1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Driver for AMBA serial ports 4 * 5 * Based on drivers/char/serial.c, by Linus Torvalds, Theodore Ts'o. 6 * 7 * Copyright 1999 ARM Limited 8 * Copyright (C) 2000 Deep Blue Solutions Ltd. 9 * Copyright (C) 2010 ST-Ericsson SA 10 * 11 * This is a generic driver for ARM AMBA-type serial ports. They 12 * have a lot of 16550-like features, but are not register compatible. 13 * Note that although they do have CTS, DCD and DSR inputs, they do 14 * not have an RI input, nor do they have DTR or RTS outputs. If 15 * required, these have to be supplied via some other means (eg, GPIO) 16 * and hooked into this driver. 17 */ 18 19 #include <linux/module.h> 20 #include <linux/ioport.h> 21 #include <linux/init.h> 22 #include <linux/console.h> 23 #include <linux/platform_device.h> 24 #include <linux/sysrq.h> 25 #include <linux/device.h> 26 #include <linux/tty.h> 27 #include <linux/tty_flip.h> 28 #include <linux/serial_core.h> 29 #include <linux/serial.h> 30 #include <linux/amba/bus.h> 31 #include <linux/amba/serial.h> 32 #include <linux/clk.h> 33 #include <linux/slab.h> 34 #include <linux/dmaengine.h> 35 #include <linux/dma-mapping.h> 36 #include <linux/scatterlist.h> 37 #include <linux/delay.h> 38 #include <linux/types.h> 39 #include <linux/of.h> 40 #include <linux/pinctrl/consumer.h> 41 #include <linux/sizes.h> 42 #include <linux/io.h> 43 #include <linux/acpi.h> 44 45 #define UART_NR 14 46 47 #define SERIAL_AMBA_MAJOR 204 48 #define SERIAL_AMBA_MINOR 64 49 #define SERIAL_AMBA_NR UART_NR 50 51 #define AMBA_ISR_PASS_LIMIT 256 52 53 #define UART_DR_ERROR (UART011_DR_OE|UART011_DR_BE|UART011_DR_PE|UART011_DR_FE) 54 #define UART_DUMMY_DR_RX (1 << 16) 55 56 enum { 57 REG_DR, 58 REG_ST_DMAWM, 59 REG_ST_TIMEOUT, 60 REG_FR, 61 REG_LCRH_RX, 62 REG_LCRH_TX, 63 REG_IBRD, 64 REG_FBRD, 65 REG_CR, 66 REG_IFLS, 67 REG_IMSC, 68 REG_RIS, 69 REG_MIS, 70 REG_ICR, 71 REG_DMACR, 72 REG_ST_XFCR, 73 REG_ST_XON1, 74 REG_ST_XON2, 75 REG_ST_XOFF1, 76 REG_ST_XOFF2, 77 REG_ST_ITCR, 78 REG_ST_ITIP, 79 REG_ST_ABCR, 80 REG_ST_ABIMSC, 81 82 /* The size of the array - must be last */ 83 REG_ARRAY_SIZE, 84 }; 85 86 static u16 pl011_std_offsets[REG_ARRAY_SIZE] = { 87 [REG_DR] = UART01x_DR, 88 [REG_FR] = UART01x_FR, 89 [REG_LCRH_RX] = UART011_LCRH, 90 [REG_LCRH_TX] = UART011_LCRH, 91 [REG_IBRD] = UART011_IBRD, 92 [REG_FBRD] = UART011_FBRD, 93 [REG_CR] = UART011_CR, 94 [REG_IFLS] = UART011_IFLS, 95 [REG_IMSC] = UART011_IMSC, 96 [REG_RIS] = UART011_RIS, 97 [REG_MIS] = UART011_MIS, 98 [REG_ICR] = UART011_ICR, 99 [REG_DMACR] = UART011_DMACR, 100 }; 101 102 /* There is by now at least one vendor with differing details, so handle it */ 103 struct vendor_data { 104 const u16 *reg_offset; 105 unsigned int ifls; 106 unsigned int fr_busy; 107 unsigned int fr_dsr; 108 unsigned int fr_cts; 109 unsigned int fr_ri; 110 unsigned int inv_fr; 111 bool access_32b; 112 bool oversampling; 113 bool dma_threshold; 114 bool cts_event_workaround; 115 bool always_enabled; 116 bool fixed_options; 117 118 unsigned int (*get_fifosize)(struct amba_device *dev); 119 }; 120 121 static unsigned int get_fifosize_arm(struct amba_device *dev) 122 { 123 return amba_rev(dev) < 3 ? 16 : 32; 124 } 125 126 static struct vendor_data vendor_arm = { 127 .reg_offset = pl011_std_offsets, 128 .ifls = UART011_IFLS_RX4_8|UART011_IFLS_TX4_8, 129 .fr_busy = UART01x_FR_BUSY, 130 .fr_dsr = UART01x_FR_DSR, 131 .fr_cts = UART01x_FR_CTS, 132 .fr_ri = UART011_FR_RI, 133 .oversampling = false, 134 .dma_threshold = false, 135 .cts_event_workaround = false, 136 .always_enabled = false, 137 .fixed_options = false, 138 .get_fifosize = get_fifosize_arm, 139 }; 140 141 static const struct vendor_data vendor_sbsa = { 142 .reg_offset = pl011_std_offsets, 143 .fr_busy = UART01x_FR_BUSY, 144 .fr_dsr = UART01x_FR_DSR, 145 .fr_cts = UART01x_FR_CTS, 146 .fr_ri = UART011_FR_RI, 147 .access_32b = true, 148 .oversampling = false, 149 .dma_threshold = false, 150 .cts_event_workaround = false, 151 .always_enabled = true, 152 .fixed_options = true, 153 }; 154 155 #ifdef CONFIG_ACPI_SPCR_TABLE 156 static const struct vendor_data vendor_qdt_qdf2400_e44 = { 157 .reg_offset = pl011_std_offsets, 158 .fr_busy = UART011_FR_TXFE, 159 .fr_dsr = UART01x_FR_DSR, 160 .fr_cts = UART01x_FR_CTS, 161 .fr_ri = UART011_FR_RI, 162 .inv_fr = UART011_FR_TXFE, 163 .access_32b = true, 164 .oversampling = false, 165 .dma_threshold = false, 166 .cts_event_workaround = false, 167 .always_enabled = true, 168 .fixed_options = true, 169 }; 170 #endif 171 172 static u16 pl011_st_offsets[REG_ARRAY_SIZE] = { 173 [REG_DR] = UART01x_DR, 174 [REG_ST_DMAWM] = ST_UART011_DMAWM, 175 [REG_ST_TIMEOUT] = ST_UART011_TIMEOUT, 176 [REG_FR] = UART01x_FR, 177 [REG_LCRH_RX] = ST_UART011_LCRH_RX, 178 [REG_LCRH_TX] = ST_UART011_LCRH_TX, 179 [REG_IBRD] = UART011_IBRD, 180 [REG_FBRD] = UART011_FBRD, 181 [REG_CR] = UART011_CR, 182 [REG_IFLS] = UART011_IFLS, 183 [REG_IMSC] = UART011_IMSC, 184 [REG_RIS] = UART011_RIS, 185 [REG_MIS] = UART011_MIS, 186 [REG_ICR] = UART011_ICR, 187 [REG_DMACR] = UART011_DMACR, 188 [REG_ST_XFCR] = ST_UART011_XFCR, 189 [REG_ST_XON1] = ST_UART011_XON1, 190 [REG_ST_XON2] = ST_UART011_XON2, 191 [REG_ST_XOFF1] = ST_UART011_XOFF1, 192 [REG_ST_XOFF2] = ST_UART011_XOFF2, 193 [REG_ST_ITCR] = ST_UART011_ITCR, 194 [REG_ST_ITIP] = ST_UART011_ITIP, 195 [REG_ST_ABCR] = ST_UART011_ABCR, 196 [REG_ST_ABIMSC] = ST_UART011_ABIMSC, 197 }; 198 199 static unsigned int get_fifosize_st(struct amba_device *dev) 200 { 201 return 64; 202 } 203 204 static struct vendor_data vendor_st = { 205 .reg_offset = pl011_st_offsets, 206 .ifls = UART011_IFLS_RX_HALF|UART011_IFLS_TX_HALF, 207 .fr_busy = UART01x_FR_BUSY, 208 .fr_dsr = UART01x_FR_DSR, 209 .fr_cts = UART01x_FR_CTS, 210 .fr_ri = UART011_FR_RI, 211 .oversampling = true, 212 .dma_threshold = true, 213 .cts_event_workaround = true, 214 .always_enabled = false, 215 .fixed_options = false, 216 .get_fifosize = get_fifosize_st, 217 }; 218 219 /* Deals with DMA transactions */ 220 221 struct pl011_sgbuf { 222 struct scatterlist sg; 223 char *buf; 224 }; 225 226 struct pl011_dmarx_data { 227 struct dma_chan *chan; 228 struct completion complete; 229 bool use_buf_b; 230 struct pl011_sgbuf sgbuf_a; 231 struct pl011_sgbuf sgbuf_b; 232 dma_cookie_t cookie; 233 bool running; 234 struct timer_list timer; 235 unsigned int last_residue; 236 unsigned long last_jiffies; 237 bool auto_poll_rate; 238 unsigned int poll_rate; 239 unsigned int poll_timeout; 240 }; 241 242 struct pl011_dmatx_data { 243 struct dma_chan *chan; 244 struct scatterlist sg; 245 char *buf; 246 bool queued; 247 }; 248 249 /* 250 * We wrap our port structure around the generic uart_port. 251 */ 252 struct uart_amba_port { 253 struct uart_port port; 254 const u16 *reg_offset; 255 struct clk *clk; 256 const struct vendor_data *vendor; 257 unsigned int dmacr; /* dma control reg */ 258 unsigned int im; /* interrupt mask */ 259 unsigned int old_status; 260 unsigned int fifosize; /* vendor-specific */ 261 unsigned int fixed_baud; /* vendor-set fixed baud rate */ 262 char type[12]; 263 bool rs485_tx_started; 264 unsigned int rs485_tx_drain_interval; /* usecs */ 265 #ifdef CONFIG_DMA_ENGINE 266 /* DMA stuff */ 267 bool using_tx_dma; 268 bool using_rx_dma; 269 struct pl011_dmarx_data dmarx; 270 struct pl011_dmatx_data dmatx; 271 bool dma_probed; 272 #endif 273 }; 274 275 static unsigned int pl011_tx_empty(struct uart_port *port); 276 277 static unsigned int pl011_reg_to_offset(const struct uart_amba_port *uap, 278 unsigned int reg) 279 { 280 return uap->reg_offset[reg]; 281 } 282 283 static unsigned int pl011_read(const struct uart_amba_port *uap, 284 unsigned int reg) 285 { 286 void __iomem *addr = uap->port.membase + pl011_reg_to_offset(uap, reg); 287 288 return (uap->port.iotype == UPIO_MEM32) ? 289 readl_relaxed(addr) : readw_relaxed(addr); 290 } 291 292 static void pl011_write(unsigned int val, const struct uart_amba_port *uap, 293 unsigned int reg) 294 { 295 void __iomem *addr = uap->port.membase + pl011_reg_to_offset(uap, reg); 296 297 if (uap->port.iotype == UPIO_MEM32) 298 writel_relaxed(val, addr); 299 else 300 writew_relaxed(val, addr); 301 } 302 303 /* 304 * Reads up to 256 characters from the FIFO or until it's empty and 305 * inserts them into the TTY layer. Returns the number of characters 306 * read from the FIFO. 307 */ 308 static int pl011_fifo_to_tty(struct uart_amba_port *uap) 309 { 310 unsigned int ch, fifotaken; 311 int sysrq; 312 u16 status; 313 u8 flag; 314 315 for (fifotaken = 0; fifotaken != 256; fifotaken++) { 316 status = pl011_read(uap, REG_FR); 317 if (status & UART01x_FR_RXFE) 318 break; 319 320 /* Take chars from the FIFO and update status */ 321 ch = pl011_read(uap, REG_DR) | UART_DUMMY_DR_RX; 322 flag = TTY_NORMAL; 323 uap->port.icount.rx++; 324 325 if (unlikely(ch & UART_DR_ERROR)) { 326 if (ch & UART011_DR_BE) { 327 ch &= ~(UART011_DR_FE | UART011_DR_PE); 328 uap->port.icount.brk++; 329 if (uart_handle_break(&uap->port)) 330 continue; 331 } else if (ch & UART011_DR_PE) 332 uap->port.icount.parity++; 333 else if (ch & UART011_DR_FE) 334 uap->port.icount.frame++; 335 if (ch & UART011_DR_OE) 336 uap->port.icount.overrun++; 337 338 ch &= uap->port.read_status_mask; 339 340 if (ch & UART011_DR_BE) 341 flag = TTY_BREAK; 342 else if (ch & UART011_DR_PE) 343 flag = TTY_PARITY; 344 else if (ch & UART011_DR_FE) 345 flag = TTY_FRAME; 346 } 347 348 spin_unlock(&uap->port.lock); 349 sysrq = uart_handle_sysrq_char(&uap->port, ch & 255); 350 spin_lock(&uap->port.lock); 351 352 if (!sysrq) 353 uart_insert_char(&uap->port, ch, UART011_DR_OE, ch, flag); 354 } 355 356 return fifotaken; 357 } 358 359 360 /* 361 * All the DMA operation mode stuff goes inside this ifdef. 362 * This assumes that you have a generic DMA device interface, 363 * no custom DMA interfaces are supported. 364 */ 365 #ifdef CONFIG_DMA_ENGINE 366 367 #define PL011_DMA_BUFFER_SIZE PAGE_SIZE 368 369 static int pl011_sgbuf_init(struct dma_chan *chan, struct pl011_sgbuf *sg, 370 enum dma_data_direction dir) 371 { 372 dma_addr_t dma_addr; 373 374 sg->buf = dma_alloc_coherent(chan->device->dev, 375 PL011_DMA_BUFFER_SIZE, &dma_addr, GFP_KERNEL); 376 if (!sg->buf) 377 return -ENOMEM; 378 379 sg_init_table(&sg->sg, 1); 380 sg_set_page(&sg->sg, phys_to_page(dma_addr), 381 PL011_DMA_BUFFER_SIZE, offset_in_page(dma_addr)); 382 sg_dma_address(&sg->sg) = dma_addr; 383 sg_dma_len(&sg->sg) = PL011_DMA_BUFFER_SIZE; 384 385 return 0; 386 } 387 388 static void pl011_sgbuf_free(struct dma_chan *chan, struct pl011_sgbuf *sg, 389 enum dma_data_direction dir) 390 { 391 if (sg->buf) { 392 dma_free_coherent(chan->device->dev, 393 PL011_DMA_BUFFER_SIZE, sg->buf, 394 sg_dma_address(&sg->sg)); 395 } 396 } 397 398 static void pl011_dma_probe(struct uart_amba_port *uap) 399 { 400 /* DMA is the sole user of the platform data right now */ 401 struct amba_pl011_data *plat = dev_get_platdata(uap->port.dev); 402 struct device *dev = uap->port.dev; 403 struct dma_slave_config tx_conf = { 404 .dst_addr = uap->port.mapbase + 405 pl011_reg_to_offset(uap, REG_DR), 406 .dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE, 407 .direction = DMA_MEM_TO_DEV, 408 .dst_maxburst = uap->fifosize >> 1, 409 .device_fc = false, 410 }; 411 struct dma_chan *chan; 412 dma_cap_mask_t mask; 413 414 uap->dma_probed = true; 415 chan = dma_request_chan(dev, "tx"); 416 if (IS_ERR(chan)) { 417 if (PTR_ERR(chan) == -EPROBE_DEFER) { 418 uap->dma_probed = false; 419 return; 420 } 421 422 /* We need platform data */ 423 if (!plat || !plat->dma_filter) { 424 dev_info(uap->port.dev, "no DMA platform data\n"); 425 return; 426 } 427 428 /* Try to acquire a generic DMA engine slave TX channel */ 429 dma_cap_zero(mask); 430 dma_cap_set(DMA_SLAVE, mask); 431 432 chan = dma_request_channel(mask, plat->dma_filter, 433 plat->dma_tx_param); 434 if (!chan) { 435 dev_err(uap->port.dev, "no TX DMA channel!\n"); 436 return; 437 } 438 } 439 440 dmaengine_slave_config(chan, &tx_conf); 441 uap->dmatx.chan = chan; 442 443 dev_info(uap->port.dev, "DMA channel TX %s\n", 444 dma_chan_name(uap->dmatx.chan)); 445 446 /* Optionally make use of an RX channel as well */ 447 chan = dma_request_slave_channel(dev, "rx"); 448 449 if (!chan && plat && plat->dma_rx_param) { 450 chan = dma_request_channel(mask, plat->dma_filter, plat->dma_rx_param); 451 452 if (!chan) { 453 dev_err(uap->port.dev, "no RX DMA channel!\n"); 454 return; 455 } 456 } 457 458 if (chan) { 459 struct dma_slave_config rx_conf = { 460 .src_addr = uap->port.mapbase + 461 pl011_reg_to_offset(uap, REG_DR), 462 .src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE, 463 .direction = DMA_DEV_TO_MEM, 464 .src_maxburst = uap->fifosize >> 2, 465 .device_fc = false, 466 }; 467 struct dma_slave_caps caps; 468 469 /* 470 * Some DMA controllers provide information on their capabilities. 471 * If the controller does, check for suitable residue processing 472 * otherwise assime all is well. 473 */ 474 if (0 == dma_get_slave_caps(chan, &caps)) { 475 if (caps.residue_granularity == 476 DMA_RESIDUE_GRANULARITY_DESCRIPTOR) { 477 dma_release_channel(chan); 478 dev_info(uap->port.dev, 479 "RX DMA disabled - no residue processing\n"); 480 return; 481 } 482 } 483 dmaengine_slave_config(chan, &rx_conf); 484 uap->dmarx.chan = chan; 485 486 uap->dmarx.auto_poll_rate = false; 487 if (plat && plat->dma_rx_poll_enable) { 488 /* Set poll rate if specified. */ 489 if (plat->dma_rx_poll_rate) { 490 uap->dmarx.auto_poll_rate = false; 491 uap->dmarx.poll_rate = plat->dma_rx_poll_rate; 492 } else { 493 /* 494 * 100 ms defaults to poll rate if not 495 * specified. This will be adjusted with 496 * the baud rate at set_termios. 497 */ 498 uap->dmarx.auto_poll_rate = true; 499 uap->dmarx.poll_rate = 100; 500 } 501 /* 3 secs defaults poll_timeout if not specified. */ 502 if (plat->dma_rx_poll_timeout) 503 uap->dmarx.poll_timeout = 504 plat->dma_rx_poll_timeout; 505 else 506 uap->dmarx.poll_timeout = 3000; 507 } else if (!plat && dev->of_node) { 508 uap->dmarx.auto_poll_rate = of_property_read_bool( 509 dev->of_node, "auto-poll"); 510 if (uap->dmarx.auto_poll_rate) { 511 u32 x; 512 513 if (0 == of_property_read_u32(dev->of_node, 514 "poll-rate-ms", &x)) 515 uap->dmarx.poll_rate = x; 516 else 517 uap->dmarx.poll_rate = 100; 518 if (0 == of_property_read_u32(dev->of_node, 519 "poll-timeout-ms", &x)) 520 uap->dmarx.poll_timeout = x; 521 else 522 uap->dmarx.poll_timeout = 3000; 523 } 524 } 525 dev_info(uap->port.dev, "DMA channel RX %s\n", 526 dma_chan_name(uap->dmarx.chan)); 527 } 528 } 529 530 static void pl011_dma_remove(struct uart_amba_port *uap) 531 { 532 if (uap->dmatx.chan) 533 dma_release_channel(uap->dmatx.chan); 534 if (uap->dmarx.chan) 535 dma_release_channel(uap->dmarx.chan); 536 } 537 538 /* Forward declare these for the refill routine */ 539 static int pl011_dma_tx_refill(struct uart_amba_port *uap); 540 static void pl011_start_tx_pio(struct uart_amba_port *uap); 541 542 /* 543 * The current DMA TX buffer has been sent. 544 * Try to queue up another DMA buffer. 545 */ 546 static void pl011_dma_tx_callback(void *data) 547 { 548 struct uart_amba_port *uap = data; 549 struct pl011_dmatx_data *dmatx = &uap->dmatx; 550 unsigned long flags; 551 u16 dmacr; 552 553 spin_lock_irqsave(&uap->port.lock, flags); 554 if (uap->dmatx.queued) 555 dma_unmap_sg(dmatx->chan->device->dev, &dmatx->sg, 1, 556 DMA_TO_DEVICE); 557 558 dmacr = uap->dmacr; 559 uap->dmacr = dmacr & ~UART011_TXDMAE; 560 pl011_write(uap->dmacr, uap, REG_DMACR); 561 562 /* 563 * If TX DMA was disabled, it means that we've stopped the DMA for 564 * some reason (eg, XOFF received, or we want to send an X-char.) 565 * 566 * Note: we need to be careful here of a potential race between DMA 567 * and the rest of the driver - if the driver disables TX DMA while 568 * a TX buffer completing, we must update the tx queued status to 569 * get further refills (hence we check dmacr). 570 */ 571 if (!(dmacr & UART011_TXDMAE) || uart_tx_stopped(&uap->port) || 572 uart_circ_empty(&uap->port.state->xmit)) { 573 uap->dmatx.queued = false; 574 spin_unlock_irqrestore(&uap->port.lock, flags); 575 return; 576 } 577 578 if (pl011_dma_tx_refill(uap) <= 0) 579 /* 580 * We didn't queue a DMA buffer for some reason, but we 581 * have data pending to be sent. Re-enable the TX IRQ. 582 */ 583 pl011_start_tx_pio(uap); 584 585 spin_unlock_irqrestore(&uap->port.lock, flags); 586 } 587 588 /* 589 * Try to refill the TX DMA buffer. 590 * Locking: called with port lock held and IRQs disabled. 591 * Returns: 592 * 1 if we queued up a TX DMA buffer. 593 * 0 if we didn't want to handle this by DMA 594 * <0 on error 595 */ 596 static int pl011_dma_tx_refill(struct uart_amba_port *uap) 597 { 598 struct pl011_dmatx_data *dmatx = &uap->dmatx; 599 struct dma_chan *chan = dmatx->chan; 600 struct dma_device *dma_dev = chan->device; 601 struct dma_async_tx_descriptor *desc; 602 struct circ_buf *xmit = &uap->port.state->xmit; 603 unsigned int count; 604 605 /* 606 * Try to avoid the overhead involved in using DMA if the 607 * transaction fits in the first half of the FIFO, by using 608 * the standard interrupt handling. This ensures that we 609 * issue a uart_write_wakeup() at the appropriate time. 610 */ 611 count = uart_circ_chars_pending(xmit); 612 if (count < (uap->fifosize >> 1)) { 613 uap->dmatx.queued = false; 614 return 0; 615 } 616 617 /* 618 * Bodge: don't send the last character by DMA, as this 619 * will prevent XON from notifying us to restart DMA. 620 */ 621 count -= 1; 622 623 /* Else proceed to copy the TX chars to the DMA buffer and fire DMA */ 624 if (count > PL011_DMA_BUFFER_SIZE) 625 count = PL011_DMA_BUFFER_SIZE; 626 627 if (xmit->tail < xmit->head) 628 memcpy(&dmatx->buf[0], &xmit->buf[xmit->tail], count); 629 else { 630 size_t first = UART_XMIT_SIZE - xmit->tail; 631 size_t second; 632 633 if (first > count) 634 first = count; 635 second = count - first; 636 637 memcpy(&dmatx->buf[0], &xmit->buf[xmit->tail], first); 638 if (second) 639 memcpy(&dmatx->buf[first], &xmit->buf[0], second); 640 } 641 642 dmatx->sg.length = count; 643 644 if (dma_map_sg(dma_dev->dev, &dmatx->sg, 1, DMA_TO_DEVICE) != 1) { 645 uap->dmatx.queued = false; 646 dev_dbg(uap->port.dev, "unable to map TX DMA\n"); 647 return -EBUSY; 648 } 649 650 desc = dmaengine_prep_slave_sg(chan, &dmatx->sg, 1, DMA_MEM_TO_DEV, 651 DMA_PREP_INTERRUPT | DMA_CTRL_ACK); 652 if (!desc) { 653 dma_unmap_sg(dma_dev->dev, &dmatx->sg, 1, DMA_TO_DEVICE); 654 uap->dmatx.queued = false; 655 /* 656 * If DMA cannot be used right now, we complete this 657 * transaction via IRQ and let the TTY layer retry. 658 */ 659 dev_dbg(uap->port.dev, "TX DMA busy\n"); 660 return -EBUSY; 661 } 662 663 /* Some data to go along to the callback */ 664 desc->callback = pl011_dma_tx_callback; 665 desc->callback_param = uap; 666 667 /* All errors should happen at prepare time */ 668 dmaengine_submit(desc); 669 670 /* Fire the DMA transaction */ 671 dma_dev->device_issue_pending(chan); 672 673 uap->dmacr |= UART011_TXDMAE; 674 pl011_write(uap->dmacr, uap, REG_DMACR); 675 uap->dmatx.queued = true; 676 677 /* 678 * Now we know that DMA will fire, so advance the ring buffer 679 * with the stuff we just dispatched. 680 */ 681 uart_xmit_advance(&uap->port, count); 682 683 if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS) 684 uart_write_wakeup(&uap->port); 685 686 return 1; 687 } 688 689 /* 690 * We received a transmit interrupt without a pending X-char but with 691 * pending characters. 692 * Locking: called with port lock held and IRQs disabled. 693 * Returns: 694 * false if we want to use PIO to transmit 695 * true if we queued a DMA buffer 696 */ 697 static bool pl011_dma_tx_irq(struct uart_amba_port *uap) 698 { 699 if (!uap->using_tx_dma) 700 return false; 701 702 /* 703 * If we already have a TX buffer queued, but received a 704 * TX interrupt, it will be because we've just sent an X-char. 705 * Ensure the TX DMA is enabled and the TX IRQ is disabled. 706 */ 707 if (uap->dmatx.queued) { 708 uap->dmacr |= UART011_TXDMAE; 709 pl011_write(uap->dmacr, uap, REG_DMACR); 710 uap->im &= ~UART011_TXIM; 711 pl011_write(uap->im, uap, REG_IMSC); 712 return true; 713 } 714 715 /* 716 * We don't have a TX buffer queued, so try to queue one. 717 * If we successfully queued a buffer, mask the TX IRQ. 718 */ 719 if (pl011_dma_tx_refill(uap) > 0) { 720 uap->im &= ~UART011_TXIM; 721 pl011_write(uap->im, uap, REG_IMSC); 722 return true; 723 } 724 return false; 725 } 726 727 /* 728 * Stop the DMA transmit (eg, due to received XOFF). 729 * Locking: called with port lock held and IRQs disabled. 730 */ 731 static inline void pl011_dma_tx_stop(struct uart_amba_port *uap) 732 { 733 if (uap->dmatx.queued) { 734 uap->dmacr &= ~UART011_TXDMAE; 735 pl011_write(uap->dmacr, uap, REG_DMACR); 736 } 737 } 738 739 /* 740 * Try to start a DMA transmit, or in the case of an XON/OFF 741 * character queued for send, try to get that character out ASAP. 742 * Locking: called with port lock held and IRQs disabled. 743 * Returns: 744 * false if we want the TX IRQ to be enabled 745 * true if we have a buffer queued 746 */ 747 static inline bool pl011_dma_tx_start(struct uart_amba_port *uap) 748 { 749 u16 dmacr; 750 751 if (!uap->using_tx_dma) 752 return false; 753 754 if (!uap->port.x_char) { 755 /* no X-char, try to push chars out in DMA mode */ 756 bool ret = true; 757 758 if (!uap->dmatx.queued) { 759 if (pl011_dma_tx_refill(uap) > 0) { 760 uap->im &= ~UART011_TXIM; 761 pl011_write(uap->im, uap, REG_IMSC); 762 } else 763 ret = false; 764 } else if (!(uap->dmacr & UART011_TXDMAE)) { 765 uap->dmacr |= UART011_TXDMAE; 766 pl011_write(uap->dmacr, uap, REG_DMACR); 767 } 768 return ret; 769 } 770 771 /* 772 * We have an X-char to send. Disable DMA to prevent it loading 773 * the TX fifo, and then see if we can stuff it into the FIFO. 774 */ 775 dmacr = uap->dmacr; 776 uap->dmacr &= ~UART011_TXDMAE; 777 pl011_write(uap->dmacr, uap, REG_DMACR); 778 779 if (pl011_read(uap, REG_FR) & UART01x_FR_TXFF) { 780 /* 781 * No space in the FIFO, so enable the transmit interrupt 782 * so we know when there is space. Note that once we've 783 * loaded the character, we should just re-enable DMA. 784 */ 785 return false; 786 } 787 788 pl011_write(uap->port.x_char, uap, REG_DR); 789 uap->port.icount.tx++; 790 uap->port.x_char = 0; 791 792 /* Success - restore the DMA state */ 793 uap->dmacr = dmacr; 794 pl011_write(dmacr, uap, REG_DMACR); 795 796 return true; 797 } 798 799 /* 800 * Flush the transmit buffer. 801 * Locking: called with port lock held and IRQs disabled. 802 */ 803 static void pl011_dma_flush_buffer(struct uart_port *port) 804 __releases(&uap->port.lock) 805 __acquires(&uap->port.lock) 806 { 807 struct uart_amba_port *uap = 808 container_of(port, struct uart_amba_port, port); 809 810 if (!uap->using_tx_dma) 811 return; 812 813 dmaengine_terminate_async(uap->dmatx.chan); 814 815 if (uap->dmatx.queued) { 816 dma_unmap_sg(uap->dmatx.chan->device->dev, &uap->dmatx.sg, 1, 817 DMA_TO_DEVICE); 818 uap->dmatx.queued = false; 819 uap->dmacr &= ~UART011_TXDMAE; 820 pl011_write(uap->dmacr, uap, REG_DMACR); 821 } 822 } 823 824 static void pl011_dma_rx_callback(void *data); 825 826 static int pl011_dma_rx_trigger_dma(struct uart_amba_port *uap) 827 { 828 struct dma_chan *rxchan = uap->dmarx.chan; 829 struct pl011_dmarx_data *dmarx = &uap->dmarx; 830 struct dma_async_tx_descriptor *desc; 831 struct pl011_sgbuf *sgbuf; 832 833 if (!rxchan) 834 return -EIO; 835 836 /* Start the RX DMA job */ 837 sgbuf = uap->dmarx.use_buf_b ? 838 &uap->dmarx.sgbuf_b : &uap->dmarx.sgbuf_a; 839 desc = dmaengine_prep_slave_sg(rxchan, &sgbuf->sg, 1, 840 DMA_DEV_TO_MEM, 841 DMA_PREP_INTERRUPT | DMA_CTRL_ACK); 842 /* 843 * If the DMA engine is busy and cannot prepare a 844 * channel, no big deal, the driver will fall back 845 * to interrupt mode as a result of this error code. 846 */ 847 if (!desc) { 848 uap->dmarx.running = false; 849 dmaengine_terminate_all(rxchan); 850 return -EBUSY; 851 } 852 853 /* Some data to go along to the callback */ 854 desc->callback = pl011_dma_rx_callback; 855 desc->callback_param = uap; 856 dmarx->cookie = dmaengine_submit(desc); 857 dma_async_issue_pending(rxchan); 858 859 uap->dmacr |= UART011_RXDMAE; 860 pl011_write(uap->dmacr, uap, REG_DMACR); 861 uap->dmarx.running = true; 862 863 uap->im &= ~UART011_RXIM; 864 pl011_write(uap->im, uap, REG_IMSC); 865 866 return 0; 867 } 868 869 /* 870 * This is called when either the DMA job is complete, or 871 * the FIFO timeout interrupt occurred. This must be called 872 * with the port spinlock uap->port.lock held. 873 */ 874 static void pl011_dma_rx_chars(struct uart_amba_port *uap, 875 u32 pending, bool use_buf_b, 876 bool readfifo) 877 { 878 struct tty_port *port = &uap->port.state->port; 879 struct pl011_sgbuf *sgbuf = use_buf_b ? 880 &uap->dmarx.sgbuf_b : &uap->dmarx.sgbuf_a; 881 int dma_count = 0; 882 u32 fifotaken = 0; /* only used for vdbg() */ 883 884 struct pl011_dmarx_data *dmarx = &uap->dmarx; 885 int dmataken = 0; 886 887 if (uap->dmarx.poll_rate) { 888 /* The data can be taken by polling */ 889 dmataken = sgbuf->sg.length - dmarx->last_residue; 890 /* Recalculate the pending size */ 891 if (pending >= dmataken) 892 pending -= dmataken; 893 } 894 895 /* Pick the remain data from the DMA */ 896 if (pending) { 897 898 /* 899 * First take all chars in the DMA pipe, then look in the FIFO. 900 * Note that tty_insert_flip_buf() tries to take as many chars 901 * as it can. 902 */ 903 dma_count = tty_insert_flip_string(port, sgbuf->buf + dmataken, 904 pending); 905 906 uap->port.icount.rx += dma_count; 907 if (dma_count < pending) 908 dev_warn(uap->port.dev, 909 "couldn't insert all characters (TTY is full?)\n"); 910 } 911 912 /* Reset the last_residue for Rx DMA poll */ 913 if (uap->dmarx.poll_rate) 914 dmarx->last_residue = sgbuf->sg.length; 915 916 /* 917 * Only continue with trying to read the FIFO if all DMA chars have 918 * been taken first. 919 */ 920 if (dma_count == pending && readfifo) { 921 /* Clear any error flags */ 922 pl011_write(UART011_OEIS | UART011_BEIS | UART011_PEIS | 923 UART011_FEIS, uap, REG_ICR); 924 925 /* 926 * If we read all the DMA'd characters, and we had an 927 * incomplete buffer, that could be due to an rx error, or 928 * maybe we just timed out. Read any pending chars and check 929 * the error status. 930 * 931 * Error conditions will only occur in the FIFO, these will 932 * trigger an immediate interrupt and stop the DMA job, so we 933 * will always find the error in the FIFO, never in the DMA 934 * buffer. 935 */ 936 fifotaken = pl011_fifo_to_tty(uap); 937 } 938 939 dev_vdbg(uap->port.dev, 940 "Took %d chars from DMA buffer and %d chars from the FIFO\n", 941 dma_count, fifotaken); 942 tty_flip_buffer_push(port); 943 } 944 945 static void pl011_dma_rx_irq(struct uart_amba_port *uap) 946 { 947 struct pl011_dmarx_data *dmarx = &uap->dmarx; 948 struct dma_chan *rxchan = dmarx->chan; 949 struct pl011_sgbuf *sgbuf = dmarx->use_buf_b ? 950 &dmarx->sgbuf_b : &dmarx->sgbuf_a; 951 size_t pending; 952 struct dma_tx_state state; 953 enum dma_status dmastat; 954 955 /* 956 * Pause the transfer so we can trust the current counter, 957 * do this before we pause the PL011 block, else we may 958 * overflow the FIFO. 959 */ 960 if (dmaengine_pause(rxchan)) 961 dev_err(uap->port.dev, "unable to pause DMA transfer\n"); 962 dmastat = rxchan->device->device_tx_status(rxchan, 963 dmarx->cookie, &state); 964 if (dmastat != DMA_PAUSED) 965 dev_err(uap->port.dev, "unable to pause DMA transfer\n"); 966 967 /* Disable RX DMA - incoming data will wait in the FIFO */ 968 uap->dmacr &= ~UART011_RXDMAE; 969 pl011_write(uap->dmacr, uap, REG_DMACR); 970 uap->dmarx.running = false; 971 972 pending = sgbuf->sg.length - state.residue; 973 BUG_ON(pending > PL011_DMA_BUFFER_SIZE); 974 /* Then we terminate the transfer - we now know our residue */ 975 dmaengine_terminate_all(rxchan); 976 977 /* 978 * This will take the chars we have so far and insert 979 * into the framework. 980 */ 981 pl011_dma_rx_chars(uap, pending, dmarx->use_buf_b, true); 982 983 /* Switch buffer & re-trigger DMA job */ 984 dmarx->use_buf_b = !dmarx->use_buf_b; 985 if (pl011_dma_rx_trigger_dma(uap)) { 986 dev_dbg(uap->port.dev, "could not retrigger RX DMA job " 987 "fall back to interrupt mode\n"); 988 uap->im |= UART011_RXIM; 989 pl011_write(uap->im, uap, REG_IMSC); 990 } 991 } 992 993 static void pl011_dma_rx_callback(void *data) 994 { 995 struct uart_amba_port *uap = data; 996 struct pl011_dmarx_data *dmarx = &uap->dmarx; 997 struct dma_chan *rxchan = dmarx->chan; 998 bool lastbuf = dmarx->use_buf_b; 999 struct pl011_sgbuf *sgbuf = dmarx->use_buf_b ? 1000 &dmarx->sgbuf_b : &dmarx->sgbuf_a; 1001 size_t pending; 1002 struct dma_tx_state state; 1003 int ret; 1004 1005 /* 1006 * This completion interrupt occurs typically when the 1007 * RX buffer is totally stuffed but no timeout has yet 1008 * occurred. When that happens, we just want the RX 1009 * routine to flush out the secondary DMA buffer while 1010 * we immediately trigger the next DMA job. 1011 */ 1012 spin_lock_irq(&uap->port.lock); 1013 /* 1014 * Rx data can be taken by the UART interrupts during 1015 * the DMA irq handler. So we check the residue here. 1016 */ 1017 rxchan->device->device_tx_status(rxchan, dmarx->cookie, &state); 1018 pending = sgbuf->sg.length - state.residue; 1019 BUG_ON(pending > PL011_DMA_BUFFER_SIZE); 1020 /* Then we terminate the transfer - we now know our residue */ 1021 dmaengine_terminate_all(rxchan); 1022 1023 uap->dmarx.running = false; 1024 dmarx->use_buf_b = !lastbuf; 1025 ret = pl011_dma_rx_trigger_dma(uap); 1026 1027 pl011_dma_rx_chars(uap, pending, lastbuf, false); 1028 spin_unlock_irq(&uap->port.lock); 1029 /* 1030 * Do this check after we picked the DMA chars so we don't 1031 * get some IRQ immediately from RX. 1032 */ 1033 if (ret) { 1034 dev_dbg(uap->port.dev, "could not retrigger RX DMA job " 1035 "fall back to interrupt mode\n"); 1036 uap->im |= UART011_RXIM; 1037 pl011_write(uap->im, uap, REG_IMSC); 1038 } 1039 } 1040 1041 /* 1042 * Stop accepting received characters, when we're shutting down or 1043 * suspending this port. 1044 * Locking: called with port lock held and IRQs disabled. 1045 */ 1046 static inline void pl011_dma_rx_stop(struct uart_amba_port *uap) 1047 { 1048 if (!uap->using_rx_dma) 1049 return; 1050 1051 /* FIXME. Just disable the DMA enable */ 1052 uap->dmacr &= ~UART011_RXDMAE; 1053 pl011_write(uap->dmacr, uap, REG_DMACR); 1054 } 1055 1056 /* 1057 * Timer handler for Rx DMA polling. 1058 * Every polling, It checks the residue in the dma buffer and transfer 1059 * data to the tty. Also, last_residue is updated for the next polling. 1060 */ 1061 static void pl011_dma_rx_poll(struct timer_list *t) 1062 { 1063 struct uart_amba_port *uap = from_timer(uap, t, dmarx.timer); 1064 struct tty_port *port = &uap->port.state->port; 1065 struct pl011_dmarx_data *dmarx = &uap->dmarx; 1066 struct dma_chan *rxchan = uap->dmarx.chan; 1067 unsigned long flags; 1068 unsigned int dmataken = 0; 1069 unsigned int size = 0; 1070 struct pl011_sgbuf *sgbuf; 1071 int dma_count; 1072 struct dma_tx_state state; 1073 1074 sgbuf = dmarx->use_buf_b ? &uap->dmarx.sgbuf_b : &uap->dmarx.sgbuf_a; 1075 rxchan->device->device_tx_status(rxchan, dmarx->cookie, &state); 1076 if (likely(state.residue < dmarx->last_residue)) { 1077 dmataken = sgbuf->sg.length - dmarx->last_residue; 1078 size = dmarx->last_residue - state.residue; 1079 dma_count = tty_insert_flip_string(port, sgbuf->buf + dmataken, 1080 size); 1081 if (dma_count == size) 1082 dmarx->last_residue = state.residue; 1083 dmarx->last_jiffies = jiffies; 1084 } 1085 tty_flip_buffer_push(port); 1086 1087 /* 1088 * If no data is received in poll_timeout, the driver will fall back 1089 * to interrupt mode. We will retrigger DMA at the first interrupt. 1090 */ 1091 if (jiffies_to_msecs(jiffies - dmarx->last_jiffies) 1092 > uap->dmarx.poll_timeout) { 1093 1094 spin_lock_irqsave(&uap->port.lock, flags); 1095 pl011_dma_rx_stop(uap); 1096 uap->im |= UART011_RXIM; 1097 pl011_write(uap->im, uap, REG_IMSC); 1098 spin_unlock_irqrestore(&uap->port.lock, flags); 1099 1100 uap->dmarx.running = false; 1101 dmaengine_terminate_all(rxchan); 1102 del_timer(&uap->dmarx.timer); 1103 } else { 1104 mod_timer(&uap->dmarx.timer, 1105 jiffies + msecs_to_jiffies(uap->dmarx.poll_rate)); 1106 } 1107 } 1108 1109 static void pl011_dma_startup(struct uart_amba_port *uap) 1110 { 1111 int ret; 1112 1113 if (!uap->dma_probed) 1114 pl011_dma_probe(uap); 1115 1116 if (!uap->dmatx.chan) 1117 return; 1118 1119 uap->dmatx.buf = kmalloc(PL011_DMA_BUFFER_SIZE, GFP_KERNEL | __GFP_DMA); 1120 if (!uap->dmatx.buf) { 1121 dev_err(uap->port.dev, "no memory for DMA TX buffer\n"); 1122 uap->port.fifosize = uap->fifosize; 1123 return; 1124 } 1125 1126 sg_init_one(&uap->dmatx.sg, uap->dmatx.buf, PL011_DMA_BUFFER_SIZE); 1127 1128 /* The DMA buffer is now the FIFO the TTY subsystem can use */ 1129 uap->port.fifosize = PL011_DMA_BUFFER_SIZE; 1130 uap->using_tx_dma = true; 1131 1132 if (!uap->dmarx.chan) 1133 goto skip_rx; 1134 1135 /* Allocate and map DMA RX buffers */ 1136 ret = pl011_sgbuf_init(uap->dmarx.chan, &uap->dmarx.sgbuf_a, 1137 DMA_FROM_DEVICE); 1138 if (ret) { 1139 dev_err(uap->port.dev, "failed to init DMA %s: %d\n", 1140 "RX buffer A", ret); 1141 goto skip_rx; 1142 } 1143 1144 ret = pl011_sgbuf_init(uap->dmarx.chan, &uap->dmarx.sgbuf_b, 1145 DMA_FROM_DEVICE); 1146 if (ret) { 1147 dev_err(uap->port.dev, "failed to init DMA %s: %d\n", 1148 "RX buffer B", ret); 1149 pl011_sgbuf_free(uap->dmarx.chan, &uap->dmarx.sgbuf_a, 1150 DMA_FROM_DEVICE); 1151 goto skip_rx; 1152 } 1153 1154 uap->using_rx_dma = true; 1155 1156 skip_rx: 1157 /* Turn on DMA error (RX/TX will be enabled on demand) */ 1158 uap->dmacr |= UART011_DMAONERR; 1159 pl011_write(uap->dmacr, uap, REG_DMACR); 1160 1161 /* 1162 * ST Micro variants has some specific dma burst threshold 1163 * compensation. Set this to 16 bytes, so burst will only 1164 * be issued above/below 16 bytes. 1165 */ 1166 if (uap->vendor->dma_threshold) 1167 pl011_write(ST_UART011_DMAWM_RX_16 | ST_UART011_DMAWM_TX_16, 1168 uap, REG_ST_DMAWM); 1169 1170 if (uap->using_rx_dma) { 1171 if (pl011_dma_rx_trigger_dma(uap)) 1172 dev_dbg(uap->port.dev, "could not trigger initial " 1173 "RX DMA job, fall back to interrupt mode\n"); 1174 if (uap->dmarx.poll_rate) { 1175 timer_setup(&uap->dmarx.timer, pl011_dma_rx_poll, 0); 1176 mod_timer(&uap->dmarx.timer, 1177 jiffies + 1178 msecs_to_jiffies(uap->dmarx.poll_rate)); 1179 uap->dmarx.last_residue = PL011_DMA_BUFFER_SIZE; 1180 uap->dmarx.last_jiffies = jiffies; 1181 } 1182 } 1183 } 1184 1185 static void pl011_dma_shutdown(struct uart_amba_port *uap) 1186 { 1187 if (!(uap->using_tx_dma || uap->using_rx_dma)) 1188 return; 1189 1190 /* Disable RX and TX DMA */ 1191 while (pl011_read(uap, REG_FR) & uap->vendor->fr_busy) 1192 cpu_relax(); 1193 1194 spin_lock_irq(&uap->port.lock); 1195 uap->dmacr &= ~(UART011_DMAONERR | UART011_RXDMAE | UART011_TXDMAE); 1196 pl011_write(uap->dmacr, uap, REG_DMACR); 1197 spin_unlock_irq(&uap->port.lock); 1198 1199 if (uap->using_tx_dma) { 1200 /* In theory, this should already be done by pl011_dma_flush_buffer */ 1201 dmaengine_terminate_all(uap->dmatx.chan); 1202 if (uap->dmatx.queued) { 1203 dma_unmap_sg(uap->dmatx.chan->device->dev, &uap->dmatx.sg, 1, 1204 DMA_TO_DEVICE); 1205 uap->dmatx.queued = false; 1206 } 1207 1208 kfree(uap->dmatx.buf); 1209 uap->using_tx_dma = false; 1210 } 1211 1212 if (uap->using_rx_dma) { 1213 dmaengine_terminate_all(uap->dmarx.chan); 1214 /* Clean up the RX DMA */ 1215 pl011_sgbuf_free(uap->dmarx.chan, &uap->dmarx.sgbuf_a, DMA_FROM_DEVICE); 1216 pl011_sgbuf_free(uap->dmarx.chan, &uap->dmarx.sgbuf_b, DMA_FROM_DEVICE); 1217 if (uap->dmarx.poll_rate) 1218 del_timer_sync(&uap->dmarx.timer); 1219 uap->using_rx_dma = false; 1220 } 1221 } 1222 1223 static inline bool pl011_dma_rx_available(struct uart_amba_port *uap) 1224 { 1225 return uap->using_rx_dma; 1226 } 1227 1228 static inline bool pl011_dma_rx_running(struct uart_amba_port *uap) 1229 { 1230 return uap->using_rx_dma && uap->dmarx.running; 1231 } 1232 1233 #else 1234 /* Blank functions if the DMA engine is not available */ 1235 static inline void pl011_dma_remove(struct uart_amba_port *uap) 1236 { 1237 } 1238 1239 static inline void pl011_dma_startup(struct uart_amba_port *uap) 1240 { 1241 } 1242 1243 static inline void pl011_dma_shutdown(struct uart_amba_port *uap) 1244 { 1245 } 1246 1247 static inline bool pl011_dma_tx_irq(struct uart_amba_port *uap) 1248 { 1249 return false; 1250 } 1251 1252 static inline void pl011_dma_tx_stop(struct uart_amba_port *uap) 1253 { 1254 } 1255 1256 static inline bool pl011_dma_tx_start(struct uart_amba_port *uap) 1257 { 1258 return false; 1259 } 1260 1261 static inline void pl011_dma_rx_irq(struct uart_amba_port *uap) 1262 { 1263 } 1264 1265 static inline void pl011_dma_rx_stop(struct uart_amba_port *uap) 1266 { 1267 } 1268 1269 static inline int pl011_dma_rx_trigger_dma(struct uart_amba_port *uap) 1270 { 1271 return -EIO; 1272 } 1273 1274 static inline bool pl011_dma_rx_available(struct uart_amba_port *uap) 1275 { 1276 return false; 1277 } 1278 1279 static inline bool pl011_dma_rx_running(struct uart_amba_port *uap) 1280 { 1281 return false; 1282 } 1283 1284 #define pl011_dma_flush_buffer NULL 1285 #endif 1286 1287 static void pl011_rs485_tx_stop(struct uart_amba_port *uap) 1288 { 1289 /* 1290 * To be on the safe side only time out after twice as many iterations 1291 * as fifo size. 1292 */ 1293 const int MAX_TX_DRAIN_ITERS = uap->port.fifosize * 2; 1294 struct uart_port *port = &uap->port; 1295 int i = 0; 1296 u32 cr; 1297 1298 /* Wait until hardware tx queue is empty */ 1299 while (!pl011_tx_empty(port)) { 1300 if (i > MAX_TX_DRAIN_ITERS) { 1301 dev_warn(port->dev, 1302 "timeout while draining hardware tx queue\n"); 1303 break; 1304 } 1305 1306 udelay(uap->rs485_tx_drain_interval); 1307 i++; 1308 } 1309 1310 if (port->rs485.delay_rts_after_send) 1311 mdelay(port->rs485.delay_rts_after_send); 1312 1313 cr = pl011_read(uap, REG_CR); 1314 1315 if (port->rs485.flags & SER_RS485_RTS_AFTER_SEND) 1316 cr &= ~UART011_CR_RTS; 1317 else 1318 cr |= UART011_CR_RTS; 1319 1320 /* Disable the transmitter and reenable the transceiver */ 1321 cr &= ~UART011_CR_TXE; 1322 cr |= UART011_CR_RXE; 1323 pl011_write(cr, uap, REG_CR); 1324 1325 uap->rs485_tx_started = false; 1326 } 1327 1328 static void pl011_stop_tx(struct uart_port *port) 1329 { 1330 struct uart_amba_port *uap = 1331 container_of(port, struct uart_amba_port, port); 1332 1333 uap->im &= ~UART011_TXIM; 1334 pl011_write(uap->im, uap, REG_IMSC); 1335 pl011_dma_tx_stop(uap); 1336 1337 if ((port->rs485.flags & SER_RS485_ENABLED) && uap->rs485_tx_started) 1338 pl011_rs485_tx_stop(uap); 1339 } 1340 1341 static bool pl011_tx_chars(struct uart_amba_port *uap, bool from_irq); 1342 1343 /* Start TX with programmed I/O only (no DMA) */ 1344 static void pl011_start_tx_pio(struct uart_amba_port *uap) 1345 { 1346 if (pl011_tx_chars(uap, false)) { 1347 uap->im |= UART011_TXIM; 1348 pl011_write(uap->im, uap, REG_IMSC); 1349 } 1350 } 1351 1352 static void pl011_start_tx(struct uart_port *port) 1353 { 1354 struct uart_amba_port *uap = 1355 container_of(port, struct uart_amba_port, port); 1356 1357 if (!pl011_dma_tx_start(uap)) 1358 pl011_start_tx_pio(uap); 1359 } 1360 1361 static void pl011_stop_rx(struct uart_port *port) 1362 { 1363 struct uart_amba_port *uap = 1364 container_of(port, struct uart_amba_port, port); 1365 1366 uap->im &= ~(UART011_RXIM|UART011_RTIM|UART011_FEIM| 1367 UART011_PEIM|UART011_BEIM|UART011_OEIM); 1368 pl011_write(uap->im, uap, REG_IMSC); 1369 1370 pl011_dma_rx_stop(uap); 1371 } 1372 1373 static void pl011_throttle_rx(struct uart_port *port) 1374 { 1375 unsigned long flags; 1376 1377 spin_lock_irqsave(&port->lock, flags); 1378 pl011_stop_rx(port); 1379 spin_unlock_irqrestore(&port->lock, flags); 1380 } 1381 1382 static void pl011_enable_ms(struct uart_port *port) 1383 { 1384 struct uart_amba_port *uap = 1385 container_of(port, struct uart_amba_port, port); 1386 1387 uap->im |= UART011_RIMIM|UART011_CTSMIM|UART011_DCDMIM|UART011_DSRMIM; 1388 pl011_write(uap->im, uap, REG_IMSC); 1389 } 1390 1391 static void pl011_rx_chars(struct uart_amba_port *uap) 1392 __releases(&uap->port.lock) 1393 __acquires(&uap->port.lock) 1394 { 1395 pl011_fifo_to_tty(uap); 1396 1397 spin_unlock(&uap->port.lock); 1398 tty_flip_buffer_push(&uap->port.state->port); 1399 /* 1400 * If we were temporarily out of DMA mode for a while, 1401 * attempt to switch back to DMA mode again. 1402 */ 1403 if (pl011_dma_rx_available(uap)) { 1404 if (pl011_dma_rx_trigger_dma(uap)) { 1405 dev_dbg(uap->port.dev, "could not trigger RX DMA job " 1406 "fall back to interrupt mode again\n"); 1407 uap->im |= UART011_RXIM; 1408 pl011_write(uap->im, uap, REG_IMSC); 1409 } else { 1410 #ifdef CONFIG_DMA_ENGINE 1411 /* Start Rx DMA poll */ 1412 if (uap->dmarx.poll_rate) { 1413 uap->dmarx.last_jiffies = jiffies; 1414 uap->dmarx.last_residue = PL011_DMA_BUFFER_SIZE; 1415 mod_timer(&uap->dmarx.timer, 1416 jiffies + 1417 msecs_to_jiffies(uap->dmarx.poll_rate)); 1418 } 1419 #endif 1420 } 1421 } 1422 spin_lock(&uap->port.lock); 1423 } 1424 1425 static bool pl011_tx_char(struct uart_amba_port *uap, unsigned char c, 1426 bool from_irq) 1427 { 1428 if (unlikely(!from_irq) && 1429 pl011_read(uap, REG_FR) & UART01x_FR_TXFF) 1430 return false; /* unable to transmit character */ 1431 1432 pl011_write(c, uap, REG_DR); 1433 uap->port.icount.tx++; 1434 1435 return true; 1436 } 1437 1438 static void pl011_rs485_tx_start(struct uart_amba_port *uap) 1439 { 1440 struct uart_port *port = &uap->port; 1441 u32 cr; 1442 1443 /* Enable transmitter */ 1444 cr = pl011_read(uap, REG_CR); 1445 cr |= UART011_CR_TXE; 1446 1447 /* Disable receiver if half-duplex */ 1448 if (!(port->rs485.flags & SER_RS485_RX_DURING_TX)) 1449 cr &= ~UART011_CR_RXE; 1450 1451 if (port->rs485.flags & SER_RS485_RTS_ON_SEND) 1452 cr &= ~UART011_CR_RTS; 1453 else 1454 cr |= UART011_CR_RTS; 1455 1456 pl011_write(cr, uap, REG_CR); 1457 1458 if (port->rs485.delay_rts_before_send) 1459 mdelay(port->rs485.delay_rts_before_send); 1460 1461 uap->rs485_tx_started = true; 1462 } 1463 1464 /* Returns true if tx interrupts have to be (kept) enabled */ 1465 static bool pl011_tx_chars(struct uart_amba_port *uap, bool from_irq) 1466 { 1467 struct circ_buf *xmit = &uap->port.state->xmit; 1468 int count = uap->fifosize >> 1; 1469 1470 if ((uap->port.rs485.flags & SER_RS485_ENABLED) && 1471 !uap->rs485_tx_started) 1472 pl011_rs485_tx_start(uap); 1473 1474 if (uap->port.x_char) { 1475 if (!pl011_tx_char(uap, uap->port.x_char, from_irq)) 1476 return true; 1477 uap->port.x_char = 0; 1478 --count; 1479 } 1480 if (uart_circ_empty(xmit) || uart_tx_stopped(&uap->port)) { 1481 pl011_stop_tx(&uap->port); 1482 return false; 1483 } 1484 1485 /* If we are using DMA mode, try to send some characters. */ 1486 if (pl011_dma_tx_irq(uap)) 1487 return true; 1488 1489 do { 1490 if (likely(from_irq) && count-- == 0) 1491 break; 1492 1493 if (!pl011_tx_char(uap, xmit->buf[xmit->tail], from_irq)) 1494 break; 1495 1496 xmit->tail = (xmit->tail + 1) & (UART_XMIT_SIZE - 1); 1497 } while (!uart_circ_empty(xmit)); 1498 1499 if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS) 1500 uart_write_wakeup(&uap->port); 1501 1502 if (uart_circ_empty(xmit)) { 1503 pl011_stop_tx(&uap->port); 1504 return false; 1505 } 1506 return true; 1507 } 1508 1509 static void pl011_modem_status(struct uart_amba_port *uap) 1510 { 1511 unsigned int status, delta; 1512 1513 status = pl011_read(uap, REG_FR) & UART01x_FR_MODEM_ANY; 1514 1515 delta = status ^ uap->old_status; 1516 uap->old_status = status; 1517 1518 if (!delta) 1519 return; 1520 1521 if (delta & UART01x_FR_DCD) 1522 uart_handle_dcd_change(&uap->port, status & UART01x_FR_DCD); 1523 1524 if (delta & uap->vendor->fr_dsr) 1525 uap->port.icount.dsr++; 1526 1527 if (delta & uap->vendor->fr_cts) 1528 uart_handle_cts_change(&uap->port, 1529 status & uap->vendor->fr_cts); 1530 1531 wake_up_interruptible(&uap->port.state->port.delta_msr_wait); 1532 } 1533 1534 static void check_apply_cts_event_workaround(struct uart_amba_port *uap) 1535 { 1536 if (!uap->vendor->cts_event_workaround) 1537 return; 1538 1539 /* workaround to make sure that all bits are unlocked.. */ 1540 pl011_write(0x00, uap, REG_ICR); 1541 1542 /* 1543 * WA: introduce 26ns(1 uart clk) delay before W1C; 1544 * single apb access will incur 2 pclk(133.12Mhz) delay, 1545 * so add 2 dummy reads 1546 */ 1547 pl011_read(uap, REG_ICR); 1548 pl011_read(uap, REG_ICR); 1549 } 1550 1551 static irqreturn_t pl011_int(int irq, void *dev_id) 1552 { 1553 struct uart_amba_port *uap = dev_id; 1554 unsigned long flags; 1555 unsigned int status, pass_counter = AMBA_ISR_PASS_LIMIT; 1556 int handled = 0; 1557 1558 spin_lock_irqsave(&uap->port.lock, flags); 1559 status = pl011_read(uap, REG_RIS) & uap->im; 1560 if (status) { 1561 do { 1562 check_apply_cts_event_workaround(uap); 1563 1564 pl011_write(status & ~(UART011_TXIS|UART011_RTIS| 1565 UART011_RXIS), 1566 uap, REG_ICR); 1567 1568 if (status & (UART011_RTIS|UART011_RXIS)) { 1569 if (pl011_dma_rx_running(uap)) 1570 pl011_dma_rx_irq(uap); 1571 else 1572 pl011_rx_chars(uap); 1573 } 1574 if (status & (UART011_DSRMIS|UART011_DCDMIS| 1575 UART011_CTSMIS|UART011_RIMIS)) 1576 pl011_modem_status(uap); 1577 if (status & UART011_TXIS) 1578 pl011_tx_chars(uap, true); 1579 1580 if (pass_counter-- == 0) 1581 break; 1582 1583 status = pl011_read(uap, REG_RIS) & uap->im; 1584 } while (status != 0); 1585 handled = 1; 1586 } 1587 1588 spin_unlock_irqrestore(&uap->port.lock, flags); 1589 1590 return IRQ_RETVAL(handled); 1591 } 1592 1593 static unsigned int pl011_tx_empty(struct uart_port *port) 1594 { 1595 struct uart_amba_port *uap = 1596 container_of(port, struct uart_amba_port, port); 1597 1598 /* Allow feature register bits to be inverted to work around errata */ 1599 unsigned int status = pl011_read(uap, REG_FR) ^ uap->vendor->inv_fr; 1600 1601 return status & (uap->vendor->fr_busy | UART01x_FR_TXFF) ? 1602 0 : TIOCSER_TEMT; 1603 } 1604 1605 static unsigned int pl011_get_mctrl(struct uart_port *port) 1606 { 1607 struct uart_amba_port *uap = 1608 container_of(port, struct uart_amba_port, port); 1609 unsigned int result = 0; 1610 unsigned int status = pl011_read(uap, REG_FR); 1611 1612 #define TIOCMBIT(uartbit, tiocmbit) \ 1613 if (status & uartbit) \ 1614 result |= tiocmbit 1615 1616 TIOCMBIT(UART01x_FR_DCD, TIOCM_CAR); 1617 TIOCMBIT(uap->vendor->fr_dsr, TIOCM_DSR); 1618 TIOCMBIT(uap->vendor->fr_cts, TIOCM_CTS); 1619 TIOCMBIT(uap->vendor->fr_ri, TIOCM_RNG); 1620 #undef TIOCMBIT 1621 return result; 1622 } 1623 1624 static void pl011_set_mctrl(struct uart_port *port, unsigned int mctrl) 1625 { 1626 struct uart_amba_port *uap = 1627 container_of(port, struct uart_amba_port, port); 1628 unsigned int cr; 1629 1630 cr = pl011_read(uap, REG_CR); 1631 1632 #define TIOCMBIT(tiocmbit, uartbit) \ 1633 if (mctrl & tiocmbit) \ 1634 cr |= uartbit; \ 1635 else \ 1636 cr &= ~uartbit 1637 1638 TIOCMBIT(TIOCM_RTS, UART011_CR_RTS); 1639 TIOCMBIT(TIOCM_DTR, UART011_CR_DTR); 1640 TIOCMBIT(TIOCM_OUT1, UART011_CR_OUT1); 1641 TIOCMBIT(TIOCM_OUT2, UART011_CR_OUT2); 1642 TIOCMBIT(TIOCM_LOOP, UART011_CR_LBE); 1643 1644 if (port->status & UPSTAT_AUTORTS) { 1645 /* We need to disable auto-RTS if we want to turn RTS off */ 1646 TIOCMBIT(TIOCM_RTS, UART011_CR_RTSEN); 1647 } 1648 #undef TIOCMBIT 1649 1650 pl011_write(cr, uap, REG_CR); 1651 } 1652 1653 static void pl011_break_ctl(struct uart_port *port, int break_state) 1654 { 1655 struct uart_amba_port *uap = 1656 container_of(port, struct uart_amba_port, port); 1657 unsigned long flags; 1658 unsigned int lcr_h; 1659 1660 spin_lock_irqsave(&uap->port.lock, flags); 1661 lcr_h = pl011_read(uap, REG_LCRH_TX); 1662 if (break_state == -1) 1663 lcr_h |= UART01x_LCRH_BRK; 1664 else 1665 lcr_h &= ~UART01x_LCRH_BRK; 1666 pl011_write(lcr_h, uap, REG_LCRH_TX); 1667 spin_unlock_irqrestore(&uap->port.lock, flags); 1668 } 1669 1670 #ifdef CONFIG_CONSOLE_POLL 1671 1672 static void pl011_quiesce_irqs(struct uart_port *port) 1673 { 1674 struct uart_amba_port *uap = 1675 container_of(port, struct uart_amba_port, port); 1676 1677 pl011_write(pl011_read(uap, REG_MIS), uap, REG_ICR); 1678 /* 1679 * There is no way to clear TXIM as this is "ready to transmit IRQ", so 1680 * we simply mask it. start_tx() will unmask it. 1681 * 1682 * Note we can race with start_tx(), and if the race happens, the 1683 * polling user might get another interrupt just after we clear it. 1684 * But it should be OK and can happen even w/o the race, e.g. 1685 * controller immediately got some new data and raised the IRQ. 1686 * 1687 * And whoever uses polling routines assumes that it manages the device 1688 * (including tx queue), so we're also fine with start_tx()'s caller 1689 * side. 1690 */ 1691 pl011_write(pl011_read(uap, REG_IMSC) & ~UART011_TXIM, uap, 1692 REG_IMSC); 1693 } 1694 1695 static int pl011_get_poll_char(struct uart_port *port) 1696 { 1697 struct uart_amba_port *uap = 1698 container_of(port, struct uart_amba_port, port); 1699 unsigned int status; 1700 1701 /* 1702 * The caller might need IRQs lowered, e.g. if used with KDB NMI 1703 * debugger. 1704 */ 1705 pl011_quiesce_irqs(port); 1706 1707 status = pl011_read(uap, REG_FR); 1708 if (status & UART01x_FR_RXFE) 1709 return NO_POLL_CHAR; 1710 1711 return pl011_read(uap, REG_DR); 1712 } 1713 1714 static void pl011_put_poll_char(struct uart_port *port, 1715 unsigned char ch) 1716 { 1717 struct uart_amba_port *uap = 1718 container_of(port, struct uart_amba_port, port); 1719 1720 while (pl011_read(uap, REG_FR) & UART01x_FR_TXFF) 1721 cpu_relax(); 1722 1723 pl011_write(ch, uap, REG_DR); 1724 } 1725 1726 #endif /* CONFIG_CONSOLE_POLL */ 1727 1728 static int pl011_hwinit(struct uart_port *port) 1729 { 1730 struct uart_amba_port *uap = 1731 container_of(port, struct uart_amba_port, port); 1732 int retval; 1733 1734 /* Optionaly enable pins to be muxed in and configured */ 1735 pinctrl_pm_select_default_state(port->dev); 1736 1737 /* 1738 * Try to enable the clock producer. 1739 */ 1740 retval = clk_prepare_enable(uap->clk); 1741 if (retval) 1742 return retval; 1743 1744 uap->port.uartclk = clk_get_rate(uap->clk); 1745 1746 /* Clear pending error and receive interrupts */ 1747 pl011_write(UART011_OEIS | UART011_BEIS | UART011_PEIS | 1748 UART011_FEIS | UART011_RTIS | UART011_RXIS, 1749 uap, REG_ICR); 1750 1751 /* 1752 * Save interrupts enable mask, and enable RX interrupts in case if 1753 * the interrupt is used for NMI entry. 1754 */ 1755 uap->im = pl011_read(uap, REG_IMSC); 1756 pl011_write(UART011_RTIM | UART011_RXIM, uap, REG_IMSC); 1757 1758 if (dev_get_platdata(uap->port.dev)) { 1759 struct amba_pl011_data *plat; 1760 1761 plat = dev_get_platdata(uap->port.dev); 1762 if (plat->init) 1763 plat->init(); 1764 } 1765 return 0; 1766 } 1767 1768 static bool pl011_split_lcrh(const struct uart_amba_port *uap) 1769 { 1770 return pl011_reg_to_offset(uap, REG_LCRH_RX) != 1771 pl011_reg_to_offset(uap, REG_LCRH_TX); 1772 } 1773 1774 static void pl011_write_lcr_h(struct uart_amba_port *uap, unsigned int lcr_h) 1775 { 1776 pl011_write(lcr_h, uap, REG_LCRH_RX); 1777 if (pl011_split_lcrh(uap)) { 1778 int i; 1779 /* 1780 * Wait 10 PCLKs before writing LCRH_TX register, 1781 * to get this delay write read only register 10 times 1782 */ 1783 for (i = 0; i < 10; ++i) 1784 pl011_write(0xff, uap, REG_MIS); 1785 pl011_write(lcr_h, uap, REG_LCRH_TX); 1786 } 1787 } 1788 1789 static int pl011_allocate_irq(struct uart_amba_port *uap) 1790 { 1791 pl011_write(uap->im, uap, REG_IMSC); 1792 1793 return request_irq(uap->port.irq, pl011_int, IRQF_SHARED, "uart-pl011", uap); 1794 } 1795 1796 /* 1797 * Enable interrupts, only timeouts when using DMA 1798 * if initial RX DMA job failed, start in interrupt mode 1799 * as well. 1800 */ 1801 static void pl011_enable_interrupts(struct uart_amba_port *uap) 1802 { 1803 unsigned long flags; 1804 unsigned int i; 1805 1806 spin_lock_irqsave(&uap->port.lock, flags); 1807 1808 /* Clear out any spuriously appearing RX interrupts */ 1809 pl011_write(UART011_RTIS | UART011_RXIS, uap, REG_ICR); 1810 1811 /* 1812 * RXIS is asserted only when the RX FIFO transitions from below 1813 * to above the trigger threshold. If the RX FIFO is already 1814 * full to the threshold this can't happen and RXIS will now be 1815 * stuck off. Drain the RX FIFO explicitly to fix this: 1816 */ 1817 for (i = 0; i < uap->fifosize * 2; ++i) { 1818 if (pl011_read(uap, REG_FR) & UART01x_FR_RXFE) 1819 break; 1820 1821 pl011_read(uap, REG_DR); 1822 } 1823 1824 uap->im = UART011_RTIM; 1825 if (!pl011_dma_rx_running(uap)) 1826 uap->im |= UART011_RXIM; 1827 pl011_write(uap->im, uap, REG_IMSC); 1828 spin_unlock_irqrestore(&uap->port.lock, flags); 1829 } 1830 1831 static void pl011_unthrottle_rx(struct uart_port *port) 1832 { 1833 struct uart_amba_port *uap = container_of(port, struct uart_amba_port, port); 1834 unsigned long flags; 1835 1836 spin_lock_irqsave(&uap->port.lock, flags); 1837 1838 uap->im = UART011_RTIM; 1839 if (!pl011_dma_rx_running(uap)) 1840 uap->im |= UART011_RXIM; 1841 1842 pl011_write(uap->im, uap, REG_IMSC); 1843 1844 spin_unlock_irqrestore(&uap->port.lock, flags); 1845 } 1846 1847 static int pl011_startup(struct uart_port *port) 1848 { 1849 struct uart_amba_port *uap = 1850 container_of(port, struct uart_amba_port, port); 1851 unsigned int cr; 1852 int retval; 1853 1854 retval = pl011_hwinit(port); 1855 if (retval) 1856 goto clk_dis; 1857 1858 retval = pl011_allocate_irq(uap); 1859 if (retval) 1860 goto clk_dis; 1861 1862 pl011_write(uap->vendor->ifls, uap, REG_IFLS); 1863 1864 spin_lock_irq(&uap->port.lock); 1865 1866 cr = pl011_read(uap, REG_CR); 1867 cr &= UART011_CR_RTS | UART011_CR_DTR; 1868 cr |= UART01x_CR_UARTEN | UART011_CR_RXE; 1869 1870 if (!(port->rs485.flags & SER_RS485_ENABLED)) 1871 cr |= UART011_CR_TXE; 1872 1873 pl011_write(cr, uap, REG_CR); 1874 1875 spin_unlock_irq(&uap->port.lock); 1876 1877 /* 1878 * initialise the old status of the modem signals 1879 */ 1880 uap->old_status = pl011_read(uap, REG_FR) & UART01x_FR_MODEM_ANY; 1881 1882 /* Startup DMA */ 1883 pl011_dma_startup(uap); 1884 1885 pl011_enable_interrupts(uap); 1886 1887 return 0; 1888 1889 clk_dis: 1890 clk_disable_unprepare(uap->clk); 1891 return retval; 1892 } 1893 1894 static int sbsa_uart_startup(struct uart_port *port) 1895 { 1896 struct uart_amba_port *uap = 1897 container_of(port, struct uart_amba_port, port); 1898 int retval; 1899 1900 retval = pl011_hwinit(port); 1901 if (retval) 1902 return retval; 1903 1904 retval = pl011_allocate_irq(uap); 1905 if (retval) 1906 return retval; 1907 1908 /* The SBSA UART does not support any modem status lines. */ 1909 uap->old_status = 0; 1910 1911 pl011_enable_interrupts(uap); 1912 1913 return 0; 1914 } 1915 1916 static void pl011_shutdown_channel(struct uart_amba_port *uap, 1917 unsigned int lcrh) 1918 { 1919 unsigned long val; 1920 1921 val = pl011_read(uap, lcrh); 1922 val &= ~(UART01x_LCRH_BRK | UART01x_LCRH_FEN); 1923 pl011_write(val, uap, lcrh); 1924 } 1925 1926 /* 1927 * disable the port. It should not disable RTS and DTR. 1928 * Also RTS and DTR state should be preserved to restore 1929 * it during startup(). 1930 */ 1931 static void pl011_disable_uart(struct uart_amba_port *uap) 1932 { 1933 unsigned int cr; 1934 1935 uap->port.status &= ~(UPSTAT_AUTOCTS | UPSTAT_AUTORTS); 1936 spin_lock_irq(&uap->port.lock); 1937 cr = pl011_read(uap, REG_CR); 1938 cr &= UART011_CR_RTS | UART011_CR_DTR; 1939 cr |= UART01x_CR_UARTEN | UART011_CR_TXE; 1940 pl011_write(cr, uap, REG_CR); 1941 spin_unlock_irq(&uap->port.lock); 1942 1943 /* 1944 * disable break condition and fifos 1945 */ 1946 pl011_shutdown_channel(uap, REG_LCRH_RX); 1947 if (pl011_split_lcrh(uap)) 1948 pl011_shutdown_channel(uap, REG_LCRH_TX); 1949 } 1950 1951 static void pl011_disable_interrupts(struct uart_amba_port *uap) 1952 { 1953 spin_lock_irq(&uap->port.lock); 1954 1955 /* mask all interrupts and clear all pending ones */ 1956 uap->im = 0; 1957 pl011_write(uap->im, uap, REG_IMSC); 1958 pl011_write(0xffff, uap, REG_ICR); 1959 1960 spin_unlock_irq(&uap->port.lock); 1961 } 1962 1963 static void pl011_shutdown(struct uart_port *port) 1964 { 1965 struct uart_amba_port *uap = 1966 container_of(port, struct uart_amba_port, port); 1967 1968 pl011_disable_interrupts(uap); 1969 1970 pl011_dma_shutdown(uap); 1971 1972 if ((port->rs485.flags & SER_RS485_ENABLED) && uap->rs485_tx_started) 1973 pl011_rs485_tx_stop(uap); 1974 1975 free_irq(uap->port.irq, uap); 1976 1977 pl011_disable_uart(uap); 1978 1979 /* 1980 * Shut down the clock producer 1981 */ 1982 clk_disable_unprepare(uap->clk); 1983 /* Optionally let pins go into sleep states */ 1984 pinctrl_pm_select_sleep_state(port->dev); 1985 1986 if (dev_get_platdata(uap->port.dev)) { 1987 struct amba_pl011_data *plat; 1988 1989 plat = dev_get_platdata(uap->port.dev); 1990 if (plat->exit) 1991 plat->exit(); 1992 } 1993 1994 if (uap->port.ops->flush_buffer) 1995 uap->port.ops->flush_buffer(port); 1996 } 1997 1998 static void sbsa_uart_shutdown(struct uart_port *port) 1999 { 2000 struct uart_amba_port *uap = 2001 container_of(port, struct uart_amba_port, port); 2002 2003 pl011_disable_interrupts(uap); 2004 2005 free_irq(uap->port.irq, uap); 2006 2007 if (uap->port.ops->flush_buffer) 2008 uap->port.ops->flush_buffer(port); 2009 } 2010 2011 static void 2012 pl011_setup_status_masks(struct uart_port *port, struct ktermios *termios) 2013 { 2014 port->read_status_mask = UART011_DR_OE | 255; 2015 if (termios->c_iflag & INPCK) 2016 port->read_status_mask |= UART011_DR_FE | UART011_DR_PE; 2017 if (termios->c_iflag & (IGNBRK | BRKINT | PARMRK)) 2018 port->read_status_mask |= UART011_DR_BE; 2019 2020 /* 2021 * Characters to ignore 2022 */ 2023 port->ignore_status_mask = 0; 2024 if (termios->c_iflag & IGNPAR) 2025 port->ignore_status_mask |= UART011_DR_FE | UART011_DR_PE; 2026 if (termios->c_iflag & IGNBRK) { 2027 port->ignore_status_mask |= UART011_DR_BE; 2028 /* 2029 * If we're ignoring parity and break indicators, 2030 * ignore overruns too (for real raw support). 2031 */ 2032 if (termios->c_iflag & IGNPAR) 2033 port->ignore_status_mask |= UART011_DR_OE; 2034 } 2035 2036 /* 2037 * Ignore all characters if CREAD is not set. 2038 */ 2039 if ((termios->c_cflag & CREAD) == 0) 2040 port->ignore_status_mask |= UART_DUMMY_DR_RX; 2041 } 2042 2043 static void 2044 pl011_set_termios(struct uart_port *port, struct ktermios *termios, 2045 const struct ktermios *old) 2046 { 2047 struct uart_amba_port *uap = 2048 container_of(port, struct uart_amba_port, port); 2049 unsigned int lcr_h, old_cr; 2050 unsigned long flags; 2051 unsigned int baud, quot, clkdiv; 2052 unsigned int bits; 2053 2054 if (uap->vendor->oversampling) 2055 clkdiv = 8; 2056 else 2057 clkdiv = 16; 2058 2059 /* 2060 * Ask the core to calculate the divisor for us. 2061 */ 2062 baud = uart_get_baud_rate(port, termios, old, 0, 2063 port->uartclk / clkdiv); 2064 #ifdef CONFIG_DMA_ENGINE 2065 /* 2066 * Adjust RX DMA polling rate with baud rate if not specified. 2067 */ 2068 if (uap->dmarx.auto_poll_rate) 2069 uap->dmarx.poll_rate = DIV_ROUND_UP(10000000, baud); 2070 #endif 2071 2072 if (baud > port->uartclk/16) 2073 quot = DIV_ROUND_CLOSEST(port->uartclk * 8, baud); 2074 else 2075 quot = DIV_ROUND_CLOSEST(port->uartclk * 4, baud); 2076 2077 switch (termios->c_cflag & CSIZE) { 2078 case CS5: 2079 lcr_h = UART01x_LCRH_WLEN_5; 2080 break; 2081 case CS6: 2082 lcr_h = UART01x_LCRH_WLEN_6; 2083 break; 2084 case CS7: 2085 lcr_h = UART01x_LCRH_WLEN_7; 2086 break; 2087 default: // CS8 2088 lcr_h = UART01x_LCRH_WLEN_8; 2089 break; 2090 } 2091 if (termios->c_cflag & CSTOPB) 2092 lcr_h |= UART01x_LCRH_STP2; 2093 if (termios->c_cflag & PARENB) { 2094 lcr_h |= UART01x_LCRH_PEN; 2095 if (!(termios->c_cflag & PARODD)) 2096 lcr_h |= UART01x_LCRH_EPS; 2097 if (termios->c_cflag & CMSPAR) 2098 lcr_h |= UART011_LCRH_SPS; 2099 } 2100 if (uap->fifosize > 1) 2101 lcr_h |= UART01x_LCRH_FEN; 2102 2103 bits = tty_get_frame_size(termios->c_cflag); 2104 2105 spin_lock_irqsave(&port->lock, flags); 2106 2107 /* 2108 * Update the per-port timeout. 2109 */ 2110 uart_update_timeout(port, termios->c_cflag, baud); 2111 2112 /* 2113 * Calculate the approximated time it takes to transmit one character 2114 * with the given baud rate. We use this as the poll interval when we 2115 * wait for the tx queue to empty. 2116 */ 2117 uap->rs485_tx_drain_interval = DIV_ROUND_UP(bits * 1000 * 1000, baud); 2118 2119 pl011_setup_status_masks(port, termios); 2120 2121 if (UART_ENABLE_MS(port, termios->c_cflag)) 2122 pl011_enable_ms(port); 2123 2124 if (port->rs485.flags & SER_RS485_ENABLED) 2125 termios->c_cflag &= ~CRTSCTS; 2126 2127 old_cr = pl011_read(uap, REG_CR); 2128 2129 if (termios->c_cflag & CRTSCTS) { 2130 if (old_cr & UART011_CR_RTS) 2131 old_cr |= UART011_CR_RTSEN; 2132 2133 old_cr |= UART011_CR_CTSEN; 2134 port->status |= UPSTAT_AUTOCTS | UPSTAT_AUTORTS; 2135 } else { 2136 old_cr &= ~(UART011_CR_CTSEN | UART011_CR_RTSEN); 2137 port->status &= ~(UPSTAT_AUTOCTS | UPSTAT_AUTORTS); 2138 } 2139 2140 if (uap->vendor->oversampling) { 2141 if (baud > port->uartclk / 16) 2142 old_cr |= ST_UART011_CR_OVSFACT; 2143 else 2144 old_cr &= ~ST_UART011_CR_OVSFACT; 2145 } 2146 2147 /* 2148 * Workaround for the ST Micro oversampling variants to 2149 * increase the bitrate slightly, by lowering the divisor, 2150 * to avoid delayed sampling of start bit at high speeds, 2151 * else we see data corruption. 2152 */ 2153 if (uap->vendor->oversampling) { 2154 if ((baud >= 3000000) && (baud < 3250000) && (quot > 1)) 2155 quot -= 1; 2156 else if ((baud > 3250000) && (quot > 2)) 2157 quot -= 2; 2158 } 2159 /* Set baud rate */ 2160 pl011_write(quot & 0x3f, uap, REG_FBRD); 2161 pl011_write(quot >> 6, uap, REG_IBRD); 2162 2163 /* 2164 * ----------v----------v----------v----------v----- 2165 * NOTE: REG_LCRH_TX and REG_LCRH_RX MUST BE WRITTEN AFTER 2166 * REG_FBRD & REG_IBRD. 2167 * ----------^----------^----------^----------^----- 2168 */ 2169 pl011_write_lcr_h(uap, lcr_h); 2170 2171 /* 2172 * Receive was disabled by pl011_disable_uart during shutdown. 2173 * Need to reenable receive if you need to use a tty_driver 2174 * returns from tty_find_polling_driver() after a port shutdown. 2175 */ 2176 old_cr |= UART011_CR_RXE; 2177 pl011_write(old_cr, uap, REG_CR); 2178 2179 spin_unlock_irqrestore(&port->lock, flags); 2180 } 2181 2182 static void 2183 sbsa_uart_set_termios(struct uart_port *port, struct ktermios *termios, 2184 const struct ktermios *old) 2185 { 2186 struct uart_amba_port *uap = 2187 container_of(port, struct uart_amba_port, port); 2188 unsigned long flags; 2189 2190 tty_termios_encode_baud_rate(termios, uap->fixed_baud, uap->fixed_baud); 2191 2192 /* The SBSA UART only supports 8n1 without hardware flow control. */ 2193 termios->c_cflag &= ~(CSIZE | CSTOPB | PARENB | PARODD); 2194 termios->c_cflag &= ~(CMSPAR | CRTSCTS); 2195 termios->c_cflag |= CS8 | CLOCAL; 2196 2197 spin_lock_irqsave(&port->lock, flags); 2198 uart_update_timeout(port, CS8, uap->fixed_baud); 2199 pl011_setup_status_masks(port, termios); 2200 spin_unlock_irqrestore(&port->lock, flags); 2201 } 2202 2203 static const char *pl011_type(struct uart_port *port) 2204 { 2205 struct uart_amba_port *uap = 2206 container_of(port, struct uart_amba_port, port); 2207 return uap->port.type == PORT_AMBA ? uap->type : NULL; 2208 } 2209 2210 /* 2211 * Configure/autoconfigure the port. 2212 */ 2213 static void pl011_config_port(struct uart_port *port, int flags) 2214 { 2215 if (flags & UART_CONFIG_TYPE) 2216 port->type = PORT_AMBA; 2217 } 2218 2219 /* 2220 * verify the new serial_struct (for TIOCSSERIAL). 2221 */ 2222 static int pl011_verify_port(struct uart_port *port, struct serial_struct *ser) 2223 { 2224 int ret = 0; 2225 if (ser->type != PORT_UNKNOWN && ser->type != PORT_AMBA) 2226 ret = -EINVAL; 2227 if (ser->irq < 0 || ser->irq >= nr_irqs) 2228 ret = -EINVAL; 2229 if (ser->baud_base < 9600) 2230 ret = -EINVAL; 2231 if (port->mapbase != (unsigned long) ser->iomem_base) 2232 ret = -EINVAL; 2233 return ret; 2234 } 2235 2236 static int pl011_rs485_config(struct uart_port *port, struct ktermios *termios, 2237 struct serial_rs485 *rs485) 2238 { 2239 struct uart_amba_port *uap = 2240 container_of(port, struct uart_amba_port, port); 2241 2242 if (port->rs485.flags & SER_RS485_ENABLED) 2243 pl011_rs485_tx_stop(uap); 2244 2245 /* Make sure auto RTS is disabled */ 2246 if (rs485->flags & SER_RS485_ENABLED) { 2247 u32 cr = pl011_read(uap, REG_CR); 2248 2249 cr &= ~UART011_CR_RTSEN; 2250 pl011_write(cr, uap, REG_CR); 2251 port->status &= ~UPSTAT_AUTORTS; 2252 } 2253 2254 return 0; 2255 } 2256 2257 static const struct uart_ops amba_pl011_pops = { 2258 .tx_empty = pl011_tx_empty, 2259 .set_mctrl = pl011_set_mctrl, 2260 .get_mctrl = pl011_get_mctrl, 2261 .stop_tx = pl011_stop_tx, 2262 .start_tx = pl011_start_tx, 2263 .stop_rx = pl011_stop_rx, 2264 .throttle = pl011_throttle_rx, 2265 .unthrottle = pl011_unthrottle_rx, 2266 .enable_ms = pl011_enable_ms, 2267 .break_ctl = pl011_break_ctl, 2268 .startup = pl011_startup, 2269 .shutdown = pl011_shutdown, 2270 .flush_buffer = pl011_dma_flush_buffer, 2271 .set_termios = pl011_set_termios, 2272 .type = pl011_type, 2273 .config_port = pl011_config_port, 2274 .verify_port = pl011_verify_port, 2275 #ifdef CONFIG_CONSOLE_POLL 2276 .poll_init = pl011_hwinit, 2277 .poll_get_char = pl011_get_poll_char, 2278 .poll_put_char = pl011_put_poll_char, 2279 #endif 2280 }; 2281 2282 static void sbsa_uart_set_mctrl(struct uart_port *port, unsigned int mctrl) 2283 { 2284 } 2285 2286 static unsigned int sbsa_uart_get_mctrl(struct uart_port *port) 2287 { 2288 return 0; 2289 } 2290 2291 static const struct uart_ops sbsa_uart_pops = { 2292 .tx_empty = pl011_tx_empty, 2293 .set_mctrl = sbsa_uart_set_mctrl, 2294 .get_mctrl = sbsa_uart_get_mctrl, 2295 .stop_tx = pl011_stop_tx, 2296 .start_tx = pl011_start_tx, 2297 .stop_rx = pl011_stop_rx, 2298 .startup = sbsa_uart_startup, 2299 .shutdown = sbsa_uart_shutdown, 2300 .set_termios = sbsa_uart_set_termios, 2301 .type = pl011_type, 2302 .config_port = pl011_config_port, 2303 .verify_port = pl011_verify_port, 2304 #ifdef CONFIG_CONSOLE_POLL 2305 .poll_init = pl011_hwinit, 2306 .poll_get_char = pl011_get_poll_char, 2307 .poll_put_char = pl011_put_poll_char, 2308 #endif 2309 }; 2310 2311 static struct uart_amba_port *amba_ports[UART_NR]; 2312 2313 #ifdef CONFIG_SERIAL_AMBA_PL011_CONSOLE 2314 2315 static void pl011_console_putchar(struct uart_port *port, unsigned char ch) 2316 { 2317 struct uart_amba_port *uap = 2318 container_of(port, struct uart_amba_port, port); 2319 2320 while (pl011_read(uap, REG_FR) & UART01x_FR_TXFF) 2321 cpu_relax(); 2322 pl011_write(ch, uap, REG_DR); 2323 } 2324 2325 static void 2326 pl011_console_write(struct console *co, const char *s, unsigned int count) 2327 { 2328 struct uart_amba_port *uap = amba_ports[co->index]; 2329 unsigned int old_cr = 0, new_cr; 2330 unsigned long flags; 2331 int locked = 1; 2332 2333 clk_enable(uap->clk); 2334 2335 local_irq_save(flags); 2336 if (uap->port.sysrq) 2337 locked = 0; 2338 else if (oops_in_progress) 2339 locked = spin_trylock(&uap->port.lock); 2340 else 2341 spin_lock(&uap->port.lock); 2342 2343 /* 2344 * First save the CR then disable the interrupts 2345 */ 2346 if (!uap->vendor->always_enabled) { 2347 old_cr = pl011_read(uap, REG_CR); 2348 new_cr = old_cr & ~UART011_CR_CTSEN; 2349 new_cr |= UART01x_CR_UARTEN | UART011_CR_TXE; 2350 pl011_write(new_cr, uap, REG_CR); 2351 } 2352 2353 uart_console_write(&uap->port, s, count, pl011_console_putchar); 2354 2355 /* 2356 * Finally, wait for transmitter to become empty and restore the 2357 * TCR. Allow feature register bits to be inverted to work around 2358 * errata. 2359 */ 2360 while ((pl011_read(uap, REG_FR) ^ uap->vendor->inv_fr) 2361 & uap->vendor->fr_busy) 2362 cpu_relax(); 2363 if (!uap->vendor->always_enabled) 2364 pl011_write(old_cr, uap, REG_CR); 2365 2366 if (locked) 2367 spin_unlock(&uap->port.lock); 2368 local_irq_restore(flags); 2369 2370 clk_disable(uap->clk); 2371 } 2372 2373 static void pl011_console_get_options(struct uart_amba_port *uap, int *baud, 2374 int *parity, int *bits) 2375 { 2376 if (pl011_read(uap, REG_CR) & UART01x_CR_UARTEN) { 2377 unsigned int lcr_h, ibrd, fbrd; 2378 2379 lcr_h = pl011_read(uap, REG_LCRH_TX); 2380 2381 *parity = 'n'; 2382 if (lcr_h & UART01x_LCRH_PEN) { 2383 if (lcr_h & UART01x_LCRH_EPS) 2384 *parity = 'e'; 2385 else 2386 *parity = 'o'; 2387 } 2388 2389 if ((lcr_h & 0x60) == UART01x_LCRH_WLEN_7) 2390 *bits = 7; 2391 else 2392 *bits = 8; 2393 2394 ibrd = pl011_read(uap, REG_IBRD); 2395 fbrd = pl011_read(uap, REG_FBRD); 2396 2397 *baud = uap->port.uartclk * 4 / (64 * ibrd + fbrd); 2398 2399 if (uap->vendor->oversampling) { 2400 if (pl011_read(uap, REG_CR) 2401 & ST_UART011_CR_OVSFACT) 2402 *baud *= 2; 2403 } 2404 } 2405 } 2406 2407 static int pl011_console_setup(struct console *co, char *options) 2408 { 2409 struct uart_amba_port *uap; 2410 int baud = 38400; 2411 int bits = 8; 2412 int parity = 'n'; 2413 int flow = 'n'; 2414 int ret; 2415 2416 /* 2417 * Check whether an invalid uart number has been specified, and 2418 * if so, search for the first available port that does have 2419 * console support. 2420 */ 2421 if (co->index >= UART_NR) 2422 co->index = 0; 2423 uap = amba_ports[co->index]; 2424 if (!uap) 2425 return -ENODEV; 2426 2427 /* Allow pins to be muxed in and configured */ 2428 pinctrl_pm_select_default_state(uap->port.dev); 2429 2430 ret = clk_prepare(uap->clk); 2431 if (ret) 2432 return ret; 2433 2434 if (dev_get_platdata(uap->port.dev)) { 2435 struct amba_pl011_data *plat; 2436 2437 plat = dev_get_platdata(uap->port.dev); 2438 if (plat->init) 2439 plat->init(); 2440 } 2441 2442 uap->port.uartclk = clk_get_rate(uap->clk); 2443 2444 if (uap->vendor->fixed_options) { 2445 baud = uap->fixed_baud; 2446 } else { 2447 if (options) 2448 uart_parse_options(options, 2449 &baud, &parity, &bits, &flow); 2450 else 2451 pl011_console_get_options(uap, &baud, &parity, &bits); 2452 } 2453 2454 return uart_set_options(&uap->port, co, baud, parity, bits, flow); 2455 } 2456 2457 /** 2458 * pl011_console_match - non-standard console matching 2459 * @co: registering console 2460 * @name: name from console command line 2461 * @idx: index from console command line 2462 * @options: ptr to option string from console command line 2463 * 2464 * Only attempts to match console command lines of the form: 2465 * console=pl011,mmio|mmio32,<addr>[,<options>] 2466 * console=pl011,0x<addr>[,<options>] 2467 * This form is used to register an initial earlycon boot console and 2468 * replace it with the amba_console at pl011 driver init. 2469 * 2470 * Performs console setup for a match (as required by interface) 2471 * If no <options> are specified, then assume the h/w is already setup. 2472 * 2473 * Returns 0 if console matches; otherwise non-zero to use default matching 2474 */ 2475 static int pl011_console_match(struct console *co, char *name, int idx, 2476 char *options) 2477 { 2478 unsigned char iotype; 2479 resource_size_t addr; 2480 int i; 2481 2482 /* 2483 * Systems affected by the Qualcomm Technologies QDF2400 E44 erratum 2484 * have a distinct console name, so make sure we check for that. 2485 * The actual implementation of the erratum occurs in the probe 2486 * function. 2487 */ 2488 if ((strcmp(name, "qdf2400_e44") != 0) && (strcmp(name, "pl011") != 0)) 2489 return -ENODEV; 2490 2491 if (uart_parse_earlycon(options, &iotype, &addr, &options)) 2492 return -ENODEV; 2493 2494 if (iotype != UPIO_MEM && iotype != UPIO_MEM32) 2495 return -ENODEV; 2496 2497 /* try to match the port specified on the command line */ 2498 for (i = 0; i < ARRAY_SIZE(amba_ports); i++) { 2499 struct uart_port *port; 2500 2501 if (!amba_ports[i]) 2502 continue; 2503 2504 port = &amba_ports[i]->port; 2505 2506 if (port->mapbase != addr) 2507 continue; 2508 2509 co->index = i; 2510 port->cons = co; 2511 return pl011_console_setup(co, options); 2512 } 2513 2514 return -ENODEV; 2515 } 2516 2517 static struct uart_driver amba_reg; 2518 static struct console amba_console = { 2519 .name = "ttyAMA", 2520 .write = pl011_console_write, 2521 .device = uart_console_device, 2522 .setup = pl011_console_setup, 2523 .match = pl011_console_match, 2524 .flags = CON_PRINTBUFFER | CON_ANYTIME, 2525 .index = -1, 2526 .data = &amba_reg, 2527 }; 2528 2529 #define AMBA_CONSOLE (&amba_console) 2530 2531 static void qdf2400_e44_putc(struct uart_port *port, unsigned char c) 2532 { 2533 while (readl(port->membase + UART01x_FR) & UART01x_FR_TXFF) 2534 cpu_relax(); 2535 writel(c, port->membase + UART01x_DR); 2536 while (!(readl(port->membase + UART01x_FR) & UART011_FR_TXFE)) 2537 cpu_relax(); 2538 } 2539 2540 static void qdf2400_e44_early_write(struct console *con, const char *s, unsigned n) 2541 { 2542 struct earlycon_device *dev = con->data; 2543 2544 uart_console_write(&dev->port, s, n, qdf2400_e44_putc); 2545 } 2546 2547 static void pl011_putc(struct uart_port *port, unsigned char c) 2548 { 2549 while (readl(port->membase + UART01x_FR) & UART01x_FR_TXFF) 2550 cpu_relax(); 2551 if (port->iotype == UPIO_MEM32) 2552 writel(c, port->membase + UART01x_DR); 2553 else 2554 writeb(c, port->membase + UART01x_DR); 2555 while (readl(port->membase + UART01x_FR) & UART01x_FR_BUSY) 2556 cpu_relax(); 2557 } 2558 2559 static void pl011_early_write(struct console *con, const char *s, unsigned n) 2560 { 2561 struct earlycon_device *dev = con->data; 2562 2563 uart_console_write(&dev->port, s, n, pl011_putc); 2564 } 2565 2566 #ifdef CONFIG_CONSOLE_POLL 2567 static int pl011_getc(struct uart_port *port) 2568 { 2569 if (readl(port->membase + UART01x_FR) & UART01x_FR_RXFE) 2570 return NO_POLL_CHAR; 2571 2572 if (port->iotype == UPIO_MEM32) 2573 return readl(port->membase + UART01x_DR); 2574 else 2575 return readb(port->membase + UART01x_DR); 2576 } 2577 2578 static int pl011_early_read(struct console *con, char *s, unsigned int n) 2579 { 2580 struct earlycon_device *dev = con->data; 2581 int ch, num_read = 0; 2582 2583 while (num_read < n) { 2584 ch = pl011_getc(&dev->port); 2585 if (ch == NO_POLL_CHAR) 2586 break; 2587 2588 s[num_read++] = ch; 2589 } 2590 2591 return num_read; 2592 } 2593 #else 2594 #define pl011_early_read NULL 2595 #endif 2596 2597 /* 2598 * On non-ACPI systems, earlycon is enabled by specifying 2599 * "earlycon=pl011,<address>" on the kernel command line. 2600 * 2601 * On ACPI ARM64 systems, an "early" console is enabled via the SPCR table, 2602 * by specifying only "earlycon" on the command line. Because it requires 2603 * SPCR, the console starts after ACPI is parsed, which is later than a 2604 * traditional early console. 2605 * 2606 * To get the traditional early console that starts before ACPI is parsed, 2607 * specify the full "earlycon=pl011,<address>" option. 2608 */ 2609 static int __init pl011_early_console_setup(struct earlycon_device *device, 2610 const char *opt) 2611 { 2612 if (!device->port.membase) 2613 return -ENODEV; 2614 2615 device->con->write = pl011_early_write; 2616 device->con->read = pl011_early_read; 2617 2618 return 0; 2619 } 2620 OF_EARLYCON_DECLARE(pl011, "arm,pl011", pl011_early_console_setup); 2621 OF_EARLYCON_DECLARE(pl011, "arm,sbsa-uart", pl011_early_console_setup); 2622 2623 /* 2624 * On Qualcomm Datacenter Technologies QDF2400 SOCs affected by 2625 * Erratum 44, traditional earlycon can be enabled by specifying 2626 * "earlycon=qdf2400_e44,<address>". Any options are ignored. 2627 * 2628 * Alternatively, you can just specify "earlycon", and the early console 2629 * will be enabled with the information from the SPCR table. In this 2630 * case, the SPCR code will detect the need for the E44 work-around, 2631 * and set the console name to "qdf2400_e44". 2632 */ 2633 static int __init 2634 qdf2400_e44_early_console_setup(struct earlycon_device *device, 2635 const char *opt) 2636 { 2637 if (!device->port.membase) 2638 return -ENODEV; 2639 2640 device->con->write = qdf2400_e44_early_write; 2641 return 0; 2642 } 2643 EARLYCON_DECLARE(qdf2400_e44, qdf2400_e44_early_console_setup); 2644 2645 #else 2646 #define AMBA_CONSOLE NULL 2647 #endif 2648 2649 static struct uart_driver amba_reg = { 2650 .owner = THIS_MODULE, 2651 .driver_name = "ttyAMA", 2652 .dev_name = "ttyAMA", 2653 .major = SERIAL_AMBA_MAJOR, 2654 .minor = SERIAL_AMBA_MINOR, 2655 .nr = UART_NR, 2656 .cons = AMBA_CONSOLE, 2657 }; 2658 2659 static int pl011_probe_dt_alias(int index, struct device *dev) 2660 { 2661 struct device_node *np; 2662 static bool seen_dev_with_alias = false; 2663 static bool seen_dev_without_alias = false; 2664 int ret = index; 2665 2666 if (!IS_ENABLED(CONFIG_OF)) 2667 return ret; 2668 2669 np = dev->of_node; 2670 if (!np) 2671 return ret; 2672 2673 ret = of_alias_get_id(np, "serial"); 2674 if (ret < 0) { 2675 seen_dev_without_alias = true; 2676 ret = index; 2677 } else { 2678 seen_dev_with_alias = true; 2679 if (ret >= ARRAY_SIZE(amba_ports) || amba_ports[ret] != NULL) { 2680 dev_warn(dev, "requested serial port %d not available.\n", ret); 2681 ret = index; 2682 } 2683 } 2684 2685 if (seen_dev_with_alias && seen_dev_without_alias) 2686 dev_warn(dev, "aliased and non-aliased serial devices found in device tree. Serial port enumeration may be unpredictable.\n"); 2687 2688 return ret; 2689 } 2690 2691 /* unregisters the driver also if no more ports are left */ 2692 static void pl011_unregister_port(struct uart_amba_port *uap) 2693 { 2694 int i; 2695 bool busy = false; 2696 2697 for (i = 0; i < ARRAY_SIZE(amba_ports); i++) { 2698 if (amba_ports[i] == uap) 2699 amba_ports[i] = NULL; 2700 else if (amba_ports[i]) 2701 busy = true; 2702 } 2703 pl011_dma_remove(uap); 2704 if (!busy) 2705 uart_unregister_driver(&amba_reg); 2706 } 2707 2708 static int pl011_find_free_port(void) 2709 { 2710 int i; 2711 2712 for (i = 0; i < ARRAY_SIZE(amba_ports); i++) 2713 if (amba_ports[i] == NULL) 2714 return i; 2715 2716 return -EBUSY; 2717 } 2718 2719 static int pl011_get_rs485_mode(struct uart_amba_port *uap) 2720 { 2721 struct uart_port *port = &uap->port; 2722 int ret; 2723 2724 ret = uart_get_rs485_mode(port); 2725 if (ret) 2726 return ret; 2727 2728 return 0; 2729 } 2730 2731 static int pl011_setup_port(struct device *dev, struct uart_amba_port *uap, 2732 struct resource *mmiobase, int index) 2733 { 2734 void __iomem *base; 2735 int ret; 2736 2737 base = devm_ioremap_resource(dev, mmiobase); 2738 if (IS_ERR(base)) 2739 return PTR_ERR(base); 2740 2741 index = pl011_probe_dt_alias(index, dev); 2742 2743 uap->port.dev = dev; 2744 uap->port.mapbase = mmiobase->start; 2745 uap->port.membase = base; 2746 uap->port.fifosize = uap->fifosize; 2747 uap->port.has_sysrq = IS_ENABLED(CONFIG_SERIAL_AMBA_PL011_CONSOLE); 2748 uap->port.flags = UPF_BOOT_AUTOCONF; 2749 uap->port.line = index; 2750 2751 ret = pl011_get_rs485_mode(uap); 2752 if (ret) 2753 return ret; 2754 2755 amba_ports[index] = uap; 2756 2757 return 0; 2758 } 2759 2760 static int pl011_register_port(struct uart_amba_port *uap) 2761 { 2762 int ret, i; 2763 2764 /* Ensure interrupts from this UART are masked and cleared */ 2765 pl011_write(0, uap, REG_IMSC); 2766 pl011_write(0xffff, uap, REG_ICR); 2767 2768 if (!amba_reg.state) { 2769 ret = uart_register_driver(&amba_reg); 2770 if (ret < 0) { 2771 dev_err(uap->port.dev, 2772 "Failed to register AMBA-PL011 driver\n"); 2773 for (i = 0; i < ARRAY_SIZE(amba_ports); i++) 2774 if (amba_ports[i] == uap) 2775 amba_ports[i] = NULL; 2776 return ret; 2777 } 2778 } 2779 2780 ret = uart_add_one_port(&amba_reg, &uap->port); 2781 if (ret) 2782 pl011_unregister_port(uap); 2783 2784 return ret; 2785 } 2786 2787 static const struct serial_rs485 pl011_rs485_supported = { 2788 .flags = SER_RS485_ENABLED | SER_RS485_RTS_ON_SEND | SER_RS485_RTS_AFTER_SEND | 2789 SER_RS485_RX_DURING_TX, 2790 .delay_rts_before_send = 1, 2791 .delay_rts_after_send = 1, 2792 }; 2793 2794 static int pl011_probe(struct amba_device *dev, const struct amba_id *id) 2795 { 2796 struct uart_amba_port *uap; 2797 struct vendor_data *vendor = id->data; 2798 int portnr, ret; 2799 u32 val; 2800 2801 portnr = pl011_find_free_port(); 2802 if (portnr < 0) 2803 return portnr; 2804 2805 uap = devm_kzalloc(&dev->dev, sizeof(struct uart_amba_port), 2806 GFP_KERNEL); 2807 if (!uap) 2808 return -ENOMEM; 2809 2810 uap->clk = devm_clk_get(&dev->dev, NULL); 2811 if (IS_ERR(uap->clk)) 2812 return PTR_ERR(uap->clk); 2813 2814 uap->reg_offset = vendor->reg_offset; 2815 uap->vendor = vendor; 2816 uap->fifosize = vendor->get_fifosize(dev); 2817 uap->port.iotype = vendor->access_32b ? UPIO_MEM32 : UPIO_MEM; 2818 uap->port.irq = dev->irq[0]; 2819 uap->port.ops = &amba_pl011_pops; 2820 uap->port.rs485_config = pl011_rs485_config; 2821 uap->port.rs485_supported = pl011_rs485_supported; 2822 snprintf(uap->type, sizeof(uap->type), "PL011 rev%u", amba_rev(dev)); 2823 2824 if (device_property_read_u32(&dev->dev, "reg-io-width", &val) == 0) { 2825 switch (val) { 2826 case 1: 2827 uap->port.iotype = UPIO_MEM; 2828 break; 2829 case 4: 2830 uap->port.iotype = UPIO_MEM32; 2831 break; 2832 default: 2833 dev_warn(&dev->dev, "unsupported reg-io-width (%d)\n", 2834 val); 2835 return -EINVAL; 2836 } 2837 } 2838 2839 ret = pl011_setup_port(&dev->dev, uap, &dev->res, portnr); 2840 if (ret) 2841 return ret; 2842 2843 amba_set_drvdata(dev, uap); 2844 2845 return pl011_register_port(uap); 2846 } 2847 2848 static void pl011_remove(struct amba_device *dev) 2849 { 2850 struct uart_amba_port *uap = amba_get_drvdata(dev); 2851 2852 uart_remove_one_port(&amba_reg, &uap->port); 2853 pl011_unregister_port(uap); 2854 } 2855 2856 #ifdef CONFIG_PM_SLEEP 2857 static int pl011_suspend(struct device *dev) 2858 { 2859 struct uart_amba_port *uap = dev_get_drvdata(dev); 2860 2861 if (!uap) 2862 return -EINVAL; 2863 2864 return uart_suspend_port(&amba_reg, &uap->port); 2865 } 2866 2867 static int pl011_resume(struct device *dev) 2868 { 2869 struct uart_amba_port *uap = dev_get_drvdata(dev); 2870 2871 if (!uap) 2872 return -EINVAL; 2873 2874 return uart_resume_port(&amba_reg, &uap->port); 2875 } 2876 #endif 2877 2878 static SIMPLE_DEV_PM_OPS(pl011_dev_pm_ops, pl011_suspend, pl011_resume); 2879 2880 static int sbsa_uart_probe(struct platform_device *pdev) 2881 { 2882 struct uart_amba_port *uap; 2883 struct resource *r; 2884 int portnr, ret; 2885 int baudrate; 2886 2887 /* 2888 * Check the mandatory baud rate parameter in the DT node early 2889 * so that we can easily exit with the error. 2890 */ 2891 if (pdev->dev.of_node) { 2892 struct device_node *np = pdev->dev.of_node; 2893 2894 ret = of_property_read_u32(np, "current-speed", &baudrate); 2895 if (ret) 2896 return ret; 2897 } else { 2898 baudrate = 115200; 2899 } 2900 2901 portnr = pl011_find_free_port(); 2902 if (portnr < 0) 2903 return portnr; 2904 2905 uap = devm_kzalloc(&pdev->dev, sizeof(struct uart_amba_port), 2906 GFP_KERNEL); 2907 if (!uap) 2908 return -ENOMEM; 2909 2910 ret = platform_get_irq(pdev, 0); 2911 if (ret < 0) 2912 return ret; 2913 uap->port.irq = ret; 2914 2915 #ifdef CONFIG_ACPI_SPCR_TABLE 2916 if (qdf2400_e44_present) { 2917 dev_info(&pdev->dev, "working around QDF2400 SoC erratum 44\n"); 2918 uap->vendor = &vendor_qdt_qdf2400_e44; 2919 } else 2920 #endif 2921 uap->vendor = &vendor_sbsa; 2922 2923 uap->reg_offset = uap->vendor->reg_offset; 2924 uap->fifosize = 32; 2925 uap->port.iotype = uap->vendor->access_32b ? UPIO_MEM32 : UPIO_MEM; 2926 uap->port.ops = &sbsa_uart_pops; 2927 uap->fixed_baud = baudrate; 2928 2929 snprintf(uap->type, sizeof(uap->type), "SBSA"); 2930 2931 r = platform_get_resource(pdev, IORESOURCE_MEM, 0); 2932 2933 ret = pl011_setup_port(&pdev->dev, uap, r, portnr); 2934 if (ret) 2935 return ret; 2936 2937 platform_set_drvdata(pdev, uap); 2938 2939 return pl011_register_port(uap); 2940 } 2941 2942 static int sbsa_uart_remove(struct platform_device *pdev) 2943 { 2944 struct uart_amba_port *uap = platform_get_drvdata(pdev); 2945 2946 uart_remove_one_port(&amba_reg, &uap->port); 2947 pl011_unregister_port(uap); 2948 return 0; 2949 } 2950 2951 static const struct of_device_id sbsa_uart_of_match[] = { 2952 { .compatible = "arm,sbsa-uart", }, 2953 {}, 2954 }; 2955 MODULE_DEVICE_TABLE(of, sbsa_uart_of_match); 2956 2957 static const struct acpi_device_id __maybe_unused sbsa_uart_acpi_match[] = { 2958 { "ARMH0011", 0 }, 2959 { "ARMHB000", 0 }, 2960 {}, 2961 }; 2962 MODULE_DEVICE_TABLE(acpi, sbsa_uart_acpi_match); 2963 2964 static struct platform_driver arm_sbsa_uart_platform_driver = { 2965 .probe = sbsa_uart_probe, 2966 .remove = sbsa_uart_remove, 2967 .driver = { 2968 .name = "sbsa-uart", 2969 .pm = &pl011_dev_pm_ops, 2970 .of_match_table = of_match_ptr(sbsa_uart_of_match), 2971 .acpi_match_table = ACPI_PTR(sbsa_uart_acpi_match), 2972 .suppress_bind_attrs = IS_BUILTIN(CONFIG_SERIAL_AMBA_PL011), 2973 }, 2974 }; 2975 2976 static const struct amba_id pl011_ids[] = { 2977 { 2978 .id = 0x00041011, 2979 .mask = 0x000fffff, 2980 .data = &vendor_arm, 2981 }, 2982 { 2983 .id = 0x00380802, 2984 .mask = 0x00ffffff, 2985 .data = &vendor_st, 2986 }, 2987 { 0, 0 }, 2988 }; 2989 2990 MODULE_DEVICE_TABLE(amba, pl011_ids); 2991 2992 static struct amba_driver pl011_driver = { 2993 .drv = { 2994 .name = "uart-pl011", 2995 .pm = &pl011_dev_pm_ops, 2996 .suppress_bind_attrs = IS_BUILTIN(CONFIG_SERIAL_AMBA_PL011), 2997 }, 2998 .id_table = pl011_ids, 2999 .probe = pl011_probe, 3000 .remove = pl011_remove, 3001 }; 3002 3003 static int __init pl011_init(void) 3004 { 3005 printk(KERN_INFO "Serial: AMBA PL011 UART driver\n"); 3006 3007 if (platform_driver_register(&arm_sbsa_uart_platform_driver)) 3008 pr_warn("could not register SBSA UART platform driver\n"); 3009 return amba_driver_register(&pl011_driver); 3010 } 3011 3012 static void __exit pl011_exit(void) 3013 { 3014 platform_driver_unregister(&arm_sbsa_uart_platform_driver); 3015 amba_driver_unregister(&pl011_driver); 3016 } 3017 3018 /* 3019 * While this can be a module, if builtin it's most likely the console 3020 * So let's leave module_exit but move module_init to an earlier place 3021 */ 3022 arch_initcall(pl011_init); 3023 module_exit(pl011_exit); 3024 3025 MODULE_AUTHOR("ARM Ltd/Deep Blue Solutions Ltd"); 3026 MODULE_DESCRIPTION("ARM AMBA serial port driver"); 3027 MODULE_LICENSE("GPL"); 3028