xref: /openbmc/linux/drivers/tty/serial/amba-pl011.c (revision 37cf4d1a)
1 /*
2  *  Driver for AMBA serial ports
3  *
4  *  Based on drivers/char/serial.c, by Linus Torvalds, Theodore Ts'o.
5  *
6  *  Copyright 1999 ARM Limited
7  *  Copyright (C) 2000 Deep Blue Solutions Ltd.
8  *  Copyright (C) 2010 ST-Ericsson SA
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License as published by
12  * the Free Software Foundation; either version 2 of the License, or
13  * (at your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18  * GNU General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public License
21  * along with this program; if not, write to the Free Software
22  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
23  *
24  * This is a generic driver for ARM AMBA-type serial ports.  They
25  * have a lot of 16550-like features, but are not register compatible.
26  * Note that although they do have CTS, DCD and DSR inputs, they do
27  * not have an RI input, nor do they have DTR or RTS outputs.  If
28  * required, these have to be supplied via some other means (eg, GPIO)
29  * and hooked into this driver.
30  */
31 
32 #if defined(CONFIG_SERIAL_AMBA_PL011_CONSOLE) && defined(CONFIG_MAGIC_SYSRQ)
33 #define SUPPORT_SYSRQ
34 #endif
35 
36 #include <linux/module.h>
37 #include <linux/ioport.h>
38 #include <linux/init.h>
39 #include <linux/console.h>
40 #include <linux/sysrq.h>
41 #include <linux/device.h>
42 #include <linux/tty.h>
43 #include <linux/tty_flip.h>
44 #include <linux/serial_core.h>
45 #include <linux/serial.h>
46 #include <linux/amba/bus.h>
47 #include <linux/amba/serial.h>
48 #include <linux/clk.h>
49 #include <linux/slab.h>
50 #include <linux/dmaengine.h>
51 #include <linux/dma-mapping.h>
52 #include <linux/scatterlist.h>
53 #include <linux/delay.h>
54 
55 #include <asm/io.h>
56 #include <asm/sizes.h>
57 
58 #define UART_NR			14
59 
60 #define SERIAL_AMBA_MAJOR	204
61 #define SERIAL_AMBA_MINOR	64
62 #define SERIAL_AMBA_NR		UART_NR
63 
64 #define AMBA_ISR_PASS_LIMIT	256
65 
66 #define UART_DR_ERROR		(UART011_DR_OE|UART011_DR_BE|UART011_DR_PE|UART011_DR_FE)
67 #define UART_DUMMY_DR_RX	(1 << 16)
68 
69 
70 #define UART_WA_SAVE_NR 14
71 
72 static void pl011_lockup_wa(unsigned long data);
73 static const u32 uart_wa_reg[UART_WA_SAVE_NR] = {
74 	ST_UART011_DMAWM,
75 	ST_UART011_TIMEOUT,
76 	ST_UART011_LCRH_RX,
77 	UART011_IBRD,
78 	UART011_FBRD,
79 	ST_UART011_LCRH_TX,
80 	UART011_IFLS,
81 	ST_UART011_XFCR,
82 	ST_UART011_XON1,
83 	ST_UART011_XON2,
84 	ST_UART011_XOFF1,
85 	ST_UART011_XOFF2,
86 	UART011_CR,
87 	UART011_IMSC
88 };
89 
90 static u32 uart_wa_regdata[UART_WA_SAVE_NR];
91 static DECLARE_TASKLET(pl011_lockup_tlet, pl011_lockup_wa, 0);
92 
93 /* There is by now at least one vendor with differing details, so handle it */
94 struct vendor_data {
95 	unsigned int		ifls;
96 	unsigned int		fifosize;
97 	unsigned int		lcrh_tx;
98 	unsigned int		lcrh_rx;
99 	bool			oversampling;
100 	bool			interrupt_may_hang;   /* vendor-specific */
101 	bool			dma_threshold;
102 };
103 
104 static struct vendor_data vendor_arm = {
105 	.ifls			= UART011_IFLS_RX4_8|UART011_IFLS_TX4_8,
106 	.fifosize		= 16,
107 	.lcrh_tx		= UART011_LCRH,
108 	.lcrh_rx		= UART011_LCRH,
109 	.oversampling		= false,
110 	.dma_threshold		= false,
111 };
112 
113 static struct vendor_data vendor_st = {
114 	.ifls			= UART011_IFLS_RX_HALF|UART011_IFLS_TX_HALF,
115 	.fifosize		= 64,
116 	.lcrh_tx		= ST_UART011_LCRH_TX,
117 	.lcrh_rx		= ST_UART011_LCRH_RX,
118 	.oversampling		= true,
119 	.interrupt_may_hang	= true,
120 	.dma_threshold		= true,
121 };
122 
123 static struct uart_amba_port *amba_ports[UART_NR];
124 
125 /* Deals with DMA transactions */
126 
127 struct pl011_sgbuf {
128 	struct scatterlist sg;
129 	char *buf;
130 };
131 
132 struct pl011_dmarx_data {
133 	struct dma_chan		*chan;
134 	struct completion	complete;
135 	bool			use_buf_b;
136 	struct pl011_sgbuf	sgbuf_a;
137 	struct pl011_sgbuf	sgbuf_b;
138 	dma_cookie_t		cookie;
139 	bool			running;
140 };
141 
142 struct pl011_dmatx_data {
143 	struct dma_chan		*chan;
144 	struct scatterlist	sg;
145 	char			*buf;
146 	bool			queued;
147 };
148 
149 /*
150  * We wrap our port structure around the generic uart_port.
151  */
152 struct uart_amba_port {
153 	struct uart_port	port;
154 	struct clk		*clk;
155 	const struct vendor_data *vendor;
156 	unsigned int		dmacr;		/* dma control reg */
157 	unsigned int		im;		/* interrupt mask */
158 	unsigned int		old_status;
159 	unsigned int		fifosize;	/* vendor-specific */
160 	unsigned int		lcrh_tx;	/* vendor-specific */
161 	unsigned int		lcrh_rx;	/* vendor-specific */
162 	bool			autorts;
163 	char			type[12];
164 	bool			interrupt_may_hang; /* vendor-specific */
165 #ifdef CONFIG_DMA_ENGINE
166 	/* DMA stuff */
167 	bool			using_tx_dma;
168 	bool			using_rx_dma;
169 	struct pl011_dmarx_data dmarx;
170 	struct pl011_dmatx_data	dmatx;
171 #endif
172 };
173 
174 /*
175  * Reads up to 256 characters from the FIFO or until it's empty and
176  * inserts them into the TTY layer. Returns the number of characters
177  * read from the FIFO.
178  */
179 static int pl011_fifo_to_tty(struct uart_amba_port *uap)
180 {
181 	u16 status, ch;
182 	unsigned int flag, max_count = 256;
183 	int fifotaken = 0;
184 
185 	while (max_count--) {
186 		status = readw(uap->port.membase + UART01x_FR);
187 		if (status & UART01x_FR_RXFE)
188 			break;
189 
190 		/* Take chars from the FIFO and update status */
191 		ch = readw(uap->port.membase + UART01x_DR) |
192 			UART_DUMMY_DR_RX;
193 		flag = TTY_NORMAL;
194 		uap->port.icount.rx++;
195 		fifotaken++;
196 
197 		if (unlikely(ch & UART_DR_ERROR)) {
198 			if (ch & UART011_DR_BE) {
199 				ch &= ~(UART011_DR_FE | UART011_DR_PE);
200 				uap->port.icount.brk++;
201 				if (uart_handle_break(&uap->port))
202 					continue;
203 			} else if (ch & UART011_DR_PE)
204 				uap->port.icount.parity++;
205 			else if (ch & UART011_DR_FE)
206 				uap->port.icount.frame++;
207 			if (ch & UART011_DR_OE)
208 				uap->port.icount.overrun++;
209 
210 			ch &= uap->port.read_status_mask;
211 
212 			if (ch & UART011_DR_BE)
213 				flag = TTY_BREAK;
214 			else if (ch & UART011_DR_PE)
215 				flag = TTY_PARITY;
216 			else if (ch & UART011_DR_FE)
217 				flag = TTY_FRAME;
218 		}
219 
220 		if (uart_handle_sysrq_char(&uap->port, ch & 255))
221 			continue;
222 
223 		uart_insert_char(&uap->port, ch, UART011_DR_OE, ch, flag);
224 	}
225 
226 	return fifotaken;
227 }
228 
229 
230 /*
231  * All the DMA operation mode stuff goes inside this ifdef.
232  * This assumes that you have a generic DMA device interface,
233  * no custom DMA interfaces are supported.
234  */
235 #ifdef CONFIG_DMA_ENGINE
236 
237 #define PL011_DMA_BUFFER_SIZE PAGE_SIZE
238 
239 static int pl011_sgbuf_init(struct dma_chan *chan, struct pl011_sgbuf *sg,
240 	enum dma_data_direction dir)
241 {
242 	sg->buf = kmalloc(PL011_DMA_BUFFER_SIZE, GFP_KERNEL);
243 	if (!sg->buf)
244 		return -ENOMEM;
245 
246 	sg_init_one(&sg->sg, sg->buf, PL011_DMA_BUFFER_SIZE);
247 
248 	if (dma_map_sg(chan->device->dev, &sg->sg, 1, dir) != 1) {
249 		kfree(sg->buf);
250 		return -EINVAL;
251 	}
252 	return 0;
253 }
254 
255 static void pl011_sgbuf_free(struct dma_chan *chan, struct pl011_sgbuf *sg,
256 	enum dma_data_direction dir)
257 {
258 	if (sg->buf) {
259 		dma_unmap_sg(chan->device->dev, &sg->sg, 1, dir);
260 		kfree(sg->buf);
261 	}
262 }
263 
264 static void pl011_dma_probe_initcall(struct uart_amba_port *uap)
265 {
266 	/* DMA is the sole user of the platform data right now */
267 	struct amba_pl011_data *plat = uap->port.dev->platform_data;
268 	struct dma_slave_config tx_conf = {
269 		.dst_addr = uap->port.mapbase + UART01x_DR,
270 		.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
271 		.direction = DMA_TO_DEVICE,
272 		.dst_maxburst = uap->fifosize >> 1,
273 	};
274 	struct dma_chan *chan;
275 	dma_cap_mask_t mask;
276 
277 	/* We need platform data */
278 	if (!plat || !plat->dma_filter) {
279 		dev_info(uap->port.dev, "no DMA platform data\n");
280 		return;
281 	}
282 
283 	/* Try to acquire a generic DMA engine slave TX channel */
284 	dma_cap_zero(mask);
285 	dma_cap_set(DMA_SLAVE, mask);
286 
287 	chan = dma_request_channel(mask, plat->dma_filter, plat->dma_tx_param);
288 	if (!chan) {
289 		dev_err(uap->port.dev, "no TX DMA channel!\n");
290 		return;
291 	}
292 
293 	dmaengine_slave_config(chan, &tx_conf);
294 	uap->dmatx.chan = chan;
295 
296 	dev_info(uap->port.dev, "DMA channel TX %s\n",
297 		 dma_chan_name(uap->dmatx.chan));
298 
299 	/* Optionally make use of an RX channel as well */
300 	if (plat->dma_rx_param) {
301 		struct dma_slave_config rx_conf = {
302 			.src_addr = uap->port.mapbase + UART01x_DR,
303 			.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
304 			.direction = DMA_FROM_DEVICE,
305 			.src_maxburst = uap->fifosize >> 1,
306 		};
307 
308 		chan = dma_request_channel(mask, plat->dma_filter, plat->dma_rx_param);
309 		if (!chan) {
310 			dev_err(uap->port.dev, "no RX DMA channel!\n");
311 			return;
312 		}
313 
314 		dmaengine_slave_config(chan, &rx_conf);
315 		uap->dmarx.chan = chan;
316 
317 		dev_info(uap->port.dev, "DMA channel RX %s\n",
318 			 dma_chan_name(uap->dmarx.chan));
319 	}
320 }
321 
322 #ifndef MODULE
323 /*
324  * Stack up the UARTs and let the above initcall be done at device
325  * initcall time, because the serial driver is called as an arch
326  * initcall, and at this time the DMA subsystem is not yet registered.
327  * At this point the driver will switch over to using DMA where desired.
328  */
329 struct dma_uap {
330 	struct list_head node;
331 	struct uart_amba_port *uap;
332 };
333 
334 static LIST_HEAD(pl011_dma_uarts);
335 
336 static int __init pl011_dma_initcall(void)
337 {
338 	struct list_head *node, *tmp;
339 
340 	list_for_each_safe(node, tmp, &pl011_dma_uarts) {
341 		struct dma_uap *dmau = list_entry(node, struct dma_uap, node);
342 		pl011_dma_probe_initcall(dmau->uap);
343 		list_del(node);
344 		kfree(dmau);
345 	}
346 	return 0;
347 }
348 
349 device_initcall(pl011_dma_initcall);
350 
351 static void pl011_dma_probe(struct uart_amba_port *uap)
352 {
353 	struct dma_uap *dmau = kzalloc(sizeof(struct dma_uap), GFP_KERNEL);
354 	if (dmau) {
355 		dmau->uap = uap;
356 		list_add_tail(&dmau->node, &pl011_dma_uarts);
357 	}
358 }
359 #else
360 static void pl011_dma_probe(struct uart_amba_port *uap)
361 {
362 	pl011_dma_probe_initcall(uap);
363 }
364 #endif
365 
366 static void pl011_dma_remove(struct uart_amba_port *uap)
367 {
368 	/* TODO: remove the initcall if it has not yet executed */
369 	if (uap->dmatx.chan)
370 		dma_release_channel(uap->dmatx.chan);
371 	if (uap->dmarx.chan)
372 		dma_release_channel(uap->dmarx.chan);
373 }
374 
375 /* Forward declare this for the refill routine */
376 static int pl011_dma_tx_refill(struct uart_amba_port *uap);
377 
378 /*
379  * The current DMA TX buffer has been sent.
380  * Try to queue up another DMA buffer.
381  */
382 static void pl011_dma_tx_callback(void *data)
383 {
384 	struct uart_amba_port *uap = data;
385 	struct pl011_dmatx_data *dmatx = &uap->dmatx;
386 	unsigned long flags;
387 	u16 dmacr;
388 
389 	spin_lock_irqsave(&uap->port.lock, flags);
390 	if (uap->dmatx.queued)
391 		dma_unmap_sg(dmatx->chan->device->dev, &dmatx->sg, 1,
392 			     DMA_TO_DEVICE);
393 
394 	dmacr = uap->dmacr;
395 	uap->dmacr = dmacr & ~UART011_TXDMAE;
396 	writew(uap->dmacr, uap->port.membase + UART011_DMACR);
397 
398 	/*
399 	 * If TX DMA was disabled, it means that we've stopped the DMA for
400 	 * some reason (eg, XOFF received, or we want to send an X-char.)
401 	 *
402 	 * Note: we need to be careful here of a potential race between DMA
403 	 * and the rest of the driver - if the driver disables TX DMA while
404 	 * a TX buffer completing, we must update the tx queued status to
405 	 * get further refills (hence we check dmacr).
406 	 */
407 	if (!(dmacr & UART011_TXDMAE) || uart_tx_stopped(&uap->port) ||
408 	    uart_circ_empty(&uap->port.state->xmit)) {
409 		uap->dmatx.queued = false;
410 		spin_unlock_irqrestore(&uap->port.lock, flags);
411 		return;
412 	}
413 
414 	if (pl011_dma_tx_refill(uap) <= 0) {
415 		/*
416 		 * We didn't queue a DMA buffer for some reason, but we
417 		 * have data pending to be sent.  Re-enable the TX IRQ.
418 		 */
419 		uap->im |= UART011_TXIM;
420 		writew(uap->im, uap->port.membase + UART011_IMSC);
421 	}
422 	spin_unlock_irqrestore(&uap->port.lock, flags);
423 }
424 
425 /*
426  * Try to refill the TX DMA buffer.
427  * Locking: called with port lock held and IRQs disabled.
428  * Returns:
429  *   1 if we queued up a TX DMA buffer.
430  *   0 if we didn't want to handle this by DMA
431  *  <0 on error
432  */
433 static int pl011_dma_tx_refill(struct uart_amba_port *uap)
434 {
435 	struct pl011_dmatx_data *dmatx = &uap->dmatx;
436 	struct dma_chan *chan = dmatx->chan;
437 	struct dma_device *dma_dev = chan->device;
438 	struct dma_async_tx_descriptor *desc;
439 	struct circ_buf *xmit = &uap->port.state->xmit;
440 	unsigned int count;
441 
442 	/*
443 	 * Try to avoid the overhead involved in using DMA if the
444 	 * transaction fits in the first half of the FIFO, by using
445 	 * the standard interrupt handling.  This ensures that we
446 	 * issue a uart_write_wakeup() at the appropriate time.
447 	 */
448 	count = uart_circ_chars_pending(xmit);
449 	if (count < (uap->fifosize >> 1)) {
450 		uap->dmatx.queued = false;
451 		return 0;
452 	}
453 
454 	/*
455 	 * Bodge: don't send the last character by DMA, as this
456 	 * will prevent XON from notifying us to restart DMA.
457 	 */
458 	count -= 1;
459 
460 	/* Else proceed to copy the TX chars to the DMA buffer and fire DMA */
461 	if (count > PL011_DMA_BUFFER_SIZE)
462 		count = PL011_DMA_BUFFER_SIZE;
463 
464 	if (xmit->tail < xmit->head)
465 		memcpy(&dmatx->buf[0], &xmit->buf[xmit->tail], count);
466 	else {
467 		size_t first = UART_XMIT_SIZE - xmit->tail;
468 		size_t second = xmit->head;
469 
470 		memcpy(&dmatx->buf[0], &xmit->buf[xmit->tail], first);
471 		if (second)
472 			memcpy(&dmatx->buf[first], &xmit->buf[0], second);
473 	}
474 
475 	dmatx->sg.length = count;
476 
477 	if (dma_map_sg(dma_dev->dev, &dmatx->sg, 1, DMA_TO_DEVICE) != 1) {
478 		uap->dmatx.queued = false;
479 		dev_dbg(uap->port.dev, "unable to map TX DMA\n");
480 		return -EBUSY;
481 	}
482 
483 	desc = dma_dev->device_prep_slave_sg(chan, &dmatx->sg, 1, DMA_TO_DEVICE,
484 					     DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
485 	if (!desc) {
486 		dma_unmap_sg(dma_dev->dev, &dmatx->sg, 1, DMA_TO_DEVICE);
487 		uap->dmatx.queued = false;
488 		/*
489 		 * If DMA cannot be used right now, we complete this
490 		 * transaction via IRQ and let the TTY layer retry.
491 		 */
492 		dev_dbg(uap->port.dev, "TX DMA busy\n");
493 		return -EBUSY;
494 	}
495 
496 	/* Some data to go along to the callback */
497 	desc->callback = pl011_dma_tx_callback;
498 	desc->callback_param = uap;
499 
500 	/* All errors should happen at prepare time */
501 	dmaengine_submit(desc);
502 
503 	/* Fire the DMA transaction */
504 	dma_dev->device_issue_pending(chan);
505 
506 	uap->dmacr |= UART011_TXDMAE;
507 	writew(uap->dmacr, uap->port.membase + UART011_DMACR);
508 	uap->dmatx.queued = true;
509 
510 	/*
511 	 * Now we know that DMA will fire, so advance the ring buffer
512 	 * with the stuff we just dispatched.
513 	 */
514 	xmit->tail = (xmit->tail + count) & (UART_XMIT_SIZE - 1);
515 	uap->port.icount.tx += count;
516 
517 	if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
518 		uart_write_wakeup(&uap->port);
519 
520 	return 1;
521 }
522 
523 /*
524  * We received a transmit interrupt without a pending X-char but with
525  * pending characters.
526  * Locking: called with port lock held and IRQs disabled.
527  * Returns:
528  *   false if we want to use PIO to transmit
529  *   true if we queued a DMA buffer
530  */
531 static bool pl011_dma_tx_irq(struct uart_amba_port *uap)
532 {
533 	if (!uap->using_tx_dma)
534 		return false;
535 
536 	/*
537 	 * If we already have a TX buffer queued, but received a
538 	 * TX interrupt, it will be because we've just sent an X-char.
539 	 * Ensure the TX DMA is enabled and the TX IRQ is disabled.
540 	 */
541 	if (uap->dmatx.queued) {
542 		uap->dmacr |= UART011_TXDMAE;
543 		writew(uap->dmacr, uap->port.membase + UART011_DMACR);
544 		uap->im &= ~UART011_TXIM;
545 		writew(uap->im, uap->port.membase + UART011_IMSC);
546 		return true;
547 	}
548 
549 	/*
550 	 * We don't have a TX buffer queued, so try to queue one.
551 	 * If we successfully queued a buffer, mask the TX IRQ.
552 	 */
553 	if (pl011_dma_tx_refill(uap) > 0) {
554 		uap->im &= ~UART011_TXIM;
555 		writew(uap->im, uap->port.membase + UART011_IMSC);
556 		return true;
557 	}
558 	return false;
559 }
560 
561 /*
562  * Stop the DMA transmit (eg, due to received XOFF).
563  * Locking: called with port lock held and IRQs disabled.
564  */
565 static inline void pl011_dma_tx_stop(struct uart_amba_port *uap)
566 {
567 	if (uap->dmatx.queued) {
568 		uap->dmacr &= ~UART011_TXDMAE;
569 		writew(uap->dmacr, uap->port.membase + UART011_DMACR);
570 	}
571 }
572 
573 /*
574  * Try to start a DMA transmit, or in the case of an XON/OFF
575  * character queued for send, try to get that character out ASAP.
576  * Locking: called with port lock held and IRQs disabled.
577  * Returns:
578  *   false if we want the TX IRQ to be enabled
579  *   true if we have a buffer queued
580  */
581 static inline bool pl011_dma_tx_start(struct uart_amba_port *uap)
582 {
583 	u16 dmacr;
584 
585 	if (!uap->using_tx_dma)
586 		return false;
587 
588 	if (!uap->port.x_char) {
589 		/* no X-char, try to push chars out in DMA mode */
590 		bool ret = true;
591 
592 		if (!uap->dmatx.queued) {
593 			if (pl011_dma_tx_refill(uap) > 0) {
594 				uap->im &= ~UART011_TXIM;
595 				ret = true;
596 			} else {
597 				uap->im |= UART011_TXIM;
598 				ret = false;
599 			}
600 			writew(uap->im, uap->port.membase + UART011_IMSC);
601 		} else if (!(uap->dmacr & UART011_TXDMAE)) {
602 			uap->dmacr |= UART011_TXDMAE;
603 			writew(uap->dmacr,
604 				       uap->port.membase + UART011_DMACR);
605 		}
606 		return ret;
607 	}
608 
609 	/*
610 	 * We have an X-char to send.  Disable DMA to prevent it loading
611 	 * the TX fifo, and then see if we can stuff it into the FIFO.
612 	 */
613 	dmacr = uap->dmacr;
614 	uap->dmacr &= ~UART011_TXDMAE;
615 	writew(uap->dmacr, uap->port.membase + UART011_DMACR);
616 
617 	if (readw(uap->port.membase + UART01x_FR) & UART01x_FR_TXFF) {
618 		/*
619 		 * No space in the FIFO, so enable the transmit interrupt
620 		 * so we know when there is space.  Note that once we've
621 		 * loaded the character, we should just re-enable DMA.
622 		 */
623 		return false;
624 	}
625 
626 	writew(uap->port.x_char, uap->port.membase + UART01x_DR);
627 	uap->port.icount.tx++;
628 	uap->port.x_char = 0;
629 
630 	/* Success - restore the DMA state */
631 	uap->dmacr = dmacr;
632 	writew(dmacr, uap->port.membase + UART011_DMACR);
633 
634 	return true;
635 }
636 
637 /*
638  * Flush the transmit buffer.
639  * Locking: called with port lock held and IRQs disabled.
640  */
641 static void pl011_dma_flush_buffer(struct uart_port *port)
642 {
643 	struct uart_amba_port *uap = (struct uart_amba_port *)port;
644 
645 	if (!uap->using_tx_dma)
646 		return;
647 
648 	/* Avoid deadlock with the DMA engine callback */
649 	spin_unlock(&uap->port.lock);
650 	dmaengine_terminate_all(uap->dmatx.chan);
651 	spin_lock(&uap->port.lock);
652 	if (uap->dmatx.queued) {
653 		dma_unmap_sg(uap->dmatx.chan->device->dev, &uap->dmatx.sg, 1,
654 			     DMA_TO_DEVICE);
655 		uap->dmatx.queued = false;
656 		uap->dmacr &= ~UART011_TXDMAE;
657 		writew(uap->dmacr, uap->port.membase + UART011_DMACR);
658 	}
659 }
660 
661 static void pl011_dma_rx_callback(void *data);
662 
663 static int pl011_dma_rx_trigger_dma(struct uart_amba_port *uap)
664 {
665 	struct dma_chan *rxchan = uap->dmarx.chan;
666 	struct dma_device *dma_dev;
667 	struct pl011_dmarx_data *dmarx = &uap->dmarx;
668 	struct dma_async_tx_descriptor *desc;
669 	struct pl011_sgbuf *sgbuf;
670 
671 	if (!rxchan)
672 		return -EIO;
673 
674 	/* Start the RX DMA job */
675 	sgbuf = uap->dmarx.use_buf_b ?
676 		&uap->dmarx.sgbuf_b : &uap->dmarx.sgbuf_a;
677 	dma_dev = rxchan->device;
678 	desc = rxchan->device->device_prep_slave_sg(rxchan, &sgbuf->sg, 1,
679 					DMA_FROM_DEVICE,
680 					DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
681 	/*
682 	 * If the DMA engine is busy and cannot prepare a
683 	 * channel, no big deal, the driver will fall back
684 	 * to interrupt mode as a result of this error code.
685 	 */
686 	if (!desc) {
687 		uap->dmarx.running = false;
688 		dmaengine_terminate_all(rxchan);
689 		return -EBUSY;
690 	}
691 
692 	/* Some data to go along to the callback */
693 	desc->callback = pl011_dma_rx_callback;
694 	desc->callback_param = uap;
695 	dmarx->cookie = dmaengine_submit(desc);
696 	dma_async_issue_pending(rxchan);
697 
698 	uap->dmacr |= UART011_RXDMAE;
699 	writew(uap->dmacr, uap->port.membase + UART011_DMACR);
700 	uap->dmarx.running = true;
701 
702 	uap->im &= ~UART011_RXIM;
703 	writew(uap->im, uap->port.membase + UART011_IMSC);
704 
705 	return 0;
706 }
707 
708 /*
709  * This is called when either the DMA job is complete, or
710  * the FIFO timeout interrupt occurred. This must be called
711  * with the port spinlock uap->port.lock held.
712  */
713 static void pl011_dma_rx_chars(struct uart_amba_port *uap,
714 			       u32 pending, bool use_buf_b,
715 			       bool readfifo)
716 {
717 	struct tty_struct *tty = uap->port.state->port.tty;
718 	struct pl011_sgbuf *sgbuf = use_buf_b ?
719 		&uap->dmarx.sgbuf_b : &uap->dmarx.sgbuf_a;
720 	struct device *dev = uap->dmarx.chan->device->dev;
721 	int dma_count = 0;
722 	u32 fifotaken = 0; /* only used for vdbg() */
723 
724 	/* Pick everything from the DMA first */
725 	if (pending) {
726 		/* Sync in buffer */
727 		dma_sync_sg_for_cpu(dev, &sgbuf->sg, 1, DMA_FROM_DEVICE);
728 
729 		/*
730 		 * First take all chars in the DMA pipe, then look in the FIFO.
731 		 * Note that tty_insert_flip_buf() tries to take as many chars
732 		 * as it can.
733 		 */
734 		dma_count = tty_insert_flip_string(uap->port.state->port.tty,
735 						   sgbuf->buf, pending);
736 
737 		/* Return buffer to device */
738 		dma_sync_sg_for_device(dev, &sgbuf->sg, 1, DMA_FROM_DEVICE);
739 
740 		uap->port.icount.rx += dma_count;
741 		if (dma_count < pending)
742 			dev_warn(uap->port.dev,
743 				 "couldn't insert all characters (TTY is full?)\n");
744 	}
745 
746 	/*
747 	 * Only continue with trying to read the FIFO if all DMA chars have
748 	 * been taken first.
749 	 */
750 	if (dma_count == pending && readfifo) {
751 		/* Clear any error flags */
752 		writew(UART011_OEIS | UART011_BEIS | UART011_PEIS | UART011_FEIS,
753 		       uap->port.membase + UART011_ICR);
754 
755 		/*
756 		 * If we read all the DMA'd characters, and we had an
757 		 * incomplete buffer, that could be due to an rx error, or
758 		 * maybe we just timed out. Read any pending chars and check
759 		 * the error status.
760 		 *
761 		 * Error conditions will only occur in the FIFO, these will
762 		 * trigger an immediate interrupt and stop the DMA job, so we
763 		 * will always find the error in the FIFO, never in the DMA
764 		 * buffer.
765 		 */
766 		fifotaken = pl011_fifo_to_tty(uap);
767 	}
768 
769 	spin_unlock(&uap->port.lock);
770 	dev_vdbg(uap->port.dev,
771 		 "Took %d chars from DMA buffer and %d chars from the FIFO\n",
772 		 dma_count, fifotaken);
773 	tty_flip_buffer_push(tty);
774 	spin_lock(&uap->port.lock);
775 }
776 
777 static void pl011_dma_rx_irq(struct uart_amba_port *uap)
778 {
779 	struct pl011_dmarx_data *dmarx = &uap->dmarx;
780 	struct dma_chan *rxchan = dmarx->chan;
781 	struct pl011_sgbuf *sgbuf = dmarx->use_buf_b ?
782 		&dmarx->sgbuf_b : &dmarx->sgbuf_a;
783 	size_t pending;
784 	struct dma_tx_state state;
785 	enum dma_status dmastat;
786 
787 	/*
788 	 * Pause the transfer so we can trust the current counter,
789 	 * do this before we pause the PL011 block, else we may
790 	 * overflow the FIFO.
791 	 */
792 	if (dmaengine_pause(rxchan))
793 		dev_err(uap->port.dev, "unable to pause DMA transfer\n");
794 	dmastat = rxchan->device->device_tx_status(rxchan,
795 						   dmarx->cookie, &state);
796 	if (dmastat != DMA_PAUSED)
797 		dev_err(uap->port.dev, "unable to pause DMA transfer\n");
798 
799 	/* Disable RX DMA - incoming data will wait in the FIFO */
800 	uap->dmacr &= ~UART011_RXDMAE;
801 	writew(uap->dmacr, uap->port.membase + UART011_DMACR);
802 	uap->dmarx.running = false;
803 
804 	pending = sgbuf->sg.length - state.residue;
805 	BUG_ON(pending > PL011_DMA_BUFFER_SIZE);
806 	/* Then we terminate the transfer - we now know our residue */
807 	dmaengine_terminate_all(rxchan);
808 
809 	/*
810 	 * This will take the chars we have so far and insert
811 	 * into the framework.
812 	 */
813 	pl011_dma_rx_chars(uap, pending, dmarx->use_buf_b, true);
814 
815 	/* Switch buffer & re-trigger DMA job */
816 	dmarx->use_buf_b = !dmarx->use_buf_b;
817 	if (pl011_dma_rx_trigger_dma(uap)) {
818 		dev_dbg(uap->port.dev, "could not retrigger RX DMA job "
819 			"fall back to interrupt mode\n");
820 		uap->im |= UART011_RXIM;
821 		writew(uap->im, uap->port.membase + UART011_IMSC);
822 	}
823 }
824 
825 static void pl011_dma_rx_callback(void *data)
826 {
827 	struct uart_amba_port *uap = data;
828 	struct pl011_dmarx_data *dmarx = &uap->dmarx;
829 	bool lastbuf = dmarx->use_buf_b;
830 	int ret;
831 
832 	/*
833 	 * This completion interrupt occurs typically when the
834 	 * RX buffer is totally stuffed but no timeout has yet
835 	 * occurred. When that happens, we just want the RX
836 	 * routine to flush out the secondary DMA buffer while
837 	 * we immediately trigger the next DMA job.
838 	 */
839 	spin_lock_irq(&uap->port.lock);
840 	uap->dmarx.running = false;
841 	dmarx->use_buf_b = !lastbuf;
842 	ret = pl011_dma_rx_trigger_dma(uap);
843 
844 	pl011_dma_rx_chars(uap, PL011_DMA_BUFFER_SIZE, lastbuf, false);
845 	spin_unlock_irq(&uap->port.lock);
846 	/*
847 	 * Do this check after we picked the DMA chars so we don't
848 	 * get some IRQ immediately from RX.
849 	 */
850 	if (ret) {
851 		dev_dbg(uap->port.dev, "could not retrigger RX DMA job "
852 			"fall back to interrupt mode\n");
853 		uap->im |= UART011_RXIM;
854 		writew(uap->im, uap->port.membase + UART011_IMSC);
855 	}
856 }
857 
858 /*
859  * Stop accepting received characters, when we're shutting down or
860  * suspending this port.
861  * Locking: called with port lock held and IRQs disabled.
862  */
863 static inline void pl011_dma_rx_stop(struct uart_amba_port *uap)
864 {
865 	/* FIXME.  Just disable the DMA enable */
866 	uap->dmacr &= ~UART011_RXDMAE;
867 	writew(uap->dmacr, uap->port.membase + UART011_DMACR);
868 }
869 
870 static void pl011_dma_startup(struct uart_amba_port *uap)
871 {
872 	int ret;
873 
874 	if (!uap->dmatx.chan)
875 		return;
876 
877 	uap->dmatx.buf = kmalloc(PL011_DMA_BUFFER_SIZE, GFP_KERNEL);
878 	if (!uap->dmatx.buf) {
879 		dev_err(uap->port.dev, "no memory for DMA TX buffer\n");
880 		uap->port.fifosize = uap->fifosize;
881 		return;
882 	}
883 
884 	sg_init_one(&uap->dmatx.sg, uap->dmatx.buf, PL011_DMA_BUFFER_SIZE);
885 
886 	/* The DMA buffer is now the FIFO the TTY subsystem can use */
887 	uap->port.fifosize = PL011_DMA_BUFFER_SIZE;
888 	uap->using_tx_dma = true;
889 
890 	if (!uap->dmarx.chan)
891 		goto skip_rx;
892 
893 	/* Allocate and map DMA RX buffers */
894 	ret = pl011_sgbuf_init(uap->dmarx.chan, &uap->dmarx.sgbuf_a,
895 			       DMA_FROM_DEVICE);
896 	if (ret) {
897 		dev_err(uap->port.dev, "failed to init DMA %s: %d\n",
898 			"RX buffer A", ret);
899 		goto skip_rx;
900 	}
901 
902 	ret = pl011_sgbuf_init(uap->dmarx.chan, &uap->dmarx.sgbuf_b,
903 			       DMA_FROM_DEVICE);
904 	if (ret) {
905 		dev_err(uap->port.dev, "failed to init DMA %s: %d\n",
906 			"RX buffer B", ret);
907 		pl011_sgbuf_free(uap->dmarx.chan, &uap->dmarx.sgbuf_a,
908 				 DMA_FROM_DEVICE);
909 		goto skip_rx;
910 	}
911 
912 	uap->using_rx_dma = true;
913 
914 skip_rx:
915 	/* Turn on DMA error (RX/TX will be enabled on demand) */
916 	uap->dmacr |= UART011_DMAONERR;
917 	writew(uap->dmacr, uap->port.membase + UART011_DMACR);
918 
919 	/*
920 	 * ST Micro variants has some specific dma burst threshold
921 	 * compensation. Set this to 16 bytes, so burst will only
922 	 * be issued above/below 16 bytes.
923 	 */
924 	if (uap->vendor->dma_threshold)
925 		writew(ST_UART011_DMAWM_RX_16 | ST_UART011_DMAWM_TX_16,
926 			       uap->port.membase + ST_UART011_DMAWM);
927 
928 	if (uap->using_rx_dma) {
929 		if (pl011_dma_rx_trigger_dma(uap))
930 			dev_dbg(uap->port.dev, "could not trigger initial "
931 				"RX DMA job, fall back to interrupt mode\n");
932 	}
933 }
934 
935 static void pl011_dma_shutdown(struct uart_amba_port *uap)
936 {
937 	if (!(uap->using_tx_dma || uap->using_rx_dma))
938 		return;
939 
940 	/* Disable RX and TX DMA */
941 	while (readw(uap->port.membase + UART01x_FR) & UART01x_FR_BUSY)
942 		barrier();
943 
944 	spin_lock_irq(&uap->port.lock);
945 	uap->dmacr &= ~(UART011_DMAONERR | UART011_RXDMAE | UART011_TXDMAE);
946 	writew(uap->dmacr, uap->port.membase + UART011_DMACR);
947 	spin_unlock_irq(&uap->port.lock);
948 
949 	if (uap->using_tx_dma) {
950 		/* In theory, this should already be done by pl011_dma_flush_buffer */
951 		dmaengine_terminate_all(uap->dmatx.chan);
952 		if (uap->dmatx.queued) {
953 			dma_unmap_sg(uap->dmatx.chan->device->dev, &uap->dmatx.sg, 1,
954 				     DMA_TO_DEVICE);
955 			uap->dmatx.queued = false;
956 		}
957 
958 		kfree(uap->dmatx.buf);
959 		uap->using_tx_dma = false;
960 	}
961 
962 	if (uap->using_rx_dma) {
963 		dmaengine_terminate_all(uap->dmarx.chan);
964 		/* Clean up the RX DMA */
965 		pl011_sgbuf_free(uap->dmarx.chan, &uap->dmarx.sgbuf_a, DMA_FROM_DEVICE);
966 		pl011_sgbuf_free(uap->dmarx.chan, &uap->dmarx.sgbuf_b, DMA_FROM_DEVICE);
967 		uap->using_rx_dma = false;
968 	}
969 }
970 
971 static inline bool pl011_dma_rx_available(struct uart_amba_port *uap)
972 {
973 	return uap->using_rx_dma;
974 }
975 
976 static inline bool pl011_dma_rx_running(struct uart_amba_port *uap)
977 {
978 	return uap->using_rx_dma && uap->dmarx.running;
979 }
980 
981 
982 #else
983 /* Blank functions if the DMA engine is not available */
984 static inline void pl011_dma_probe(struct uart_amba_port *uap)
985 {
986 }
987 
988 static inline void pl011_dma_remove(struct uart_amba_port *uap)
989 {
990 }
991 
992 static inline void pl011_dma_startup(struct uart_amba_port *uap)
993 {
994 }
995 
996 static inline void pl011_dma_shutdown(struct uart_amba_port *uap)
997 {
998 }
999 
1000 static inline bool pl011_dma_tx_irq(struct uart_amba_port *uap)
1001 {
1002 	return false;
1003 }
1004 
1005 static inline void pl011_dma_tx_stop(struct uart_amba_port *uap)
1006 {
1007 }
1008 
1009 static inline bool pl011_dma_tx_start(struct uart_amba_port *uap)
1010 {
1011 	return false;
1012 }
1013 
1014 static inline void pl011_dma_rx_irq(struct uart_amba_port *uap)
1015 {
1016 }
1017 
1018 static inline void pl011_dma_rx_stop(struct uart_amba_port *uap)
1019 {
1020 }
1021 
1022 static inline int pl011_dma_rx_trigger_dma(struct uart_amba_port *uap)
1023 {
1024 	return -EIO;
1025 }
1026 
1027 static inline bool pl011_dma_rx_available(struct uart_amba_port *uap)
1028 {
1029 	return false;
1030 }
1031 
1032 static inline bool pl011_dma_rx_running(struct uart_amba_port *uap)
1033 {
1034 	return false;
1035 }
1036 
1037 #define pl011_dma_flush_buffer	NULL
1038 #endif
1039 
1040 
1041 /*
1042  * pl011_lockup_wa
1043  * This workaround aims to break the deadlock situation
1044  * when after long transfer over uart in hardware flow
1045  * control, uart interrupt registers cannot be cleared.
1046  * Hence uart transfer gets blocked.
1047  *
1048  * It is seen that during such deadlock condition ICR
1049  * don't get cleared even on multiple write. This leads
1050  * pass_counter to decrease and finally reach zero. This
1051  * can be taken as trigger point to run this UART_BT_WA.
1052  *
1053  */
1054 static void pl011_lockup_wa(unsigned long data)
1055 {
1056 	struct uart_amba_port *uap = amba_ports[0];
1057 	void __iomem *base = uap->port.membase;
1058 	struct circ_buf *xmit = &uap->port.state->xmit;
1059 	struct tty_struct *tty = uap->port.state->port.tty;
1060 	int buf_empty_retries = 200;
1061 	int loop;
1062 
1063 	/* Stop HCI layer from submitting data for tx */
1064 	tty->hw_stopped = 1;
1065 	while (!uart_circ_empty(xmit)) {
1066 		if (buf_empty_retries-- == 0)
1067 			break;
1068 		udelay(100);
1069 	}
1070 
1071 	/* Backup registers */
1072 	for (loop = 0; loop < UART_WA_SAVE_NR; loop++)
1073 		uart_wa_regdata[loop] = readl(base + uart_wa_reg[loop]);
1074 
1075 	/* Disable UART so that FIFO data is flushed out */
1076 	writew(0x00, uap->port.membase + UART011_CR);
1077 
1078 	/* Soft reset UART module */
1079 	if (uap->port.dev->platform_data) {
1080 		struct amba_pl011_data *plat;
1081 
1082 		plat = uap->port.dev->platform_data;
1083 		if (plat->reset)
1084 			plat->reset();
1085 	}
1086 
1087 	/* Restore registers */
1088 	for (loop = 0; loop < UART_WA_SAVE_NR; loop++)
1089 		writew(uart_wa_regdata[loop] ,
1090 				uap->port.membase + uart_wa_reg[loop]);
1091 
1092 	/* Initialise the old status of the modem signals */
1093 	uap->old_status = readw(uap->port.membase + UART01x_FR) &
1094 		UART01x_FR_MODEM_ANY;
1095 
1096 	if (readl(base + UART011_MIS) & 0x2)
1097 		printk(KERN_EMERG "UART_BT_WA: ***FAILED***\n");
1098 
1099 	/* Start Tx/Rx */
1100 	tty->hw_stopped = 0;
1101 }
1102 
1103 static void pl011_stop_tx(struct uart_port *port)
1104 {
1105 	struct uart_amba_port *uap = (struct uart_amba_port *)port;
1106 
1107 	uap->im &= ~UART011_TXIM;
1108 	writew(uap->im, uap->port.membase + UART011_IMSC);
1109 	pl011_dma_tx_stop(uap);
1110 }
1111 
1112 static void pl011_start_tx(struct uart_port *port)
1113 {
1114 	struct uart_amba_port *uap = (struct uart_amba_port *)port;
1115 
1116 	if (!pl011_dma_tx_start(uap)) {
1117 		uap->im |= UART011_TXIM;
1118 		writew(uap->im, uap->port.membase + UART011_IMSC);
1119 	}
1120 }
1121 
1122 static void pl011_stop_rx(struct uart_port *port)
1123 {
1124 	struct uart_amba_port *uap = (struct uart_amba_port *)port;
1125 
1126 	uap->im &= ~(UART011_RXIM|UART011_RTIM|UART011_FEIM|
1127 		     UART011_PEIM|UART011_BEIM|UART011_OEIM);
1128 	writew(uap->im, uap->port.membase + UART011_IMSC);
1129 
1130 	pl011_dma_rx_stop(uap);
1131 }
1132 
1133 static void pl011_enable_ms(struct uart_port *port)
1134 {
1135 	struct uart_amba_port *uap = (struct uart_amba_port *)port;
1136 
1137 	uap->im |= UART011_RIMIM|UART011_CTSMIM|UART011_DCDMIM|UART011_DSRMIM;
1138 	writew(uap->im, uap->port.membase + UART011_IMSC);
1139 }
1140 
1141 static void pl011_rx_chars(struct uart_amba_port *uap)
1142 {
1143 	struct tty_struct *tty = uap->port.state->port.tty;
1144 
1145 	pl011_fifo_to_tty(uap);
1146 
1147 	spin_unlock(&uap->port.lock);
1148 	tty_flip_buffer_push(tty);
1149 	/*
1150 	 * If we were temporarily out of DMA mode for a while,
1151 	 * attempt to switch back to DMA mode again.
1152 	 */
1153 	if (pl011_dma_rx_available(uap)) {
1154 		if (pl011_dma_rx_trigger_dma(uap)) {
1155 			dev_dbg(uap->port.dev, "could not trigger RX DMA job "
1156 				"fall back to interrupt mode again\n");
1157 			uap->im |= UART011_RXIM;
1158 		} else
1159 			uap->im &= ~UART011_RXIM;
1160 		writew(uap->im, uap->port.membase + UART011_IMSC);
1161 	}
1162 	spin_lock(&uap->port.lock);
1163 }
1164 
1165 static void pl011_tx_chars(struct uart_amba_port *uap)
1166 {
1167 	struct circ_buf *xmit = &uap->port.state->xmit;
1168 	int count;
1169 
1170 	if (uap->port.x_char) {
1171 		writew(uap->port.x_char, uap->port.membase + UART01x_DR);
1172 		uap->port.icount.tx++;
1173 		uap->port.x_char = 0;
1174 		return;
1175 	}
1176 	if (uart_circ_empty(xmit) || uart_tx_stopped(&uap->port)) {
1177 		pl011_stop_tx(&uap->port);
1178 		return;
1179 	}
1180 
1181 	/* If we are using DMA mode, try to send some characters. */
1182 	if (pl011_dma_tx_irq(uap))
1183 		return;
1184 
1185 	count = uap->fifosize >> 1;
1186 	do {
1187 		writew(xmit->buf[xmit->tail], uap->port.membase + UART01x_DR);
1188 		xmit->tail = (xmit->tail + 1) & (UART_XMIT_SIZE - 1);
1189 		uap->port.icount.tx++;
1190 		if (uart_circ_empty(xmit))
1191 			break;
1192 	} while (--count > 0);
1193 
1194 	if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
1195 		uart_write_wakeup(&uap->port);
1196 
1197 	if (uart_circ_empty(xmit))
1198 		pl011_stop_tx(&uap->port);
1199 }
1200 
1201 static void pl011_modem_status(struct uart_amba_port *uap)
1202 {
1203 	unsigned int status, delta;
1204 
1205 	status = readw(uap->port.membase + UART01x_FR) & UART01x_FR_MODEM_ANY;
1206 
1207 	delta = status ^ uap->old_status;
1208 	uap->old_status = status;
1209 
1210 	if (!delta)
1211 		return;
1212 
1213 	if (delta & UART01x_FR_DCD)
1214 		uart_handle_dcd_change(&uap->port, status & UART01x_FR_DCD);
1215 
1216 	if (delta & UART01x_FR_DSR)
1217 		uap->port.icount.dsr++;
1218 
1219 	if (delta & UART01x_FR_CTS)
1220 		uart_handle_cts_change(&uap->port, status & UART01x_FR_CTS);
1221 
1222 	wake_up_interruptible(&uap->port.state->port.delta_msr_wait);
1223 }
1224 
1225 static irqreturn_t pl011_int(int irq, void *dev_id)
1226 {
1227 	struct uart_amba_port *uap = dev_id;
1228 	unsigned long flags;
1229 	unsigned int status, pass_counter = AMBA_ISR_PASS_LIMIT;
1230 	int handled = 0;
1231 
1232 	spin_lock_irqsave(&uap->port.lock, flags);
1233 
1234 	status = readw(uap->port.membase + UART011_MIS);
1235 	if (status) {
1236 		do {
1237 			writew(status & ~(UART011_TXIS|UART011_RTIS|
1238 					  UART011_RXIS),
1239 			       uap->port.membase + UART011_ICR);
1240 
1241 			if (status & (UART011_RTIS|UART011_RXIS)) {
1242 				if (pl011_dma_rx_running(uap))
1243 					pl011_dma_rx_irq(uap);
1244 				else
1245 					pl011_rx_chars(uap);
1246 			}
1247 			if (status & (UART011_DSRMIS|UART011_DCDMIS|
1248 				      UART011_CTSMIS|UART011_RIMIS))
1249 				pl011_modem_status(uap);
1250 			if (status & UART011_TXIS)
1251 				pl011_tx_chars(uap);
1252 
1253 			if (pass_counter-- == 0) {
1254 				if (uap->interrupt_may_hang)
1255 					tasklet_schedule(&pl011_lockup_tlet);
1256 				break;
1257 			}
1258 
1259 			status = readw(uap->port.membase + UART011_MIS);
1260 		} while (status != 0);
1261 		handled = 1;
1262 	}
1263 
1264 	spin_unlock_irqrestore(&uap->port.lock, flags);
1265 
1266 	return IRQ_RETVAL(handled);
1267 }
1268 
1269 static unsigned int pl01x_tx_empty(struct uart_port *port)
1270 {
1271 	struct uart_amba_port *uap = (struct uart_amba_port *)port;
1272 	unsigned int status = readw(uap->port.membase + UART01x_FR);
1273 	return status & (UART01x_FR_BUSY|UART01x_FR_TXFF) ? 0 : TIOCSER_TEMT;
1274 }
1275 
1276 static unsigned int pl01x_get_mctrl(struct uart_port *port)
1277 {
1278 	struct uart_amba_port *uap = (struct uart_amba_port *)port;
1279 	unsigned int result = 0;
1280 	unsigned int status = readw(uap->port.membase + UART01x_FR);
1281 
1282 #define TIOCMBIT(uartbit, tiocmbit)	\
1283 	if (status & uartbit)		\
1284 		result |= tiocmbit
1285 
1286 	TIOCMBIT(UART01x_FR_DCD, TIOCM_CAR);
1287 	TIOCMBIT(UART01x_FR_DSR, TIOCM_DSR);
1288 	TIOCMBIT(UART01x_FR_CTS, TIOCM_CTS);
1289 	TIOCMBIT(UART011_FR_RI, TIOCM_RNG);
1290 #undef TIOCMBIT
1291 	return result;
1292 }
1293 
1294 static void pl011_set_mctrl(struct uart_port *port, unsigned int mctrl)
1295 {
1296 	struct uart_amba_port *uap = (struct uart_amba_port *)port;
1297 	unsigned int cr;
1298 
1299 	cr = readw(uap->port.membase + UART011_CR);
1300 
1301 #define	TIOCMBIT(tiocmbit, uartbit)		\
1302 	if (mctrl & tiocmbit)		\
1303 		cr |= uartbit;		\
1304 	else				\
1305 		cr &= ~uartbit
1306 
1307 	TIOCMBIT(TIOCM_RTS, UART011_CR_RTS);
1308 	TIOCMBIT(TIOCM_DTR, UART011_CR_DTR);
1309 	TIOCMBIT(TIOCM_OUT1, UART011_CR_OUT1);
1310 	TIOCMBIT(TIOCM_OUT2, UART011_CR_OUT2);
1311 	TIOCMBIT(TIOCM_LOOP, UART011_CR_LBE);
1312 
1313 	if (uap->autorts) {
1314 		/* We need to disable auto-RTS if we want to turn RTS off */
1315 		TIOCMBIT(TIOCM_RTS, UART011_CR_RTSEN);
1316 	}
1317 #undef TIOCMBIT
1318 
1319 	writew(cr, uap->port.membase + UART011_CR);
1320 }
1321 
1322 static void pl011_break_ctl(struct uart_port *port, int break_state)
1323 {
1324 	struct uart_amba_port *uap = (struct uart_amba_port *)port;
1325 	unsigned long flags;
1326 	unsigned int lcr_h;
1327 
1328 	spin_lock_irqsave(&uap->port.lock, flags);
1329 	lcr_h = readw(uap->port.membase + uap->lcrh_tx);
1330 	if (break_state == -1)
1331 		lcr_h |= UART01x_LCRH_BRK;
1332 	else
1333 		lcr_h &= ~UART01x_LCRH_BRK;
1334 	writew(lcr_h, uap->port.membase + uap->lcrh_tx);
1335 	spin_unlock_irqrestore(&uap->port.lock, flags);
1336 }
1337 
1338 #ifdef CONFIG_CONSOLE_POLL
1339 static int pl010_get_poll_char(struct uart_port *port)
1340 {
1341 	struct uart_amba_port *uap = (struct uart_amba_port *)port;
1342 	unsigned int status;
1343 
1344 	status = readw(uap->port.membase + UART01x_FR);
1345 	if (status & UART01x_FR_RXFE)
1346 		return NO_POLL_CHAR;
1347 
1348 	return readw(uap->port.membase + UART01x_DR);
1349 }
1350 
1351 static void pl010_put_poll_char(struct uart_port *port,
1352 			 unsigned char ch)
1353 {
1354 	struct uart_amba_port *uap = (struct uart_amba_port *)port;
1355 
1356 	while (readw(uap->port.membase + UART01x_FR) & UART01x_FR_TXFF)
1357 		barrier();
1358 
1359 	writew(ch, uap->port.membase + UART01x_DR);
1360 }
1361 
1362 #endif /* CONFIG_CONSOLE_POLL */
1363 
1364 static int pl011_startup(struct uart_port *port)
1365 {
1366 	struct uart_amba_port *uap = (struct uart_amba_port *)port;
1367 	unsigned int cr;
1368 	int retval;
1369 
1370 	/*
1371 	 * Try to enable the clock producer.
1372 	 */
1373 	retval = clk_enable(uap->clk);
1374 	if (retval)
1375 		goto out;
1376 
1377 	uap->port.uartclk = clk_get_rate(uap->clk);
1378 
1379 	/*
1380 	 * Allocate the IRQ
1381 	 */
1382 	retval = request_irq(uap->port.irq, pl011_int, 0, "uart-pl011", uap);
1383 	if (retval)
1384 		goto clk_dis;
1385 
1386 	writew(uap->vendor->ifls, uap->port.membase + UART011_IFLS);
1387 
1388 	/*
1389 	 * Provoke TX FIFO interrupt into asserting.
1390 	 */
1391 	cr = UART01x_CR_UARTEN | UART011_CR_TXE | UART011_CR_LBE;
1392 	writew(cr, uap->port.membase + UART011_CR);
1393 	writew(0, uap->port.membase + UART011_FBRD);
1394 	writew(1, uap->port.membase + UART011_IBRD);
1395 	writew(0, uap->port.membase + uap->lcrh_rx);
1396 	if (uap->lcrh_tx != uap->lcrh_rx) {
1397 		int i;
1398 		/*
1399 		 * Wait 10 PCLKs before writing LCRH_TX register,
1400 		 * to get this delay write read only register 10 times
1401 		 */
1402 		for (i = 0; i < 10; ++i)
1403 			writew(0xff, uap->port.membase + UART011_MIS);
1404 		writew(0, uap->port.membase + uap->lcrh_tx);
1405 	}
1406 	writew(0, uap->port.membase + UART01x_DR);
1407 	while (readw(uap->port.membase + UART01x_FR) & UART01x_FR_BUSY)
1408 		barrier();
1409 
1410 	cr = UART01x_CR_UARTEN | UART011_CR_RXE | UART011_CR_TXE;
1411 	writew(cr, uap->port.membase + UART011_CR);
1412 
1413 	/* Clear pending error interrupts */
1414 	writew(UART011_OEIS | UART011_BEIS | UART011_PEIS | UART011_FEIS,
1415 	       uap->port.membase + UART011_ICR);
1416 
1417 	/*
1418 	 * initialise the old status of the modem signals
1419 	 */
1420 	uap->old_status = readw(uap->port.membase + UART01x_FR) & UART01x_FR_MODEM_ANY;
1421 
1422 	/* Startup DMA */
1423 	pl011_dma_startup(uap);
1424 
1425 	/*
1426 	 * Finally, enable interrupts, only timeouts when using DMA
1427 	 * if initial RX DMA job failed, start in interrupt mode
1428 	 * as well.
1429 	 */
1430 	spin_lock_irq(&uap->port.lock);
1431 	uap->im = UART011_RTIM;
1432 	if (!pl011_dma_rx_running(uap))
1433 		uap->im |= UART011_RXIM;
1434 	writew(uap->im, uap->port.membase + UART011_IMSC);
1435 	spin_unlock_irq(&uap->port.lock);
1436 
1437 	if (uap->port.dev->platform_data) {
1438 		struct amba_pl011_data *plat;
1439 
1440 		plat = uap->port.dev->platform_data;
1441 		if (plat->init)
1442 			plat->init();
1443 	}
1444 
1445 	return 0;
1446 
1447  clk_dis:
1448 	clk_disable(uap->clk);
1449  out:
1450 	return retval;
1451 }
1452 
1453 static void pl011_shutdown_channel(struct uart_amba_port *uap,
1454 					unsigned int lcrh)
1455 {
1456       unsigned long val;
1457 
1458       val = readw(uap->port.membase + lcrh);
1459       val &= ~(UART01x_LCRH_BRK | UART01x_LCRH_FEN);
1460       writew(val, uap->port.membase + lcrh);
1461 }
1462 
1463 static void pl011_shutdown(struct uart_port *port)
1464 {
1465 	struct uart_amba_port *uap = (struct uart_amba_port *)port;
1466 
1467 	/*
1468 	 * disable all interrupts
1469 	 */
1470 	spin_lock_irq(&uap->port.lock);
1471 	uap->im = 0;
1472 	writew(uap->im, uap->port.membase + UART011_IMSC);
1473 	writew(0xffff, uap->port.membase + UART011_ICR);
1474 	spin_unlock_irq(&uap->port.lock);
1475 
1476 	pl011_dma_shutdown(uap);
1477 
1478 	/*
1479 	 * Free the interrupt
1480 	 */
1481 	free_irq(uap->port.irq, uap);
1482 
1483 	/*
1484 	 * disable the port
1485 	 */
1486 	uap->autorts = false;
1487 	writew(UART01x_CR_UARTEN | UART011_CR_TXE, uap->port.membase + UART011_CR);
1488 
1489 	/*
1490 	 * disable break condition and fifos
1491 	 */
1492 	pl011_shutdown_channel(uap, uap->lcrh_rx);
1493 	if (uap->lcrh_rx != uap->lcrh_tx)
1494 		pl011_shutdown_channel(uap, uap->lcrh_tx);
1495 
1496 	/*
1497 	 * Shut down the clock producer
1498 	 */
1499 	clk_disable(uap->clk);
1500 
1501 	if (uap->port.dev->platform_data) {
1502 		struct amba_pl011_data *plat;
1503 
1504 		plat = uap->port.dev->platform_data;
1505 		if (plat->exit)
1506 			plat->exit();
1507 	}
1508 
1509 }
1510 
1511 static void
1512 pl011_set_termios(struct uart_port *port, struct ktermios *termios,
1513 		     struct ktermios *old)
1514 {
1515 	struct uart_amba_port *uap = (struct uart_amba_port *)port;
1516 	unsigned int lcr_h, old_cr;
1517 	unsigned long flags;
1518 	unsigned int baud, quot, clkdiv;
1519 
1520 	if (uap->vendor->oversampling)
1521 		clkdiv = 8;
1522 	else
1523 		clkdiv = 16;
1524 
1525 	/*
1526 	 * Ask the core to calculate the divisor for us.
1527 	 */
1528 	baud = uart_get_baud_rate(port, termios, old, 0,
1529 				  port->uartclk / clkdiv);
1530 
1531 	if (baud > port->uartclk/16)
1532 		quot = DIV_ROUND_CLOSEST(port->uartclk * 8, baud);
1533 	else
1534 		quot = DIV_ROUND_CLOSEST(port->uartclk * 4, baud);
1535 
1536 	switch (termios->c_cflag & CSIZE) {
1537 	case CS5:
1538 		lcr_h = UART01x_LCRH_WLEN_5;
1539 		break;
1540 	case CS6:
1541 		lcr_h = UART01x_LCRH_WLEN_6;
1542 		break;
1543 	case CS7:
1544 		lcr_h = UART01x_LCRH_WLEN_7;
1545 		break;
1546 	default: // CS8
1547 		lcr_h = UART01x_LCRH_WLEN_8;
1548 		break;
1549 	}
1550 	if (termios->c_cflag & CSTOPB)
1551 		lcr_h |= UART01x_LCRH_STP2;
1552 	if (termios->c_cflag & PARENB) {
1553 		lcr_h |= UART01x_LCRH_PEN;
1554 		if (!(termios->c_cflag & PARODD))
1555 			lcr_h |= UART01x_LCRH_EPS;
1556 	}
1557 	if (uap->fifosize > 1)
1558 		lcr_h |= UART01x_LCRH_FEN;
1559 
1560 	spin_lock_irqsave(&port->lock, flags);
1561 
1562 	/*
1563 	 * Update the per-port timeout.
1564 	 */
1565 	uart_update_timeout(port, termios->c_cflag, baud);
1566 
1567 	port->read_status_mask = UART011_DR_OE | 255;
1568 	if (termios->c_iflag & INPCK)
1569 		port->read_status_mask |= UART011_DR_FE | UART011_DR_PE;
1570 	if (termios->c_iflag & (BRKINT | PARMRK))
1571 		port->read_status_mask |= UART011_DR_BE;
1572 
1573 	/*
1574 	 * Characters to ignore
1575 	 */
1576 	port->ignore_status_mask = 0;
1577 	if (termios->c_iflag & IGNPAR)
1578 		port->ignore_status_mask |= UART011_DR_FE | UART011_DR_PE;
1579 	if (termios->c_iflag & IGNBRK) {
1580 		port->ignore_status_mask |= UART011_DR_BE;
1581 		/*
1582 		 * If we're ignoring parity and break indicators,
1583 		 * ignore overruns too (for real raw support).
1584 		 */
1585 		if (termios->c_iflag & IGNPAR)
1586 			port->ignore_status_mask |= UART011_DR_OE;
1587 	}
1588 
1589 	/*
1590 	 * Ignore all characters if CREAD is not set.
1591 	 */
1592 	if ((termios->c_cflag & CREAD) == 0)
1593 		port->ignore_status_mask |= UART_DUMMY_DR_RX;
1594 
1595 	if (UART_ENABLE_MS(port, termios->c_cflag))
1596 		pl011_enable_ms(port);
1597 
1598 	/* first, disable everything */
1599 	old_cr = readw(port->membase + UART011_CR);
1600 	writew(0, port->membase + UART011_CR);
1601 
1602 	if (termios->c_cflag & CRTSCTS) {
1603 		if (old_cr & UART011_CR_RTS)
1604 			old_cr |= UART011_CR_RTSEN;
1605 
1606 		old_cr |= UART011_CR_CTSEN;
1607 		uap->autorts = true;
1608 	} else {
1609 		old_cr &= ~(UART011_CR_CTSEN | UART011_CR_RTSEN);
1610 		uap->autorts = false;
1611 	}
1612 
1613 	if (uap->vendor->oversampling) {
1614 		if (baud > port->uartclk / 16)
1615 			old_cr |= ST_UART011_CR_OVSFACT;
1616 		else
1617 			old_cr &= ~ST_UART011_CR_OVSFACT;
1618 	}
1619 
1620 	/* Set baud rate */
1621 	writew(quot & 0x3f, port->membase + UART011_FBRD);
1622 	writew(quot >> 6, port->membase + UART011_IBRD);
1623 
1624 	/*
1625 	 * ----------v----------v----------v----------v-----
1626 	 * NOTE: MUST BE WRITTEN AFTER UARTLCR_M & UARTLCR_L
1627 	 * ----------^----------^----------^----------^-----
1628 	 */
1629 	writew(lcr_h, port->membase + uap->lcrh_rx);
1630 	if (uap->lcrh_rx != uap->lcrh_tx) {
1631 		int i;
1632 		/*
1633 		 * Wait 10 PCLKs before writing LCRH_TX register,
1634 		 * to get this delay write read only register 10 times
1635 		 */
1636 		for (i = 0; i < 10; ++i)
1637 			writew(0xff, uap->port.membase + UART011_MIS);
1638 		writew(lcr_h, port->membase + uap->lcrh_tx);
1639 	}
1640 	writew(old_cr, port->membase + UART011_CR);
1641 
1642 	spin_unlock_irqrestore(&port->lock, flags);
1643 }
1644 
1645 static const char *pl011_type(struct uart_port *port)
1646 {
1647 	struct uart_amba_port *uap = (struct uart_amba_port *)port;
1648 	return uap->port.type == PORT_AMBA ? uap->type : NULL;
1649 }
1650 
1651 /*
1652  * Release the memory region(s) being used by 'port'
1653  */
1654 static void pl010_release_port(struct uart_port *port)
1655 {
1656 	release_mem_region(port->mapbase, SZ_4K);
1657 }
1658 
1659 /*
1660  * Request the memory region(s) being used by 'port'
1661  */
1662 static int pl010_request_port(struct uart_port *port)
1663 {
1664 	return request_mem_region(port->mapbase, SZ_4K, "uart-pl011")
1665 			!= NULL ? 0 : -EBUSY;
1666 }
1667 
1668 /*
1669  * Configure/autoconfigure the port.
1670  */
1671 static void pl010_config_port(struct uart_port *port, int flags)
1672 {
1673 	if (flags & UART_CONFIG_TYPE) {
1674 		port->type = PORT_AMBA;
1675 		pl010_request_port(port);
1676 	}
1677 }
1678 
1679 /*
1680  * verify the new serial_struct (for TIOCSSERIAL).
1681  */
1682 static int pl010_verify_port(struct uart_port *port, struct serial_struct *ser)
1683 {
1684 	int ret = 0;
1685 	if (ser->type != PORT_UNKNOWN && ser->type != PORT_AMBA)
1686 		ret = -EINVAL;
1687 	if (ser->irq < 0 || ser->irq >= nr_irqs)
1688 		ret = -EINVAL;
1689 	if (ser->baud_base < 9600)
1690 		ret = -EINVAL;
1691 	return ret;
1692 }
1693 
1694 static struct uart_ops amba_pl011_pops = {
1695 	.tx_empty	= pl01x_tx_empty,
1696 	.set_mctrl	= pl011_set_mctrl,
1697 	.get_mctrl	= pl01x_get_mctrl,
1698 	.stop_tx	= pl011_stop_tx,
1699 	.start_tx	= pl011_start_tx,
1700 	.stop_rx	= pl011_stop_rx,
1701 	.enable_ms	= pl011_enable_ms,
1702 	.break_ctl	= pl011_break_ctl,
1703 	.startup	= pl011_startup,
1704 	.shutdown	= pl011_shutdown,
1705 	.flush_buffer	= pl011_dma_flush_buffer,
1706 	.set_termios	= pl011_set_termios,
1707 	.type		= pl011_type,
1708 	.release_port	= pl010_release_port,
1709 	.request_port	= pl010_request_port,
1710 	.config_port	= pl010_config_port,
1711 	.verify_port	= pl010_verify_port,
1712 #ifdef CONFIG_CONSOLE_POLL
1713 	.poll_get_char = pl010_get_poll_char,
1714 	.poll_put_char = pl010_put_poll_char,
1715 #endif
1716 };
1717 
1718 static struct uart_amba_port *amba_ports[UART_NR];
1719 
1720 #ifdef CONFIG_SERIAL_AMBA_PL011_CONSOLE
1721 
1722 static void pl011_console_putchar(struct uart_port *port, int ch)
1723 {
1724 	struct uart_amba_port *uap = (struct uart_amba_port *)port;
1725 
1726 	while (readw(uap->port.membase + UART01x_FR) & UART01x_FR_TXFF)
1727 		barrier();
1728 	writew(ch, uap->port.membase + UART01x_DR);
1729 }
1730 
1731 static void
1732 pl011_console_write(struct console *co, const char *s, unsigned int count)
1733 {
1734 	struct uart_amba_port *uap = amba_ports[co->index];
1735 	unsigned int status, old_cr, new_cr;
1736 
1737 	clk_enable(uap->clk);
1738 
1739 	/*
1740 	 *	First save the CR then disable the interrupts
1741 	 */
1742 	old_cr = readw(uap->port.membase + UART011_CR);
1743 	new_cr = old_cr & ~UART011_CR_CTSEN;
1744 	new_cr |= UART01x_CR_UARTEN | UART011_CR_TXE;
1745 	writew(new_cr, uap->port.membase + UART011_CR);
1746 
1747 	uart_console_write(&uap->port, s, count, pl011_console_putchar);
1748 
1749 	/*
1750 	 *	Finally, wait for transmitter to become empty
1751 	 *	and restore the TCR
1752 	 */
1753 	do {
1754 		status = readw(uap->port.membase + UART01x_FR);
1755 	} while (status & UART01x_FR_BUSY);
1756 	writew(old_cr, uap->port.membase + UART011_CR);
1757 
1758 	clk_disable(uap->clk);
1759 }
1760 
1761 static void __init
1762 pl011_console_get_options(struct uart_amba_port *uap, int *baud,
1763 			     int *parity, int *bits)
1764 {
1765 	if (readw(uap->port.membase + UART011_CR) & UART01x_CR_UARTEN) {
1766 		unsigned int lcr_h, ibrd, fbrd;
1767 
1768 		lcr_h = readw(uap->port.membase + uap->lcrh_tx);
1769 
1770 		*parity = 'n';
1771 		if (lcr_h & UART01x_LCRH_PEN) {
1772 			if (lcr_h & UART01x_LCRH_EPS)
1773 				*parity = 'e';
1774 			else
1775 				*parity = 'o';
1776 		}
1777 
1778 		if ((lcr_h & 0x60) == UART01x_LCRH_WLEN_7)
1779 			*bits = 7;
1780 		else
1781 			*bits = 8;
1782 
1783 		ibrd = readw(uap->port.membase + UART011_IBRD);
1784 		fbrd = readw(uap->port.membase + UART011_FBRD);
1785 
1786 		*baud = uap->port.uartclk * 4 / (64 * ibrd + fbrd);
1787 
1788 		if (uap->vendor->oversampling) {
1789 			if (readw(uap->port.membase + UART011_CR)
1790 				  & ST_UART011_CR_OVSFACT)
1791 				*baud *= 2;
1792 		}
1793 	}
1794 }
1795 
1796 static int __init pl011_console_setup(struct console *co, char *options)
1797 {
1798 	struct uart_amba_port *uap;
1799 	int baud = 38400;
1800 	int bits = 8;
1801 	int parity = 'n';
1802 	int flow = 'n';
1803 
1804 	/*
1805 	 * Check whether an invalid uart number has been specified, and
1806 	 * if so, search for the first available port that does have
1807 	 * console support.
1808 	 */
1809 	if (co->index >= UART_NR)
1810 		co->index = 0;
1811 	uap = amba_ports[co->index];
1812 	if (!uap)
1813 		return -ENODEV;
1814 
1815 	if (uap->port.dev->platform_data) {
1816 		struct amba_pl011_data *plat;
1817 
1818 		plat = uap->port.dev->platform_data;
1819 		if (plat->init)
1820 			plat->init();
1821 	}
1822 
1823 	uap->port.uartclk = clk_get_rate(uap->clk);
1824 
1825 	if (options)
1826 		uart_parse_options(options, &baud, &parity, &bits, &flow);
1827 	else
1828 		pl011_console_get_options(uap, &baud, &parity, &bits);
1829 
1830 	return uart_set_options(&uap->port, co, baud, parity, bits, flow);
1831 }
1832 
1833 static struct uart_driver amba_reg;
1834 static struct console amba_console = {
1835 	.name		= "ttyAMA",
1836 	.write		= pl011_console_write,
1837 	.device		= uart_console_device,
1838 	.setup		= pl011_console_setup,
1839 	.flags		= CON_PRINTBUFFER,
1840 	.index		= -1,
1841 	.data		= &amba_reg,
1842 };
1843 
1844 #define AMBA_CONSOLE	(&amba_console)
1845 #else
1846 #define AMBA_CONSOLE	NULL
1847 #endif
1848 
1849 static struct uart_driver amba_reg = {
1850 	.owner			= THIS_MODULE,
1851 	.driver_name		= "ttyAMA",
1852 	.dev_name		= "ttyAMA",
1853 	.major			= SERIAL_AMBA_MAJOR,
1854 	.minor			= SERIAL_AMBA_MINOR,
1855 	.nr			= UART_NR,
1856 	.cons			= AMBA_CONSOLE,
1857 };
1858 
1859 static int pl011_probe(struct amba_device *dev, const struct amba_id *id)
1860 {
1861 	struct uart_amba_port *uap;
1862 	struct vendor_data *vendor = id->data;
1863 	void __iomem *base;
1864 	int i, ret;
1865 
1866 	for (i = 0; i < ARRAY_SIZE(amba_ports); i++)
1867 		if (amba_ports[i] == NULL)
1868 			break;
1869 
1870 	if (i == ARRAY_SIZE(amba_ports)) {
1871 		ret = -EBUSY;
1872 		goto out;
1873 	}
1874 
1875 	uap = kzalloc(sizeof(struct uart_amba_port), GFP_KERNEL);
1876 	if (uap == NULL) {
1877 		ret = -ENOMEM;
1878 		goto out;
1879 	}
1880 
1881 	base = ioremap(dev->res.start, resource_size(&dev->res));
1882 	if (!base) {
1883 		ret = -ENOMEM;
1884 		goto free;
1885 	}
1886 
1887 	uap->clk = clk_get(&dev->dev, NULL);
1888 	if (IS_ERR(uap->clk)) {
1889 		ret = PTR_ERR(uap->clk);
1890 		goto unmap;
1891 	}
1892 
1893 	uap->vendor = vendor;
1894 	uap->lcrh_rx = vendor->lcrh_rx;
1895 	uap->lcrh_tx = vendor->lcrh_tx;
1896 	uap->fifosize = vendor->fifosize;
1897 	uap->interrupt_may_hang = vendor->interrupt_may_hang;
1898 	uap->port.dev = &dev->dev;
1899 	uap->port.mapbase = dev->res.start;
1900 	uap->port.membase = base;
1901 	uap->port.iotype = UPIO_MEM;
1902 	uap->port.irq = dev->irq[0];
1903 	uap->port.fifosize = uap->fifosize;
1904 	uap->port.ops = &amba_pl011_pops;
1905 	uap->port.flags = UPF_BOOT_AUTOCONF;
1906 	uap->port.line = i;
1907 	pl011_dma_probe(uap);
1908 
1909 	snprintf(uap->type, sizeof(uap->type), "PL011 rev%u", amba_rev(dev));
1910 
1911 	amba_ports[i] = uap;
1912 
1913 	amba_set_drvdata(dev, uap);
1914 	ret = uart_add_one_port(&amba_reg, &uap->port);
1915 	if (ret) {
1916 		amba_set_drvdata(dev, NULL);
1917 		amba_ports[i] = NULL;
1918 		pl011_dma_remove(uap);
1919 		clk_put(uap->clk);
1920  unmap:
1921 		iounmap(base);
1922  free:
1923 		kfree(uap);
1924 	}
1925  out:
1926 	return ret;
1927 }
1928 
1929 static int pl011_remove(struct amba_device *dev)
1930 {
1931 	struct uart_amba_port *uap = amba_get_drvdata(dev);
1932 	int i;
1933 
1934 	amba_set_drvdata(dev, NULL);
1935 
1936 	uart_remove_one_port(&amba_reg, &uap->port);
1937 
1938 	for (i = 0; i < ARRAY_SIZE(amba_ports); i++)
1939 		if (amba_ports[i] == uap)
1940 			amba_ports[i] = NULL;
1941 
1942 	pl011_dma_remove(uap);
1943 	iounmap(uap->port.membase);
1944 	clk_put(uap->clk);
1945 	kfree(uap);
1946 	return 0;
1947 }
1948 
1949 #ifdef CONFIG_PM
1950 static int pl011_suspend(struct amba_device *dev, pm_message_t state)
1951 {
1952 	struct uart_amba_port *uap = amba_get_drvdata(dev);
1953 
1954 	if (!uap)
1955 		return -EINVAL;
1956 
1957 	return uart_suspend_port(&amba_reg, &uap->port);
1958 }
1959 
1960 static int pl011_resume(struct amba_device *dev)
1961 {
1962 	struct uart_amba_port *uap = amba_get_drvdata(dev);
1963 
1964 	if (!uap)
1965 		return -EINVAL;
1966 
1967 	return uart_resume_port(&amba_reg, &uap->port);
1968 }
1969 #endif
1970 
1971 static struct amba_id pl011_ids[] = {
1972 	{
1973 		.id	= 0x00041011,
1974 		.mask	= 0x000fffff,
1975 		.data	= &vendor_arm,
1976 	},
1977 	{
1978 		.id	= 0x00380802,
1979 		.mask	= 0x00ffffff,
1980 		.data	= &vendor_st,
1981 	},
1982 	{ 0, 0 },
1983 };
1984 
1985 static struct amba_driver pl011_driver = {
1986 	.drv = {
1987 		.name	= "uart-pl011",
1988 	},
1989 	.id_table	= pl011_ids,
1990 	.probe		= pl011_probe,
1991 	.remove		= pl011_remove,
1992 #ifdef CONFIG_PM
1993 	.suspend	= pl011_suspend,
1994 	.resume		= pl011_resume,
1995 #endif
1996 };
1997 
1998 static int __init pl011_init(void)
1999 {
2000 	int ret;
2001 	printk(KERN_INFO "Serial: AMBA PL011 UART driver\n");
2002 
2003 	ret = uart_register_driver(&amba_reg);
2004 	if (ret == 0) {
2005 		ret = amba_driver_register(&pl011_driver);
2006 		if (ret)
2007 			uart_unregister_driver(&amba_reg);
2008 	}
2009 	return ret;
2010 }
2011 
2012 static void __exit pl011_exit(void)
2013 {
2014 	amba_driver_unregister(&pl011_driver);
2015 	uart_unregister_driver(&amba_reg);
2016 }
2017 
2018 /*
2019  * While this can be a module, if builtin it's most likely the console
2020  * So let's leave module_exit but move module_init to an earlier place
2021  */
2022 arch_initcall(pl011_init);
2023 module_exit(pl011_exit);
2024 
2025 MODULE_AUTHOR("ARM Ltd/Deep Blue Solutions Ltd");
2026 MODULE_DESCRIPTION("ARM AMBA serial port driver");
2027 MODULE_LICENSE("GPL");
2028