba_port, port);
1514 	unsigned char __iomem *regs = uap->port.membase;
1515 
1516 	writew(readw(regs + UART011_MIS), regs + UART011_ICR);
1517 	/*
1518 	 * There is no way to clear TXIM as this is "ready to transmit IRQ", so
1519 	 * we simply mask it. start_tx() will unmask it.
1520 	 *
1521 	 * Note we can race with start_tx(), and if the race happens, the
1522 	 * polling user might get another interrupt just after we clear it.
1523 	 * But it should be OK and can happen even w/o the race, e.g.
1524 	 * controller immediately got some new data and raised the IRQ.
1525 	 *
1526 	 * And whoever uses polling routines assumes that it manages the device
1527 	 * (including tx queue), so we're also fine with start_tx()'s caller
1528 	 * side.
1529 	 */
1530 	writew(readw(regs + UART011_IMSC) & ~UART011_TXIM, regs + UART011_IMSC);
1531 }
1532 
1533 static int pl011_get_poll_char(struct uart_port *port)
1534 {
1535 	struct uart_amba_port *uap =
1536 	    container_of(port, struct uart_amba_port, port);
1537 	unsigned int status;
1538 
1539 	/*
1540 	 * The caller might need IRQs lowered, e.g. if used with KDB NMI
1541 	 * debugger.
1542 	 */
1543 	pl011_quiesce_irqs(port);
1544 
1545 	status = readw(uap->port.membase + UART01x_FR);
1546 	if (status & UART01x_FR_RXFE)
1547 		return NO_POLL_CHAR;
1548 
1549 	return readw(uap->port.membase + UART01x_DR);
1550 }
1551 
1552 static void pl011_put_poll_char(struct uart_port *port,
1553 			 unsigned char ch)
1554 {
1555 	struct uart_amba_port *uap =
1556 	    container_of(port, struct uart_amba_port, port);
1557 
1558 	while (readw(uap->port.membase + UART01x_FR) & UART01x_FR_TXFF)
1559 		barrier();
1560 
1561 	writew(ch, uap->port.membase + UART01x_DR);
1562 }
1563 
1564 #endif /* CONFIG_CONSOLE_POLL */
1565 
1566 static int pl011_hwinit(struct uart_port *port)
1567 {
1568 	struct uart_amba_port *uap =
1569 	    container_of(port, struct uart_amba_port, port);
1570 	int retval;
1571 
1572 	/* Optionaly enable pins to be muxed in and configured */
1573 	pinctrl_pm_select_default_state(port->dev);
1574 
1575 	/*
1576 	 * Try to enable the clock producer.
1577 	 */
1578 	retval = clk_prepare_enable(uap->clk);
1579 	if (retval)
1580 		return retval;
1581 
1582 	uap->port.uartclk = clk_get_rate(uap->clk);
1583 
1584 	/* Clear pending error and receive interrupts */
1585 	writew(UART011_OEIS | UART011_BEIS | UART011_PEIS | UART011_FEIS |
1586 	       UART011_RTIS | UART011_RXIS, uap->port.membase + UART011_ICR);
1587 
1588 	/*
1589 	 * Save interrupts enable mask, and enable RX interrupts in case if
1590 	 * the interrupt is used for NMI entry.
1591 	 */
1592 	uap->im = readw(uap->port.membase + UART011_IMSC);
1593 	writew(UART011_RTIM | UART011_RXIM, uap->port.membase + UART011_IMSC);
1594 
1595 	if (dev_get_platdata(uap->port.dev)) {
1596 		struct amba_pl011_data *plat;
1597 
1598 		plat = dev_get_platdata(uap->port.dev);
1599 		if (plat->init)
1600 			plat->init();
1601 	}
1602 	return 0;
1603 }
1604 
1605 static void pl011_write_lcr_h(struct uart_amba_port *uap, unsigned int lcr_h)
1606 {
1607 	writew(lcr_h, uap->port.membase + uap->lcrh_rx);
1608 	if (uap->lcrh_rx != uap->lcrh_tx) {
1609 		int i;
1610 		/*
1611 		 * Wait 10 PCLKs before writing LCRH_TX register,
1612 		 * to get this delay write read only register 10 times
1613 		 */
1614 		for (i = 0; i < 10; ++i)
1615 			writew(0xff, uap->port.membase + UART011_MIS);
1616 		writew(lcr_h, uap->port.membase + uap->lcrh_tx);
1617 	}
1618 }
1619 
1620 static int pl011_startup(struct uart_port *port)
1621 {
1622 	struct uart_amba_port *uap =
1623 	    container_of(port, struct uart_amba_port, port);
1624 	unsigned int cr;
1625 	int retval;
1626 
1627 	retval = pl011_hwinit(port);
1628 	if (retval)
1629 		goto clk_dis;
1630 
1631 	writew(uap->im, uap->port.membase + UART011_IMSC);
1632 
1633 	/*
1634 	 * Allocate the IRQ
1635 	 */
1636 	retval = request_irq(uap->port.irq, pl011_int, 0, "uart-pl011", uap);
1637 	if (retval)
1638 		goto clk_dis;
1639 
1640 	writew(uap->vendor->ifls, uap->port.membase + UART011_IFLS);
1641 
1642 	spin_lock_irq(&uap->port.lock);
1643 
1644 	/* restore RTS and DTR */
1645 	cr = uap->old_cr & (UART011_CR_RTS | UART011_CR_DTR);
1646 	cr |= UART01x_CR_UARTEN | UART011_CR_RXE | UART011_CR_TXE;
1647 	writew(cr, uap->port.membase + UART011_CR);
1648 
1649 	spin_unlock_irq(&uap->port.lock);
1650 
1651 	/*
1652 	 * initialise the old status of the modem signals
1653 	 */
1654 	uap->old_status = readw(uap->port.membase + UART01x_FR) & UART01x_FR_MODEM_ANY;
1655 
1656 	/* Startup DMA */
1657 	pl011_dma_startup(uap);
1658 
1659 	/*
1660 	 * Finally, enable interrupts, only timeouts when using DMA
1661 	 * if initial RX DMA job failed, start in interrupt mode
1662 	 * as well.
1663 	 */
1664 	spin_lock_irq(&uap->port.lock);
1665 	/* Clear out any spuriously appearing RX interrupts */
1666 	 writew(UART011_RTIS | UART011_RXIS,
1667 		uap->port.membase + UART011_ICR);
1668 	uap->im = UART011_RTIM;
1669 	if (!pl011_dma_rx_running(uap))
1670 		uap->im |= UART011_RXIM;
1671 	writew(uap->im, uap->port.membase + UART011_IMSC);
1672 	spin_unlock_irq(&uap->port.lock);
1673 
1674 	return 0;
1675 
1676  clk_dis:
1677 	clk_disable_unprepare(uap->clk);
1678 	return retval;
1679 }
1680 
1681 static void pl011_shutdown_channel(struct uart_amba_port *uap,
1682 					unsigned int lcrh)
1683 {
1684       unsigned long val;
1685 
1686       val = readw(uap->port.membase + lcrh);
1687       val &= ~(UART01x_LCRH_BRK | UART01x_LCRH_FEN);
1688       writew(val, uap->port.membase + lcrh);
1689 }
1690 
1691 static void pl011_shutdown(struct uart_port *port)
1692 {
1693 	struct uart_amba_port *uap =
1694 	    container_of(port, struct uart_amba_port, port);
1695 	unsigned int cr;
1696 
1697 	cancel_delayed_work_sync(&uap->tx_softirq_work);
1698 
1699 	/*
1700 	 * disable all interrupts
1701 	 */
1702 	spin_lock_irq(&uap->port.lock);
1703 	uap->im = 0;
1704 	writew(uap->im, uap->port.membase + UART011_IMSC);
1705 	writew(0xffff & ~UART011_TXIS, uap->port.membase + UART011_ICR);
1706 	spin_unlock_irq(&uap->port.lock);
1707 
1708 	pl011_dma_shutdown(uap);
1709 
1710 	/*
1711 	 * Free the interrupt
1712 	 */
1713 	free_irq(uap->port.irq, uap);
1714 
1715 	/*
1716 	 * disable the port
1717 	 * disable the port. It should not disable RTS and DTR.
1718 	 * Also RTS and DTR state should be preserved to restore
1719 	 * it during startup().
1720 	 */
1721 	uap->autorts = false;
1722 	spin_lock_irq(&uap->port.lock);
1723 	cr = readw(uap->port.membase + UART011_CR);
1724 	uap->old_cr = cr;
1725 	cr &= UART011_CR_RTS | UART011_CR_DTR;
1726 	cr |= UART01x_CR_UARTEN | UART011_CR_TXE;
1727 	writew(cr, uap->port.membase + UART011_CR);
1728 	spin_unlock_irq(&uap->port.lock);
1729 
1730 	/*
1731 	 * disable break condition and fifos
1732 	 */
1733 	pl011_shutdown_channel(uap, uap->lcrh_rx);
1734 	if (uap->lcrh_rx != uap->lcrh_tx)
1735 		pl011_shutdown_channel(uap, uap->lcrh_tx);
1736 
1737 	/*
1738 	 * Shut down the clock producer
1739 	 */
1740 	clk_disable_unprepare(uap->clk);
1741 	/* Optionally let pins go into sleep states */
1742 	pinctrl_pm_select_sleep_state(port->dev);
1743 
1744 	if (dev_get_platdata(uap->port.dev)) {
1745 		struct amba_pl011_data *plat;
1746 
1747 		plat = dev_get_platdata(uap->port.dev);
1748 		if (plat->exit)
1749 			plat->exit();
1750 	}
1751 
1752 	if (uap->port.ops->flush_buffer)
1753 		uap->port.ops->flush_buffer(port);
1754 }
1755 
1756 static void
1757 pl011_set_termios(struct uart_port *port, struct ktermios *termios,
1758 		     struct ktermios *old)
1759 {
1760 	struct uart_amba_port *uap =
1761 	    container_of(port, struct uart_amba_port, port);
1762 	unsigned int lcr_h, old_cr;
1763 	unsigned long flags;
1764 	unsigned int baud, quot, clkdiv;
1765 
1766 	if (uap->vendor->oversampling)
1767 		clkdiv = 8;
1768 	else
1769 		clkdiv = 16;
1770 
1771 	/*
1772 	 * Ask the core to calculate the divisor for us.
1773 	 */
1774 	baud = uart_get_baud_rate(port, termios, old, 0,
1775 				  port->uartclk / clkdiv);
1776 #ifdef CONFIG_DMA_ENGINE
1777 	/*
1778 	 * Adjust RX DMA polling rate with baud rate if not specified.
1779 	 */
1780 	if (uap->dmarx.auto_poll_rate)
1781 		uap->dmarx.poll_rate = DIV_ROUND_UP(10000000, baud);
1782 #endif
1783 
1784 	if (baud > port->uartclk/16)
1785 		quot = DIV_ROUND_CLOSEST(port->uartclk * 8, baud);
1786 	else
1787 		quot = DIV_ROUND_CLOSEST(port->uartclk * 4, baud);
1788 
1789 	switch (termios->c_cflag & CSIZE) {
1790 	case CS5:
1791 		lcr_h = UART01x_LCRH_WLEN_5;
1792 		break;
1793 	case CS6:
1794 		lcr_h = UART01x_LCRH_WLEN_6;
1795 		break;
1796 	case CS7:
1797 		lcr_h = UART01x_LCRH_WLEN_7;
1798 		break;
1799 	default: // CS8
1800 		lcr_h = UART01x_LCRH_WLEN_8;
1801 		break;
1802 	}
1803 	if (termios->c_cflag & CSTOPB)
1804 		lcr_h |= UART01x_LCRH_STP2;
1805 	if (termios->c_cflag & PARENB) {
1806 		lcr_h |= UART01x_LCRH_PEN;
1807 		if (!(termios->c_cflag & PARODD))
1808 			lcr_h |= UART01x_LCRH_EPS;
1809 	}
1810 	if (uap->fifosize > 1)
1811 		lcr_h |= UART01x_LCRH_FEN;
1812 
1813 	spin_lock_irqsave(&port->lock, flags);
1814 
1815 	/*
1816 	 * Update the per-port timeout.
1817 	 */
1818 	uart_update_timeout(port, termios->c_cflag, baud);
1819 
1820 	port->read_status_mask = UART011_DR_OE | 255;
1821 	if (termios->c_iflag & INPCK)
1822 		port->read_status_mask |= UART011_DR_FE | UART011_DR_PE;
1823 	if (termios->c_iflag & (IGNBRK | BRKINT | PARMRK))
1824 		port->read_status_mask |= UART011_DR_BE;
1825 
1826 	/*
1827 	 * Characters to ignore
1828 	 */
1829 	port->ignore_status_mask = 0;
1830 	if (termios->c_iflag & IGNPAR)
1831 		port->ignore_status_mask |= UART011_DR_FE | UART011_DR_PE;
1832 	if (termios->c_iflag & IGNBRK) {
1833 		port->ignore_status_mask |= UART011_DR_BE;
1834 		/*
1835 		 * If we're ignoring parity and break indicators,
1836 		 * ignore overruns too (for real raw support).
1837 		 */
1838 		if (termios->c_iflag & IGNPAR)
1839 			port->ignore_status_mask |= UART011_DR_OE;
1840 	}
1841 
1842 	/*
1843 	 * Ignore all characters if CREAD is not set.
1844 	 */
1845 	if ((termios->c_cflag & CREAD) == 0)
1846 		port->ignore_status_mask |= UART_DUMMY_DR_RX;
1847 
1848 	if (UART_ENABLE_MS(port, termios->c_cflag))
1849 		pl011_enable_ms(port);
1850 
1851 	/* first, disable everything */
1852 	old_cr = readw(port->membase + UART011_CR);
1853 	writew(0, port->membase + UART011_CR);
1854 
1855 	if (termios->c_cflag & CRTSCTS) {
1856 		if (old_cr & UART011_CR_RTS)
1857 			old_cr |= UART011_CR_RTSEN;
1858 
1859 		old_cr |= UART011_CR_CTSEN;
1860 		uap->autorts = true;
1861 	} else {
1862 		old_cr &= ~(UART011_CR_CTSEN | UART011_CR_RTSEN);
1863 		uap->autorts = false;
1864 	}
1865 
1866 	if (uap->vendor->oversampling) {
1867 		if (baud > port->uartclk / 16)
1868 			old_cr |= ST_UART011_CR_OVSFACT;
1869 		else
1870 			old_cr &= ~ST_UART011_CR_OVSFACT;
1871 	}
1872 
1873 	/*
1874 	 * Workaround for the ST Micro oversampling variants to
1875 	 * increase the bitrate slightly, by lowering the divisor,
1876 	 * to avoid delayed sampling of start bit at high speeds,
1877 	 * else we see data corruption.
1878 	 */
1879 	if (uap->vendor->oversampling) {
1880 		if ((baud >= 3000000) && (baud < 3250000) && (quot > 1))
1881 			quot -= 1;
1882 		else if ((baud > 3250000) && (quot > 2))
1883 			quot -= 2;
1884 	}
1885 	/* Set baud rate */
1886 	writew(quot & 0x3f, port->membase + UART011_FBRD);
1887 	writew(quot >> 6, port->membase + UART011_IBRD);
1888 
1889 	/*
1890 	 * ----------v----------v----------v----------v-----
1891 	 * NOTE: lcrh_tx and lcrh_rx MUST BE WRITTEN AFTER
1892 	 * UART011_FBRD & UART011_IBRD.
1893 	 * ----------^----------^----------^----------^-----
1894 	 */
1895 	pl011_write_lcr_h(uap, lcr_h);
1896 	writew(old_cr, port->membase + UART011_CR);
1897 
1898 	spin_unlock_irqrestore(&port->lock, flags);
1899 }
1900 
1901 static const char *pl011_type(struct uart_port *port)
1902 {
1903 	struct uart_amba_port *uap =
1904 	    container_of(port, struct uart_amba_port, port);
1905 	return uap->port.type == PORT_AMBA ? uap->type : NULL;
1906 }
1907 
1908 /*
1909  * Release the memory region(s) being used by 'port'
1910  */
1911 static void pl011_release_port(struct uart_port *port)
1912 {
1913 	release_mem_region(port->mapbase, SZ_4K);
1914 }
1915 
1916 /*
1917  * Request the memory region(s) being used by 'port'
1918  */
1919 static int pl011_request_port(struct uart_port *port)
1920 {
1921 	return request_mem_region(port->mapbase, SZ_4K, "uart-pl011")
1922 			!= NULL ? 0 : -EBUSY;
1923 }
1924 
1925 /*
1926  * Configure/autoconfigure the port.
1927  */
1928 static void pl011_config_port(struct uart_port *port, int flags)
1929 {
1930 	if (flags & UART_CONFIG_TYPE) {
1931 		port->type = PORT_AMBA;
1932 		pl011_request_port(port);
1933 	}
1934 }
1935 
1936 /*
1937  * verify the new serial_struct (for TIOCSSERIAL).
1938  */
1939 static int pl011_verify_port(struct uart_port *port, struct serial_struct *ser)
1940 {
1941 	int ret = 0;
1942 	if (ser->type != PORT_UNKNOWN && ser->type != PORT_AMBA)
1943 		ret = -EINVAL;
1944 	if (ser->irq < 0 || ser->irq >= nr_irqs)
1945 		ret = -EINVAL;
1946 	if (ser->baud_base < 9600)
1947 		ret = -EINVAL;
1948 	return ret;
1949 }
1950 
1951 static struct uart_ops amba_pl011_pops = {
1952 	.tx_empty	= pl011_tx_empty,
1953 	.set_mctrl	= pl011_set_mctrl,
1954 	.get_mctrl	= pl011_get_mctrl,
1955 	.stop_tx	= pl011_stop_tx,
1956 	.start_tx	= pl011_start_tx,
1957 	.stop_rx	= pl011_stop_rx,
1958 	.enable_ms	= pl011_enable_ms,
1959 	.break_ctl	= pl011_break_ctl,
1960 	.startup	= pl011_startup,
1961 	.shutdown	= pl011_shutdown,
1962 	.flush_buffer	= pl011_dma_flush_buffer,
1963 	.set_termios	= pl011_set_termios,
1964 	.type		= pl011_type,
1965 	.release_port	= pl011_release_port,
1966 	.request_port	= pl011_request_port,
1967 	.config_port	= pl011_config_port,
1968 	.verify_port	= pl011_verify_port,
1969 #ifdef CONFIG_CONSOLE_POLL
1970 	.poll_init     = pl011_hwinit,
1971 	.poll_get_char = pl011_get_poll_char,
1972 	.poll_put_char = pl011_put_poll_char,
1973 #endif
1974 };
1975 
1976 static struct uart_amba_port *amba_ports[UART_NR];
1977 
1978 #ifdef CONFIG_SERIAL_AMBA_PL011_CONSOLE
1979 
1980 static void pl011_console_putchar(struct uart_port *port, int ch)
1981 {
1982 	struct uart_amba_port *uap =
1983 	    container_of(port, struct uart_amba_port, port);
1984 
1985 	while (readw(uap->port.membase + UART01x_FR) & UART01x_FR_TXFF)
1986 		barrier();
1987 	writew(ch, uap->port.membase + UART01x_DR);
1988 }
1989 
1990 static void
1991 pl011_console_write(struct console *co, const char *s, unsigned int count)
1992 {
1993 	struct uart_amba_port *uap = amba_ports[co->index];
1994 	unsigned int status, old_cr, new_cr;
1995 	unsigned long flags;
1996 	int locked = 1;
1997 
1998 	clk_enable(uap->clk);
1999 
2000 	local_irq_save(flags);
2001 	if (uap->port.sysrq)
2002 		locked = 0;
2003 	else if (oops_in_progress)
2004 		locked = spin_trylock(&uap->port.lock);
2005 	else
2006 		spin_lock(&uap->port.lock);
2007 
2008 	/*
2009 	 *	First save the CR then disable the interrupts
2010 	 */
2011 	old_cr = readw(uap->port.membase + UART011_CR);
2012 	new_cr = old_cr & ~UART011_CR_CTSEN;
2013 	new_cr |= UART01x_CR_UARTEN | UART011_CR_TXE;
2014 	writew(new_cr, uap->port.membase + UART011_CR);
2015 
2016 	uart_console_write(&uap->port, s, count, pl011_console_putchar);
2017 
2018 	/*
2019 	 *	Finally, wait for transmitter to become empty
2020 	 *	and restore the TCR
2021 	 */
2022 	do {
2023 		status = readw(uap->port.membase + UART01x_FR);
2024 	} while (status & UART01x_FR_BUSY);
2025 	writew(old_cr, uap->port.membase + UART011_CR);
2026 
2027 	if (locked)
2028 		spin_unlock(&uap->port.lock);
2029 	local_irq_restore(flags);
2030 
2031 	clk_disable(uap->clk);
2032 }
2033 
2034 static void __init
2035 pl011_console_get_options(struct uart_amba_port *uap, int *baud,
2036 			     int *parity, int *bits)
2037 {
2038 	if (readw(uap->port.membase + UART011_CR) & UART01x_CR_UARTEN) {
2039 		unsigned int lcr_h, ibrd, fbrd;
2040 
2041 		lcr_h = readw(uap->port.membase + uap->lcrh_tx);
2042 
2043 		*parity = 'n';
2044 		if (lcr_h & UART01x_LCRH_PEN) {
2045 			if (lcr_h & UART01x_LCRH_EPS)
2046 				*parity = 'e';
2047 			else
2048 				*parity = 'o';
2049 		}
2050 
2051 		if ((lcr_h & 0x60) == UART01x_LCRH_WLEN_7)
2052 			*bits = 7;
2053 		else
2054 			*bits = 8;
2055 
2056 		ibrd = readw(uap->port.membase + UART011_IBRD);
2057 		fbrd = readw(uap->port.membase + UART011_FBRD);
2058 
2059 		*baud = uap->port.uartclk * 4 / (64 * ibrd + fbrd);
2060 
2061 		if (uap->vendor->oversampling) {
2062 			if (readw(uap->port.membase + UART011_CR)
2063 				  & ST_UART011_CR_OVSFACT)
2064 				*baud *= 2;
2065 		}
2066 	}
2067 }
2068 
2069 static int __init pl011_console_setup(struct console *co, char *options)
2070 {
2071 	struct uart_amba_port *uap;
2072 	int baud = 38400;
2073 	int bits = 8;
2074 	int parity = 'n';
2075 	int flow = 'n';
2076 	int ret;
2077 
2078 	/*
2079 	 * Check whether an invalid uart number has been specified, and
2080 	 * if so, search for the first available port that does have
2081 	 * console support.
2082 	 */
2083 	if (co->index >= UART_NR)
2084 		co->index = 0;
2085 	uap = amba_ports[co->index];
2086 	if (!uap)
2087 		return -ENODEV;
2088 
2089 	/* Allow pins to be muxed in and configured */
2090 	pinctrl_pm_select_default_state(uap->port.dev);
2091 
2092 	ret = clk_prepare(uap->clk);
2093 	if (ret)
2094 		return ret;
2095 
2096 	if (dev_get_platdata(uap->port.dev)) {
2097 		struct amba_pl011_data *plat;
2098 
2099 		plat = dev_get_platdata(uap->port.dev);
2100 		if (plat->init)
2101 			plat->init();
2102 	}
2103 
2104 	uap->port.uartclk = clk_get_rate(uap->clk);
2105 
2106 	if (options)
2107 		uart_parse_options(options, &baud, &parity, &bits, &flow);
2108 	else
2109 		pl011_console_get_options(uap, &baud, &parity, &bits);
2110 
2111 	return uart_set_options(&uap->port, co, baud, parity, bits, flow);
2112 }
2113 
2114 static struct uart_driver amba_reg;
2115 static struct console amba_console = {
2116 	.name		= "ttyAMA",
2117 	.write		= pl011_console_write,
2118 	.device		= uart_console_device,
2119 	.setup		= pl011_console_setup,
2120 	.flags		= CON_PRINTBUFFER,
2121 	.index		= -1,
2122 	.data		= &amba_reg,
2123 };
2124 
2125 #define AMBA_CONSOLE	(&amba_console)
2126 
2127 static void pl011_putc(struct uart_port *port, int c)
2128 {
2129 	while (readl(port->membase + UART01x_FR) & UART01x_FR_TXFF)
2130 		;
2131 	writeb(c, port->membase + UART01x_DR);
2132 	while (readl(port->membase + UART01x_FR) & UART01x_FR_BUSY)
2133 		;
2134 }
2135 
2136 static void pl011_early_write(struct console *con, const char *s, unsigned n)
2137 {
2138 	struct earlycon_device *dev = con->data;
2139 
2140 	uart_console_write(&dev->port, s, n, pl011_putc);
2141 }
2142 
2143 static int __init pl011_early_console_setup(struct earlycon_device *device,
2144 					    const char *opt)
2145 {
2146 	if (!device->port.membase)
2147 		return -ENODEV;
2148 
2149 	device->con->write = pl011_early_write;
2150 	return 0;
2151 }
2152 EARLYCON_DECLARE(pl011, pl011_early_console_setup);
2153 OF_EARLYCON_DECLARE(pl011, "arm,pl011", pl011_early_console_setup);
2154 
2155 #else
2156 #define AMBA_CONSOLE	NULL
2157 #endif
2158 
2159 static struct uart_driver amba_reg = {
2160 	.owner			= THIS_MODULE,
2161 	.driver_name		= "ttyAMA",
2162 	.dev_name		= "ttyAMA",
2163 	.major			= SERIAL_AMBA_MAJOR,
2164 	.minor			= SERIAL_AMBA_MINOR,
2165 	.nr			= UART_NR,
2166 	.cons			= AMBA_CONSOLE,
2167 };
2168 
2169 static int pl011_probe_dt_alias(int index, struct device *dev)
2170 {
2171 	struct device_node *np;
2172 	static bool seen_dev_with_alias = false;
2173 	static bool seen_dev_without_alias = false;
2174 	int ret = index;
2175 
2176 	if (!IS_ENABLED(CONFIG_OF))
2177 		return ret;
2178 
2179 	np = dev->of_node;
2180 	if (!np)
2181 		return ret;
2182 
2183 	ret = of_alias_get_id(np, "serial");
2184 	if (IS_ERR_VALUE(ret)) {
2185 		seen_dev_without_alias = true;
2186 		ret = index;
2187 	} else {
2188 		seen_dev_with_alias = true;
2189 		if (ret >= ARRAY_SIZE(amba_ports) || amba_ports[ret] != NULL) {
2190 			dev_warn(dev, "requested serial port %d  not available.\n", ret);
2191 			ret = index;
2192 		}
2193 	}
2194 
2195 	if (seen_dev_with_alias && seen_dev_without_alias)
2196 		dev_warn(dev, "aliased and non-aliased serial devices found in device tree. Serial port enumeration may be unpredictable.\n");
2197 
2198 	return ret;
2199 }
2200 
2201 static int pl011_probe(struct amba_device *dev, const struct amba_id *id)
2202 {
2203 	struct uart_amba_port *uap;
2204 	struct vendor_data *vendor = id->data;
2205 	void __iomem *base;
2206 	int i, ret;
2207 
2208 	for (i = 0; i < ARRAY_SIZE(amba_ports); i++)
2209 		if (amba_ports[i] == NULL)
2210 			break;
2211 
2212 	if (i == ARRAY_SIZE(amba_ports))
2213 		return -EBUSY;
2214 
2215 	uap = devm_kzalloc(&dev->dev, sizeof(struct uart_amba_port),
2216 			   GFP_KERNEL);
2217 	if (uap == NULL)
2218 		return -ENOMEM;
2219 
2220 	i = pl011_probe_dt_alias(i, &dev->dev);
2221 
2222 	base = devm_ioremap(&dev->dev, dev->res.start,
2223 			    resource_size(&dev->res));
2224 	if (!base)
2225 		return -ENOMEM;
2226 
2227 	uap->clk = devm_clk_get(&dev->dev, NULL);
2228 	if (IS_ERR(uap->clk))
2229 		return PTR_ERR(uap->clk);
2230 
2231 	uap->vendor = vendor;
2232 	uap->lcrh_rx = vendor->lcrh_rx;
2233 	uap->lcrh_tx = vendor->lcrh_tx;
2234 	uap->old_cr = 0;
2235 	uap->fifosize = vendor->get_fifosize(dev);
2236 	uap->port.dev = &dev->dev;
2237 	uap->port.mapbase = dev->res.start;
2238 	uap->port.membase = base;
2239 	uap->port.iotype = UPIO_MEM;
2240 	uap->port.irq = dev->irq[0];
2241 	uap->port.fifosize = uap->fifosize;
2242 	uap->port.ops = &amba_pl011_pops;
2243 	uap->port.flags = UPF_BOOT_AUTOCONF;
2244 	uap->port.line = i;
2245 	INIT_DELAYED_WORK(&uap->tx_softirq_work, pl011_tx_softirq);
2246 
2247 	/* Ensure interrupts from this UART are masked and cleared */
2248 	writew(0, uap->port.membase + UART011_IMSC);
2249 	writew(0xffff, uap->port.membase + UART011_ICR);
2250 
2251 	snprintf(uap->type, sizeof(uap->type), "PL011 rev%u", amba_rev(dev));
2252 
2253 	amba_ports[i] = uap;
2254 
2255 	amba_set_drvdata(dev, uap);
2256 
2257 	if (!amba_reg.state) {
2258 		ret = uart_register_driver(&amba_reg);
2259 		if (ret < 0) {
2260 			dev_err(&dev->dev,
2261 				"Failed to register AMBA-PL011 driver\n");
2262 			return ret;
2263 		}
2264 	}
2265 
2266 	ret = uart_add_one_port(&amba_reg, &uap->port);
2267 	if (ret) {
2268 		amba_ports[i] = NULL;
2269 		uart_unregister_driver(&amba_reg);
2270 	}
2271 
2272 	return ret;
2273 }
2274 
2275 static int pl011_remove(struct amba_device *dev)
2276 {
2277 	struct uart_amba_port *uap = amba_get_drvdata(dev);
2278 	bool busy = false;
2279 	int i;
2280 
2281 	uart_remove_one_port(&amba_reg, &uap->port);
2282 
2283 	for (i = 0; i < ARRAY_SIZE(amba_ports); i++)
2284 		if (amba_ports[i] == uap)
2285 			amba_ports[i] = NULL;
2286 		else if (amba_ports[i])
2287 			busy = true;
2288 
2289 	pl011_dma_remove(uap);
2290 	if (!busy)
2291 		uart_unregister_driver(&amba_reg);
2292 	return 0;
2293 }
2294 
2295 #ifdef CONFIG_PM_SLEEP
2296 static int pl011_suspend(struct device *dev)
2297 {
2298 	struct uart_amba_port *uap = dev_get_drvdata(dev);
2299 
2300 	if (!uap)
2301 		return -EINVAL;
2302 
2303 	return uart_suspend_port(&amba_reg, &uap->port);
2304 }
2305 
2306 static int pl011_resume(struct device *dev)
2307 {
2308 	struct uart_amba_port *uap = dev_get_drvdata(dev);
2309 
2310 	if (!uap)
2311 		return -EINVAL;
2312 
2313 	return uart_resume_port(&amba_reg, &uap->port);
2314 }
2315 #endif
2316 
2317 static SIMPLE_DEV_PM_OPS(pl011_dev_pm_ops, pl011_suspend, pl011_resume);
2318 
2319 static struct amba_id pl011_ids[] = {
2320 	{
2321 		.id	= 0x00041011,
2322 		.mask	= 0x000fffff,
2323 		.data	= &vendor_arm,
2324 	},
2325 	{
2326 		.id	= 0x00380802,
2327 		.mask	= 0x00ffffff,
2328 		.data	= &vendor_st,
2329 	},
2330 	{ 0, 0 },
2331 };
2332 
2333 MODULE_DEVICE_TABLE(amba, pl011_ids);
2334 
2335 static struct amba_driver pl011_driver = {
2336 	.drv = {
2337 		.name	= "uart-pl011",
2338 		.pm	= &pl011_dev_pm_ops,
2339 	},
2340 	.id_table	= pl011_ids,
2341 	.probe		= pl011_probe,
2342 	.remove		= pl011_remove,
2343 };
2344 
2345 static int __init pl011_init(void)
2346 {
2347 	printk(KERN_INFO "Serial: AMBA PL011 UART driver\n");
2348 
2349 	return amba_driver_register(&pl011_driver);
2350 }
2351 
2352 static void __exit pl011_exit(void)
2353 {
2354 	amba_driver_unregister(&pl011_driver);
2355 }
2356 
2357 /*
2358  * While this can be a module, if builtin it's most likely the console
2359  * So let's leave module_exit but move module_init to an earlier place
2360  */
2361 arch_initcall(pl011_init);
2362 module_exit(pl011_exit);
2363 
2364 MODULE_AUTHOR("ARM Ltd/Deep Blue Solutions Ltd");
2365 MODULE_DESCRIPTION("ARM AMBA serial port driver");
2366 MODULE_LICENSE("GPL");
2367