xref: /openbmc/linux/drivers/tty/serial/amba-pl011.c (revision 31eeb6b0)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  *  Driver for AMBA serial ports
4  *
5  *  Based on drivers/char/serial.c, by Linus Torvalds, Theodore Ts'o.
6  *
7  *  Copyright 1999 ARM Limited
8  *  Copyright (C) 2000 Deep Blue Solutions Ltd.
9  *  Copyright (C) 2010 ST-Ericsson SA
10  *
11  * This is a generic driver for ARM AMBA-type serial ports.  They
12  * have a lot of 16550-like features, but are not register compatible.
13  * Note that although they do have CTS, DCD and DSR inputs, they do
14  * not have an RI input, nor do they have DTR or RTS outputs.  If
15  * required, these have to be supplied via some other means (eg, GPIO)
16  * and hooked into this driver.
17  */
18 
19 #include <linux/module.h>
20 #include <linux/ioport.h>
21 #include <linux/init.h>
22 #include <linux/console.h>
23 #include <linux/sysrq.h>
24 #include <linux/device.h>
25 #include <linux/tty.h>
26 #include <linux/tty_flip.h>
27 #include <linux/serial_core.h>
28 #include <linux/serial.h>
29 #include <linux/amba/bus.h>
30 #include <linux/amba/serial.h>
31 #include <linux/clk.h>
32 #include <linux/slab.h>
33 #include <linux/dmaengine.h>
34 #include <linux/dma-mapping.h>
35 #include <linux/scatterlist.h>
36 #include <linux/delay.h>
37 #include <linux/types.h>
38 #include <linux/of.h>
39 #include <linux/of_device.h>
40 #include <linux/pinctrl/consumer.h>
41 #include <linux/sizes.h>
42 #include <linux/io.h>
43 #include <linux/acpi.h>
44 
45 #include "amba-pl011.h"
46 
47 #define UART_NR			14
48 
49 #define SERIAL_AMBA_MAJOR	204
50 #define SERIAL_AMBA_MINOR	64
51 #define SERIAL_AMBA_NR		UART_NR
52 
53 #define AMBA_ISR_PASS_LIMIT	256
54 
55 #define UART_DR_ERROR		(UART011_DR_OE|UART011_DR_BE|UART011_DR_PE|UART011_DR_FE)
56 #define UART_DUMMY_DR_RX	(1 << 16)
57 
58 static u16 pl011_std_offsets[REG_ARRAY_SIZE] = {
59 	[REG_DR] = UART01x_DR,
60 	[REG_FR] = UART01x_FR,
61 	[REG_LCRH_RX] = UART011_LCRH,
62 	[REG_LCRH_TX] = UART011_LCRH,
63 	[REG_IBRD] = UART011_IBRD,
64 	[REG_FBRD] = UART011_FBRD,
65 	[REG_CR] = UART011_CR,
66 	[REG_IFLS] = UART011_IFLS,
67 	[REG_IMSC] = UART011_IMSC,
68 	[REG_RIS] = UART011_RIS,
69 	[REG_MIS] = UART011_MIS,
70 	[REG_ICR] = UART011_ICR,
71 	[REG_DMACR] = UART011_DMACR,
72 };
73 
74 /* There is by now at least one vendor with differing details, so handle it */
75 struct vendor_data {
76 	const u16		*reg_offset;
77 	unsigned int		ifls;
78 	unsigned int		fr_busy;
79 	unsigned int		fr_dsr;
80 	unsigned int		fr_cts;
81 	unsigned int		fr_ri;
82 	unsigned int		inv_fr;
83 	bool			access_32b;
84 	bool			oversampling;
85 	bool			dma_threshold;
86 	bool			cts_event_workaround;
87 	bool			always_enabled;
88 	bool			fixed_options;
89 
90 	unsigned int (*get_fifosize)(struct amba_device *dev);
91 };
92 
93 static unsigned int get_fifosize_arm(struct amba_device *dev)
94 {
95 	return amba_rev(dev) < 3 ? 16 : 32;
96 }
97 
98 static struct vendor_data vendor_arm = {
99 	.reg_offset		= pl011_std_offsets,
100 	.ifls			= UART011_IFLS_RX4_8|UART011_IFLS_TX4_8,
101 	.fr_busy		= UART01x_FR_BUSY,
102 	.fr_dsr			= UART01x_FR_DSR,
103 	.fr_cts			= UART01x_FR_CTS,
104 	.fr_ri			= UART011_FR_RI,
105 	.oversampling		= false,
106 	.dma_threshold		= false,
107 	.cts_event_workaround	= false,
108 	.always_enabled		= false,
109 	.fixed_options		= false,
110 	.get_fifosize		= get_fifosize_arm,
111 };
112 
113 static const struct vendor_data vendor_sbsa = {
114 	.reg_offset		= pl011_std_offsets,
115 	.fr_busy		= UART01x_FR_BUSY,
116 	.fr_dsr			= UART01x_FR_DSR,
117 	.fr_cts			= UART01x_FR_CTS,
118 	.fr_ri			= UART011_FR_RI,
119 	.access_32b		= true,
120 	.oversampling		= false,
121 	.dma_threshold		= false,
122 	.cts_event_workaround	= false,
123 	.always_enabled		= true,
124 	.fixed_options		= true,
125 };
126 
127 #ifdef CONFIG_ACPI_SPCR_TABLE
128 static const struct vendor_data vendor_qdt_qdf2400_e44 = {
129 	.reg_offset		= pl011_std_offsets,
130 	.fr_busy		= UART011_FR_TXFE,
131 	.fr_dsr			= UART01x_FR_DSR,
132 	.fr_cts			= UART01x_FR_CTS,
133 	.fr_ri			= UART011_FR_RI,
134 	.inv_fr			= UART011_FR_TXFE,
135 	.access_32b		= true,
136 	.oversampling		= false,
137 	.dma_threshold		= false,
138 	.cts_event_workaround	= false,
139 	.always_enabled		= true,
140 	.fixed_options		= true,
141 };
142 #endif
143 
144 static u16 pl011_st_offsets[REG_ARRAY_SIZE] = {
145 	[REG_DR] = UART01x_DR,
146 	[REG_ST_DMAWM] = ST_UART011_DMAWM,
147 	[REG_ST_TIMEOUT] = ST_UART011_TIMEOUT,
148 	[REG_FR] = UART01x_FR,
149 	[REG_LCRH_RX] = ST_UART011_LCRH_RX,
150 	[REG_LCRH_TX] = ST_UART011_LCRH_TX,
151 	[REG_IBRD] = UART011_IBRD,
152 	[REG_FBRD] = UART011_FBRD,
153 	[REG_CR] = UART011_CR,
154 	[REG_IFLS] = UART011_IFLS,
155 	[REG_IMSC] = UART011_IMSC,
156 	[REG_RIS] = UART011_RIS,
157 	[REG_MIS] = UART011_MIS,
158 	[REG_ICR] = UART011_ICR,
159 	[REG_DMACR] = UART011_DMACR,
160 	[REG_ST_XFCR] = ST_UART011_XFCR,
161 	[REG_ST_XON1] = ST_UART011_XON1,
162 	[REG_ST_XON2] = ST_UART011_XON2,
163 	[REG_ST_XOFF1] = ST_UART011_XOFF1,
164 	[REG_ST_XOFF2] = ST_UART011_XOFF2,
165 	[REG_ST_ITCR] = ST_UART011_ITCR,
166 	[REG_ST_ITIP] = ST_UART011_ITIP,
167 	[REG_ST_ABCR] = ST_UART011_ABCR,
168 	[REG_ST_ABIMSC] = ST_UART011_ABIMSC,
169 };
170 
171 static unsigned int get_fifosize_st(struct amba_device *dev)
172 {
173 	return 64;
174 }
175 
176 static struct vendor_data vendor_st = {
177 	.reg_offset		= pl011_st_offsets,
178 	.ifls			= UART011_IFLS_RX_HALF|UART011_IFLS_TX_HALF,
179 	.fr_busy		= UART01x_FR_BUSY,
180 	.fr_dsr			= UART01x_FR_DSR,
181 	.fr_cts			= UART01x_FR_CTS,
182 	.fr_ri			= UART011_FR_RI,
183 	.oversampling		= true,
184 	.dma_threshold		= true,
185 	.cts_event_workaround	= true,
186 	.always_enabled		= false,
187 	.fixed_options		= false,
188 	.get_fifosize		= get_fifosize_st,
189 };
190 
191 /* Deals with DMA transactions */
192 
193 struct pl011_sgbuf {
194 	struct scatterlist sg;
195 	char *buf;
196 };
197 
198 struct pl011_dmarx_data {
199 	struct dma_chan		*chan;
200 	struct completion	complete;
201 	bool			use_buf_b;
202 	struct pl011_sgbuf	sgbuf_a;
203 	struct pl011_sgbuf	sgbuf_b;
204 	dma_cookie_t		cookie;
205 	bool			running;
206 	struct timer_list	timer;
207 	unsigned int last_residue;
208 	unsigned long last_jiffies;
209 	bool auto_poll_rate;
210 	unsigned int poll_rate;
211 	unsigned int poll_timeout;
212 };
213 
214 struct pl011_dmatx_data {
215 	struct dma_chan		*chan;
216 	struct scatterlist	sg;
217 	char			*buf;
218 	bool			queued;
219 };
220 
221 /*
222  * We wrap our port structure around the generic uart_port.
223  */
224 struct uart_amba_port {
225 	struct uart_port	port;
226 	const u16		*reg_offset;
227 	struct clk		*clk;
228 	const struct vendor_data *vendor;
229 	unsigned int		dmacr;		/* dma control reg */
230 	unsigned int		im;		/* interrupt mask */
231 	unsigned int		old_status;
232 	unsigned int		fifosize;	/* vendor-specific */
233 	unsigned int		fixed_baud;	/* vendor-set fixed baud rate */
234 	char			type[12];
235 	bool			rs485_tx_started;
236 	unsigned int		rs485_tx_drain_interval; /* usecs */
237 #ifdef CONFIG_DMA_ENGINE
238 	/* DMA stuff */
239 	bool			using_tx_dma;
240 	bool			using_rx_dma;
241 	struct pl011_dmarx_data dmarx;
242 	struct pl011_dmatx_data	dmatx;
243 	bool			dma_probed;
244 #endif
245 };
246 
247 static unsigned int pl011_tx_empty(struct uart_port *port);
248 
249 static unsigned int pl011_reg_to_offset(const struct uart_amba_port *uap,
250 	unsigned int reg)
251 {
252 	return uap->reg_offset[reg];
253 }
254 
255 static unsigned int pl011_read(const struct uart_amba_port *uap,
256 	unsigned int reg)
257 {
258 	void __iomem *addr = uap->port.membase + pl011_reg_to_offset(uap, reg);
259 
260 	return (uap->port.iotype == UPIO_MEM32) ?
261 		readl_relaxed(addr) : readw_relaxed(addr);
262 }
263 
264 static void pl011_write(unsigned int val, const struct uart_amba_port *uap,
265 	unsigned int reg)
266 {
267 	void __iomem *addr = uap->port.membase + pl011_reg_to_offset(uap, reg);
268 
269 	if (uap->port.iotype == UPIO_MEM32)
270 		writel_relaxed(val, addr);
271 	else
272 		writew_relaxed(val, addr);
273 }
274 
275 /*
276  * Reads up to 256 characters from the FIFO or until it's empty and
277  * inserts them into the TTY layer. Returns the number of characters
278  * read from the FIFO.
279  */
280 static int pl011_fifo_to_tty(struct uart_amba_port *uap)
281 {
282 	unsigned int ch, flag, fifotaken;
283 	int sysrq;
284 	u16 status;
285 
286 	for (fifotaken = 0; fifotaken != 256; fifotaken++) {
287 		status = pl011_read(uap, REG_FR);
288 		if (status & UART01x_FR_RXFE)
289 			break;
290 
291 		/* Take chars from the FIFO and update status */
292 		ch = pl011_read(uap, REG_DR) | UART_DUMMY_DR_RX;
293 		flag = TTY_NORMAL;
294 		uap->port.icount.rx++;
295 
296 		if (unlikely(ch & UART_DR_ERROR)) {
297 			if (ch & UART011_DR_BE) {
298 				ch &= ~(UART011_DR_FE | UART011_DR_PE);
299 				uap->port.icount.brk++;
300 				if (uart_handle_break(&uap->port))
301 					continue;
302 			} else if (ch & UART011_DR_PE)
303 				uap->port.icount.parity++;
304 			else if (ch & UART011_DR_FE)
305 				uap->port.icount.frame++;
306 			if (ch & UART011_DR_OE)
307 				uap->port.icount.overrun++;
308 
309 			ch &= uap->port.read_status_mask;
310 
311 			if (ch & UART011_DR_BE)
312 				flag = TTY_BREAK;
313 			else if (ch & UART011_DR_PE)
314 				flag = TTY_PARITY;
315 			else if (ch & UART011_DR_FE)
316 				flag = TTY_FRAME;
317 		}
318 
319 		spin_unlock(&uap->port.lock);
320 		sysrq = uart_handle_sysrq_char(&uap->port, ch & 255);
321 		spin_lock(&uap->port.lock);
322 
323 		if (!sysrq)
324 			uart_insert_char(&uap->port, ch, UART011_DR_OE, ch, flag);
325 	}
326 
327 	return fifotaken;
328 }
329 
330 
331 /*
332  * All the DMA operation mode stuff goes inside this ifdef.
333  * This assumes that you have a generic DMA device interface,
334  * no custom DMA interfaces are supported.
335  */
336 #ifdef CONFIG_DMA_ENGINE
337 
338 #define PL011_DMA_BUFFER_SIZE PAGE_SIZE
339 
340 static int pl011_sgbuf_init(struct dma_chan *chan, struct pl011_sgbuf *sg,
341 	enum dma_data_direction dir)
342 {
343 	dma_addr_t dma_addr;
344 
345 	sg->buf = dma_alloc_coherent(chan->device->dev,
346 		PL011_DMA_BUFFER_SIZE, &dma_addr, GFP_KERNEL);
347 	if (!sg->buf)
348 		return -ENOMEM;
349 
350 	sg_init_table(&sg->sg, 1);
351 	sg_set_page(&sg->sg, phys_to_page(dma_addr),
352 		PL011_DMA_BUFFER_SIZE, offset_in_page(dma_addr));
353 	sg_dma_address(&sg->sg) = dma_addr;
354 	sg_dma_len(&sg->sg) = PL011_DMA_BUFFER_SIZE;
355 
356 	return 0;
357 }
358 
359 static void pl011_sgbuf_free(struct dma_chan *chan, struct pl011_sgbuf *sg,
360 	enum dma_data_direction dir)
361 {
362 	if (sg->buf) {
363 		dma_free_coherent(chan->device->dev,
364 			PL011_DMA_BUFFER_SIZE, sg->buf,
365 			sg_dma_address(&sg->sg));
366 	}
367 }
368 
369 static void pl011_dma_probe(struct uart_amba_port *uap)
370 {
371 	/* DMA is the sole user of the platform data right now */
372 	struct amba_pl011_data *plat = dev_get_platdata(uap->port.dev);
373 	struct device *dev = uap->port.dev;
374 	struct dma_slave_config tx_conf = {
375 		.dst_addr = uap->port.mapbase +
376 				 pl011_reg_to_offset(uap, REG_DR),
377 		.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
378 		.direction = DMA_MEM_TO_DEV,
379 		.dst_maxburst = uap->fifosize >> 1,
380 		.device_fc = false,
381 	};
382 	struct dma_chan *chan;
383 	dma_cap_mask_t mask;
384 
385 	uap->dma_probed = true;
386 	chan = dma_request_chan(dev, "tx");
387 	if (IS_ERR(chan)) {
388 		if (PTR_ERR(chan) == -EPROBE_DEFER) {
389 			uap->dma_probed = false;
390 			return;
391 		}
392 
393 		/* We need platform data */
394 		if (!plat || !plat->dma_filter) {
395 			dev_info(uap->port.dev, "no DMA platform data\n");
396 			return;
397 		}
398 
399 		/* Try to acquire a generic DMA engine slave TX channel */
400 		dma_cap_zero(mask);
401 		dma_cap_set(DMA_SLAVE, mask);
402 
403 		chan = dma_request_channel(mask, plat->dma_filter,
404 						plat->dma_tx_param);
405 		if (!chan) {
406 			dev_err(uap->port.dev, "no TX DMA channel!\n");
407 			return;
408 		}
409 	}
410 
411 	dmaengine_slave_config(chan, &tx_conf);
412 	uap->dmatx.chan = chan;
413 
414 	dev_info(uap->port.dev, "DMA channel TX %s\n",
415 		 dma_chan_name(uap->dmatx.chan));
416 
417 	/* Optionally make use of an RX channel as well */
418 	chan = dma_request_slave_channel(dev, "rx");
419 
420 	if (!chan && plat && plat->dma_rx_param) {
421 		chan = dma_request_channel(mask, plat->dma_filter, plat->dma_rx_param);
422 
423 		if (!chan) {
424 			dev_err(uap->port.dev, "no RX DMA channel!\n");
425 			return;
426 		}
427 	}
428 
429 	if (chan) {
430 		struct dma_slave_config rx_conf = {
431 			.src_addr = uap->port.mapbase +
432 				pl011_reg_to_offset(uap, REG_DR),
433 			.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
434 			.direction = DMA_DEV_TO_MEM,
435 			.src_maxburst = uap->fifosize >> 2,
436 			.device_fc = false,
437 		};
438 		struct dma_slave_caps caps;
439 
440 		/*
441 		 * Some DMA controllers provide information on their capabilities.
442 		 * If the controller does, check for suitable residue processing
443 		 * otherwise assime all is well.
444 		 */
445 		if (0 == dma_get_slave_caps(chan, &caps)) {
446 			if (caps.residue_granularity ==
447 					DMA_RESIDUE_GRANULARITY_DESCRIPTOR) {
448 				dma_release_channel(chan);
449 				dev_info(uap->port.dev,
450 					"RX DMA disabled - no residue processing\n");
451 				return;
452 			}
453 		}
454 		dmaengine_slave_config(chan, &rx_conf);
455 		uap->dmarx.chan = chan;
456 
457 		uap->dmarx.auto_poll_rate = false;
458 		if (plat && plat->dma_rx_poll_enable) {
459 			/* Set poll rate if specified. */
460 			if (plat->dma_rx_poll_rate) {
461 				uap->dmarx.auto_poll_rate = false;
462 				uap->dmarx.poll_rate = plat->dma_rx_poll_rate;
463 			} else {
464 				/*
465 				 * 100 ms defaults to poll rate if not
466 				 * specified. This will be adjusted with
467 				 * the baud rate at set_termios.
468 				 */
469 				uap->dmarx.auto_poll_rate = true;
470 				uap->dmarx.poll_rate =  100;
471 			}
472 			/* 3 secs defaults poll_timeout if not specified. */
473 			if (plat->dma_rx_poll_timeout)
474 				uap->dmarx.poll_timeout =
475 					plat->dma_rx_poll_timeout;
476 			else
477 				uap->dmarx.poll_timeout = 3000;
478 		} else if (!plat && dev->of_node) {
479 			uap->dmarx.auto_poll_rate = of_property_read_bool(
480 						dev->of_node, "auto-poll");
481 			if (uap->dmarx.auto_poll_rate) {
482 				u32 x;
483 
484 				if (0 == of_property_read_u32(dev->of_node,
485 						"poll-rate-ms", &x))
486 					uap->dmarx.poll_rate = x;
487 				else
488 					uap->dmarx.poll_rate = 100;
489 				if (0 == of_property_read_u32(dev->of_node,
490 						"poll-timeout-ms", &x))
491 					uap->dmarx.poll_timeout = x;
492 				else
493 					uap->dmarx.poll_timeout = 3000;
494 			}
495 		}
496 		dev_info(uap->port.dev, "DMA channel RX %s\n",
497 			 dma_chan_name(uap->dmarx.chan));
498 	}
499 }
500 
501 static void pl011_dma_remove(struct uart_amba_port *uap)
502 {
503 	if (uap->dmatx.chan)
504 		dma_release_channel(uap->dmatx.chan);
505 	if (uap->dmarx.chan)
506 		dma_release_channel(uap->dmarx.chan);
507 }
508 
509 /* Forward declare these for the refill routine */
510 static int pl011_dma_tx_refill(struct uart_amba_port *uap);
511 static void pl011_start_tx_pio(struct uart_amba_port *uap);
512 
513 /*
514  * The current DMA TX buffer has been sent.
515  * Try to queue up another DMA buffer.
516  */
517 static void pl011_dma_tx_callback(void *data)
518 {
519 	struct uart_amba_port *uap = data;
520 	struct pl011_dmatx_data *dmatx = &uap->dmatx;
521 	unsigned long flags;
522 	u16 dmacr;
523 
524 	spin_lock_irqsave(&uap->port.lock, flags);
525 	if (uap->dmatx.queued)
526 		dma_unmap_sg(dmatx->chan->device->dev, &dmatx->sg, 1,
527 			     DMA_TO_DEVICE);
528 
529 	dmacr = uap->dmacr;
530 	uap->dmacr = dmacr & ~UART011_TXDMAE;
531 	pl011_write(uap->dmacr, uap, REG_DMACR);
532 
533 	/*
534 	 * If TX DMA was disabled, it means that we've stopped the DMA for
535 	 * some reason (eg, XOFF received, or we want to send an X-char.)
536 	 *
537 	 * Note: we need to be careful here of a potential race between DMA
538 	 * and the rest of the driver - if the driver disables TX DMA while
539 	 * a TX buffer completing, we must update the tx queued status to
540 	 * get further refills (hence we check dmacr).
541 	 */
542 	if (!(dmacr & UART011_TXDMAE) || uart_tx_stopped(&uap->port) ||
543 	    uart_circ_empty(&uap->port.state->xmit)) {
544 		uap->dmatx.queued = false;
545 		spin_unlock_irqrestore(&uap->port.lock, flags);
546 		return;
547 	}
548 
549 	if (pl011_dma_tx_refill(uap) <= 0)
550 		/*
551 		 * We didn't queue a DMA buffer for some reason, but we
552 		 * have data pending to be sent.  Re-enable the TX IRQ.
553 		 */
554 		pl011_start_tx_pio(uap);
555 
556 	spin_unlock_irqrestore(&uap->port.lock, flags);
557 }
558 
559 /*
560  * Try to refill the TX DMA buffer.
561  * Locking: called with port lock held and IRQs disabled.
562  * Returns:
563  *   1 if we queued up a TX DMA buffer.
564  *   0 if we didn't want to handle this by DMA
565  *  <0 on error
566  */
567 static int pl011_dma_tx_refill(struct uart_amba_port *uap)
568 {
569 	struct pl011_dmatx_data *dmatx = &uap->dmatx;
570 	struct dma_chan *chan = dmatx->chan;
571 	struct dma_device *dma_dev = chan->device;
572 	struct dma_async_tx_descriptor *desc;
573 	struct circ_buf *xmit = &uap->port.state->xmit;
574 	unsigned int count;
575 
576 	/*
577 	 * Try to avoid the overhead involved in using DMA if the
578 	 * transaction fits in the first half of the FIFO, by using
579 	 * the standard interrupt handling.  This ensures that we
580 	 * issue a uart_write_wakeup() at the appropriate time.
581 	 */
582 	count = uart_circ_chars_pending(xmit);
583 	if (count < (uap->fifosize >> 1)) {
584 		uap->dmatx.queued = false;
585 		return 0;
586 	}
587 
588 	/*
589 	 * Bodge: don't send the last character by DMA, as this
590 	 * will prevent XON from notifying us to restart DMA.
591 	 */
592 	count -= 1;
593 
594 	/* Else proceed to copy the TX chars to the DMA buffer and fire DMA */
595 	if (count > PL011_DMA_BUFFER_SIZE)
596 		count = PL011_DMA_BUFFER_SIZE;
597 
598 	if (xmit->tail < xmit->head)
599 		memcpy(&dmatx->buf[0], &xmit->buf[xmit->tail], count);
600 	else {
601 		size_t first = UART_XMIT_SIZE - xmit->tail;
602 		size_t second;
603 
604 		if (first > count)
605 			first = count;
606 		second = count - first;
607 
608 		memcpy(&dmatx->buf[0], &xmit->buf[xmit->tail], first);
609 		if (second)
610 			memcpy(&dmatx->buf[first], &xmit->buf[0], second);
611 	}
612 
613 	dmatx->sg.length = count;
614 
615 	if (dma_map_sg(dma_dev->dev, &dmatx->sg, 1, DMA_TO_DEVICE) != 1) {
616 		uap->dmatx.queued = false;
617 		dev_dbg(uap->port.dev, "unable to map TX DMA\n");
618 		return -EBUSY;
619 	}
620 
621 	desc = dmaengine_prep_slave_sg(chan, &dmatx->sg, 1, DMA_MEM_TO_DEV,
622 					     DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
623 	if (!desc) {
624 		dma_unmap_sg(dma_dev->dev, &dmatx->sg, 1, DMA_TO_DEVICE);
625 		uap->dmatx.queued = false;
626 		/*
627 		 * If DMA cannot be used right now, we complete this
628 		 * transaction via IRQ and let the TTY layer retry.
629 		 */
630 		dev_dbg(uap->port.dev, "TX DMA busy\n");
631 		return -EBUSY;
632 	}
633 
634 	/* Some data to go along to the callback */
635 	desc->callback = pl011_dma_tx_callback;
636 	desc->callback_param = uap;
637 
638 	/* All errors should happen at prepare time */
639 	dmaengine_submit(desc);
640 
641 	/* Fire the DMA transaction */
642 	dma_dev->device_issue_pending(chan);
643 
644 	uap->dmacr |= UART011_TXDMAE;
645 	pl011_write(uap->dmacr, uap, REG_DMACR);
646 	uap->dmatx.queued = true;
647 
648 	/*
649 	 * Now we know that DMA will fire, so advance the ring buffer
650 	 * with the stuff we just dispatched.
651 	 */
652 	xmit->tail = (xmit->tail + count) & (UART_XMIT_SIZE - 1);
653 	uap->port.icount.tx += count;
654 
655 	if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
656 		uart_write_wakeup(&uap->port);
657 
658 	return 1;
659 }
660 
661 /*
662  * We received a transmit interrupt without a pending X-char but with
663  * pending characters.
664  * Locking: called with port lock held and IRQs disabled.
665  * Returns:
666  *   false if we want to use PIO to transmit
667  *   true if we queued a DMA buffer
668  */
669 static bool pl011_dma_tx_irq(struct uart_amba_port *uap)
670 {
671 	if (!uap->using_tx_dma)
672 		return false;
673 
674 	/*
675 	 * If we already have a TX buffer queued, but received a
676 	 * TX interrupt, it will be because we've just sent an X-char.
677 	 * Ensure the TX DMA is enabled and the TX IRQ is disabled.
678 	 */
679 	if (uap->dmatx.queued) {
680 		uap->dmacr |= UART011_TXDMAE;
681 		pl011_write(uap->dmacr, uap, REG_DMACR);
682 		uap->im &= ~UART011_TXIM;
683 		pl011_write(uap->im, uap, REG_IMSC);
684 		return true;
685 	}
686 
687 	/*
688 	 * We don't have a TX buffer queued, so try to queue one.
689 	 * If we successfully queued a buffer, mask the TX IRQ.
690 	 */
691 	if (pl011_dma_tx_refill(uap) > 0) {
692 		uap->im &= ~UART011_TXIM;
693 		pl011_write(uap->im, uap, REG_IMSC);
694 		return true;
695 	}
696 	return false;
697 }
698 
699 /*
700  * Stop the DMA transmit (eg, due to received XOFF).
701  * Locking: called with port lock held and IRQs disabled.
702  */
703 static inline void pl011_dma_tx_stop(struct uart_amba_port *uap)
704 {
705 	if (uap->dmatx.queued) {
706 		uap->dmacr &= ~UART011_TXDMAE;
707 		pl011_write(uap->dmacr, uap, REG_DMACR);
708 	}
709 }
710 
711 /*
712  * Try to start a DMA transmit, or in the case of an XON/OFF
713  * character queued for send, try to get that character out ASAP.
714  * Locking: called with port lock held and IRQs disabled.
715  * Returns:
716  *   false if we want the TX IRQ to be enabled
717  *   true if we have a buffer queued
718  */
719 static inline bool pl011_dma_tx_start(struct uart_amba_port *uap)
720 {
721 	u16 dmacr;
722 
723 	if (!uap->using_tx_dma)
724 		return false;
725 
726 	if (!uap->port.x_char) {
727 		/* no X-char, try to push chars out in DMA mode */
728 		bool ret = true;
729 
730 		if (!uap->dmatx.queued) {
731 			if (pl011_dma_tx_refill(uap) > 0) {
732 				uap->im &= ~UART011_TXIM;
733 				pl011_write(uap->im, uap, REG_IMSC);
734 			} else
735 				ret = false;
736 		} else if (!(uap->dmacr & UART011_TXDMAE)) {
737 			uap->dmacr |= UART011_TXDMAE;
738 			pl011_write(uap->dmacr, uap, REG_DMACR);
739 		}
740 		return ret;
741 	}
742 
743 	/*
744 	 * We have an X-char to send.  Disable DMA to prevent it loading
745 	 * the TX fifo, and then see if we can stuff it into the FIFO.
746 	 */
747 	dmacr = uap->dmacr;
748 	uap->dmacr &= ~UART011_TXDMAE;
749 	pl011_write(uap->dmacr, uap, REG_DMACR);
750 
751 	if (pl011_read(uap, REG_FR) & UART01x_FR_TXFF) {
752 		/*
753 		 * No space in the FIFO, so enable the transmit interrupt
754 		 * so we know when there is space.  Note that once we've
755 		 * loaded the character, we should just re-enable DMA.
756 		 */
757 		return false;
758 	}
759 
760 	pl011_write(uap->port.x_char, uap, REG_DR);
761 	uap->port.icount.tx++;
762 	uap->port.x_char = 0;
763 
764 	/* Success - restore the DMA state */
765 	uap->dmacr = dmacr;
766 	pl011_write(dmacr, uap, REG_DMACR);
767 
768 	return true;
769 }
770 
771 /*
772  * Flush the transmit buffer.
773  * Locking: called with port lock held and IRQs disabled.
774  */
775 static void pl011_dma_flush_buffer(struct uart_port *port)
776 __releases(&uap->port.lock)
777 __acquires(&uap->port.lock)
778 {
779 	struct uart_amba_port *uap =
780 	    container_of(port, struct uart_amba_port, port);
781 
782 	if (!uap->using_tx_dma)
783 		return;
784 
785 	dmaengine_terminate_async(uap->dmatx.chan);
786 
787 	if (uap->dmatx.queued) {
788 		dma_unmap_sg(uap->dmatx.chan->device->dev, &uap->dmatx.sg, 1,
789 			     DMA_TO_DEVICE);
790 		uap->dmatx.queued = false;
791 		uap->dmacr &= ~UART011_TXDMAE;
792 		pl011_write(uap->dmacr, uap, REG_DMACR);
793 	}
794 }
795 
796 static void pl011_dma_rx_callback(void *data);
797 
798 static int pl011_dma_rx_trigger_dma(struct uart_amba_port *uap)
799 {
800 	struct dma_chan *rxchan = uap->dmarx.chan;
801 	struct pl011_dmarx_data *dmarx = &uap->dmarx;
802 	struct dma_async_tx_descriptor *desc;
803 	struct pl011_sgbuf *sgbuf;
804 
805 	if (!rxchan)
806 		return -EIO;
807 
808 	/* Start the RX DMA job */
809 	sgbuf = uap->dmarx.use_buf_b ?
810 		&uap->dmarx.sgbuf_b : &uap->dmarx.sgbuf_a;
811 	desc = dmaengine_prep_slave_sg(rxchan, &sgbuf->sg, 1,
812 					DMA_DEV_TO_MEM,
813 					DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
814 	/*
815 	 * If the DMA engine is busy and cannot prepare a
816 	 * channel, no big deal, the driver will fall back
817 	 * to interrupt mode as a result of this error code.
818 	 */
819 	if (!desc) {
820 		uap->dmarx.running = false;
821 		dmaengine_terminate_all(rxchan);
822 		return -EBUSY;
823 	}
824 
825 	/* Some data to go along to the callback */
826 	desc->callback = pl011_dma_rx_callback;
827 	desc->callback_param = uap;
828 	dmarx->cookie = dmaengine_submit(desc);
829 	dma_async_issue_pending(rxchan);
830 
831 	uap->dmacr |= UART011_RXDMAE;
832 	pl011_write(uap->dmacr, uap, REG_DMACR);
833 	uap->dmarx.running = true;
834 
835 	uap->im &= ~UART011_RXIM;
836 	pl011_write(uap->im, uap, REG_IMSC);
837 
838 	return 0;
839 }
840 
841 /*
842  * This is called when either the DMA job is complete, or
843  * the FIFO timeout interrupt occurred. This must be called
844  * with the port spinlock uap->port.lock held.
845  */
846 static void pl011_dma_rx_chars(struct uart_amba_port *uap,
847 			       u32 pending, bool use_buf_b,
848 			       bool readfifo)
849 {
850 	struct tty_port *port = &uap->port.state->port;
851 	struct pl011_sgbuf *sgbuf = use_buf_b ?
852 		&uap->dmarx.sgbuf_b : &uap->dmarx.sgbuf_a;
853 	int dma_count = 0;
854 	u32 fifotaken = 0; /* only used for vdbg() */
855 
856 	struct pl011_dmarx_data *dmarx = &uap->dmarx;
857 	int dmataken = 0;
858 
859 	if (uap->dmarx.poll_rate) {
860 		/* The data can be taken by polling */
861 		dmataken = sgbuf->sg.length - dmarx->last_residue;
862 		/* Recalculate the pending size */
863 		if (pending >= dmataken)
864 			pending -= dmataken;
865 	}
866 
867 	/* Pick the remain data from the DMA */
868 	if (pending) {
869 
870 		/*
871 		 * First take all chars in the DMA pipe, then look in the FIFO.
872 		 * Note that tty_insert_flip_buf() tries to take as many chars
873 		 * as it can.
874 		 */
875 		dma_count = tty_insert_flip_string(port, sgbuf->buf + dmataken,
876 				pending);
877 
878 		uap->port.icount.rx += dma_count;
879 		if (dma_count < pending)
880 			dev_warn(uap->port.dev,
881 				 "couldn't insert all characters (TTY is full?)\n");
882 	}
883 
884 	/* Reset the last_residue for Rx DMA poll */
885 	if (uap->dmarx.poll_rate)
886 		dmarx->last_residue = sgbuf->sg.length;
887 
888 	/*
889 	 * Only continue with trying to read the FIFO if all DMA chars have
890 	 * been taken first.
891 	 */
892 	if (dma_count == pending && readfifo) {
893 		/* Clear any error flags */
894 		pl011_write(UART011_OEIS | UART011_BEIS | UART011_PEIS |
895 			    UART011_FEIS, uap, REG_ICR);
896 
897 		/*
898 		 * If we read all the DMA'd characters, and we had an
899 		 * incomplete buffer, that could be due to an rx error, or
900 		 * maybe we just timed out. Read any pending chars and check
901 		 * the error status.
902 		 *
903 		 * Error conditions will only occur in the FIFO, these will
904 		 * trigger an immediate interrupt and stop the DMA job, so we
905 		 * will always find the error in the FIFO, never in the DMA
906 		 * buffer.
907 		 */
908 		fifotaken = pl011_fifo_to_tty(uap);
909 	}
910 
911 	dev_vdbg(uap->port.dev,
912 		 "Took %d chars from DMA buffer and %d chars from the FIFO\n",
913 		 dma_count, fifotaken);
914 	tty_flip_buffer_push(port);
915 }
916 
917 static void pl011_dma_rx_irq(struct uart_amba_port *uap)
918 {
919 	struct pl011_dmarx_data *dmarx = &uap->dmarx;
920 	struct dma_chan *rxchan = dmarx->chan;
921 	struct pl011_sgbuf *sgbuf = dmarx->use_buf_b ?
922 		&dmarx->sgbuf_b : &dmarx->sgbuf_a;
923 	size_t pending;
924 	struct dma_tx_state state;
925 	enum dma_status dmastat;
926 
927 	/*
928 	 * Pause the transfer so we can trust the current counter,
929 	 * do this before we pause the PL011 block, else we may
930 	 * overflow the FIFO.
931 	 */
932 	if (dmaengine_pause(rxchan))
933 		dev_err(uap->port.dev, "unable to pause DMA transfer\n");
934 	dmastat = rxchan->device->device_tx_status(rxchan,
935 						   dmarx->cookie, &state);
936 	if (dmastat != DMA_PAUSED)
937 		dev_err(uap->port.dev, "unable to pause DMA transfer\n");
938 
939 	/* Disable RX DMA - incoming data will wait in the FIFO */
940 	uap->dmacr &= ~UART011_RXDMAE;
941 	pl011_write(uap->dmacr, uap, REG_DMACR);
942 	uap->dmarx.running = false;
943 
944 	pending = sgbuf->sg.length - state.residue;
945 	BUG_ON(pending > PL011_DMA_BUFFER_SIZE);
946 	/* Then we terminate the transfer - we now know our residue */
947 	dmaengine_terminate_all(rxchan);
948 
949 	/*
950 	 * This will take the chars we have so far and insert
951 	 * into the framework.
952 	 */
953 	pl011_dma_rx_chars(uap, pending, dmarx->use_buf_b, true);
954 
955 	/* Switch buffer & re-trigger DMA job */
956 	dmarx->use_buf_b = !dmarx->use_buf_b;
957 	if (pl011_dma_rx_trigger_dma(uap)) {
958 		dev_dbg(uap->port.dev, "could not retrigger RX DMA job "
959 			"fall back to interrupt mode\n");
960 		uap->im |= UART011_RXIM;
961 		pl011_write(uap->im, uap, REG_IMSC);
962 	}
963 }
964 
965 static void pl011_dma_rx_callback(void *data)
966 {
967 	struct uart_amba_port *uap = data;
968 	struct pl011_dmarx_data *dmarx = &uap->dmarx;
969 	struct dma_chan *rxchan = dmarx->chan;
970 	bool lastbuf = dmarx->use_buf_b;
971 	struct pl011_sgbuf *sgbuf = dmarx->use_buf_b ?
972 		&dmarx->sgbuf_b : &dmarx->sgbuf_a;
973 	size_t pending;
974 	struct dma_tx_state state;
975 	int ret;
976 
977 	/*
978 	 * This completion interrupt occurs typically when the
979 	 * RX buffer is totally stuffed but no timeout has yet
980 	 * occurred. When that happens, we just want the RX
981 	 * routine to flush out the secondary DMA buffer while
982 	 * we immediately trigger the next DMA job.
983 	 */
984 	spin_lock_irq(&uap->port.lock);
985 	/*
986 	 * Rx data can be taken by the UART interrupts during
987 	 * the DMA irq handler. So we check the residue here.
988 	 */
989 	rxchan->device->device_tx_status(rxchan, dmarx->cookie, &state);
990 	pending = sgbuf->sg.length - state.residue;
991 	BUG_ON(pending > PL011_DMA_BUFFER_SIZE);
992 	/* Then we terminate the transfer - we now know our residue */
993 	dmaengine_terminate_all(rxchan);
994 
995 	uap->dmarx.running = false;
996 	dmarx->use_buf_b = !lastbuf;
997 	ret = pl011_dma_rx_trigger_dma(uap);
998 
999 	pl011_dma_rx_chars(uap, pending, lastbuf, false);
1000 	spin_unlock_irq(&uap->port.lock);
1001 	/*
1002 	 * Do this check after we picked the DMA chars so we don't
1003 	 * get some IRQ immediately from RX.
1004 	 */
1005 	if (ret) {
1006 		dev_dbg(uap->port.dev, "could not retrigger RX DMA job "
1007 			"fall back to interrupt mode\n");
1008 		uap->im |= UART011_RXIM;
1009 		pl011_write(uap->im, uap, REG_IMSC);
1010 	}
1011 }
1012 
1013 /*
1014  * Stop accepting received characters, when we're shutting down or
1015  * suspending this port.
1016  * Locking: called with port lock held and IRQs disabled.
1017  */
1018 static inline void pl011_dma_rx_stop(struct uart_amba_port *uap)
1019 {
1020 	/* FIXME.  Just disable the DMA enable */
1021 	uap->dmacr &= ~UART011_RXDMAE;
1022 	pl011_write(uap->dmacr, uap, REG_DMACR);
1023 }
1024 
1025 /*
1026  * Timer handler for Rx DMA polling.
1027  * Every polling, It checks the residue in the dma buffer and transfer
1028  * data to the tty. Also, last_residue is updated for the next polling.
1029  */
1030 static void pl011_dma_rx_poll(struct timer_list *t)
1031 {
1032 	struct uart_amba_port *uap = from_timer(uap, t, dmarx.timer);
1033 	struct tty_port *port = &uap->port.state->port;
1034 	struct pl011_dmarx_data *dmarx = &uap->dmarx;
1035 	struct dma_chan *rxchan = uap->dmarx.chan;
1036 	unsigned long flags;
1037 	unsigned int dmataken = 0;
1038 	unsigned int size = 0;
1039 	struct pl011_sgbuf *sgbuf;
1040 	int dma_count;
1041 	struct dma_tx_state state;
1042 
1043 	sgbuf = dmarx->use_buf_b ? &uap->dmarx.sgbuf_b : &uap->dmarx.sgbuf_a;
1044 	rxchan->device->device_tx_status(rxchan, dmarx->cookie, &state);
1045 	if (likely(state.residue < dmarx->last_residue)) {
1046 		dmataken = sgbuf->sg.length - dmarx->last_residue;
1047 		size = dmarx->last_residue - state.residue;
1048 		dma_count = tty_insert_flip_string(port, sgbuf->buf + dmataken,
1049 				size);
1050 		if (dma_count == size)
1051 			dmarx->last_residue =  state.residue;
1052 		dmarx->last_jiffies = jiffies;
1053 	}
1054 	tty_flip_buffer_push(port);
1055 
1056 	/*
1057 	 * If no data is received in poll_timeout, the driver will fall back
1058 	 * to interrupt mode. We will retrigger DMA at the first interrupt.
1059 	 */
1060 	if (jiffies_to_msecs(jiffies - dmarx->last_jiffies)
1061 			> uap->dmarx.poll_timeout) {
1062 
1063 		spin_lock_irqsave(&uap->port.lock, flags);
1064 		pl011_dma_rx_stop(uap);
1065 		uap->im |= UART011_RXIM;
1066 		pl011_write(uap->im, uap, REG_IMSC);
1067 		spin_unlock_irqrestore(&uap->port.lock, flags);
1068 
1069 		uap->dmarx.running = false;
1070 		dmaengine_terminate_all(rxchan);
1071 		del_timer(&uap->dmarx.timer);
1072 	} else {
1073 		mod_timer(&uap->dmarx.timer,
1074 			jiffies + msecs_to_jiffies(uap->dmarx.poll_rate));
1075 	}
1076 }
1077 
1078 static void pl011_dma_startup(struct uart_amba_port *uap)
1079 {
1080 	int ret;
1081 
1082 	if (!uap->dma_probed)
1083 		pl011_dma_probe(uap);
1084 
1085 	if (!uap->dmatx.chan)
1086 		return;
1087 
1088 	uap->dmatx.buf = kmalloc(PL011_DMA_BUFFER_SIZE, GFP_KERNEL | __GFP_DMA);
1089 	if (!uap->dmatx.buf) {
1090 		dev_err(uap->port.dev, "no memory for DMA TX buffer\n");
1091 		uap->port.fifosize = uap->fifosize;
1092 		return;
1093 	}
1094 
1095 	sg_init_one(&uap->dmatx.sg, uap->dmatx.buf, PL011_DMA_BUFFER_SIZE);
1096 
1097 	/* The DMA buffer is now the FIFO the TTY subsystem can use */
1098 	uap->port.fifosize = PL011_DMA_BUFFER_SIZE;
1099 	uap->using_tx_dma = true;
1100 
1101 	if (!uap->dmarx.chan)
1102 		goto skip_rx;
1103 
1104 	/* Allocate and map DMA RX buffers */
1105 	ret = pl011_sgbuf_init(uap->dmarx.chan, &uap->dmarx.sgbuf_a,
1106 			       DMA_FROM_DEVICE);
1107 	if (ret) {
1108 		dev_err(uap->port.dev, "failed to init DMA %s: %d\n",
1109 			"RX buffer A", ret);
1110 		goto skip_rx;
1111 	}
1112 
1113 	ret = pl011_sgbuf_init(uap->dmarx.chan, &uap->dmarx.sgbuf_b,
1114 			       DMA_FROM_DEVICE);
1115 	if (ret) {
1116 		dev_err(uap->port.dev, "failed to init DMA %s: %d\n",
1117 			"RX buffer B", ret);
1118 		pl011_sgbuf_free(uap->dmarx.chan, &uap->dmarx.sgbuf_a,
1119 				 DMA_FROM_DEVICE);
1120 		goto skip_rx;
1121 	}
1122 
1123 	uap->using_rx_dma = true;
1124 
1125 skip_rx:
1126 	/* Turn on DMA error (RX/TX will be enabled on demand) */
1127 	uap->dmacr |= UART011_DMAONERR;
1128 	pl011_write(uap->dmacr, uap, REG_DMACR);
1129 
1130 	/*
1131 	 * ST Micro variants has some specific dma burst threshold
1132 	 * compensation. Set this to 16 bytes, so burst will only
1133 	 * be issued above/below 16 bytes.
1134 	 */
1135 	if (uap->vendor->dma_threshold)
1136 		pl011_write(ST_UART011_DMAWM_RX_16 | ST_UART011_DMAWM_TX_16,
1137 			    uap, REG_ST_DMAWM);
1138 
1139 	if (uap->using_rx_dma) {
1140 		if (pl011_dma_rx_trigger_dma(uap))
1141 			dev_dbg(uap->port.dev, "could not trigger initial "
1142 				"RX DMA job, fall back to interrupt mode\n");
1143 		if (uap->dmarx.poll_rate) {
1144 			timer_setup(&uap->dmarx.timer, pl011_dma_rx_poll, 0);
1145 			mod_timer(&uap->dmarx.timer,
1146 				jiffies +
1147 				msecs_to_jiffies(uap->dmarx.poll_rate));
1148 			uap->dmarx.last_residue = PL011_DMA_BUFFER_SIZE;
1149 			uap->dmarx.last_jiffies = jiffies;
1150 		}
1151 	}
1152 }
1153 
1154 static void pl011_dma_shutdown(struct uart_amba_port *uap)
1155 {
1156 	if (!(uap->using_tx_dma || uap->using_rx_dma))
1157 		return;
1158 
1159 	/* Disable RX and TX DMA */
1160 	while (pl011_read(uap, REG_FR) & uap->vendor->fr_busy)
1161 		cpu_relax();
1162 
1163 	spin_lock_irq(&uap->port.lock);
1164 	uap->dmacr &= ~(UART011_DMAONERR | UART011_RXDMAE | UART011_TXDMAE);
1165 	pl011_write(uap->dmacr, uap, REG_DMACR);
1166 	spin_unlock_irq(&uap->port.lock);
1167 
1168 	if (uap->using_tx_dma) {
1169 		/* In theory, this should already be done by pl011_dma_flush_buffer */
1170 		dmaengine_terminate_all(uap->dmatx.chan);
1171 		if (uap->dmatx.queued) {
1172 			dma_unmap_sg(uap->dmatx.chan->device->dev, &uap->dmatx.sg, 1,
1173 				     DMA_TO_DEVICE);
1174 			uap->dmatx.queued = false;
1175 		}
1176 
1177 		kfree(uap->dmatx.buf);
1178 		uap->using_tx_dma = false;
1179 	}
1180 
1181 	if (uap->using_rx_dma) {
1182 		dmaengine_terminate_all(uap->dmarx.chan);
1183 		/* Clean up the RX DMA */
1184 		pl011_sgbuf_free(uap->dmarx.chan, &uap->dmarx.sgbuf_a, DMA_FROM_DEVICE);
1185 		pl011_sgbuf_free(uap->dmarx.chan, &uap->dmarx.sgbuf_b, DMA_FROM_DEVICE);
1186 		if (uap->dmarx.poll_rate)
1187 			del_timer_sync(&uap->dmarx.timer);
1188 		uap->using_rx_dma = false;
1189 	}
1190 }
1191 
1192 static inline bool pl011_dma_rx_available(struct uart_amba_port *uap)
1193 {
1194 	return uap->using_rx_dma;
1195 }
1196 
1197 static inline bool pl011_dma_rx_running(struct uart_amba_port *uap)
1198 {
1199 	return uap->using_rx_dma && uap->dmarx.running;
1200 }
1201 
1202 #else
1203 /* Blank functions if the DMA engine is not available */
1204 static inline void pl011_dma_remove(struct uart_amba_port *uap)
1205 {
1206 }
1207 
1208 static inline void pl011_dma_startup(struct uart_amba_port *uap)
1209 {
1210 }
1211 
1212 static inline void pl011_dma_shutdown(struct uart_amba_port *uap)
1213 {
1214 }
1215 
1216 static inline bool pl011_dma_tx_irq(struct uart_amba_port *uap)
1217 {
1218 	return false;
1219 }
1220 
1221 static inline void pl011_dma_tx_stop(struct uart_amba_port *uap)
1222 {
1223 }
1224 
1225 static inline bool pl011_dma_tx_start(struct uart_amba_port *uap)
1226 {
1227 	return false;
1228 }
1229 
1230 static inline void pl011_dma_rx_irq(struct uart_amba_port *uap)
1231 {
1232 }
1233 
1234 static inline void pl011_dma_rx_stop(struct uart_amba_port *uap)
1235 {
1236 }
1237 
1238 static inline int pl011_dma_rx_trigger_dma(struct uart_amba_port *uap)
1239 {
1240 	return -EIO;
1241 }
1242 
1243 static inline bool pl011_dma_rx_available(struct uart_amba_port *uap)
1244 {
1245 	return false;
1246 }
1247 
1248 static inline bool pl011_dma_rx_running(struct uart_amba_port *uap)
1249 {
1250 	return false;
1251 }
1252 
1253 #define pl011_dma_flush_buffer	NULL
1254 #endif
1255 
1256 static void pl011_rs485_tx_stop(struct uart_amba_port *uap)
1257 {
1258 	struct uart_port *port = &uap->port;
1259 	int i = 0;
1260 	u32 cr;
1261 
1262 	/* Wait until hardware tx queue is empty */
1263 	while (!pl011_tx_empty(port)) {
1264 		if (i == port->fifosize) {
1265 			dev_warn(port->dev,
1266 				 "timeout while draining hardware tx queue\n");
1267 			break;
1268 		}
1269 
1270 		udelay(uap->rs485_tx_drain_interval);
1271 		i++;
1272 	}
1273 
1274 	if (port->rs485.delay_rts_after_send)
1275 		mdelay(port->rs485.delay_rts_after_send);
1276 
1277 	cr = pl011_read(uap, REG_CR);
1278 
1279 	if (port->rs485.flags & SER_RS485_RTS_AFTER_SEND)
1280 		cr &= ~UART011_CR_RTS;
1281 	else
1282 		cr |= UART011_CR_RTS;
1283 
1284 	/* Disable the transmitter and reenable the transceiver */
1285 	cr &= ~UART011_CR_TXE;
1286 	cr |= UART011_CR_RXE;
1287 	pl011_write(cr, uap, REG_CR);
1288 
1289 	uap->rs485_tx_started = false;
1290 }
1291 
1292 static void pl011_stop_tx(struct uart_port *port)
1293 {
1294 	struct uart_amba_port *uap =
1295 	    container_of(port, struct uart_amba_port, port);
1296 
1297 	uap->im &= ~UART011_TXIM;
1298 	pl011_write(uap->im, uap, REG_IMSC);
1299 	pl011_dma_tx_stop(uap);
1300 
1301 	if ((port->rs485.flags & SER_RS485_ENABLED) && uap->rs485_tx_started)
1302 		pl011_rs485_tx_stop(uap);
1303 }
1304 
1305 static bool pl011_tx_chars(struct uart_amba_port *uap, bool from_irq);
1306 
1307 /* Start TX with programmed I/O only (no DMA) */
1308 static void pl011_start_tx_pio(struct uart_amba_port *uap)
1309 {
1310 	if (pl011_tx_chars(uap, false)) {
1311 		uap->im |= UART011_TXIM;
1312 		pl011_write(uap->im, uap, REG_IMSC);
1313 	}
1314 }
1315 
1316 static void pl011_start_tx(struct uart_port *port)
1317 {
1318 	struct uart_amba_port *uap =
1319 	    container_of(port, struct uart_amba_port, port);
1320 
1321 	if (!pl011_dma_tx_start(uap))
1322 		pl011_start_tx_pio(uap);
1323 }
1324 
1325 static void pl011_stop_rx(struct uart_port *port)
1326 {
1327 	struct uart_amba_port *uap =
1328 	    container_of(port, struct uart_amba_port, port);
1329 
1330 	uap->im &= ~(UART011_RXIM|UART011_RTIM|UART011_FEIM|
1331 		     UART011_PEIM|UART011_BEIM|UART011_OEIM);
1332 	pl011_write(uap->im, uap, REG_IMSC);
1333 
1334 	pl011_dma_rx_stop(uap);
1335 }
1336 
1337 static void pl011_enable_ms(struct uart_port *port)
1338 {
1339 	struct uart_amba_port *uap =
1340 	    container_of(port, struct uart_amba_port, port);
1341 
1342 	uap->im |= UART011_RIMIM|UART011_CTSMIM|UART011_DCDMIM|UART011_DSRMIM;
1343 	pl011_write(uap->im, uap, REG_IMSC);
1344 }
1345 
1346 static void pl011_rx_chars(struct uart_amba_port *uap)
1347 __releases(&uap->port.lock)
1348 __acquires(&uap->port.lock)
1349 {
1350 	pl011_fifo_to_tty(uap);
1351 
1352 	spin_unlock(&uap->port.lock);
1353 	tty_flip_buffer_push(&uap->port.state->port);
1354 	/*
1355 	 * If we were temporarily out of DMA mode for a while,
1356 	 * attempt to switch back to DMA mode again.
1357 	 */
1358 	if (pl011_dma_rx_available(uap)) {
1359 		if (pl011_dma_rx_trigger_dma(uap)) {
1360 			dev_dbg(uap->port.dev, "could not trigger RX DMA job "
1361 				"fall back to interrupt mode again\n");
1362 			uap->im |= UART011_RXIM;
1363 			pl011_write(uap->im, uap, REG_IMSC);
1364 		} else {
1365 #ifdef CONFIG_DMA_ENGINE
1366 			/* Start Rx DMA poll */
1367 			if (uap->dmarx.poll_rate) {
1368 				uap->dmarx.last_jiffies = jiffies;
1369 				uap->dmarx.last_residue	= PL011_DMA_BUFFER_SIZE;
1370 				mod_timer(&uap->dmarx.timer,
1371 					jiffies +
1372 					msecs_to_jiffies(uap->dmarx.poll_rate));
1373 			}
1374 #endif
1375 		}
1376 	}
1377 	spin_lock(&uap->port.lock);
1378 }
1379 
1380 static bool pl011_tx_char(struct uart_amba_port *uap, unsigned char c,
1381 			  bool from_irq)
1382 {
1383 	if (unlikely(!from_irq) &&
1384 	    pl011_read(uap, REG_FR) & UART01x_FR_TXFF)
1385 		return false; /* unable to transmit character */
1386 
1387 	pl011_write(c, uap, REG_DR);
1388 	uap->port.icount.tx++;
1389 
1390 	return true;
1391 }
1392 
1393 static void pl011_rs485_tx_start(struct uart_amba_port *uap)
1394 {
1395 	struct uart_port *port = &uap->port;
1396 	u32 cr;
1397 
1398 	/* Enable transmitter */
1399 	cr = pl011_read(uap, REG_CR);
1400 	cr |= UART011_CR_TXE;
1401 
1402 	/* Disable receiver if half-duplex */
1403 	if (!(port->rs485.flags & SER_RS485_RX_DURING_TX))
1404 		cr &= ~UART011_CR_RXE;
1405 
1406 	if (port->rs485.flags & SER_RS485_RTS_ON_SEND)
1407 		cr &= ~UART011_CR_RTS;
1408 	else
1409 		cr |= UART011_CR_RTS;
1410 
1411 	pl011_write(cr, uap, REG_CR);
1412 
1413 	if (port->rs485.delay_rts_before_send)
1414 		mdelay(port->rs485.delay_rts_before_send);
1415 
1416 	uap->rs485_tx_started = true;
1417 }
1418 
1419 /* Returns true if tx interrupts have to be (kept) enabled  */
1420 static bool pl011_tx_chars(struct uart_amba_port *uap, bool from_irq)
1421 {
1422 	struct circ_buf *xmit = &uap->port.state->xmit;
1423 	int count = uap->fifosize >> 1;
1424 
1425 	if (uap->port.x_char) {
1426 		if (!pl011_tx_char(uap, uap->port.x_char, from_irq))
1427 			return true;
1428 		uap->port.x_char = 0;
1429 		--count;
1430 	}
1431 	if (uart_circ_empty(xmit) || uart_tx_stopped(&uap->port)) {
1432 		pl011_stop_tx(&uap->port);
1433 		return false;
1434 	}
1435 
1436 	if ((uap->port.rs485.flags & SER_RS485_ENABLED) &&
1437 	    !uap->rs485_tx_started)
1438 		pl011_rs485_tx_start(uap);
1439 
1440 	/* If we are using DMA mode, try to send some characters. */
1441 	if (pl011_dma_tx_irq(uap))
1442 		return true;
1443 
1444 	do {
1445 		if (likely(from_irq) && count-- == 0)
1446 			break;
1447 
1448 		if (!pl011_tx_char(uap, xmit->buf[xmit->tail], from_irq))
1449 			break;
1450 
1451 		xmit->tail = (xmit->tail + 1) & (UART_XMIT_SIZE - 1);
1452 	} while (!uart_circ_empty(xmit));
1453 
1454 	if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
1455 		uart_write_wakeup(&uap->port);
1456 
1457 	if (uart_circ_empty(xmit)) {
1458 		pl011_stop_tx(&uap->port);
1459 		return false;
1460 	}
1461 	return true;
1462 }
1463 
1464 static void pl011_modem_status(struct uart_amba_port *uap)
1465 {
1466 	unsigned int status, delta;
1467 
1468 	status = pl011_read(uap, REG_FR) & UART01x_FR_MODEM_ANY;
1469 
1470 	delta = status ^ uap->old_status;
1471 	uap->old_status = status;
1472 
1473 	if (!delta)
1474 		return;
1475 
1476 	if (delta & UART01x_FR_DCD)
1477 		uart_handle_dcd_change(&uap->port, status & UART01x_FR_DCD);
1478 
1479 	if (delta & uap->vendor->fr_dsr)
1480 		uap->port.icount.dsr++;
1481 
1482 	if (delta & uap->vendor->fr_cts)
1483 		uart_handle_cts_change(&uap->port,
1484 				       status & uap->vendor->fr_cts);
1485 
1486 	wake_up_interruptible(&uap->port.state->port.delta_msr_wait);
1487 }
1488 
1489 static void check_apply_cts_event_workaround(struct uart_amba_port *uap)
1490 {
1491 	if (!uap->vendor->cts_event_workaround)
1492 		return;
1493 
1494 	/* workaround to make sure that all bits are unlocked.. */
1495 	pl011_write(0x00, uap, REG_ICR);
1496 
1497 	/*
1498 	 * WA: introduce 26ns(1 uart clk) delay before W1C;
1499 	 * single apb access will incur 2 pclk(133.12Mhz) delay,
1500 	 * so add 2 dummy reads
1501 	 */
1502 	pl011_read(uap, REG_ICR);
1503 	pl011_read(uap, REG_ICR);
1504 }
1505 
1506 static irqreturn_t pl011_int(int irq, void *dev_id)
1507 {
1508 	struct uart_amba_port *uap = dev_id;
1509 	unsigned long flags;
1510 	unsigned int status, pass_counter = AMBA_ISR_PASS_LIMIT;
1511 	int handled = 0;
1512 
1513 	spin_lock_irqsave(&uap->port.lock, flags);
1514 	status = pl011_read(uap, REG_RIS) & uap->im;
1515 	if (status) {
1516 		do {
1517 			check_apply_cts_event_workaround(uap);
1518 
1519 			pl011_write(status & ~(UART011_TXIS|UART011_RTIS|
1520 					       UART011_RXIS),
1521 				    uap, REG_ICR);
1522 
1523 			if (status & (UART011_RTIS|UART011_RXIS)) {
1524 				if (pl011_dma_rx_running(uap))
1525 					pl011_dma_rx_irq(uap);
1526 				else
1527 					pl011_rx_chars(uap);
1528 			}
1529 			if (status & (UART011_DSRMIS|UART011_DCDMIS|
1530 				      UART011_CTSMIS|UART011_RIMIS))
1531 				pl011_modem_status(uap);
1532 			if (status & UART011_TXIS)
1533 				pl011_tx_chars(uap, true);
1534 
1535 			if (pass_counter-- == 0)
1536 				break;
1537 
1538 			status = pl011_read(uap, REG_RIS) & uap->im;
1539 		} while (status != 0);
1540 		handled = 1;
1541 	}
1542 
1543 	spin_unlock_irqrestore(&uap->port.lock, flags);
1544 
1545 	return IRQ_RETVAL(handled);
1546 }
1547 
1548 static unsigned int pl011_tx_empty(struct uart_port *port)
1549 {
1550 	struct uart_amba_port *uap =
1551 	    container_of(port, struct uart_amba_port, port);
1552 
1553 	/* Allow feature register bits to be inverted to work around errata */
1554 	unsigned int status = pl011_read(uap, REG_FR) ^ uap->vendor->inv_fr;
1555 
1556 	return status & (uap->vendor->fr_busy | UART01x_FR_TXFF) ?
1557 							0 : TIOCSER_TEMT;
1558 }
1559 
1560 static unsigned int pl011_get_mctrl(struct uart_port *port)
1561 {
1562 	struct uart_amba_port *uap =
1563 	    container_of(port, struct uart_amba_port, port);
1564 	unsigned int result = 0;
1565 	unsigned int status = pl011_read(uap, REG_FR);
1566 
1567 #define TIOCMBIT(uartbit, tiocmbit)	\
1568 	if (status & uartbit)		\
1569 		result |= tiocmbit
1570 
1571 	TIOCMBIT(UART01x_FR_DCD, TIOCM_CAR);
1572 	TIOCMBIT(uap->vendor->fr_dsr, TIOCM_DSR);
1573 	TIOCMBIT(uap->vendor->fr_cts, TIOCM_CTS);
1574 	TIOCMBIT(uap->vendor->fr_ri, TIOCM_RNG);
1575 #undef TIOCMBIT
1576 	return result;
1577 }
1578 
1579 static void pl011_set_mctrl(struct uart_port *port, unsigned int mctrl)
1580 {
1581 	struct uart_amba_port *uap =
1582 	    container_of(port, struct uart_amba_port, port);
1583 	unsigned int cr;
1584 
1585 	if (port->rs485.flags & SER_RS485_ENABLED)
1586 		mctrl &= ~TIOCM_RTS;
1587 
1588 	cr = pl011_read(uap, REG_CR);
1589 
1590 #define	TIOCMBIT(tiocmbit, uartbit)		\
1591 	if (mctrl & tiocmbit)		\
1592 		cr |= uartbit;		\
1593 	else				\
1594 		cr &= ~uartbit
1595 
1596 	TIOCMBIT(TIOCM_RTS, UART011_CR_RTS);
1597 	TIOCMBIT(TIOCM_DTR, UART011_CR_DTR);
1598 	TIOCMBIT(TIOCM_OUT1, UART011_CR_OUT1);
1599 	TIOCMBIT(TIOCM_OUT2, UART011_CR_OUT2);
1600 	TIOCMBIT(TIOCM_LOOP, UART011_CR_LBE);
1601 
1602 	if (port->status & UPSTAT_AUTORTS) {
1603 		/* We need to disable auto-RTS if we want to turn RTS off */
1604 		TIOCMBIT(TIOCM_RTS, UART011_CR_RTSEN);
1605 	}
1606 #undef TIOCMBIT
1607 
1608 	pl011_write(cr, uap, REG_CR);
1609 }
1610 
1611 static void pl011_break_ctl(struct uart_port *port, int break_state)
1612 {
1613 	struct uart_amba_port *uap =
1614 	    container_of(port, struct uart_amba_port, port);
1615 	unsigned long flags;
1616 	unsigned int lcr_h;
1617 
1618 	spin_lock_irqsave(&uap->port.lock, flags);
1619 	lcr_h = pl011_read(uap, REG_LCRH_TX);
1620 	if (break_state == -1)
1621 		lcr_h |= UART01x_LCRH_BRK;
1622 	else
1623 		lcr_h &= ~UART01x_LCRH_BRK;
1624 	pl011_write(lcr_h, uap, REG_LCRH_TX);
1625 	spin_unlock_irqrestore(&uap->port.lock, flags);
1626 }
1627 
1628 #ifdef CONFIG_CONSOLE_POLL
1629 
1630 static void pl011_quiesce_irqs(struct uart_port *port)
1631 {
1632 	struct uart_amba_port *uap =
1633 	    container_of(port, struct uart_amba_port, port);
1634 
1635 	pl011_write(pl011_read(uap, REG_MIS), uap, REG_ICR);
1636 	/*
1637 	 * There is no way to clear TXIM as this is "ready to transmit IRQ", so
1638 	 * we simply mask it. start_tx() will unmask it.
1639 	 *
1640 	 * Note we can race with start_tx(), and if the race happens, the
1641 	 * polling user might get another interrupt just after we clear it.
1642 	 * But it should be OK and can happen even w/o the race, e.g.
1643 	 * controller immediately got some new data and raised the IRQ.
1644 	 *
1645 	 * And whoever uses polling routines assumes that it manages the device
1646 	 * (including tx queue), so we're also fine with start_tx()'s caller
1647 	 * side.
1648 	 */
1649 	pl011_write(pl011_read(uap, REG_IMSC) & ~UART011_TXIM, uap,
1650 		    REG_IMSC);
1651 }
1652 
1653 static int pl011_get_poll_char(struct uart_port *port)
1654 {
1655 	struct uart_amba_port *uap =
1656 	    container_of(port, struct uart_amba_port, port);
1657 	unsigned int status;
1658 
1659 	/*
1660 	 * The caller might need IRQs lowered, e.g. if used with KDB NMI
1661 	 * debugger.
1662 	 */
1663 	pl011_quiesce_irqs(port);
1664 
1665 	status = pl011_read(uap, REG_FR);
1666 	if (status & UART01x_FR_RXFE)
1667 		return NO_POLL_CHAR;
1668 
1669 	return pl011_read(uap, REG_DR);
1670 }
1671 
1672 static void pl011_put_poll_char(struct uart_port *port,
1673 			 unsigned char ch)
1674 {
1675 	struct uart_amba_port *uap =
1676 	    container_of(port, struct uart_amba_port, port);
1677 
1678 	while (pl011_read(uap, REG_FR) & UART01x_FR_TXFF)
1679 		cpu_relax();
1680 
1681 	pl011_write(ch, uap, REG_DR);
1682 }
1683 
1684 #endif /* CONFIG_CONSOLE_POLL */
1685 
1686 static int pl011_hwinit(struct uart_port *port)
1687 {
1688 	struct uart_amba_port *uap =
1689 	    container_of(port, struct uart_amba_port, port);
1690 	int retval;
1691 
1692 	/* Optionaly enable pins to be muxed in and configured */
1693 	pinctrl_pm_select_default_state(port->dev);
1694 
1695 	/*
1696 	 * Try to enable the clock producer.
1697 	 */
1698 	retval = clk_prepare_enable(uap->clk);
1699 	if (retval)
1700 		return retval;
1701 
1702 	uap->port.uartclk = clk_get_rate(uap->clk);
1703 
1704 	/* Clear pending error and receive interrupts */
1705 	pl011_write(UART011_OEIS | UART011_BEIS | UART011_PEIS |
1706 		    UART011_FEIS | UART011_RTIS | UART011_RXIS,
1707 		    uap, REG_ICR);
1708 
1709 	/*
1710 	 * Save interrupts enable mask, and enable RX interrupts in case if
1711 	 * the interrupt is used for NMI entry.
1712 	 */
1713 	uap->im = pl011_read(uap, REG_IMSC);
1714 	pl011_write(UART011_RTIM | UART011_RXIM, uap, REG_IMSC);
1715 
1716 	if (dev_get_platdata(uap->port.dev)) {
1717 		struct amba_pl011_data *plat;
1718 
1719 		plat = dev_get_platdata(uap->port.dev);
1720 		if (plat->init)
1721 			plat->init();
1722 	}
1723 	return 0;
1724 }
1725 
1726 static bool pl011_split_lcrh(const struct uart_amba_port *uap)
1727 {
1728 	return pl011_reg_to_offset(uap, REG_LCRH_RX) !=
1729 	       pl011_reg_to_offset(uap, REG_LCRH_TX);
1730 }
1731 
1732 static void pl011_write_lcr_h(struct uart_amba_port *uap, unsigned int lcr_h)
1733 {
1734 	pl011_write(lcr_h, uap, REG_LCRH_RX);
1735 	if (pl011_split_lcrh(uap)) {
1736 		int i;
1737 		/*
1738 		 * Wait 10 PCLKs before writing LCRH_TX register,
1739 		 * to get this delay write read only register 10 times
1740 		 */
1741 		for (i = 0; i < 10; ++i)
1742 			pl011_write(0xff, uap, REG_MIS);
1743 		pl011_write(lcr_h, uap, REG_LCRH_TX);
1744 	}
1745 }
1746 
1747 static int pl011_allocate_irq(struct uart_amba_port *uap)
1748 {
1749 	pl011_write(uap->im, uap, REG_IMSC);
1750 
1751 	return request_irq(uap->port.irq, pl011_int, IRQF_SHARED, "uart-pl011", uap);
1752 }
1753 
1754 /*
1755  * Enable interrupts, only timeouts when using DMA
1756  * if initial RX DMA job failed, start in interrupt mode
1757  * as well.
1758  */
1759 static void pl011_enable_interrupts(struct uart_amba_port *uap)
1760 {
1761 	unsigned int i;
1762 
1763 	spin_lock_irq(&uap->port.lock);
1764 
1765 	/* Clear out any spuriously appearing RX interrupts */
1766 	pl011_write(UART011_RTIS | UART011_RXIS, uap, REG_ICR);
1767 
1768 	/*
1769 	 * RXIS is asserted only when the RX FIFO transitions from below
1770 	 * to above the trigger threshold.  If the RX FIFO is already
1771 	 * full to the threshold this can't happen and RXIS will now be
1772 	 * stuck off.  Drain the RX FIFO explicitly to fix this:
1773 	 */
1774 	for (i = 0; i < uap->fifosize * 2; ++i) {
1775 		if (pl011_read(uap, REG_FR) & UART01x_FR_RXFE)
1776 			break;
1777 
1778 		pl011_read(uap, REG_DR);
1779 	}
1780 
1781 	uap->im = UART011_RTIM;
1782 	if (!pl011_dma_rx_running(uap))
1783 		uap->im |= UART011_RXIM;
1784 	pl011_write(uap->im, uap, REG_IMSC);
1785 	spin_unlock_irq(&uap->port.lock);
1786 }
1787 
1788 static int pl011_startup(struct uart_port *port)
1789 {
1790 	struct uart_amba_port *uap =
1791 	    container_of(port, struct uart_amba_port, port);
1792 	unsigned int cr;
1793 	int retval;
1794 
1795 	retval = pl011_hwinit(port);
1796 	if (retval)
1797 		goto clk_dis;
1798 
1799 	retval = pl011_allocate_irq(uap);
1800 	if (retval)
1801 		goto clk_dis;
1802 
1803 	pl011_write(uap->vendor->ifls, uap, REG_IFLS);
1804 
1805 	spin_lock_irq(&uap->port.lock);
1806 
1807 	cr = pl011_read(uap, REG_CR);
1808 	cr &= UART011_CR_RTS | UART011_CR_DTR;
1809 	cr |= UART01x_CR_UARTEN | UART011_CR_RXE;
1810 
1811 	if (port->rs485.flags & SER_RS485_ENABLED) {
1812 		if (port->rs485.flags & SER_RS485_RTS_AFTER_SEND)
1813 			cr &= ~UART011_CR_RTS;
1814 		else
1815 			cr |= UART011_CR_RTS;
1816 	} else {
1817 		cr |= UART011_CR_TXE;
1818 	}
1819 
1820 	pl011_write(cr, uap, REG_CR);
1821 
1822 	spin_unlock_irq(&uap->port.lock);
1823 
1824 	/*
1825 	 * initialise the old status of the modem signals
1826 	 */
1827 	uap->old_status = pl011_read(uap, REG_FR) & UART01x_FR_MODEM_ANY;
1828 
1829 	/* Startup DMA */
1830 	pl011_dma_startup(uap);
1831 
1832 	pl011_enable_interrupts(uap);
1833 
1834 	return 0;
1835 
1836  clk_dis:
1837 	clk_disable_unprepare(uap->clk);
1838 	return retval;
1839 }
1840 
1841 static int sbsa_uart_startup(struct uart_port *port)
1842 {
1843 	struct uart_amba_port *uap =
1844 		container_of(port, struct uart_amba_port, port);
1845 	int retval;
1846 
1847 	retval = pl011_hwinit(port);
1848 	if (retval)
1849 		return retval;
1850 
1851 	retval = pl011_allocate_irq(uap);
1852 	if (retval)
1853 		return retval;
1854 
1855 	/* The SBSA UART does not support any modem status lines. */
1856 	uap->old_status = 0;
1857 
1858 	pl011_enable_interrupts(uap);
1859 
1860 	return 0;
1861 }
1862 
1863 static void pl011_shutdown_channel(struct uart_amba_port *uap,
1864 					unsigned int lcrh)
1865 {
1866       unsigned long val;
1867 
1868       val = pl011_read(uap, lcrh);
1869       val &= ~(UART01x_LCRH_BRK | UART01x_LCRH_FEN);
1870       pl011_write(val, uap, lcrh);
1871 }
1872 
1873 /*
1874  * disable the port. It should not disable RTS and DTR.
1875  * Also RTS and DTR state should be preserved to restore
1876  * it during startup().
1877  */
1878 static void pl011_disable_uart(struct uart_amba_port *uap)
1879 {
1880 	unsigned int cr;
1881 
1882 	uap->port.status &= ~(UPSTAT_AUTOCTS | UPSTAT_AUTORTS);
1883 	spin_lock_irq(&uap->port.lock);
1884 	cr = pl011_read(uap, REG_CR);
1885 	cr &= UART011_CR_RTS | UART011_CR_DTR;
1886 	cr |= UART01x_CR_UARTEN | UART011_CR_TXE;
1887 	pl011_write(cr, uap, REG_CR);
1888 	spin_unlock_irq(&uap->port.lock);
1889 
1890 	/*
1891 	 * disable break condition and fifos
1892 	 */
1893 	pl011_shutdown_channel(uap, REG_LCRH_RX);
1894 	if (pl011_split_lcrh(uap))
1895 		pl011_shutdown_channel(uap, REG_LCRH_TX);
1896 }
1897 
1898 static void pl011_disable_interrupts(struct uart_amba_port *uap)
1899 {
1900 	spin_lock_irq(&uap->port.lock);
1901 
1902 	/* mask all interrupts and clear all pending ones */
1903 	uap->im = 0;
1904 	pl011_write(uap->im, uap, REG_IMSC);
1905 	pl011_write(0xffff, uap, REG_ICR);
1906 
1907 	spin_unlock_irq(&uap->port.lock);
1908 }
1909 
1910 static void pl011_shutdown(struct uart_port *port)
1911 {
1912 	struct uart_amba_port *uap =
1913 		container_of(port, struct uart_amba_port, port);
1914 
1915 	pl011_disable_interrupts(uap);
1916 
1917 	pl011_dma_shutdown(uap);
1918 
1919 	if ((port->rs485.flags & SER_RS485_ENABLED) && uap->rs485_tx_started)
1920 		pl011_rs485_tx_stop(uap);
1921 
1922 	free_irq(uap->port.irq, uap);
1923 
1924 	pl011_disable_uart(uap);
1925 
1926 	/*
1927 	 * Shut down the clock producer
1928 	 */
1929 	clk_disable_unprepare(uap->clk);
1930 	/* Optionally let pins go into sleep states */
1931 	pinctrl_pm_select_sleep_state(port->dev);
1932 
1933 	if (dev_get_platdata(uap->port.dev)) {
1934 		struct amba_pl011_data *plat;
1935 
1936 		plat = dev_get_platdata(uap->port.dev);
1937 		if (plat->exit)
1938 			plat->exit();
1939 	}
1940 
1941 	if (uap->port.ops->flush_buffer)
1942 		uap->port.ops->flush_buffer(port);
1943 }
1944 
1945 static void sbsa_uart_shutdown(struct uart_port *port)
1946 {
1947 	struct uart_amba_port *uap =
1948 		container_of(port, struct uart_amba_port, port);
1949 
1950 	pl011_disable_interrupts(uap);
1951 
1952 	free_irq(uap->port.irq, uap);
1953 
1954 	if (uap->port.ops->flush_buffer)
1955 		uap->port.ops->flush_buffer(port);
1956 }
1957 
1958 static void
1959 pl011_setup_status_masks(struct uart_port *port, struct ktermios *termios)
1960 {
1961 	port->read_status_mask = UART011_DR_OE | 255;
1962 	if (termios->c_iflag & INPCK)
1963 		port->read_status_mask |= UART011_DR_FE | UART011_DR_PE;
1964 	if (termios->c_iflag & (IGNBRK | BRKINT | PARMRK))
1965 		port->read_status_mask |= UART011_DR_BE;
1966 
1967 	/*
1968 	 * Characters to ignore
1969 	 */
1970 	port->ignore_status_mask = 0;
1971 	if (termios->c_iflag & IGNPAR)
1972 		port->ignore_status_mask |= UART011_DR_FE | UART011_DR_PE;
1973 	if (termios->c_iflag & IGNBRK) {
1974 		port->ignore_status_mask |= UART011_DR_BE;
1975 		/*
1976 		 * If we're ignoring parity and break indicators,
1977 		 * ignore overruns too (for real raw support).
1978 		 */
1979 		if (termios->c_iflag & IGNPAR)
1980 			port->ignore_status_mask |= UART011_DR_OE;
1981 	}
1982 
1983 	/*
1984 	 * Ignore all characters if CREAD is not set.
1985 	 */
1986 	if ((termios->c_cflag & CREAD) == 0)
1987 		port->ignore_status_mask |= UART_DUMMY_DR_RX;
1988 }
1989 
1990 static void
1991 pl011_set_termios(struct uart_port *port, struct ktermios *termios,
1992 		     struct ktermios *old)
1993 {
1994 	struct uart_amba_port *uap =
1995 	    container_of(port, struct uart_amba_port, port);
1996 	unsigned int lcr_h, old_cr;
1997 	unsigned long flags;
1998 	unsigned int baud, quot, clkdiv;
1999 	unsigned int bits;
2000 
2001 	if (uap->vendor->oversampling)
2002 		clkdiv = 8;
2003 	else
2004 		clkdiv = 16;
2005 
2006 	/*
2007 	 * Ask the core to calculate the divisor for us.
2008 	 */
2009 	baud = uart_get_baud_rate(port, termios, old, 0,
2010 				  port->uartclk / clkdiv);
2011 #ifdef CONFIG_DMA_ENGINE
2012 	/*
2013 	 * Adjust RX DMA polling rate with baud rate if not specified.
2014 	 */
2015 	if (uap->dmarx.auto_poll_rate)
2016 		uap->dmarx.poll_rate = DIV_ROUND_UP(10000000, baud);
2017 #endif
2018 
2019 	if (baud > port->uartclk/16)
2020 		quot = DIV_ROUND_CLOSEST(port->uartclk * 8, baud);
2021 	else
2022 		quot = DIV_ROUND_CLOSEST(port->uartclk * 4, baud);
2023 
2024 	switch (termios->c_cflag & CSIZE) {
2025 	case CS5:
2026 		lcr_h = UART01x_LCRH_WLEN_5;
2027 		break;
2028 	case CS6:
2029 		lcr_h = UART01x_LCRH_WLEN_6;
2030 		break;
2031 	case CS7:
2032 		lcr_h = UART01x_LCRH_WLEN_7;
2033 		break;
2034 	default: // CS8
2035 		lcr_h = UART01x_LCRH_WLEN_8;
2036 		break;
2037 	}
2038 	if (termios->c_cflag & CSTOPB)
2039 		lcr_h |= UART01x_LCRH_STP2;
2040 	if (termios->c_cflag & PARENB) {
2041 		lcr_h |= UART01x_LCRH_PEN;
2042 		if (!(termios->c_cflag & PARODD))
2043 			lcr_h |= UART01x_LCRH_EPS;
2044 		if (termios->c_cflag & CMSPAR)
2045 			lcr_h |= UART011_LCRH_SPS;
2046 	}
2047 	if (uap->fifosize > 1)
2048 		lcr_h |= UART01x_LCRH_FEN;
2049 
2050 	bits = tty_get_frame_size(termios->c_cflag);
2051 
2052 	spin_lock_irqsave(&port->lock, flags);
2053 
2054 	/*
2055 	 * Update the per-port timeout.
2056 	 */
2057 	uart_update_timeout(port, termios->c_cflag, baud);
2058 
2059 	/*
2060 	 * Calculate the approximated time it takes to transmit one character
2061 	 * with the given baud rate. We use this as the poll interval when we
2062 	 * wait for the tx queue to empty.
2063 	 */
2064 	uap->rs485_tx_drain_interval = (bits * 1000 * 1000) / baud;
2065 
2066 	pl011_setup_status_masks(port, termios);
2067 
2068 	if (UART_ENABLE_MS(port, termios->c_cflag))
2069 		pl011_enable_ms(port);
2070 
2071 	if (port->rs485.flags & SER_RS485_ENABLED)
2072 		termios->c_cflag &= ~CRTSCTS;
2073 
2074 	old_cr = pl011_read(uap, REG_CR);
2075 
2076 	if (termios->c_cflag & CRTSCTS) {
2077 		if (old_cr & UART011_CR_RTS)
2078 			old_cr |= UART011_CR_RTSEN;
2079 
2080 		old_cr |= UART011_CR_CTSEN;
2081 		port->status |= UPSTAT_AUTOCTS | UPSTAT_AUTORTS;
2082 	} else {
2083 		old_cr &= ~(UART011_CR_CTSEN | UART011_CR_RTSEN);
2084 		port->status &= ~(UPSTAT_AUTOCTS | UPSTAT_AUTORTS);
2085 	}
2086 
2087 	if (uap->vendor->oversampling) {
2088 		if (baud > port->uartclk / 16)
2089 			old_cr |= ST_UART011_CR_OVSFACT;
2090 		else
2091 			old_cr &= ~ST_UART011_CR_OVSFACT;
2092 	}
2093 
2094 	/*
2095 	 * Workaround for the ST Micro oversampling variants to
2096 	 * increase the bitrate slightly, by lowering the divisor,
2097 	 * to avoid delayed sampling of start bit at high speeds,
2098 	 * else we see data corruption.
2099 	 */
2100 	if (uap->vendor->oversampling) {
2101 		if ((baud >= 3000000) && (baud < 3250000) && (quot > 1))
2102 			quot -= 1;
2103 		else if ((baud > 3250000) && (quot > 2))
2104 			quot -= 2;
2105 	}
2106 	/* Set baud rate */
2107 	pl011_write(quot & 0x3f, uap, REG_FBRD);
2108 	pl011_write(quot >> 6, uap, REG_IBRD);
2109 
2110 	/*
2111 	 * ----------v----------v----------v----------v-----
2112 	 * NOTE: REG_LCRH_TX and REG_LCRH_RX MUST BE WRITTEN AFTER
2113 	 * REG_FBRD & REG_IBRD.
2114 	 * ----------^----------^----------^----------^-----
2115 	 */
2116 	pl011_write_lcr_h(uap, lcr_h);
2117 	pl011_write(old_cr, uap, REG_CR);
2118 
2119 	spin_unlock_irqrestore(&port->lock, flags);
2120 }
2121 
2122 static void
2123 sbsa_uart_set_termios(struct uart_port *port, struct ktermios *termios,
2124 		      struct ktermios *old)
2125 {
2126 	struct uart_amba_port *uap =
2127 	    container_of(port, struct uart_amba_port, port);
2128 	unsigned long flags;
2129 
2130 	tty_termios_encode_baud_rate(termios, uap->fixed_baud, uap->fixed_baud);
2131 
2132 	/* The SBSA UART only supports 8n1 without hardware flow control. */
2133 	termios->c_cflag &= ~(CSIZE | CSTOPB | PARENB | PARODD);
2134 	termios->c_cflag &= ~(CMSPAR | CRTSCTS);
2135 	termios->c_cflag |= CS8 | CLOCAL;
2136 
2137 	spin_lock_irqsave(&port->lock, flags);
2138 	uart_update_timeout(port, CS8, uap->fixed_baud);
2139 	pl011_setup_status_masks(port, termios);
2140 	spin_unlock_irqrestore(&port->lock, flags);
2141 }
2142 
2143 static const char *pl011_type(struct uart_port *port)
2144 {
2145 	struct uart_amba_port *uap =
2146 	    container_of(port, struct uart_amba_port, port);
2147 	return uap->port.type == PORT_AMBA ? uap->type : NULL;
2148 }
2149 
2150 /*
2151  * Configure/autoconfigure the port.
2152  */
2153 static void pl011_config_port(struct uart_port *port, int flags)
2154 {
2155 	if (flags & UART_CONFIG_TYPE)
2156 		port->type = PORT_AMBA;
2157 }
2158 
2159 /*
2160  * verify the new serial_struct (for TIOCSSERIAL).
2161  */
2162 static int pl011_verify_port(struct uart_port *port, struct serial_struct *ser)
2163 {
2164 	int ret = 0;
2165 	if (ser->type != PORT_UNKNOWN && ser->type != PORT_AMBA)
2166 		ret = -EINVAL;
2167 	if (ser->irq < 0 || ser->irq >= nr_irqs)
2168 		ret = -EINVAL;
2169 	if (ser->baud_base < 9600)
2170 		ret = -EINVAL;
2171 	if (port->mapbase != (unsigned long) ser->iomem_base)
2172 		ret = -EINVAL;
2173 	return ret;
2174 }
2175 
2176 static int pl011_rs485_config(struct uart_port *port,
2177 			      struct serial_rs485 *rs485)
2178 {
2179 	struct uart_amba_port *uap =
2180 		container_of(port, struct uart_amba_port, port);
2181 
2182 	/* pick sane settings if the user hasn't */
2183 	if (!(rs485->flags & SER_RS485_RTS_ON_SEND) ==
2184 	    !(rs485->flags & SER_RS485_RTS_AFTER_SEND)) {
2185 		rs485->flags |= SER_RS485_RTS_ON_SEND;
2186 		rs485->flags &= ~SER_RS485_RTS_AFTER_SEND;
2187 	}
2188 	/* clamp the delays to [0, 100ms] */
2189 	rs485->delay_rts_before_send = min(rs485->delay_rts_before_send, 100U);
2190 	rs485->delay_rts_after_send = min(rs485->delay_rts_after_send, 100U);
2191 	memset(rs485->padding, 0, sizeof(rs485->padding));
2192 
2193 	if (port->rs485.flags & SER_RS485_ENABLED)
2194 		pl011_rs485_tx_stop(uap);
2195 
2196 	/* Set new configuration */
2197 	port->rs485 = *rs485;
2198 
2199 	/* Make sure auto RTS is disabled */
2200 	if (port->rs485.flags & SER_RS485_ENABLED) {
2201 		u32 cr = pl011_read(uap, REG_CR);
2202 
2203 		cr &= ~UART011_CR_RTSEN;
2204 		pl011_write(cr, uap, REG_CR);
2205 		port->status &= ~UPSTAT_AUTORTS;
2206 	}
2207 
2208 	return 0;
2209 }
2210 
2211 static const struct uart_ops amba_pl011_pops = {
2212 	.tx_empty	= pl011_tx_empty,
2213 	.set_mctrl	= pl011_set_mctrl,
2214 	.get_mctrl	= pl011_get_mctrl,
2215 	.stop_tx	= pl011_stop_tx,
2216 	.start_tx	= pl011_start_tx,
2217 	.stop_rx	= pl011_stop_rx,
2218 	.enable_ms	= pl011_enable_ms,
2219 	.break_ctl	= pl011_break_ctl,
2220 	.startup	= pl011_startup,
2221 	.shutdown	= pl011_shutdown,
2222 	.flush_buffer	= pl011_dma_flush_buffer,
2223 	.set_termios	= pl011_set_termios,
2224 	.type		= pl011_type,
2225 	.config_port	= pl011_config_port,
2226 	.verify_port	= pl011_verify_port,
2227 #ifdef CONFIG_CONSOLE_POLL
2228 	.poll_init     = pl011_hwinit,
2229 	.poll_get_char = pl011_get_poll_char,
2230 	.poll_put_char = pl011_put_poll_char,
2231 #endif
2232 };
2233 
2234 static void sbsa_uart_set_mctrl(struct uart_port *port, unsigned int mctrl)
2235 {
2236 }
2237 
2238 static unsigned int sbsa_uart_get_mctrl(struct uart_port *port)
2239 {
2240 	return 0;
2241 }
2242 
2243 static const struct uart_ops sbsa_uart_pops = {
2244 	.tx_empty	= pl011_tx_empty,
2245 	.set_mctrl	= sbsa_uart_set_mctrl,
2246 	.get_mctrl	= sbsa_uart_get_mctrl,
2247 	.stop_tx	= pl011_stop_tx,
2248 	.start_tx	= pl011_start_tx,
2249 	.stop_rx	= pl011_stop_rx,
2250 	.startup	= sbsa_uart_startup,
2251 	.shutdown	= sbsa_uart_shutdown,
2252 	.set_termios	= sbsa_uart_set_termios,
2253 	.type		= pl011_type,
2254 	.config_port	= pl011_config_port,
2255 	.verify_port	= pl011_verify_port,
2256 #ifdef CONFIG_CONSOLE_POLL
2257 	.poll_init     = pl011_hwinit,
2258 	.poll_get_char = pl011_get_poll_char,
2259 	.poll_put_char = pl011_put_poll_char,
2260 #endif
2261 };
2262 
2263 static struct uart_amba_port *amba_ports[UART_NR];
2264 
2265 #ifdef CONFIG_SERIAL_AMBA_PL011_CONSOLE
2266 
2267 static void pl011_console_putchar(struct uart_port *port, int ch)
2268 {
2269 	struct uart_amba_port *uap =
2270 	    container_of(port, struct uart_amba_port, port);
2271 
2272 	while (pl011_read(uap, REG_FR) & UART01x_FR_TXFF)
2273 		cpu_relax();
2274 	pl011_write(ch, uap, REG_DR);
2275 }
2276 
2277 static void
2278 pl011_console_write(struct console *co, const char *s, unsigned int count)
2279 {
2280 	struct uart_amba_port *uap = amba_ports[co->index];
2281 	unsigned int old_cr = 0, new_cr;
2282 	unsigned long flags;
2283 	int locked = 1;
2284 
2285 	clk_enable(uap->clk);
2286 
2287 	local_irq_save(flags);
2288 	if (uap->port.sysrq)
2289 		locked = 0;
2290 	else if (oops_in_progress)
2291 		locked = spin_trylock(&uap->port.lock);
2292 	else
2293 		spin_lock(&uap->port.lock);
2294 
2295 	/*
2296 	 *	First save the CR then disable the interrupts
2297 	 */
2298 	if (!uap->vendor->always_enabled) {
2299 		old_cr = pl011_read(uap, REG_CR);
2300 		new_cr = old_cr & ~UART011_CR_CTSEN;
2301 		new_cr |= UART01x_CR_UARTEN | UART011_CR_TXE;
2302 		pl011_write(new_cr, uap, REG_CR);
2303 	}
2304 
2305 	uart_console_write(&uap->port, s, count, pl011_console_putchar);
2306 
2307 	/*
2308 	 *	Finally, wait for transmitter to become empty and restore the
2309 	 *	TCR. Allow feature register bits to be inverted to work around
2310 	 *	errata.
2311 	 */
2312 	while ((pl011_read(uap, REG_FR) ^ uap->vendor->inv_fr)
2313 						& uap->vendor->fr_busy)
2314 		cpu_relax();
2315 	if (!uap->vendor->always_enabled)
2316 		pl011_write(old_cr, uap, REG_CR);
2317 
2318 	if (locked)
2319 		spin_unlock(&uap->port.lock);
2320 	local_irq_restore(flags);
2321 
2322 	clk_disable(uap->clk);
2323 }
2324 
2325 static void pl011_console_get_options(struct uart_amba_port *uap, int *baud,
2326 				      int *parity, int *bits)
2327 {
2328 	if (pl011_read(uap, REG_CR) & UART01x_CR_UARTEN) {
2329 		unsigned int lcr_h, ibrd, fbrd;
2330 
2331 		lcr_h = pl011_read(uap, REG_LCRH_TX);
2332 
2333 		*parity = 'n';
2334 		if (lcr_h & UART01x_LCRH_PEN) {
2335 			if (lcr_h & UART01x_LCRH_EPS)
2336 				*parity = 'e';
2337 			else
2338 				*parity = 'o';
2339 		}
2340 
2341 		if ((lcr_h & 0x60) == UART01x_LCRH_WLEN_7)
2342 			*bits = 7;
2343 		else
2344 			*bits = 8;
2345 
2346 		ibrd = pl011_read(uap, REG_IBRD);
2347 		fbrd = pl011_read(uap, REG_FBRD);
2348 
2349 		*baud = uap->port.uartclk * 4 / (64 * ibrd + fbrd);
2350 
2351 		if (uap->vendor->oversampling) {
2352 			if (pl011_read(uap, REG_CR)
2353 				  & ST_UART011_CR_OVSFACT)
2354 				*baud *= 2;
2355 		}
2356 	}
2357 }
2358 
2359 static int pl011_console_setup(struct console *co, char *options)
2360 {
2361 	struct uart_amba_port *uap;
2362 	int baud = 38400;
2363 	int bits = 8;
2364 	int parity = 'n';
2365 	int flow = 'n';
2366 	int ret;
2367 
2368 	/*
2369 	 * Check whether an invalid uart number has been specified, and
2370 	 * if so, search for the first available port that does have
2371 	 * console support.
2372 	 */
2373 	if (co->index >= UART_NR)
2374 		co->index = 0;
2375 	uap = amba_ports[co->index];
2376 	if (!uap)
2377 		return -ENODEV;
2378 
2379 	/* Allow pins to be muxed in and configured */
2380 	pinctrl_pm_select_default_state(uap->port.dev);
2381 
2382 	ret = clk_prepare(uap->clk);
2383 	if (ret)
2384 		return ret;
2385 
2386 	if (dev_get_platdata(uap->port.dev)) {
2387 		struct amba_pl011_data *plat;
2388 
2389 		plat = dev_get_platdata(uap->port.dev);
2390 		if (plat->init)
2391 			plat->init();
2392 	}
2393 
2394 	uap->port.uartclk = clk_get_rate(uap->clk);
2395 
2396 	if (uap->vendor->fixed_options) {
2397 		baud = uap->fixed_baud;
2398 	} else {
2399 		if (options)
2400 			uart_parse_options(options,
2401 					   &baud, &parity, &bits, &flow);
2402 		else
2403 			pl011_console_get_options(uap, &baud, &parity, &bits);
2404 	}
2405 
2406 	return uart_set_options(&uap->port, co, baud, parity, bits, flow);
2407 }
2408 
2409 /**
2410  *	pl011_console_match - non-standard console matching
2411  *	@co:	  registering console
2412  *	@name:	  name from console command line
2413  *	@idx:	  index from console command line
2414  *	@options: ptr to option string from console command line
2415  *
2416  *	Only attempts to match console command lines of the form:
2417  *	    console=pl011,mmio|mmio32,<addr>[,<options>]
2418  *	    console=pl011,0x<addr>[,<options>]
2419  *	This form is used to register an initial earlycon boot console and
2420  *	replace it with the amba_console at pl011 driver init.
2421  *
2422  *	Performs console setup for a match (as required by interface)
2423  *	If no <options> are specified, then assume the h/w is already setup.
2424  *
2425  *	Returns 0 if console matches; otherwise non-zero to use default matching
2426  */
2427 static int pl011_console_match(struct console *co, char *name, int idx,
2428 			       char *options)
2429 {
2430 	unsigned char iotype;
2431 	resource_size_t addr;
2432 	int i;
2433 
2434 	/*
2435 	 * Systems affected by the Qualcomm Technologies QDF2400 E44 erratum
2436 	 * have a distinct console name, so make sure we check for that.
2437 	 * The actual implementation of the erratum occurs in the probe
2438 	 * function.
2439 	 */
2440 	if ((strcmp(name, "qdf2400_e44") != 0) && (strcmp(name, "pl011") != 0))
2441 		return -ENODEV;
2442 
2443 	if (uart_parse_earlycon(options, &iotype, &addr, &options))
2444 		return -ENODEV;
2445 
2446 	if (iotype != UPIO_MEM && iotype != UPIO_MEM32)
2447 		return -ENODEV;
2448 
2449 	/* try to match the port specified on the command line */
2450 	for (i = 0; i < ARRAY_SIZE(amba_ports); i++) {
2451 		struct uart_port *port;
2452 
2453 		if (!amba_ports[i])
2454 			continue;
2455 
2456 		port = &amba_ports[i]->port;
2457 
2458 		if (port->mapbase != addr)
2459 			continue;
2460 
2461 		co->index = i;
2462 		port->cons = co;
2463 		return pl011_console_setup(co, options);
2464 	}
2465 
2466 	return -ENODEV;
2467 }
2468 
2469 static struct uart_driver amba_reg;
2470 static struct console amba_console = {
2471 	.name		= "ttyAMA",
2472 	.write		= pl011_console_write,
2473 	.device		= uart_console_device,
2474 	.setup		= pl011_console_setup,
2475 	.match		= pl011_console_match,
2476 	.flags		= CON_PRINTBUFFER | CON_ANYTIME,
2477 	.index		= -1,
2478 	.data		= &amba_reg,
2479 };
2480 
2481 #define AMBA_CONSOLE	(&amba_console)
2482 
2483 static void qdf2400_e44_putc(struct uart_port *port, int c)
2484 {
2485 	while (readl(port->membase + UART01x_FR) & UART01x_FR_TXFF)
2486 		cpu_relax();
2487 	writel(c, port->membase + UART01x_DR);
2488 	while (!(readl(port->membase + UART01x_FR) & UART011_FR_TXFE))
2489 		cpu_relax();
2490 }
2491 
2492 static void qdf2400_e44_early_write(struct console *con, const char *s, unsigned n)
2493 {
2494 	struct earlycon_device *dev = con->data;
2495 
2496 	uart_console_write(&dev->port, s, n, qdf2400_e44_putc);
2497 }
2498 
2499 static void pl011_putc(struct uart_port *port, int c)
2500 {
2501 	while (readl(port->membase + UART01x_FR) & UART01x_FR_TXFF)
2502 		cpu_relax();
2503 	if (port->iotype == UPIO_MEM32)
2504 		writel(c, port->membase + UART01x_DR);
2505 	else
2506 		writeb(c, port->membase + UART01x_DR);
2507 	while (readl(port->membase + UART01x_FR) & UART01x_FR_BUSY)
2508 		cpu_relax();
2509 }
2510 
2511 static void pl011_early_write(struct console *con, const char *s, unsigned n)
2512 {
2513 	struct earlycon_device *dev = con->data;
2514 
2515 	uart_console_write(&dev->port, s, n, pl011_putc);
2516 }
2517 
2518 #ifdef CONFIG_CONSOLE_POLL
2519 static int pl011_getc(struct uart_port *port)
2520 {
2521 	if (readl(port->membase + UART01x_FR) & UART01x_FR_RXFE)
2522 		return NO_POLL_CHAR;
2523 
2524 	if (port->iotype == UPIO_MEM32)
2525 		return readl(port->membase + UART01x_DR);
2526 	else
2527 		return readb(port->membase + UART01x_DR);
2528 }
2529 
2530 static int pl011_early_read(struct console *con, char *s, unsigned int n)
2531 {
2532 	struct earlycon_device *dev = con->data;
2533 	int ch, num_read = 0;
2534 
2535 	while (num_read < n) {
2536 		ch = pl011_getc(&dev->port);
2537 		if (ch == NO_POLL_CHAR)
2538 			break;
2539 
2540 		s[num_read++] = ch;
2541 	}
2542 
2543 	return num_read;
2544 }
2545 #else
2546 #define pl011_early_read NULL
2547 #endif
2548 
2549 /*
2550  * On non-ACPI systems, earlycon is enabled by specifying
2551  * "earlycon=pl011,<address>" on the kernel command line.
2552  *
2553  * On ACPI ARM64 systems, an "early" console is enabled via the SPCR table,
2554  * by specifying only "earlycon" on the command line.  Because it requires
2555  * SPCR, the console starts after ACPI is parsed, which is later than a
2556  * traditional early console.
2557  *
2558  * To get the traditional early console that starts before ACPI is parsed,
2559  * specify the full "earlycon=pl011,<address>" option.
2560  */
2561 static int __init pl011_early_console_setup(struct earlycon_device *device,
2562 					    const char *opt)
2563 {
2564 	if (!device->port.membase)
2565 		return -ENODEV;
2566 
2567 	device->con->write = pl011_early_write;
2568 	device->con->read = pl011_early_read;
2569 
2570 	return 0;
2571 }
2572 OF_EARLYCON_DECLARE(pl011, "arm,pl011", pl011_early_console_setup);
2573 OF_EARLYCON_DECLARE(pl011, "arm,sbsa-uart", pl011_early_console_setup);
2574 
2575 /*
2576  * On Qualcomm Datacenter Technologies QDF2400 SOCs affected by
2577  * Erratum 44, traditional earlycon can be enabled by specifying
2578  * "earlycon=qdf2400_e44,<address>".  Any options are ignored.
2579  *
2580  * Alternatively, you can just specify "earlycon", and the early console
2581  * will be enabled with the information from the SPCR table.  In this
2582  * case, the SPCR code will detect the need for the E44 work-around,
2583  * and set the console name to "qdf2400_e44".
2584  */
2585 static int __init
2586 qdf2400_e44_early_console_setup(struct earlycon_device *device,
2587 				const char *opt)
2588 {
2589 	if (!device->port.membase)
2590 		return -ENODEV;
2591 
2592 	device->con->write = qdf2400_e44_early_write;
2593 	return 0;
2594 }
2595 EARLYCON_DECLARE(qdf2400_e44, qdf2400_e44_early_console_setup);
2596 
2597 #else
2598 #define AMBA_CONSOLE	NULL
2599 #endif
2600 
2601 static struct uart_driver amba_reg = {
2602 	.owner			= THIS_MODULE,
2603 	.driver_name		= "ttyAMA",
2604 	.dev_name		= "ttyAMA",
2605 	.major			= SERIAL_AMBA_MAJOR,
2606 	.minor			= SERIAL_AMBA_MINOR,
2607 	.nr			= UART_NR,
2608 	.cons			= AMBA_CONSOLE,
2609 };
2610 
2611 static int pl011_probe_dt_alias(int index, struct device *dev)
2612 {
2613 	struct device_node *np;
2614 	static bool seen_dev_with_alias = false;
2615 	static bool seen_dev_without_alias = false;
2616 	int ret = index;
2617 
2618 	if (!IS_ENABLED(CONFIG_OF))
2619 		return ret;
2620 
2621 	np = dev->of_node;
2622 	if (!np)
2623 		return ret;
2624 
2625 	ret = of_alias_get_id(np, "serial");
2626 	if (ret < 0) {
2627 		seen_dev_without_alias = true;
2628 		ret = index;
2629 	} else {
2630 		seen_dev_with_alias = true;
2631 		if (ret >= ARRAY_SIZE(amba_ports) || amba_ports[ret] != NULL) {
2632 			dev_warn(dev, "requested serial port %d  not available.\n", ret);
2633 			ret = index;
2634 		}
2635 	}
2636 
2637 	if (seen_dev_with_alias && seen_dev_without_alias)
2638 		dev_warn(dev, "aliased and non-aliased serial devices found in device tree. Serial port enumeration may be unpredictable.\n");
2639 
2640 	return ret;
2641 }
2642 
2643 /* unregisters the driver also if no more ports are left */
2644 static void pl011_unregister_port(struct uart_amba_port *uap)
2645 {
2646 	int i;
2647 	bool busy = false;
2648 
2649 	for (i = 0; i < ARRAY_SIZE(amba_ports); i++) {
2650 		if (amba_ports[i] == uap)
2651 			amba_ports[i] = NULL;
2652 		else if (amba_ports[i])
2653 			busy = true;
2654 	}
2655 	pl011_dma_remove(uap);
2656 	if (!busy)
2657 		uart_unregister_driver(&amba_reg);
2658 }
2659 
2660 static int pl011_find_free_port(void)
2661 {
2662 	int i;
2663 
2664 	for (i = 0; i < ARRAY_SIZE(amba_ports); i++)
2665 		if (amba_ports[i] == NULL)
2666 			return i;
2667 
2668 	return -EBUSY;
2669 }
2670 
2671 static int pl011_get_rs485_mode(struct uart_amba_port *uap)
2672 {
2673 	struct uart_port *port = &uap->port;
2674 	struct serial_rs485 *rs485 = &port->rs485;
2675 	int ret;
2676 
2677 	ret = uart_get_rs485_mode(port);
2678 	if (ret)
2679 		return ret;
2680 
2681 	/* clamp the delays to [0, 100ms] */
2682 	rs485->delay_rts_before_send = min(rs485->delay_rts_before_send, 100U);
2683 	rs485->delay_rts_after_send = min(rs485->delay_rts_after_send, 100U);
2684 
2685 	return 0;
2686 }
2687 
2688 static int pl011_setup_port(struct device *dev, struct uart_amba_port *uap,
2689 			    struct resource *mmiobase, int index)
2690 {
2691 	void __iomem *base;
2692 	int ret;
2693 
2694 	base = devm_ioremap_resource(dev, mmiobase);
2695 	if (IS_ERR(base))
2696 		return PTR_ERR(base);
2697 
2698 	index = pl011_probe_dt_alias(index, dev);
2699 
2700 	uap->port.dev = dev;
2701 	uap->port.mapbase = mmiobase->start;
2702 	uap->port.membase = base;
2703 	uap->port.fifosize = uap->fifosize;
2704 	uap->port.has_sysrq = IS_ENABLED(CONFIG_SERIAL_AMBA_PL011_CONSOLE);
2705 	uap->port.flags = UPF_BOOT_AUTOCONF;
2706 	uap->port.line = index;
2707 
2708 	ret = pl011_get_rs485_mode(uap);
2709 	if (ret)
2710 		return ret;
2711 
2712 	amba_ports[index] = uap;
2713 
2714 	return 0;
2715 }
2716 
2717 static int pl011_register_port(struct uart_amba_port *uap)
2718 {
2719 	int ret, i;
2720 
2721 	/* Ensure interrupts from this UART are masked and cleared */
2722 	pl011_write(0, uap, REG_IMSC);
2723 	pl011_write(0xffff, uap, REG_ICR);
2724 
2725 	if (!amba_reg.state) {
2726 		ret = uart_register_driver(&amba_reg);
2727 		if (ret < 0) {
2728 			dev_err(uap->port.dev,
2729 				"Failed to register AMBA-PL011 driver\n");
2730 			for (i = 0; i < ARRAY_SIZE(amba_ports); i++)
2731 				if (amba_ports[i] == uap)
2732 					amba_ports[i] = NULL;
2733 			return ret;
2734 		}
2735 	}
2736 
2737 	ret = uart_add_one_port(&amba_reg, &uap->port);
2738 	if (ret)
2739 		pl011_unregister_port(uap);
2740 
2741 	return ret;
2742 }
2743 
2744 static int pl011_probe(struct amba_device *dev, const struct amba_id *id)
2745 {
2746 	struct uart_amba_port *uap;
2747 	struct vendor_data *vendor = id->data;
2748 	int portnr, ret;
2749 
2750 	portnr = pl011_find_free_port();
2751 	if (portnr < 0)
2752 		return portnr;
2753 
2754 	uap = devm_kzalloc(&dev->dev, sizeof(struct uart_amba_port),
2755 			   GFP_KERNEL);
2756 	if (!uap)
2757 		return -ENOMEM;
2758 
2759 	uap->clk = devm_clk_get(&dev->dev, NULL);
2760 	if (IS_ERR(uap->clk))
2761 		return PTR_ERR(uap->clk);
2762 
2763 	uap->reg_offset = vendor->reg_offset;
2764 	uap->vendor = vendor;
2765 	uap->fifosize = vendor->get_fifosize(dev);
2766 	uap->port.iotype = vendor->access_32b ? UPIO_MEM32 : UPIO_MEM;
2767 	uap->port.irq = dev->irq[0];
2768 	uap->port.ops = &amba_pl011_pops;
2769 	uap->port.rs485_config = pl011_rs485_config;
2770 	snprintf(uap->type, sizeof(uap->type), "PL011 rev%u", amba_rev(dev));
2771 
2772 	ret = pl011_setup_port(&dev->dev, uap, &dev->res, portnr);
2773 	if (ret)
2774 		return ret;
2775 
2776 	amba_set_drvdata(dev, uap);
2777 
2778 	return pl011_register_port(uap);
2779 }
2780 
2781 static void pl011_remove(struct amba_device *dev)
2782 {
2783 	struct uart_amba_port *uap = amba_get_drvdata(dev);
2784 
2785 	uart_remove_one_port(&amba_reg, &uap->port);
2786 	pl011_unregister_port(uap);
2787 }
2788 
2789 #ifdef CONFIG_PM_SLEEP
2790 static int pl011_suspend(struct device *dev)
2791 {
2792 	struct uart_amba_port *uap = dev_get_drvdata(dev);
2793 
2794 	if (!uap)
2795 		return -EINVAL;
2796 
2797 	return uart_suspend_port(&amba_reg, &uap->port);
2798 }
2799 
2800 static int pl011_resume(struct device *dev)
2801 {
2802 	struct uart_amba_port *uap = dev_get_drvdata(dev);
2803 
2804 	if (!uap)
2805 		return -EINVAL;
2806 
2807 	return uart_resume_port(&amba_reg, &uap->port);
2808 }
2809 #endif
2810 
2811 static SIMPLE_DEV_PM_OPS(pl011_dev_pm_ops, pl011_suspend, pl011_resume);
2812 
2813 static int sbsa_uart_probe(struct platform_device *pdev)
2814 {
2815 	struct uart_amba_port *uap;
2816 	struct resource *r;
2817 	int portnr, ret;
2818 	int baudrate;
2819 
2820 	/*
2821 	 * Check the mandatory baud rate parameter in the DT node early
2822 	 * so that we can easily exit with the error.
2823 	 */
2824 	if (pdev->dev.of_node) {
2825 		struct device_node *np = pdev->dev.of_node;
2826 
2827 		ret = of_property_read_u32(np, "current-speed", &baudrate);
2828 		if (ret)
2829 			return ret;
2830 	} else {
2831 		baudrate = 115200;
2832 	}
2833 
2834 	portnr = pl011_find_free_port();
2835 	if (portnr < 0)
2836 		return portnr;
2837 
2838 	uap = devm_kzalloc(&pdev->dev, sizeof(struct uart_amba_port),
2839 			   GFP_KERNEL);
2840 	if (!uap)
2841 		return -ENOMEM;
2842 
2843 	ret = platform_get_irq(pdev, 0);
2844 	if (ret < 0)
2845 		return ret;
2846 	uap->port.irq	= ret;
2847 
2848 #ifdef CONFIG_ACPI_SPCR_TABLE
2849 	if (qdf2400_e44_present) {
2850 		dev_info(&pdev->dev, "working around QDF2400 SoC erratum 44\n");
2851 		uap->vendor = &vendor_qdt_qdf2400_e44;
2852 	} else
2853 #endif
2854 		uap->vendor = &vendor_sbsa;
2855 
2856 	uap->reg_offset	= uap->vendor->reg_offset;
2857 	uap->fifosize	= 32;
2858 	uap->port.iotype = uap->vendor->access_32b ? UPIO_MEM32 : UPIO_MEM;
2859 	uap->port.ops	= &sbsa_uart_pops;
2860 	uap->fixed_baud = baudrate;
2861 
2862 	snprintf(uap->type, sizeof(uap->type), "SBSA");
2863 
2864 	r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2865 
2866 	ret = pl011_setup_port(&pdev->dev, uap, r, portnr);
2867 	if (ret)
2868 		return ret;
2869 
2870 	platform_set_drvdata(pdev, uap);
2871 
2872 	return pl011_register_port(uap);
2873 }
2874 
2875 static int sbsa_uart_remove(struct platform_device *pdev)
2876 {
2877 	struct uart_amba_port *uap = platform_get_drvdata(pdev);
2878 
2879 	uart_remove_one_port(&amba_reg, &uap->port);
2880 	pl011_unregister_port(uap);
2881 	return 0;
2882 }
2883 
2884 static const struct of_device_id sbsa_uart_of_match[] = {
2885 	{ .compatible = "arm,sbsa-uart", },
2886 	{},
2887 };
2888 MODULE_DEVICE_TABLE(of, sbsa_uart_of_match);
2889 
2890 static const struct acpi_device_id __maybe_unused sbsa_uart_acpi_match[] = {
2891 	{ "ARMH0011", 0 },
2892 	{ "ARMHB000", 0 },
2893 	{},
2894 };
2895 MODULE_DEVICE_TABLE(acpi, sbsa_uart_acpi_match);
2896 
2897 static struct platform_driver arm_sbsa_uart_platform_driver = {
2898 	.probe		= sbsa_uart_probe,
2899 	.remove		= sbsa_uart_remove,
2900 	.driver	= {
2901 		.name	= "sbsa-uart",
2902 		.pm	= &pl011_dev_pm_ops,
2903 		.of_match_table = of_match_ptr(sbsa_uart_of_match),
2904 		.acpi_match_table = ACPI_PTR(sbsa_uart_acpi_match),
2905 		.suppress_bind_attrs = IS_BUILTIN(CONFIG_SERIAL_AMBA_PL011),
2906 	},
2907 };
2908 
2909 static const struct amba_id pl011_ids[] = {
2910 	{
2911 		.id	= 0x00041011,
2912 		.mask	= 0x000fffff,
2913 		.data	= &vendor_arm,
2914 	},
2915 	{
2916 		.id	= 0x00380802,
2917 		.mask	= 0x00ffffff,
2918 		.data	= &vendor_st,
2919 	},
2920 	{ 0, 0 },
2921 };
2922 
2923 MODULE_DEVICE_TABLE(amba, pl011_ids);
2924 
2925 static struct amba_driver pl011_driver = {
2926 	.drv = {
2927 		.name	= "uart-pl011",
2928 		.pm	= &pl011_dev_pm_ops,
2929 		.suppress_bind_attrs = IS_BUILTIN(CONFIG_SERIAL_AMBA_PL011),
2930 	},
2931 	.id_table	= pl011_ids,
2932 	.probe		= pl011_probe,
2933 	.remove		= pl011_remove,
2934 };
2935 
2936 static int __init pl011_init(void)
2937 {
2938 	printk(KERN_INFO "Serial: AMBA PL011 UART driver\n");
2939 
2940 	if (platform_driver_register(&arm_sbsa_uart_platform_driver))
2941 		pr_warn("could not register SBSA UART platform driver\n");
2942 	return amba_driver_register(&pl011_driver);
2943 }
2944 
2945 static void __exit pl011_exit(void)
2946 {
2947 	platform_driver_unregister(&arm_sbsa_uart_platform_driver);
2948 	amba_driver_unregister(&pl011_driver);
2949 }
2950 
2951 /*
2952  * While this can be a module, if builtin it's most likely the console
2953  * So let's leave module_exit but move module_init to an earlier place
2954  */
2955 arch_initcall(pl011_init);
2956 module_exit(pl011_exit);
2957 
2958 MODULE_AUTHOR("ARM Ltd/Deep Blue Solutions Ltd");
2959 MODULE_DESCRIPTION("ARM AMBA serial port driver");
2960 MODULE_LICENSE("GPL");
2961