xref: /openbmc/linux/drivers/tty/serial/amba-pl011.c (revision 40ddb537)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  *  Driver for AMBA serial ports
4  *
5  *  Based on drivers/char/serial.c, by Linus Torvalds, Theodore Ts'o.
6  *
7  *  Copyright 1999 ARM Limited
8  *  Copyright (C) 2000 Deep Blue Solutions Ltd.
9  *  Copyright (C) 2010 ST-Ericsson SA
10  *
11  * This is a generic driver for ARM AMBA-type serial ports.  They
12  * have a lot of 16550-like features, but are not register compatible.
13  * Note that although they do have CTS, DCD and DSR inputs, they do
14  * not have an RI input, nor do they have DTR or RTS outputs.  If
15  * required, these have to be supplied via some other means (eg, GPIO)
16  * and hooked into this driver.
17  */
18 
19 #include <linux/module.h>
20 #include <linux/ioport.h>
21 #include <linux/init.h>
22 #include <linux/console.h>
23 #include <linux/sysrq.h>
24 #include <linux/device.h>
25 #include <linux/tty.h>
26 #include <linux/tty_flip.h>
27 #include <linux/serial_core.h>
28 #include <linux/serial.h>
29 #include <linux/amba/bus.h>
30 #include <linux/amba/serial.h>
31 #include <linux/clk.h>
32 #include <linux/slab.h>
33 #include <linux/dmaengine.h>
34 #include <linux/dma-mapping.h>
35 #include <linux/scatterlist.h>
36 #include <linux/delay.h>
37 #include <linux/types.h>
38 #include <linux/of.h>
39 #include <linux/of_device.h>
40 #include <linux/pinctrl/consumer.h>
41 #include <linux/sizes.h>
42 #include <linux/io.h>
43 #include <linux/acpi.h>
44 
45 #include "amba-pl011.h"
46 
47 #define UART_NR			14
48 
49 #define SERIAL_AMBA_MAJOR	204
50 #define SERIAL_AMBA_MINOR	64
51 #define SERIAL_AMBA_NR		UART_NR
52 
53 #define AMBA_ISR_PASS_LIMIT	256
54 
55 #define UART_DR_ERROR		(UART011_DR_OE|UART011_DR_BE|UART011_DR_PE|UART011_DR_FE)
56 #define UART_DUMMY_DR_RX	(1 << 16)
57 
58 static u16 pl011_std_offsets[REG_ARRAY_SIZE] = {
59 	[REG_DR] = UART01x_DR,
60 	[REG_FR] = UART01x_FR,
61 	[REG_LCRH_RX] = UART011_LCRH,
62 	[REG_LCRH_TX] = UART011_LCRH,
63 	[REG_IBRD] = UART011_IBRD,
64 	[REG_FBRD] = UART011_FBRD,
65 	[REG_CR] = UART011_CR,
66 	[REG_IFLS] = UART011_IFLS,
67 	[REG_IMSC] = UART011_IMSC,
68 	[REG_RIS] = UART011_RIS,
69 	[REG_MIS] = UART011_MIS,
70 	[REG_ICR] = UART011_ICR,
71 	[REG_DMACR] = UART011_DMACR,
72 };
73 
74 /* There is by now at least one vendor with differing details, so handle it */
75 struct vendor_data {
76 	const u16		*reg_offset;
77 	unsigned int		ifls;
78 	unsigned int		fr_busy;
79 	unsigned int		fr_dsr;
80 	unsigned int		fr_cts;
81 	unsigned int		fr_ri;
82 	unsigned int		inv_fr;
83 	bool			access_32b;
84 	bool			oversampling;
85 	bool			dma_threshold;
86 	bool			cts_event_workaround;
87 	bool			always_enabled;
88 	bool			fixed_options;
89 
90 	unsigned int (*get_fifosize)(struct amba_device *dev);
91 };
92 
93 static unsigned int get_fifosize_arm(struct amba_device *dev)
94 {
95 	return amba_rev(dev) < 3 ? 16 : 32;
96 }
97 
98 static struct vendor_data vendor_arm = {
99 	.reg_offset		= pl011_std_offsets,
100 	.ifls			= UART011_IFLS_RX4_8|UART011_IFLS_TX4_8,
101 	.fr_busy		= UART01x_FR_BUSY,
102 	.fr_dsr			= UART01x_FR_DSR,
103 	.fr_cts			= UART01x_FR_CTS,
104 	.fr_ri			= UART011_FR_RI,
105 	.oversampling		= false,
106 	.dma_threshold		= false,
107 	.cts_event_workaround	= false,
108 	.always_enabled		= false,
109 	.fixed_options		= false,
110 	.get_fifosize		= get_fifosize_arm,
111 };
112 
113 static const struct vendor_data vendor_sbsa = {
114 	.reg_offset		= pl011_std_offsets,
115 	.fr_busy		= UART01x_FR_BUSY,
116 	.fr_dsr			= UART01x_FR_DSR,
117 	.fr_cts			= UART01x_FR_CTS,
118 	.fr_ri			= UART011_FR_RI,
119 	.access_32b		= true,
120 	.oversampling		= false,
121 	.dma_threshold		= false,
122 	.cts_event_workaround	= false,
123 	.always_enabled		= true,
124 	.fixed_options		= true,
125 };
126 
127 #ifdef CONFIG_ACPI_SPCR_TABLE
128 static const struct vendor_data vendor_qdt_qdf2400_e44 = {
129 	.reg_offset		= pl011_std_offsets,
130 	.fr_busy		= UART011_FR_TXFE,
131 	.fr_dsr			= UART01x_FR_DSR,
132 	.fr_cts			= UART01x_FR_CTS,
133 	.fr_ri			= UART011_FR_RI,
134 	.inv_fr			= UART011_FR_TXFE,
135 	.access_32b		= true,
136 	.oversampling		= false,
137 	.dma_threshold		= false,
138 	.cts_event_workaround	= false,
139 	.always_enabled		= true,
140 	.fixed_options		= true,
141 };
142 #endif
143 
144 static u16 pl011_st_offsets[REG_ARRAY_SIZE] = {
145 	[REG_DR] = UART01x_DR,
146 	[REG_ST_DMAWM] = ST_UART011_DMAWM,
147 	[REG_ST_TIMEOUT] = ST_UART011_TIMEOUT,
148 	[REG_FR] = UART01x_FR,
149 	[REG_LCRH_RX] = ST_UART011_LCRH_RX,
150 	[REG_LCRH_TX] = ST_UART011_LCRH_TX,
151 	[REG_IBRD] = UART011_IBRD,
152 	[REG_FBRD] = UART011_FBRD,
153 	[REG_CR] = UART011_CR,
154 	[REG_IFLS] = UART011_IFLS,
155 	[REG_IMSC] = UART011_IMSC,
156 	[REG_RIS] = UART011_RIS,
157 	[REG_MIS] = UART011_MIS,
158 	[REG_ICR] = UART011_ICR,
159 	[REG_DMACR] = UART011_DMACR,
160 	[REG_ST_XFCR] = ST_UART011_XFCR,
161 	[REG_ST_XON1] = ST_UART011_XON1,
162 	[REG_ST_XON2] = ST_UART011_XON2,
163 	[REG_ST_XOFF1] = ST_UART011_XOFF1,
164 	[REG_ST_XOFF2] = ST_UART011_XOFF2,
165 	[REG_ST_ITCR] = ST_UART011_ITCR,
166 	[REG_ST_ITIP] = ST_UART011_ITIP,
167 	[REG_ST_ABCR] = ST_UART011_ABCR,
168 	[REG_ST_ABIMSC] = ST_UART011_ABIMSC,
169 };
170 
171 static unsigned int get_fifosize_st(struct amba_device *dev)
172 {
173 	return 64;
174 }
175 
176 static struct vendor_data vendor_st = {
177 	.reg_offset		= pl011_st_offsets,
178 	.ifls			= UART011_IFLS_RX_HALF|UART011_IFLS_TX_HALF,
179 	.fr_busy		= UART01x_FR_BUSY,
180 	.fr_dsr			= UART01x_FR_DSR,
181 	.fr_cts			= UART01x_FR_CTS,
182 	.fr_ri			= UART011_FR_RI,
183 	.oversampling		= true,
184 	.dma_threshold		= true,
185 	.cts_event_workaround	= true,
186 	.always_enabled		= false,
187 	.fixed_options		= false,
188 	.get_fifosize		= get_fifosize_st,
189 };
190 
191 static const u16 pl011_zte_offsets[REG_ARRAY_SIZE] = {
192 	[REG_DR] = ZX_UART011_DR,
193 	[REG_FR] = ZX_UART011_FR,
194 	[REG_LCRH_RX] = ZX_UART011_LCRH,
195 	[REG_LCRH_TX] = ZX_UART011_LCRH,
196 	[REG_IBRD] = ZX_UART011_IBRD,
197 	[REG_FBRD] = ZX_UART011_FBRD,
198 	[REG_CR] = ZX_UART011_CR,
199 	[REG_IFLS] = ZX_UART011_IFLS,
200 	[REG_IMSC] = ZX_UART011_IMSC,
201 	[REG_RIS] = ZX_UART011_RIS,
202 	[REG_MIS] = ZX_UART011_MIS,
203 	[REG_ICR] = ZX_UART011_ICR,
204 	[REG_DMACR] = ZX_UART011_DMACR,
205 };
206 
207 static unsigned int get_fifosize_zte(struct amba_device *dev)
208 {
209 	return 16;
210 }
211 
212 static struct vendor_data vendor_zte = {
213 	.reg_offset		= pl011_zte_offsets,
214 	.access_32b		= true,
215 	.ifls			= UART011_IFLS_RX4_8|UART011_IFLS_TX4_8,
216 	.fr_busy		= ZX_UART01x_FR_BUSY,
217 	.fr_dsr			= ZX_UART01x_FR_DSR,
218 	.fr_cts			= ZX_UART01x_FR_CTS,
219 	.fr_ri			= ZX_UART011_FR_RI,
220 	.get_fifosize		= get_fifosize_zte,
221 };
222 
223 /* Deals with DMA transactions */
224 
225 struct pl011_sgbuf {
226 	struct scatterlist sg;
227 	char *buf;
228 };
229 
230 struct pl011_dmarx_data {
231 	struct dma_chan		*chan;
232 	struct completion	complete;
233 	bool			use_buf_b;
234 	struct pl011_sgbuf	sgbuf_a;
235 	struct pl011_sgbuf	sgbuf_b;
236 	dma_cookie_t		cookie;
237 	bool			running;
238 	struct timer_list	timer;
239 	unsigned int last_residue;
240 	unsigned long last_jiffies;
241 	bool auto_poll_rate;
242 	unsigned int poll_rate;
243 	unsigned int poll_timeout;
244 };
245 
246 struct pl011_dmatx_data {
247 	struct dma_chan		*chan;
248 	struct scatterlist	sg;
249 	char			*buf;
250 	bool			queued;
251 };
252 
253 /*
254  * We wrap our port structure around the generic uart_port.
255  */
256 struct uart_amba_port {
257 	struct uart_port	port;
258 	const u16		*reg_offset;
259 	struct clk		*clk;
260 	const struct vendor_data *vendor;
261 	unsigned int		dmacr;		/* dma control reg */
262 	unsigned int		im;		/* interrupt mask */
263 	unsigned int		old_status;
264 	unsigned int		fifosize;	/* vendor-specific */
265 	unsigned int		old_cr;		/* state during shutdown */
266 	unsigned int		fixed_baud;	/* vendor-set fixed baud rate */
267 	char			type[12];
268 #ifdef CONFIG_DMA_ENGINE
269 	/* DMA stuff */
270 	bool			using_tx_dma;
271 	bool			using_rx_dma;
272 	struct pl011_dmarx_data dmarx;
273 	struct pl011_dmatx_data	dmatx;
274 	bool			dma_probed;
275 #endif
276 };
277 
278 static unsigned int pl011_reg_to_offset(const struct uart_amba_port *uap,
279 	unsigned int reg)
280 {
281 	return uap->reg_offset[reg];
282 }
283 
284 static unsigned int pl011_read(const struct uart_amba_port *uap,
285 	unsigned int reg)
286 {
287 	void __iomem *addr = uap->port.membase + pl011_reg_to_offset(uap, reg);
288 
289 	return (uap->port.iotype == UPIO_MEM32) ?
290 		readl_relaxed(addr) : readw_relaxed(addr);
291 }
292 
293 static void pl011_write(unsigned int val, const struct uart_amba_port *uap,
294 	unsigned int reg)
295 {
296 	void __iomem *addr = uap->port.membase + pl011_reg_to_offset(uap, reg);
297 
298 	if (uap->port.iotype == UPIO_MEM32)
299 		writel_relaxed(val, addr);
300 	else
301 		writew_relaxed(val, addr);
302 }
303 
304 /*
305  * Reads up to 256 characters from the FIFO or until it's empty and
306  * inserts them into the TTY layer. Returns the number of characters
307  * read from the FIFO.
308  */
309 static int pl011_fifo_to_tty(struct uart_amba_port *uap)
310 {
311 	unsigned int ch, flag, fifotaken;
312 	int sysrq;
313 	u16 status;
314 
315 	for (fifotaken = 0; fifotaken != 256; fifotaken++) {
316 		status = pl011_read(uap, REG_FR);
317 		if (status & UART01x_FR_RXFE)
318 			break;
319 
320 		/* Take chars from the FIFO and update status */
321 		ch = pl011_read(uap, REG_DR) | UART_DUMMY_DR_RX;
322 		flag = TTY_NORMAL;
323 		uap->port.icount.rx++;
324 
325 		if (unlikely(ch & UART_DR_ERROR)) {
326 			if (ch & UART011_DR_BE) {
327 				ch &= ~(UART011_DR_FE | UART011_DR_PE);
328 				uap->port.icount.brk++;
329 				if (uart_handle_break(&uap->port))
330 					continue;
331 			} else if (ch & UART011_DR_PE)
332 				uap->port.icount.parity++;
333 			else if (ch & UART011_DR_FE)
334 				uap->port.icount.frame++;
335 			if (ch & UART011_DR_OE)
336 				uap->port.icount.overrun++;
337 
338 			ch &= uap->port.read_status_mask;
339 
340 			if (ch & UART011_DR_BE)
341 				flag = TTY_BREAK;
342 			else if (ch & UART011_DR_PE)
343 				flag = TTY_PARITY;
344 			else if (ch & UART011_DR_FE)
345 				flag = TTY_FRAME;
346 		}
347 
348 		spin_unlock(&uap->port.lock);
349 		sysrq = uart_handle_sysrq_char(&uap->port, ch & 255);
350 		spin_lock(&uap->port.lock);
351 
352 		if (!sysrq)
353 			uart_insert_char(&uap->port, ch, UART011_DR_OE, ch, flag);
354 	}
355 
356 	return fifotaken;
357 }
358 
359 
360 /*
361  * All the DMA operation mode stuff goes inside this ifdef.
362  * This assumes that you have a generic DMA device interface,
363  * no custom DMA interfaces are supported.
364  */
365 #ifdef CONFIG_DMA_ENGINE
366 
367 #define PL011_DMA_BUFFER_SIZE PAGE_SIZE
368 
369 static int pl011_sgbuf_init(struct dma_chan *chan, struct pl011_sgbuf *sg,
370 	enum dma_data_direction dir)
371 {
372 	dma_addr_t dma_addr;
373 
374 	sg->buf = dma_alloc_coherent(chan->device->dev,
375 		PL011_DMA_BUFFER_SIZE, &dma_addr, GFP_KERNEL);
376 	if (!sg->buf)
377 		return -ENOMEM;
378 
379 	sg_init_table(&sg->sg, 1);
380 	sg_set_page(&sg->sg, phys_to_page(dma_addr),
381 		PL011_DMA_BUFFER_SIZE, offset_in_page(dma_addr));
382 	sg_dma_address(&sg->sg) = dma_addr;
383 	sg_dma_len(&sg->sg) = PL011_DMA_BUFFER_SIZE;
384 
385 	return 0;
386 }
387 
388 static void pl011_sgbuf_free(struct dma_chan *chan, struct pl011_sgbuf *sg,
389 	enum dma_data_direction dir)
390 {
391 	if (sg->buf) {
392 		dma_free_coherent(chan->device->dev,
393 			PL011_DMA_BUFFER_SIZE, sg->buf,
394 			sg_dma_address(&sg->sg));
395 	}
396 }
397 
398 static void pl011_dma_probe(struct uart_amba_port *uap)
399 {
400 	/* DMA is the sole user of the platform data right now */
401 	struct amba_pl011_data *plat = dev_get_platdata(uap->port.dev);
402 	struct device *dev = uap->port.dev;
403 	struct dma_slave_config tx_conf = {
404 		.dst_addr = uap->port.mapbase +
405 				 pl011_reg_to_offset(uap, REG_DR),
406 		.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
407 		.direction = DMA_MEM_TO_DEV,
408 		.dst_maxburst = uap->fifosize >> 1,
409 		.device_fc = false,
410 	};
411 	struct dma_chan *chan;
412 	dma_cap_mask_t mask;
413 
414 	uap->dma_probed = true;
415 	chan = dma_request_chan(dev, "tx");
416 	if (IS_ERR(chan)) {
417 		if (PTR_ERR(chan) == -EPROBE_DEFER) {
418 			uap->dma_probed = false;
419 			return;
420 		}
421 
422 		/* We need platform data */
423 		if (!plat || !plat->dma_filter) {
424 			dev_info(uap->port.dev, "no DMA platform data\n");
425 			return;
426 		}
427 
428 		/* Try to acquire a generic DMA engine slave TX channel */
429 		dma_cap_zero(mask);
430 		dma_cap_set(DMA_SLAVE, mask);
431 
432 		chan = dma_request_channel(mask, plat->dma_filter,
433 						plat->dma_tx_param);
434 		if (!chan) {
435 			dev_err(uap->port.dev, "no TX DMA channel!\n");
436 			return;
437 		}
438 	}
439 
440 	dmaengine_slave_config(chan, &tx_conf);
441 	uap->dmatx.chan = chan;
442 
443 	dev_info(uap->port.dev, "DMA channel TX %s\n",
444 		 dma_chan_name(uap->dmatx.chan));
445 
446 	/* Optionally make use of an RX channel as well */
447 	chan = dma_request_slave_channel(dev, "rx");
448 
449 	if (!chan && plat && plat->dma_rx_param) {
450 		chan = dma_request_channel(mask, plat->dma_filter, plat->dma_rx_param);
451 
452 		if (!chan) {
453 			dev_err(uap->port.dev, "no RX DMA channel!\n");
454 			return;
455 		}
456 	}
457 
458 	if (chan) {
459 		struct dma_slave_config rx_conf = {
460 			.src_addr = uap->port.mapbase +
461 				pl011_reg_to_offset(uap, REG_DR),
462 			.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
463 			.direction = DMA_DEV_TO_MEM,
464 			.src_maxburst = uap->fifosize >> 2,
465 			.device_fc = false,
466 		};
467 		struct dma_slave_caps caps;
468 
469 		/*
470 		 * Some DMA controllers provide information on their capabilities.
471 		 * If the controller does, check for suitable residue processing
472 		 * otherwise assime all is well.
473 		 */
474 		if (0 == dma_get_slave_caps(chan, &caps)) {
475 			if (caps.residue_granularity ==
476 					DMA_RESIDUE_GRANULARITY_DESCRIPTOR) {
477 				dma_release_channel(chan);
478 				dev_info(uap->port.dev,
479 					"RX DMA disabled - no residue processing\n");
480 				return;
481 			}
482 		}
483 		dmaengine_slave_config(chan, &rx_conf);
484 		uap->dmarx.chan = chan;
485 
486 		uap->dmarx.auto_poll_rate = false;
487 		if (plat && plat->dma_rx_poll_enable) {
488 			/* Set poll rate if specified. */
489 			if (plat->dma_rx_poll_rate) {
490 				uap->dmarx.auto_poll_rate = false;
491 				uap->dmarx.poll_rate = plat->dma_rx_poll_rate;
492 			} else {
493 				/*
494 				 * 100 ms defaults to poll rate if not
495 				 * specified. This will be adjusted with
496 				 * the baud rate at set_termios.
497 				 */
498 				uap->dmarx.auto_poll_rate = true;
499 				uap->dmarx.poll_rate =  100;
500 			}
501 			/* 3 secs defaults poll_timeout if not specified. */
502 			if (plat->dma_rx_poll_timeout)
503 				uap->dmarx.poll_timeout =
504 					plat->dma_rx_poll_timeout;
505 			else
506 				uap->dmarx.poll_timeout = 3000;
507 		} else if (!plat && dev->of_node) {
508 			uap->dmarx.auto_poll_rate = of_property_read_bool(
509 						dev->of_node, "auto-poll");
510 			if (uap->dmarx.auto_poll_rate) {
511 				u32 x;
512 
513 				if (0 == of_property_read_u32(dev->of_node,
514 						"poll-rate-ms", &x))
515 					uap->dmarx.poll_rate = x;
516 				else
517 					uap->dmarx.poll_rate = 100;
518 				if (0 == of_property_read_u32(dev->of_node,
519 						"poll-timeout-ms", &x))
520 					uap->dmarx.poll_timeout = x;
521 				else
522 					uap->dmarx.poll_timeout = 3000;
523 			}
524 		}
525 		dev_info(uap->port.dev, "DMA channel RX %s\n",
526 			 dma_chan_name(uap->dmarx.chan));
527 	}
528 }
529 
530 static void pl011_dma_remove(struct uart_amba_port *uap)
531 {
532 	if (uap->dmatx.chan)
533 		dma_release_channel(uap->dmatx.chan);
534 	if (uap->dmarx.chan)
535 		dma_release_channel(uap->dmarx.chan);
536 }
537 
538 /* Forward declare these for the refill routine */
539 static int pl011_dma_tx_refill(struct uart_amba_port *uap);
540 static void pl011_start_tx_pio(struct uart_amba_port *uap);
541 
542 /*
543  * The current DMA TX buffer has been sent.
544  * Try to queue up another DMA buffer.
545  */
546 static void pl011_dma_tx_callback(void *data)
547 {
548 	struct uart_amba_port *uap = data;
549 	struct pl011_dmatx_data *dmatx = &uap->dmatx;
550 	unsigned long flags;
551 	u16 dmacr;
552 
553 	spin_lock_irqsave(&uap->port.lock, flags);
554 	if (uap->dmatx.queued)
555 		dma_unmap_sg(dmatx->chan->device->dev, &dmatx->sg, 1,
556 			     DMA_TO_DEVICE);
557 
558 	dmacr = uap->dmacr;
559 	uap->dmacr = dmacr & ~UART011_TXDMAE;
560 	pl011_write(uap->dmacr, uap, REG_DMACR);
561 
562 	/*
563 	 * If TX DMA was disabled, it means that we've stopped the DMA for
564 	 * some reason (eg, XOFF received, or we want to send an X-char.)
565 	 *
566 	 * Note: we need to be careful here of a potential race between DMA
567 	 * and the rest of the driver - if the driver disables TX DMA while
568 	 * a TX buffer completing, we must update the tx queued status to
569 	 * get further refills (hence we check dmacr).
570 	 */
571 	if (!(dmacr & UART011_TXDMAE) || uart_tx_stopped(&uap->port) ||
572 	    uart_circ_empty(&uap->port.state->xmit)) {
573 		uap->dmatx.queued = false;
574 		spin_unlock_irqrestore(&uap->port.lock, flags);
575 		return;
576 	}
577 
578 	if (pl011_dma_tx_refill(uap) <= 0)
579 		/*
580 		 * We didn't queue a DMA buffer for some reason, but we
581 		 * have data pending to be sent.  Re-enable the TX IRQ.
582 		 */
583 		pl011_start_tx_pio(uap);
584 
585 	spin_unlock_irqrestore(&uap->port.lock, flags);
586 }
587 
588 /*
589  * Try to refill the TX DMA buffer.
590  * Locking: called with port lock held and IRQs disabled.
591  * Returns:
592  *   1 if we queued up a TX DMA buffer.
593  *   0 if we didn't want to handle this by DMA
594  *  <0 on error
595  */
596 static int pl011_dma_tx_refill(struct uart_amba_port *uap)
597 {
598 	struct pl011_dmatx_data *dmatx = &uap->dmatx;
599 	struct dma_chan *chan = dmatx->chan;
600 	struct dma_device *dma_dev = chan->device;
601 	struct dma_async_tx_descriptor *desc;
602 	struct circ_buf *xmit = &uap->port.state->xmit;
603 	unsigned int count;
604 
605 	/*
606 	 * Try to avoid the overhead involved in using DMA if the
607 	 * transaction fits in the first half of the FIFO, by using
608 	 * the standard interrupt handling.  This ensures that we
609 	 * issue a uart_write_wakeup() at the appropriate time.
610 	 */
611 	count = uart_circ_chars_pending(xmit);
612 	if (count < (uap->fifosize >> 1)) {
613 		uap->dmatx.queued = false;
614 		return 0;
615 	}
616 
617 	/*
618 	 * Bodge: don't send the last character by DMA, as this
619 	 * will prevent XON from notifying us to restart DMA.
620 	 */
621 	count -= 1;
622 
623 	/* Else proceed to copy the TX chars to the DMA buffer and fire DMA */
624 	if (count > PL011_DMA_BUFFER_SIZE)
625 		count = PL011_DMA_BUFFER_SIZE;
626 
627 	if (xmit->tail < xmit->head)
628 		memcpy(&dmatx->buf[0], &xmit->buf[xmit->tail], count);
629 	else {
630 		size_t first = UART_XMIT_SIZE - xmit->tail;
631 		size_t second;
632 
633 		if (first > count)
634 			first = count;
635 		second = count - first;
636 
637 		memcpy(&dmatx->buf[0], &xmit->buf[xmit->tail], first);
638 		if (second)
639 			memcpy(&dmatx->buf[first], &xmit->buf[0], second);
640 	}
641 
642 	dmatx->sg.length = count;
643 
644 	if (dma_map_sg(dma_dev->dev, &dmatx->sg, 1, DMA_TO_DEVICE) != 1) {
645 		uap->dmatx.queued = false;
646 		dev_dbg(uap->port.dev, "unable to map TX DMA\n");
647 		return -EBUSY;
648 	}
649 
650 	desc = dmaengine_prep_slave_sg(chan, &dmatx->sg, 1, DMA_MEM_TO_DEV,
651 					     DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
652 	if (!desc) {
653 		dma_unmap_sg(dma_dev->dev, &dmatx->sg, 1, DMA_TO_DEVICE);
654 		uap->dmatx.queued = false;
655 		/*
656 		 * If DMA cannot be used right now, we complete this
657 		 * transaction via IRQ and let the TTY layer retry.
658 		 */
659 		dev_dbg(uap->port.dev, "TX DMA busy\n");
660 		return -EBUSY;
661 	}
662 
663 	/* Some data to go along to the callback */
664 	desc->callback = pl011_dma_tx_callback;
665 	desc->callback_param = uap;
666 
667 	/* All errors should happen at prepare time */
668 	dmaengine_submit(desc);
669 
670 	/* Fire the DMA transaction */
671 	dma_dev->device_issue_pending(chan);
672 
673 	uap->dmacr |= UART011_TXDMAE;
674 	pl011_write(uap->dmacr, uap, REG_DMACR);
675 	uap->dmatx.queued = true;
676 
677 	/*
678 	 * Now we know that DMA will fire, so advance the ring buffer
679 	 * with the stuff we just dispatched.
680 	 */
681 	xmit->tail = (xmit->tail + count) & (UART_XMIT_SIZE - 1);
682 	uap->port.icount.tx += count;
683 
684 	if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
685 		uart_write_wakeup(&uap->port);
686 
687 	return 1;
688 }
689 
690 /*
691  * We received a transmit interrupt without a pending X-char but with
692  * pending characters.
693  * Locking: called with port lock held and IRQs disabled.
694  * Returns:
695  *   false if we want to use PIO to transmit
696  *   true if we queued a DMA buffer
697  */
698 static bool pl011_dma_tx_irq(struct uart_amba_port *uap)
699 {
700 	if (!uap->using_tx_dma)
701 		return false;
702 
703 	/*
704 	 * If we already have a TX buffer queued, but received a
705 	 * TX interrupt, it will be because we've just sent an X-char.
706 	 * Ensure the TX DMA is enabled and the TX IRQ is disabled.
707 	 */
708 	if (uap->dmatx.queued) {
709 		uap->dmacr |= UART011_TXDMAE;
710 		pl011_write(uap->dmacr, uap, REG_DMACR);
711 		uap->im &= ~UART011_TXIM;
712 		pl011_write(uap->im, uap, REG_IMSC);
713 		return true;
714 	}
715 
716 	/*
717 	 * We don't have a TX buffer queued, so try to queue one.
718 	 * If we successfully queued a buffer, mask the TX IRQ.
719 	 */
720 	if (pl011_dma_tx_refill(uap) > 0) {
721 		uap->im &= ~UART011_TXIM;
722 		pl011_write(uap->im, uap, REG_IMSC);
723 		return true;
724 	}
725 	return false;
726 }
727 
728 /*
729  * Stop the DMA transmit (eg, due to received XOFF).
730  * Locking: called with port lock held and IRQs disabled.
731  */
732 static inline void pl011_dma_tx_stop(struct uart_amba_port *uap)
733 {
734 	if (uap->dmatx.queued) {
735 		uap->dmacr &= ~UART011_TXDMAE;
736 		pl011_write(uap->dmacr, uap, REG_DMACR);
737 	}
738 }
739 
740 /*
741  * Try to start a DMA transmit, or in the case of an XON/OFF
742  * character queued for send, try to get that character out ASAP.
743  * Locking: called with port lock held and IRQs disabled.
744  * Returns:
745  *   false if we want the TX IRQ to be enabled
746  *   true if we have a buffer queued
747  */
748 static inline bool pl011_dma_tx_start(struct uart_amba_port *uap)
749 {
750 	u16 dmacr;
751 
752 	if (!uap->using_tx_dma)
753 		return false;
754 
755 	if (!uap->port.x_char) {
756 		/* no X-char, try to push chars out in DMA mode */
757 		bool ret = true;
758 
759 		if (!uap->dmatx.queued) {
760 			if (pl011_dma_tx_refill(uap) > 0) {
761 				uap->im &= ~UART011_TXIM;
762 				pl011_write(uap->im, uap, REG_IMSC);
763 			} else
764 				ret = false;
765 		} else if (!(uap->dmacr & UART011_TXDMAE)) {
766 			uap->dmacr |= UART011_TXDMAE;
767 			pl011_write(uap->dmacr, uap, REG_DMACR);
768 		}
769 		return ret;
770 	}
771 
772 	/*
773 	 * We have an X-char to send.  Disable DMA to prevent it loading
774 	 * the TX fifo, and then see if we can stuff it into the FIFO.
775 	 */
776 	dmacr = uap->dmacr;
777 	uap->dmacr &= ~UART011_TXDMAE;
778 	pl011_write(uap->dmacr, uap, REG_DMACR);
779 
780 	if (pl011_read(uap, REG_FR) & UART01x_FR_TXFF) {
781 		/*
782 		 * No space in the FIFO, so enable the transmit interrupt
783 		 * so we know when there is space.  Note that once we've
784 		 * loaded the character, we should just re-enable DMA.
785 		 */
786 		return false;
787 	}
788 
789 	pl011_write(uap->port.x_char, uap, REG_DR);
790 	uap->port.icount.tx++;
791 	uap->port.x_char = 0;
792 
793 	/* Success - restore the DMA state */
794 	uap->dmacr = dmacr;
795 	pl011_write(dmacr, uap, REG_DMACR);
796 
797 	return true;
798 }
799 
800 /*
801  * Flush the transmit buffer.
802  * Locking: called with port lock held and IRQs disabled.
803  */
804 static void pl011_dma_flush_buffer(struct uart_port *port)
805 __releases(&uap->port.lock)
806 __acquires(&uap->port.lock)
807 {
808 	struct uart_amba_port *uap =
809 	    container_of(port, struct uart_amba_port, port);
810 
811 	if (!uap->using_tx_dma)
812 		return;
813 
814 	dmaengine_terminate_async(uap->dmatx.chan);
815 
816 	if (uap->dmatx.queued) {
817 		dma_unmap_sg(uap->dmatx.chan->device->dev, &uap->dmatx.sg, 1,
818 			     DMA_TO_DEVICE);
819 		uap->dmatx.queued = false;
820 		uap->dmacr &= ~UART011_TXDMAE;
821 		pl011_write(uap->dmacr, uap, REG_DMACR);
822 	}
823 }
824 
825 static void pl011_dma_rx_callback(void *data);
826 
827 static int pl011_dma_rx_trigger_dma(struct uart_amba_port *uap)
828 {
829 	struct dma_chan *rxchan = uap->dmarx.chan;
830 	struct pl011_dmarx_data *dmarx = &uap->dmarx;
831 	struct dma_async_tx_descriptor *desc;
832 	struct pl011_sgbuf *sgbuf;
833 
834 	if (!rxchan)
835 		return -EIO;
836 
837 	/* Start the RX DMA job */
838 	sgbuf = uap->dmarx.use_buf_b ?
839 		&uap->dmarx.sgbuf_b : &uap->dmarx.sgbuf_a;
840 	desc = dmaengine_prep_slave_sg(rxchan, &sgbuf->sg, 1,
841 					DMA_DEV_TO_MEM,
842 					DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
843 	/*
844 	 * If the DMA engine is busy and cannot prepare a
845 	 * channel, no big deal, the driver will fall back
846 	 * to interrupt mode as a result of this error code.
847 	 */
848 	if (!desc) {
849 		uap->dmarx.running = false;
850 		dmaengine_terminate_all(rxchan);
851 		return -EBUSY;
852 	}
853 
854 	/* Some data to go along to the callback */
855 	desc->callback = pl011_dma_rx_callback;
856 	desc->callback_param = uap;
857 	dmarx->cookie = dmaengine_submit(desc);
858 	dma_async_issue_pending(rxchan);
859 
860 	uap->dmacr |= UART011_RXDMAE;
861 	pl011_write(uap->dmacr, uap, REG_DMACR);
862 	uap->dmarx.running = true;
863 
864 	uap->im &= ~UART011_RXIM;
865 	pl011_write(uap->im, uap, REG_IMSC);
866 
867 	return 0;
868 }
869 
870 /*
871  * This is called when either the DMA job is complete, or
872  * the FIFO timeout interrupt occurred. This must be called
873  * with the port spinlock uap->port.lock held.
874  */
875 static void pl011_dma_rx_chars(struct uart_amba_port *uap,
876 			       u32 pending, bool use_buf_b,
877 			       bool readfifo)
878 {
879 	struct tty_port *port = &uap->port.state->port;
880 	struct pl011_sgbuf *sgbuf = use_buf_b ?
881 		&uap->dmarx.sgbuf_b : &uap->dmarx.sgbuf_a;
882 	int dma_count = 0;
883 	u32 fifotaken = 0; /* only used for vdbg() */
884 
885 	struct pl011_dmarx_data *dmarx = &uap->dmarx;
886 	int dmataken = 0;
887 
888 	if (uap->dmarx.poll_rate) {
889 		/* The data can be taken by polling */
890 		dmataken = sgbuf->sg.length - dmarx->last_residue;
891 		/* Recalculate the pending size */
892 		if (pending >= dmataken)
893 			pending -= dmataken;
894 	}
895 
896 	/* Pick the remain data from the DMA */
897 	if (pending) {
898 
899 		/*
900 		 * First take all chars in the DMA pipe, then look in the FIFO.
901 		 * Note that tty_insert_flip_buf() tries to take as many chars
902 		 * as it can.
903 		 */
904 		dma_count = tty_insert_flip_string(port, sgbuf->buf + dmataken,
905 				pending);
906 
907 		uap->port.icount.rx += dma_count;
908 		if (dma_count < pending)
909 			dev_warn(uap->port.dev,
910 				 "couldn't insert all characters (TTY is full?)\n");
911 	}
912 
913 	/* Reset the last_residue for Rx DMA poll */
914 	if (uap->dmarx.poll_rate)
915 		dmarx->last_residue = sgbuf->sg.length;
916 
917 	/*
918 	 * Only continue with trying to read the FIFO if all DMA chars have
919 	 * been taken first.
920 	 */
921 	if (dma_count == pending && readfifo) {
922 		/* Clear any error flags */
923 		pl011_write(UART011_OEIS | UART011_BEIS | UART011_PEIS |
924 			    UART011_FEIS, uap, REG_ICR);
925 
926 		/*
927 		 * If we read all the DMA'd characters, and we had an
928 		 * incomplete buffer, that could be due to an rx error, or
929 		 * maybe we just timed out. Read any pending chars and check
930 		 * the error status.
931 		 *
932 		 * Error conditions will only occur in the FIFO, these will
933 		 * trigger an immediate interrupt and stop the DMA job, so we
934 		 * will always find the error in the FIFO, never in the DMA
935 		 * buffer.
936 		 */
937 		fifotaken = pl011_fifo_to_tty(uap);
938 	}
939 
940 	spin_unlock(&uap->port.lock);
941 	dev_vdbg(uap->port.dev,
942 		 "Took %d chars from DMA buffer and %d chars from the FIFO\n",
943 		 dma_count, fifotaken);
944 	tty_flip_buffer_push(port);
945 	spin_lock(&uap->port.lock);
946 }
947 
948 static void pl011_dma_rx_irq(struct uart_amba_port *uap)
949 {
950 	struct pl011_dmarx_data *dmarx = &uap->dmarx;
951 	struct dma_chan *rxchan = dmarx->chan;
952 	struct pl011_sgbuf *sgbuf = dmarx->use_buf_b ?
953 		&dmarx->sgbuf_b : &dmarx->sgbuf_a;
954 	size_t pending;
955 	struct dma_tx_state state;
956 	enum dma_status dmastat;
957 
958 	/*
959 	 * Pause the transfer so we can trust the current counter,
960 	 * do this before we pause the PL011 block, else we may
961 	 * overflow the FIFO.
962 	 */
963 	if (dmaengine_pause(rxchan))
964 		dev_err(uap->port.dev, "unable to pause DMA transfer\n");
965 	dmastat = rxchan->device->device_tx_status(rxchan,
966 						   dmarx->cookie, &state);
967 	if (dmastat != DMA_PAUSED)
968 		dev_err(uap->port.dev, "unable to pause DMA transfer\n");
969 
970 	/* Disable RX DMA - incoming data will wait in the FIFO */
971 	uap->dmacr &= ~UART011_RXDMAE;
972 	pl011_write(uap->dmacr, uap, REG_DMACR);
973 	uap->dmarx.running = false;
974 
975 	pending = sgbuf->sg.length - state.residue;
976 	BUG_ON(pending > PL011_DMA_BUFFER_SIZE);
977 	/* Then we terminate the transfer - we now know our residue */
978 	dmaengine_terminate_all(rxchan);
979 
980 	/*
981 	 * This will take the chars we have so far and insert
982 	 * into the framework.
983 	 */
984 	pl011_dma_rx_chars(uap, pending, dmarx->use_buf_b, true);
985 
986 	/* Switch buffer & re-trigger DMA job */
987 	dmarx->use_buf_b = !dmarx->use_buf_b;
988 	if (pl011_dma_rx_trigger_dma(uap)) {
989 		dev_dbg(uap->port.dev, "could not retrigger RX DMA job "
990 			"fall back to interrupt mode\n");
991 		uap->im |= UART011_RXIM;
992 		pl011_write(uap->im, uap, REG_IMSC);
993 	}
994 }
995 
996 static void pl011_dma_rx_callback(void *data)
997 {
998 	struct uart_amba_port *uap = data;
999 	struct pl011_dmarx_data *dmarx = &uap->dmarx;
1000 	struct dma_chan *rxchan = dmarx->chan;
1001 	bool lastbuf = dmarx->use_buf_b;
1002 	struct pl011_sgbuf *sgbuf = dmarx->use_buf_b ?
1003 		&dmarx->sgbuf_b : &dmarx->sgbuf_a;
1004 	size_t pending;
1005 	struct dma_tx_state state;
1006 	int ret;
1007 
1008 	/*
1009 	 * This completion interrupt occurs typically when the
1010 	 * RX buffer is totally stuffed but no timeout has yet
1011 	 * occurred. When that happens, we just want the RX
1012 	 * routine to flush out the secondary DMA buffer while
1013 	 * we immediately trigger the next DMA job.
1014 	 */
1015 	spin_lock_irq(&uap->port.lock);
1016 	/*
1017 	 * Rx data can be taken by the UART interrupts during
1018 	 * the DMA irq handler. So we check the residue here.
1019 	 */
1020 	rxchan->device->device_tx_status(rxchan, dmarx->cookie, &state);
1021 	pending = sgbuf->sg.length - state.residue;
1022 	BUG_ON(pending > PL011_DMA_BUFFER_SIZE);
1023 	/* Then we terminate the transfer - we now know our residue */
1024 	dmaengine_terminate_all(rxchan);
1025 
1026 	uap->dmarx.running = false;
1027 	dmarx->use_buf_b = !lastbuf;
1028 	ret = pl011_dma_rx_trigger_dma(uap);
1029 
1030 	pl011_dma_rx_chars(uap, pending, lastbuf, false);
1031 	spin_unlock_irq(&uap->port.lock);
1032 	/*
1033 	 * Do this check after we picked the DMA chars so we don't
1034 	 * get some IRQ immediately from RX.
1035 	 */
1036 	if (ret) {
1037 		dev_dbg(uap->port.dev, "could not retrigger RX DMA job "
1038 			"fall back to interrupt mode\n");
1039 		uap->im |= UART011_RXIM;
1040 		pl011_write(uap->im, uap, REG_IMSC);
1041 	}
1042 }
1043 
1044 /*
1045  * Stop accepting received characters, when we're shutting down or
1046  * suspending this port.
1047  * Locking: called with port lock held and IRQs disabled.
1048  */
1049 static inline void pl011_dma_rx_stop(struct uart_amba_port *uap)
1050 {
1051 	/* FIXME.  Just disable the DMA enable */
1052 	uap->dmacr &= ~UART011_RXDMAE;
1053 	pl011_write(uap->dmacr, uap, REG_DMACR);
1054 }
1055 
1056 /*
1057  * Timer handler for Rx DMA polling.
1058  * Every polling, It checks the residue in the dma buffer and transfer
1059  * data to the tty. Also, last_residue is updated for the next polling.
1060  */
1061 static void pl011_dma_rx_poll(struct timer_list *t)
1062 {
1063 	struct uart_amba_port *uap = from_timer(uap, t, dmarx.timer);
1064 	struct tty_port *port = &uap->port.state->port;
1065 	struct pl011_dmarx_data *dmarx = &uap->dmarx;
1066 	struct dma_chan *rxchan = uap->dmarx.chan;
1067 	unsigned long flags = 0;
1068 	unsigned int dmataken = 0;
1069 	unsigned int size = 0;
1070 	struct pl011_sgbuf *sgbuf;
1071 	int dma_count;
1072 	struct dma_tx_state state;
1073 
1074 	sgbuf = dmarx->use_buf_b ? &uap->dmarx.sgbuf_b : &uap->dmarx.sgbuf_a;
1075 	rxchan->device->device_tx_status(rxchan, dmarx->cookie, &state);
1076 	if (likely(state.residue < dmarx->last_residue)) {
1077 		dmataken = sgbuf->sg.length - dmarx->last_residue;
1078 		size = dmarx->last_residue - state.residue;
1079 		dma_count = tty_insert_flip_string(port, sgbuf->buf + dmataken,
1080 				size);
1081 		if (dma_count == size)
1082 			dmarx->last_residue =  state.residue;
1083 		dmarx->last_jiffies = jiffies;
1084 	}
1085 	tty_flip_buffer_push(port);
1086 
1087 	/*
1088 	 * If no data is received in poll_timeout, the driver will fall back
1089 	 * to interrupt mode. We will retrigger DMA at the first interrupt.
1090 	 */
1091 	if (jiffies_to_msecs(jiffies - dmarx->last_jiffies)
1092 			> uap->dmarx.poll_timeout) {
1093 
1094 		spin_lock_irqsave(&uap->port.lock, flags);
1095 		pl011_dma_rx_stop(uap);
1096 		uap->im |= UART011_RXIM;
1097 		pl011_write(uap->im, uap, REG_IMSC);
1098 		spin_unlock_irqrestore(&uap->port.lock, flags);
1099 
1100 		uap->dmarx.running = false;
1101 		dmaengine_terminate_all(rxchan);
1102 		del_timer(&uap->dmarx.timer);
1103 	} else {
1104 		mod_timer(&uap->dmarx.timer,
1105 			jiffies + msecs_to_jiffies(uap->dmarx.poll_rate));
1106 	}
1107 }
1108 
1109 static void pl011_dma_startup(struct uart_amba_port *uap)
1110 {
1111 	int ret;
1112 
1113 	if (!uap->dma_probed)
1114 		pl011_dma_probe(uap);
1115 
1116 	if (!uap->dmatx.chan)
1117 		return;
1118 
1119 	uap->dmatx.buf = kmalloc(PL011_DMA_BUFFER_SIZE, GFP_KERNEL | __GFP_DMA);
1120 	if (!uap->dmatx.buf) {
1121 		dev_err(uap->port.dev, "no memory for DMA TX buffer\n");
1122 		uap->port.fifosize = uap->fifosize;
1123 		return;
1124 	}
1125 
1126 	sg_init_one(&uap->dmatx.sg, uap->dmatx.buf, PL011_DMA_BUFFER_SIZE);
1127 
1128 	/* The DMA buffer is now the FIFO the TTY subsystem can use */
1129 	uap->port.fifosize = PL011_DMA_BUFFER_SIZE;
1130 	uap->using_tx_dma = true;
1131 
1132 	if (!uap->dmarx.chan)
1133 		goto skip_rx;
1134 
1135 	/* Allocate and map DMA RX buffers */
1136 	ret = pl011_sgbuf_init(uap->dmarx.chan, &uap->dmarx.sgbuf_a,
1137 			       DMA_FROM_DEVICE);
1138 	if (ret) {
1139 		dev_err(uap->port.dev, "failed to init DMA %s: %d\n",
1140 			"RX buffer A", ret);
1141 		goto skip_rx;
1142 	}
1143 
1144 	ret = pl011_sgbuf_init(uap->dmarx.chan, &uap->dmarx.sgbuf_b,
1145 			       DMA_FROM_DEVICE);
1146 	if (ret) {
1147 		dev_err(uap->port.dev, "failed to init DMA %s: %d\n",
1148 			"RX buffer B", ret);
1149 		pl011_sgbuf_free(uap->dmarx.chan, &uap->dmarx.sgbuf_a,
1150 				 DMA_FROM_DEVICE);
1151 		goto skip_rx;
1152 	}
1153 
1154 	uap->using_rx_dma = true;
1155 
1156 skip_rx:
1157 	/* Turn on DMA error (RX/TX will be enabled on demand) */
1158 	uap->dmacr |= UART011_DMAONERR;
1159 	pl011_write(uap->dmacr, uap, REG_DMACR);
1160 
1161 	/*
1162 	 * ST Micro variants has some specific dma burst threshold
1163 	 * compensation. Set this to 16 bytes, so burst will only
1164 	 * be issued above/below 16 bytes.
1165 	 */
1166 	if (uap->vendor->dma_threshold)
1167 		pl011_write(ST_UART011_DMAWM_RX_16 | ST_UART011_DMAWM_TX_16,
1168 			    uap, REG_ST_DMAWM);
1169 
1170 	if (uap->using_rx_dma) {
1171 		if (pl011_dma_rx_trigger_dma(uap))
1172 			dev_dbg(uap->port.dev, "could not trigger initial "
1173 				"RX DMA job, fall back to interrupt mode\n");
1174 		if (uap->dmarx.poll_rate) {
1175 			timer_setup(&uap->dmarx.timer, pl011_dma_rx_poll, 0);
1176 			mod_timer(&uap->dmarx.timer,
1177 				jiffies +
1178 				msecs_to_jiffies(uap->dmarx.poll_rate));
1179 			uap->dmarx.last_residue = PL011_DMA_BUFFER_SIZE;
1180 			uap->dmarx.last_jiffies = jiffies;
1181 		}
1182 	}
1183 }
1184 
1185 static void pl011_dma_shutdown(struct uart_amba_port *uap)
1186 {
1187 	if (!(uap->using_tx_dma || uap->using_rx_dma))
1188 		return;
1189 
1190 	/* Disable RX and TX DMA */
1191 	while (pl011_read(uap, REG_FR) & uap->vendor->fr_busy)
1192 		cpu_relax();
1193 
1194 	spin_lock_irq(&uap->port.lock);
1195 	uap->dmacr &= ~(UART011_DMAONERR | UART011_RXDMAE | UART011_TXDMAE);
1196 	pl011_write(uap->dmacr, uap, REG_DMACR);
1197 	spin_unlock_irq(&uap->port.lock);
1198 
1199 	if (uap->using_tx_dma) {
1200 		/* In theory, this should already be done by pl011_dma_flush_buffer */
1201 		dmaengine_terminate_all(uap->dmatx.chan);
1202 		if (uap->dmatx.queued) {
1203 			dma_unmap_sg(uap->dmatx.chan->device->dev, &uap->dmatx.sg, 1,
1204 				     DMA_TO_DEVICE);
1205 			uap->dmatx.queued = false;
1206 		}
1207 
1208 		kfree(uap->dmatx.buf);
1209 		uap->using_tx_dma = false;
1210 	}
1211 
1212 	if (uap->using_rx_dma) {
1213 		dmaengine_terminate_all(uap->dmarx.chan);
1214 		/* Clean up the RX DMA */
1215 		pl011_sgbuf_free(uap->dmarx.chan, &uap->dmarx.sgbuf_a, DMA_FROM_DEVICE);
1216 		pl011_sgbuf_free(uap->dmarx.chan, &uap->dmarx.sgbuf_b, DMA_FROM_DEVICE);
1217 		if (uap->dmarx.poll_rate)
1218 			del_timer_sync(&uap->dmarx.timer);
1219 		uap->using_rx_dma = false;
1220 	}
1221 }
1222 
1223 static inline bool pl011_dma_rx_available(struct uart_amba_port *uap)
1224 {
1225 	return uap->using_rx_dma;
1226 }
1227 
1228 static inline bool pl011_dma_rx_running(struct uart_amba_port *uap)
1229 {
1230 	return uap->using_rx_dma && uap->dmarx.running;
1231 }
1232 
1233 #else
1234 /* Blank functions if the DMA engine is not available */
1235 static inline void pl011_dma_remove(struct uart_amba_port *uap)
1236 {
1237 }
1238 
1239 static inline void pl011_dma_startup(struct uart_amba_port *uap)
1240 {
1241 }
1242 
1243 static inline void pl011_dma_shutdown(struct uart_amba_port *uap)
1244 {
1245 }
1246 
1247 static inline bool pl011_dma_tx_irq(struct uart_amba_port *uap)
1248 {
1249 	return false;
1250 }
1251 
1252 static inline void pl011_dma_tx_stop(struct uart_amba_port *uap)
1253 {
1254 }
1255 
1256 static inline bool pl011_dma_tx_start(struct uart_amba_port *uap)
1257 {
1258 	return false;
1259 }
1260 
1261 static inline void pl011_dma_rx_irq(struct uart_amba_port *uap)
1262 {
1263 }
1264 
1265 static inline void pl011_dma_rx_stop(struct uart_amba_port *uap)
1266 {
1267 }
1268 
1269 static inline int pl011_dma_rx_trigger_dma(struct uart_amba_port *uap)
1270 {
1271 	return -EIO;
1272 }
1273 
1274 static inline bool pl011_dma_rx_available(struct uart_amba_port *uap)
1275 {
1276 	return false;
1277 }
1278 
1279 static inline bool pl011_dma_rx_running(struct uart_amba_port *uap)
1280 {
1281 	return false;
1282 }
1283 
1284 #define pl011_dma_flush_buffer	NULL
1285 #endif
1286 
1287 static void pl011_stop_tx(struct uart_port *port)
1288 {
1289 	struct uart_amba_port *uap =
1290 	    container_of(port, struct uart_amba_port, port);
1291 
1292 	uap->im &= ~UART011_TXIM;
1293 	pl011_write(uap->im, uap, REG_IMSC);
1294 	pl011_dma_tx_stop(uap);
1295 }
1296 
1297 static bool pl011_tx_chars(struct uart_amba_port *uap, bool from_irq);
1298 
1299 /* Start TX with programmed I/O only (no DMA) */
1300 static void pl011_start_tx_pio(struct uart_amba_port *uap)
1301 {
1302 	if (pl011_tx_chars(uap, false)) {
1303 		uap->im |= UART011_TXIM;
1304 		pl011_write(uap->im, uap, REG_IMSC);
1305 	}
1306 }
1307 
1308 static void pl011_start_tx(struct uart_port *port)
1309 {
1310 	struct uart_amba_port *uap =
1311 	    container_of(port, struct uart_amba_port, port);
1312 
1313 	if (!pl011_dma_tx_start(uap))
1314 		pl011_start_tx_pio(uap);
1315 }
1316 
1317 static void pl011_stop_rx(struct uart_port *port)
1318 {
1319 	struct uart_amba_port *uap =
1320 	    container_of(port, struct uart_amba_port, port);
1321 
1322 	uap->im &= ~(UART011_RXIM|UART011_RTIM|UART011_FEIM|
1323 		     UART011_PEIM|UART011_BEIM|UART011_OEIM);
1324 	pl011_write(uap->im, uap, REG_IMSC);
1325 
1326 	pl011_dma_rx_stop(uap);
1327 }
1328 
1329 static void pl011_enable_ms(struct uart_port *port)
1330 {
1331 	struct uart_amba_port *uap =
1332 	    container_of(port, struct uart_amba_port, port);
1333 
1334 	uap->im |= UART011_RIMIM|UART011_CTSMIM|UART011_DCDMIM|UART011_DSRMIM;
1335 	pl011_write(uap->im, uap, REG_IMSC);
1336 }
1337 
1338 static void pl011_rx_chars(struct uart_amba_port *uap)
1339 __releases(&uap->port.lock)
1340 __acquires(&uap->port.lock)
1341 {
1342 	pl011_fifo_to_tty(uap);
1343 
1344 	spin_unlock(&uap->port.lock);
1345 	tty_flip_buffer_push(&uap->port.state->port);
1346 	/*
1347 	 * If we were temporarily out of DMA mode for a while,
1348 	 * attempt to switch back to DMA mode again.
1349 	 */
1350 	if (pl011_dma_rx_available(uap)) {
1351 		if (pl011_dma_rx_trigger_dma(uap)) {
1352 			dev_dbg(uap->port.dev, "could not trigger RX DMA job "
1353 				"fall back to interrupt mode again\n");
1354 			uap->im |= UART011_RXIM;
1355 			pl011_write(uap->im, uap, REG_IMSC);
1356 		} else {
1357 #ifdef CONFIG_DMA_ENGINE
1358 			/* Start Rx DMA poll */
1359 			if (uap->dmarx.poll_rate) {
1360 				uap->dmarx.last_jiffies = jiffies;
1361 				uap->dmarx.last_residue	= PL011_DMA_BUFFER_SIZE;
1362 				mod_timer(&uap->dmarx.timer,
1363 					jiffies +
1364 					msecs_to_jiffies(uap->dmarx.poll_rate));
1365 			}
1366 #endif
1367 		}
1368 	}
1369 	spin_lock(&uap->port.lock);
1370 }
1371 
1372 static bool pl011_tx_char(struct uart_amba_port *uap, unsigned char c,
1373 			  bool from_irq)
1374 {
1375 	if (unlikely(!from_irq) &&
1376 	    pl011_read(uap, REG_FR) & UART01x_FR_TXFF)
1377 		return false; /* unable to transmit character */
1378 
1379 	pl011_write(c, uap, REG_DR);
1380 	uap->port.icount.tx++;
1381 
1382 	return true;
1383 }
1384 
1385 /* Returns true if tx interrupts have to be (kept) enabled  */
1386 static bool pl011_tx_chars(struct uart_amba_port *uap, bool from_irq)
1387 {
1388 	struct circ_buf *xmit = &uap->port.state->xmit;
1389 	int count = uap->fifosize >> 1;
1390 
1391 	if (uap->port.x_char) {
1392 		if (!pl011_tx_char(uap, uap->port.x_char, from_irq))
1393 			return true;
1394 		uap->port.x_char = 0;
1395 		--count;
1396 	}
1397 	if (uart_circ_empty(xmit) || uart_tx_stopped(&uap->port)) {
1398 		pl011_stop_tx(&uap->port);
1399 		return false;
1400 	}
1401 
1402 	/* If we are using DMA mode, try to send some characters. */
1403 	if (pl011_dma_tx_irq(uap))
1404 		return true;
1405 
1406 	do {
1407 		if (likely(from_irq) && count-- == 0)
1408 			break;
1409 
1410 		if (!pl011_tx_char(uap, xmit->buf[xmit->tail], from_irq))
1411 			break;
1412 
1413 		xmit->tail = (xmit->tail + 1) & (UART_XMIT_SIZE - 1);
1414 	} while (!uart_circ_empty(xmit));
1415 
1416 	if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
1417 		uart_write_wakeup(&uap->port);
1418 
1419 	if (uart_circ_empty(xmit)) {
1420 		pl011_stop_tx(&uap->port);
1421 		return false;
1422 	}
1423 	return true;
1424 }
1425 
1426 static void pl011_modem_status(struct uart_amba_port *uap)
1427 {
1428 	unsigned int status, delta;
1429 
1430 	status = pl011_read(uap, REG_FR) & UART01x_FR_MODEM_ANY;
1431 
1432 	delta = status ^ uap->old_status;
1433 	uap->old_status = status;
1434 
1435 	if (!delta)
1436 		return;
1437 
1438 	if (delta & UART01x_FR_DCD)
1439 		uart_handle_dcd_change(&uap->port, status & UART01x_FR_DCD);
1440 
1441 	if (delta & uap->vendor->fr_dsr)
1442 		uap->port.icount.dsr++;
1443 
1444 	if (delta & uap->vendor->fr_cts)
1445 		uart_handle_cts_change(&uap->port,
1446 				       status & uap->vendor->fr_cts);
1447 
1448 	wake_up_interruptible(&uap->port.state->port.delta_msr_wait);
1449 }
1450 
1451 static void check_apply_cts_event_workaround(struct uart_amba_port *uap)
1452 {
1453 	if (!uap->vendor->cts_event_workaround)
1454 		return;
1455 
1456 	/* workaround to make sure that all bits are unlocked.. */
1457 	pl011_write(0x00, uap, REG_ICR);
1458 
1459 	/*
1460 	 * WA: introduce 26ns(1 uart clk) delay before W1C;
1461 	 * single apb access will incur 2 pclk(133.12Mhz) delay,
1462 	 * so add 2 dummy reads
1463 	 */
1464 	pl011_read(uap, REG_ICR);
1465 	pl011_read(uap, REG_ICR);
1466 }
1467 
1468 static irqreturn_t pl011_int(int irq, void *dev_id)
1469 {
1470 	struct uart_amba_port *uap = dev_id;
1471 	unsigned long flags;
1472 	unsigned int status, pass_counter = AMBA_ISR_PASS_LIMIT;
1473 	int handled = 0;
1474 
1475 	spin_lock_irqsave(&uap->port.lock, flags);
1476 	status = pl011_read(uap, REG_RIS) & uap->im;
1477 	if (status) {
1478 		do {
1479 			check_apply_cts_event_workaround(uap);
1480 
1481 			pl011_write(status & ~(UART011_TXIS|UART011_RTIS|
1482 					       UART011_RXIS),
1483 				    uap, REG_ICR);
1484 
1485 			if (status & (UART011_RTIS|UART011_RXIS)) {
1486 				if (pl011_dma_rx_running(uap))
1487 					pl011_dma_rx_irq(uap);
1488 				else
1489 					pl011_rx_chars(uap);
1490 			}
1491 			if (status & (UART011_DSRMIS|UART011_DCDMIS|
1492 				      UART011_CTSMIS|UART011_RIMIS))
1493 				pl011_modem_status(uap);
1494 			if (status & UART011_TXIS)
1495 				pl011_tx_chars(uap, true);
1496 
1497 			if (pass_counter-- == 0)
1498 				break;
1499 
1500 			status = pl011_read(uap, REG_RIS) & uap->im;
1501 		} while (status != 0);
1502 		handled = 1;
1503 	}
1504 
1505 	spin_unlock_irqrestore(&uap->port.lock, flags);
1506 
1507 	return IRQ_RETVAL(handled);
1508 }
1509 
1510 static unsigned int pl011_tx_empty(struct uart_port *port)
1511 {
1512 	struct uart_amba_port *uap =
1513 	    container_of(port, struct uart_amba_port, port);
1514 
1515 	/* Allow feature register bits to be inverted to work around errata */
1516 	unsigned int status = pl011_read(uap, REG_FR) ^ uap->vendor->inv_fr;
1517 
1518 	return status & (uap->vendor->fr_busy | UART01x_FR_TXFF) ?
1519 							0 : TIOCSER_TEMT;
1520 }
1521 
1522 static unsigned int pl011_get_mctrl(struct uart_port *port)
1523 {
1524 	struct uart_amba_port *uap =
1525 	    container_of(port, struct uart_amba_port, port);
1526 	unsigned int result = 0;
1527 	unsigned int status = pl011_read(uap, REG_FR);
1528 
1529 #define TIOCMBIT(uartbit, tiocmbit)	\
1530 	if (status & uartbit)		\
1531 		result |= tiocmbit
1532 
1533 	TIOCMBIT(UART01x_FR_DCD, TIOCM_CAR);
1534 	TIOCMBIT(uap->vendor->fr_dsr, TIOCM_DSR);
1535 	TIOCMBIT(uap->vendor->fr_cts, TIOCM_CTS);
1536 	TIOCMBIT(uap->vendor->fr_ri, TIOCM_RNG);
1537 #undef TIOCMBIT
1538 	return result;
1539 }
1540 
1541 static void pl011_set_mctrl(struct uart_port *port, unsigned int mctrl)
1542 {
1543 	struct uart_amba_port *uap =
1544 	    container_of(port, struct uart_amba_port, port);
1545 	unsigned int cr;
1546 
1547 	cr = pl011_read(uap, REG_CR);
1548 
1549 #define	TIOCMBIT(tiocmbit, uartbit)		\
1550 	if (mctrl & tiocmbit)		\
1551 		cr |= uartbit;		\
1552 	else				\
1553 		cr &= ~uartbit
1554 
1555 	TIOCMBIT(TIOCM_RTS, UART011_CR_RTS);
1556 	TIOCMBIT(TIOCM_DTR, UART011_CR_DTR);
1557 	TIOCMBIT(TIOCM_OUT1, UART011_CR_OUT1);
1558 	TIOCMBIT(TIOCM_OUT2, UART011_CR_OUT2);
1559 	TIOCMBIT(TIOCM_LOOP, UART011_CR_LBE);
1560 
1561 	if (port->status & UPSTAT_AUTORTS) {
1562 		/* We need to disable auto-RTS if we want to turn RTS off */
1563 		TIOCMBIT(TIOCM_RTS, UART011_CR_RTSEN);
1564 	}
1565 #undef TIOCMBIT
1566 
1567 	pl011_write(cr, uap, REG_CR);
1568 }
1569 
1570 static void pl011_break_ctl(struct uart_port *port, int break_state)
1571 {
1572 	struct uart_amba_port *uap =
1573 	    container_of(port, struct uart_amba_port, port);
1574 	unsigned long flags;
1575 	unsigned int lcr_h;
1576 
1577 	spin_lock_irqsave(&uap->port.lock, flags);
1578 	lcr_h = pl011_read(uap, REG_LCRH_TX);
1579 	if (break_state == -1)
1580 		lcr_h |= UART01x_LCRH_BRK;
1581 	else
1582 		lcr_h &= ~UART01x_LCRH_BRK;
1583 	pl011_write(lcr_h, uap, REG_LCRH_TX);
1584 	spin_unlock_irqrestore(&uap->port.lock, flags);
1585 }
1586 
1587 #ifdef CONFIG_CONSOLE_POLL
1588 
1589 static void pl011_quiesce_irqs(struct uart_port *port)
1590 {
1591 	struct uart_amba_port *uap =
1592 	    container_of(port, struct uart_amba_port, port);
1593 
1594 	pl011_write(pl011_read(uap, REG_MIS), uap, REG_ICR);
1595 	/*
1596 	 * There is no way to clear TXIM as this is "ready to transmit IRQ", so
1597 	 * we simply mask it. start_tx() will unmask it.
1598 	 *
1599 	 * Note we can race with start_tx(), and if the race happens, the
1600 	 * polling user might get another interrupt just after we clear it.
1601 	 * But it should be OK and can happen even w/o the race, e.g.
1602 	 * controller immediately got some new data and raised the IRQ.
1603 	 *
1604 	 * And whoever uses polling routines assumes that it manages the device
1605 	 * (including tx queue), so we're also fine with start_tx()'s caller
1606 	 * side.
1607 	 */
1608 	pl011_write(pl011_read(uap, REG_IMSC) & ~UART011_TXIM, uap,
1609 		    REG_IMSC);
1610 }
1611 
1612 static int pl011_get_poll_char(struct uart_port *port)
1613 {
1614 	struct uart_amba_port *uap =
1615 	    container_of(port, struct uart_amba_port, port);
1616 	unsigned int status;
1617 
1618 	/*
1619 	 * The caller might need IRQs lowered, e.g. if used with KDB NMI
1620 	 * debugger.
1621 	 */
1622 	pl011_quiesce_irqs(port);
1623 
1624 	status = pl011_read(uap, REG_FR);
1625 	if (status & UART01x_FR_RXFE)
1626 		return NO_POLL_CHAR;
1627 
1628 	return pl011_read(uap, REG_DR);
1629 }
1630 
1631 static void pl011_put_poll_char(struct uart_port *port,
1632 			 unsigned char ch)
1633 {
1634 	struct uart_amba_port *uap =
1635 	    container_of(port, struct uart_amba_port, port);
1636 
1637 	while (pl011_read(uap, REG_FR) & UART01x_FR_TXFF)
1638 		cpu_relax();
1639 
1640 	pl011_write(ch, uap, REG_DR);
1641 }
1642 
1643 #endif /* CONFIG_CONSOLE_POLL */
1644 
1645 static int pl011_hwinit(struct uart_port *port)
1646 {
1647 	struct uart_amba_port *uap =
1648 	    container_of(port, struct uart_amba_port, port);
1649 	int retval;
1650 
1651 	/* Optionaly enable pins to be muxed in and configured */
1652 	pinctrl_pm_select_default_state(port->dev);
1653 
1654 	/*
1655 	 * Try to enable the clock producer.
1656 	 */
1657 	retval = clk_prepare_enable(uap->clk);
1658 	if (retval)
1659 		return retval;
1660 
1661 	uap->port.uartclk = clk_get_rate(uap->clk);
1662 
1663 	/* Clear pending error and receive interrupts */
1664 	pl011_write(UART011_OEIS | UART011_BEIS | UART011_PEIS |
1665 		    UART011_FEIS | UART011_RTIS | UART011_RXIS,
1666 		    uap, REG_ICR);
1667 
1668 	/*
1669 	 * Save interrupts enable mask, and enable RX interrupts in case if
1670 	 * the interrupt is used for NMI entry.
1671 	 */
1672 	uap->im = pl011_read(uap, REG_IMSC);
1673 	pl011_write(UART011_RTIM | UART011_RXIM, uap, REG_IMSC);
1674 
1675 	if (dev_get_platdata(uap->port.dev)) {
1676 		struct amba_pl011_data *plat;
1677 
1678 		plat = dev_get_platdata(uap->port.dev);
1679 		if (plat->init)
1680 			plat->init();
1681 	}
1682 	return 0;
1683 }
1684 
1685 static bool pl011_split_lcrh(const struct uart_amba_port *uap)
1686 {
1687 	return pl011_reg_to_offset(uap, REG_LCRH_RX) !=
1688 	       pl011_reg_to_offset(uap, REG_LCRH_TX);
1689 }
1690 
1691 static void pl011_write_lcr_h(struct uart_amba_port *uap, unsigned int lcr_h)
1692 {
1693 	pl011_write(lcr_h, uap, REG_LCRH_RX);
1694 	if (pl011_split_lcrh(uap)) {
1695 		int i;
1696 		/*
1697 		 * Wait 10 PCLKs before writing LCRH_TX register,
1698 		 * to get this delay write read only register 10 times
1699 		 */
1700 		for (i = 0; i < 10; ++i)
1701 			pl011_write(0xff, uap, REG_MIS);
1702 		pl011_write(lcr_h, uap, REG_LCRH_TX);
1703 	}
1704 }
1705 
1706 static int pl011_allocate_irq(struct uart_amba_port *uap)
1707 {
1708 	pl011_write(uap->im, uap, REG_IMSC);
1709 
1710 	return request_irq(uap->port.irq, pl011_int, IRQF_SHARED, "uart-pl011", uap);
1711 }
1712 
1713 /*
1714  * Enable interrupts, only timeouts when using DMA
1715  * if initial RX DMA job failed, start in interrupt mode
1716  * as well.
1717  */
1718 static void pl011_enable_interrupts(struct uart_amba_port *uap)
1719 {
1720 	unsigned int i;
1721 
1722 	spin_lock_irq(&uap->port.lock);
1723 
1724 	/* Clear out any spuriously appearing RX interrupts */
1725 	pl011_write(UART011_RTIS | UART011_RXIS, uap, REG_ICR);
1726 
1727 	/*
1728 	 * RXIS is asserted only when the RX FIFO transitions from below
1729 	 * to above the trigger threshold.  If the RX FIFO is already
1730 	 * full to the threshold this can't happen and RXIS will now be
1731 	 * stuck off.  Drain the RX FIFO explicitly to fix this:
1732 	 */
1733 	for (i = 0; i < uap->fifosize * 2; ++i) {
1734 		if (pl011_read(uap, REG_FR) & UART01x_FR_RXFE)
1735 			break;
1736 
1737 		pl011_read(uap, REG_DR);
1738 	}
1739 
1740 	uap->im = UART011_RTIM;
1741 	if (!pl011_dma_rx_running(uap))
1742 		uap->im |= UART011_RXIM;
1743 	pl011_write(uap->im, uap, REG_IMSC);
1744 	spin_unlock_irq(&uap->port.lock);
1745 }
1746 
1747 static int pl011_startup(struct uart_port *port)
1748 {
1749 	struct uart_amba_port *uap =
1750 	    container_of(port, struct uart_amba_port, port);
1751 	unsigned int cr;
1752 	int retval;
1753 
1754 	retval = pl011_hwinit(port);
1755 	if (retval)
1756 		goto clk_dis;
1757 
1758 	retval = pl011_allocate_irq(uap);
1759 	if (retval)
1760 		goto clk_dis;
1761 
1762 	pl011_write(uap->vendor->ifls, uap, REG_IFLS);
1763 
1764 	spin_lock_irq(&uap->port.lock);
1765 
1766 	/* restore RTS and DTR */
1767 	cr = uap->old_cr & (UART011_CR_RTS | UART011_CR_DTR);
1768 	cr |= UART01x_CR_UARTEN | UART011_CR_RXE | UART011_CR_TXE;
1769 	pl011_write(cr, uap, REG_CR);
1770 
1771 	spin_unlock_irq(&uap->port.lock);
1772 
1773 	/*
1774 	 * initialise the old status of the modem signals
1775 	 */
1776 	uap->old_status = pl011_read(uap, REG_FR) & UART01x_FR_MODEM_ANY;
1777 
1778 	/* Startup DMA */
1779 	pl011_dma_startup(uap);
1780 
1781 	pl011_enable_interrupts(uap);
1782 
1783 	return 0;
1784 
1785  clk_dis:
1786 	clk_disable_unprepare(uap->clk);
1787 	return retval;
1788 }
1789 
1790 static int sbsa_uart_startup(struct uart_port *port)
1791 {
1792 	struct uart_amba_port *uap =
1793 		container_of(port, struct uart_amba_port, port);
1794 	int retval;
1795 
1796 	retval = pl011_hwinit(port);
1797 	if (retval)
1798 		return retval;
1799 
1800 	retval = pl011_allocate_irq(uap);
1801 	if (retval)
1802 		return retval;
1803 
1804 	/* The SBSA UART does not support any modem status lines. */
1805 	uap->old_status = 0;
1806 
1807 	pl011_enable_interrupts(uap);
1808 
1809 	return 0;
1810 }
1811 
1812 static void pl011_shutdown_channel(struct uart_amba_port *uap,
1813 					unsigned int lcrh)
1814 {
1815       unsigned long val;
1816 
1817       val = pl011_read(uap, lcrh);
1818       val &= ~(UART01x_LCRH_BRK | UART01x_LCRH_FEN);
1819       pl011_write(val, uap, lcrh);
1820 }
1821 
1822 /*
1823  * disable the port. It should not disable RTS and DTR.
1824  * Also RTS and DTR state should be preserved to restore
1825  * it during startup().
1826  */
1827 static void pl011_disable_uart(struct uart_amba_port *uap)
1828 {
1829 	unsigned int cr;
1830 
1831 	uap->port.status &= ~(UPSTAT_AUTOCTS | UPSTAT_AUTORTS);
1832 	spin_lock_irq(&uap->port.lock);
1833 	cr = pl011_read(uap, REG_CR);
1834 	uap->old_cr = cr;
1835 	cr &= UART011_CR_RTS | UART011_CR_DTR;
1836 	cr |= UART01x_CR_UARTEN | UART011_CR_TXE;
1837 	pl011_write(cr, uap, REG_CR);
1838 	spin_unlock_irq(&uap->port.lock);
1839 
1840 	/*
1841 	 * disable break condition and fifos
1842 	 */
1843 	pl011_shutdown_channel(uap, REG_LCRH_RX);
1844 	if (pl011_split_lcrh(uap))
1845 		pl011_shutdown_channel(uap, REG_LCRH_TX);
1846 }
1847 
1848 static void pl011_disable_interrupts(struct uart_amba_port *uap)
1849 {
1850 	spin_lock_irq(&uap->port.lock);
1851 
1852 	/* mask all interrupts and clear all pending ones */
1853 	uap->im = 0;
1854 	pl011_write(uap->im, uap, REG_IMSC);
1855 	pl011_write(0xffff, uap, REG_ICR);
1856 
1857 	spin_unlock_irq(&uap->port.lock);
1858 }
1859 
1860 static void pl011_shutdown(struct uart_port *port)
1861 {
1862 	struct uart_amba_port *uap =
1863 		container_of(port, struct uart_amba_port, port);
1864 
1865 	pl011_disable_interrupts(uap);
1866 
1867 	pl011_dma_shutdown(uap);
1868 
1869 	free_irq(uap->port.irq, uap);
1870 
1871 	pl011_disable_uart(uap);
1872 
1873 	/*
1874 	 * Shut down the clock producer
1875 	 */
1876 	clk_disable_unprepare(uap->clk);
1877 	/* Optionally let pins go into sleep states */
1878 	pinctrl_pm_select_sleep_state(port->dev);
1879 
1880 	if (dev_get_platdata(uap->port.dev)) {
1881 		struct amba_pl011_data *plat;
1882 
1883 		plat = dev_get_platdata(uap->port.dev);
1884 		if (plat->exit)
1885 			plat->exit();
1886 	}
1887 
1888 	if (uap->port.ops->flush_buffer)
1889 		uap->port.ops->flush_buffer(port);
1890 }
1891 
1892 static void sbsa_uart_shutdown(struct uart_port *port)
1893 {
1894 	struct uart_amba_port *uap =
1895 		container_of(port, struct uart_amba_port, port);
1896 
1897 	pl011_disable_interrupts(uap);
1898 
1899 	free_irq(uap->port.irq, uap);
1900 
1901 	if (uap->port.ops->flush_buffer)
1902 		uap->port.ops->flush_buffer(port);
1903 }
1904 
1905 static void
1906 pl011_setup_status_masks(struct uart_port *port, struct ktermios *termios)
1907 {
1908 	port->read_status_mask = UART011_DR_OE | 255;
1909 	if (termios->c_iflag & INPCK)
1910 		port->read_status_mask |= UART011_DR_FE | UART011_DR_PE;
1911 	if (termios->c_iflag & (IGNBRK | BRKINT | PARMRK))
1912 		port->read_status_mask |= UART011_DR_BE;
1913 
1914 	/*
1915 	 * Characters to ignore
1916 	 */
1917 	port->ignore_status_mask = 0;
1918 	if (termios->c_iflag & IGNPAR)
1919 		port->ignore_status_mask |= UART011_DR_FE | UART011_DR_PE;
1920 	if (termios->c_iflag & IGNBRK) {
1921 		port->ignore_status_mask |= UART011_DR_BE;
1922 		/*
1923 		 * If we're ignoring parity and break indicators,
1924 		 * ignore overruns too (for real raw support).
1925 		 */
1926 		if (termios->c_iflag & IGNPAR)
1927 			port->ignore_status_mask |= UART011_DR_OE;
1928 	}
1929 
1930 	/*
1931 	 * Ignore all characters if CREAD is not set.
1932 	 */
1933 	if ((termios->c_cflag & CREAD) == 0)
1934 		port->ignore_status_mask |= UART_DUMMY_DR_RX;
1935 }
1936 
1937 static void
1938 pl011_set_termios(struct uart_port *port, struct ktermios *termios,
1939 		     struct ktermios *old)
1940 {
1941 	struct uart_amba_port *uap =
1942 	    container_of(port, struct uart_amba_port, port);
1943 	unsigned int lcr_h, old_cr;
1944 	unsigned long flags;
1945 	unsigned int baud, quot, clkdiv;
1946 
1947 	if (uap->vendor->oversampling)
1948 		clkdiv = 8;
1949 	else
1950 		clkdiv = 16;
1951 
1952 	/*
1953 	 * Ask the core to calculate the divisor for us.
1954 	 */
1955 	baud = uart_get_baud_rate(port, termios, old, 0,
1956 				  port->uartclk / clkdiv);
1957 #ifdef CONFIG_DMA_ENGINE
1958 	/*
1959 	 * Adjust RX DMA polling rate with baud rate if not specified.
1960 	 */
1961 	if (uap->dmarx.auto_poll_rate)
1962 		uap->dmarx.poll_rate = DIV_ROUND_UP(10000000, baud);
1963 #endif
1964 
1965 	if (baud > port->uartclk/16)
1966 		quot = DIV_ROUND_CLOSEST(port->uartclk * 8, baud);
1967 	else
1968 		quot = DIV_ROUND_CLOSEST(port->uartclk * 4, baud);
1969 
1970 	switch (termios->c_cflag & CSIZE) {
1971 	case CS5:
1972 		lcr_h = UART01x_LCRH_WLEN_5;
1973 		break;
1974 	case CS6:
1975 		lcr_h = UART01x_LCRH_WLEN_6;
1976 		break;
1977 	case CS7:
1978 		lcr_h = UART01x_LCRH_WLEN_7;
1979 		break;
1980 	default: // CS8
1981 		lcr_h = UART01x_LCRH_WLEN_8;
1982 		break;
1983 	}
1984 	if (termios->c_cflag & CSTOPB)
1985 		lcr_h |= UART01x_LCRH_STP2;
1986 	if (termios->c_cflag & PARENB) {
1987 		lcr_h |= UART01x_LCRH_PEN;
1988 		if (!(termios->c_cflag & PARODD))
1989 			lcr_h |= UART01x_LCRH_EPS;
1990 		if (termios->c_cflag & CMSPAR)
1991 			lcr_h |= UART011_LCRH_SPS;
1992 	}
1993 	if (uap->fifosize > 1)
1994 		lcr_h |= UART01x_LCRH_FEN;
1995 
1996 	spin_lock_irqsave(&port->lock, flags);
1997 
1998 	/*
1999 	 * Update the per-port timeout.
2000 	 */
2001 	uart_update_timeout(port, termios->c_cflag, baud);
2002 
2003 	pl011_setup_status_masks(port, termios);
2004 
2005 	if (UART_ENABLE_MS(port, termios->c_cflag))
2006 		pl011_enable_ms(port);
2007 
2008 	/* first, disable everything */
2009 	old_cr = pl011_read(uap, REG_CR);
2010 	pl011_write(0, uap, REG_CR);
2011 
2012 	if (termios->c_cflag & CRTSCTS) {
2013 		if (old_cr & UART011_CR_RTS)
2014 			old_cr |= UART011_CR_RTSEN;
2015 
2016 		old_cr |= UART011_CR_CTSEN;
2017 		port->status |= UPSTAT_AUTOCTS | UPSTAT_AUTORTS;
2018 	} else {
2019 		old_cr &= ~(UART011_CR_CTSEN | UART011_CR_RTSEN);
2020 		port->status &= ~(UPSTAT_AUTOCTS | UPSTAT_AUTORTS);
2021 	}
2022 
2023 	if (uap->vendor->oversampling) {
2024 		if (baud > port->uartclk / 16)
2025 			old_cr |= ST_UART011_CR_OVSFACT;
2026 		else
2027 			old_cr &= ~ST_UART011_CR_OVSFACT;
2028 	}
2029 
2030 	/*
2031 	 * Workaround for the ST Micro oversampling variants to
2032 	 * increase the bitrate slightly, by lowering the divisor,
2033 	 * to avoid delayed sampling of start bit at high speeds,
2034 	 * else we see data corruption.
2035 	 */
2036 	if (uap->vendor->oversampling) {
2037 		if ((baud >= 3000000) && (baud < 3250000) && (quot > 1))
2038 			quot -= 1;
2039 		else if ((baud > 3250000) && (quot > 2))
2040 			quot -= 2;
2041 	}
2042 	/* Set baud rate */
2043 	pl011_write(quot & 0x3f, uap, REG_FBRD);
2044 	pl011_write(quot >> 6, uap, REG_IBRD);
2045 
2046 	/*
2047 	 * ----------v----------v----------v----------v-----
2048 	 * NOTE: REG_LCRH_TX and REG_LCRH_RX MUST BE WRITTEN AFTER
2049 	 * REG_FBRD & REG_IBRD.
2050 	 * ----------^----------^----------^----------^-----
2051 	 */
2052 	pl011_write_lcr_h(uap, lcr_h);
2053 	pl011_write(old_cr, uap, REG_CR);
2054 
2055 	spin_unlock_irqrestore(&port->lock, flags);
2056 }
2057 
2058 static void
2059 sbsa_uart_set_termios(struct uart_port *port, struct ktermios *termios,
2060 		      struct ktermios *old)
2061 {
2062 	struct uart_amba_port *uap =
2063 	    container_of(port, struct uart_amba_port, port);
2064 	unsigned long flags;
2065 
2066 	tty_termios_encode_baud_rate(termios, uap->fixed_baud, uap->fixed_baud);
2067 
2068 	/* The SBSA UART only supports 8n1 without hardware flow control. */
2069 	termios->c_cflag &= ~(CSIZE | CSTOPB | PARENB | PARODD);
2070 	termios->c_cflag &= ~(CMSPAR | CRTSCTS);
2071 	termios->c_cflag |= CS8 | CLOCAL;
2072 
2073 	spin_lock_irqsave(&port->lock, flags);
2074 	uart_update_timeout(port, CS8, uap->fixed_baud);
2075 	pl011_setup_status_masks(port, termios);
2076 	spin_unlock_irqrestore(&port->lock, flags);
2077 }
2078 
2079 static const char *pl011_type(struct uart_port *port)
2080 {
2081 	struct uart_amba_port *uap =
2082 	    container_of(port, struct uart_amba_port, port);
2083 	return uap->port.type == PORT_AMBA ? uap->type : NULL;
2084 }
2085 
2086 /*
2087  * Release the memory region(s) being used by 'port'
2088  */
2089 static void pl011_release_port(struct uart_port *port)
2090 {
2091 	release_mem_region(port->mapbase, SZ_4K);
2092 }
2093 
2094 /*
2095  * Request the memory region(s) being used by 'port'
2096  */
2097 static int pl011_request_port(struct uart_port *port)
2098 {
2099 	return request_mem_region(port->mapbase, SZ_4K, "uart-pl011")
2100 			!= NULL ? 0 : -EBUSY;
2101 }
2102 
2103 /*
2104  * Configure/autoconfigure the port.
2105  */
2106 static void pl011_config_port(struct uart_port *port, int flags)
2107 {
2108 	if (flags & UART_CONFIG_TYPE) {
2109 		port->type = PORT_AMBA;
2110 		pl011_request_port(port);
2111 	}
2112 }
2113 
2114 /*
2115  * verify the new serial_struct (for TIOCSSERIAL).
2116  */
2117 static int pl011_verify_port(struct uart_port *port, struct serial_struct *ser)
2118 {
2119 	int ret = 0;
2120 	if (ser->type != PORT_UNKNOWN && ser->type != PORT_AMBA)
2121 		ret = -EINVAL;
2122 	if (ser->irq < 0 || ser->irq >= nr_irqs)
2123 		ret = -EINVAL;
2124 	if (ser->baud_base < 9600)
2125 		ret = -EINVAL;
2126 	return ret;
2127 }
2128 
2129 static const struct uart_ops amba_pl011_pops = {
2130 	.tx_empty	= pl011_tx_empty,
2131 	.set_mctrl	= pl011_set_mctrl,
2132 	.get_mctrl	= pl011_get_mctrl,
2133 	.stop_tx	= pl011_stop_tx,
2134 	.start_tx	= pl011_start_tx,
2135 	.stop_rx	= pl011_stop_rx,
2136 	.enable_ms	= pl011_enable_ms,
2137 	.break_ctl	= pl011_break_ctl,
2138 	.startup	= pl011_startup,
2139 	.shutdown	= pl011_shutdown,
2140 	.flush_buffer	= pl011_dma_flush_buffer,
2141 	.set_termios	= pl011_set_termios,
2142 	.type		= pl011_type,
2143 	.release_port	= pl011_release_port,
2144 	.request_port	= pl011_request_port,
2145 	.config_port	= pl011_config_port,
2146 	.verify_port	= pl011_verify_port,
2147 #ifdef CONFIG_CONSOLE_POLL
2148 	.poll_init     = pl011_hwinit,
2149 	.poll_get_char = pl011_get_poll_char,
2150 	.poll_put_char = pl011_put_poll_char,
2151 #endif
2152 };
2153 
2154 static void sbsa_uart_set_mctrl(struct uart_port *port, unsigned int mctrl)
2155 {
2156 }
2157 
2158 static unsigned int sbsa_uart_get_mctrl(struct uart_port *port)
2159 {
2160 	return 0;
2161 }
2162 
2163 static const struct uart_ops sbsa_uart_pops = {
2164 	.tx_empty	= pl011_tx_empty,
2165 	.set_mctrl	= sbsa_uart_set_mctrl,
2166 	.get_mctrl	= sbsa_uart_get_mctrl,
2167 	.stop_tx	= pl011_stop_tx,
2168 	.start_tx	= pl011_start_tx,
2169 	.stop_rx	= pl011_stop_rx,
2170 	.startup	= sbsa_uart_startup,
2171 	.shutdown	= sbsa_uart_shutdown,
2172 	.set_termios	= sbsa_uart_set_termios,
2173 	.type		= pl011_type,
2174 	.release_port	= pl011_release_port,
2175 	.request_port	= pl011_request_port,
2176 	.config_port	= pl011_config_port,
2177 	.verify_port	= pl011_verify_port,
2178 #ifdef CONFIG_CONSOLE_POLL
2179 	.poll_init     = pl011_hwinit,
2180 	.poll_get_char = pl011_get_poll_char,
2181 	.poll_put_char = pl011_put_poll_char,
2182 #endif
2183 };
2184 
2185 static struct uart_amba_port *amba_ports[UART_NR];
2186 
2187 #ifdef CONFIG_SERIAL_AMBA_PL011_CONSOLE
2188 
2189 static void pl011_console_putchar(struct uart_port *port, int ch)
2190 {
2191 	struct uart_amba_port *uap =
2192 	    container_of(port, struct uart_amba_port, port);
2193 
2194 	while (pl011_read(uap, REG_FR) & UART01x_FR_TXFF)
2195 		cpu_relax();
2196 	pl011_write(ch, uap, REG_DR);
2197 }
2198 
2199 static void
2200 pl011_console_write(struct console *co, const char *s, unsigned int count)
2201 {
2202 	struct uart_amba_port *uap = amba_ports[co->index];
2203 	unsigned int old_cr = 0, new_cr;
2204 	unsigned long flags;
2205 	int locked = 1;
2206 
2207 	clk_enable(uap->clk);
2208 
2209 	local_irq_save(flags);
2210 	if (uap->port.sysrq)
2211 		locked = 0;
2212 	else if (oops_in_progress)
2213 		locked = spin_trylock(&uap->port.lock);
2214 	else
2215 		spin_lock(&uap->port.lock);
2216 
2217 	/*
2218 	 *	First save the CR then disable the interrupts
2219 	 */
2220 	if (!uap->vendor->always_enabled) {
2221 		old_cr = pl011_read(uap, REG_CR);
2222 		new_cr = old_cr & ~UART011_CR_CTSEN;
2223 		new_cr |= UART01x_CR_UARTEN | UART011_CR_TXE;
2224 		pl011_write(new_cr, uap, REG_CR);
2225 	}
2226 
2227 	uart_console_write(&uap->port, s, count, pl011_console_putchar);
2228 
2229 	/*
2230 	 *	Finally, wait for transmitter to become empty and restore the
2231 	 *	TCR. Allow feature register bits to be inverted to work around
2232 	 *	errata.
2233 	 */
2234 	while ((pl011_read(uap, REG_FR) ^ uap->vendor->inv_fr)
2235 						& uap->vendor->fr_busy)
2236 		cpu_relax();
2237 	if (!uap->vendor->always_enabled)
2238 		pl011_write(old_cr, uap, REG_CR);
2239 
2240 	if (locked)
2241 		spin_unlock(&uap->port.lock);
2242 	local_irq_restore(flags);
2243 
2244 	clk_disable(uap->clk);
2245 }
2246 
2247 static void pl011_console_get_options(struct uart_amba_port *uap, int *baud,
2248 				      int *parity, int *bits)
2249 {
2250 	if (pl011_read(uap, REG_CR) & UART01x_CR_UARTEN) {
2251 		unsigned int lcr_h, ibrd, fbrd;
2252 
2253 		lcr_h = pl011_read(uap, REG_LCRH_TX);
2254 
2255 		*parity = 'n';
2256 		if (lcr_h & UART01x_LCRH_PEN) {
2257 			if (lcr_h & UART01x_LCRH_EPS)
2258 				*parity = 'e';
2259 			else
2260 				*parity = 'o';
2261 		}
2262 
2263 		if ((lcr_h & 0x60) == UART01x_LCRH_WLEN_7)
2264 			*bits = 7;
2265 		else
2266 			*bits = 8;
2267 
2268 		ibrd = pl011_read(uap, REG_IBRD);
2269 		fbrd = pl011_read(uap, REG_FBRD);
2270 
2271 		*baud = uap->port.uartclk * 4 / (64 * ibrd + fbrd);
2272 
2273 		if (uap->vendor->oversampling) {
2274 			if (pl011_read(uap, REG_CR)
2275 				  & ST_UART011_CR_OVSFACT)
2276 				*baud *= 2;
2277 		}
2278 	}
2279 }
2280 
2281 static int pl011_console_setup(struct console *co, char *options)
2282 {
2283 	struct uart_amba_port *uap;
2284 	int baud = 38400;
2285 	int bits = 8;
2286 	int parity = 'n';
2287 	int flow = 'n';
2288 	int ret;
2289 
2290 	/*
2291 	 * Check whether an invalid uart number has been specified, and
2292 	 * if so, search for the first available port that does have
2293 	 * console support.
2294 	 */
2295 	if (co->index >= UART_NR)
2296 		co->index = 0;
2297 	uap = amba_ports[co->index];
2298 	if (!uap)
2299 		return -ENODEV;
2300 
2301 	/* Allow pins to be muxed in and configured */
2302 	pinctrl_pm_select_default_state(uap->port.dev);
2303 
2304 	ret = clk_prepare(uap->clk);
2305 	if (ret)
2306 		return ret;
2307 
2308 	if (dev_get_platdata(uap->port.dev)) {
2309 		struct amba_pl011_data *plat;
2310 
2311 		plat = dev_get_platdata(uap->port.dev);
2312 		if (plat->init)
2313 			plat->init();
2314 	}
2315 
2316 	uap->port.uartclk = clk_get_rate(uap->clk);
2317 
2318 	if (uap->vendor->fixed_options) {
2319 		baud = uap->fixed_baud;
2320 	} else {
2321 		if (options)
2322 			uart_parse_options(options,
2323 					   &baud, &parity, &bits, &flow);
2324 		else
2325 			pl011_console_get_options(uap, &baud, &parity, &bits);
2326 	}
2327 
2328 	return uart_set_options(&uap->port, co, baud, parity, bits, flow);
2329 }
2330 
2331 /**
2332  *	pl011_console_match - non-standard console matching
2333  *	@co:	  registering console
2334  *	@name:	  name from console command line
2335  *	@idx:	  index from console command line
2336  *	@options: ptr to option string from console command line
2337  *
2338  *	Only attempts to match console command lines of the form:
2339  *	    console=pl011,mmio|mmio32,<addr>[,<options>]
2340  *	    console=pl011,0x<addr>[,<options>]
2341  *	This form is used to register an initial earlycon boot console and
2342  *	replace it with the amba_console at pl011 driver init.
2343  *
2344  *	Performs console setup for a match (as required by interface)
2345  *	If no <options> are specified, then assume the h/w is already setup.
2346  *
2347  *	Returns 0 if console matches; otherwise non-zero to use default matching
2348  */
2349 static int pl011_console_match(struct console *co, char *name, int idx,
2350 			       char *options)
2351 {
2352 	unsigned char iotype;
2353 	resource_size_t addr;
2354 	int i;
2355 
2356 	/*
2357 	 * Systems affected by the Qualcomm Technologies QDF2400 E44 erratum
2358 	 * have a distinct console name, so make sure we check for that.
2359 	 * The actual implementation of the erratum occurs in the probe
2360 	 * function.
2361 	 */
2362 	if ((strcmp(name, "qdf2400_e44") != 0) && (strcmp(name, "pl011") != 0))
2363 		return -ENODEV;
2364 
2365 	if (uart_parse_earlycon(options, &iotype, &addr, &options))
2366 		return -ENODEV;
2367 
2368 	if (iotype != UPIO_MEM && iotype != UPIO_MEM32)
2369 		return -ENODEV;
2370 
2371 	/* try to match the port specified on the command line */
2372 	for (i = 0; i < ARRAY_SIZE(amba_ports); i++) {
2373 		struct uart_port *port;
2374 
2375 		if (!amba_ports[i])
2376 			continue;
2377 
2378 		port = &amba_ports[i]->port;
2379 
2380 		if (port->mapbase != addr)
2381 			continue;
2382 
2383 		co->index = i;
2384 		port->cons = co;
2385 		return pl011_console_setup(co, options);
2386 	}
2387 
2388 	return -ENODEV;
2389 }
2390 
2391 static struct uart_driver amba_reg;
2392 static struct console amba_console = {
2393 	.name		= "ttyAMA",
2394 	.write		= pl011_console_write,
2395 	.device		= uart_console_device,
2396 	.setup		= pl011_console_setup,
2397 	.match		= pl011_console_match,
2398 	.flags		= CON_PRINTBUFFER | CON_ANYTIME,
2399 	.index		= -1,
2400 	.data		= &amba_reg,
2401 };
2402 
2403 #define AMBA_CONSOLE	(&amba_console)
2404 
2405 static void qdf2400_e44_putc(struct uart_port *port, int c)
2406 {
2407 	while (readl(port->membase + UART01x_FR) & UART01x_FR_TXFF)
2408 		cpu_relax();
2409 	writel(c, port->membase + UART01x_DR);
2410 	while (!(readl(port->membase + UART01x_FR) & UART011_FR_TXFE))
2411 		cpu_relax();
2412 }
2413 
2414 static void qdf2400_e44_early_write(struct console *con, const char *s, unsigned n)
2415 {
2416 	struct earlycon_device *dev = con->data;
2417 
2418 	uart_console_write(&dev->port, s, n, qdf2400_e44_putc);
2419 }
2420 
2421 static void pl011_putc(struct uart_port *port, int c)
2422 {
2423 	while (readl(port->membase + UART01x_FR) & UART01x_FR_TXFF)
2424 		cpu_relax();
2425 	if (port->iotype == UPIO_MEM32)
2426 		writel(c, port->membase + UART01x_DR);
2427 	else
2428 		writeb(c, port->membase + UART01x_DR);
2429 	while (readl(port->membase + UART01x_FR) & UART01x_FR_BUSY)
2430 		cpu_relax();
2431 }
2432 
2433 static void pl011_early_write(struct console *con, const char *s, unsigned n)
2434 {
2435 	struct earlycon_device *dev = con->data;
2436 
2437 	uart_console_write(&dev->port, s, n, pl011_putc);
2438 }
2439 
2440 #ifdef CONFIG_CONSOLE_POLL
2441 static int pl011_getc(struct uart_port *port)
2442 {
2443 	if (readl(port->membase + UART01x_FR) & UART01x_FR_RXFE)
2444 		return NO_POLL_CHAR;
2445 
2446 	if (port->iotype == UPIO_MEM32)
2447 		return readl(port->membase + UART01x_DR);
2448 	else
2449 		return readb(port->membase + UART01x_DR);
2450 }
2451 
2452 static int pl011_early_read(struct console *con, char *s, unsigned int n)
2453 {
2454 	struct earlycon_device *dev = con->data;
2455 	int ch, num_read = 0;
2456 
2457 	while (num_read < n) {
2458 		ch = pl011_getc(&dev->port);
2459 		if (ch == NO_POLL_CHAR)
2460 			break;
2461 
2462 		s[num_read++] = ch;
2463 	}
2464 
2465 	return num_read;
2466 }
2467 #else
2468 #define pl011_early_read NULL
2469 #endif
2470 
2471 /*
2472  * On non-ACPI systems, earlycon is enabled by specifying
2473  * "earlycon=pl011,<address>" on the kernel command line.
2474  *
2475  * On ACPI ARM64 systems, an "early" console is enabled via the SPCR table,
2476  * by specifying only "earlycon" on the command line.  Because it requires
2477  * SPCR, the console starts after ACPI is parsed, which is later than a
2478  * traditional early console.
2479  *
2480  * To get the traditional early console that starts before ACPI is parsed,
2481  * specify the full "earlycon=pl011,<address>" option.
2482  */
2483 static int __init pl011_early_console_setup(struct earlycon_device *device,
2484 					    const char *opt)
2485 {
2486 	if (!device->port.membase)
2487 		return -ENODEV;
2488 
2489 	device->con->write = pl011_early_write;
2490 	device->con->read = pl011_early_read;
2491 
2492 	return 0;
2493 }
2494 OF_EARLYCON_DECLARE(pl011, "arm,pl011", pl011_early_console_setup);
2495 OF_EARLYCON_DECLARE(pl011, "arm,sbsa-uart", pl011_early_console_setup);
2496 
2497 /*
2498  * On Qualcomm Datacenter Technologies QDF2400 SOCs affected by
2499  * Erratum 44, traditional earlycon can be enabled by specifying
2500  * "earlycon=qdf2400_e44,<address>".  Any options are ignored.
2501  *
2502  * Alternatively, you can just specify "earlycon", and the early console
2503  * will be enabled with the information from the SPCR table.  In this
2504  * case, the SPCR code will detect the need for the E44 work-around,
2505  * and set the console name to "qdf2400_e44".
2506  */
2507 static int __init
2508 qdf2400_e44_early_console_setup(struct earlycon_device *device,
2509 				const char *opt)
2510 {
2511 	if (!device->port.membase)
2512 		return -ENODEV;
2513 
2514 	device->con->write = qdf2400_e44_early_write;
2515 	return 0;
2516 }
2517 EARLYCON_DECLARE(qdf2400_e44, qdf2400_e44_early_console_setup);
2518 
2519 #else
2520 #define AMBA_CONSOLE	NULL
2521 #endif
2522 
2523 static struct uart_driver amba_reg = {
2524 	.owner			= THIS_MODULE,
2525 	.driver_name		= "ttyAMA",
2526 	.dev_name		= "ttyAMA",
2527 	.major			= SERIAL_AMBA_MAJOR,
2528 	.minor			= SERIAL_AMBA_MINOR,
2529 	.nr			= UART_NR,
2530 	.cons			= AMBA_CONSOLE,
2531 };
2532 
2533 static int pl011_probe_dt_alias(int index, struct device *dev)
2534 {
2535 	struct device_node *np;
2536 	static bool seen_dev_with_alias = false;
2537 	static bool seen_dev_without_alias = false;
2538 	int ret = index;
2539 
2540 	if (!IS_ENABLED(CONFIG_OF))
2541 		return ret;
2542 
2543 	np = dev->of_node;
2544 	if (!np)
2545 		return ret;
2546 
2547 	ret = of_alias_get_id(np, "serial");
2548 	if (ret < 0) {
2549 		seen_dev_without_alias = true;
2550 		ret = index;
2551 	} else {
2552 		seen_dev_with_alias = true;
2553 		if (ret >= ARRAY_SIZE(amba_ports) || amba_ports[ret] != NULL) {
2554 			dev_warn(dev, "requested serial port %d  not available.\n", ret);
2555 			ret = index;
2556 		}
2557 	}
2558 
2559 	if (seen_dev_with_alias && seen_dev_without_alias)
2560 		dev_warn(dev, "aliased and non-aliased serial devices found in device tree. Serial port enumeration may be unpredictable.\n");
2561 
2562 	return ret;
2563 }
2564 
2565 /* unregisters the driver also if no more ports are left */
2566 static void pl011_unregister_port(struct uart_amba_port *uap)
2567 {
2568 	int i;
2569 	bool busy = false;
2570 
2571 	for (i = 0; i < ARRAY_SIZE(amba_ports); i++) {
2572 		if (amba_ports[i] == uap)
2573 			amba_ports[i] = NULL;
2574 		else if (amba_ports[i])
2575 			busy = true;
2576 	}
2577 	pl011_dma_remove(uap);
2578 	if (!busy)
2579 		uart_unregister_driver(&amba_reg);
2580 }
2581 
2582 static int pl011_find_free_port(void)
2583 {
2584 	int i;
2585 
2586 	for (i = 0; i < ARRAY_SIZE(amba_ports); i++)
2587 		if (amba_ports[i] == NULL)
2588 			return i;
2589 
2590 	return -EBUSY;
2591 }
2592 
2593 static int pl011_setup_port(struct device *dev, struct uart_amba_port *uap,
2594 			    struct resource *mmiobase, int index)
2595 {
2596 	void __iomem *base;
2597 
2598 	base = devm_ioremap_resource(dev, mmiobase);
2599 	if (IS_ERR(base))
2600 		return PTR_ERR(base);
2601 
2602 	index = pl011_probe_dt_alias(index, dev);
2603 
2604 	uap->old_cr = 0;
2605 	uap->port.dev = dev;
2606 	uap->port.mapbase = mmiobase->start;
2607 	uap->port.membase = base;
2608 	uap->port.fifosize = uap->fifosize;
2609 	uap->port.has_sysrq = IS_ENABLED(CONFIG_SERIAL_AMBA_PL011_CONSOLE);
2610 	uap->port.flags = UPF_BOOT_AUTOCONF;
2611 	uap->port.line = index;
2612 
2613 	amba_ports[index] = uap;
2614 
2615 	return 0;
2616 }
2617 
2618 static int pl011_register_port(struct uart_amba_port *uap)
2619 {
2620 	int ret, i;
2621 
2622 	/* Ensure interrupts from this UART are masked and cleared */
2623 	pl011_write(0, uap, REG_IMSC);
2624 	pl011_write(0xffff, uap, REG_ICR);
2625 
2626 	if (!amba_reg.state) {
2627 		ret = uart_register_driver(&amba_reg);
2628 		if (ret < 0) {
2629 			dev_err(uap->port.dev,
2630 				"Failed to register AMBA-PL011 driver\n");
2631 			for (i = 0; i < ARRAY_SIZE(amba_ports); i++)
2632 				if (amba_ports[i] == uap)
2633 					amba_ports[i] = NULL;
2634 			return ret;
2635 		}
2636 	}
2637 
2638 	ret = uart_add_one_port(&amba_reg, &uap->port);
2639 	if (ret)
2640 		pl011_unregister_port(uap);
2641 
2642 	return ret;
2643 }
2644 
2645 static int pl011_probe(struct amba_device *dev, const struct amba_id *id)
2646 {
2647 	struct uart_amba_port *uap;
2648 	struct vendor_data *vendor = id->data;
2649 	int portnr, ret;
2650 
2651 	portnr = pl011_find_free_port();
2652 	if (portnr < 0)
2653 		return portnr;
2654 
2655 	uap = devm_kzalloc(&dev->dev, sizeof(struct uart_amba_port),
2656 			   GFP_KERNEL);
2657 	if (!uap)
2658 		return -ENOMEM;
2659 
2660 	uap->clk = devm_clk_get(&dev->dev, NULL);
2661 	if (IS_ERR(uap->clk))
2662 		return PTR_ERR(uap->clk);
2663 
2664 	uap->reg_offset = vendor->reg_offset;
2665 	uap->vendor = vendor;
2666 	uap->fifosize = vendor->get_fifosize(dev);
2667 	uap->port.iotype = vendor->access_32b ? UPIO_MEM32 : UPIO_MEM;
2668 	uap->port.irq = dev->irq[0];
2669 	uap->port.ops = &amba_pl011_pops;
2670 
2671 	snprintf(uap->type, sizeof(uap->type), "PL011 rev%u", amba_rev(dev));
2672 
2673 	ret = pl011_setup_port(&dev->dev, uap, &dev->res, portnr);
2674 	if (ret)
2675 		return ret;
2676 
2677 	amba_set_drvdata(dev, uap);
2678 
2679 	return pl011_register_port(uap);
2680 }
2681 
2682 static void pl011_remove(struct amba_device *dev)
2683 {
2684 	struct uart_amba_port *uap = amba_get_drvdata(dev);
2685 
2686 	uart_remove_one_port(&amba_reg, &uap->port);
2687 	pl011_unregister_port(uap);
2688 }
2689 
2690 #ifdef CONFIG_PM_SLEEP
2691 static int pl011_suspend(struct device *dev)
2692 {
2693 	struct uart_amba_port *uap = dev_get_drvdata(dev);
2694 
2695 	if (!uap)
2696 		return -EINVAL;
2697 
2698 	return uart_suspend_port(&amba_reg, &uap->port);
2699 }
2700 
2701 static int pl011_resume(struct device *dev)
2702 {
2703 	struct uart_amba_port *uap = dev_get_drvdata(dev);
2704 
2705 	if (!uap)
2706 		return -EINVAL;
2707 
2708 	return uart_resume_port(&amba_reg, &uap->port);
2709 }
2710 #endif
2711 
2712 static SIMPLE_DEV_PM_OPS(pl011_dev_pm_ops, pl011_suspend, pl011_resume);
2713 
2714 static int sbsa_uart_probe(struct platform_device *pdev)
2715 {
2716 	struct uart_amba_port *uap;
2717 	struct resource *r;
2718 	int portnr, ret;
2719 	int baudrate;
2720 
2721 	/*
2722 	 * Check the mandatory baud rate parameter in the DT node early
2723 	 * so that we can easily exit with the error.
2724 	 */
2725 	if (pdev->dev.of_node) {
2726 		struct device_node *np = pdev->dev.of_node;
2727 
2728 		ret = of_property_read_u32(np, "current-speed", &baudrate);
2729 		if (ret)
2730 			return ret;
2731 	} else {
2732 		baudrate = 115200;
2733 	}
2734 
2735 	portnr = pl011_find_free_port();
2736 	if (portnr < 0)
2737 		return portnr;
2738 
2739 	uap = devm_kzalloc(&pdev->dev, sizeof(struct uart_amba_port),
2740 			   GFP_KERNEL);
2741 	if (!uap)
2742 		return -ENOMEM;
2743 
2744 	ret = platform_get_irq(pdev, 0);
2745 	if (ret < 0)
2746 		return ret;
2747 	uap->port.irq	= ret;
2748 
2749 #ifdef CONFIG_ACPI_SPCR_TABLE
2750 	if (qdf2400_e44_present) {
2751 		dev_info(&pdev->dev, "working around QDF2400 SoC erratum 44\n");
2752 		uap->vendor = &vendor_qdt_qdf2400_e44;
2753 	} else
2754 #endif
2755 		uap->vendor = &vendor_sbsa;
2756 
2757 	uap->reg_offset	= uap->vendor->reg_offset;
2758 	uap->fifosize	= 32;
2759 	uap->port.iotype = uap->vendor->access_32b ? UPIO_MEM32 : UPIO_MEM;
2760 	uap->port.ops	= &sbsa_uart_pops;
2761 	uap->fixed_baud = baudrate;
2762 
2763 	snprintf(uap->type, sizeof(uap->type), "SBSA");
2764 
2765 	r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2766 
2767 	ret = pl011_setup_port(&pdev->dev, uap, r, portnr);
2768 	if (ret)
2769 		return ret;
2770 
2771 	platform_set_drvdata(pdev, uap);
2772 
2773 	return pl011_register_port(uap);
2774 }
2775 
2776 static int sbsa_uart_remove(struct platform_device *pdev)
2777 {
2778 	struct uart_amba_port *uap = platform_get_drvdata(pdev);
2779 
2780 	uart_remove_one_port(&amba_reg, &uap->port);
2781 	pl011_unregister_port(uap);
2782 	return 0;
2783 }
2784 
2785 static const struct of_device_id sbsa_uart_of_match[] = {
2786 	{ .compatible = "arm,sbsa-uart", },
2787 	{},
2788 };
2789 MODULE_DEVICE_TABLE(of, sbsa_uart_of_match);
2790 
2791 static const struct acpi_device_id __maybe_unused sbsa_uart_acpi_match[] = {
2792 	{ "ARMH0011", 0 },
2793 	{},
2794 };
2795 MODULE_DEVICE_TABLE(acpi, sbsa_uart_acpi_match);
2796 
2797 static struct platform_driver arm_sbsa_uart_platform_driver = {
2798 	.probe		= sbsa_uart_probe,
2799 	.remove		= sbsa_uart_remove,
2800 	.driver	= {
2801 		.name	= "sbsa-uart",
2802 		.pm	= &pl011_dev_pm_ops,
2803 		.of_match_table = of_match_ptr(sbsa_uart_of_match),
2804 		.acpi_match_table = ACPI_PTR(sbsa_uart_acpi_match),
2805 		.suppress_bind_attrs = IS_BUILTIN(CONFIG_SERIAL_AMBA_PL011),
2806 	},
2807 };
2808 
2809 static const struct amba_id pl011_ids[] = {
2810 	{
2811 		.id	= 0x00041011,
2812 		.mask	= 0x000fffff,
2813 		.data	= &vendor_arm,
2814 	},
2815 	{
2816 		.id	= 0x00380802,
2817 		.mask	= 0x00ffffff,
2818 		.data	= &vendor_st,
2819 	},
2820 	{
2821 		.id	= AMBA_LINUX_ID(0x00, 0x1, 0xffe),
2822 		.mask	= 0x00ffffff,
2823 		.data	= &vendor_zte,
2824 	},
2825 	{ 0, 0 },
2826 };
2827 
2828 MODULE_DEVICE_TABLE(amba, pl011_ids);
2829 
2830 static struct amba_driver pl011_driver = {
2831 	.drv = {
2832 		.name	= "uart-pl011",
2833 		.pm	= &pl011_dev_pm_ops,
2834 		.suppress_bind_attrs = IS_BUILTIN(CONFIG_SERIAL_AMBA_PL011),
2835 	},
2836 	.id_table	= pl011_ids,
2837 	.probe		= pl011_probe,
2838 	.remove		= pl011_remove,
2839 };
2840 
2841 static int __init pl011_init(void)
2842 {
2843 	printk(KERN_INFO "Serial: AMBA PL011 UART driver\n");
2844 
2845 	if (platform_driver_register(&arm_sbsa_uart_platform_driver))
2846 		pr_warn("could not register SBSA UART platform driver\n");
2847 	return amba_driver_register(&pl011_driver);
2848 }
2849 
2850 static void __exit pl011_exit(void)
2851 {
2852 	platform_driver_unregister(&arm_sbsa_uart_platform_driver);
2853 	amba_driver_unregister(&pl011_driver);
2854 }
2855 
2856 /*
2857  * While this can be a module, if builtin it's most likely the console
2858  * So let's leave module_exit but move module_init to an earlier place
2859  */
2860 arch_initcall(pl011_init);
2861 module_exit(pl011_exit);
2862 
2863 MODULE_AUTHOR("ARM Ltd/Deep Blue Solutions Ltd");
2864 MODULE_DESCRIPTION("ARM AMBA serial port driver");
2865 MODULE_LICENSE("GPL");
2866