xref: /openbmc/linux/drivers/tty/serial/amba-pl011.c (revision 32d00f62)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  *  Driver for AMBA serial ports
4  *
5  *  Based on drivers/char/serial.c, by Linus Torvalds, Theodore Ts'o.
6  *
7  *  Copyright 1999 ARM Limited
8  *  Copyright (C) 2000 Deep Blue Solutions Ltd.
9  *  Copyright (C) 2010 ST-Ericsson SA
10  *
11  * This is a generic driver for ARM AMBA-type serial ports.  They
12  * have a lot of 16550-like features, but are not register compatible.
13  * Note that although they do have CTS, DCD and DSR inputs, they do
14  * not have an RI input, nor do they have DTR or RTS outputs.  If
15  * required, these have to be supplied via some other means (eg, GPIO)
16  * and hooked into this driver.
17  */
18 
19 #include <linux/module.h>
20 #include <linux/ioport.h>
21 #include <linux/init.h>
22 #include <linux/console.h>
23 #include <linux/sysrq.h>
24 #include <linux/device.h>
25 #include <linux/tty.h>
26 #include <linux/tty_flip.h>
27 #include <linux/serial_core.h>
28 #include <linux/serial.h>
29 #include <linux/amba/bus.h>
30 #include <linux/amba/serial.h>
31 #include <linux/clk.h>
32 #include <linux/slab.h>
33 #include <linux/dmaengine.h>
34 #include <linux/dma-mapping.h>
35 #include <linux/scatterlist.h>
36 #include <linux/delay.h>
37 #include <linux/types.h>
38 #include <linux/of.h>
39 #include <linux/of_device.h>
40 #include <linux/pinctrl/consumer.h>
41 #include <linux/sizes.h>
42 #include <linux/io.h>
43 #include <linux/acpi.h>
44 
45 #define UART_NR			14
46 
47 #define SERIAL_AMBA_MAJOR	204
48 #define SERIAL_AMBA_MINOR	64
49 #define SERIAL_AMBA_NR		UART_NR
50 
51 #define AMBA_ISR_PASS_LIMIT	256
52 
53 #define UART_DR_ERROR		(UART011_DR_OE|UART011_DR_BE|UART011_DR_PE|UART011_DR_FE)
54 #define UART_DUMMY_DR_RX	(1 << 16)
55 
56 enum {
57 	REG_DR,
58 	REG_ST_DMAWM,
59 	REG_ST_TIMEOUT,
60 	REG_FR,
61 	REG_LCRH_RX,
62 	REG_LCRH_TX,
63 	REG_IBRD,
64 	REG_FBRD,
65 	REG_CR,
66 	REG_IFLS,
67 	REG_IMSC,
68 	REG_RIS,
69 	REG_MIS,
70 	REG_ICR,
71 	REG_DMACR,
72 	REG_ST_XFCR,
73 	REG_ST_XON1,
74 	REG_ST_XON2,
75 	REG_ST_XOFF1,
76 	REG_ST_XOFF2,
77 	REG_ST_ITCR,
78 	REG_ST_ITIP,
79 	REG_ST_ABCR,
80 	REG_ST_ABIMSC,
81 
82 	/* The size of the array - must be last */
83 	REG_ARRAY_SIZE,
84 };
85 
86 static u16 pl011_std_offsets[REG_ARRAY_SIZE] = {
87 	[REG_DR] = UART01x_DR,
88 	[REG_FR] = UART01x_FR,
89 	[REG_LCRH_RX] = UART011_LCRH,
90 	[REG_LCRH_TX] = UART011_LCRH,
91 	[REG_IBRD] = UART011_IBRD,
92 	[REG_FBRD] = UART011_FBRD,
93 	[REG_CR] = UART011_CR,
94 	[REG_IFLS] = UART011_IFLS,
95 	[REG_IMSC] = UART011_IMSC,
96 	[REG_RIS] = UART011_RIS,
97 	[REG_MIS] = UART011_MIS,
98 	[REG_ICR] = UART011_ICR,
99 	[REG_DMACR] = UART011_DMACR,
100 };
101 
102 /* There is by now at least one vendor with differing details, so handle it */
103 struct vendor_data {
104 	const u16		*reg_offset;
105 	unsigned int		ifls;
106 	unsigned int		fr_busy;
107 	unsigned int		fr_dsr;
108 	unsigned int		fr_cts;
109 	unsigned int		fr_ri;
110 	unsigned int		inv_fr;
111 	bool			access_32b;
112 	bool			oversampling;
113 	bool			dma_threshold;
114 	bool			cts_event_workaround;
115 	bool			always_enabled;
116 	bool			fixed_options;
117 
118 	unsigned int (*get_fifosize)(struct amba_device *dev);
119 };
120 
121 static unsigned int get_fifosize_arm(struct amba_device *dev)
122 {
123 	return amba_rev(dev) < 3 ? 16 : 32;
124 }
125 
126 static struct vendor_data vendor_arm = {
127 	.reg_offset		= pl011_std_offsets,
128 	.ifls			= UART011_IFLS_RX4_8|UART011_IFLS_TX4_8,
129 	.fr_busy		= UART01x_FR_BUSY,
130 	.fr_dsr			= UART01x_FR_DSR,
131 	.fr_cts			= UART01x_FR_CTS,
132 	.fr_ri			= UART011_FR_RI,
133 	.oversampling		= false,
134 	.dma_threshold		= false,
135 	.cts_event_workaround	= false,
136 	.always_enabled		= false,
137 	.fixed_options		= false,
138 	.get_fifosize		= get_fifosize_arm,
139 };
140 
141 static const struct vendor_data vendor_sbsa = {
142 	.reg_offset		= pl011_std_offsets,
143 	.fr_busy		= UART01x_FR_BUSY,
144 	.fr_dsr			= UART01x_FR_DSR,
145 	.fr_cts			= UART01x_FR_CTS,
146 	.fr_ri			= UART011_FR_RI,
147 	.access_32b		= true,
148 	.oversampling		= false,
149 	.dma_threshold		= false,
150 	.cts_event_workaround	= false,
151 	.always_enabled		= true,
152 	.fixed_options		= true,
153 };
154 
155 #ifdef CONFIG_ACPI_SPCR_TABLE
156 static const struct vendor_data vendor_qdt_qdf2400_e44 = {
157 	.reg_offset		= pl011_std_offsets,
158 	.fr_busy		= UART011_FR_TXFE,
159 	.fr_dsr			= UART01x_FR_DSR,
160 	.fr_cts			= UART01x_FR_CTS,
161 	.fr_ri			= UART011_FR_RI,
162 	.inv_fr			= UART011_FR_TXFE,
163 	.access_32b		= true,
164 	.oversampling		= false,
165 	.dma_threshold		= false,
166 	.cts_event_workaround	= false,
167 	.always_enabled		= true,
168 	.fixed_options		= true,
169 };
170 #endif
171 
172 static u16 pl011_st_offsets[REG_ARRAY_SIZE] = {
173 	[REG_DR] = UART01x_DR,
174 	[REG_ST_DMAWM] = ST_UART011_DMAWM,
175 	[REG_ST_TIMEOUT] = ST_UART011_TIMEOUT,
176 	[REG_FR] = UART01x_FR,
177 	[REG_LCRH_RX] = ST_UART011_LCRH_RX,
178 	[REG_LCRH_TX] = ST_UART011_LCRH_TX,
179 	[REG_IBRD] = UART011_IBRD,
180 	[REG_FBRD] = UART011_FBRD,
181 	[REG_CR] = UART011_CR,
182 	[REG_IFLS] = UART011_IFLS,
183 	[REG_IMSC] = UART011_IMSC,
184 	[REG_RIS] = UART011_RIS,
185 	[REG_MIS] = UART011_MIS,
186 	[REG_ICR] = UART011_ICR,
187 	[REG_DMACR] = UART011_DMACR,
188 	[REG_ST_XFCR] = ST_UART011_XFCR,
189 	[REG_ST_XON1] = ST_UART011_XON1,
190 	[REG_ST_XON2] = ST_UART011_XON2,
191 	[REG_ST_XOFF1] = ST_UART011_XOFF1,
192 	[REG_ST_XOFF2] = ST_UART011_XOFF2,
193 	[REG_ST_ITCR] = ST_UART011_ITCR,
194 	[REG_ST_ITIP] = ST_UART011_ITIP,
195 	[REG_ST_ABCR] = ST_UART011_ABCR,
196 	[REG_ST_ABIMSC] = ST_UART011_ABIMSC,
197 };
198 
199 static unsigned int get_fifosize_st(struct amba_device *dev)
200 {
201 	return 64;
202 }
203 
204 static struct vendor_data vendor_st = {
205 	.reg_offset		= pl011_st_offsets,
206 	.ifls			= UART011_IFLS_RX_HALF|UART011_IFLS_TX_HALF,
207 	.fr_busy		= UART01x_FR_BUSY,
208 	.fr_dsr			= UART01x_FR_DSR,
209 	.fr_cts			= UART01x_FR_CTS,
210 	.fr_ri			= UART011_FR_RI,
211 	.oversampling		= true,
212 	.dma_threshold		= true,
213 	.cts_event_workaround	= true,
214 	.always_enabled		= false,
215 	.fixed_options		= false,
216 	.get_fifosize		= get_fifosize_st,
217 };
218 
219 /* Deals with DMA transactions */
220 
221 struct pl011_sgbuf {
222 	struct scatterlist sg;
223 	char *buf;
224 };
225 
226 struct pl011_dmarx_data {
227 	struct dma_chan		*chan;
228 	struct completion	complete;
229 	bool			use_buf_b;
230 	struct pl011_sgbuf	sgbuf_a;
231 	struct pl011_sgbuf	sgbuf_b;
232 	dma_cookie_t		cookie;
233 	bool			running;
234 	struct timer_list	timer;
235 	unsigned int last_residue;
236 	unsigned long last_jiffies;
237 	bool auto_poll_rate;
238 	unsigned int poll_rate;
239 	unsigned int poll_timeout;
240 };
241 
242 struct pl011_dmatx_data {
243 	struct dma_chan		*chan;
244 	struct scatterlist	sg;
245 	char			*buf;
246 	bool			queued;
247 };
248 
249 /*
250  * We wrap our port structure around the generic uart_port.
251  */
252 struct uart_amba_port {
253 	struct uart_port	port;
254 	const u16		*reg_offset;
255 	struct clk		*clk;
256 	const struct vendor_data *vendor;
257 	unsigned int		dmacr;		/* dma control reg */
258 	unsigned int		im;		/* interrupt mask */
259 	unsigned int		old_status;
260 	unsigned int		fifosize;	/* vendor-specific */
261 	unsigned int		fixed_baud;	/* vendor-set fixed baud rate */
262 	char			type[12];
263 	bool			rs485_tx_started;
264 	unsigned int		rs485_tx_drain_interval; /* usecs */
265 #ifdef CONFIG_DMA_ENGINE
266 	/* DMA stuff */
267 	bool			using_tx_dma;
268 	bool			using_rx_dma;
269 	struct pl011_dmarx_data dmarx;
270 	struct pl011_dmatx_data	dmatx;
271 	bool			dma_probed;
272 #endif
273 };
274 
275 static unsigned int pl011_tx_empty(struct uart_port *port);
276 
277 static unsigned int pl011_reg_to_offset(const struct uart_amba_port *uap,
278 	unsigned int reg)
279 {
280 	return uap->reg_offset[reg];
281 }
282 
283 static unsigned int pl011_read(const struct uart_amba_port *uap,
284 	unsigned int reg)
285 {
286 	void __iomem *addr = uap->port.membase + pl011_reg_to_offset(uap, reg);
287 
288 	return (uap->port.iotype == UPIO_MEM32) ?
289 		readl_relaxed(addr) : readw_relaxed(addr);
290 }
291 
292 static void pl011_write(unsigned int val, const struct uart_amba_port *uap,
293 	unsigned int reg)
294 {
295 	void __iomem *addr = uap->port.membase + pl011_reg_to_offset(uap, reg);
296 
297 	if (uap->port.iotype == UPIO_MEM32)
298 		writel_relaxed(val, addr);
299 	else
300 		writew_relaxed(val, addr);
301 }
302 
303 /*
304  * Reads up to 256 characters from the FIFO or until it's empty and
305  * inserts them into the TTY layer. Returns the number of characters
306  * read from the FIFO.
307  */
308 static int pl011_fifo_to_tty(struct uart_amba_port *uap)
309 {
310 	unsigned int ch, flag, fifotaken;
311 	int sysrq;
312 	u16 status;
313 
314 	for (fifotaken = 0; fifotaken != 256; fifotaken++) {
315 		status = pl011_read(uap, REG_FR);
316 		if (status & UART01x_FR_RXFE)
317 			break;
318 
319 		/* Take chars from the FIFO and update status */
320 		ch = pl011_read(uap, REG_DR) | UART_DUMMY_DR_RX;
321 		flag = TTY_NORMAL;
322 		uap->port.icount.rx++;
323 
324 		if (unlikely(ch & UART_DR_ERROR)) {
325 			if (ch & UART011_DR_BE) {
326 				ch &= ~(UART011_DR_FE | UART011_DR_PE);
327 				uap->port.icount.brk++;
328 				if (uart_handle_break(&uap->port))
329 					continue;
330 			} else if (ch & UART011_DR_PE)
331 				uap->port.icount.parity++;
332 			else if (ch & UART011_DR_FE)
333 				uap->port.icount.frame++;
334 			if (ch & UART011_DR_OE)
335 				uap->port.icount.overrun++;
336 
337 			ch &= uap->port.read_status_mask;
338 
339 			if (ch & UART011_DR_BE)
340 				flag = TTY_BREAK;
341 			else if (ch & UART011_DR_PE)
342 				flag = TTY_PARITY;
343 			else if (ch & UART011_DR_FE)
344 				flag = TTY_FRAME;
345 		}
346 
347 		spin_unlock(&uap->port.lock);
348 		sysrq = uart_handle_sysrq_char(&uap->port, ch & 255);
349 		spin_lock(&uap->port.lock);
350 
351 		if (!sysrq)
352 			uart_insert_char(&uap->port, ch, UART011_DR_OE, ch, flag);
353 	}
354 
355 	return fifotaken;
356 }
357 
358 
359 /*
360  * All the DMA operation mode stuff goes inside this ifdef.
361  * This assumes that you have a generic DMA device interface,
362  * no custom DMA interfaces are supported.
363  */
364 #ifdef CONFIG_DMA_ENGINE
365 
366 #define PL011_DMA_BUFFER_SIZE PAGE_SIZE
367 
368 static int pl011_sgbuf_init(struct dma_chan *chan, struct pl011_sgbuf *sg,
369 	enum dma_data_direction dir)
370 {
371 	dma_addr_t dma_addr;
372 
373 	sg->buf = dma_alloc_coherent(chan->device->dev,
374 		PL011_DMA_BUFFER_SIZE, &dma_addr, GFP_KERNEL);
375 	if (!sg->buf)
376 		return -ENOMEM;
377 
378 	sg_init_table(&sg->sg, 1);
379 	sg_set_page(&sg->sg, phys_to_page(dma_addr),
380 		PL011_DMA_BUFFER_SIZE, offset_in_page(dma_addr));
381 	sg_dma_address(&sg->sg) = dma_addr;
382 	sg_dma_len(&sg->sg) = PL011_DMA_BUFFER_SIZE;
383 
384 	return 0;
385 }
386 
387 static void pl011_sgbuf_free(struct dma_chan *chan, struct pl011_sgbuf *sg,
388 	enum dma_data_direction dir)
389 {
390 	if (sg->buf) {
391 		dma_free_coherent(chan->device->dev,
392 			PL011_DMA_BUFFER_SIZE, sg->buf,
393 			sg_dma_address(&sg->sg));
394 	}
395 }
396 
397 static void pl011_dma_probe(struct uart_amba_port *uap)
398 {
399 	/* DMA is the sole user of the platform data right now */
400 	struct amba_pl011_data *plat = dev_get_platdata(uap->port.dev);
401 	struct device *dev = uap->port.dev;
402 	struct dma_slave_config tx_conf = {
403 		.dst_addr = uap->port.mapbase +
404 				 pl011_reg_to_offset(uap, REG_DR),
405 		.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
406 		.direction = DMA_MEM_TO_DEV,
407 		.dst_maxburst = uap->fifosize >> 1,
408 		.device_fc = false,
409 	};
410 	struct dma_chan *chan;
411 	dma_cap_mask_t mask;
412 
413 	uap->dma_probed = true;
414 	chan = dma_request_chan(dev, "tx");
415 	if (IS_ERR(chan)) {
416 		if (PTR_ERR(chan) == -EPROBE_DEFER) {
417 			uap->dma_probed = false;
418 			return;
419 		}
420 
421 		/* We need platform data */
422 		if (!plat || !plat->dma_filter) {
423 			dev_info(uap->port.dev, "no DMA platform data\n");
424 			return;
425 		}
426 
427 		/* Try to acquire a generic DMA engine slave TX channel */
428 		dma_cap_zero(mask);
429 		dma_cap_set(DMA_SLAVE, mask);
430 
431 		chan = dma_request_channel(mask, plat->dma_filter,
432 						plat->dma_tx_param);
433 		if (!chan) {
434 			dev_err(uap->port.dev, "no TX DMA channel!\n");
435 			return;
436 		}
437 	}
438 
439 	dmaengine_slave_config(chan, &tx_conf);
440 	uap->dmatx.chan = chan;
441 
442 	dev_info(uap->port.dev, "DMA channel TX %s\n",
443 		 dma_chan_name(uap->dmatx.chan));
444 
445 	/* Optionally make use of an RX channel as well */
446 	chan = dma_request_slave_channel(dev, "rx");
447 
448 	if (!chan && plat && plat->dma_rx_param) {
449 		chan = dma_request_channel(mask, plat->dma_filter, plat->dma_rx_param);
450 
451 		if (!chan) {
452 			dev_err(uap->port.dev, "no RX DMA channel!\n");
453 			return;
454 		}
455 	}
456 
457 	if (chan) {
458 		struct dma_slave_config rx_conf = {
459 			.src_addr = uap->port.mapbase +
460 				pl011_reg_to_offset(uap, REG_DR),
461 			.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
462 			.direction = DMA_DEV_TO_MEM,
463 			.src_maxburst = uap->fifosize >> 2,
464 			.device_fc = false,
465 		};
466 		struct dma_slave_caps caps;
467 
468 		/*
469 		 * Some DMA controllers provide information on their capabilities.
470 		 * If the controller does, check for suitable residue processing
471 		 * otherwise assime all is well.
472 		 */
473 		if (0 == dma_get_slave_caps(chan, &caps)) {
474 			if (caps.residue_granularity ==
475 					DMA_RESIDUE_GRANULARITY_DESCRIPTOR) {
476 				dma_release_channel(chan);
477 				dev_info(uap->port.dev,
478 					"RX DMA disabled - no residue processing\n");
479 				return;
480 			}
481 		}
482 		dmaengine_slave_config(chan, &rx_conf);
483 		uap->dmarx.chan = chan;
484 
485 		uap->dmarx.auto_poll_rate = false;
486 		if (plat && plat->dma_rx_poll_enable) {
487 			/* Set poll rate if specified. */
488 			if (plat->dma_rx_poll_rate) {
489 				uap->dmarx.auto_poll_rate = false;
490 				uap->dmarx.poll_rate = plat->dma_rx_poll_rate;
491 			} else {
492 				/*
493 				 * 100 ms defaults to poll rate if not
494 				 * specified. This will be adjusted with
495 				 * the baud rate at set_termios.
496 				 */
497 				uap->dmarx.auto_poll_rate = true;
498 				uap->dmarx.poll_rate =  100;
499 			}
500 			/* 3 secs defaults poll_timeout if not specified. */
501 			if (plat->dma_rx_poll_timeout)
502 				uap->dmarx.poll_timeout =
503 					plat->dma_rx_poll_timeout;
504 			else
505 				uap->dmarx.poll_timeout = 3000;
506 		} else if (!plat && dev->of_node) {
507 			uap->dmarx.auto_poll_rate = of_property_read_bool(
508 						dev->of_node, "auto-poll");
509 			if (uap->dmarx.auto_poll_rate) {
510 				u32 x;
511 
512 				if (0 == of_property_read_u32(dev->of_node,
513 						"poll-rate-ms", &x))
514 					uap->dmarx.poll_rate = x;
515 				else
516 					uap->dmarx.poll_rate = 100;
517 				if (0 == of_property_read_u32(dev->of_node,
518 						"poll-timeout-ms", &x))
519 					uap->dmarx.poll_timeout = x;
520 				else
521 					uap->dmarx.poll_timeout = 3000;
522 			}
523 		}
524 		dev_info(uap->port.dev, "DMA channel RX %s\n",
525 			 dma_chan_name(uap->dmarx.chan));
526 	}
527 }
528 
529 static void pl011_dma_remove(struct uart_amba_port *uap)
530 {
531 	if (uap->dmatx.chan)
532 		dma_release_channel(uap->dmatx.chan);
533 	if (uap->dmarx.chan)
534 		dma_release_channel(uap->dmarx.chan);
535 }
536 
537 /* Forward declare these for the refill routine */
538 static int pl011_dma_tx_refill(struct uart_amba_port *uap);
539 static void pl011_start_tx_pio(struct uart_amba_port *uap);
540 
541 /*
542  * The current DMA TX buffer has been sent.
543  * Try to queue up another DMA buffer.
544  */
545 static void pl011_dma_tx_callback(void *data)
546 {
547 	struct uart_amba_port *uap = data;
548 	struct pl011_dmatx_data *dmatx = &uap->dmatx;
549 	unsigned long flags;
550 	u16 dmacr;
551 
552 	spin_lock_irqsave(&uap->port.lock, flags);
553 	if (uap->dmatx.queued)
554 		dma_unmap_sg(dmatx->chan->device->dev, &dmatx->sg, 1,
555 			     DMA_TO_DEVICE);
556 
557 	dmacr = uap->dmacr;
558 	uap->dmacr = dmacr & ~UART011_TXDMAE;
559 	pl011_write(uap->dmacr, uap, REG_DMACR);
560 
561 	/*
562 	 * If TX DMA was disabled, it means that we've stopped the DMA for
563 	 * some reason (eg, XOFF received, or we want to send an X-char.)
564 	 *
565 	 * Note: we need to be careful here of a potential race between DMA
566 	 * and the rest of the driver - if the driver disables TX DMA while
567 	 * a TX buffer completing, we must update the tx queued status to
568 	 * get further refills (hence we check dmacr).
569 	 */
570 	if (!(dmacr & UART011_TXDMAE) || uart_tx_stopped(&uap->port) ||
571 	    uart_circ_empty(&uap->port.state->xmit)) {
572 		uap->dmatx.queued = false;
573 		spin_unlock_irqrestore(&uap->port.lock, flags);
574 		return;
575 	}
576 
577 	if (pl011_dma_tx_refill(uap) <= 0)
578 		/*
579 		 * We didn't queue a DMA buffer for some reason, but we
580 		 * have data pending to be sent.  Re-enable the TX IRQ.
581 		 */
582 		pl011_start_tx_pio(uap);
583 
584 	spin_unlock_irqrestore(&uap->port.lock, flags);
585 }
586 
587 /*
588  * Try to refill the TX DMA buffer.
589  * Locking: called with port lock held and IRQs disabled.
590  * Returns:
591  *   1 if we queued up a TX DMA buffer.
592  *   0 if we didn't want to handle this by DMA
593  *  <0 on error
594  */
595 static int pl011_dma_tx_refill(struct uart_amba_port *uap)
596 {
597 	struct pl011_dmatx_data *dmatx = &uap->dmatx;
598 	struct dma_chan *chan = dmatx->chan;
599 	struct dma_device *dma_dev = chan->device;
600 	struct dma_async_tx_descriptor *desc;
601 	struct circ_buf *xmit = &uap->port.state->xmit;
602 	unsigned int count;
603 
604 	/*
605 	 * Try to avoid the overhead involved in using DMA if the
606 	 * transaction fits in the first half of the FIFO, by using
607 	 * the standard interrupt handling.  This ensures that we
608 	 * issue a uart_write_wakeup() at the appropriate time.
609 	 */
610 	count = uart_circ_chars_pending(xmit);
611 	if (count < (uap->fifosize >> 1)) {
612 		uap->dmatx.queued = false;
613 		return 0;
614 	}
615 
616 	/*
617 	 * Bodge: don't send the last character by DMA, as this
618 	 * will prevent XON from notifying us to restart DMA.
619 	 */
620 	count -= 1;
621 
622 	/* Else proceed to copy the TX chars to the DMA buffer and fire DMA */
623 	if (count > PL011_DMA_BUFFER_SIZE)
624 		count = PL011_DMA_BUFFER_SIZE;
625 
626 	if (xmit->tail < xmit->head)
627 		memcpy(&dmatx->buf[0], &xmit->buf[xmit->tail], count);
628 	else {
629 		size_t first = UART_XMIT_SIZE - xmit->tail;
630 		size_t second;
631 
632 		if (first > count)
633 			first = count;
634 		second = count - first;
635 
636 		memcpy(&dmatx->buf[0], &xmit->buf[xmit->tail], first);
637 		if (second)
638 			memcpy(&dmatx->buf[first], &xmit->buf[0], second);
639 	}
640 
641 	dmatx->sg.length = count;
642 
643 	if (dma_map_sg(dma_dev->dev, &dmatx->sg, 1, DMA_TO_DEVICE) != 1) {
644 		uap->dmatx.queued = false;
645 		dev_dbg(uap->port.dev, "unable to map TX DMA\n");
646 		return -EBUSY;
647 	}
648 
649 	desc = dmaengine_prep_slave_sg(chan, &dmatx->sg, 1, DMA_MEM_TO_DEV,
650 					     DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
651 	if (!desc) {
652 		dma_unmap_sg(dma_dev->dev, &dmatx->sg, 1, DMA_TO_DEVICE);
653 		uap->dmatx.queued = false;
654 		/*
655 		 * If DMA cannot be used right now, we complete this
656 		 * transaction via IRQ and let the TTY layer retry.
657 		 */
658 		dev_dbg(uap->port.dev, "TX DMA busy\n");
659 		return -EBUSY;
660 	}
661 
662 	/* Some data to go along to the callback */
663 	desc->callback = pl011_dma_tx_callback;
664 	desc->callback_param = uap;
665 
666 	/* All errors should happen at prepare time */
667 	dmaengine_submit(desc);
668 
669 	/* Fire the DMA transaction */
670 	dma_dev->device_issue_pending(chan);
671 
672 	uap->dmacr |= UART011_TXDMAE;
673 	pl011_write(uap->dmacr, uap, REG_DMACR);
674 	uap->dmatx.queued = true;
675 
676 	/*
677 	 * Now we know that DMA will fire, so advance the ring buffer
678 	 * with the stuff we just dispatched.
679 	 */
680 	xmit->tail = (xmit->tail + count) & (UART_XMIT_SIZE - 1);
681 	uap->port.icount.tx += count;
682 
683 	if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
684 		uart_write_wakeup(&uap->port);
685 
686 	return 1;
687 }
688 
689 /*
690  * We received a transmit interrupt without a pending X-char but with
691  * pending characters.
692  * Locking: called with port lock held and IRQs disabled.
693  * Returns:
694  *   false if we want to use PIO to transmit
695  *   true if we queued a DMA buffer
696  */
697 static bool pl011_dma_tx_irq(struct uart_amba_port *uap)
698 {
699 	if (!uap->using_tx_dma)
700 		return false;
701 
702 	/*
703 	 * If we already have a TX buffer queued, but received a
704 	 * TX interrupt, it will be because we've just sent an X-char.
705 	 * Ensure the TX DMA is enabled and the TX IRQ is disabled.
706 	 */
707 	if (uap->dmatx.queued) {
708 		uap->dmacr |= UART011_TXDMAE;
709 		pl011_write(uap->dmacr, uap, REG_DMACR);
710 		uap->im &= ~UART011_TXIM;
711 		pl011_write(uap->im, uap, REG_IMSC);
712 		return true;
713 	}
714 
715 	/*
716 	 * We don't have a TX buffer queued, so try to queue one.
717 	 * If we successfully queued a buffer, mask the TX IRQ.
718 	 */
719 	if (pl011_dma_tx_refill(uap) > 0) {
720 		uap->im &= ~UART011_TXIM;
721 		pl011_write(uap->im, uap, REG_IMSC);
722 		return true;
723 	}
724 	return false;
725 }
726 
727 /*
728  * Stop the DMA transmit (eg, due to received XOFF).
729  * Locking: called with port lock held and IRQs disabled.
730  */
731 static inline void pl011_dma_tx_stop(struct uart_amba_port *uap)
732 {
733 	if (uap->dmatx.queued) {
734 		uap->dmacr &= ~UART011_TXDMAE;
735 		pl011_write(uap->dmacr, uap, REG_DMACR);
736 	}
737 }
738 
739 /*
740  * Try to start a DMA transmit, or in the case of an XON/OFF
741  * character queued for send, try to get that character out ASAP.
742  * Locking: called with port lock held and IRQs disabled.
743  * Returns:
744  *   false if we want the TX IRQ to be enabled
745  *   true if we have a buffer queued
746  */
747 static inline bool pl011_dma_tx_start(struct uart_amba_port *uap)
748 {
749 	u16 dmacr;
750 
751 	if (!uap->using_tx_dma)
752 		return false;
753 
754 	if (!uap->port.x_char) {
755 		/* no X-char, try to push chars out in DMA mode */
756 		bool ret = true;
757 
758 		if (!uap->dmatx.queued) {
759 			if (pl011_dma_tx_refill(uap) > 0) {
760 				uap->im &= ~UART011_TXIM;
761 				pl011_write(uap->im, uap, REG_IMSC);
762 			} else
763 				ret = false;
764 		} else if (!(uap->dmacr & UART011_TXDMAE)) {
765 			uap->dmacr |= UART011_TXDMAE;
766 			pl011_write(uap->dmacr, uap, REG_DMACR);
767 		}
768 		return ret;
769 	}
770 
771 	/*
772 	 * We have an X-char to send.  Disable DMA to prevent it loading
773 	 * the TX fifo, and then see if we can stuff it into the FIFO.
774 	 */
775 	dmacr = uap->dmacr;
776 	uap->dmacr &= ~UART011_TXDMAE;
777 	pl011_write(uap->dmacr, uap, REG_DMACR);
778 
779 	if (pl011_read(uap, REG_FR) & UART01x_FR_TXFF) {
780 		/*
781 		 * No space in the FIFO, so enable the transmit interrupt
782 		 * so we know when there is space.  Note that once we've
783 		 * loaded the character, we should just re-enable DMA.
784 		 */
785 		return false;
786 	}
787 
788 	pl011_write(uap->port.x_char, uap, REG_DR);
789 	uap->port.icount.tx++;
790 	uap->port.x_char = 0;
791 
792 	/* Success - restore the DMA state */
793 	uap->dmacr = dmacr;
794 	pl011_write(dmacr, uap, REG_DMACR);
795 
796 	return true;
797 }
798 
799 /*
800  * Flush the transmit buffer.
801  * Locking: called with port lock held and IRQs disabled.
802  */
803 static void pl011_dma_flush_buffer(struct uart_port *port)
804 __releases(&uap->port.lock)
805 __acquires(&uap->port.lock)
806 {
807 	struct uart_amba_port *uap =
808 	    container_of(port, struct uart_amba_port, port);
809 
810 	if (!uap->using_tx_dma)
811 		return;
812 
813 	dmaengine_terminate_async(uap->dmatx.chan);
814 
815 	if (uap->dmatx.queued) {
816 		dma_unmap_sg(uap->dmatx.chan->device->dev, &uap->dmatx.sg, 1,
817 			     DMA_TO_DEVICE);
818 		uap->dmatx.queued = false;
819 		uap->dmacr &= ~UART011_TXDMAE;
820 		pl011_write(uap->dmacr, uap, REG_DMACR);
821 	}
822 }
823 
824 static void pl011_dma_rx_callback(void *data);
825 
826 static int pl011_dma_rx_trigger_dma(struct uart_amba_port *uap)
827 {
828 	struct dma_chan *rxchan = uap->dmarx.chan;
829 	struct pl011_dmarx_data *dmarx = &uap->dmarx;
830 	struct dma_async_tx_descriptor *desc;
831 	struct pl011_sgbuf *sgbuf;
832 
833 	if (!rxchan)
834 		return -EIO;
835 
836 	/* Start the RX DMA job */
837 	sgbuf = uap->dmarx.use_buf_b ?
838 		&uap->dmarx.sgbuf_b : &uap->dmarx.sgbuf_a;
839 	desc = dmaengine_prep_slave_sg(rxchan, &sgbuf->sg, 1,
840 					DMA_DEV_TO_MEM,
841 					DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
842 	/*
843 	 * If the DMA engine is busy and cannot prepare a
844 	 * channel, no big deal, the driver will fall back
845 	 * to interrupt mode as a result of this error code.
846 	 */
847 	if (!desc) {
848 		uap->dmarx.running = false;
849 		dmaengine_terminate_all(rxchan);
850 		return -EBUSY;
851 	}
852 
853 	/* Some data to go along to the callback */
854 	desc->callback = pl011_dma_rx_callback;
855 	desc->callback_param = uap;
856 	dmarx->cookie = dmaengine_submit(desc);
857 	dma_async_issue_pending(rxchan);
858 
859 	uap->dmacr |= UART011_RXDMAE;
860 	pl011_write(uap->dmacr, uap, REG_DMACR);
861 	uap->dmarx.running = true;
862 
863 	uap->im &= ~UART011_RXIM;
864 	pl011_write(uap->im, uap, REG_IMSC);
865 
866 	return 0;
867 }
868 
869 /*
870  * This is called when either the DMA job is complete, or
871  * the FIFO timeout interrupt occurred. This must be called
872  * with the port spinlock uap->port.lock held.
873  */
874 static void pl011_dma_rx_chars(struct uart_amba_port *uap,
875 			       u32 pending, bool use_buf_b,
876 			       bool readfifo)
877 {
878 	struct tty_port *port = &uap->port.state->port;
879 	struct pl011_sgbuf *sgbuf = use_buf_b ?
880 		&uap->dmarx.sgbuf_b : &uap->dmarx.sgbuf_a;
881 	int dma_count = 0;
882 	u32 fifotaken = 0; /* only used for vdbg() */
883 
884 	struct pl011_dmarx_data *dmarx = &uap->dmarx;
885 	int dmataken = 0;
886 
887 	if (uap->dmarx.poll_rate) {
888 		/* The data can be taken by polling */
889 		dmataken = sgbuf->sg.length - dmarx->last_residue;
890 		/* Recalculate the pending size */
891 		if (pending >= dmataken)
892 			pending -= dmataken;
893 	}
894 
895 	/* Pick the remain data from the DMA */
896 	if (pending) {
897 
898 		/*
899 		 * First take all chars in the DMA pipe, then look in the FIFO.
900 		 * Note that tty_insert_flip_buf() tries to take as many chars
901 		 * as it can.
902 		 */
903 		dma_count = tty_insert_flip_string(port, sgbuf->buf + dmataken,
904 				pending);
905 
906 		uap->port.icount.rx += dma_count;
907 		if (dma_count < pending)
908 			dev_warn(uap->port.dev,
909 				 "couldn't insert all characters (TTY is full?)\n");
910 	}
911 
912 	/* Reset the last_residue for Rx DMA poll */
913 	if (uap->dmarx.poll_rate)
914 		dmarx->last_residue = sgbuf->sg.length;
915 
916 	/*
917 	 * Only continue with trying to read the FIFO if all DMA chars have
918 	 * been taken first.
919 	 */
920 	if (dma_count == pending && readfifo) {
921 		/* Clear any error flags */
922 		pl011_write(UART011_OEIS | UART011_BEIS | UART011_PEIS |
923 			    UART011_FEIS, uap, REG_ICR);
924 
925 		/*
926 		 * If we read all the DMA'd characters, and we had an
927 		 * incomplete buffer, that could be due to an rx error, or
928 		 * maybe we just timed out. Read any pending chars and check
929 		 * the error status.
930 		 *
931 		 * Error conditions will only occur in the FIFO, these will
932 		 * trigger an immediate interrupt and stop the DMA job, so we
933 		 * will always find the error in the FIFO, never in the DMA
934 		 * buffer.
935 		 */
936 		fifotaken = pl011_fifo_to_tty(uap);
937 	}
938 
939 	dev_vdbg(uap->port.dev,
940 		 "Took %d chars from DMA buffer and %d chars from the FIFO\n",
941 		 dma_count, fifotaken);
942 	tty_flip_buffer_push(port);
943 }
944 
945 static void pl011_dma_rx_irq(struct uart_amba_port *uap)
946 {
947 	struct pl011_dmarx_data *dmarx = &uap->dmarx;
948 	struct dma_chan *rxchan = dmarx->chan;
949 	struct pl011_sgbuf *sgbuf = dmarx->use_buf_b ?
950 		&dmarx->sgbuf_b : &dmarx->sgbuf_a;
951 	size_t pending;
952 	struct dma_tx_state state;
953 	enum dma_status dmastat;
954 
955 	/*
956 	 * Pause the transfer so we can trust the current counter,
957 	 * do this before we pause the PL011 block, else we may
958 	 * overflow the FIFO.
959 	 */
960 	if (dmaengine_pause(rxchan))
961 		dev_err(uap->port.dev, "unable to pause DMA transfer\n");
962 	dmastat = rxchan->device->device_tx_status(rxchan,
963 						   dmarx->cookie, &state);
964 	if (dmastat != DMA_PAUSED)
965 		dev_err(uap->port.dev, "unable to pause DMA transfer\n");
966 
967 	/* Disable RX DMA - incoming data will wait in the FIFO */
968 	uap->dmacr &= ~UART011_RXDMAE;
969 	pl011_write(uap->dmacr, uap, REG_DMACR);
970 	uap->dmarx.running = false;
971 
972 	pending = sgbuf->sg.length - state.residue;
973 	BUG_ON(pending > PL011_DMA_BUFFER_SIZE);
974 	/* Then we terminate the transfer - we now know our residue */
975 	dmaengine_terminate_all(rxchan);
976 
977 	/*
978 	 * This will take the chars we have so far and insert
979 	 * into the framework.
980 	 */
981 	pl011_dma_rx_chars(uap, pending, dmarx->use_buf_b, true);
982 
983 	/* Switch buffer & re-trigger DMA job */
984 	dmarx->use_buf_b = !dmarx->use_buf_b;
985 	if (pl011_dma_rx_trigger_dma(uap)) {
986 		dev_dbg(uap->port.dev, "could not retrigger RX DMA job "
987 			"fall back to interrupt mode\n");
988 		uap->im |= UART011_RXIM;
989 		pl011_write(uap->im, uap, REG_IMSC);
990 	}
991 }
992 
993 static void pl011_dma_rx_callback(void *data)
994 {
995 	struct uart_amba_port *uap = data;
996 	struct pl011_dmarx_data *dmarx = &uap->dmarx;
997 	struct dma_chan *rxchan = dmarx->chan;
998 	bool lastbuf = dmarx->use_buf_b;
999 	struct pl011_sgbuf *sgbuf = dmarx->use_buf_b ?
1000 		&dmarx->sgbuf_b : &dmarx->sgbuf_a;
1001 	size_t pending;
1002 	struct dma_tx_state state;
1003 	int ret;
1004 
1005 	/*
1006 	 * This completion interrupt occurs typically when the
1007 	 * RX buffer is totally stuffed but no timeout has yet
1008 	 * occurred. When that happens, we just want the RX
1009 	 * routine to flush out the secondary DMA buffer while
1010 	 * we immediately trigger the next DMA job.
1011 	 */
1012 	spin_lock_irq(&uap->port.lock);
1013 	/*
1014 	 * Rx data can be taken by the UART interrupts during
1015 	 * the DMA irq handler. So we check the residue here.
1016 	 */
1017 	rxchan->device->device_tx_status(rxchan, dmarx->cookie, &state);
1018 	pending = sgbuf->sg.length - state.residue;
1019 	BUG_ON(pending > PL011_DMA_BUFFER_SIZE);
1020 	/* Then we terminate the transfer - we now know our residue */
1021 	dmaengine_terminate_all(rxchan);
1022 
1023 	uap->dmarx.running = false;
1024 	dmarx->use_buf_b = !lastbuf;
1025 	ret = pl011_dma_rx_trigger_dma(uap);
1026 
1027 	pl011_dma_rx_chars(uap, pending, lastbuf, false);
1028 	spin_unlock_irq(&uap->port.lock);
1029 	/*
1030 	 * Do this check after we picked the DMA chars so we don't
1031 	 * get some IRQ immediately from RX.
1032 	 */
1033 	if (ret) {
1034 		dev_dbg(uap->port.dev, "could not retrigger RX DMA job "
1035 			"fall back to interrupt mode\n");
1036 		uap->im |= UART011_RXIM;
1037 		pl011_write(uap->im, uap, REG_IMSC);
1038 	}
1039 }
1040 
1041 /*
1042  * Stop accepting received characters, when we're shutting down or
1043  * suspending this port.
1044  * Locking: called with port lock held and IRQs disabled.
1045  */
1046 static inline void pl011_dma_rx_stop(struct uart_amba_port *uap)
1047 {
1048 	/* FIXME.  Just disable the DMA enable */
1049 	uap->dmacr &= ~UART011_RXDMAE;
1050 	pl011_write(uap->dmacr, uap, REG_DMACR);
1051 }
1052 
1053 /*
1054  * Timer handler for Rx DMA polling.
1055  * Every polling, It checks the residue in the dma buffer and transfer
1056  * data to the tty. Also, last_residue is updated for the next polling.
1057  */
1058 static void pl011_dma_rx_poll(struct timer_list *t)
1059 {
1060 	struct uart_amba_port *uap = from_timer(uap, t, dmarx.timer);
1061 	struct tty_port *port = &uap->port.state->port;
1062 	struct pl011_dmarx_data *dmarx = &uap->dmarx;
1063 	struct dma_chan *rxchan = uap->dmarx.chan;
1064 	unsigned long flags;
1065 	unsigned int dmataken = 0;
1066 	unsigned int size = 0;
1067 	struct pl011_sgbuf *sgbuf;
1068 	int dma_count;
1069 	struct dma_tx_state state;
1070 
1071 	sgbuf = dmarx->use_buf_b ? &uap->dmarx.sgbuf_b : &uap->dmarx.sgbuf_a;
1072 	rxchan->device->device_tx_status(rxchan, dmarx->cookie, &state);
1073 	if (likely(state.residue < dmarx->last_residue)) {
1074 		dmataken = sgbuf->sg.length - dmarx->last_residue;
1075 		size = dmarx->last_residue - state.residue;
1076 		dma_count = tty_insert_flip_string(port, sgbuf->buf + dmataken,
1077 				size);
1078 		if (dma_count == size)
1079 			dmarx->last_residue =  state.residue;
1080 		dmarx->last_jiffies = jiffies;
1081 	}
1082 	tty_flip_buffer_push(port);
1083 
1084 	/*
1085 	 * If no data is received in poll_timeout, the driver will fall back
1086 	 * to interrupt mode. We will retrigger DMA at the first interrupt.
1087 	 */
1088 	if (jiffies_to_msecs(jiffies - dmarx->last_jiffies)
1089 			> uap->dmarx.poll_timeout) {
1090 
1091 		spin_lock_irqsave(&uap->port.lock, flags);
1092 		pl011_dma_rx_stop(uap);
1093 		uap->im |= UART011_RXIM;
1094 		pl011_write(uap->im, uap, REG_IMSC);
1095 		spin_unlock_irqrestore(&uap->port.lock, flags);
1096 
1097 		uap->dmarx.running = false;
1098 		dmaengine_terminate_all(rxchan);
1099 		del_timer(&uap->dmarx.timer);
1100 	} else {
1101 		mod_timer(&uap->dmarx.timer,
1102 			jiffies + msecs_to_jiffies(uap->dmarx.poll_rate));
1103 	}
1104 }
1105 
1106 static void pl011_dma_startup(struct uart_amba_port *uap)
1107 {
1108 	int ret;
1109 
1110 	if (!uap->dma_probed)
1111 		pl011_dma_probe(uap);
1112 
1113 	if (!uap->dmatx.chan)
1114 		return;
1115 
1116 	uap->dmatx.buf = kmalloc(PL011_DMA_BUFFER_SIZE, GFP_KERNEL | __GFP_DMA);
1117 	if (!uap->dmatx.buf) {
1118 		dev_err(uap->port.dev, "no memory for DMA TX buffer\n");
1119 		uap->port.fifosize = uap->fifosize;
1120 		return;
1121 	}
1122 
1123 	sg_init_one(&uap->dmatx.sg, uap->dmatx.buf, PL011_DMA_BUFFER_SIZE);
1124 
1125 	/* The DMA buffer is now the FIFO the TTY subsystem can use */
1126 	uap->port.fifosize = PL011_DMA_BUFFER_SIZE;
1127 	uap->using_tx_dma = true;
1128 
1129 	if (!uap->dmarx.chan)
1130 		goto skip_rx;
1131 
1132 	/* Allocate and map DMA RX buffers */
1133 	ret = pl011_sgbuf_init(uap->dmarx.chan, &uap->dmarx.sgbuf_a,
1134 			       DMA_FROM_DEVICE);
1135 	if (ret) {
1136 		dev_err(uap->port.dev, "failed to init DMA %s: %d\n",
1137 			"RX buffer A", ret);
1138 		goto skip_rx;
1139 	}
1140 
1141 	ret = pl011_sgbuf_init(uap->dmarx.chan, &uap->dmarx.sgbuf_b,
1142 			       DMA_FROM_DEVICE);
1143 	if (ret) {
1144 		dev_err(uap->port.dev, "failed to init DMA %s: %d\n",
1145 			"RX buffer B", ret);
1146 		pl011_sgbuf_free(uap->dmarx.chan, &uap->dmarx.sgbuf_a,
1147 				 DMA_FROM_DEVICE);
1148 		goto skip_rx;
1149 	}
1150 
1151 	uap->using_rx_dma = true;
1152 
1153 skip_rx:
1154 	/* Turn on DMA error (RX/TX will be enabled on demand) */
1155 	uap->dmacr |= UART011_DMAONERR;
1156 	pl011_write(uap->dmacr, uap, REG_DMACR);
1157 
1158 	/*
1159 	 * ST Micro variants has some specific dma burst threshold
1160 	 * compensation. Set this to 16 bytes, so burst will only
1161 	 * be issued above/below 16 bytes.
1162 	 */
1163 	if (uap->vendor->dma_threshold)
1164 		pl011_write(ST_UART011_DMAWM_RX_16 | ST_UART011_DMAWM_TX_16,
1165 			    uap, REG_ST_DMAWM);
1166 
1167 	if (uap->using_rx_dma) {
1168 		if (pl011_dma_rx_trigger_dma(uap))
1169 			dev_dbg(uap->port.dev, "could not trigger initial "
1170 				"RX DMA job, fall back to interrupt mode\n");
1171 		if (uap->dmarx.poll_rate) {
1172 			timer_setup(&uap->dmarx.timer, pl011_dma_rx_poll, 0);
1173 			mod_timer(&uap->dmarx.timer,
1174 				jiffies +
1175 				msecs_to_jiffies(uap->dmarx.poll_rate));
1176 			uap->dmarx.last_residue = PL011_DMA_BUFFER_SIZE;
1177 			uap->dmarx.last_jiffies = jiffies;
1178 		}
1179 	}
1180 }
1181 
1182 static void pl011_dma_shutdown(struct uart_amba_port *uap)
1183 {
1184 	if (!(uap->using_tx_dma || uap->using_rx_dma))
1185 		return;
1186 
1187 	/* Disable RX and TX DMA */
1188 	while (pl011_read(uap, REG_FR) & uap->vendor->fr_busy)
1189 		cpu_relax();
1190 
1191 	spin_lock_irq(&uap->port.lock);
1192 	uap->dmacr &= ~(UART011_DMAONERR | UART011_RXDMAE | UART011_TXDMAE);
1193 	pl011_write(uap->dmacr, uap, REG_DMACR);
1194 	spin_unlock_irq(&uap->port.lock);
1195 
1196 	if (uap->using_tx_dma) {
1197 		/* In theory, this should already be done by pl011_dma_flush_buffer */
1198 		dmaengine_terminate_all(uap->dmatx.chan);
1199 		if (uap->dmatx.queued) {
1200 			dma_unmap_sg(uap->dmatx.chan->device->dev, &uap->dmatx.sg, 1,
1201 				     DMA_TO_DEVICE);
1202 			uap->dmatx.queued = false;
1203 		}
1204 
1205 		kfree(uap->dmatx.buf);
1206 		uap->using_tx_dma = false;
1207 	}
1208 
1209 	if (uap->using_rx_dma) {
1210 		dmaengine_terminate_all(uap->dmarx.chan);
1211 		/* Clean up the RX DMA */
1212 		pl011_sgbuf_free(uap->dmarx.chan, &uap->dmarx.sgbuf_a, DMA_FROM_DEVICE);
1213 		pl011_sgbuf_free(uap->dmarx.chan, &uap->dmarx.sgbuf_b, DMA_FROM_DEVICE);
1214 		if (uap->dmarx.poll_rate)
1215 			del_timer_sync(&uap->dmarx.timer);
1216 		uap->using_rx_dma = false;
1217 	}
1218 }
1219 
1220 static inline bool pl011_dma_rx_available(struct uart_amba_port *uap)
1221 {
1222 	return uap->using_rx_dma;
1223 }
1224 
1225 static inline bool pl011_dma_rx_running(struct uart_amba_port *uap)
1226 {
1227 	return uap->using_rx_dma && uap->dmarx.running;
1228 }
1229 
1230 #else
1231 /* Blank functions if the DMA engine is not available */
1232 static inline void pl011_dma_remove(struct uart_amba_port *uap)
1233 {
1234 }
1235 
1236 static inline void pl011_dma_startup(struct uart_amba_port *uap)
1237 {
1238 }
1239 
1240 static inline void pl011_dma_shutdown(struct uart_amba_port *uap)
1241 {
1242 }
1243 
1244 static inline bool pl011_dma_tx_irq(struct uart_amba_port *uap)
1245 {
1246 	return false;
1247 }
1248 
1249 static inline void pl011_dma_tx_stop(struct uart_amba_port *uap)
1250 {
1251 }
1252 
1253 static inline bool pl011_dma_tx_start(struct uart_amba_port *uap)
1254 {
1255 	return false;
1256 }
1257 
1258 static inline void pl011_dma_rx_irq(struct uart_amba_port *uap)
1259 {
1260 }
1261 
1262 static inline void pl011_dma_rx_stop(struct uart_amba_port *uap)
1263 {
1264 }
1265 
1266 static inline int pl011_dma_rx_trigger_dma(struct uart_amba_port *uap)
1267 {
1268 	return -EIO;
1269 }
1270 
1271 static inline bool pl011_dma_rx_available(struct uart_amba_port *uap)
1272 {
1273 	return false;
1274 }
1275 
1276 static inline bool pl011_dma_rx_running(struct uart_amba_port *uap)
1277 {
1278 	return false;
1279 }
1280 
1281 #define pl011_dma_flush_buffer	NULL
1282 #endif
1283 
1284 static void pl011_rs485_tx_stop(struct uart_amba_port *uap)
1285 {
1286 	/*
1287 	 * To be on the safe side only time out after twice as many iterations
1288 	 * as fifo size.
1289 	 */
1290 	const int MAX_TX_DRAIN_ITERS = uap->port.fifosize * 2;
1291 	struct uart_port *port = &uap->port;
1292 	int i = 0;
1293 	u32 cr;
1294 
1295 	/* Wait until hardware tx queue is empty */
1296 	while (!pl011_tx_empty(port)) {
1297 		if (i > MAX_TX_DRAIN_ITERS) {
1298 			dev_warn(port->dev,
1299 				 "timeout while draining hardware tx queue\n");
1300 			break;
1301 		}
1302 
1303 		udelay(uap->rs485_tx_drain_interval);
1304 		i++;
1305 	}
1306 
1307 	if (port->rs485.delay_rts_after_send)
1308 		mdelay(port->rs485.delay_rts_after_send);
1309 
1310 	cr = pl011_read(uap, REG_CR);
1311 
1312 	if (port->rs485.flags & SER_RS485_RTS_AFTER_SEND)
1313 		cr &= ~UART011_CR_RTS;
1314 	else
1315 		cr |= UART011_CR_RTS;
1316 
1317 	/* Disable the transmitter and reenable the transceiver */
1318 	cr &= ~UART011_CR_TXE;
1319 	cr |= UART011_CR_RXE;
1320 	pl011_write(cr, uap, REG_CR);
1321 
1322 	uap->rs485_tx_started = false;
1323 }
1324 
1325 static void pl011_stop_tx(struct uart_port *port)
1326 {
1327 	struct uart_amba_port *uap =
1328 	    container_of(port, struct uart_amba_port, port);
1329 
1330 	uap->im &= ~UART011_TXIM;
1331 	pl011_write(uap->im, uap, REG_IMSC);
1332 	pl011_dma_tx_stop(uap);
1333 
1334 	if ((port->rs485.flags & SER_RS485_ENABLED) && uap->rs485_tx_started)
1335 		pl011_rs485_tx_stop(uap);
1336 }
1337 
1338 static bool pl011_tx_chars(struct uart_amba_port *uap, bool from_irq);
1339 
1340 /* Start TX with programmed I/O only (no DMA) */
1341 static void pl011_start_tx_pio(struct uart_amba_port *uap)
1342 {
1343 	if (pl011_tx_chars(uap, false)) {
1344 		uap->im |= UART011_TXIM;
1345 		pl011_write(uap->im, uap, REG_IMSC);
1346 	}
1347 }
1348 
1349 static void pl011_start_tx(struct uart_port *port)
1350 {
1351 	struct uart_amba_port *uap =
1352 	    container_of(port, struct uart_amba_port, port);
1353 
1354 	if (!pl011_dma_tx_start(uap))
1355 		pl011_start_tx_pio(uap);
1356 }
1357 
1358 static void pl011_stop_rx(struct uart_port *port)
1359 {
1360 	struct uart_amba_port *uap =
1361 	    container_of(port, struct uart_amba_port, port);
1362 
1363 	uap->im &= ~(UART011_RXIM|UART011_RTIM|UART011_FEIM|
1364 		     UART011_PEIM|UART011_BEIM|UART011_OEIM);
1365 	pl011_write(uap->im, uap, REG_IMSC);
1366 
1367 	pl011_dma_rx_stop(uap);
1368 }
1369 
1370 static void pl011_throttle_rx(struct uart_port *port)
1371 {
1372 	unsigned long flags;
1373 
1374 	spin_lock_irqsave(&port->lock, flags);
1375 	pl011_stop_rx(port);
1376 	spin_unlock_irqrestore(&port->lock, flags);
1377 }
1378 
1379 static void pl011_enable_ms(struct uart_port *port)
1380 {
1381 	struct uart_amba_port *uap =
1382 	    container_of(port, struct uart_amba_port, port);
1383 
1384 	uap->im |= UART011_RIMIM|UART011_CTSMIM|UART011_DCDMIM|UART011_DSRMIM;
1385 	pl011_write(uap->im, uap, REG_IMSC);
1386 }
1387 
1388 static void pl011_rx_chars(struct uart_amba_port *uap)
1389 __releases(&uap->port.lock)
1390 __acquires(&uap->port.lock)
1391 {
1392 	pl011_fifo_to_tty(uap);
1393 
1394 	spin_unlock(&uap->port.lock);
1395 	tty_flip_buffer_push(&uap->port.state->port);
1396 	/*
1397 	 * If we were temporarily out of DMA mode for a while,
1398 	 * attempt to switch back to DMA mode again.
1399 	 */
1400 	if (pl011_dma_rx_available(uap)) {
1401 		if (pl011_dma_rx_trigger_dma(uap)) {
1402 			dev_dbg(uap->port.dev, "could not trigger RX DMA job "
1403 				"fall back to interrupt mode again\n");
1404 			uap->im |= UART011_RXIM;
1405 			pl011_write(uap->im, uap, REG_IMSC);
1406 		} else {
1407 #ifdef CONFIG_DMA_ENGINE
1408 			/* Start Rx DMA poll */
1409 			if (uap->dmarx.poll_rate) {
1410 				uap->dmarx.last_jiffies = jiffies;
1411 				uap->dmarx.last_residue	= PL011_DMA_BUFFER_SIZE;
1412 				mod_timer(&uap->dmarx.timer,
1413 					jiffies +
1414 					msecs_to_jiffies(uap->dmarx.poll_rate));
1415 			}
1416 #endif
1417 		}
1418 	}
1419 	spin_lock(&uap->port.lock);
1420 }
1421 
1422 static bool pl011_tx_char(struct uart_amba_port *uap, unsigned char c,
1423 			  bool from_irq)
1424 {
1425 	if (unlikely(!from_irq) &&
1426 	    pl011_read(uap, REG_FR) & UART01x_FR_TXFF)
1427 		return false; /* unable to transmit character */
1428 
1429 	pl011_write(c, uap, REG_DR);
1430 	uap->port.icount.tx++;
1431 
1432 	return true;
1433 }
1434 
1435 static void pl011_rs485_tx_start(struct uart_amba_port *uap)
1436 {
1437 	struct uart_port *port = &uap->port;
1438 	u32 cr;
1439 
1440 	/* Enable transmitter */
1441 	cr = pl011_read(uap, REG_CR);
1442 	cr |= UART011_CR_TXE;
1443 
1444 	/* Disable receiver if half-duplex */
1445 	if (!(port->rs485.flags & SER_RS485_RX_DURING_TX))
1446 		cr &= ~UART011_CR_RXE;
1447 
1448 	if (port->rs485.flags & SER_RS485_RTS_ON_SEND)
1449 		cr &= ~UART011_CR_RTS;
1450 	else
1451 		cr |= UART011_CR_RTS;
1452 
1453 	pl011_write(cr, uap, REG_CR);
1454 
1455 	if (port->rs485.delay_rts_before_send)
1456 		mdelay(port->rs485.delay_rts_before_send);
1457 
1458 	uap->rs485_tx_started = true;
1459 }
1460 
1461 /* Returns true if tx interrupts have to be (kept) enabled  */
1462 static bool pl011_tx_chars(struct uart_amba_port *uap, bool from_irq)
1463 {
1464 	struct circ_buf *xmit = &uap->port.state->xmit;
1465 	int count = uap->fifosize >> 1;
1466 
1467 	if (uap->port.x_char) {
1468 		if (!pl011_tx_char(uap, uap->port.x_char, from_irq))
1469 			return true;
1470 		uap->port.x_char = 0;
1471 		--count;
1472 	}
1473 	if (uart_circ_empty(xmit) || uart_tx_stopped(&uap->port)) {
1474 		pl011_stop_tx(&uap->port);
1475 		return false;
1476 	}
1477 
1478 	if ((uap->port.rs485.flags & SER_RS485_ENABLED) &&
1479 	    !uap->rs485_tx_started)
1480 		pl011_rs485_tx_start(uap);
1481 
1482 	/* If we are using DMA mode, try to send some characters. */
1483 	if (pl011_dma_tx_irq(uap))
1484 		return true;
1485 
1486 	do {
1487 		if (likely(from_irq) && count-- == 0)
1488 			break;
1489 
1490 		if (!pl011_tx_char(uap, xmit->buf[xmit->tail], from_irq))
1491 			break;
1492 
1493 		xmit->tail = (xmit->tail + 1) & (UART_XMIT_SIZE - 1);
1494 	} while (!uart_circ_empty(xmit));
1495 
1496 	if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
1497 		uart_write_wakeup(&uap->port);
1498 
1499 	if (uart_circ_empty(xmit)) {
1500 		pl011_stop_tx(&uap->port);
1501 		return false;
1502 	}
1503 	return true;
1504 }
1505 
1506 static void pl011_modem_status(struct uart_amba_port *uap)
1507 {
1508 	unsigned int status, delta;
1509 
1510 	status = pl011_read(uap, REG_FR) & UART01x_FR_MODEM_ANY;
1511 
1512 	delta = status ^ uap->old_status;
1513 	uap->old_status = status;
1514 
1515 	if (!delta)
1516 		return;
1517 
1518 	if (delta & UART01x_FR_DCD)
1519 		uart_handle_dcd_change(&uap->port, status & UART01x_FR_DCD);
1520 
1521 	if (delta & uap->vendor->fr_dsr)
1522 		uap->port.icount.dsr++;
1523 
1524 	if (delta & uap->vendor->fr_cts)
1525 		uart_handle_cts_change(&uap->port,
1526 				       status & uap->vendor->fr_cts);
1527 
1528 	wake_up_interruptible(&uap->port.state->port.delta_msr_wait);
1529 }
1530 
1531 static void check_apply_cts_event_workaround(struct uart_amba_port *uap)
1532 {
1533 	if (!uap->vendor->cts_event_workaround)
1534 		return;
1535 
1536 	/* workaround to make sure that all bits are unlocked.. */
1537 	pl011_write(0x00, uap, REG_ICR);
1538 
1539 	/*
1540 	 * WA: introduce 26ns(1 uart clk) delay before W1C;
1541 	 * single apb access will incur 2 pclk(133.12Mhz) delay,
1542 	 * so add 2 dummy reads
1543 	 */
1544 	pl011_read(uap, REG_ICR);
1545 	pl011_read(uap, REG_ICR);
1546 }
1547 
1548 static irqreturn_t pl011_int(int irq, void *dev_id)
1549 {
1550 	struct uart_amba_port *uap = dev_id;
1551 	unsigned long flags;
1552 	unsigned int status, pass_counter = AMBA_ISR_PASS_LIMIT;
1553 	int handled = 0;
1554 
1555 	spin_lock_irqsave(&uap->port.lock, flags);
1556 	status = pl011_read(uap, REG_RIS) & uap->im;
1557 	if (status) {
1558 		do {
1559 			check_apply_cts_event_workaround(uap);
1560 
1561 			pl011_write(status & ~(UART011_TXIS|UART011_RTIS|
1562 					       UART011_RXIS),
1563 				    uap, REG_ICR);
1564 
1565 			if (status & (UART011_RTIS|UART011_RXIS)) {
1566 				if (pl011_dma_rx_running(uap))
1567 					pl011_dma_rx_irq(uap);
1568 				else
1569 					pl011_rx_chars(uap);
1570 			}
1571 			if (status & (UART011_DSRMIS|UART011_DCDMIS|
1572 				      UART011_CTSMIS|UART011_RIMIS))
1573 				pl011_modem_status(uap);
1574 			if (status & UART011_TXIS)
1575 				pl011_tx_chars(uap, true);
1576 
1577 			if (pass_counter-- == 0)
1578 				break;
1579 
1580 			status = pl011_read(uap, REG_RIS) & uap->im;
1581 		} while (status != 0);
1582 		handled = 1;
1583 	}
1584 
1585 	spin_unlock_irqrestore(&uap->port.lock, flags);
1586 
1587 	return IRQ_RETVAL(handled);
1588 }
1589 
1590 static unsigned int pl011_tx_empty(struct uart_port *port)
1591 {
1592 	struct uart_amba_port *uap =
1593 	    container_of(port, struct uart_amba_port, port);
1594 
1595 	/* Allow feature register bits to be inverted to work around errata */
1596 	unsigned int status = pl011_read(uap, REG_FR) ^ uap->vendor->inv_fr;
1597 
1598 	return status & (uap->vendor->fr_busy | UART01x_FR_TXFF) ?
1599 							0 : TIOCSER_TEMT;
1600 }
1601 
1602 static unsigned int pl011_get_mctrl(struct uart_port *port)
1603 {
1604 	struct uart_amba_port *uap =
1605 	    container_of(port, struct uart_amba_port, port);
1606 	unsigned int result = 0;
1607 	unsigned int status = pl011_read(uap, REG_FR);
1608 
1609 #define TIOCMBIT(uartbit, tiocmbit)	\
1610 	if (status & uartbit)		\
1611 		result |= tiocmbit
1612 
1613 	TIOCMBIT(UART01x_FR_DCD, TIOCM_CAR);
1614 	TIOCMBIT(uap->vendor->fr_dsr, TIOCM_DSR);
1615 	TIOCMBIT(uap->vendor->fr_cts, TIOCM_CTS);
1616 	TIOCMBIT(uap->vendor->fr_ri, TIOCM_RNG);
1617 #undef TIOCMBIT
1618 	return result;
1619 }
1620 
1621 static void pl011_set_mctrl(struct uart_port *port, unsigned int mctrl)
1622 {
1623 	struct uart_amba_port *uap =
1624 	    container_of(port, struct uart_amba_port, port);
1625 	unsigned int cr;
1626 
1627 	cr = pl011_read(uap, REG_CR);
1628 
1629 #define	TIOCMBIT(tiocmbit, uartbit)		\
1630 	if (mctrl & tiocmbit)		\
1631 		cr |= uartbit;		\
1632 	else				\
1633 		cr &= ~uartbit
1634 
1635 	TIOCMBIT(TIOCM_RTS, UART011_CR_RTS);
1636 	TIOCMBIT(TIOCM_DTR, UART011_CR_DTR);
1637 	TIOCMBIT(TIOCM_OUT1, UART011_CR_OUT1);
1638 	TIOCMBIT(TIOCM_OUT2, UART011_CR_OUT2);
1639 	TIOCMBIT(TIOCM_LOOP, UART011_CR_LBE);
1640 
1641 	if (port->status & UPSTAT_AUTORTS) {
1642 		/* We need to disable auto-RTS if we want to turn RTS off */
1643 		TIOCMBIT(TIOCM_RTS, UART011_CR_RTSEN);
1644 	}
1645 #undef TIOCMBIT
1646 
1647 	pl011_write(cr, uap, REG_CR);
1648 }
1649 
1650 static void pl011_break_ctl(struct uart_port *port, int break_state)
1651 {
1652 	struct uart_amba_port *uap =
1653 	    container_of(port, struct uart_amba_port, port);
1654 	unsigned long flags;
1655 	unsigned int lcr_h;
1656 
1657 	spin_lock_irqsave(&uap->port.lock, flags);
1658 	lcr_h = pl011_read(uap, REG_LCRH_TX);
1659 	if (break_state == -1)
1660 		lcr_h |= UART01x_LCRH_BRK;
1661 	else
1662 		lcr_h &= ~UART01x_LCRH_BRK;
1663 	pl011_write(lcr_h, uap, REG_LCRH_TX);
1664 	spin_unlock_irqrestore(&uap->port.lock, flags);
1665 }
1666 
1667 #ifdef CONFIG_CONSOLE_POLL
1668 
1669 static void pl011_quiesce_irqs(struct uart_port *port)
1670 {
1671 	struct uart_amba_port *uap =
1672 	    container_of(port, struct uart_amba_port, port);
1673 
1674 	pl011_write(pl011_read(uap, REG_MIS), uap, REG_ICR);
1675 	/*
1676 	 * There is no way to clear TXIM as this is "ready to transmit IRQ", so
1677 	 * we simply mask it. start_tx() will unmask it.
1678 	 *
1679 	 * Note we can race with start_tx(), and if the race happens, the
1680 	 * polling user might get another interrupt just after we clear it.
1681 	 * But it should be OK and can happen even w/o the race, e.g.
1682 	 * controller immediately got some new data and raised the IRQ.
1683 	 *
1684 	 * And whoever uses polling routines assumes that it manages the device
1685 	 * (including tx queue), so we're also fine with start_tx()'s caller
1686 	 * side.
1687 	 */
1688 	pl011_write(pl011_read(uap, REG_IMSC) & ~UART011_TXIM, uap,
1689 		    REG_IMSC);
1690 }
1691 
1692 static int pl011_get_poll_char(struct uart_port *port)
1693 {
1694 	struct uart_amba_port *uap =
1695 	    container_of(port, struct uart_amba_port, port);
1696 	unsigned int status;
1697 
1698 	/*
1699 	 * The caller might need IRQs lowered, e.g. if used with KDB NMI
1700 	 * debugger.
1701 	 */
1702 	pl011_quiesce_irqs(port);
1703 
1704 	status = pl011_read(uap, REG_FR);
1705 	if (status & UART01x_FR_RXFE)
1706 		return NO_POLL_CHAR;
1707 
1708 	return pl011_read(uap, REG_DR);
1709 }
1710 
1711 static void pl011_put_poll_char(struct uart_port *port,
1712 			 unsigned char ch)
1713 {
1714 	struct uart_amba_port *uap =
1715 	    container_of(port, struct uart_amba_port, port);
1716 
1717 	while (pl011_read(uap, REG_FR) & UART01x_FR_TXFF)
1718 		cpu_relax();
1719 
1720 	pl011_write(ch, uap, REG_DR);
1721 }
1722 
1723 #endif /* CONFIG_CONSOLE_POLL */
1724 
1725 static int pl011_hwinit(struct uart_port *port)
1726 {
1727 	struct uart_amba_port *uap =
1728 	    container_of(port, struct uart_amba_port, port);
1729 	int retval;
1730 
1731 	/* Optionaly enable pins to be muxed in and configured */
1732 	pinctrl_pm_select_default_state(port->dev);
1733 
1734 	/*
1735 	 * Try to enable the clock producer.
1736 	 */
1737 	retval = clk_prepare_enable(uap->clk);
1738 	if (retval)
1739 		return retval;
1740 
1741 	uap->port.uartclk = clk_get_rate(uap->clk);
1742 
1743 	/* Clear pending error and receive interrupts */
1744 	pl011_write(UART011_OEIS | UART011_BEIS | UART011_PEIS |
1745 		    UART011_FEIS | UART011_RTIS | UART011_RXIS,
1746 		    uap, REG_ICR);
1747 
1748 	/*
1749 	 * Save interrupts enable mask, and enable RX interrupts in case if
1750 	 * the interrupt is used for NMI entry.
1751 	 */
1752 	uap->im = pl011_read(uap, REG_IMSC);
1753 	pl011_write(UART011_RTIM | UART011_RXIM, uap, REG_IMSC);
1754 
1755 	if (dev_get_platdata(uap->port.dev)) {
1756 		struct amba_pl011_data *plat;
1757 
1758 		plat = dev_get_platdata(uap->port.dev);
1759 		if (plat->init)
1760 			plat->init();
1761 	}
1762 	return 0;
1763 }
1764 
1765 static bool pl011_split_lcrh(const struct uart_amba_port *uap)
1766 {
1767 	return pl011_reg_to_offset(uap, REG_LCRH_RX) !=
1768 	       pl011_reg_to_offset(uap, REG_LCRH_TX);
1769 }
1770 
1771 static void pl011_write_lcr_h(struct uart_amba_port *uap, unsigned int lcr_h)
1772 {
1773 	pl011_write(lcr_h, uap, REG_LCRH_RX);
1774 	if (pl011_split_lcrh(uap)) {
1775 		int i;
1776 		/*
1777 		 * Wait 10 PCLKs before writing LCRH_TX register,
1778 		 * to get this delay write read only register 10 times
1779 		 */
1780 		for (i = 0; i < 10; ++i)
1781 			pl011_write(0xff, uap, REG_MIS);
1782 		pl011_write(lcr_h, uap, REG_LCRH_TX);
1783 	}
1784 }
1785 
1786 static int pl011_allocate_irq(struct uart_amba_port *uap)
1787 {
1788 	pl011_write(uap->im, uap, REG_IMSC);
1789 
1790 	return request_irq(uap->port.irq, pl011_int, IRQF_SHARED, "uart-pl011", uap);
1791 }
1792 
1793 /*
1794  * Enable interrupts, only timeouts when using DMA
1795  * if initial RX DMA job failed, start in interrupt mode
1796  * as well.
1797  */
1798 static void pl011_enable_interrupts(struct uart_amba_port *uap)
1799 {
1800 	unsigned long flags;
1801 	unsigned int i;
1802 
1803 	spin_lock_irqsave(&uap->port.lock, flags);
1804 
1805 	/* Clear out any spuriously appearing RX interrupts */
1806 	pl011_write(UART011_RTIS | UART011_RXIS, uap, REG_ICR);
1807 
1808 	/*
1809 	 * RXIS is asserted only when the RX FIFO transitions from below
1810 	 * to above the trigger threshold.  If the RX FIFO is already
1811 	 * full to the threshold this can't happen and RXIS will now be
1812 	 * stuck off.  Drain the RX FIFO explicitly to fix this:
1813 	 */
1814 	for (i = 0; i < uap->fifosize * 2; ++i) {
1815 		if (pl011_read(uap, REG_FR) & UART01x_FR_RXFE)
1816 			break;
1817 
1818 		pl011_read(uap, REG_DR);
1819 	}
1820 
1821 	uap->im = UART011_RTIM;
1822 	if (!pl011_dma_rx_running(uap))
1823 		uap->im |= UART011_RXIM;
1824 	pl011_write(uap->im, uap, REG_IMSC);
1825 	spin_unlock_irqrestore(&uap->port.lock, flags);
1826 }
1827 
1828 static void pl011_unthrottle_rx(struct uart_port *port)
1829 {
1830 	struct uart_amba_port *uap = container_of(port, struct uart_amba_port, port);
1831 
1832 	pl011_enable_interrupts(uap);
1833 }
1834 
1835 static int pl011_startup(struct uart_port *port)
1836 {
1837 	struct uart_amba_port *uap =
1838 	    container_of(port, struct uart_amba_port, port);
1839 	unsigned int cr;
1840 	int retval;
1841 
1842 	retval = pl011_hwinit(port);
1843 	if (retval)
1844 		goto clk_dis;
1845 
1846 	retval = pl011_allocate_irq(uap);
1847 	if (retval)
1848 		goto clk_dis;
1849 
1850 	pl011_write(uap->vendor->ifls, uap, REG_IFLS);
1851 
1852 	spin_lock_irq(&uap->port.lock);
1853 
1854 	cr = pl011_read(uap, REG_CR);
1855 	cr &= UART011_CR_RTS | UART011_CR_DTR;
1856 	cr |= UART01x_CR_UARTEN | UART011_CR_RXE;
1857 
1858 	if (!(port->rs485.flags & SER_RS485_ENABLED))
1859 		cr |= UART011_CR_TXE;
1860 
1861 	pl011_write(cr, uap, REG_CR);
1862 
1863 	spin_unlock_irq(&uap->port.lock);
1864 
1865 	/*
1866 	 * initialise the old status of the modem signals
1867 	 */
1868 	uap->old_status = pl011_read(uap, REG_FR) & UART01x_FR_MODEM_ANY;
1869 
1870 	/* Startup DMA */
1871 	pl011_dma_startup(uap);
1872 
1873 	pl011_enable_interrupts(uap);
1874 
1875 	return 0;
1876 
1877  clk_dis:
1878 	clk_disable_unprepare(uap->clk);
1879 	return retval;
1880 }
1881 
1882 static int sbsa_uart_startup(struct uart_port *port)
1883 {
1884 	struct uart_amba_port *uap =
1885 		container_of(port, struct uart_amba_port, port);
1886 	int retval;
1887 
1888 	retval = pl011_hwinit(port);
1889 	if (retval)
1890 		return retval;
1891 
1892 	retval = pl011_allocate_irq(uap);
1893 	if (retval)
1894 		return retval;
1895 
1896 	/* The SBSA UART does not support any modem status lines. */
1897 	uap->old_status = 0;
1898 
1899 	pl011_enable_interrupts(uap);
1900 
1901 	return 0;
1902 }
1903 
1904 static void pl011_shutdown_channel(struct uart_amba_port *uap,
1905 					unsigned int lcrh)
1906 {
1907       unsigned long val;
1908 
1909       val = pl011_read(uap, lcrh);
1910       val &= ~(UART01x_LCRH_BRK | UART01x_LCRH_FEN);
1911       pl011_write(val, uap, lcrh);
1912 }
1913 
1914 /*
1915  * disable the port. It should not disable RTS and DTR.
1916  * Also RTS and DTR state should be preserved to restore
1917  * it during startup().
1918  */
1919 static void pl011_disable_uart(struct uart_amba_port *uap)
1920 {
1921 	unsigned int cr;
1922 
1923 	uap->port.status &= ~(UPSTAT_AUTOCTS | UPSTAT_AUTORTS);
1924 	spin_lock_irq(&uap->port.lock);
1925 	cr = pl011_read(uap, REG_CR);
1926 	cr &= UART011_CR_RTS | UART011_CR_DTR;
1927 	cr |= UART01x_CR_UARTEN | UART011_CR_TXE;
1928 	pl011_write(cr, uap, REG_CR);
1929 	spin_unlock_irq(&uap->port.lock);
1930 
1931 	/*
1932 	 * disable break condition and fifos
1933 	 */
1934 	pl011_shutdown_channel(uap, REG_LCRH_RX);
1935 	if (pl011_split_lcrh(uap))
1936 		pl011_shutdown_channel(uap, REG_LCRH_TX);
1937 }
1938 
1939 static void pl011_disable_interrupts(struct uart_amba_port *uap)
1940 {
1941 	spin_lock_irq(&uap->port.lock);
1942 
1943 	/* mask all interrupts and clear all pending ones */
1944 	uap->im = 0;
1945 	pl011_write(uap->im, uap, REG_IMSC);
1946 	pl011_write(0xffff, uap, REG_ICR);
1947 
1948 	spin_unlock_irq(&uap->port.lock);
1949 }
1950 
1951 static void pl011_shutdown(struct uart_port *port)
1952 {
1953 	struct uart_amba_port *uap =
1954 		container_of(port, struct uart_amba_port, port);
1955 
1956 	pl011_disable_interrupts(uap);
1957 
1958 	pl011_dma_shutdown(uap);
1959 
1960 	if ((port->rs485.flags & SER_RS485_ENABLED) && uap->rs485_tx_started)
1961 		pl011_rs485_tx_stop(uap);
1962 
1963 	free_irq(uap->port.irq, uap);
1964 
1965 	pl011_disable_uart(uap);
1966 
1967 	/*
1968 	 * Shut down the clock producer
1969 	 */
1970 	clk_disable_unprepare(uap->clk);
1971 	/* Optionally let pins go into sleep states */
1972 	pinctrl_pm_select_sleep_state(port->dev);
1973 
1974 	if (dev_get_platdata(uap->port.dev)) {
1975 		struct amba_pl011_data *plat;
1976 
1977 		plat = dev_get_platdata(uap->port.dev);
1978 		if (plat->exit)
1979 			plat->exit();
1980 	}
1981 
1982 	if (uap->port.ops->flush_buffer)
1983 		uap->port.ops->flush_buffer(port);
1984 }
1985 
1986 static void sbsa_uart_shutdown(struct uart_port *port)
1987 {
1988 	struct uart_amba_port *uap =
1989 		container_of(port, struct uart_amba_port, port);
1990 
1991 	pl011_disable_interrupts(uap);
1992 
1993 	free_irq(uap->port.irq, uap);
1994 
1995 	if (uap->port.ops->flush_buffer)
1996 		uap->port.ops->flush_buffer(port);
1997 }
1998 
1999 static void
2000 pl011_setup_status_masks(struct uart_port *port, struct ktermios *termios)
2001 {
2002 	port->read_status_mask = UART011_DR_OE | 255;
2003 	if (termios->c_iflag & INPCK)
2004 		port->read_status_mask |= UART011_DR_FE | UART011_DR_PE;
2005 	if (termios->c_iflag & (IGNBRK | BRKINT | PARMRK))
2006 		port->read_status_mask |= UART011_DR_BE;
2007 
2008 	/*
2009 	 * Characters to ignore
2010 	 */
2011 	port->ignore_status_mask = 0;
2012 	if (termios->c_iflag & IGNPAR)
2013 		port->ignore_status_mask |= UART011_DR_FE | UART011_DR_PE;
2014 	if (termios->c_iflag & IGNBRK) {
2015 		port->ignore_status_mask |= UART011_DR_BE;
2016 		/*
2017 		 * If we're ignoring parity and break indicators,
2018 		 * ignore overruns too (for real raw support).
2019 		 */
2020 		if (termios->c_iflag & IGNPAR)
2021 			port->ignore_status_mask |= UART011_DR_OE;
2022 	}
2023 
2024 	/*
2025 	 * Ignore all characters if CREAD is not set.
2026 	 */
2027 	if ((termios->c_cflag & CREAD) == 0)
2028 		port->ignore_status_mask |= UART_DUMMY_DR_RX;
2029 }
2030 
2031 static void
2032 pl011_set_termios(struct uart_port *port, struct ktermios *termios,
2033 		     struct ktermios *old)
2034 {
2035 	struct uart_amba_port *uap =
2036 	    container_of(port, struct uart_amba_port, port);
2037 	unsigned int lcr_h, old_cr;
2038 	unsigned long flags;
2039 	unsigned int baud, quot, clkdiv;
2040 	unsigned int bits;
2041 
2042 	if (uap->vendor->oversampling)
2043 		clkdiv = 8;
2044 	else
2045 		clkdiv = 16;
2046 
2047 	/*
2048 	 * Ask the core to calculate the divisor for us.
2049 	 */
2050 	baud = uart_get_baud_rate(port, termios, old, 0,
2051 				  port->uartclk / clkdiv);
2052 #ifdef CONFIG_DMA_ENGINE
2053 	/*
2054 	 * Adjust RX DMA polling rate with baud rate if not specified.
2055 	 */
2056 	if (uap->dmarx.auto_poll_rate)
2057 		uap->dmarx.poll_rate = DIV_ROUND_UP(10000000, baud);
2058 #endif
2059 
2060 	if (baud > port->uartclk/16)
2061 		quot = DIV_ROUND_CLOSEST(port->uartclk * 8, baud);
2062 	else
2063 		quot = DIV_ROUND_CLOSEST(port->uartclk * 4, baud);
2064 
2065 	switch (termios->c_cflag & CSIZE) {
2066 	case CS5:
2067 		lcr_h = UART01x_LCRH_WLEN_5;
2068 		break;
2069 	case CS6:
2070 		lcr_h = UART01x_LCRH_WLEN_6;
2071 		break;
2072 	case CS7:
2073 		lcr_h = UART01x_LCRH_WLEN_7;
2074 		break;
2075 	default: // CS8
2076 		lcr_h = UART01x_LCRH_WLEN_8;
2077 		break;
2078 	}
2079 	if (termios->c_cflag & CSTOPB)
2080 		lcr_h |= UART01x_LCRH_STP2;
2081 	if (termios->c_cflag & PARENB) {
2082 		lcr_h |= UART01x_LCRH_PEN;
2083 		if (!(termios->c_cflag & PARODD))
2084 			lcr_h |= UART01x_LCRH_EPS;
2085 		if (termios->c_cflag & CMSPAR)
2086 			lcr_h |= UART011_LCRH_SPS;
2087 	}
2088 	if (uap->fifosize > 1)
2089 		lcr_h |= UART01x_LCRH_FEN;
2090 
2091 	bits = tty_get_frame_size(termios->c_cflag);
2092 
2093 	spin_lock_irqsave(&port->lock, flags);
2094 
2095 	/*
2096 	 * Update the per-port timeout.
2097 	 */
2098 	uart_update_timeout(port, termios->c_cflag, baud);
2099 
2100 	/*
2101 	 * Calculate the approximated time it takes to transmit one character
2102 	 * with the given baud rate. We use this as the poll interval when we
2103 	 * wait for the tx queue to empty.
2104 	 */
2105 	uap->rs485_tx_drain_interval = DIV_ROUND_UP(bits * 1000 * 1000, baud);
2106 
2107 	pl011_setup_status_masks(port, termios);
2108 
2109 	if (UART_ENABLE_MS(port, termios->c_cflag))
2110 		pl011_enable_ms(port);
2111 
2112 	if (port->rs485.flags & SER_RS485_ENABLED)
2113 		termios->c_cflag &= ~CRTSCTS;
2114 
2115 	old_cr = pl011_read(uap, REG_CR);
2116 
2117 	if (termios->c_cflag & CRTSCTS) {
2118 		if (old_cr & UART011_CR_RTS)
2119 			old_cr |= UART011_CR_RTSEN;
2120 
2121 		old_cr |= UART011_CR_CTSEN;
2122 		port->status |= UPSTAT_AUTOCTS | UPSTAT_AUTORTS;
2123 	} else {
2124 		old_cr &= ~(UART011_CR_CTSEN | UART011_CR_RTSEN);
2125 		port->status &= ~(UPSTAT_AUTOCTS | UPSTAT_AUTORTS);
2126 	}
2127 
2128 	if (uap->vendor->oversampling) {
2129 		if (baud > port->uartclk / 16)
2130 			old_cr |= ST_UART011_CR_OVSFACT;
2131 		else
2132 			old_cr &= ~ST_UART011_CR_OVSFACT;
2133 	}
2134 
2135 	/*
2136 	 * Workaround for the ST Micro oversampling variants to
2137 	 * increase the bitrate slightly, by lowering the divisor,
2138 	 * to avoid delayed sampling of start bit at high speeds,
2139 	 * else we see data corruption.
2140 	 */
2141 	if (uap->vendor->oversampling) {
2142 		if ((baud >= 3000000) && (baud < 3250000) && (quot > 1))
2143 			quot -= 1;
2144 		else if ((baud > 3250000) && (quot > 2))
2145 			quot -= 2;
2146 	}
2147 	/* Set baud rate */
2148 	pl011_write(quot & 0x3f, uap, REG_FBRD);
2149 	pl011_write(quot >> 6, uap, REG_IBRD);
2150 
2151 	/*
2152 	 * ----------v----------v----------v----------v-----
2153 	 * NOTE: REG_LCRH_TX and REG_LCRH_RX MUST BE WRITTEN AFTER
2154 	 * REG_FBRD & REG_IBRD.
2155 	 * ----------^----------^----------^----------^-----
2156 	 */
2157 	pl011_write_lcr_h(uap, lcr_h);
2158 	pl011_write(old_cr, uap, REG_CR);
2159 
2160 	spin_unlock_irqrestore(&port->lock, flags);
2161 }
2162 
2163 static void
2164 sbsa_uart_set_termios(struct uart_port *port, struct ktermios *termios,
2165 		      struct ktermios *old)
2166 {
2167 	struct uart_amba_port *uap =
2168 	    container_of(port, struct uart_amba_port, port);
2169 	unsigned long flags;
2170 
2171 	tty_termios_encode_baud_rate(termios, uap->fixed_baud, uap->fixed_baud);
2172 
2173 	/* The SBSA UART only supports 8n1 without hardware flow control. */
2174 	termios->c_cflag &= ~(CSIZE | CSTOPB | PARENB | PARODD);
2175 	termios->c_cflag &= ~(CMSPAR | CRTSCTS);
2176 	termios->c_cflag |= CS8 | CLOCAL;
2177 
2178 	spin_lock_irqsave(&port->lock, flags);
2179 	uart_update_timeout(port, CS8, uap->fixed_baud);
2180 	pl011_setup_status_masks(port, termios);
2181 	spin_unlock_irqrestore(&port->lock, flags);
2182 }
2183 
2184 static const char *pl011_type(struct uart_port *port)
2185 {
2186 	struct uart_amba_port *uap =
2187 	    container_of(port, struct uart_amba_port, port);
2188 	return uap->port.type == PORT_AMBA ? uap->type : NULL;
2189 }
2190 
2191 /*
2192  * Configure/autoconfigure the port.
2193  */
2194 static void pl011_config_port(struct uart_port *port, int flags)
2195 {
2196 	if (flags & UART_CONFIG_TYPE)
2197 		port->type = PORT_AMBA;
2198 }
2199 
2200 /*
2201  * verify the new serial_struct (for TIOCSSERIAL).
2202  */
2203 static int pl011_verify_port(struct uart_port *port, struct serial_struct *ser)
2204 {
2205 	int ret = 0;
2206 	if (ser->type != PORT_UNKNOWN && ser->type != PORT_AMBA)
2207 		ret = -EINVAL;
2208 	if (ser->irq < 0 || ser->irq >= nr_irqs)
2209 		ret = -EINVAL;
2210 	if (ser->baud_base < 9600)
2211 		ret = -EINVAL;
2212 	if (port->mapbase != (unsigned long) ser->iomem_base)
2213 		ret = -EINVAL;
2214 	return ret;
2215 }
2216 
2217 static int pl011_rs485_config(struct uart_port *port,
2218 			      struct serial_rs485 *rs485)
2219 {
2220 	struct uart_amba_port *uap =
2221 		container_of(port, struct uart_amba_port, port);
2222 
2223 	if (port->rs485.flags & SER_RS485_ENABLED)
2224 		pl011_rs485_tx_stop(uap);
2225 
2226 	/* Make sure auto RTS is disabled */
2227 	if (rs485->flags & SER_RS485_ENABLED) {
2228 		u32 cr = pl011_read(uap, REG_CR);
2229 
2230 		cr &= ~UART011_CR_RTSEN;
2231 		pl011_write(cr, uap, REG_CR);
2232 		port->status &= ~UPSTAT_AUTORTS;
2233 	}
2234 
2235 	return 0;
2236 }
2237 
2238 static const struct uart_ops amba_pl011_pops = {
2239 	.tx_empty	= pl011_tx_empty,
2240 	.set_mctrl	= pl011_set_mctrl,
2241 	.get_mctrl	= pl011_get_mctrl,
2242 	.stop_tx	= pl011_stop_tx,
2243 	.start_tx	= pl011_start_tx,
2244 	.stop_rx	= pl011_stop_rx,
2245 	.throttle	= pl011_throttle_rx,
2246 	.unthrottle	= pl011_unthrottle_rx,
2247 	.enable_ms	= pl011_enable_ms,
2248 	.break_ctl	= pl011_break_ctl,
2249 	.startup	= pl011_startup,
2250 	.shutdown	= pl011_shutdown,
2251 	.flush_buffer	= pl011_dma_flush_buffer,
2252 	.set_termios	= pl011_set_termios,
2253 	.type		= pl011_type,
2254 	.config_port	= pl011_config_port,
2255 	.verify_port	= pl011_verify_port,
2256 #ifdef CONFIG_CONSOLE_POLL
2257 	.poll_init     = pl011_hwinit,
2258 	.poll_get_char = pl011_get_poll_char,
2259 	.poll_put_char = pl011_put_poll_char,
2260 #endif
2261 };
2262 
2263 static void sbsa_uart_set_mctrl(struct uart_port *port, unsigned int mctrl)
2264 {
2265 }
2266 
2267 static unsigned int sbsa_uart_get_mctrl(struct uart_port *port)
2268 {
2269 	return 0;
2270 }
2271 
2272 static const struct uart_ops sbsa_uart_pops = {
2273 	.tx_empty	= pl011_tx_empty,
2274 	.set_mctrl	= sbsa_uart_set_mctrl,
2275 	.get_mctrl	= sbsa_uart_get_mctrl,
2276 	.stop_tx	= pl011_stop_tx,
2277 	.start_tx	= pl011_start_tx,
2278 	.stop_rx	= pl011_stop_rx,
2279 	.startup	= sbsa_uart_startup,
2280 	.shutdown	= sbsa_uart_shutdown,
2281 	.set_termios	= sbsa_uart_set_termios,
2282 	.type		= pl011_type,
2283 	.config_port	= pl011_config_port,
2284 	.verify_port	= pl011_verify_port,
2285 #ifdef CONFIG_CONSOLE_POLL
2286 	.poll_init     = pl011_hwinit,
2287 	.poll_get_char = pl011_get_poll_char,
2288 	.poll_put_char = pl011_put_poll_char,
2289 #endif
2290 };
2291 
2292 static struct uart_amba_port *amba_ports[UART_NR];
2293 
2294 #ifdef CONFIG_SERIAL_AMBA_PL011_CONSOLE
2295 
2296 static void pl011_console_putchar(struct uart_port *port, unsigned char ch)
2297 {
2298 	struct uart_amba_port *uap =
2299 	    container_of(port, struct uart_amba_port, port);
2300 
2301 	while (pl011_read(uap, REG_FR) & UART01x_FR_TXFF)
2302 		cpu_relax();
2303 	pl011_write(ch, uap, REG_DR);
2304 }
2305 
2306 static void
2307 pl011_console_write(struct console *co, const char *s, unsigned int count)
2308 {
2309 	struct uart_amba_port *uap = amba_ports[co->index];
2310 	unsigned int old_cr = 0, new_cr;
2311 	unsigned long flags;
2312 	int locked = 1;
2313 
2314 	clk_enable(uap->clk);
2315 
2316 	local_irq_save(flags);
2317 	if (uap->port.sysrq)
2318 		locked = 0;
2319 	else if (oops_in_progress)
2320 		locked = spin_trylock(&uap->port.lock);
2321 	else
2322 		spin_lock(&uap->port.lock);
2323 
2324 	/*
2325 	 *	First save the CR then disable the interrupts
2326 	 */
2327 	if (!uap->vendor->always_enabled) {
2328 		old_cr = pl011_read(uap, REG_CR);
2329 		new_cr = old_cr & ~UART011_CR_CTSEN;
2330 		new_cr |= UART01x_CR_UARTEN | UART011_CR_TXE;
2331 		pl011_write(new_cr, uap, REG_CR);
2332 	}
2333 
2334 	uart_console_write(&uap->port, s, count, pl011_console_putchar);
2335 
2336 	/*
2337 	 *	Finally, wait for transmitter to become empty and restore the
2338 	 *	TCR. Allow feature register bits to be inverted to work around
2339 	 *	errata.
2340 	 */
2341 	while ((pl011_read(uap, REG_FR) ^ uap->vendor->inv_fr)
2342 						& uap->vendor->fr_busy)
2343 		cpu_relax();
2344 	if (!uap->vendor->always_enabled)
2345 		pl011_write(old_cr, uap, REG_CR);
2346 
2347 	if (locked)
2348 		spin_unlock(&uap->port.lock);
2349 	local_irq_restore(flags);
2350 
2351 	clk_disable(uap->clk);
2352 }
2353 
2354 static void pl011_console_get_options(struct uart_amba_port *uap, int *baud,
2355 				      int *parity, int *bits)
2356 {
2357 	if (pl011_read(uap, REG_CR) & UART01x_CR_UARTEN) {
2358 		unsigned int lcr_h, ibrd, fbrd;
2359 
2360 		lcr_h = pl011_read(uap, REG_LCRH_TX);
2361 
2362 		*parity = 'n';
2363 		if (lcr_h & UART01x_LCRH_PEN) {
2364 			if (lcr_h & UART01x_LCRH_EPS)
2365 				*parity = 'e';
2366 			else
2367 				*parity = 'o';
2368 		}
2369 
2370 		if ((lcr_h & 0x60) == UART01x_LCRH_WLEN_7)
2371 			*bits = 7;
2372 		else
2373 			*bits = 8;
2374 
2375 		ibrd = pl011_read(uap, REG_IBRD);
2376 		fbrd = pl011_read(uap, REG_FBRD);
2377 
2378 		*baud = uap->port.uartclk * 4 / (64 * ibrd + fbrd);
2379 
2380 		if (uap->vendor->oversampling) {
2381 			if (pl011_read(uap, REG_CR)
2382 				  & ST_UART011_CR_OVSFACT)
2383 				*baud *= 2;
2384 		}
2385 	}
2386 }
2387 
2388 static int pl011_console_setup(struct console *co, char *options)
2389 {
2390 	struct uart_amba_port *uap;
2391 	int baud = 38400;
2392 	int bits = 8;
2393 	int parity = 'n';
2394 	int flow = 'n';
2395 	int ret;
2396 
2397 	/*
2398 	 * Check whether an invalid uart number has been specified, and
2399 	 * if so, search for the first available port that does have
2400 	 * console support.
2401 	 */
2402 	if (co->index >= UART_NR)
2403 		co->index = 0;
2404 	uap = amba_ports[co->index];
2405 	if (!uap)
2406 		return -ENODEV;
2407 
2408 	/* Allow pins to be muxed in and configured */
2409 	pinctrl_pm_select_default_state(uap->port.dev);
2410 
2411 	ret = clk_prepare(uap->clk);
2412 	if (ret)
2413 		return ret;
2414 
2415 	if (dev_get_platdata(uap->port.dev)) {
2416 		struct amba_pl011_data *plat;
2417 
2418 		plat = dev_get_platdata(uap->port.dev);
2419 		if (plat->init)
2420 			plat->init();
2421 	}
2422 
2423 	uap->port.uartclk = clk_get_rate(uap->clk);
2424 
2425 	if (uap->vendor->fixed_options) {
2426 		baud = uap->fixed_baud;
2427 	} else {
2428 		if (options)
2429 			uart_parse_options(options,
2430 					   &baud, &parity, &bits, &flow);
2431 		else
2432 			pl011_console_get_options(uap, &baud, &parity, &bits);
2433 	}
2434 
2435 	return uart_set_options(&uap->port, co, baud, parity, bits, flow);
2436 }
2437 
2438 /**
2439  *	pl011_console_match - non-standard console matching
2440  *	@co:	  registering console
2441  *	@name:	  name from console command line
2442  *	@idx:	  index from console command line
2443  *	@options: ptr to option string from console command line
2444  *
2445  *	Only attempts to match console command lines of the form:
2446  *	    console=pl011,mmio|mmio32,<addr>[,<options>]
2447  *	    console=pl011,0x<addr>[,<options>]
2448  *	This form is used to register an initial earlycon boot console and
2449  *	replace it with the amba_console at pl011 driver init.
2450  *
2451  *	Performs console setup for a match (as required by interface)
2452  *	If no <options> are specified, then assume the h/w is already setup.
2453  *
2454  *	Returns 0 if console matches; otherwise non-zero to use default matching
2455  */
2456 static int pl011_console_match(struct console *co, char *name, int idx,
2457 			       char *options)
2458 {
2459 	unsigned char iotype;
2460 	resource_size_t addr;
2461 	int i;
2462 
2463 	/*
2464 	 * Systems affected by the Qualcomm Technologies QDF2400 E44 erratum
2465 	 * have a distinct console name, so make sure we check for that.
2466 	 * The actual implementation of the erratum occurs in the probe
2467 	 * function.
2468 	 */
2469 	if ((strcmp(name, "qdf2400_e44") != 0) && (strcmp(name, "pl011") != 0))
2470 		return -ENODEV;
2471 
2472 	if (uart_parse_earlycon(options, &iotype, &addr, &options))
2473 		return -ENODEV;
2474 
2475 	if (iotype != UPIO_MEM && iotype != UPIO_MEM32)
2476 		return -ENODEV;
2477 
2478 	/* try to match the port specified on the command line */
2479 	for (i = 0; i < ARRAY_SIZE(amba_ports); i++) {
2480 		struct uart_port *port;
2481 
2482 		if (!amba_ports[i])
2483 			continue;
2484 
2485 		port = &amba_ports[i]->port;
2486 
2487 		if (port->mapbase != addr)
2488 			continue;
2489 
2490 		co->index = i;
2491 		port->cons = co;
2492 		return pl011_console_setup(co, options);
2493 	}
2494 
2495 	return -ENODEV;
2496 }
2497 
2498 static struct uart_driver amba_reg;
2499 static struct console amba_console = {
2500 	.name		= "ttyAMA",
2501 	.write		= pl011_console_write,
2502 	.device		= uart_console_device,
2503 	.setup		= pl011_console_setup,
2504 	.match		= pl011_console_match,
2505 	.flags		= CON_PRINTBUFFER | CON_ANYTIME,
2506 	.index		= -1,
2507 	.data		= &amba_reg,
2508 };
2509 
2510 #define AMBA_CONSOLE	(&amba_console)
2511 
2512 static void qdf2400_e44_putc(struct uart_port *port, unsigned char c)
2513 {
2514 	while (readl(port->membase + UART01x_FR) & UART01x_FR_TXFF)
2515 		cpu_relax();
2516 	writel(c, port->membase + UART01x_DR);
2517 	while (!(readl(port->membase + UART01x_FR) & UART011_FR_TXFE))
2518 		cpu_relax();
2519 }
2520 
2521 static void qdf2400_e44_early_write(struct console *con, const char *s, unsigned n)
2522 {
2523 	struct earlycon_device *dev = con->data;
2524 
2525 	uart_console_write(&dev->port, s, n, qdf2400_e44_putc);
2526 }
2527 
2528 static void pl011_putc(struct uart_port *port, unsigned char c)
2529 {
2530 	while (readl(port->membase + UART01x_FR) & UART01x_FR_TXFF)
2531 		cpu_relax();
2532 	if (port->iotype == UPIO_MEM32)
2533 		writel(c, port->membase + UART01x_DR);
2534 	else
2535 		writeb(c, port->membase + UART01x_DR);
2536 	while (readl(port->membase + UART01x_FR) & UART01x_FR_BUSY)
2537 		cpu_relax();
2538 }
2539 
2540 static void pl011_early_write(struct console *con, const char *s, unsigned n)
2541 {
2542 	struct earlycon_device *dev = con->data;
2543 
2544 	uart_console_write(&dev->port, s, n, pl011_putc);
2545 }
2546 
2547 #ifdef CONFIG_CONSOLE_POLL
2548 static int pl011_getc(struct uart_port *port)
2549 {
2550 	if (readl(port->membase + UART01x_FR) & UART01x_FR_RXFE)
2551 		return NO_POLL_CHAR;
2552 
2553 	if (port->iotype == UPIO_MEM32)
2554 		return readl(port->membase + UART01x_DR);
2555 	else
2556 		return readb(port->membase + UART01x_DR);
2557 }
2558 
2559 static int pl011_early_read(struct console *con, char *s, unsigned int n)
2560 {
2561 	struct earlycon_device *dev = con->data;
2562 	int ch, num_read = 0;
2563 
2564 	while (num_read < n) {
2565 		ch = pl011_getc(&dev->port);
2566 		if (ch == NO_POLL_CHAR)
2567 			break;
2568 
2569 		s[num_read++] = ch;
2570 	}
2571 
2572 	return num_read;
2573 }
2574 #else
2575 #define pl011_early_read NULL
2576 #endif
2577 
2578 /*
2579  * On non-ACPI systems, earlycon is enabled by specifying
2580  * "earlycon=pl011,<address>" on the kernel command line.
2581  *
2582  * On ACPI ARM64 systems, an "early" console is enabled via the SPCR table,
2583  * by specifying only "earlycon" on the command line.  Because it requires
2584  * SPCR, the console starts after ACPI is parsed, which is later than a
2585  * traditional early console.
2586  *
2587  * To get the traditional early console that starts before ACPI is parsed,
2588  * specify the full "earlycon=pl011,<address>" option.
2589  */
2590 static int __init pl011_early_console_setup(struct earlycon_device *device,
2591 					    const char *opt)
2592 {
2593 	if (!device->port.membase)
2594 		return -ENODEV;
2595 
2596 	device->con->write = pl011_early_write;
2597 	device->con->read = pl011_early_read;
2598 
2599 	return 0;
2600 }
2601 OF_EARLYCON_DECLARE(pl011, "arm,pl011", pl011_early_console_setup);
2602 OF_EARLYCON_DECLARE(pl011, "arm,sbsa-uart", pl011_early_console_setup);
2603 
2604 /*
2605  * On Qualcomm Datacenter Technologies QDF2400 SOCs affected by
2606  * Erratum 44, traditional earlycon can be enabled by specifying
2607  * "earlycon=qdf2400_e44,<address>".  Any options are ignored.
2608  *
2609  * Alternatively, you can just specify "earlycon", and the early console
2610  * will be enabled with the information from the SPCR table.  In this
2611  * case, the SPCR code will detect the need for the E44 work-around,
2612  * and set the console name to "qdf2400_e44".
2613  */
2614 static int __init
2615 qdf2400_e44_early_console_setup(struct earlycon_device *device,
2616 				const char *opt)
2617 {
2618 	if (!device->port.membase)
2619 		return -ENODEV;
2620 
2621 	device->con->write = qdf2400_e44_early_write;
2622 	return 0;
2623 }
2624 EARLYCON_DECLARE(qdf2400_e44, qdf2400_e44_early_console_setup);
2625 
2626 #else
2627 #define AMBA_CONSOLE	NULL
2628 #endif
2629 
2630 static struct uart_driver amba_reg = {
2631 	.owner			= THIS_MODULE,
2632 	.driver_name		= "ttyAMA",
2633 	.dev_name		= "ttyAMA",
2634 	.major			= SERIAL_AMBA_MAJOR,
2635 	.minor			= SERIAL_AMBA_MINOR,
2636 	.nr			= UART_NR,
2637 	.cons			= AMBA_CONSOLE,
2638 };
2639 
2640 static int pl011_probe_dt_alias(int index, struct device *dev)
2641 {
2642 	struct device_node *np;
2643 	static bool seen_dev_with_alias = false;
2644 	static bool seen_dev_without_alias = false;
2645 	int ret = index;
2646 
2647 	if (!IS_ENABLED(CONFIG_OF))
2648 		return ret;
2649 
2650 	np = dev->of_node;
2651 	if (!np)
2652 		return ret;
2653 
2654 	ret = of_alias_get_id(np, "serial");
2655 	if (ret < 0) {
2656 		seen_dev_without_alias = true;
2657 		ret = index;
2658 	} else {
2659 		seen_dev_with_alias = true;
2660 		if (ret >= ARRAY_SIZE(amba_ports) || amba_ports[ret] != NULL) {
2661 			dev_warn(dev, "requested serial port %d  not available.\n", ret);
2662 			ret = index;
2663 		}
2664 	}
2665 
2666 	if (seen_dev_with_alias && seen_dev_without_alias)
2667 		dev_warn(dev, "aliased and non-aliased serial devices found in device tree. Serial port enumeration may be unpredictable.\n");
2668 
2669 	return ret;
2670 }
2671 
2672 /* unregisters the driver also if no more ports are left */
2673 static void pl011_unregister_port(struct uart_amba_port *uap)
2674 {
2675 	int i;
2676 	bool busy = false;
2677 
2678 	for (i = 0; i < ARRAY_SIZE(amba_ports); i++) {
2679 		if (amba_ports[i] == uap)
2680 			amba_ports[i] = NULL;
2681 		else if (amba_ports[i])
2682 			busy = true;
2683 	}
2684 	pl011_dma_remove(uap);
2685 	if (!busy)
2686 		uart_unregister_driver(&amba_reg);
2687 }
2688 
2689 static int pl011_find_free_port(void)
2690 {
2691 	int i;
2692 
2693 	for (i = 0; i < ARRAY_SIZE(amba_ports); i++)
2694 		if (amba_ports[i] == NULL)
2695 			return i;
2696 
2697 	return -EBUSY;
2698 }
2699 
2700 static int pl011_get_rs485_mode(struct uart_amba_port *uap)
2701 {
2702 	struct uart_port *port = &uap->port;
2703 	struct serial_rs485 *rs485 = &port->rs485;
2704 	int ret;
2705 
2706 	ret = uart_get_rs485_mode(port);
2707 	if (ret)
2708 		return ret;
2709 
2710 	/* clamp the delays to [0, 100ms] */
2711 	rs485->delay_rts_before_send = min(rs485->delay_rts_before_send, 100U);
2712 	rs485->delay_rts_after_send = min(rs485->delay_rts_after_send, 100U);
2713 
2714 	return 0;
2715 }
2716 
2717 static int pl011_setup_port(struct device *dev, struct uart_amba_port *uap,
2718 			    struct resource *mmiobase, int index)
2719 {
2720 	void __iomem *base;
2721 	int ret;
2722 
2723 	base = devm_ioremap_resource(dev, mmiobase);
2724 	if (IS_ERR(base))
2725 		return PTR_ERR(base);
2726 
2727 	index = pl011_probe_dt_alias(index, dev);
2728 
2729 	uap->port.dev = dev;
2730 	uap->port.mapbase = mmiobase->start;
2731 	uap->port.membase = base;
2732 	uap->port.fifosize = uap->fifosize;
2733 	uap->port.has_sysrq = IS_ENABLED(CONFIG_SERIAL_AMBA_PL011_CONSOLE);
2734 	uap->port.flags = UPF_BOOT_AUTOCONF;
2735 	uap->port.line = index;
2736 
2737 	ret = pl011_get_rs485_mode(uap);
2738 	if (ret)
2739 		return ret;
2740 
2741 	amba_ports[index] = uap;
2742 
2743 	return 0;
2744 }
2745 
2746 static int pl011_register_port(struct uart_amba_port *uap)
2747 {
2748 	int ret, i;
2749 
2750 	/* Ensure interrupts from this UART are masked and cleared */
2751 	pl011_write(0, uap, REG_IMSC);
2752 	pl011_write(0xffff, uap, REG_ICR);
2753 
2754 	if (!amba_reg.state) {
2755 		ret = uart_register_driver(&amba_reg);
2756 		if (ret < 0) {
2757 			dev_err(uap->port.dev,
2758 				"Failed to register AMBA-PL011 driver\n");
2759 			for (i = 0; i < ARRAY_SIZE(amba_ports); i++)
2760 				if (amba_ports[i] == uap)
2761 					amba_ports[i] = NULL;
2762 			return ret;
2763 		}
2764 	}
2765 
2766 	ret = uart_add_one_port(&amba_reg, &uap->port);
2767 	if (ret)
2768 		pl011_unregister_port(uap);
2769 
2770 	return ret;
2771 }
2772 
2773 static int pl011_probe(struct amba_device *dev, const struct amba_id *id)
2774 {
2775 	struct uart_amba_port *uap;
2776 	struct vendor_data *vendor = id->data;
2777 	int portnr, ret;
2778 
2779 	portnr = pl011_find_free_port();
2780 	if (portnr < 0)
2781 		return portnr;
2782 
2783 	uap = devm_kzalloc(&dev->dev, sizeof(struct uart_amba_port),
2784 			   GFP_KERNEL);
2785 	if (!uap)
2786 		return -ENOMEM;
2787 
2788 	uap->clk = devm_clk_get(&dev->dev, NULL);
2789 	if (IS_ERR(uap->clk))
2790 		return PTR_ERR(uap->clk);
2791 
2792 	uap->reg_offset = vendor->reg_offset;
2793 	uap->vendor = vendor;
2794 	uap->fifosize = vendor->get_fifosize(dev);
2795 	uap->port.iotype = vendor->access_32b ? UPIO_MEM32 : UPIO_MEM;
2796 	uap->port.irq = dev->irq[0];
2797 	uap->port.ops = &amba_pl011_pops;
2798 	uap->port.rs485_config = pl011_rs485_config;
2799 	snprintf(uap->type, sizeof(uap->type), "PL011 rev%u", amba_rev(dev));
2800 
2801 	ret = pl011_setup_port(&dev->dev, uap, &dev->res, portnr);
2802 	if (ret)
2803 		return ret;
2804 
2805 	amba_set_drvdata(dev, uap);
2806 
2807 	return pl011_register_port(uap);
2808 }
2809 
2810 static void pl011_remove(struct amba_device *dev)
2811 {
2812 	struct uart_amba_port *uap = amba_get_drvdata(dev);
2813 
2814 	uart_remove_one_port(&amba_reg, &uap->port);
2815 	pl011_unregister_port(uap);
2816 }
2817 
2818 #ifdef CONFIG_PM_SLEEP
2819 static int pl011_suspend(struct device *dev)
2820 {
2821 	struct uart_amba_port *uap = dev_get_drvdata(dev);
2822 
2823 	if (!uap)
2824 		return -EINVAL;
2825 
2826 	return uart_suspend_port(&amba_reg, &uap->port);
2827 }
2828 
2829 static int pl011_resume(struct device *dev)
2830 {
2831 	struct uart_amba_port *uap = dev_get_drvdata(dev);
2832 
2833 	if (!uap)
2834 		return -EINVAL;
2835 
2836 	return uart_resume_port(&amba_reg, &uap->port);
2837 }
2838 #endif
2839 
2840 static SIMPLE_DEV_PM_OPS(pl011_dev_pm_ops, pl011_suspend, pl011_resume);
2841 
2842 static int sbsa_uart_probe(struct platform_device *pdev)
2843 {
2844 	struct uart_amba_port *uap;
2845 	struct resource *r;
2846 	int portnr, ret;
2847 	int baudrate;
2848 
2849 	/*
2850 	 * Check the mandatory baud rate parameter in the DT node early
2851 	 * so that we can easily exit with the error.
2852 	 */
2853 	if (pdev->dev.of_node) {
2854 		struct device_node *np = pdev->dev.of_node;
2855 
2856 		ret = of_property_read_u32(np, "current-speed", &baudrate);
2857 		if (ret)
2858 			return ret;
2859 	} else {
2860 		baudrate = 115200;
2861 	}
2862 
2863 	portnr = pl011_find_free_port();
2864 	if (portnr < 0)
2865 		return portnr;
2866 
2867 	uap = devm_kzalloc(&pdev->dev, sizeof(struct uart_amba_port),
2868 			   GFP_KERNEL);
2869 	if (!uap)
2870 		return -ENOMEM;
2871 
2872 	ret = platform_get_irq(pdev, 0);
2873 	if (ret < 0)
2874 		return ret;
2875 	uap->port.irq	= ret;
2876 
2877 #ifdef CONFIG_ACPI_SPCR_TABLE
2878 	if (qdf2400_e44_present) {
2879 		dev_info(&pdev->dev, "working around QDF2400 SoC erratum 44\n");
2880 		uap->vendor = &vendor_qdt_qdf2400_e44;
2881 	} else
2882 #endif
2883 		uap->vendor = &vendor_sbsa;
2884 
2885 	uap->reg_offset	= uap->vendor->reg_offset;
2886 	uap->fifosize	= 32;
2887 	uap->port.iotype = uap->vendor->access_32b ? UPIO_MEM32 : UPIO_MEM;
2888 	uap->port.ops	= &sbsa_uart_pops;
2889 	uap->fixed_baud = baudrate;
2890 
2891 	snprintf(uap->type, sizeof(uap->type), "SBSA");
2892 
2893 	r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2894 
2895 	ret = pl011_setup_port(&pdev->dev, uap, r, portnr);
2896 	if (ret)
2897 		return ret;
2898 
2899 	platform_set_drvdata(pdev, uap);
2900 
2901 	return pl011_register_port(uap);
2902 }
2903 
2904 static int sbsa_uart_remove(struct platform_device *pdev)
2905 {
2906 	struct uart_amba_port *uap = platform_get_drvdata(pdev);
2907 
2908 	uart_remove_one_port(&amba_reg, &uap->port);
2909 	pl011_unregister_port(uap);
2910 	return 0;
2911 }
2912 
2913 static const struct of_device_id sbsa_uart_of_match[] = {
2914 	{ .compatible = "arm,sbsa-uart", },
2915 	{},
2916 };
2917 MODULE_DEVICE_TABLE(of, sbsa_uart_of_match);
2918 
2919 static const struct acpi_device_id __maybe_unused sbsa_uart_acpi_match[] = {
2920 	{ "ARMH0011", 0 },
2921 	{ "ARMHB000", 0 },
2922 	{},
2923 };
2924 MODULE_DEVICE_TABLE(acpi, sbsa_uart_acpi_match);
2925 
2926 static struct platform_driver arm_sbsa_uart_platform_driver = {
2927 	.probe		= sbsa_uart_probe,
2928 	.remove		= sbsa_uart_remove,
2929 	.driver	= {
2930 		.name	= "sbsa-uart",
2931 		.pm	= &pl011_dev_pm_ops,
2932 		.of_match_table = of_match_ptr(sbsa_uart_of_match),
2933 		.acpi_match_table = ACPI_PTR(sbsa_uart_acpi_match),
2934 		.suppress_bind_attrs = IS_BUILTIN(CONFIG_SERIAL_AMBA_PL011),
2935 	},
2936 };
2937 
2938 static const struct amba_id pl011_ids[] = {
2939 	{
2940 		.id	= 0x00041011,
2941 		.mask	= 0x000fffff,
2942 		.data	= &vendor_arm,
2943 	},
2944 	{
2945 		.id	= 0x00380802,
2946 		.mask	= 0x00ffffff,
2947 		.data	= &vendor_st,
2948 	},
2949 	{ 0, 0 },
2950 };
2951 
2952 MODULE_DEVICE_TABLE(amba, pl011_ids);
2953 
2954 static struct amba_driver pl011_driver = {
2955 	.drv = {
2956 		.name	= "uart-pl011",
2957 		.pm	= &pl011_dev_pm_ops,
2958 		.suppress_bind_attrs = IS_BUILTIN(CONFIG_SERIAL_AMBA_PL011),
2959 	},
2960 	.id_table	= pl011_ids,
2961 	.probe		= pl011_probe,
2962 	.remove		= pl011_remove,
2963 };
2964 
2965 static int __init pl011_init(void)
2966 {
2967 	printk(KERN_INFO "Serial: AMBA PL011 UART driver\n");
2968 
2969 	if (platform_driver_register(&arm_sbsa_uart_platform_driver))
2970 		pr_warn("could not register SBSA UART platform driver\n");
2971 	return amba_driver_register(&pl011_driver);
2972 }
2973 
2974 static void __exit pl011_exit(void)
2975 {
2976 	platform_driver_unregister(&arm_sbsa_uart_platform_driver);
2977 	amba_driver_unregister(&pl011_driver);
2978 }
2979 
2980 /*
2981  * While this can be a module, if builtin it's most likely the console
2982  * So let's leave module_exit but move module_init to an earlier place
2983  */
2984 arch_initcall(pl011_init);
2985 module_exit(pl011_exit);
2986 
2987 MODULE_AUTHOR("ARM Ltd/Deep Blue Solutions Ltd");
2988 MODULE_DESCRIPTION("ARM AMBA serial port driver");
2989 MODULE_LICENSE("GPL");
2990