xref: /openbmc/linux/drivers/tty/serial/amba-pl011.c (revision 24b1944f)
1 /*
2  *  Driver for AMBA serial ports
3  *
4  *  Based on drivers/char/serial.c, by Linus Torvalds, Theodore Ts'o.
5  *
6  *  Copyright 1999 ARM Limited
7  *  Copyright (C) 2000 Deep Blue Solutions Ltd.
8  *  Copyright (C) 2010 ST-Ericsson SA
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License as published by
12  * the Free Software Foundation; either version 2 of the License, or
13  * (at your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18  * GNU General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public License
21  * along with this program; if not, write to the Free Software
22  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
23  *
24  * This is a generic driver for ARM AMBA-type serial ports.  They
25  * have a lot of 16550-like features, but are not register compatible.
26  * Note that although they do have CTS, DCD and DSR inputs, they do
27  * not have an RI input, nor do they have DTR or RTS outputs.  If
28  * required, these have to be supplied via some other means (eg, GPIO)
29  * and hooked into this driver.
30  */
31 
32 
33 #if defined(CONFIG_SERIAL_AMBA_PL011_CONSOLE) && defined(CONFIG_MAGIC_SYSRQ)
34 #define SUPPORT_SYSRQ
35 #endif
36 
37 #include <linux/module.h>
38 #include <linux/ioport.h>
39 #include <linux/init.h>
40 #include <linux/console.h>
41 #include <linux/sysrq.h>
42 #include <linux/device.h>
43 #include <linux/tty.h>
44 #include <linux/tty_flip.h>
45 #include <linux/serial_core.h>
46 #include <linux/serial.h>
47 #include <linux/amba/bus.h>
48 #include <linux/amba/serial.h>
49 #include <linux/clk.h>
50 #include <linux/slab.h>
51 #include <linux/dmaengine.h>
52 #include <linux/dma-mapping.h>
53 #include <linux/scatterlist.h>
54 #include <linux/delay.h>
55 #include <linux/types.h>
56 #include <linux/of.h>
57 #include <linux/of_device.h>
58 #include <linux/pinctrl/consumer.h>
59 #include <linux/sizes.h>
60 #include <linux/io.h>
61 
62 #define UART_NR			14
63 
64 #define SERIAL_AMBA_MAJOR	204
65 #define SERIAL_AMBA_MINOR	64
66 #define SERIAL_AMBA_NR		UART_NR
67 
68 #define AMBA_ISR_PASS_LIMIT	256
69 
70 #define UART_DR_ERROR		(UART011_DR_OE|UART011_DR_BE|UART011_DR_PE|UART011_DR_FE)
71 #define UART_DUMMY_DR_RX	(1 << 16)
72 
73 /* There is by now at least one vendor with differing details, so handle it */
74 struct vendor_data {
75 	unsigned int		ifls;
76 	unsigned int		lcrh_tx;
77 	unsigned int		lcrh_rx;
78 	bool			oversampling;
79 	bool			dma_threshold;
80 	bool			cts_event_workaround;
81 
82 	unsigned int (*get_fifosize)(unsigned int periphid);
83 };
84 
85 static unsigned int get_fifosize_arm(unsigned int periphid)
86 {
87 	unsigned int rev = (periphid >> 20) & 0xf;
88 	return rev < 3 ? 16 : 32;
89 }
90 
91 static struct vendor_data vendor_arm = {
92 	.ifls			= UART011_IFLS_RX4_8|UART011_IFLS_TX4_8,
93 	.lcrh_tx		= UART011_LCRH,
94 	.lcrh_rx		= UART011_LCRH,
95 	.oversampling		= false,
96 	.dma_threshold		= false,
97 	.cts_event_workaround	= false,
98 	.get_fifosize		= get_fifosize_arm,
99 };
100 
101 static unsigned int get_fifosize_st(unsigned int periphid)
102 {
103 	return 64;
104 }
105 
106 static struct vendor_data vendor_st = {
107 	.ifls			= UART011_IFLS_RX_HALF|UART011_IFLS_TX_HALF,
108 	.lcrh_tx		= ST_UART011_LCRH_TX,
109 	.lcrh_rx		= ST_UART011_LCRH_RX,
110 	.oversampling		= true,
111 	.dma_threshold		= true,
112 	.cts_event_workaround	= true,
113 	.get_fifosize		= get_fifosize_st,
114 };
115 
116 static struct uart_amba_port *amba_ports[UART_NR];
117 
118 /* Deals with DMA transactions */
119 
120 struct pl011_sgbuf {
121 	struct scatterlist sg;
122 	char *buf;
123 };
124 
125 struct pl011_dmarx_data {
126 	struct dma_chan		*chan;
127 	struct completion	complete;
128 	bool			use_buf_b;
129 	struct pl011_sgbuf	sgbuf_a;
130 	struct pl011_sgbuf	sgbuf_b;
131 	dma_cookie_t		cookie;
132 	bool			running;
133 	struct timer_list	timer;
134 	unsigned int last_residue;
135 	unsigned long last_jiffies;
136 	bool auto_poll_rate;
137 	unsigned int poll_rate;
138 	unsigned int poll_timeout;
139 };
140 
141 struct pl011_dmatx_data {
142 	struct dma_chan		*chan;
143 	struct scatterlist	sg;
144 	char			*buf;
145 	bool			queued;
146 };
147 
148 /*
149  * We wrap our port structure around the generic uart_port.
150  */
151 struct uart_amba_port {
152 	struct uart_port	port;
153 	struct clk		*clk;
154 	/* Two optional pin states - default & sleep */
155 	struct pinctrl		*pinctrl;
156 	struct pinctrl_state	*pins_default;
157 	struct pinctrl_state	*pins_sleep;
158 	const struct vendor_data *vendor;
159 	unsigned int		dmacr;		/* dma control reg */
160 	unsigned int		im;		/* interrupt mask */
161 	unsigned int		old_status;
162 	unsigned int		fifosize;	/* vendor-specific */
163 	unsigned int		lcrh_tx;	/* vendor-specific */
164 	unsigned int		lcrh_rx;	/* vendor-specific */
165 	unsigned int		old_cr;		/* state during shutdown */
166 	bool			autorts;
167 	char			type[12];
168 #ifdef CONFIG_DMA_ENGINE
169 	/* DMA stuff */
170 	bool			using_tx_dma;
171 	bool			using_rx_dma;
172 	struct pl011_dmarx_data dmarx;
173 	struct pl011_dmatx_data	dmatx;
174 #endif
175 };
176 
177 /*
178  * Reads up to 256 characters from the FIFO or until it's empty and
179  * inserts them into the TTY layer. Returns the number of characters
180  * read from the FIFO.
181  */
182 static int pl011_fifo_to_tty(struct uart_amba_port *uap)
183 {
184 	u16 status, ch;
185 	unsigned int flag, max_count = 256;
186 	int fifotaken = 0;
187 
188 	while (max_count--) {
189 		status = readw(uap->port.membase + UART01x_FR);
190 		if (status & UART01x_FR_RXFE)
191 			break;
192 
193 		/* Take chars from the FIFO and update status */
194 		ch = readw(uap->port.membase + UART01x_DR) |
195 			UART_DUMMY_DR_RX;
196 		flag = TTY_NORMAL;
197 		uap->port.icount.rx++;
198 		fifotaken++;
199 
200 		if (unlikely(ch & UART_DR_ERROR)) {
201 			if (ch & UART011_DR_BE) {
202 				ch &= ~(UART011_DR_FE | UART011_DR_PE);
203 				uap->port.icount.brk++;
204 				if (uart_handle_break(&uap->port))
205 					continue;
206 			} else if (ch & UART011_DR_PE)
207 				uap->port.icount.parity++;
208 			else if (ch & UART011_DR_FE)
209 				uap->port.icount.frame++;
210 			if (ch & UART011_DR_OE)
211 				uap->port.icount.overrun++;
212 
213 			ch &= uap->port.read_status_mask;
214 
215 			if (ch & UART011_DR_BE)
216 				flag = TTY_BREAK;
217 			else if (ch & UART011_DR_PE)
218 				flag = TTY_PARITY;
219 			else if (ch & UART011_DR_FE)
220 				flag = TTY_FRAME;
221 		}
222 
223 		if (uart_handle_sysrq_char(&uap->port, ch & 255))
224 			continue;
225 
226 		uart_insert_char(&uap->port, ch, UART011_DR_OE, ch, flag);
227 	}
228 
229 	return fifotaken;
230 }
231 
232 
233 /*
234  * All the DMA operation mode stuff goes inside this ifdef.
235  * This assumes that you have a generic DMA device interface,
236  * no custom DMA interfaces are supported.
237  */
238 #ifdef CONFIG_DMA_ENGINE
239 
240 #define PL011_DMA_BUFFER_SIZE PAGE_SIZE
241 
242 static int pl011_sgbuf_init(struct dma_chan *chan, struct pl011_sgbuf *sg,
243 	enum dma_data_direction dir)
244 {
245 	dma_addr_t dma_addr;
246 
247 	sg->buf = dma_alloc_coherent(chan->device->dev,
248 		PL011_DMA_BUFFER_SIZE, &dma_addr, GFP_KERNEL);
249 	if (!sg->buf)
250 		return -ENOMEM;
251 
252 	sg_init_table(&sg->sg, 1);
253 	sg_set_page(&sg->sg, phys_to_page(dma_addr),
254 		PL011_DMA_BUFFER_SIZE, offset_in_page(dma_addr));
255 	sg_dma_address(&sg->sg) = dma_addr;
256 
257 	return 0;
258 }
259 
260 static void pl011_sgbuf_free(struct dma_chan *chan, struct pl011_sgbuf *sg,
261 	enum dma_data_direction dir)
262 {
263 	if (sg->buf) {
264 		dma_free_coherent(chan->device->dev,
265 			PL011_DMA_BUFFER_SIZE, sg->buf,
266 			sg_dma_address(&sg->sg));
267 	}
268 }
269 
270 static void pl011_dma_probe_initcall(struct device *dev, struct uart_amba_port *uap)
271 {
272 	/* DMA is the sole user of the platform data right now */
273 	struct amba_pl011_data *plat = uap->port.dev->platform_data;
274 	struct dma_slave_config tx_conf = {
275 		.dst_addr = uap->port.mapbase + UART01x_DR,
276 		.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
277 		.direction = DMA_MEM_TO_DEV,
278 		.dst_maxburst = uap->fifosize >> 1,
279 		.device_fc = false,
280 	};
281 	struct dma_chan *chan;
282 	dma_cap_mask_t mask;
283 
284 	chan = dma_request_slave_channel(dev, "tx");
285 
286 	if (!chan) {
287 		/* We need platform data */
288 		if (!plat || !plat->dma_filter) {
289 			dev_info(uap->port.dev, "no DMA platform data\n");
290 			return;
291 		}
292 
293 		/* Try to acquire a generic DMA engine slave TX channel */
294 		dma_cap_zero(mask);
295 		dma_cap_set(DMA_SLAVE, mask);
296 
297 		chan = dma_request_channel(mask, plat->dma_filter,
298 						plat->dma_tx_param);
299 		if (!chan) {
300 			dev_err(uap->port.dev, "no TX DMA channel!\n");
301 			return;
302 		}
303 	}
304 
305 	dmaengine_slave_config(chan, &tx_conf);
306 	uap->dmatx.chan = chan;
307 
308 	dev_info(uap->port.dev, "DMA channel TX %s\n",
309 		 dma_chan_name(uap->dmatx.chan));
310 
311 	/* Optionally make use of an RX channel as well */
312 	chan = dma_request_slave_channel(dev, "rx");
313 
314 	if (!chan && plat->dma_rx_param) {
315 		chan = dma_request_channel(mask, plat->dma_filter, plat->dma_rx_param);
316 
317 		if (!chan) {
318 			dev_err(uap->port.dev, "no RX DMA channel!\n");
319 			return;
320 		}
321 	}
322 
323 	if (chan) {
324 		struct dma_slave_config rx_conf = {
325 			.src_addr = uap->port.mapbase + UART01x_DR,
326 			.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
327 			.direction = DMA_DEV_TO_MEM,
328 			.src_maxburst = uap->fifosize >> 1,
329 			.device_fc = false,
330 		};
331 
332 		dmaengine_slave_config(chan, &rx_conf);
333 		uap->dmarx.chan = chan;
334 
335 		if (plat && plat->dma_rx_poll_enable) {
336 			/* Set poll rate if specified. */
337 			if (plat->dma_rx_poll_rate) {
338 				uap->dmarx.auto_poll_rate = false;
339 				uap->dmarx.poll_rate = plat->dma_rx_poll_rate;
340 			} else {
341 				/*
342 				 * 100 ms defaults to poll rate if not
343 				 * specified. This will be adjusted with
344 				 * the baud rate at set_termios.
345 				 */
346 				uap->dmarx.auto_poll_rate = true;
347 				uap->dmarx.poll_rate =  100;
348 			}
349 			/* 3 secs defaults poll_timeout if not specified. */
350 			if (plat->dma_rx_poll_timeout)
351 				uap->dmarx.poll_timeout =
352 					plat->dma_rx_poll_timeout;
353 			else
354 				uap->dmarx.poll_timeout = 3000;
355 		} else
356 			uap->dmarx.auto_poll_rate = false;
357 
358 		dev_info(uap->port.dev, "DMA channel RX %s\n",
359 			 dma_chan_name(uap->dmarx.chan));
360 	}
361 }
362 
363 #ifndef MODULE
364 /*
365  * Stack up the UARTs and let the above initcall be done at device
366  * initcall time, because the serial driver is called as an arch
367  * initcall, and at this time the DMA subsystem is not yet registered.
368  * At this point the driver will switch over to using DMA where desired.
369  */
370 struct dma_uap {
371 	struct list_head node;
372 	struct uart_amba_port *uap;
373 	struct device *dev;
374 };
375 
376 static LIST_HEAD(pl011_dma_uarts);
377 
378 static int __init pl011_dma_initcall(void)
379 {
380 	struct list_head *node, *tmp;
381 
382 	list_for_each_safe(node, tmp, &pl011_dma_uarts) {
383 		struct dma_uap *dmau = list_entry(node, struct dma_uap, node);
384 		pl011_dma_probe_initcall(dmau->dev, dmau->uap);
385 		list_del(node);
386 		kfree(dmau);
387 	}
388 	return 0;
389 }
390 
391 device_initcall(pl011_dma_initcall);
392 
393 static void pl011_dma_probe(struct device *dev, struct uart_amba_port *uap)
394 {
395 	struct dma_uap *dmau = kzalloc(sizeof(struct dma_uap), GFP_KERNEL);
396 	if (dmau) {
397 		dmau->uap = uap;
398 		dmau->dev = dev;
399 		list_add_tail(&dmau->node, &pl011_dma_uarts);
400 	}
401 }
402 #else
403 static void pl011_dma_probe(struct device *dev, struct uart_amba_port *uap)
404 {
405 	pl011_dma_probe_initcall(dev, uap);
406 }
407 #endif
408 
409 static void pl011_dma_remove(struct uart_amba_port *uap)
410 {
411 	/* TODO: remove the initcall if it has not yet executed */
412 	if (uap->dmatx.chan)
413 		dma_release_channel(uap->dmatx.chan);
414 	if (uap->dmarx.chan)
415 		dma_release_channel(uap->dmarx.chan);
416 }
417 
418 /* Forward declare this for the refill routine */
419 static int pl011_dma_tx_refill(struct uart_amba_port *uap);
420 
421 /*
422  * The current DMA TX buffer has been sent.
423  * Try to queue up another DMA buffer.
424  */
425 static void pl011_dma_tx_callback(void *data)
426 {
427 	struct uart_amba_port *uap = data;
428 	struct pl011_dmatx_data *dmatx = &uap->dmatx;
429 	unsigned long flags;
430 	u16 dmacr;
431 
432 	spin_lock_irqsave(&uap->port.lock, flags);
433 	if (uap->dmatx.queued)
434 		dma_unmap_sg(dmatx->chan->device->dev, &dmatx->sg, 1,
435 			     DMA_TO_DEVICE);
436 
437 	dmacr = uap->dmacr;
438 	uap->dmacr = dmacr & ~UART011_TXDMAE;
439 	writew(uap->dmacr, uap->port.membase + UART011_DMACR);
440 
441 	/*
442 	 * If TX DMA was disabled, it means that we've stopped the DMA for
443 	 * some reason (eg, XOFF received, or we want to send an X-char.)
444 	 *
445 	 * Note: we need to be careful here of a potential race between DMA
446 	 * and the rest of the driver - if the driver disables TX DMA while
447 	 * a TX buffer completing, we must update the tx queued status to
448 	 * get further refills (hence we check dmacr).
449 	 */
450 	if (!(dmacr & UART011_TXDMAE) || uart_tx_stopped(&uap->port) ||
451 	    uart_circ_empty(&uap->port.state->xmit)) {
452 		uap->dmatx.queued = false;
453 		spin_unlock_irqrestore(&uap->port.lock, flags);
454 		return;
455 	}
456 
457 	if (pl011_dma_tx_refill(uap) <= 0) {
458 		/*
459 		 * We didn't queue a DMA buffer for some reason, but we
460 		 * have data pending to be sent.  Re-enable the TX IRQ.
461 		 */
462 		uap->im |= UART011_TXIM;
463 		writew(uap->im, uap->port.membase + UART011_IMSC);
464 	}
465 	spin_unlock_irqrestore(&uap->port.lock, flags);
466 }
467 
468 /*
469  * Try to refill the TX DMA buffer.
470  * Locking: called with port lock held and IRQs disabled.
471  * Returns:
472  *   1 if we queued up a TX DMA buffer.
473  *   0 if we didn't want to handle this by DMA
474  *  <0 on error
475  */
476 static int pl011_dma_tx_refill(struct uart_amba_port *uap)
477 {
478 	struct pl011_dmatx_data *dmatx = &uap->dmatx;
479 	struct dma_chan *chan = dmatx->chan;
480 	struct dma_device *dma_dev = chan->device;
481 	struct dma_async_tx_descriptor *desc;
482 	struct circ_buf *xmit = &uap->port.state->xmit;
483 	unsigned int count;
484 
485 	/*
486 	 * Try to avoid the overhead involved in using DMA if the
487 	 * transaction fits in the first half of the FIFO, by using
488 	 * the standard interrupt handling.  This ensures that we
489 	 * issue a uart_write_wakeup() at the appropriate time.
490 	 */
491 	count = uart_circ_chars_pending(xmit);
492 	if (count < (uap->fifosize >> 1)) {
493 		uap->dmatx.queued = false;
494 		return 0;
495 	}
496 
497 	/*
498 	 * Bodge: don't send the last character by DMA, as this
499 	 * will prevent XON from notifying us to restart DMA.
500 	 */
501 	count -= 1;
502 
503 	/* Else proceed to copy the TX chars to the DMA buffer and fire DMA */
504 	if (count > PL011_DMA_BUFFER_SIZE)
505 		count = PL011_DMA_BUFFER_SIZE;
506 
507 	if (xmit->tail < xmit->head)
508 		memcpy(&dmatx->buf[0], &xmit->buf[xmit->tail], count);
509 	else {
510 		size_t first = UART_XMIT_SIZE - xmit->tail;
511 		size_t second = xmit->head;
512 
513 		memcpy(&dmatx->buf[0], &xmit->buf[xmit->tail], first);
514 		if (second)
515 			memcpy(&dmatx->buf[first], &xmit->buf[0], second);
516 	}
517 
518 	dmatx->sg.length = count;
519 
520 	if (dma_map_sg(dma_dev->dev, &dmatx->sg, 1, DMA_TO_DEVICE) != 1) {
521 		uap->dmatx.queued = false;
522 		dev_dbg(uap->port.dev, "unable to map TX DMA\n");
523 		return -EBUSY;
524 	}
525 
526 	desc = dmaengine_prep_slave_sg(chan, &dmatx->sg, 1, DMA_MEM_TO_DEV,
527 					     DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
528 	if (!desc) {
529 		dma_unmap_sg(dma_dev->dev, &dmatx->sg, 1, DMA_TO_DEVICE);
530 		uap->dmatx.queued = false;
531 		/*
532 		 * If DMA cannot be used right now, we complete this
533 		 * transaction via IRQ and let the TTY layer retry.
534 		 */
535 		dev_dbg(uap->port.dev, "TX DMA busy\n");
536 		return -EBUSY;
537 	}
538 
539 	/* Some data to go along to the callback */
540 	desc->callback = pl011_dma_tx_callback;
541 	desc->callback_param = uap;
542 
543 	/* All errors should happen at prepare time */
544 	dmaengine_submit(desc);
545 
546 	/* Fire the DMA transaction */
547 	dma_dev->device_issue_pending(chan);
548 
549 	uap->dmacr |= UART011_TXDMAE;
550 	writew(uap->dmacr, uap->port.membase + UART011_DMACR);
551 	uap->dmatx.queued = true;
552 
553 	/*
554 	 * Now we know that DMA will fire, so advance the ring buffer
555 	 * with the stuff we just dispatched.
556 	 */
557 	xmit->tail = (xmit->tail + count) & (UART_XMIT_SIZE - 1);
558 	uap->port.icount.tx += count;
559 
560 	if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
561 		uart_write_wakeup(&uap->port);
562 
563 	return 1;
564 }
565 
566 /*
567  * We received a transmit interrupt without a pending X-char but with
568  * pending characters.
569  * Locking: called with port lock held and IRQs disabled.
570  * Returns:
571  *   false if we want to use PIO to transmit
572  *   true if we queued a DMA buffer
573  */
574 static bool pl011_dma_tx_irq(struct uart_amba_port *uap)
575 {
576 	if (!uap->using_tx_dma)
577 		return false;
578 
579 	/*
580 	 * If we already have a TX buffer queued, but received a
581 	 * TX interrupt, it will be because we've just sent an X-char.
582 	 * Ensure the TX DMA is enabled and the TX IRQ is disabled.
583 	 */
584 	if (uap->dmatx.queued) {
585 		uap->dmacr |= UART011_TXDMAE;
586 		writew(uap->dmacr, uap->port.membase + UART011_DMACR);
587 		uap->im &= ~UART011_TXIM;
588 		writew(uap->im, uap->port.membase + UART011_IMSC);
589 		return true;
590 	}
591 
592 	/*
593 	 * We don't have a TX buffer queued, so try to queue one.
594 	 * If we successfully queued a buffer, mask the TX IRQ.
595 	 */
596 	if (pl011_dma_tx_refill(uap) > 0) {
597 		uap->im &= ~UART011_TXIM;
598 		writew(uap->im, uap->port.membase + UART011_IMSC);
599 		return true;
600 	}
601 	return false;
602 }
603 
604 /*
605  * Stop the DMA transmit (eg, due to received XOFF).
606  * Locking: called with port lock held and IRQs disabled.
607  */
608 static inline void pl011_dma_tx_stop(struct uart_amba_port *uap)
609 {
610 	if (uap->dmatx.queued) {
611 		uap->dmacr &= ~UART011_TXDMAE;
612 		writew(uap->dmacr, uap->port.membase + UART011_DMACR);
613 	}
614 }
615 
616 /*
617  * Try to start a DMA transmit, or in the case of an XON/OFF
618  * character queued for send, try to get that character out ASAP.
619  * Locking: called with port lock held and IRQs disabled.
620  * Returns:
621  *   false if we want the TX IRQ to be enabled
622  *   true if we have a buffer queued
623  */
624 static inline bool pl011_dma_tx_start(struct uart_amba_port *uap)
625 {
626 	u16 dmacr;
627 
628 	if (!uap->using_tx_dma)
629 		return false;
630 
631 	if (!uap->port.x_char) {
632 		/* no X-char, try to push chars out in DMA mode */
633 		bool ret = true;
634 
635 		if (!uap->dmatx.queued) {
636 			if (pl011_dma_tx_refill(uap) > 0) {
637 				uap->im &= ~UART011_TXIM;
638 				ret = true;
639 			} else {
640 				uap->im |= UART011_TXIM;
641 				ret = false;
642 			}
643 			writew(uap->im, uap->port.membase + UART011_IMSC);
644 		} else if (!(uap->dmacr & UART011_TXDMAE)) {
645 			uap->dmacr |= UART011_TXDMAE;
646 			writew(uap->dmacr,
647 				       uap->port.membase + UART011_DMACR);
648 		}
649 		return ret;
650 	}
651 
652 	/*
653 	 * We have an X-char to send.  Disable DMA to prevent it loading
654 	 * the TX fifo, and then see if we can stuff it into the FIFO.
655 	 */
656 	dmacr = uap->dmacr;
657 	uap->dmacr &= ~UART011_TXDMAE;
658 	writew(uap->dmacr, uap->port.membase + UART011_DMACR);
659 
660 	if (readw(uap->port.membase + UART01x_FR) & UART01x_FR_TXFF) {
661 		/*
662 		 * No space in the FIFO, so enable the transmit interrupt
663 		 * so we know when there is space.  Note that once we've
664 		 * loaded the character, we should just re-enable DMA.
665 		 */
666 		return false;
667 	}
668 
669 	writew(uap->port.x_char, uap->port.membase + UART01x_DR);
670 	uap->port.icount.tx++;
671 	uap->port.x_char = 0;
672 
673 	/* Success - restore the DMA state */
674 	uap->dmacr = dmacr;
675 	writew(dmacr, uap->port.membase + UART011_DMACR);
676 
677 	return true;
678 }
679 
680 /*
681  * Flush the transmit buffer.
682  * Locking: called with port lock held and IRQs disabled.
683  */
684 static void pl011_dma_flush_buffer(struct uart_port *port)
685 {
686 	struct uart_amba_port *uap = (struct uart_amba_port *)port;
687 
688 	if (!uap->using_tx_dma)
689 		return;
690 
691 	/* Avoid deadlock with the DMA engine callback */
692 	spin_unlock(&uap->port.lock);
693 	dmaengine_terminate_all(uap->dmatx.chan);
694 	spin_lock(&uap->port.lock);
695 	if (uap->dmatx.queued) {
696 		dma_unmap_sg(uap->dmatx.chan->device->dev, &uap->dmatx.sg, 1,
697 			     DMA_TO_DEVICE);
698 		uap->dmatx.queued = false;
699 		uap->dmacr &= ~UART011_TXDMAE;
700 		writew(uap->dmacr, uap->port.membase + UART011_DMACR);
701 	}
702 }
703 
704 static void pl011_dma_rx_callback(void *data);
705 
706 static int pl011_dma_rx_trigger_dma(struct uart_amba_port *uap)
707 {
708 	struct dma_chan *rxchan = uap->dmarx.chan;
709 	struct pl011_dmarx_data *dmarx = &uap->dmarx;
710 	struct dma_async_tx_descriptor *desc;
711 	struct pl011_sgbuf *sgbuf;
712 
713 	if (!rxchan)
714 		return -EIO;
715 
716 	/* Start the RX DMA job */
717 	sgbuf = uap->dmarx.use_buf_b ?
718 		&uap->dmarx.sgbuf_b : &uap->dmarx.sgbuf_a;
719 	desc = dmaengine_prep_slave_sg(rxchan, &sgbuf->sg, 1,
720 					DMA_DEV_TO_MEM,
721 					DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
722 	/*
723 	 * If the DMA engine is busy and cannot prepare a
724 	 * channel, no big deal, the driver will fall back
725 	 * to interrupt mode as a result of this error code.
726 	 */
727 	if (!desc) {
728 		uap->dmarx.running = false;
729 		dmaengine_terminate_all(rxchan);
730 		return -EBUSY;
731 	}
732 
733 	/* Some data to go along to the callback */
734 	desc->callback = pl011_dma_rx_callback;
735 	desc->callback_param = uap;
736 	dmarx->cookie = dmaengine_submit(desc);
737 	dma_async_issue_pending(rxchan);
738 
739 	uap->dmacr |= UART011_RXDMAE;
740 	writew(uap->dmacr, uap->port.membase + UART011_DMACR);
741 	uap->dmarx.running = true;
742 
743 	uap->im &= ~UART011_RXIM;
744 	writew(uap->im, uap->port.membase + UART011_IMSC);
745 
746 	return 0;
747 }
748 
749 /*
750  * This is called when either the DMA job is complete, or
751  * the FIFO timeout interrupt occurred. This must be called
752  * with the port spinlock uap->port.lock held.
753  */
754 static void pl011_dma_rx_chars(struct uart_amba_port *uap,
755 			       u32 pending, bool use_buf_b,
756 			       bool readfifo)
757 {
758 	struct tty_port *port = &uap->port.state->port;
759 	struct pl011_sgbuf *sgbuf = use_buf_b ?
760 		&uap->dmarx.sgbuf_b : &uap->dmarx.sgbuf_a;
761 	int dma_count = 0;
762 	u32 fifotaken = 0; /* only used for vdbg() */
763 
764 	struct pl011_dmarx_data *dmarx = &uap->dmarx;
765 	int dmataken = 0;
766 
767 	if (uap->dmarx.poll_rate) {
768 		/* The data can be taken by polling */
769 		dmataken = sgbuf->sg.length - dmarx->last_residue;
770 		/* Recalculate the pending size */
771 		if (pending >= dmataken)
772 			pending -= dmataken;
773 	}
774 
775 	/* Pick the remain data from the DMA */
776 	if (pending) {
777 
778 		/*
779 		 * First take all chars in the DMA pipe, then look in the FIFO.
780 		 * Note that tty_insert_flip_buf() tries to take as many chars
781 		 * as it can.
782 		 */
783 		dma_count = tty_insert_flip_string(port, sgbuf->buf + dmataken,
784 				pending);
785 
786 		uap->port.icount.rx += dma_count;
787 		if (dma_count < pending)
788 			dev_warn(uap->port.dev,
789 				 "couldn't insert all characters (TTY is full?)\n");
790 	}
791 
792 	/* Reset the last_residue for Rx DMA poll */
793 	if (uap->dmarx.poll_rate)
794 		dmarx->last_residue = sgbuf->sg.length;
795 
796 	/*
797 	 * Only continue with trying to read the FIFO if all DMA chars have
798 	 * been taken first.
799 	 */
800 	if (dma_count == pending && readfifo) {
801 		/* Clear any error flags */
802 		writew(UART011_OEIS | UART011_BEIS | UART011_PEIS | UART011_FEIS,
803 		       uap->port.membase + UART011_ICR);
804 
805 		/*
806 		 * If we read all the DMA'd characters, and we had an
807 		 * incomplete buffer, that could be due to an rx error, or
808 		 * maybe we just timed out. Read any pending chars and check
809 		 * the error status.
810 		 *
811 		 * Error conditions will only occur in the FIFO, these will
812 		 * trigger an immediate interrupt and stop the DMA job, so we
813 		 * will always find the error in the FIFO, never in the DMA
814 		 * buffer.
815 		 */
816 		fifotaken = pl011_fifo_to_tty(uap);
817 	}
818 
819 	spin_unlock(&uap->port.lock);
820 	dev_vdbg(uap->port.dev,
821 		 "Took %d chars from DMA buffer and %d chars from the FIFO\n",
822 		 dma_count, fifotaken);
823 	tty_flip_buffer_push(port);
824 	spin_lock(&uap->port.lock);
825 }
826 
827 static void pl011_dma_rx_irq(struct uart_amba_port *uap)
828 {
829 	struct pl011_dmarx_data *dmarx = &uap->dmarx;
830 	struct dma_chan *rxchan = dmarx->chan;
831 	struct pl011_sgbuf *sgbuf = dmarx->use_buf_b ?
832 		&dmarx->sgbuf_b : &dmarx->sgbuf_a;
833 	size_t pending;
834 	struct dma_tx_state state;
835 	enum dma_status dmastat;
836 
837 	/*
838 	 * Pause the transfer so we can trust the current counter,
839 	 * do this before we pause the PL011 block, else we may
840 	 * overflow the FIFO.
841 	 */
842 	if (dmaengine_pause(rxchan))
843 		dev_err(uap->port.dev, "unable to pause DMA transfer\n");
844 	dmastat = rxchan->device->device_tx_status(rxchan,
845 						   dmarx->cookie, &state);
846 	if (dmastat != DMA_PAUSED)
847 		dev_err(uap->port.dev, "unable to pause DMA transfer\n");
848 
849 	/* Disable RX DMA - incoming data will wait in the FIFO */
850 	uap->dmacr &= ~UART011_RXDMAE;
851 	writew(uap->dmacr, uap->port.membase + UART011_DMACR);
852 	uap->dmarx.running = false;
853 
854 	pending = sgbuf->sg.length - state.residue;
855 	BUG_ON(pending > PL011_DMA_BUFFER_SIZE);
856 	/* Then we terminate the transfer - we now know our residue */
857 	dmaengine_terminate_all(rxchan);
858 
859 	/*
860 	 * This will take the chars we have so far and insert
861 	 * into the framework.
862 	 */
863 	pl011_dma_rx_chars(uap, pending, dmarx->use_buf_b, true);
864 
865 	/* Switch buffer & re-trigger DMA job */
866 	dmarx->use_buf_b = !dmarx->use_buf_b;
867 	if (pl011_dma_rx_trigger_dma(uap)) {
868 		dev_dbg(uap->port.dev, "could not retrigger RX DMA job "
869 			"fall back to interrupt mode\n");
870 		uap->im |= UART011_RXIM;
871 		writew(uap->im, uap->port.membase + UART011_IMSC);
872 	}
873 }
874 
875 static void pl011_dma_rx_callback(void *data)
876 {
877 	struct uart_amba_port *uap = data;
878 	struct pl011_dmarx_data *dmarx = &uap->dmarx;
879 	struct dma_chan *rxchan = dmarx->chan;
880 	bool lastbuf = dmarx->use_buf_b;
881 	struct pl011_sgbuf *sgbuf = dmarx->use_buf_b ?
882 		&dmarx->sgbuf_b : &dmarx->sgbuf_a;
883 	size_t pending;
884 	struct dma_tx_state state;
885 	int ret;
886 
887 	/*
888 	 * This completion interrupt occurs typically when the
889 	 * RX buffer is totally stuffed but no timeout has yet
890 	 * occurred. When that happens, we just want the RX
891 	 * routine to flush out the secondary DMA buffer while
892 	 * we immediately trigger the next DMA job.
893 	 */
894 	spin_lock_irq(&uap->port.lock);
895 	/*
896 	 * Rx data can be taken by the UART interrupts during
897 	 * the DMA irq handler. So we check the residue here.
898 	 */
899 	rxchan->device->device_tx_status(rxchan, dmarx->cookie, &state);
900 	pending = sgbuf->sg.length - state.residue;
901 	BUG_ON(pending > PL011_DMA_BUFFER_SIZE);
902 	/* Then we terminate the transfer - we now know our residue */
903 	dmaengine_terminate_all(rxchan);
904 
905 	uap->dmarx.running = false;
906 	dmarx->use_buf_b = !lastbuf;
907 	ret = pl011_dma_rx_trigger_dma(uap);
908 
909 	pl011_dma_rx_chars(uap, pending, lastbuf, false);
910 	spin_unlock_irq(&uap->port.lock);
911 	/*
912 	 * Do this check after we picked the DMA chars so we don't
913 	 * get some IRQ immediately from RX.
914 	 */
915 	if (ret) {
916 		dev_dbg(uap->port.dev, "could not retrigger RX DMA job "
917 			"fall back to interrupt mode\n");
918 		uap->im |= UART011_RXIM;
919 		writew(uap->im, uap->port.membase + UART011_IMSC);
920 	}
921 }
922 
923 /*
924  * Stop accepting received characters, when we're shutting down or
925  * suspending this port.
926  * Locking: called with port lock held and IRQs disabled.
927  */
928 static inline void pl011_dma_rx_stop(struct uart_amba_port *uap)
929 {
930 	/* FIXME.  Just disable the DMA enable */
931 	uap->dmacr &= ~UART011_RXDMAE;
932 	writew(uap->dmacr, uap->port.membase + UART011_DMACR);
933 }
934 
935 /*
936  * Timer handler for Rx DMA polling.
937  * Every polling, It checks the residue in the dma buffer and transfer
938  * data to the tty. Also, last_residue is updated for the next polling.
939  */
940 static void pl011_dma_rx_poll(unsigned long args)
941 {
942 	struct uart_amba_port *uap = (struct uart_amba_port *)args;
943 	struct tty_port *port = &uap->port.state->port;
944 	struct pl011_dmarx_data *dmarx = &uap->dmarx;
945 	struct dma_chan *rxchan = uap->dmarx.chan;
946 	unsigned long flags = 0;
947 	unsigned int dmataken = 0;
948 	unsigned int size = 0;
949 	struct pl011_sgbuf *sgbuf;
950 	int dma_count;
951 	struct dma_tx_state state;
952 
953 	sgbuf = dmarx->use_buf_b ? &uap->dmarx.sgbuf_b : &uap->dmarx.sgbuf_a;
954 	rxchan->device->device_tx_status(rxchan, dmarx->cookie, &state);
955 	if (likely(state.residue < dmarx->last_residue)) {
956 		dmataken = sgbuf->sg.length - dmarx->last_residue;
957 		size = dmarx->last_residue - state.residue;
958 		dma_count = tty_insert_flip_string(port, sgbuf->buf + dmataken,
959 				size);
960 		if (dma_count == size)
961 			dmarx->last_residue =  state.residue;
962 		dmarx->last_jiffies = jiffies;
963 	}
964 	tty_flip_buffer_push(port);
965 
966 	/*
967 	 * If no data is received in poll_timeout, the driver will fall back
968 	 * to interrupt mode. We will retrigger DMA at the first interrupt.
969 	 */
970 	if (jiffies_to_msecs(jiffies - dmarx->last_jiffies)
971 			> uap->dmarx.poll_timeout) {
972 
973 		spin_lock_irqsave(&uap->port.lock, flags);
974 		pl011_dma_rx_stop(uap);
975 		spin_unlock_irqrestore(&uap->port.lock, flags);
976 
977 		uap->dmarx.running = false;
978 		dmaengine_terminate_all(rxchan);
979 		del_timer(&uap->dmarx.timer);
980 	} else {
981 		mod_timer(&uap->dmarx.timer,
982 			jiffies + msecs_to_jiffies(uap->dmarx.poll_rate));
983 	}
984 }
985 
986 static void pl011_dma_startup(struct uart_amba_port *uap)
987 {
988 	int ret;
989 
990 	if (!uap->dmatx.chan)
991 		return;
992 
993 	uap->dmatx.buf = kmalloc(PL011_DMA_BUFFER_SIZE, GFP_KERNEL);
994 	if (!uap->dmatx.buf) {
995 		dev_err(uap->port.dev, "no memory for DMA TX buffer\n");
996 		uap->port.fifosize = uap->fifosize;
997 		return;
998 	}
999 
1000 	sg_init_one(&uap->dmatx.sg, uap->dmatx.buf, PL011_DMA_BUFFER_SIZE);
1001 
1002 	/* The DMA buffer is now the FIFO the TTY subsystem can use */
1003 	uap->port.fifosize = PL011_DMA_BUFFER_SIZE;
1004 	uap->using_tx_dma = true;
1005 
1006 	if (!uap->dmarx.chan)
1007 		goto skip_rx;
1008 
1009 	/* Allocate and map DMA RX buffers */
1010 	ret = pl011_sgbuf_init(uap->dmarx.chan, &uap->dmarx.sgbuf_a,
1011 			       DMA_FROM_DEVICE);
1012 	if (ret) {
1013 		dev_err(uap->port.dev, "failed to init DMA %s: %d\n",
1014 			"RX buffer A", ret);
1015 		goto skip_rx;
1016 	}
1017 
1018 	ret = pl011_sgbuf_init(uap->dmarx.chan, &uap->dmarx.sgbuf_b,
1019 			       DMA_FROM_DEVICE);
1020 	if (ret) {
1021 		dev_err(uap->port.dev, "failed to init DMA %s: %d\n",
1022 			"RX buffer B", ret);
1023 		pl011_sgbuf_free(uap->dmarx.chan, &uap->dmarx.sgbuf_a,
1024 				 DMA_FROM_DEVICE);
1025 		goto skip_rx;
1026 	}
1027 
1028 	uap->using_rx_dma = true;
1029 
1030 skip_rx:
1031 	/* Turn on DMA error (RX/TX will be enabled on demand) */
1032 	uap->dmacr |= UART011_DMAONERR;
1033 	writew(uap->dmacr, uap->port.membase + UART011_DMACR);
1034 
1035 	/*
1036 	 * ST Micro variants has some specific dma burst threshold
1037 	 * compensation. Set this to 16 bytes, so burst will only
1038 	 * be issued above/below 16 bytes.
1039 	 */
1040 	if (uap->vendor->dma_threshold)
1041 		writew(ST_UART011_DMAWM_RX_16 | ST_UART011_DMAWM_TX_16,
1042 			       uap->port.membase + ST_UART011_DMAWM);
1043 
1044 	if (uap->using_rx_dma) {
1045 		if (pl011_dma_rx_trigger_dma(uap))
1046 			dev_dbg(uap->port.dev, "could not trigger initial "
1047 				"RX DMA job, fall back to interrupt mode\n");
1048 		if (uap->dmarx.poll_rate) {
1049 			init_timer(&(uap->dmarx.timer));
1050 			uap->dmarx.timer.function = pl011_dma_rx_poll;
1051 			uap->dmarx.timer.data = (unsigned long)uap;
1052 			mod_timer(&uap->dmarx.timer,
1053 				jiffies +
1054 				msecs_to_jiffies(uap->dmarx.poll_rate));
1055 			uap->dmarx.last_residue = PL011_DMA_BUFFER_SIZE;
1056 			uap->dmarx.last_jiffies = jiffies;
1057 		}
1058 	}
1059 }
1060 
1061 static void pl011_dma_shutdown(struct uart_amba_port *uap)
1062 {
1063 	if (!(uap->using_tx_dma || uap->using_rx_dma))
1064 		return;
1065 
1066 	/* Disable RX and TX DMA */
1067 	while (readw(uap->port.membase + UART01x_FR) & UART01x_FR_BUSY)
1068 		barrier();
1069 
1070 	spin_lock_irq(&uap->port.lock);
1071 	uap->dmacr &= ~(UART011_DMAONERR | UART011_RXDMAE | UART011_TXDMAE);
1072 	writew(uap->dmacr, uap->port.membase + UART011_DMACR);
1073 	spin_unlock_irq(&uap->port.lock);
1074 
1075 	if (uap->using_tx_dma) {
1076 		/* In theory, this should already be done by pl011_dma_flush_buffer */
1077 		dmaengine_terminate_all(uap->dmatx.chan);
1078 		if (uap->dmatx.queued) {
1079 			dma_unmap_sg(uap->dmatx.chan->device->dev, &uap->dmatx.sg, 1,
1080 				     DMA_TO_DEVICE);
1081 			uap->dmatx.queued = false;
1082 		}
1083 
1084 		kfree(uap->dmatx.buf);
1085 		uap->using_tx_dma = false;
1086 	}
1087 
1088 	if (uap->using_rx_dma) {
1089 		dmaengine_terminate_all(uap->dmarx.chan);
1090 		/* Clean up the RX DMA */
1091 		pl011_sgbuf_free(uap->dmarx.chan, &uap->dmarx.sgbuf_a, DMA_FROM_DEVICE);
1092 		pl011_sgbuf_free(uap->dmarx.chan, &uap->dmarx.sgbuf_b, DMA_FROM_DEVICE);
1093 		if (uap->dmarx.poll_rate)
1094 			del_timer_sync(&uap->dmarx.timer);
1095 		uap->using_rx_dma = false;
1096 	}
1097 }
1098 
1099 static inline bool pl011_dma_rx_available(struct uart_amba_port *uap)
1100 {
1101 	return uap->using_rx_dma;
1102 }
1103 
1104 static inline bool pl011_dma_rx_running(struct uart_amba_port *uap)
1105 {
1106 	return uap->using_rx_dma && uap->dmarx.running;
1107 }
1108 
1109 #else
1110 /* Blank functions if the DMA engine is not available */
1111 static inline void pl011_dma_probe(struct device *dev, struct uart_amba_port *uap)
1112 {
1113 }
1114 
1115 static inline void pl011_dma_remove(struct uart_amba_port *uap)
1116 {
1117 }
1118 
1119 static inline void pl011_dma_startup(struct uart_amba_port *uap)
1120 {
1121 }
1122 
1123 static inline void pl011_dma_shutdown(struct uart_amba_port *uap)
1124 {
1125 }
1126 
1127 static inline bool pl011_dma_tx_irq(struct uart_amba_port *uap)
1128 {
1129 	return false;
1130 }
1131 
1132 static inline void pl011_dma_tx_stop(struct uart_amba_port *uap)
1133 {
1134 }
1135 
1136 static inline bool pl011_dma_tx_start(struct uart_amba_port *uap)
1137 {
1138 	return false;
1139 }
1140 
1141 static inline void pl011_dma_rx_irq(struct uart_amba_port *uap)
1142 {
1143 }
1144 
1145 static inline void pl011_dma_rx_stop(struct uart_amba_port *uap)
1146 {
1147 }
1148 
1149 static inline int pl011_dma_rx_trigger_dma(struct uart_amba_port *uap)
1150 {
1151 	return -EIO;
1152 }
1153 
1154 static inline bool pl011_dma_rx_available(struct uart_amba_port *uap)
1155 {
1156 	return false;
1157 }
1158 
1159 static inline bool pl011_dma_rx_running(struct uart_amba_port *uap)
1160 {
1161 	return false;
1162 }
1163 
1164 #define pl011_dma_flush_buffer	NULL
1165 #endif
1166 
1167 static void pl011_stop_tx(struct uart_port *port)
1168 {
1169 	struct uart_amba_port *uap = (struct uart_amba_port *)port;
1170 
1171 	uap->im &= ~UART011_TXIM;
1172 	writew(uap->im, uap->port.membase + UART011_IMSC);
1173 	pl011_dma_tx_stop(uap);
1174 }
1175 
1176 static void pl011_start_tx(struct uart_port *port)
1177 {
1178 	struct uart_amba_port *uap = (struct uart_amba_port *)port;
1179 
1180 	if (!pl011_dma_tx_start(uap)) {
1181 		uap->im |= UART011_TXIM;
1182 		writew(uap->im, uap->port.membase + UART011_IMSC);
1183 	}
1184 }
1185 
1186 static void pl011_stop_rx(struct uart_port *port)
1187 {
1188 	struct uart_amba_port *uap = (struct uart_amba_port *)port;
1189 
1190 	uap->im &= ~(UART011_RXIM|UART011_RTIM|UART011_FEIM|
1191 		     UART011_PEIM|UART011_BEIM|UART011_OEIM);
1192 	writew(uap->im, uap->port.membase + UART011_IMSC);
1193 
1194 	pl011_dma_rx_stop(uap);
1195 }
1196 
1197 static void pl011_enable_ms(struct uart_port *port)
1198 {
1199 	struct uart_amba_port *uap = (struct uart_amba_port *)port;
1200 
1201 	uap->im |= UART011_RIMIM|UART011_CTSMIM|UART011_DCDMIM|UART011_DSRMIM;
1202 	writew(uap->im, uap->port.membase + UART011_IMSC);
1203 }
1204 
1205 static void pl011_rx_chars(struct uart_amba_port *uap)
1206 {
1207 	pl011_fifo_to_tty(uap);
1208 
1209 	spin_unlock(&uap->port.lock);
1210 	tty_flip_buffer_push(&uap->port.state->port);
1211 	/*
1212 	 * If we were temporarily out of DMA mode for a while,
1213 	 * attempt to switch back to DMA mode again.
1214 	 */
1215 	if (pl011_dma_rx_available(uap)) {
1216 		if (pl011_dma_rx_trigger_dma(uap)) {
1217 			dev_dbg(uap->port.dev, "could not trigger RX DMA job "
1218 				"fall back to interrupt mode again\n");
1219 			uap->im |= UART011_RXIM;
1220 		} else {
1221 			uap->im &= ~UART011_RXIM;
1222 #ifdef CONFIG_DMA_ENGINE
1223 			/* Start Rx DMA poll */
1224 			if (uap->dmarx.poll_rate) {
1225 				uap->dmarx.last_jiffies = jiffies;
1226 				uap->dmarx.last_residue	= PL011_DMA_BUFFER_SIZE;
1227 				mod_timer(&uap->dmarx.timer,
1228 					jiffies +
1229 					msecs_to_jiffies(uap->dmarx.poll_rate));
1230 			}
1231 #endif
1232 		}
1233 
1234 		writew(uap->im, uap->port.membase + UART011_IMSC);
1235 	}
1236 	spin_lock(&uap->port.lock);
1237 }
1238 
1239 static void pl011_tx_chars(struct uart_amba_port *uap)
1240 {
1241 	struct circ_buf *xmit = &uap->port.state->xmit;
1242 	int count;
1243 
1244 	if (uap->port.x_char) {
1245 		writew(uap->port.x_char, uap->port.membase + UART01x_DR);
1246 		uap->port.icount.tx++;
1247 		uap->port.x_char = 0;
1248 		return;
1249 	}
1250 	if (uart_circ_empty(xmit) || uart_tx_stopped(&uap->port)) {
1251 		pl011_stop_tx(&uap->port);
1252 		return;
1253 	}
1254 
1255 	/* If we are using DMA mode, try to send some characters. */
1256 	if (pl011_dma_tx_irq(uap))
1257 		return;
1258 
1259 	count = uap->fifosize >> 1;
1260 	do {
1261 		writew(xmit->buf[xmit->tail], uap->port.membase + UART01x_DR);
1262 		xmit->tail = (xmit->tail + 1) & (UART_XMIT_SIZE - 1);
1263 		uap->port.icount.tx++;
1264 		if (uart_circ_empty(xmit))
1265 			break;
1266 	} while (--count > 0);
1267 
1268 	if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
1269 		uart_write_wakeup(&uap->port);
1270 
1271 	if (uart_circ_empty(xmit))
1272 		pl011_stop_tx(&uap->port);
1273 }
1274 
1275 static void pl011_modem_status(struct uart_amba_port *uap)
1276 {
1277 	unsigned int status, delta;
1278 
1279 	status = readw(uap->port.membase + UART01x_FR) & UART01x_FR_MODEM_ANY;
1280 
1281 	delta = status ^ uap->old_status;
1282 	uap->old_status = status;
1283 
1284 	if (!delta)
1285 		return;
1286 
1287 	if (delta & UART01x_FR_DCD)
1288 		uart_handle_dcd_change(&uap->port, status & UART01x_FR_DCD);
1289 
1290 	if (delta & UART01x_FR_DSR)
1291 		uap->port.icount.dsr++;
1292 
1293 	if (delta & UART01x_FR_CTS)
1294 		uart_handle_cts_change(&uap->port, status & UART01x_FR_CTS);
1295 
1296 	wake_up_interruptible(&uap->port.state->port.delta_msr_wait);
1297 }
1298 
1299 static irqreturn_t pl011_int(int irq, void *dev_id)
1300 {
1301 	struct uart_amba_port *uap = dev_id;
1302 	unsigned long flags;
1303 	unsigned int status, pass_counter = AMBA_ISR_PASS_LIMIT;
1304 	int handled = 0;
1305 	unsigned int dummy_read;
1306 
1307 	spin_lock_irqsave(&uap->port.lock, flags);
1308 	status = readw(uap->port.membase + UART011_MIS);
1309 	if (status) {
1310 		do {
1311 			if (uap->vendor->cts_event_workaround) {
1312 				/* workaround to make sure that all bits are unlocked.. */
1313 				writew(0x00, uap->port.membase + UART011_ICR);
1314 
1315 				/*
1316 				 * WA: introduce 26ns(1 uart clk) delay before W1C;
1317 				 * single apb access will incur 2 pclk(133.12Mhz) delay,
1318 				 * so add 2 dummy reads
1319 				 */
1320 				dummy_read = readw(uap->port.membase + UART011_ICR);
1321 				dummy_read = readw(uap->port.membase + UART011_ICR);
1322 			}
1323 
1324 			writew(status & ~(UART011_TXIS|UART011_RTIS|
1325 					  UART011_RXIS),
1326 			       uap->port.membase + UART011_ICR);
1327 
1328 			if (status & (UART011_RTIS|UART011_RXIS)) {
1329 				if (pl011_dma_rx_running(uap))
1330 					pl011_dma_rx_irq(uap);
1331 				else
1332 					pl011_rx_chars(uap);
1333 			}
1334 			if (status & (UART011_DSRMIS|UART011_DCDMIS|
1335 				      UART011_CTSMIS|UART011_RIMIS))
1336 				pl011_modem_status(uap);
1337 			if (status & UART011_TXIS)
1338 				pl011_tx_chars(uap);
1339 
1340 			if (pass_counter-- == 0)
1341 				break;
1342 
1343 			status = readw(uap->port.membase + UART011_MIS);
1344 		} while (status != 0);
1345 		handled = 1;
1346 	}
1347 
1348 	spin_unlock_irqrestore(&uap->port.lock, flags);
1349 
1350 	return IRQ_RETVAL(handled);
1351 }
1352 
1353 static unsigned int pl011_tx_empty(struct uart_port *port)
1354 {
1355 	struct uart_amba_port *uap = (struct uart_amba_port *)port;
1356 	unsigned int status = readw(uap->port.membase + UART01x_FR);
1357 	return status & (UART01x_FR_BUSY|UART01x_FR_TXFF) ? 0 : TIOCSER_TEMT;
1358 }
1359 
1360 static unsigned int pl011_get_mctrl(struct uart_port *port)
1361 {
1362 	struct uart_amba_port *uap = (struct uart_amba_port *)port;
1363 	unsigned int result = 0;
1364 	unsigned int status = readw(uap->port.membase + UART01x_FR);
1365 
1366 #define TIOCMBIT(uartbit, tiocmbit)	\
1367 	if (status & uartbit)		\
1368 		result |= tiocmbit
1369 
1370 	TIOCMBIT(UART01x_FR_DCD, TIOCM_CAR);
1371 	TIOCMBIT(UART01x_FR_DSR, TIOCM_DSR);
1372 	TIOCMBIT(UART01x_FR_CTS, TIOCM_CTS);
1373 	TIOCMBIT(UART011_FR_RI, TIOCM_RNG);
1374 #undef TIOCMBIT
1375 	return result;
1376 }
1377 
1378 static void pl011_set_mctrl(struct uart_port *port, unsigned int mctrl)
1379 {
1380 	struct uart_amba_port *uap = (struct uart_amba_port *)port;
1381 	unsigned int cr;
1382 
1383 	cr = readw(uap->port.membase + UART011_CR);
1384 
1385 #define	TIOCMBIT(tiocmbit, uartbit)		\
1386 	if (mctrl & tiocmbit)		\
1387 		cr |= uartbit;		\
1388 	else				\
1389 		cr &= ~uartbit
1390 
1391 	TIOCMBIT(TIOCM_RTS, UART011_CR_RTS);
1392 	TIOCMBIT(TIOCM_DTR, UART011_CR_DTR);
1393 	TIOCMBIT(TIOCM_OUT1, UART011_CR_OUT1);
1394 	TIOCMBIT(TIOCM_OUT2, UART011_CR_OUT2);
1395 	TIOCMBIT(TIOCM_LOOP, UART011_CR_LBE);
1396 
1397 	if (uap->autorts) {
1398 		/* We need to disable auto-RTS if we want to turn RTS off */
1399 		TIOCMBIT(TIOCM_RTS, UART011_CR_RTSEN);
1400 	}
1401 #undef TIOCMBIT
1402 
1403 	writew(cr, uap->port.membase + UART011_CR);
1404 }
1405 
1406 static void pl011_break_ctl(struct uart_port *port, int break_state)
1407 {
1408 	struct uart_amba_port *uap = (struct uart_amba_port *)port;
1409 	unsigned long flags;
1410 	unsigned int lcr_h;
1411 
1412 	spin_lock_irqsave(&uap->port.lock, flags);
1413 	lcr_h = readw(uap->port.membase + uap->lcrh_tx);
1414 	if (break_state == -1)
1415 		lcr_h |= UART01x_LCRH_BRK;
1416 	else
1417 		lcr_h &= ~UART01x_LCRH_BRK;
1418 	writew(lcr_h, uap->port.membase + uap->lcrh_tx);
1419 	spin_unlock_irqrestore(&uap->port.lock, flags);
1420 }
1421 
1422 #ifdef CONFIG_CONSOLE_POLL
1423 
1424 static void pl011_quiesce_irqs(struct uart_port *port)
1425 {
1426 	struct uart_amba_port *uap = (struct uart_amba_port *)port;
1427 	unsigned char __iomem *regs = uap->port.membase;
1428 
1429 	writew(readw(regs + UART011_MIS), regs + UART011_ICR);
1430 	/*
1431 	 * There is no way to clear TXIM as this is "ready to transmit IRQ", so
1432 	 * we simply mask it. start_tx() will unmask it.
1433 	 *
1434 	 * Note we can race with start_tx(), and if the race happens, the
1435 	 * polling user might get another interrupt just after we clear it.
1436 	 * But it should be OK and can happen even w/o the race, e.g.
1437 	 * controller immediately got some new data and raised the IRQ.
1438 	 *
1439 	 * And whoever uses polling routines assumes that it manages the device
1440 	 * (including tx queue), so we're also fine with start_tx()'s caller
1441 	 * side.
1442 	 */
1443 	writew(readw(regs + UART011_IMSC) & ~UART011_TXIM, regs + UART011_IMSC);
1444 }
1445 
1446 static int pl011_get_poll_char(struct uart_port *port)
1447 {
1448 	struct uart_amba_port *uap = (struct uart_amba_port *)port;
1449 	unsigned int status;
1450 
1451 	/*
1452 	 * The caller might need IRQs lowered, e.g. if used with KDB NMI
1453 	 * debugger.
1454 	 */
1455 	pl011_quiesce_irqs(port);
1456 
1457 	status = readw(uap->port.membase + UART01x_FR);
1458 	if (status & UART01x_FR_RXFE)
1459 		return NO_POLL_CHAR;
1460 
1461 	return readw(uap->port.membase + UART01x_DR);
1462 }
1463 
1464 static void pl011_put_poll_char(struct uart_port *port,
1465 			 unsigned char ch)
1466 {
1467 	struct uart_amba_port *uap = (struct uart_amba_port *)port;
1468 
1469 	while (readw(uap->port.membase + UART01x_FR) & UART01x_FR_TXFF)
1470 		barrier();
1471 
1472 	writew(ch, uap->port.membase + UART01x_DR);
1473 }
1474 
1475 #endif /* CONFIG_CONSOLE_POLL */
1476 
1477 static int pl011_hwinit(struct uart_port *port)
1478 {
1479 	struct uart_amba_port *uap = (struct uart_amba_port *)port;
1480 	int retval;
1481 
1482 	/* Optionaly enable pins to be muxed in and configured */
1483 	if (!IS_ERR(uap->pins_default)) {
1484 		retval = pinctrl_select_state(uap->pinctrl, uap->pins_default);
1485 		if (retval)
1486 			dev_err(port->dev,
1487 				"could not set default pins\n");
1488 	}
1489 
1490 	/*
1491 	 * Try to enable the clock producer.
1492 	 */
1493 	retval = clk_prepare_enable(uap->clk);
1494 	if (retval)
1495 		goto out;
1496 
1497 	uap->port.uartclk = clk_get_rate(uap->clk);
1498 
1499 	/* Clear pending error and receive interrupts */
1500 	writew(UART011_OEIS | UART011_BEIS | UART011_PEIS | UART011_FEIS |
1501 	       UART011_RTIS | UART011_RXIS, uap->port.membase + UART011_ICR);
1502 
1503 	/*
1504 	 * Save interrupts enable mask, and enable RX interrupts in case if
1505 	 * the interrupt is used for NMI entry.
1506 	 */
1507 	uap->im = readw(uap->port.membase + UART011_IMSC);
1508 	writew(UART011_RTIM | UART011_RXIM, uap->port.membase + UART011_IMSC);
1509 
1510 	if (uap->port.dev->platform_data) {
1511 		struct amba_pl011_data *plat;
1512 
1513 		plat = uap->port.dev->platform_data;
1514 		if (plat->init)
1515 			plat->init();
1516 	}
1517 	return 0;
1518  out:
1519 	return retval;
1520 }
1521 
1522 static int pl011_startup(struct uart_port *port)
1523 {
1524 	struct uart_amba_port *uap = (struct uart_amba_port *)port;
1525 	unsigned int cr;
1526 	int retval;
1527 
1528 	retval = pl011_hwinit(port);
1529 	if (retval)
1530 		goto clk_dis;
1531 
1532 	writew(uap->im, uap->port.membase + UART011_IMSC);
1533 
1534 	/*
1535 	 * Allocate the IRQ
1536 	 */
1537 	retval = request_irq(uap->port.irq, pl011_int, 0, "uart-pl011", uap);
1538 	if (retval)
1539 		goto clk_dis;
1540 
1541 	writew(uap->vendor->ifls, uap->port.membase + UART011_IFLS);
1542 
1543 	/*
1544 	 * Provoke TX FIFO interrupt into asserting.
1545 	 */
1546 	cr = UART01x_CR_UARTEN | UART011_CR_TXE | UART011_CR_LBE;
1547 	writew(cr, uap->port.membase + UART011_CR);
1548 	writew(0, uap->port.membase + UART011_FBRD);
1549 	writew(1, uap->port.membase + UART011_IBRD);
1550 	writew(0, uap->port.membase + uap->lcrh_rx);
1551 	if (uap->lcrh_tx != uap->lcrh_rx) {
1552 		int i;
1553 		/*
1554 		 * Wait 10 PCLKs before writing LCRH_TX register,
1555 		 * to get this delay write read only register 10 times
1556 		 */
1557 		for (i = 0; i < 10; ++i)
1558 			writew(0xff, uap->port.membase + UART011_MIS);
1559 		writew(0, uap->port.membase + uap->lcrh_tx);
1560 	}
1561 	writew(0, uap->port.membase + UART01x_DR);
1562 	while (readw(uap->port.membase + UART01x_FR) & UART01x_FR_BUSY)
1563 		barrier();
1564 
1565 	/* restore RTS and DTR */
1566 	cr = uap->old_cr & (UART011_CR_RTS | UART011_CR_DTR);
1567 	cr |= UART01x_CR_UARTEN | UART011_CR_RXE | UART011_CR_TXE;
1568 	writew(cr, uap->port.membase + UART011_CR);
1569 
1570 	/*
1571 	 * initialise the old status of the modem signals
1572 	 */
1573 	uap->old_status = readw(uap->port.membase + UART01x_FR) & UART01x_FR_MODEM_ANY;
1574 
1575 	/* Startup DMA */
1576 	pl011_dma_startup(uap);
1577 
1578 	/*
1579 	 * Finally, enable interrupts, only timeouts when using DMA
1580 	 * if initial RX DMA job failed, start in interrupt mode
1581 	 * as well.
1582 	 */
1583 	spin_lock_irq(&uap->port.lock);
1584 	/* Clear out any spuriously appearing RX interrupts */
1585 	 writew(UART011_RTIS | UART011_RXIS,
1586 		uap->port.membase + UART011_ICR);
1587 	uap->im = UART011_RTIM;
1588 	if (!pl011_dma_rx_running(uap))
1589 		uap->im |= UART011_RXIM;
1590 	writew(uap->im, uap->port.membase + UART011_IMSC);
1591 	spin_unlock_irq(&uap->port.lock);
1592 
1593 	return 0;
1594 
1595  clk_dis:
1596 	clk_disable_unprepare(uap->clk);
1597 	return retval;
1598 }
1599 
1600 static void pl011_shutdown_channel(struct uart_amba_port *uap,
1601 					unsigned int lcrh)
1602 {
1603       unsigned long val;
1604 
1605       val = readw(uap->port.membase + lcrh);
1606       val &= ~(UART01x_LCRH_BRK | UART01x_LCRH_FEN);
1607       writew(val, uap->port.membase + lcrh);
1608 }
1609 
1610 static void pl011_shutdown(struct uart_port *port)
1611 {
1612 	struct uart_amba_port *uap = (struct uart_amba_port *)port;
1613 	unsigned int cr;
1614 	int retval;
1615 
1616 	/*
1617 	 * disable all interrupts
1618 	 */
1619 	spin_lock_irq(&uap->port.lock);
1620 	uap->im = 0;
1621 	writew(uap->im, uap->port.membase + UART011_IMSC);
1622 	writew(0xffff, uap->port.membase + UART011_ICR);
1623 	spin_unlock_irq(&uap->port.lock);
1624 
1625 	pl011_dma_shutdown(uap);
1626 
1627 	/*
1628 	 * Free the interrupt
1629 	 */
1630 	free_irq(uap->port.irq, uap);
1631 
1632 	/*
1633 	 * disable the port
1634 	 * disable the port. It should not disable RTS and DTR.
1635 	 * Also RTS and DTR state should be preserved to restore
1636 	 * it during startup().
1637 	 */
1638 	uap->autorts = false;
1639 	cr = readw(uap->port.membase + UART011_CR);
1640 	uap->old_cr = cr;
1641 	cr &= UART011_CR_RTS | UART011_CR_DTR;
1642 	cr |= UART01x_CR_UARTEN | UART011_CR_TXE;
1643 	writew(cr, uap->port.membase + UART011_CR);
1644 
1645 	/*
1646 	 * disable break condition and fifos
1647 	 */
1648 	pl011_shutdown_channel(uap, uap->lcrh_rx);
1649 	if (uap->lcrh_rx != uap->lcrh_tx)
1650 		pl011_shutdown_channel(uap, uap->lcrh_tx);
1651 
1652 	/*
1653 	 * Shut down the clock producer
1654 	 */
1655 	clk_disable_unprepare(uap->clk);
1656 	/* Optionally let pins go into sleep states */
1657 	if (!IS_ERR(uap->pins_sleep)) {
1658 		retval = pinctrl_select_state(uap->pinctrl, uap->pins_sleep);
1659 		if (retval)
1660 			dev_err(port->dev,
1661 				"could not set pins to sleep state\n");
1662 	}
1663 
1664 
1665 	if (uap->port.dev->platform_data) {
1666 		struct amba_pl011_data *plat;
1667 
1668 		plat = uap->port.dev->platform_data;
1669 		if (plat->exit)
1670 			plat->exit();
1671 	}
1672 
1673 }
1674 
1675 static void
1676 pl011_set_termios(struct uart_port *port, struct ktermios *termios,
1677 		     struct ktermios *old)
1678 {
1679 	struct uart_amba_port *uap = (struct uart_amba_port *)port;
1680 	unsigned int lcr_h, old_cr;
1681 	unsigned long flags;
1682 	unsigned int baud, quot, clkdiv;
1683 
1684 	if (uap->vendor->oversampling)
1685 		clkdiv = 8;
1686 	else
1687 		clkdiv = 16;
1688 
1689 	/*
1690 	 * Ask the core to calculate the divisor for us.
1691 	 */
1692 	baud = uart_get_baud_rate(port, termios, old, 0,
1693 				  port->uartclk / clkdiv);
1694 #ifdef CONFIG_DMA_ENGINE
1695 	/*
1696 	 * Adjust RX DMA polling rate with baud rate if not specified.
1697 	 */
1698 	if (uap->dmarx.auto_poll_rate)
1699 		uap->dmarx.poll_rate = DIV_ROUND_UP(10000000, baud);
1700 #endif
1701 
1702 	if (baud > port->uartclk/16)
1703 		quot = DIV_ROUND_CLOSEST(port->uartclk * 8, baud);
1704 	else
1705 		quot = DIV_ROUND_CLOSEST(port->uartclk * 4, baud);
1706 
1707 	switch (termios->c_cflag & CSIZE) {
1708 	case CS5:
1709 		lcr_h = UART01x_LCRH_WLEN_5;
1710 		break;
1711 	case CS6:
1712 		lcr_h = UART01x_LCRH_WLEN_6;
1713 		break;
1714 	case CS7:
1715 		lcr_h = UART01x_LCRH_WLEN_7;
1716 		break;
1717 	default: // CS8
1718 		lcr_h = UART01x_LCRH_WLEN_8;
1719 		break;
1720 	}
1721 	if (termios->c_cflag & CSTOPB)
1722 		lcr_h |= UART01x_LCRH_STP2;
1723 	if (termios->c_cflag & PARENB) {
1724 		lcr_h |= UART01x_LCRH_PEN;
1725 		if (!(termios->c_cflag & PARODD))
1726 			lcr_h |= UART01x_LCRH_EPS;
1727 	}
1728 	if (uap->fifosize > 1)
1729 		lcr_h |= UART01x_LCRH_FEN;
1730 
1731 	spin_lock_irqsave(&port->lock, flags);
1732 
1733 	/*
1734 	 * Update the per-port timeout.
1735 	 */
1736 	uart_update_timeout(port, termios->c_cflag, baud);
1737 
1738 	port->read_status_mask = UART011_DR_OE | 255;
1739 	if (termios->c_iflag & INPCK)
1740 		port->read_status_mask |= UART011_DR_FE | UART011_DR_PE;
1741 	if (termios->c_iflag & (BRKINT | PARMRK))
1742 		port->read_status_mask |= UART011_DR_BE;
1743 
1744 	/*
1745 	 * Characters to ignore
1746 	 */
1747 	port->ignore_status_mask = 0;
1748 	if (termios->c_iflag & IGNPAR)
1749 		port->ignore_status_mask |= UART011_DR_FE | UART011_DR_PE;
1750 	if (termios->c_iflag & IGNBRK) {
1751 		port->ignore_status_mask |= UART011_DR_BE;
1752 		/*
1753 		 * If we're ignoring parity and break indicators,
1754 		 * ignore overruns too (for real raw support).
1755 		 */
1756 		if (termios->c_iflag & IGNPAR)
1757 			port->ignore_status_mask |= UART011_DR_OE;
1758 	}
1759 
1760 	/*
1761 	 * Ignore all characters if CREAD is not set.
1762 	 */
1763 	if ((termios->c_cflag & CREAD) == 0)
1764 		port->ignore_status_mask |= UART_DUMMY_DR_RX;
1765 
1766 	if (UART_ENABLE_MS(port, termios->c_cflag))
1767 		pl011_enable_ms(port);
1768 
1769 	/* first, disable everything */
1770 	old_cr = readw(port->membase + UART011_CR);
1771 	writew(0, port->membase + UART011_CR);
1772 
1773 	if (termios->c_cflag & CRTSCTS) {
1774 		if (old_cr & UART011_CR_RTS)
1775 			old_cr |= UART011_CR_RTSEN;
1776 
1777 		old_cr |= UART011_CR_CTSEN;
1778 		uap->autorts = true;
1779 	} else {
1780 		old_cr &= ~(UART011_CR_CTSEN | UART011_CR_RTSEN);
1781 		uap->autorts = false;
1782 	}
1783 
1784 	if (uap->vendor->oversampling) {
1785 		if (baud > port->uartclk / 16)
1786 			old_cr |= ST_UART011_CR_OVSFACT;
1787 		else
1788 			old_cr &= ~ST_UART011_CR_OVSFACT;
1789 	}
1790 
1791 	/*
1792 	 * Workaround for the ST Micro oversampling variants to
1793 	 * increase the bitrate slightly, by lowering the divisor,
1794 	 * to avoid delayed sampling of start bit at high speeds,
1795 	 * else we see data corruption.
1796 	 */
1797 	if (uap->vendor->oversampling) {
1798 		if ((baud >= 3000000) && (baud < 3250000) && (quot > 1))
1799 			quot -= 1;
1800 		else if ((baud > 3250000) && (quot > 2))
1801 			quot -= 2;
1802 	}
1803 	/* Set baud rate */
1804 	writew(quot & 0x3f, port->membase + UART011_FBRD);
1805 	writew(quot >> 6, port->membase + UART011_IBRD);
1806 
1807 	/*
1808 	 * ----------v----------v----------v----------v-----
1809 	 * NOTE: lcrh_tx and lcrh_rx MUST BE WRITTEN AFTER
1810 	 * UART011_FBRD & UART011_IBRD.
1811 	 * ----------^----------^----------^----------^-----
1812 	 */
1813 	writew(lcr_h, port->membase + uap->lcrh_rx);
1814 	if (uap->lcrh_rx != uap->lcrh_tx) {
1815 		int i;
1816 		/*
1817 		 * Wait 10 PCLKs before writing LCRH_TX register,
1818 		 * to get this delay write read only register 10 times
1819 		 */
1820 		for (i = 0; i < 10; ++i)
1821 			writew(0xff, uap->port.membase + UART011_MIS);
1822 		writew(lcr_h, port->membase + uap->lcrh_tx);
1823 	}
1824 	writew(old_cr, port->membase + UART011_CR);
1825 
1826 	spin_unlock_irqrestore(&port->lock, flags);
1827 }
1828 
1829 static const char *pl011_type(struct uart_port *port)
1830 {
1831 	struct uart_amba_port *uap = (struct uart_amba_port *)port;
1832 	return uap->port.type == PORT_AMBA ? uap->type : NULL;
1833 }
1834 
1835 /*
1836  * Release the memory region(s) being used by 'port'
1837  */
1838 static void pl011_release_port(struct uart_port *port)
1839 {
1840 	release_mem_region(port->mapbase, SZ_4K);
1841 }
1842 
1843 /*
1844  * Request the memory region(s) being used by 'port'
1845  */
1846 static int pl011_request_port(struct uart_port *port)
1847 {
1848 	return request_mem_region(port->mapbase, SZ_4K, "uart-pl011")
1849 			!= NULL ? 0 : -EBUSY;
1850 }
1851 
1852 /*
1853  * Configure/autoconfigure the port.
1854  */
1855 static void pl011_config_port(struct uart_port *port, int flags)
1856 {
1857 	if (flags & UART_CONFIG_TYPE) {
1858 		port->type = PORT_AMBA;
1859 		pl011_request_port(port);
1860 	}
1861 }
1862 
1863 /*
1864  * verify the new serial_struct (for TIOCSSERIAL).
1865  */
1866 static int pl011_verify_port(struct uart_port *port, struct serial_struct *ser)
1867 {
1868 	int ret = 0;
1869 	if (ser->type != PORT_UNKNOWN && ser->type != PORT_AMBA)
1870 		ret = -EINVAL;
1871 	if (ser->irq < 0 || ser->irq >= nr_irqs)
1872 		ret = -EINVAL;
1873 	if (ser->baud_base < 9600)
1874 		ret = -EINVAL;
1875 	return ret;
1876 }
1877 
1878 static struct uart_ops amba_pl011_pops = {
1879 	.tx_empty	= pl011_tx_empty,
1880 	.set_mctrl	= pl011_set_mctrl,
1881 	.get_mctrl	= pl011_get_mctrl,
1882 	.stop_tx	= pl011_stop_tx,
1883 	.start_tx	= pl011_start_tx,
1884 	.stop_rx	= pl011_stop_rx,
1885 	.enable_ms	= pl011_enable_ms,
1886 	.break_ctl	= pl011_break_ctl,
1887 	.startup	= pl011_startup,
1888 	.shutdown	= pl011_shutdown,
1889 	.flush_buffer	= pl011_dma_flush_buffer,
1890 	.set_termios	= pl011_set_termios,
1891 	.type		= pl011_type,
1892 	.release_port	= pl011_release_port,
1893 	.request_port	= pl011_request_port,
1894 	.config_port	= pl011_config_port,
1895 	.verify_port	= pl011_verify_port,
1896 #ifdef CONFIG_CONSOLE_POLL
1897 	.poll_init     = pl011_hwinit,
1898 	.poll_get_char = pl011_get_poll_char,
1899 	.poll_put_char = pl011_put_poll_char,
1900 #endif
1901 };
1902 
1903 static struct uart_amba_port *amba_ports[UART_NR];
1904 
1905 #ifdef CONFIG_SERIAL_AMBA_PL011_CONSOLE
1906 
1907 static void pl011_console_putchar(struct uart_port *port, int ch)
1908 {
1909 	struct uart_amba_port *uap = (struct uart_amba_port *)port;
1910 
1911 	while (readw(uap->port.membase + UART01x_FR) & UART01x_FR_TXFF)
1912 		barrier();
1913 	writew(ch, uap->port.membase + UART01x_DR);
1914 }
1915 
1916 static void
1917 pl011_console_write(struct console *co, const char *s, unsigned int count)
1918 {
1919 	struct uart_amba_port *uap = amba_ports[co->index];
1920 	unsigned int status, old_cr, new_cr;
1921 	unsigned long flags;
1922 	int locked = 1;
1923 
1924 	clk_enable(uap->clk);
1925 
1926 	local_irq_save(flags);
1927 	if (uap->port.sysrq)
1928 		locked = 0;
1929 	else if (oops_in_progress)
1930 		locked = spin_trylock(&uap->port.lock);
1931 	else
1932 		spin_lock(&uap->port.lock);
1933 
1934 	/*
1935 	 *	First save the CR then disable the interrupts
1936 	 */
1937 	old_cr = readw(uap->port.membase + UART011_CR);
1938 	new_cr = old_cr & ~UART011_CR_CTSEN;
1939 	new_cr |= UART01x_CR_UARTEN | UART011_CR_TXE;
1940 	writew(new_cr, uap->port.membase + UART011_CR);
1941 
1942 	uart_console_write(&uap->port, s, count, pl011_console_putchar);
1943 
1944 	/*
1945 	 *	Finally, wait for transmitter to become empty
1946 	 *	and restore the TCR
1947 	 */
1948 	do {
1949 		status = readw(uap->port.membase + UART01x_FR);
1950 	} while (status & UART01x_FR_BUSY);
1951 	writew(old_cr, uap->port.membase + UART011_CR);
1952 
1953 	if (locked)
1954 		spin_unlock(&uap->port.lock);
1955 	local_irq_restore(flags);
1956 
1957 	clk_disable(uap->clk);
1958 }
1959 
1960 static void __init
1961 pl011_console_get_options(struct uart_amba_port *uap, int *baud,
1962 			     int *parity, int *bits)
1963 {
1964 	if (readw(uap->port.membase + UART011_CR) & UART01x_CR_UARTEN) {
1965 		unsigned int lcr_h, ibrd, fbrd;
1966 
1967 		lcr_h = readw(uap->port.membase + uap->lcrh_tx);
1968 
1969 		*parity = 'n';
1970 		if (lcr_h & UART01x_LCRH_PEN) {
1971 			if (lcr_h & UART01x_LCRH_EPS)
1972 				*parity = 'e';
1973 			else
1974 				*parity = 'o';
1975 		}
1976 
1977 		if ((lcr_h & 0x60) == UART01x_LCRH_WLEN_7)
1978 			*bits = 7;
1979 		else
1980 			*bits = 8;
1981 
1982 		ibrd = readw(uap->port.membase + UART011_IBRD);
1983 		fbrd = readw(uap->port.membase + UART011_FBRD);
1984 
1985 		*baud = uap->port.uartclk * 4 / (64 * ibrd + fbrd);
1986 
1987 		if (uap->vendor->oversampling) {
1988 			if (readw(uap->port.membase + UART011_CR)
1989 				  & ST_UART011_CR_OVSFACT)
1990 				*baud *= 2;
1991 		}
1992 	}
1993 }
1994 
1995 static int __init pl011_console_setup(struct console *co, char *options)
1996 {
1997 	struct uart_amba_port *uap;
1998 	int baud = 38400;
1999 	int bits = 8;
2000 	int parity = 'n';
2001 	int flow = 'n';
2002 	int ret;
2003 
2004 	/*
2005 	 * Check whether an invalid uart number has been specified, and
2006 	 * if so, search for the first available port that does have
2007 	 * console support.
2008 	 */
2009 	if (co->index >= UART_NR)
2010 		co->index = 0;
2011 	uap = amba_ports[co->index];
2012 	if (!uap)
2013 		return -ENODEV;
2014 
2015 	/* Allow pins to be muxed in and configured */
2016 	if (!IS_ERR(uap->pins_default)) {
2017 		ret = pinctrl_select_state(uap->pinctrl, uap->pins_default);
2018 		if (ret)
2019 			dev_err(uap->port.dev,
2020 				"could not set default pins\n");
2021 	}
2022 
2023 	ret = clk_prepare(uap->clk);
2024 	if (ret)
2025 		return ret;
2026 
2027 	if (uap->port.dev->platform_data) {
2028 		struct amba_pl011_data *plat;
2029 
2030 		plat = uap->port.dev->platform_data;
2031 		if (plat->init)
2032 			plat->init();
2033 	}
2034 
2035 	uap->port.uartclk = clk_get_rate(uap->clk);
2036 
2037 	if (options)
2038 		uart_parse_options(options, &baud, &parity, &bits, &flow);
2039 	else
2040 		pl011_console_get_options(uap, &baud, &parity, &bits);
2041 
2042 	return uart_set_options(&uap->port, co, baud, parity, bits, flow);
2043 }
2044 
2045 static struct uart_driver amba_reg;
2046 static struct console amba_console = {
2047 	.name		= "ttyAMA",
2048 	.write		= pl011_console_write,
2049 	.device		= uart_console_device,
2050 	.setup		= pl011_console_setup,
2051 	.flags		= CON_PRINTBUFFER,
2052 	.index		= -1,
2053 	.data		= &amba_reg,
2054 };
2055 
2056 #define AMBA_CONSOLE	(&amba_console)
2057 #else
2058 #define AMBA_CONSOLE	NULL
2059 #endif
2060 
2061 static struct uart_driver amba_reg = {
2062 	.owner			= THIS_MODULE,
2063 	.driver_name		= "ttyAMA",
2064 	.dev_name		= "ttyAMA",
2065 	.major			= SERIAL_AMBA_MAJOR,
2066 	.minor			= SERIAL_AMBA_MINOR,
2067 	.nr			= UART_NR,
2068 	.cons			= AMBA_CONSOLE,
2069 };
2070 
2071 static int pl011_probe_dt_alias(int index, struct device *dev)
2072 {
2073 	struct device_node *np;
2074 	static bool seen_dev_with_alias = false;
2075 	static bool seen_dev_without_alias = false;
2076 	int ret = index;
2077 
2078 	if (!IS_ENABLED(CONFIG_OF))
2079 		return ret;
2080 
2081 	np = dev->of_node;
2082 	if (!np)
2083 		return ret;
2084 
2085 	ret = of_alias_get_id(np, "serial");
2086 	if (IS_ERR_VALUE(ret)) {
2087 		seen_dev_without_alias = true;
2088 		ret = index;
2089 	} else {
2090 		seen_dev_with_alias = true;
2091 		if (ret >= ARRAY_SIZE(amba_ports) || amba_ports[ret] != NULL) {
2092 			dev_warn(dev, "requested serial port %d  not available.\n", ret);
2093 			ret = index;
2094 		}
2095 	}
2096 
2097 	if (seen_dev_with_alias && seen_dev_without_alias)
2098 		dev_warn(dev, "aliased and non-aliased serial devices found in device tree. Serial port enumeration may be unpredictable.\n");
2099 
2100 	return ret;
2101 }
2102 
2103 static int pl011_probe(struct amba_device *dev, const struct amba_id *id)
2104 {
2105 	struct uart_amba_port *uap;
2106 	struct vendor_data *vendor = id->data;
2107 	void __iomem *base;
2108 	int i, ret;
2109 
2110 	for (i = 0; i < ARRAY_SIZE(amba_ports); i++)
2111 		if (amba_ports[i] == NULL)
2112 			break;
2113 
2114 	if (i == ARRAY_SIZE(amba_ports)) {
2115 		ret = -EBUSY;
2116 		goto out;
2117 	}
2118 
2119 	uap = devm_kzalloc(&dev->dev, sizeof(struct uart_amba_port),
2120 			   GFP_KERNEL);
2121 	if (uap == NULL) {
2122 		ret = -ENOMEM;
2123 		goto out;
2124 	}
2125 
2126 	i = pl011_probe_dt_alias(i, &dev->dev);
2127 
2128 	base = devm_ioremap(&dev->dev, dev->res.start,
2129 			    resource_size(&dev->res));
2130 	if (!base) {
2131 		ret = -ENOMEM;
2132 		goto out;
2133 	}
2134 
2135 	uap->pinctrl = devm_pinctrl_get(&dev->dev);
2136 	if (IS_ERR(uap->pinctrl)) {
2137 		ret = PTR_ERR(uap->pinctrl);
2138 		goto out;
2139 	}
2140 	uap->pins_default = pinctrl_lookup_state(uap->pinctrl,
2141 						 PINCTRL_STATE_DEFAULT);
2142 	if (IS_ERR(uap->pins_default))
2143 		dev_err(&dev->dev, "could not get default pinstate\n");
2144 
2145 	uap->pins_sleep = pinctrl_lookup_state(uap->pinctrl,
2146 					       PINCTRL_STATE_SLEEP);
2147 	if (IS_ERR(uap->pins_sleep))
2148 		dev_dbg(&dev->dev, "could not get sleep pinstate\n");
2149 
2150 	uap->clk = devm_clk_get(&dev->dev, NULL);
2151 	if (IS_ERR(uap->clk)) {
2152 		ret = PTR_ERR(uap->clk);
2153 		goto out;
2154 	}
2155 
2156 	uap->vendor = vendor;
2157 	uap->lcrh_rx = vendor->lcrh_rx;
2158 	uap->lcrh_tx = vendor->lcrh_tx;
2159 	uap->old_cr = 0;
2160 	uap->fifosize = vendor->get_fifosize(dev->periphid);
2161 	uap->port.dev = &dev->dev;
2162 	uap->port.mapbase = dev->res.start;
2163 	uap->port.membase = base;
2164 	uap->port.iotype = UPIO_MEM;
2165 	uap->port.irq = dev->irq[0];
2166 	uap->port.fifosize = uap->fifosize;
2167 	uap->port.ops = &amba_pl011_pops;
2168 	uap->port.flags = UPF_BOOT_AUTOCONF;
2169 	uap->port.line = i;
2170 	pl011_dma_probe(&dev->dev, uap);
2171 
2172 	/* Ensure interrupts from this UART are masked and cleared */
2173 	writew(0, uap->port.membase + UART011_IMSC);
2174 	writew(0xffff, uap->port.membase + UART011_ICR);
2175 
2176 	snprintf(uap->type, sizeof(uap->type), "PL011 rev%u", amba_rev(dev));
2177 
2178 	amba_ports[i] = uap;
2179 
2180 	amba_set_drvdata(dev, uap);
2181 	ret = uart_add_one_port(&amba_reg, &uap->port);
2182 	if (ret) {
2183 		amba_set_drvdata(dev, NULL);
2184 		amba_ports[i] = NULL;
2185 		pl011_dma_remove(uap);
2186 	}
2187  out:
2188 	return ret;
2189 }
2190 
2191 static int pl011_remove(struct amba_device *dev)
2192 {
2193 	struct uart_amba_port *uap = amba_get_drvdata(dev);
2194 	int i;
2195 
2196 	amba_set_drvdata(dev, NULL);
2197 
2198 	uart_remove_one_port(&amba_reg, &uap->port);
2199 
2200 	for (i = 0; i < ARRAY_SIZE(amba_ports); i++)
2201 		if (amba_ports[i] == uap)
2202 			amba_ports[i] = NULL;
2203 
2204 	pl011_dma_remove(uap);
2205 	return 0;
2206 }
2207 
2208 #ifdef CONFIG_PM
2209 static int pl011_suspend(struct amba_device *dev, pm_message_t state)
2210 {
2211 	struct uart_amba_port *uap = amba_get_drvdata(dev);
2212 
2213 	if (!uap)
2214 		return -EINVAL;
2215 
2216 	return uart_suspend_port(&amba_reg, &uap->port);
2217 }
2218 
2219 static int pl011_resume(struct amba_device *dev)
2220 {
2221 	struct uart_amba_port *uap = amba_get_drvdata(dev);
2222 
2223 	if (!uap)
2224 		return -EINVAL;
2225 
2226 	return uart_resume_port(&amba_reg, &uap->port);
2227 }
2228 #endif
2229 
2230 static struct amba_id pl011_ids[] = {
2231 	{
2232 		.id	= 0x00041011,
2233 		.mask	= 0x000fffff,
2234 		.data	= &vendor_arm,
2235 	},
2236 	{
2237 		.id	= 0x00380802,
2238 		.mask	= 0x00ffffff,
2239 		.data	= &vendor_st,
2240 	},
2241 	{ 0, 0 },
2242 };
2243 
2244 MODULE_DEVICE_TABLE(amba, pl011_ids);
2245 
2246 static struct amba_driver pl011_driver = {
2247 	.drv = {
2248 		.name	= "uart-pl011",
2249 	},
2250 	.id_table	= pl011_ids,
2251 	.probe		= pl011_probe,
2252 	.remove		= pl011_remove,
2253 #ifdef CONFIG_PM
2254 	.suspend	= pl011_suspend,
2255 	.resume		= pl011_resume,
2256 #endif
2257 };
2258 
2259 static int __init pl011_init(void)
2260 {
2261 	int ret;
2262 	printk(KERN_INFO "Serial: AMBA PL011 UART driver\n");
2263 
2264 	ret = uart_register_driver(&amba_reg);
2265 	if (ret == 0) {
2266 		ret = amba_driver_register(&pl011_driver);
2267 		if (ret)
2268 			uart_unregister_driver(&amba_reg);
2269 	}
2270 	return ret;
2271 }
2272 
2273 static void __exit pl011_exit(void)
2274 {
2275 	amba_driver_unregister(&pl011_driver);
2276 	uart_unregister_driver(&amba_reg);
2277 }
2278 
2279 /*
2280  * While this can be a module, if builtin it's most likely the console
2281  * So let's leave module_exit but move module_init to an earlier place
2282  */
2283 arch_initcall(pl011_init);
2284 module_exit(pl011_exit);
2285 
2286 MODULE_AUTHOR("ARM Ltd/Deep Blue Solutions Ltd");
2287 MODULE_DESCRIPTION("ARM AMBA serial port driver");
2288 MODULE_LICENSE("GPL");
2289